
 Eindhoven University of Technology

MASTER

Initial estimates for obtaining periodic-steady state solutions of free-running circuits

Liu, J.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e6a9158f-aa74-4f16-81dc-ef11b7e2e47b

Initial estimates for obtaining
Periodic-Steady State solutions of

free-running circuits
Master’s Thesis

Liu, Jie

Technische Universiteit Eindhoven, NXP Semiconductors

August 15, 2009

Master Thesis Liu, Jie

Authors’ E-mail address : j.liu@student.tue.nl; jie.liu@nxp.com

2

Master Thesis Liu, Jie

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Overview of the thesis . 10

2 Circuit Equations 11
2.1 Introduction . 11
2.2 A Circuit . 11
2.3 Kirchhoff’s Laws . 12

2.3.1 Kirchhoff’s Current Law (KCL) 12
2.3.2 Kirchhoff’s Voltage Law (KVL) 13

2.4 Nodal Analysis . 13
2.5 Modified Nodal Analysis . 16
2.6 DC Analysis . 18
2.7 AC Analysis . 19
2.8 Transient Analysis . 20
2.9 Harmonic Balance . 21

2.9.1 The Discrete Fourier Transform 21
2.9.2 Applying the DFT in Harmonic Balance 22
2.9.3 Solving the Harmonic Balance form 23

3 Periodic Steady State Solution 26
3.1 Free-running Oscillators . 26
3.2 Floquet-theory . 27

3.2.1 Introduction . 27
3.2.2 Set up for Floquet theory 29
3.2.3 Independent Solutions 30
3.2.4 Adjoint Problem . 30
3.2.5 Bi-Orthgonality . 31
3.2.6 State-Transition Matrix, Monodromy Matrix 32

3.3 Stability Analysis . 33
3.3.1 Instability of the Frozen Coefficient Equations 34
3.3.2 Stability in Linear Nonautonomous Equations 34
3.3.3 Stability for Periodic Coefficient Equations 36

3

Master Thesis Liu, Jie

4 Methods for Periodic Steady State 37
4.1 Finite Difference Method . 37
4.2 Newton-Raphson method for DC 39
4.3 Shooting method . 42
4.4 Newton Method for PSS . 43
4.5 Other methods . 45

5 Numerical method and initial estimate 46
5.1 Time integration method for IVP 46

5.1.1 BDF Method for singular C 49
5.2 Dominant pole algorithm and rayleigh quotient iteration for eigen-

value problem . 50
5.2.1 The Dominant Pole Algorithm 51
5.2.2 Two-sided Rayleigh Quotient Iteration 53

5.3 Initial estimate for Newton procedure 55
5.3.1 Initial estimate for the solution XPSS 56
5.3.2 Initial estimate the period T 58

6 Example 60
6.1 Benchmark oscillator . 60
6.2 LC oscillator . 62

7 Conclusion 66
7.1 Conclusions . 66
7.2 Future research . 66

References 67

A appendix 70
A.1 Matlab Code . 70

A.1.1 Code for eigenvalues algorithm and Initial guess 70
A.1.2 Code for PSS . 74
A.1.3 Code for Newton method solving DC problem 81
A.1.4 Computing the matrix needed for Newtion problem 82
A.1.5 FFT to find the T . 84

4

Master Thesis Liu, Jie

Revision history:

Version Date Description
0.1 20090626 Chapter 1 and 2
0.2 20090708 add Chapter 3, part of Chapter 4
0.3 20090717 add part of Chapter 4 and 5
0.4 20090720 add section 2 in Chapter 5
0.5 20090722 an initial version
0.6 20090803 Jan’s comments
0.7 20090808 Jan’s 2nd comments
0.8 20090812 Theo’s comments
0.9 20090814 Theo’s 2nd comments

5

Master Thesis Liu, Jie

I will be available and pleased to discuss aspects from the thesis
prior to the exam on Wednesday August 19, 2009, at 14:00h.

6

Master Thesis Liu, Jie

Chapter 1

Introduction

1.1 Motivation

Integrated circuits are nowadays an important part of any electrical device. An
example of an IC is shown in Figure 1.1. It is extremely expensive to change an

Figure 1.1: An Integrated Circuit

assembly line in a chip factory to the production of a new design; it may cost
1,000,000 euros - or even more. Hence, it is important that designing products are
right-first-time. This however should not increase the time to the market.
A particular aspect that requires further study, and indeed the main topic of this
thesis, is the numerical simulation of electrical circuits, in particular circuits that
have oscillatory behaviour. Such electrical oscillators have important technological
applications, like modulation and demodulation of radio signals, cell phone, chips
on automatic and etc.
Simple examples include a phase-shift oscillator which is a simple sine wave elec-
tronic oscillator; an LC oscillator which consists of a capacitor and an inductor con-
nected in parallel; and the Electron-Coupled Oscillator (ECO) which has very good

7

Master Thesis Liu, Jie

frequency stabilities. The behaviour of oscillators and oscillator systems nowadays
are becoming much more complex.
My thesis deals with simulation aspects for so-called free-running, autonomous,
oscillators. Oscillators one can divide in two different classes: non-autonomous
and autonomous oscillators.
Non-autonomous (or driven) oscillators need a time-dependent input signal. A
common situation is that the input signal is periodic, and the output signal is pe-
riodic with the same period as the input signal. In this case, the period T of the
output signal is known a priori.
On the other hand, autonomous (or free-running) oscillators have no time-dependent
input signal, which means that it is generally not possible to predict the period T
a priori. Hence to simulate these oscillators numerically one needs to detect this
period T and the corresponding solution. Simple long term time integration is a
very stable and reliable method to solve this problem. However designers do not
like to wait that long. We describe several methods that try to solve the problem
”directly”. However, all these methods are based around methods that use itera-
tive improvements. To guarantee convergence one needs very good predictions for
T and for the oscillation solution. With increasing frequencies this problem have
become even more harder. My thesis deals with finding good predictions for T
and for the oscillation solution. It also is a good example for solving a nonlinear
eigenvalue and eigenvector problem.

8

Master Thesis Liu, Jie

Figure 1.2: A chip made by NXP

Figure 1.3: A few consumer products in which NXP chips are used

9

Master Thesis Liu, Jie

1.2 Overview of the thesis

In this thesis, methods for finding initial estimates to obtain a Periodic Steady State
(PSS) of an electric circuit will be discussed. We will start in Chapter 2 by explain-
ing how the equations that describe a circuit are derived. In the next chapters, I will
give some basic insight in various circuit simulation techniques. In chapter 4, Sev-
eral methods for PSS will be introduced. In chapter 5, I discuss a technical method
for PSS analysis in detail. In chapter 6, I give some free-running (autonomous)
oscillators examples. Finally, in chapter 7, I will arrive at some conclusions, and I
do some recommendations for further research.

10

Master Thesis Liu, Jie

Chapter 2

Circuit Equations

2.1 Introduction

In this chapter we introduce the equations which describe a given electronic circuit.
We start with a brief introduction to electrical circuits where we present the view-
point we take for the derivation of a mathematical model. In the next section we
will describe the basic Kirchhoff’s Voltage Law and Kirchhoff’s Current Law. Af-
ter that, we will give the description of Nodal Analysis, a method for constructing
the mathematical model which describes the circuit, and a more general method
for constructing this model, Modified Nodal Analysis (MNA).We end this chapter
with a description of Circuit analysis, DC, AC analysis, Transient simulation and
Harmonic Balance.

2.2 A Circuit

Basically, a circuit can be defined by branches and nodes. The branches, denoted
by bi, are the circuit elements, and the nodes, denoted by ni, connect the elements
to each other. We consider the following example.

This network has three nodes (n0, n1, n2) and four branches, b1 (containing a
voltage source V (t) between n0 and n1), b2 (a resistor between n1 and n2), b3 (a

11

Master Thesis Liu, Jie

inductor ΦL between n2 and n0) and b4 (a capacitor Qc between n2 and n0).
We define the voltage difference across a branch bi as vbi and the current flow-

ing in a branch bi as ibi . Here we also need to notice the directions. Note that we
implicitly introduced directions (we will explain this more detailedly in the next
section). Equations like Ohms Law for branch bi, vbi = R · ibi , imply that the volt-
age follows current, but when the direction of vbi is reversed the equation looks
like vbi = −R · ibi .

Next, we introduce the equations that reflect the topology of the circuit:
These are called Kirchhoff’s Laws.

2.3 Kirchhoff’s Laws

The equations that reflect the topology of the circuit do not depend on the type of
the branches, but only on the topology of the circuit, i.e. the way in which the
branches are connected. These equations are given by two laws. These laws are,
Kirchhoff’s Current Law and Kirchhoff’s Voltage Law. There are various formula-
tions of these laws, which are all equivalent.

2.3.1 Kirchhoff’s Current Law (KCL)

• The algebraic sum of the currents at a node is zero.

The KCL is derived from the charge continuity law. Which states that the inte-
gral of the current density J , taken over any closed surface S (i.e.

∫
S J · dS is the

total varying current) is equal to the negative rate of change of the electric charge
−∂q
∂t , contained in that closed surface,

∫
S
J · dS = −∂q

∂t
.

The term−∂q
∂t is either negligible or modeled by a capacitor. If we assume that

the current flows only through conductors, we find∫
S
J · dS =

∫
b1

J · dS +
∫
b2

J · dS + . . .

= ib1 + ib2 + . . . ,

since the integral of the current density over the cross section of the conductor is
exactly the current flowing through that conductor.

12

Master Thesis Liu, Jie

Note that the KCL states that the sum of currents is zero across any closed
surface. In particular, a closed surface may contain only one circuit node. In this
case, we have the form of Kirchhoff’s Current Law. This states that all currents
entering a node add up to zero.

2.3.2 Kirchhoff’s Voltage Law (KVL)

• The algebraic sum of the branch voltages vbi around a closed loop is zero:∑
bi∈loop

vbi = 0.

The KVL results from Faraday’s law. Faraday’s law, which states that the line
integral of the electric field E, taken over any closed loop is equal to the negative
rate of variation of magnetic flux through the loop (−∂Ψ

∂t).

∮
E · dl = −∂Ψ

∂t
.

The last term is either assumed to be negligible or is already modeled by an
inductor. Assume the branches b1, b2, . . . bb form a closed loop. We have the fol-
lowing relation

∮
E · dl =

∫
b1

E · dl +
∫
b2

E · dl + . . .+
∫
bb

E · dl. (2.1)

Each
∫
bi
E · dl is a voltage drop vbi over the specific branch. Assuming that we

have no coil involved, (2.1) results in

vb1 + vb2 + . . . vbb = 0.

2.4 Nodal Analysis

Nodal analysis is a simple method for constructing circuit equations from circuits.
First we take a look at the topology of a circuit. The topology can be described

by the adjacency matrix. The rows of this matrix correspond to circuit elements
(branches) and the columns to circuit nodes. We attach a(n arbitrary) direction to
each branch. Assume there are b branches and n nodes. Now we can define the
adjacency matrix Ã ∈ Rb×n

Ã(i, j) :=


1 if node nj is the ”from” node of branch bi
−1 if node nj is the ”to” node of branch bi

0 if node nj and branch bi are not connected

13

Master Thesis Liu, Jie

Kirchhoff’s Voltage Law is equivalent to the following assertion: To every node
ni a nodal voltage vni can be assigned in such a way that for every branch bj the
branch voltage differences is given by:

vbj = vnj+
− vnj−

, (2.2)

where vnj+
denotes the voltage in the positive node nj+ and vj− denotes the volt-

age in the negative node nj− . This voltage is unique except for a common constant.

We define the following vector ṽn(t) as the vector with the assigned nodal voltages
on time t and vb(t) as the vector with the branch voltages on time t, so:

ṽn(t) := (vn1(t), vn2(t), . . . vnn(t))T ,
vb(t) := (vb1(t), vb2(t), . . . vbb(t))

T .

With this notations we can write (2.2) as:

Ãṽn(t) = vb(t). (2.3)

Note that this implies that KVL holds.

We know that these equations have infinitely many solutions due to the com-
mon constant in the node voltages. If we assign one node to be the ground or
reference node we can set the assigned voltage of this node to zero. Without loss
of generality we take vnn as the ground node, thus vnn = 0. We can remove vnn

from the vector of unknown node voltages ṽn(t) and call the remaining vector
vn(t). Now we drop the column corresponding to node n from Ã. The result is a
matrixA ∈ Rb×(n−1). Using this reduced adjacency matrixA we have the relation

Avn(t) = vb(t). (2.4)

It appears that we can use the same matrix A for the Kirchhoff’s Current Law. We
define ib(t) as the vector with all branch currents on time t:

ib(t) := (ib1(t), ib2(t), . . . ibb(t))
T .

Each row of the matrix AT corresponds to a non-reference node, and it has a 1
entry corresponding to a branch leaving the node and a −1 entry corresponding to

14

Master Thesis Liu, Jie

a branch entering the node. When a row is multiplied with the vector of currents,
we get in fact the Kirchhoff’s Current Law equations.

AT ib(t) = 0. (2.5)

These equations, (2.4) and (2.5), are called nodal equations. The next step is to
combine the equations that reflect the topology with the branch equations. A con-
dition for nodal analysis is that there exists functions q̂(vb, t) and ĵ(vb, t) such that
all equations can be written as:

ib(t) =
d

dt
(q̂(vb, t)) + ĵ(vb, t). (2.6)

We now have the following equations

Avn(t) = vb(t), (2.7)

AT ib(t) = 0, (2.8)

ib(t) =
d

dt
(q̂(vb, t)) + ĵ(vb, t). (2.9)

The equations we obtained from the KVL (2.7) can be substituted in the Branch
Current Relations (2.9). This results in

AT ib(t) = 0, (2.10)

ib(t) =
d

dt
q̂(Avn, t) + ĵ(Avn, t). (2.11)

This system can be made even more compact by substituting (2.11) in equation
(2.10), and obtain the following compact system :

AT
(
d

dt
q̂(Avn, t) + ĵ(Avn, t)

)
= 0. (2.12)

An example will be used in the next section to illustrate these equations. No-
tice that for linear q and j, we see that ATCA and ATGA matrices occur. Clearly
ATCA and ATGA are (n− 1)× (n− 1) non-negative definite. The system (2.12)
is a DAE(Differential Algebraic Equation), and for the solvability of a DAE, we
refer to [7].
Nodal Analysis has some severe restrictions, the most important one being that
it requires all branch equations to fit in the form (2.6). In words, Nodal Analy-
sis requires branches to be current-defined and voltage-controlled. However not

15

Master Thesis Liu, Jie

all branch equations are of that form. A simple voltage source, for instance, is
voltage-defined. The branch equation for a 5 Volt voltage source simply is:

vbj = 5.

Because of this, most circuit simulators use Modified Nodal Analysis, a variant of
nodal analysis.

2.5 Modified Nodal Analysis

A short description of Modified Nodal Analysis (MNA) is:

1. Write node equations by applying KCL to each node except for the ground
node:

AT ib(t) = 0,

where the vector ib(t) represents again the branch current vector, and the
matrix A is the reduced adjacency matrix.

2. Replace the currents ik of the elements which are current-defined and voltage-
controlled by the voltage-current relations of these elements in the above
equation (as before).

3. Treat the currents ik of current-controled elements as unknowns additionally
to the nodal voltages. Inductors typically are current controlled: the voltage
difference is the time-derivative of the flux function that itself depends on
the current. The most simple flux function is φ = L iL.
Also voltage sources are considered as ”current controlled”; however in most
cases the voltage source is a constant function of the current through the
voltage source.

4. Add the voltage-current relations for all current-controlled elements. Those
relations will implicitly define the ik.

To explain Modified Nodal Analysis, we consider the following example.

16

Master Thesis Liu, Jie

We treat node n0 as the reference node. Branch b2 is a linear resistor and branch
b4 is a linear capacitor. The matrix A is given by

AT =
b1 b2 b3 b4

n1

n2

(
1
0

−1
+1

0
−1

0
−1

)
.

This results in

AT ib(t) =
[

ib1(t)− ib2(t)
ib2(t)− ib3(t)− ib4(t)

]
= 0,

which are exactly the equations of the KCL for all nodes except the ground
node. The next step is to replace the currents of the voltage-controlled elements
by their current-voltage relation. The current ib1 and ib3 are not voltage-controlled,
but current ib2 and ib4 are voltage-controlled. The latter ones give the following
relations.

ib2(t) = R−1 (vn2(t)− vn1(t)) , (2.13)

ib4(t) = − d

dt
Cvn2(t). (2.14)

Now we substitute the equations (2.13) and (2.14) of the voltage-controlled
elements into the KCL equations. The resulting system is

ib1(t)−R−1 (vn2(t)− vn1(t)) = 0,

R−1 (vn2(t)− vn1(t))− ib3(t) + C
d

dt
vn2(t) = 0.

We treat ib1 and ib3 as additional unknowns.
The next step is to add the voltage-current relations for all current-controlled

elements. Thus we add the relations of the voltage source and the inductor.

vn1(t) = V (t),

vn2(t) =
d

dt
ΦL(ib3(t)).

Combining the equations results in the following system of equations:

ib1(t)−R−1 (vn2(t)− vn1(t)) = 0,

R−1 (vn2(t)− vn1(t))− ib3(t) + C
d

dt
vn2(t) = 0,

vn1(t) = V (t),

vn2(t) =
d

dt
ΦL(ib3(t)).

Clearly, this can be cast in the general form of circuit equations:

d

dt
q(x, t) + j(x, t) = 0, (2.15)

17

Master Thesis Liu, Jie

where x is the vector of unknowns. In our example:

x = (vn1(t), vn2(t), ib1(t), ib3(t))T ,

and the functions q(x, t) and j(x, t) are given by:

q(x, t) =


0

Cvn2(t)
0

−Φ(ib3(t))

 , j(x, t) =


ib1(t)−R−1 (vn2(t)− vn1(t))
R−1 (vn2(t)− vn1)− ib3(t)

vn1(t)− V (t)
vn2(t)

 .
Equation (2.15) is a so-called differential-algebraic equation, or DAE for short.

This means that the system consists of both differential equations and algebraic
equations. In our example, the first equation

ib1(t)−R−1 (vn2(t)− vn1(t)) = 0,

is an algebraic equation, while the last equation

− d

dt
Φ(ib3(t)) + vn2(t) = 0,

is a differential equation.
In practise, it is better to multiply the equation for ib3 with a −1. It makes the
matrix ∂q

∂x non-negative definite. But the matrix ∂j
∂x will loose it’s symmetry.

The above approach is in fact charge-oriented MNA used in industrial simulation
by analogue circuit simulators like Pstar1 , Titan2 and Spectre3 . It models currents
of capacitors by d

dtq (where q = q(v)) in contrast to old Spice-like approaches.

2.6 DC Analysis

As described in the previous, the circuit equations typically have the following
form:

d

dt
q(t,x) + j(t,x) = 0. (2.16)

From the system of equations 2.16, different kinds of analyses can be performed:
DC analysis, AC analysis , Transient Analysis and Harmonic Balance. First, we
indroduce DC Analysis.
DC is the abbreviation of Direct Current. In DC analysis one is looking for a state
where all circuit variables do not vary with time. This is not always possible, but for
the moment we assume that a DC equilibrium state exists. This kind of analysis is
done for a resistive network, that means a network with no capacitors or inductors.

1Pstar is a in-house circuit simulator of NXP Semiconductors
2Simulator of Infineon AG
3Commercial simulator from Cadence Design Systems, Inc.

18

Master Thesis Liu, Jie

(In practice these elements will be neglected). Thus we replace the q(x, t) by 0.
We define DC equation as

j(x) = 0.

In general, this system of equations is nonlinear and has to be solved iteratively,
for instance by the Newton-Raphson method. This method will be explained in
Chapter 4.
Note that the DC-solution always satisfies the algebraic equations of the system
of DAEs: these equations did not change. All other analyses can be viewed as
analyses to study the effects due to perturbations to a system that initially was in
DC-state (f.i. by adding time-dependent sources). For transient analyses the DC
solution will be the initial solution at time t = 0.

2.7 AC Analysis

When performing small-signal or AC analysis, one is interested in what happens
after adding a small time varying signal e(t) to a circuit that is in DC situation.
This means that we include capacitors and inductors to our resistive network. Af-
ter linearization around the DC solution, or another ”operating point” , a linear
dynamic network will show up. We start with considering

d

dt
q(x0 + x(t)) + j(x0 + x(t)) = e(t)

and assume ‖x‖ � 1 and ‖ ddtx‖ = O(‖x‖). We expand the functions q and
j around the operating point x0. If the time varying components of the signals
are ”small” enough, the first two terms of the Taylor expansion will accurately
approximate the functions, and we get

d

dt

[
q(x0) +

∂q
∂x

∣∣∣∣
x0

x(t) + . . .

]
+ j(x0) +

∂j
∂x

∣∣∣∣
x0

x(t) + . . . = e(t).

Next, we perform differentiation with respect to time and obtain

d

dt
q(x0) +

d

dt

∂q
∂x

∣∣∣∣
x0

x(t) + . . .+ j(x0) +
∂j
∂x

∣∣∣∣
x0

x(t) + . . . = e(t).

But q(x0) is constant in time, and therefore d
dtq(x0) = 0. In addition the Jacobian

matrix ∂q
∂x

∣∣∣
x0

does not depend on time. Each “+ . . .” consists of higher order terms

of x and possibly of time derivation of x. This whole contribution can be treated
as O(‖x‖2) effect. Thus, in first order, we have

∂q
∂x

∣∣∣∣
x0

d

dt
x(t) + j(x0) +

∂ j̃
∂x

∣∣∣∣∣
x0

x(t) = e(t).

19

Master Thesis Liu, Jie

Move j(x0) to the right. Hence the above equation reduces to

∂q
∂x

∣∣∣∣
x0

d

dt
x(t) +

∂j
∂x

∣∣∣∣
x0

x(t) = ẽ(t) = e(t)− j(x0).

Using the notation

C =
∂q
∂x

∣∣∣∣
x0

and G =
∂j
∂x

∣∣∣∣
x0

,

we arrive at a linear DAE

C
d

dt
x(t) +Gx(t) = ẽ(t). (2.17)

Because 2.17 is a linear system, the behaviour of a solution x(t) can be studied
in the frequency domain, by considering the relation between the corresponding
Fourier components of x(t) and of ẽ(t). Let us write x(t) = Xeiωt, and ẽ(t) =
Eeiωt, where X and E are time independent vectors and ω is the common angular
frequency. In this notation the equation becomes

(iωC +G) X = E. (2.18)

If we assume that this equation can be solved, then ‖x(t)‖ = ‖X‖
≤ ‖ (iωC +G)−1 ‖‖E‖ � 1, if ‖E‖ � 1. Note that also ‖x′(t)‖ = O(‖x(t)‖)
holds. But if we want to solve (2.18), it is not needed that ‖E‖ is small, because X
is linearly scaled with E.
Small-signal analysis is often called Alternating Current (AC) analysis. This is
because the small-signal added to the vector x0(t) is often a sinewave. Physically
sinewaves can be interpreted as alternating currents.

2.8 Transient Analysis

The solution of (2.16) is time-dependent. For deriving its time-profile or waveform
one has to integrate this equation. This is called Transient Analysis. A full-domain
(also called transient) simulation of the circuit is necessary. In other words, this
means solving the system

d

dt
q(x, t) + j(x, t) = 0

numerically on the interval [0, T]. Normally, the initial state x0 is known. Then it
comes to the initial value problem (IVP):{

d
dtq(t,x) + j(t,x) = 0,

x(0) = x0.

More details on numerically approximating the solution of this IVP will be dis-
cussed in Chapter 5.

20

Master Thesis Liu, Jie

2.9 Harmonic Balance

Harmonic Balance (HB) is a nonlinear frequency-domain analysis; in fact, it is
a generalisation of the linear AC analysis. If the problem under consideration is
linear, Harmonic Balance reduces to an analysis in which the linear equation for
the higher harmonics are similar to the AC equations. These equations are only
coupled to the DC equation. If this equation is linear as well, all equations for a
Fourier component are decoupled from all other ones. Harmonic Balance is based
on the so-called Discrete Fourier Transform, so we will explain this first.

2.9.1 The Discrete Fourier Transform

Let g : R → R be a Riemann-integrable, periodic function with period T . Then
we have numbers γk ∈ C, k ∈ Z, satisfying:

g(t) =
∞∑

k=−∞
γke

iωkt for t ∈ D, (2.19)

where ω := 2π/T , D ⊆ R such that R\D has measure 0. The right-hand side of
equation 2.19 is called the Fourier series of g.

If g is continuous, we have D = R. If g is sufficiently smooth, the γk’s will
vanish exponentially fast for |k| → ∞. So in that case, it makes sense to approxi-
mate g with a truncated Fourier series:

g(t) ≈ ĝ(t) :=
K∑

k=−K
γke

iωkt. (2.20)

If we define γ̂ := [γ−K , γ−K+1, . . . , γK]T , equation 2.20 can be rewritten as:

ĝ(t) = (φ(t) · γ̂) = (φ(t))T γ̂, for all t (2.21)

where
φ(t) = [eiω(−K)t, eiω(−K+1)t, . . . , eiωKt]T . (2.22)

If we select 2K + 1 points t−K , . . . , tK ∈ [0, T), we can define the vector ĝ :=
[g(t−K), . . . , g(tK)]T . This vector is called a time-profile of g, since it consists
of a finite number of samplings of g in the time-domain. We can also define the
matrix Φ as:

Φ :=

(φ(t−K))T
...

(φ(tK))T

 .

We can now derive from equation 2.21 the following compact relation between ĝ,

21

Master Thesis Liu, Jie

Φ and γ̂.

ĝ(t) = (φ(t))T γ̂

=⇒

ĝ(t−K)
...

ĝ(tK)

 =

(φ(t−K))T
...

(φ(tK))T

 γ̂

=⇒
def. of
ĝ and Φ

ĝ = Φγ̂ and γ̂ = Φ−1ĝ. (2.23)

For most choices for the points tk, the matrix Φ will be invertible. This is especially
the case if the tk’s are chosen to be equally-spaced over the interval [0, T). If Φ
is invertible, we have of course γ̂ = Φ−1ĝ. Note that the matrix Φ−1 converts a
finite (discrete) sampling of g in the time domain, into a truncated set of Fourier
coefficients. Hence the matrix Φ−1 is called the Discrete Fourier Transform (DFT),
and the matrix Φ is called the Inverse Discrete Fourier Transform (IDFT). For a
well written on DFT and IDFT part, we refer to [31].

2.9.2 Applying the DFT in Harmonic Balance

If the functions q and j in equation 2.16 are replaced by their Fourier expansion,

q(t,x) =:
∞∑

k=−∞
Qke

iωkt and j(t,x) =:
∞∑

k=−∞
Jke

iωkt,

we get:
∞∑

k=−∞

d

dt
Qke

iωkt +
∞∑

k=−∞
Jke

iωkt = 0. (2.24)

Again, we can truncate the Fourier series,

q̂(t,x) =:
K∑

k=−K
Qke

iωkt and ĵ(t,x) =:
K∑

k=−K
Jke

iωkt.

resulting in:
K∑

k=−K

d

dt
Qke

iωkt +
K∑

k=−K
Jke

iωkt = 0, (2.25)

Equation 2.25 can be transformed into the following set of equations:

iω(−K)Q−K + J−K = 0,
... (2.26)

iωKQK + JK = 0.

22

Master Thesis Liu, Jie

which is equivalent to : iω(−K)
. . .

iω(K)


 Q−K

...
QK

+

 J−K
...
JK

 = 0 (2.27)

If we define Q̂ := [Q−K , Q−K+1, . . . , QK]T , Ĵ := [J−K , J−K+1, . . . , JK]T and
Ω := diag(iω(−K), . . . , iωK). The system (2.27) can be write:

ΩQ̂+ Ĵ = 0 (2.28)

Similar in equation 2.21.

q̂(t,x) = (φ(t))T Q̂ (2.29)

=⇒ ~q(

x−K
...

xK

) =

q̂(t−K ,x−K)
...

q̂(tK ,xK)

 =

(φ(t−K))T
...

(φ(tK))T

 Q̂

=⇒ ~q = ΦQ̂. (2.30)

Also we have~j = ΦĴ . Equation (2.28) can be rewritten as:

ΩΦ−1~q(

x(t−K)
...

x(tK)

) + Φ−1~j(

x(t−K)
...

x(tK)

) = 0. (2.31)

Now define ξ̂ := Φ−1[x(t−K), . . . ,x(tK)]T . Equation 2.31 can now be written as:

FHB(ξ̂) := ΩΦ−1~q(Φξ̂) + Φ−1~j(Φξ̂) = 0. (2.32)

Equation 2.32 is called the Harmonic Balance form. This is the equation that is
solved in the Harmonic Balance algorithm.
The equations are in the frequency domain and the unknown ξ̂ consists of Fourier
coefficients. It is clear that the system given by (2.32) is a non-linear algebraic set
of equations in the frequency-domain.

2.9.3 Solving the Harmonic Balance form

Equation 2.32 is often solved using some type of Newton-Raphson iteration. Hence
the Jacobi-matrix dFHB/dξ̂ needs to be computed. Differentiation of FHB yields:

dFHB

dξ̂
=

d

dξ̂

(
ΩΦ−1~q(Φξ̂) + Φ−1~j(Φξ̂)

)
= ΩΦ−1 d~q

dΦ̂ξ
(Φξ̂)Φ + Φ−1 d~j

dΦξ̂
(Φξ̂)Φ

= ΩΦ−1 ~C(Φξ̂)Φ + Φ−1 ~G(Φξ̂)Φ, (2.33)

23

Master Thesis Liu, Jie

where the block diagonal matrices ~C and ~G are defined by:

~C(

x−K
...

xK

) :=

C(t−K ,x−K) ∅
. . .

∅ C(tK ,xK)


and

~G(

x−K
...

xK

) :=

G(t−K ,x−K) ∅
. . .

∅ G(tK ,xK)

 .

The matrix formulations for Φ−1CΦ and Φ−1GΦ [5] surprisingly become :

Φ−1CΦ =



C0 C−1 . . . C−K CK . . . C1

C1 C0 C−1 . . . C−K . . . C2
...

... · · ·
...

...
...

...

CK−1 CK−2 · · · C−1 C−2
... CK

CK CK−1 . . . C0 C−1 . . . C−K
C−K CK . . . C1 C0 . . . C−(K−1)

...
...

...
... · · ·

...
...

C−2 . . . CK C0 C−1

C−1 . . . C−K CK . . . C1 C0



Φ−1GΦ =



G0 G−1 . . . G−K GK . . . G1

G1 G0 G−1 . . . G−K . . . G2
...

... · · ·
...

...
...

...

GK−1 GK−2 · · · G−1 G−2
... GK

GK GK−1 . . . G0 G−1 . . . G−K
G−K GK . . . G1 G0 . . . G−(K−1)

...
...

...
... · · ·

...
...

G−2 . . . GK G0 G−1

G−1 . . . G−K GK . . . G1 G0


so from (2.33), we have =⇒ :

dFHB

dξ̂
=


Ω1

Ω2

. . .
Ω2K+1




C0 . . . C1
... C0

...
.
C−1 . . . C0

+


G0 . . . G1
... G0

...
.
G−1 . . . G0


(2.34)

Notice that the matrix Φ−1CΦ, and Φ−1GΦ have the matrix property that each
descending diagonal from left to right is constant. We call this kind of matrix a
Toeplitz matrix, or a diagonal-constant matrix. And it has the following benifits:

24

Master Thesis Liu, Jie

1. A Toeplitz matrix is simple to implement and to invert.

2. It is simple to take products of the matrix with itself, or with another Toeplitz
matrix, and for more detail see [6].

3. We do not need to store a whole matrix, we only need one line of the matrix,
like C−K ... CK in our example. In this way efficient Krylov methods can
be implemented.

The matrix at the left-hand side of (2.34) is not a Toeplitz matrix, but Krylov meth-
ods to solve the system can benefit from the Toeplitz properties of its main compo-
nents.

25

Master Thesis Liu, Jie

Chapter 3

Periodic Steady State Solution

A Periodic Steady State (PSS) solution of a circuit is a solution x ∈ C([0, T],RN)
to the following problem:

d

dt
q(t,x) + j(t,x) = 0 for 0 ≤ t ≤ T , (3.1a)

x(0) = x(T). (3.1b)

Here T may or may not be known a priori. If T is known a priori, the circuit
is called non-autonomous, if q(t,x) = q(x) and j(t,x) = j(x) and T is not
known a priori , it is called autonomous. If T is not known a priori, it forms
an additional unknown in the above system. This is the case in circuits like a
free-running oscillator, i.e. an oscillator that is not “driven” by external periodic
input signals. For non-autonomous circuits, the resulting problem is a two-point
boundary value problem.

3.1 Free-running Oscillators

A free-running oscillator is a circuit defined by the following properties:

1. The circuit equations do not depend explicitely on time t. i.e. the circuit
equations are autonomous, hence they look like this:

dq(x)
dt

+ j(x) = 0. (3.2)

This excludes any time-dependent sources, or other time-dependent circuit
elements.

2. A periodic solution x(t) exists which is not a DC solution. In this chapter,
we will refer to a solution x(t) which satisfies these conditions as a non-
trivial periodic solution. The DC solution will be called the trivial periodic
solution.

26

Master Thesis Liu, Jie

For real life applications we are interested in non-trivial periodic solutions x(t).
The case is that T will, in general, not be known. To make the system easy to
solve, we scale the interval [0, T] to the interval [0, 1] (or some other canonical
interval you might like), by defining τ := t/T . (3.2) can then be rewritten as:

1
T

dq(x(τT))
dτ

+ j(x(τT)) = 0. (3.3)

By defining x̂(τ) := x(τT), we solve the scaled Boundary Value Problem:

1
T

dq(x̂)
dτ

+ j(x̂) = 0, 0 ≤ τ ≤ 1, (3.4a)

x̂(0) = x̂(1), (3.4b)

T > 0. (3.4c)

Notice that the system 3.4 is not well-posed, since the solution is not unique. If
x̂(τ) is a solution to 3.4, then x̂(τ + τ0) is also a solution for each τ0 ∈ R. and
there might be even more solutions.
And also if we try to solve equation 3.4 by using a Newton method, this will fail,
since the Newton matrix will become singular when the solution is approached.
Hence an extra condition is needed to make the problem well-posed; this is reason-
able, since we added an extra unknown T to the problem, so we need an additional
equation and this is called phase-shift condition.

3.2 Floquet-theory

3.2.1 Introduction

In this Section we study approaches for determining disturbances of the solution
of the free oscillator when the autonomous differential equation (3.3) is perturbed
by some noise term. Thus, we study

d

dt
q(x) + j(x) + n(t) = 0 ∈ RN (3.5)

where n(t) represents the perturbation applied to (3.3).
A natural approach starts by an attempt with linearizing (3.5) by writing x(t) =
xPSS(t) + xn(t). Assuming that the period T does not change, this gives a Linear
Time Varying differential equation for xn

d

dt
(C(t)xn(t)) +G(t)xn(t) + n(t) = 0. (3.6)

where

C(t) =
∂q(x)
∂x(t) xPSS

, (3.7)

G(t) =
∂j(x)
∂x(t)xPSS

(3.8)

27

Master Thesis Liu, Jie

For n(t) = Ueiνt a nice differential equation can be derived for the ‘rotated’
solution yn = e−iνtxn

d

dt
(C(t)yn(t)) + [G(t) + iνC(t)]yn(t) + U = 0. (3.9)

Here all coefficients are periodic in t with period T . This implies that the time
shifted solution yn(t+ T) also is a solution of the differential equation. However,
it does not imply that yn(t) is periodic with period T . For example, the differential
equation

y′(t) + cos(t)y(t)− 1 = 0, (3.10)

has coefficients that are periodic with period 2π. For its solution we find

y(t) = e− sin(t)

∫ t

0
esin(s)ds+ e− sin(t)y(0), (3.11)

y(2π) =
∫ 2π

0
esin(s)ds+ y(0) > y(0). (3.12)

Indeed y(t + 2π) is also a solution of (3.10) (so the solution satisfies the time-
shifting property), but y(t) clearly is not periodic with period 2π. The solution
even becomes unbounded for t→ 0, so it can not be periodic or quasi-periodic.
The following graph shows the solution of (3.10) for the time interval[0,120]. For

Figure 3.1: Solution of (3.10) for 0 6 t 6 120

forced oscillators such a result can not occur and then yn(t) indeed is periodic with
period T and can be expanded in a Fourier series (which is the basis for the noise

28

Master Thesis Liu, Jie

analysis in this case). But for perturbation of free oscillators, we clearly can not
assume that the period T remains unaffected. We even have to face non-periodic
functions as result. For this reason one considers solutions x(t) of (3.5) of the
form x(t) = xPSS(t + α(t)) + xn(t) in which α(t) is some additional non-trivial
function one has to determine too.

3.2.2 Set up for Floquet theory

We will provide the necessary background of Floquet theory when applied to os-
cillator problems. In [20, 21] this theory is considered for linear homogeneous
DAEs

A(t)x′(t) +B(t)x(t) = 0 (3.13)

and extended to the case in which A(t), B(t) are periodic with period T . In [3, 28]
the autonomous case

x′ = A(t)x(t) +B(t)b(t) (3.14)

is considered. The most adequate description that applies to circuit simulation is
found in [4]. Here the DAE

d
dt

(C(t)x) +G(t)x +B(t)b(t) = 0 (3.15)

is starting point for discussing how to treat phase noise. For phase noise purposes

B(t) = B(xPSS(t)) (3.16)

is evaluated at the Periodic Steady-State solution xPSS of the autonomous problem
(3.3). Hence C,G,B are periodic with period T . The inhomogenous source term
in (3.15), B(t)b(t), is considered to consist of a normalized perturbation function
b(t), that is modulated by the periodical function B(t). In practice, b(t) may
be defined most conveniently in the frequency domain, in which case an Inverse
Fourier Transform is needed to determine the time domain equivalent. Note that
the product of B(t) and of b(t) is defined in the time domain.
We note that xPSS(t) satisfies the homogeneous part of (3.15)

d
dt

(C(t)x) +G(t)x = 0 (3.17)

We assume the case of index 1 DAE’s.
The Floquet Theorem for the homogeneous equation (3.14) is well written in [Ch
6.3 [32]]

Theorem 3.1. We consider equation

x
′

= A(t)x (3.18)

29

Master Thesis Liu, Jie

with A(t) a continuous T-periodic n × n matrix. Each fundamental matrix Φ(t)
(composed of n independent solutions) of equation 3.18 can be written as the
product of two n× n matrices

Φ(t) = P (t)eBt (3.19)

with P(t) T-periodic and B a constant n× n- matrix.

3.2.3 Independent Solutions

Let,

S(t) = {z ∈ RN | (G(t) +
d
dt
C(t))z ∈ Im(C(t))}, (3.20)

N(t) = Ker(C(t)). (3.21)

Then one has

S(t) ∩N(t) = 0, (3.22)

S(t)⊕N(t) = RN . (3.23)

We assume that S(t) is m-dimensional. There are N independent solutions of
the homogeneous problem: u1(t)eµ1t, . . . ,um(t)eµmt,um+1(t), . . . ,uN (t). The
first u1(t), . . . ,um(t) are a basis of S(t); the last, um+1(t), . . . ,uN (t), are a ba-
sis of N(t). The µ1, . . . , µm are so-called Floquet exponents; the eµ1T , . . . , eµmT

are Floquet multipliers. For a stable autonomous index 1 problem we can assume
that µ1 = 0 and that Re(µi) < 0 for i = 2, . . . ,m. In this case we can choose
u1(t) = x′PSS(t).

3.2.4 Adjoint Problem

The homogeneous adjoint (or dual) system corresponding to (3.15) is

CT (t)
d
dt

y −GT (t)y = 0 (3.24)

Similar to the non-adjoint case we introduce

ST (t) = {z ∈ Rn ; | GT (t)z ∈ Im(CT (t))}, (3.25)

NT (t) = Ker(CT (t)), (3.26)

adjoint system have the properties Also ST ism-dimensional. The adjoint problem
has N independent solutions: v1(t)e−µ1t, . . ., vm(t)e−µmt,vm+1(t), . . . ,vN (t),
where v1(t), . . . ,vm(t) are a basis of ST (t) and the last, vm+1(t), . . . ,vN (t), are
a basis of NT (t).

30

Master Thesis Liu, Jie

3.2.5 Bi-Orthgonality

It is easy to verify that if x and y are solutions of (3.17) and (3.24), respectively,
then yT (t)C(t)x(t) = yT (0)C(0)x(0), for all t ≥ 0 (and thus is constant).

Proof. We prove that: z(t) = yT (t)C(t)x(t) is constant, by proving that d
dtz(t) =

0 for all t.

d

dt
z(t) =

d

dt

[
yT (t)C(t)x(t)

]
=

(
d

dt
yT (t)

)
C(t)x(t) + yT (t) · d

dt
[C(t)x(t)]︸ ︷︷ ︸

=−G(t)x(t)

=
(
d

dt
yT (t)

)
C(t)x(t)− yT (t) ·G(t)x(t)

=
[(

d

dt
yT (t)

)
C(t)− yT (t)G(t)

]
x(t)

=

C(t)T
d

dt
y(t)−G(t)Ty(t)︸ ︷︷ ︸

=0


T

x(t)

= 0

More specifically, the bases u1(t), . . . ,uN (t) and v1(t), . . . ,vN (t) can be
chosen such that, theN×N matrix U(t) with as columns the ui(t) and theN×N
matrix V (t) with as rows the vi(t) satisfy a bi-orthogonality relation w.r.t. C(t)
and a nearly one w.r.t. G(t)

V (t)C(t)U(t) =
(
Im 0
0 0

)
, (3.27)

V (t)G(t)U(t) =
(
J1
m 0
0 J2

m

)
. (3.28)

Here Im is a m × m identity matrix. J2
m are suitable block matrices. J1

m is a
m × m block matrix.

31

Master Thesis Liu, Jie

3.2.6 State-Transition Matrix, Monodromy Matrix

Assuming a consistent initial condition x(0) = x0 ∈ S(0), the solution xH(t) of
(3.17) can be written as [12] :

xH(t) =
m∑
i=1

ui(t) exp(µit)vTi (0)C(0)x0, (3.29)

= Φ(t, 0)x0, (3.30)

Φ(t, s) = Θ(t, s)C(s), (3.31)

Θ(t, s) = U(t)D(t− s)V (s), (3.32)

D(t− s) = Diag(exp(µ1(t− s)), . . . , exp(µm(t− s)), 0, . . . , 0) (3.33)

If x0 is not a consistent initial value, one can write x0 = x(S)
0 + x(N)

0 , where
x(S)

0 ∈ S(0) and x(N)
0 ∈ N(0). Clearly C(0)x0 = C(0)x(S)

0 , and xH(t) depends
on x(S)

0 , rather then on x0.
An inhomogeneous solution of (3.15) can be written as

xP (t) = xH(t) +
m∑
i=1

ui(t)
∫ t

0
exp(µi(t− s))vTi (s)B(s)b(s)ds+ Γ(t)B(t)b(t),

= xH(t) +
∫ t

0
Θ(t, s)B(s)b(s)ds+ Γ(t)B(t)b(t)

Here Γ(t) is a matrix with Ker(Γ(t)) = Span(C(t)u1(t), . . . , C(t)um(t)).

Monodromy Matrix

The monodromy matrix is the matrix Φ(t, 0) after one period, i.e. Φ(T, 0) (this
matrix one naturally studies when one considers shooting methods). Because of
the periodicity of the ui, we see that the ui(0), for i = 1, . . . ,m are eigenvectors
of the monodromy matrix with corresponding eigenvalues exp(µiT), and that the
remaining ui(0), for i = m+1, . . . , N , are eigenvectors for the (N−(m−1))-fold
eigenvalue 0.

State-Transition Matrix Adjoint Problem

The adjoint problem (3.24) has state-transition matrix

Ψ(t, s) = V T (t)D(s− t)UT (s)CT (s), (3.34)

=
m∑
i=1

exp(−µi(t− s))vi(t)uTi (s)CT (s) (3.35)

Similar to the non-adjoint case, the vi(0) are eigenvectors of the associated mon-
odromy matrix Ψ(T, 0).

32

Master Thesis Liu, Jie

3.3 Stability Analysis

From the course of differential equations, we know that the solutions of the equa-
tion x

′
= Ax are stable when the spectrum of A is contained in the left half plane

of C. Therefore, it is a surprise that for linear, nonautomous equations,

x
′

= A(t)x, (3.36)

the eigenvalues of the matrix A(t) are in general of no use in determining the sta-
bility of solutions.
The most striking example are provided by matrices A(t) with constant negative
eigenvalues when the system 3.36 has exponentially growing solutions. The fol-
lowing example introducced by Vinograd is typical [33] :

A(t) =
(
−1− 9cos2(6t) + 12sin(6t)cos(6t) 12cos2(6t) + 9sin(6t)cos(6t)
−12sin2(6t) + 9sin(t)cos(6t) −1− 9sin2(6t)− 12sin(6t)cos(6t)

)
(3.37)

The eigenvalues of A(t) for any t are negetive but the unstable solution is illus-
trated as follows (starting from (−2.44, 1.23)):

Figure 3.2: An unstable solution to Vinograd’s example with initial
conditions(y1, y2) = (−2.44, 1.23)

33

Master Thesis Liu, Jie

Similar systems can be found in the literature: The example by Markus and Yam-
abe of an unstable system of the form 3.36 in which A(t) has complex eigenvalues
with negative real parts is frequently cited [7, 22]. Other examples are found in
Hinrichsen [9], Wu, [33]. When these examples were first encountered, it was con-
sidered as something miraculous. In most cases it is not explained how the form of
the matrix A(t) was defined, or how the unstable solution was constructed. Now
we give a explanation.

3.3.1 Instability of the Frozen Coefficient Equations

Our goal is to explain how it is possible that the matrix A(t) in 3.36 has negative
eigenvalues and the solutions are unstable. If it happens, the norm of the solution,
‖x(t)‖ =

√
x(t) · x(t), must increase over time [18] so that

d

dt
‖x(t)‖2 = 2x

′
(t) · x(t) = 2[A(t)x(t)] · x(t) > 0 (3.38)

for at least some values of t. Fix t0 > 0 and consider the autonomous frozen
coefficient system:

x
′

= A(t0)x, (3.39)

obtained from (3.36) by ”freezing” the matrix A(t) at time t0. Condition (3.38)
implies that there must be a t0 such that the frozen coefficient system (3.39) has
solutions whose distance from the origin increases during some interval of time.
The first goal is to characterize the class of matrices:

B= {B is a 2×2 matrix whose eigenvalues have negative real part
and x ·Bx > 0 for some x ∈ R2}

By (3.38) , solutions to (3.36) can only be unstable if A(t) ∈ B for some t. For in-
stance, in the case of Vinograd’s example given in 3.37, we see that for x∗ = [1 1]T

we have x∗ ·A(0)x∗ > 0.
So the conclusion is that there must exist an x and a t such that x · A(t)x > 0 .
For 3.36 to have unstable solutions can be reached using Lyapunov functions: if
x · x′ = x · A(t)x ≤ 0 for any t and x, then let V (x) = x · x , we can follow the
computation,

V
′
(x) = 2(x

′ · x) = 2(A(t)x · x) ≤ 0, (3.40)

and no solutions can cross the level curves of V (x).

3.3.2 Stability in Linear Nonautonomous Equations

We recall that the exponential of a matrix A is defined as:

eA =
∞∑
n=1

An

n!
(3.41)

34

Master Thesis Liu, Jie

For more discussion of the basic properties and applications of matrix exponen-
tials, see [10].
We now return to find the specific nonautonomous equations with unstable solu-
tions. We start with a matrix B taken from the class B described in the previous,
and rotate the corresponding vector field x at a constant angular velocity, which

means: let G(ω) =
(

0 −ω
ω 0

)
. Define that:

R(t, ω) = etG(ω) = e

 0 −ωt
ωt 0



=
∞∑
n=1

(
0 −ωt
ωt 0

)n
n!

=
(

0 −ωt
ωt 0

)
+

1
2!

(
−(ωt)2 0

0 −(ωt)2

)
+

1
3!

(
0 (ωt)3

−(ωt)3 0

)
+ ...

=
(
cos(ωt) −sin(ωt)
sin(ωt) cos(ωt)

)
which rotates the plane by an angle ωt, or equivalently, at angular velocity ω. Let
A(t) = R(t, ω)B[R(t, ω)]−1 so that the vector fieldA(t)x is obtained fromBx by
a rotation over an angle ωt. The equations we consider henceforth will be of the
form

x
′

= A(t)x = (R(t, ω)B[R(t, ω)]−1)x. (3.42)

and the solution to 3.42 is ,

x(t) = R(t, ω)e[B−G(ω)]tx(0). (3.43)

The approach to solving this equation can be found in [18]. We can also easily
verify the solution :

x′ = R′ · e[B−G]t · x(0) +R · e[B−G]t · [B −G] · x(0)
= etG︸︷︷︸

R

·G · e[B−G]t · x(0) +R · e[B−G]t · [B −G] · x(0)

notice that ePt · P = P · ePt for all P

= R ·G · e[B−G]t · x(0) +R · [B −G] · e[B−G]t · x(0)
= R ·B · e[B−G]t · x(0)

= R ·B ·R−1 · x(t)rm if x(t) is the solution of that form

= A(t)x

Note that we did not require B and G are commute. In general

X · Y 6= Y ·X ⇒ eX+Y 6= eX · eY .

35

Master Thesis Liu, Jie

Simple example is when X =
(

1 0
0 1

)
and Y =

(
1 2
3 4

)
, we get eX+Y =(

7.3891 7.3891
20.0855 148.4132

)
, but eX · eY =

(
27.4746 74.6837
57.3164 155.8022

)
.

Now existence of an unstable solution for differential equation 3.36 with the fam-
ily of matrices A(t) having constant eigenvalues with negative real part has come
down to another problem: Given a matrix B, can we find a matrix G(ω) such that
B − G(ω) has positive eigenvalues. If so, the x(t) is an unstable solution.and we
must take care in this case.

3.3.3 Stability for Periodic Coefficient Equations

From the above subsection we know the eigenvalues of A(t) do not determine the
stability of the solution to (3.42), so people may ask what additionally is needed to
guarantee stable solutions. WhenA(t) is periodic, the answer is Floquet exponents.
The theory has been stated in the section before, and we repeat the solution when
A(t) is periodic.

x(t) = P (t)eMt, (3.44)

where P (t) has period T and M is a constant matrix 6= 0.
The eigenvalues of eMT are called characteristic multipliers ofA(t) , and a Floquet
exponent ofA(t) is a complex number µ such that eµT is a characteristic multiplier
of A(t). In particular, the eigenvalues of M are Floquet exponents of A(t). The
system x′(t) = A(t)x(t) is asymptotically stable if the real parts of the Floquet
exponents are negative.
From the systems of the form 3.42, A(t) has period T = 2π

ω and the discussion in
section 2 implies that P (t) = eG(ω)t and M = B−G(ω). Thus the eigenvalues of
B −G(ω) are the Floquet exponents of the system 3.42 and the signs of their real
parts determine the stability of the system. This is the same conclusion we reached
in subsection 3.3.2.

36

Master Thesis Liu, Jie

Chapter 4

Methods for Periodic Steady
State

4.1 Finite Difference Method

The Finite Difference Method tries to solve the DAE and the boundary equations
all “at once”, i.e. by accumulating the linearised equations in one big matrix and
solving the resulting matrix equation. The disadvantage of this method is that the
size of this matrix can be huge; however, the matrix has a sparse structure, which
can be exploited to keep memory usage reasonable.

First, the system of (3.1) has to be discretised. For this, choose M + 1 points
0 = t0 < t1 < · · · < tM = T . We will choose the θ-method for the discretisation:

FN =
q(tj ,xj)− q(tj−1,xj−1)

tj − tj−1
+ θj(tj ,xj) + (1− θ)j(tj−1,xj−1) = 0 ∈ RN .

(4.1)

combined with the periodicity conditions:

x0 − xM = 0. (4.2)

and applying Newton-Raphson:

∂FN

∂x
(xk+1 − xk) = −FN(xk). (4.3)

Where ∂FN

∂x is defined by:
I −I
B1 A1

B2 A2

.
BM AM

 (4.4)

37

Master Thesis Liu, Jie

DefineAj := 1
∆tj

Cj+θGj andBj := −1
∆tj−1

Cj−1+(1−θ)Gj−1. Here T is known
so we fomulate the system for non-autonomous problems. For non-autonomous
problems (4.3) is enough, because T is known.
But note that for autonomous problems T (or the frequency f) has become an
additional unknown, and we also need to make the solution unique. In that case,
we have to add one more condition, which is called the phase-shift condition.

FD(x, f) = 0, (4.5)

pTx− c = 0, (4.6)

where FD : RMN → RMN is given by

FD
0(x, f) = f

q(x(t0))− q(x(tM−1))
∆t0

+ [θj(x(t0)) + (1− θ)j(x(tM−1))],

FD
i(x, f) = f

q(x(ti))− q(x(ti−1))
∆ti

+ [θj(x(ti)) + (1− θ)j(x(ti−1))],

1 ≤ i ≤M − 1.

In (4.6), p ∈ RMN is some given vector. and c is a constant, which should be
determined in the range of x.
and applying Newton-Raphson yields:

Y
(

xk+1 − xk

fk+1 − fk
)

= −
(

FD(xk, fk)
pTxk − c

)
(4.7)

Y =
(

Y Z
pT 0

)
, (4.8)

in which

Z =
∂

∂f
FD(xk, fk), (4.9)

Y =
∂

∂x
FD(xk, fk),

(4.10)

There are some options [11] for the phase-shift condition p, and here we choose
the form

pT = eTj ,

in which p is a unit vector. Also let (4.6) only affects the first time level, which
means

pTx(0) = c.

38

Master Thesis Liu, Jie

4.2 Newton-Raphson method for DC

The Newton-Raphson method ([30]) is used to find zeros of a given function f .
In circuit analysis we usually have a vector-valued function f : Rn → Rn, with
n > 1 . Thus

f(x) =

 f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

 .
Assume x = ξ is a zero of f , and assume that x0 is an approximation to ξ and

that f is differentiable for x = x0 then f(ξ) can be approximated by

0 = f(ξ) ≈ f(x0) +Df(x0)(ξ − x0),

where

Df(x0) =


∂f1
∂x1 . . . ∂f1

∂xn

...
...

∂fn

∂x1 . . . ∂fn

∂xn


x=x0

, ξ − x0 =

 ξ1 − x1
0

...
ξn − xn0

 .
If the Jacobian Df(x0) is not singular, we can define

x1 = x0 − (Df(x0))−1 f(x0),

and x1 may be taken as a closer approximation to the zero ξ. The generalized
Newton-Raphson method for solving systems of equations is given by

xi+1 = xi − (Df(xi))
−1 f(xi). (4.11)

We apply this Newton-Raphson method to find the DC equilibrium of the fol-
lowing nonlinear network.

39

Master Thesis Liu, Jie

This network consists of a voltage source and two resistors. Branch b2 is a
linear resistor, with resistance R = 1, and branch b3 a nonlinear resistor. We have
the following relation:

ib3 = (vn0 − vn2)3 + 2 (vn0 − vn2)2 + (vn0 − vn2)
= −v3

n2
+ 2v2

n2
− vn2 .

The second equality holds because we choose n0 as ground node, and thus
vn0 = 0. The equations can again be written in the general form

d

dt
q(x) + j̃(x)− e(t) = 0.

Here

x =

 vn1

vn2

ib1

 , j̃(x) =

 −ib1 + vn2−vn1
1

vn1 − 2vn2 + 2v2
n2
− v3

n2

vn1

 , e(t) =

 0
0

V (t)

 ,
and q(x) = 0.
To apply DC analysis we take V (t) = 20. In short, we are looking for a zero

of the function f(x), with x = (x1, x2, x3)T and

f(x) = j̃(x)− e(t) =

 −x3 − x1 + x2

x1 − 2x2 + 2
(
x2
)2 − (x2

)3
x1 − 20

 .
There are 2 tolerances given, ATOL = 10−7 and FTOL = 10−6. We stop

iterating if

‖xi+1 − xi‖ ≤ ATOL, stopping on correction

or ‖f(x)‖ ≤ FTOL, stopping on residue

where ‖·‖ is the Euclidean norm. We start with the value x0 = (20, 16, 4)T . In
Table 4.1 we list the results. In Figure 4.1 we see the log of the approximation error
(‖xi − ξ‖) and the log of the residue (‖f(xi)‖) plotted as function of the iteration
number i. We can see from this plot that this example is quadratically convergent,
which is a well-known theoretical result, means

‖xi+1 − ξ‖ ≤ C‖xi − ξ‖2.

And the last few iterations converge even stronger.

40

Master Thesis Liu, Jie

number of iteration approximation approximation error residue correction error
i xi ‖xi − ξ‖ ‖f(xi)‖ ‖ xi+1 − xi‖
0 (20.0000, 16.0000, 4.0000)T

1 (20.0000, 10.9065,−9.0935)T 10.8078 3596 14.0493
2 (20.0000, 7.5399,−12.4601)T 6.0466 1061.3 4.7611
3 (20.0000, 5.3626,−14.6374)T 2.9675 310 3.0791
4 (20.0000, 4.0543,−15.9457)T 1.1172 87.4 1.8503
5 (20.0000, 3.4310,−16.5690)T 0.2357 21.9 0.8815
6 (20.0000, 3.2738,−16.7262)T 0.0135 3.7 0.2222
7 (20.0000, 3.2643,−16.7357)T 4.8053e-005 0.2 0.0135
8 (20.0000, 3.2643,−16.7357)T 6.0853e-010 0 0
9 (20.0000, 3.2643,−16.7357)T 0 0 0

Table 4.1: Results of Newton-Raphson iteration.

Figure 4.1: Approximation error of Newton-Raphson method.

41

Master Thesis Liu, Jie

Figure 4.2: Residue of Newton-Raphson method.

4.3 Shooting method

In this section we are trying to solve an equation of the form:

G(x0) = F (x0)− x0 = 0. (4.12)

by some type of Newton method. This is called Single Shooting. TThe matrix
Φ(x0) := dF (x0)/dx0 is needed. This matrix can be computed as a by-product of
the transient computation of x(T) from x0.

The shooting method can now be described by the following pseudo-code:

x0 := some initial guess
{integrate (3.1a) over [0, T], T is known:}
xT ,Φ := F (x0),Φ(x0)

while ‖x0 − xT ‖ ≥ ε do
{compute Newton update:}
x0 := (I − Φ)−1(xT − Φx0)
{integrate (3.1a) over [0, T]:}
xT ,Φ := F (x0),Φ(x0)

Here, ε is the convergence criterium of the Newton algorithm. If equation 3.1a is
linear, the while-loop will be executed only once. So the shooting method can be

42

Master Thesis Liu, Jie

simplified for linear problems to yield:

x0 := some initial guess
{integrate (3.1a) over [0, T]:}
xT ,Φ := F (x0),Φ(x0)
{compute Newton update:}
x0 := (I − Φ)−1(xT − Φx0)

4.4 Newton Method for PSS

Newton Method is a variant on the shooting method. Suppose that some initial
profile x(0)(t) is provided. We are now going to find a better guess x(1), which is
defined as:

x(1)(t) := x(0)(t) + δx(1)(t). (4.13)

By substituting this guess into (3.1a), we obtain:

d

dt
q(t,x(1)) + j(t,x(1)) = 0

=⇒
(4.13)

d

dt
q(t,x(0) + δx(1)) + j(t,x(0) + δx(1)) = 0

=⇒
Taylor

d

dt
C0δx(1) +G0δx(1) + s(0) +O(‖δx(1)‖2) = 0, (4.14)

where

C0(t) := C(t,x(0)(t)) =
∂q(t,x(0)(t))

∂x
, (4.15)

G0(t) := G(t,x(0)(t)) =
∂j(t,x(0)(t))

∂x
, (4.16)

s0(t) :=
d

dt
q(t,x(0)) + j(t,x(0)). (4.17)

If the higher-order terms are neglected in equation 4.14, we get the following linear
DAE for δx1:

d

dt
C0δx(1) +G0δx(1) = −s0[d

dt
C0(t)

]
δx(1) + C0(t)

d

dt
δx(1) +G0(t)δx(1) = −s0[d

dt
C0(t) +G0(t)

]
δx(1) + C0(t)

d

dt
δx(1) = −s0, (4.18a)

which can be combined with the periodicity condition:

x(0)(0) + δx(1)(0) = x(0)(T) + δx(1)(T). (4.18b)

This linear system can be solved using the linear shooting method, as described
in the previous section. Using the solution δx(1) a new (and hopefully better)

43

Master Thesis Liu, Jie

approximation x(1) := x(0) +δx(1) can be computed. This process can be repeated
until a sufficiently good solution has been found. The resulting algorithm can be
described in pseudo-code as

x(0) := some initial guess , not necessarily periodic

{compute G0, C0 and s0:}
G0(t) := G(t,x(0)(t)) for 0 ≤ t ≤ T
C0(t) := C(t,x(0)(t)) for 0 ≤ t ≤ T

s0(t) :=
d

dt
q(t,x(0)) + j(t,x(0)) for 0 ≤ t ≤ T

i := 0

while ‖si‖ ≥ ε do

solve δx(i+1) in
d

dt
Ciδx(i+1) +Giδx(i+1) = −si,

x(i)(0) + δx(i+1)(0) = x(i)(T) + δx(i+1)(T).

x(i+1) := x(i) + δx(i+1)

{compute Gi+1, Ci+1 and si+1:}
Gi+1(t) := G(t,x(i+1)(t)) for 0 ≤ t ≤ T
Ci+1(t) := C(t,x(i+1)(t)) for 0 ≤ t ≤ T

si+1(t) :=
d

dt
q(t,x(i+1)) + j(t,x(i+1)) for 0 ≤ t ≤ T

i := i+ 1

There are two essential differences between (single) shooting and Newton:

1. Wave-form-Newton uses the whole function x on the interval [0, T] in its
iteration. Single shooting stores only the value x(0). Of course, practical
implementations of wave-form-Newton will only store x on a finite number
of points t0, . . . , tN .

2. The approximations computed by Wave-form-Newton satisfy the periodicity
equation 3.1b during the whole iteration, except for the initial guess x(0).
However, the DAE 3.1a is not satisfied by the intermediate results. On the
other hand, the shooting method satisfies 3.1a during the whole equation, but
3.1b is not satisfied by the intermediate results. This can be summarised by
saying that the shooting method takes equation 3.1a as an invariant and tries
to establish 3.1b, while Wave-form-Newton keeps 3.1b as an invariant and
tries to establish 3.1a.

44

Master Thesis Liu, Jie

Finally, we want to remark that the pseudo-code above should not be taken too
literal. Especially, the matrices Gi and Ci and the vector si can be computed while
solving the linear system. Since they are only needed at the current time point
in the solution process of the ODE 4.18b, they do not have to be stored for all
time-points. So less memory is needed. However, Wave-form-Newton will still
need much more memory than single shooting, since single shooting stores the
solution at only one time-point, while Wave-form-Newton needs the solution at all
the time-points t0, . . . , tN .

4.5 Other methods

Another method for determining the PSS of a circuit is epsilon extrapolation,
which can be found in [11]. A second method is the accelerated-Poincaré method,
which has super-linear convergence for determing the PSS solution. It can be found
in [13].

45

Master Thesis Liu, Jie

Chapter 5

Numerical method and initial
estimate

5.1 Time integration method for IVP

Let us look back the problem described in Chapter 2. In this section we focus on
the free-running oscillator which generates the equations:

d

dt
q(x) + j(x) = 0, (5.1a)

x(0) = x(T). (5.1b)

and we assume xpss is a Periodic Steady State solution for the system (5.1), so it
fulfills:

d

dt
q(xpss(t)) + j(xpss(t)) = 0. (5.2)

Notice that here we assume the period T is an additional unknown. We can trans-
form (5.2) like:

d

dt
q(xpss(t)) + j(xpss(t)) = 0

=⇒ ∂q
∂x
· d
dt

xpss(t) + j(xpss(t)) = 0

Define:

C(t) =
∂q
∂x

∣∣∣∣
xpss(t)

(5.3)

and we first assume that C(t) is non-singular.

Let y(t) =
d

dt
xpss(t) (5.4)

=⇒ C(t) · y(t) + j(xpss(t)) = 0, (5.5)

46

Master Thesis Liu, Jie

We differentiate (5.5) with respect to t:

=⇒ d

dt
{C(t) · y(t) + j(xpss(t))} = 0 (5.6)

=⇒ d

dt
[C(t) · y(t)] +

∂j
∂x

∣∣∣∣
xpss(t)

· x′pss(t) = 0 (5.7)

Define:

G(t) =
∂j
∂x

∣∣∣∣
xpss(t)

, (5.8)

=⇒ d

dt
[C(t) · y(t)] +G(t) · y(t) = 0.

=⇒ d

dt
[C(t) · y(t)] = −G(t) · y(t).

=⇒ d

dt
[C(t) · y(t)] = [−G(t) · C(t)−1] · [C(t) · y(t)].

(5.9)

Then we define:

A(t) = −G(t) · C(t)−1, w(t) = C(t) · y(t). (5.10)

To solve (5.2) is equivalent to solve the equation:

d

dt
w(t) = A(t) ·w(t). (5.11)

Now we set up a transient simulation with the following Initial Value Problem:

d

dt
w(t) = A(t) ·w(t), (5.12a)

w(t) = C(t) · y(t), (5.12b)

y(t) =
d

dt
xpss(t), (5.12c)

xpss(0) = x0 (5.12d)

We define a number of grid points N , so that ∆t = Tlarge

N and ti = i × ∆t for
i = 1, 2, ...N . At each grid point of the time domain, we freeze the coefficient
matrix A(t) and C(t). On t0 ≤ t < t1 , let A(t) = A(t0) , and on ti ≤ t < ti+1

let A(t) = A(ti), so we have the equation:

d

dt
w(t) = A(ti) ·w(t) i=1,2,...,N (5.13)

47

Master Thesis Liu, Jie

Now apply the well-known results from linear algebra on finding two linearly in-
dependent solutions for each homogeneous linear system. Note that the general
solution for (5.13) on each time domain is :

w =
m∑
k=1

αkpke
λkt m is the number of non-trivial eigenvalues of A(ti) involved.

(5.14)
λi is the eigenvalue of the matrix A(ti), pi is the corresponding eigenvector and αi
is the coefficient for each independent solution.
Then we solve (5.12b) and (5.12c) by a time integration method. Recall from (5.3)
that C(t) is nonsingular, so (5.12b) can be easily scaled by:

y(t) = C−1(t) ·w(t).

For solving (5.12c) we choose Simpson’s rule which has a 5th order of accuracy,
and we find

xn+1 = xn +
∆t
6

[y(tn) + y(
tn+1 + tn

2
) + y(tn+1)] t ∈ [0, tlarge]. (5.15)

We still have two questions to be answered. The first one is how to compute
the eigenpair(λ, P) and the second one is how to know the initial value of y.
The answer to the first question will be introduced in the next section. For the
second one, we apply the following way:
choose another time step ∆t1 � ∆t and do one step time integration method to x0

and get an x1, then define:

y0 =
x1 − x0

∆t1
(5.16)

In pseudo-code, this algorithm looks as follows.
x0 := some initial guess for x

y0 = 1
∆t1

(x1 − x0)

i := 0

repeat

compute C(ti) and G(ti) from xi

wi = C(ti) · yi

determine αk, λk, pk by eigenvalue algorithm (DPA and RQI)

wi+1 =
∑n

k=1 αkPke
λk·i·∆t

48

Master Thesis Liu, Jie

yi+1 = C−1(ti) ·wi+1

compute xi+1 from (5.15)

i := i+ 1

until i = Nt = 1
∆tTlarge which is the number of time steps.

This gives a sequence x0,x1,...,xN in which x1 is calculated with accurate time
integration method and the other values are calculated by a coarse grid, but by the
special method described above.

5.1.1 BDF Method for singular C

In the definition of 5.3, we assumeC is invertible for all x, but in practice,C will be
almost always singular, because of the algebraic equations. Then, the solution has
to satisfy a number of algebraic equations. Because these algebraic equations also
apply in t = 0, a proper initial solution has also to satisfy the algebraic equations.
One clear criterion pops up when we try to integrate the DAE by the backward
(or implicit) Euler method.This method approximates the derivative of q(x(t)) in
(5.1a) with a finite difference:

q(xk)− q(xk−1)
tk − tk−1

+ j(xk) = 0, k ≥ 1, (5.17)

Here xk is an approximation to x(tk) and t0 = 0 < ... < tk−1 < tk < ... ≤T. The
algebraic equation (5.17) is not necessarily linear. Newtons method can be used to
solve xk from (5.17). Then for each Newton iteration a linear system of the form:

Ax
(i)
k = b(i), (5.18)

has to be solved, where A is the Jacobian associated with (5.17):

A =
α0

h
C +G, with C =

∂q

∂x
|
x=x

(i−1)
k

, G =
∂j

∂x
|
x=x

(i−1)
k

(5.19)

α0 = 1, and h = tk − tk−1.The backward Euler scheme of (5.17) uses a first order
approximation for the derivative d

dtq(x).Higher order schemes can be used as well;
for instance

d

dt
q(xk) ≈

∑m
i=0 βiq(xk−i)
tk − tk−1

(5.20)

with parameters βi and m < 7. This leads to the so called BDF (backward differ-
entiation formula) methods. Variable order BDF methods with variable step sizes
are often used in practice in transient analysis of circuits.The linear systems arising
in BDF methods have a structure similar as (5.18), with (5.19), but with a different
value of α0. Numerical problems may arise in the BDF method if the DAE (5.1a)

49

Master Thesis Liu, Jie

is of index > 1, see [2], Ch.3 .

With the stepsize h becoming smaller and smaller we require that α0
h C + G be-

comes invertible. This is equivalent to require that C+λG is invertible for small λ,
a condition on the pencil (C,G). For well-posedness reasons we even will require
that the inverses of C + λG will be uniformly bounded for λ ∈ B(0, δ) (for some
δ > 0).
A forward Euler scheme for (5.1a) is obtained by replacing j(xk) by j(xk−1) in
(5.17). However, in this case the Jacobian A = C/h, is likely to be singular, and
it also does not guarantee that ji(xk) = 0 for the algebraic equations. Therefore,
forward Euler and also other explicit schemes are not suitable for (5.1).

5.2 Dominant pole algorithm and rayleigh quotient itera-
tion for eigenvalue problem

In this Section we give the answer to how to compute the eigenvalues and eigen-
vectors for the system (5.12a). Some of the methods are well known, full space
method like QR and QZ method, and sub-space methods like Lanczos, Arnoldi
and Jacobi-Davidson method [15]. Here we will use the dominant pole algorithm
and the rayleigh quotient iteration [15, 16].
The orientation of this section comes from the following Single Input Single Out-
put (SISO) electrical system{

E d
dtx = Ax(t) + bu(t)

y(t) = cTx(t),

where A,E ∈ Rn×n, x(t),b, c ∈ Rn and u(t), y(t) ∈ R. We define the transfer
matrix H(s) by :

H(s) = cT (sE −A)−1b, (5.21)

where s ∈ C.
Let the eigenvalues λj of (E,A), ie. the values λj for which det(E−λjA) = 0, and
the corresponding right and left eigenvectors be given by the triplets (λj ,xj ,yj),
and let the right and left eigenvectors corresponding to finite eigenvalues be scaled
so that y∗jExj = 1. Note that y∗jExk = 0 for j 6= k and λj 6= λk. Note that
in practice E can be singular, and hence there are eigenvalues at infinity. How-
ever, these eigenmodes have no contribution to the transfer function and can be
neglected. The transfer function H(s) can be expressed as a sum of residues Rj
over first order, non-defective poles [17]:

H(s) =
n∑
j=1

Rj
s− λj

, (5.22)

50

Master Thesis Liu, Jie

where the residues Rj are
Rj = (xTj c)(y∗jb).

An upperbound for |H(s = iω)| is given by

|H(iω)| ≤
n∑
j=1

|Rj |
Re(λj)

,

where for every individual term the upperbound

|Rj |
Re(λj)

is reached for iω = iIm(λj). A pole λj that corresponds to a residue Rj with
large |Rj |/|Re(λj)| is called a dominant pole, i.e. a pole that is well observable
and controllable in the transfer function. This can also be observed from the cor-
responding Bode magnitude plot of H(s), where peaks occur at frequencies close
to the imaginary parts of the dominant poles of H(s). An approximation of H(s)
that consists of k < n terms with |Rj |/|Re(λj)| above some value, determines an
effective transfer function behavior [29]:

Hk(s) =
k∑
j=1

Rj
s− λj

. (5.23)

The problem of concern can now be formulated as: Given a SISO linear, time
invariant system (E,A,b, c), compute k � n dominant poles λj and the corre-
sponding right and left eigenvectors xj and yj .

5.2.1 The Dominant Pole Algorithm

The poles of transfer function (5.21) are the λ ∈ C for which lims→λH(s) = ∞.
Consider now the function T : C −→ C

T (s) =
1

H(s)
. (5.24)

For a pole λ of H(s), lims→λ T (s) = 0. In other words, the poles are the roots
of T (s) and a good candidate to find these roots is Newton’s method. This idea is
the basis of the Dominant Pole Algorithm (DPA) [23]. The derivative of T (s) with
respect to s is given by

T ′(s) = −H
′(s)

H2(s)
. (5.25)

The derivative of H(s) in (5.21) to s is

H ′(s) = −c∗(sE −A)−1E(sE −A)−1b, (5.26)

51

Master Thesis Liu, Jie

where it is used that the derivative of the inverse of a square matrix A(s) is given
by d[A−1(s)]/ds = −A−1(s)A′(s)A−1(s). Equations (5.25) and (5.26) lead to
the following Newton scheme:

sk+1 = sk −
T (sk)
T ′(sk)

= sk +
1

H(sk)
H2(sk)
H ′(sk)

= sk +
H(sk)
H ′(sk)

= sk −
c∗(skE −A)−1b

c∗(skE −A)−1E(skE −A)−1b
. (5.27)

Formula (5.27) was originally derived in [1]. Using v = (skE − A)−1b and
w = (skE − A)−∗c, an implementation of this Newton scheme is Algorithm 1,
also known as the Dominant Pole Algorithm ([23]). Algorithm 1 converges asymp-

Algorithm 1 The Dominant Pole Algorithm (DPA)
Require: System (E,A,b, c), initial pole estimate s1; tolerance ε� 1
Ensure: Dominant pole λ and corresponding right and left eigenvectors v and w

1: Set k = 1
2: while not converged do
3: Solve v ∈ Cn from

(skE −A)v = b

4: Solve w ∈ Cn from
(skE −A)∗w = c

5: Compute the new pole estimate

sk+1 = sk −
c∗v

w∗Ev

6: The pole λ = sk+1 with x = vk/‖vk‖2 and y = wk/‖wk‖2 has converged
if

||Ax− sk+1Ex||2 < ε

7: Set k = k + 1
8: end while

totically quadratically, but the solution depends on the initial shift and hence is not
guarenteed to be the most dominant pole.

The algorithm 1 computes a single dominant pole. In order to compute more
poles, as is required in practice, the algorithm can be extended to a subspace ac-
celerated algorithm, using deflation to avoid computing the same pole again. The
resulting algorithm, Subspace Accelerated DPA (SADPA), is described in detail

52

Master Thesis Liu, Jie

in [15]. This variant also uses a selection criterion to select the most dominant
approximation in every iteration.

5.2.2 Two-sided Rayleigh Quotient Iteration

Algorithm 2 Two-sided Rayleigh quotient iteration
Require: System (E,A,b, c), initial pole estimate s0 ; tolerance ε� 1
Ensure: Approximate pole λ and corresponding right and left eigenvectors v and

w
1: v0 = (s0E −A)−1b , w0 = (s0E −A)−1c, and s1 = ρ(v0,w0)
2: Set k = 1 , v0 = v0/‖v0‖2 , and w0 = w0/‖w0‖2
3: while not converged do
4: Solve v ∈ Cn from

(skE −A)v = Evk−1

5: Solve w ∈ Cn from

(skE −A)∗w = Ewk−1

6: Compute the new pole estimate

sk+1 = sk −
c∗v

w∗Ev

7: Set vk = vk/‖vk‖2 and wk = wk/‖wk‖2
8: The pole λ = sk+1 with x = vk and y = wkhas converged if

||Ax− sk+1Ex||2 < ε

9: Set k = k + 1
10: end while

We first define the two-sided Rayleigh quotient:

Definition 5.2.1. The generalized two-sided Rayleigh quotient ρ(x,y) is given by
ρ(x,y) ≡ y∗Ax/y∗Ex, provided y∗Ex 6= 0.

The two-sided Rayleigh Quotient Iteration(RQI) [24, 25] is shown in Algo-
rithm 2. The only difference with DPA is that the right-hand sides in step 3 and 4
of Algorithm 1 (DPA) are kept fixed, while the right-hand sides in step 4 and 5 of
Alg. 2 (RQI) are updated every iteration.

If we compare the convergence behavior of DPA and RQI, we find if we provide
an initial pole guess s0, the DPA will find the dominant pole closest to imaginary
axis, and RQI will convergence to the pole closest to s0. We show a simple example

with E = I and A =

 −1 0 0
0 0 −1
0 1 0

 and this matrix has 3 eigenvalues −1, i

53

Master Thesis Liu, Jie

and −i. We apply DPA and RQI to this matrix with the same initial guess −0.5 +
0.1i. From Fig. 5.1, the DPA converges to the pole closest to the imaginary axis
(+i), and in Fig. 5.2, the RQI converges to the pole closest to the initial shift, (−1).
Note the RQI has cubic rate of convergence [15] and DPA has quadratic. The price
one has to pay for the cubic convergence, is the smaller convergence region. In
general, DPA has a much larger convergence region [16]. This is shown in Fig 5.3
(with courtesy of J. Rommes). While DPA takes advantage of the information in
the right-hand side b and c, RQI only takes advantage of this in the first iteration.
So the input source b and c are more improtant for DPA especially for the large
system.

Figure 5.1: Estimate of pole after each iteration by DPA with the initial
guess−0.5 + 0.1i

Figure 5.2: Estimate of pole after each iteration by RQI with the initial
guess−0.5 + 0.1i

54

Master Thesis Liu, Jie

Figure 5.3: (courtesy J. Rommes) λ = 0.47 + 8.9i : DPA: red + yellow,
RQI: red + light blue

5.3 Initial estimate for Newton procedure

The Newton procedure for finding the periodic steady state solution always need
an initial estimate. No doubt that a good initial guess will give a much better and
faster iteration. To find these is the motivation for this section.
The initial conditions must satisfy the following requirements:

1. The initial guess x0 must not be a DC solution.
(a DC solution is a trival soluton and we want the non-trivial periodic solu-
tion.)

2. The initial guess should preferable be periodic

3. It should be ”close” to the exact PSS solution

In the past no specific method for defining the initial estimate was given. People
give a sine like curve or some other curve to ”expect” a good result. Now we give

55

Master Thesis Liu, Jie

an idea to define an initial estimate.
We notice that from Section 1 we produce a transient like solution which involve
an eigenvalue problem. We may use the information from this procedure.

5.3.1 Initial estimate for the solution XPSS

We illustrate our approach by considering the next benchmark problem.

dx

dt
= y + ε(1−

√
x2 + y2)x, (5.28a)

dy

dt
= −x+ ε(1−

√
x2 + y2)y, (5.28b)

with ε = 0.1, t in [0, 10π] and initial value [−1.5, 0.5]′. The exact PSS solution of
this problem is:

x(t) = a sin(t− c)
y(t) = a cos(t− c)

With a and c are constant coefficients and period T = 2π. In Fig 5.5, by perform-

Figure 5.4: x(t) and y(t) for 0 ≤ t ≤ 8π after Transient simulation

ing transient integration, we find that the simulation will converge towards to the
limit cycle, So a part of the solution in Fig. 5.4 should be a good estimate. Note
that we should select one period of the solution for the Newton iteration, but T is
an unknown in the autonomous case. The T can be detected by several methods
to be introduced in the next subsection. From Fig 5.6, we give the simulation for
a long time at least several periods (only y(t) shows), For each period Ti, we also

56

Master Thesis Liu, Jie

Figure 5.5: Plot of (x(t), y(t)) for various values of t and (x(0), y(0)) =
(−1.5, 0.5)

Figure 5.6: choice of solution

need to determine the solution in one interval of periodicity. We select the solution
of T1 and TN for comparison in Fig. 5.6. The solution in the period TN is the last
period of the solution in our simulation, and it has already convergence to the limit
cycle in Fig 5.5. The solution in the period T1 is the second period and not con-
verge yet, so the solution in period TN is better than the solution during the period
T1. But in our experiments when starting with the solution of T1 even approachs a
good convergence result.

57

Master Thesis Liu, Jie

Figure 5.7: FFT to the initial solution in 5.4

5.3.2 Initial estimate the period T

Here we apply three methods for the estimation of the period T to the previous
example:

1. The first method is based on Fast Fourier transform (FFT). Once we have
generated a solution by transient simulation, we apply the FFT to this solu-
tion and consider the power spectrum. For the single frequency oscillator,
the peak of the magnitude corresponds to the frequency of the oscillator.
From this we can calculate T .
In Figure 5.7, the x-axis is the frequency and the y-axis is the power spec-

tral density(PSD), being the squared modulus of the Fourier transform of the
time series. By a Matlab program, we compute the frequency f = 0.1592,
so the period T = 1/f = 6.2833, which is a very good estimate for the exact
period =2π.

2. The second method is based on the Dominant Pole Algorithm. In the tran-
sient simulation, to solve (5.12a) we apply the Dominant Pole Algorithm to
compute the dominant eigenvalue and corresponding eigenvector for each
time step, and we have the following relation

Im(λi) = 2πfi = 2π/Ti (5.29)

From Figure 5.8 we can see that Ti also converge to the exact period T = 2π.

3. The third method is based on the Rayleigh Quotient Iteration. This can seem
as the improvement to the second method. When computing a eigenvalue for

58

Master Thesis Liu, Jie

Figure 5.8: Estimate of T on each time step

each time step, the Rayleigh Quotient Iteration can convergence to the pole
closest to the initial guess of the pole. This means if we know the range of
the pole we want apriori, RQI can converge faster to the pole than DPA.

59

Master Thesis Liu, Jie

Chapter 6

Example

6.1 Benchmark oscillator

dx

dt
= y + h(

√
x2 + y2)x, (6.1a)

dy

dt
= −x+ h(

√
x2 + y2)y, (6.1b)

The ODE (6.1) has the following properties

• It has at least one PSS solution, namely the stationary state with x = 0.
However, this solution is unstable.

• For every rk > 0 satisfying h(rk) = 0, we see that the circle described by
x2 + y2 = r2

k is a limit cycle.

Some interesting choices for h are

• For h(r) = cos r there is an infinite number of stable and unstable limit
cycles. Every zero of h corresponds to a limit cycle of (6.1). This choice of
h shows that it is possible for several limit cycles to exist.

• For h(r) = ε(1− r), there is exactly one stable limit cycle, namely the unit
circle. However, the solution x(t) ≡ 0 is an unstable stationary solution.
The single limit cycle is stable; convergence speed towards this limit cycle
is determined by the parameter ε > 0. We did experiments on different ε =
0.0001, 0.001, 0.01, ... and we found the closer ε approaches 0, the slower
convergence becomes. Also we found the ε = 0.1 has the best convergence
property. The fact that we can tune convergence speed with ε makes this
particular problem a suitable benchmark problem.

We take h(r) = ε(1 − r) and ε = 0.1. Figure 6.1 shows both the initial solution
(dot) and the final PSS solution (continuous line) on a scaled interval [0, 1]. The
initial value for T = 6.2833 ≈ 2π. The initial solution was determined by one

60

Master Thesis Liu, Jie

Figure 6.1: Initial Guess and Exact Solution x(t)

period of the numerical solution by the special method. We see that the Newton
procedure gives a correction to the PSS solution starting from the Initial Guess.
Figure 6.2 shows details of convergence process of the Newton process. The upper

Figure 6.2: log norm of approximation error for each Newton iteration

line is the log norm of approximation error (of the corrections) for each iteration
step, the lower line is the quadratic convergence line. We see that during the first

61

Master Thesis Liu, Jie

Figure 6.3: log norm of residue for each Newton iteration

few iterations we did not reach the quadratic convergence rate, but at last it gives
super-quadratic convergence. And this results is similar to the plot of log norm of
the residue in Fig. 6.3.

6.2 LC oscillator

For many applications [8, 19, 27] oscillators can be modeled as an LC tank with
a nonlinear resistor as shown in Fig 6.4. This circuit is governed by the following
differential equations for the unknowns (v, i) :

C
dv(t)
dt

+ v(t)
1
R

+ i(t) + S tanh(
Gn

S
v(t)) = 0, (6.2a)

L
di(t)
dt
− v(t) = 0, (6.2b)

where C, L and R are the capacitance, inductance and resistance, respectively. The
nodal voltage is denoted by v and the branch current of the inductor is denoted
by i. The voltage controlled nonlinear resistor is defined by S and Gn, where S
determines the oscillation amplitude and Gn is the gain.
A lot of work has been done for the simulation of this type of oscillators. Here
we will give the PSS solution and the performance of the Newton procedure start-
ing from our initial guess. For the given RLC circuit we used the following pa-
rameter values L = 10−9/(2 × π)[H], C = 1/23.041 × 10−9/(2 × π)[F],
R = 1000[Ω] , S = 1/R Gn = −1.1/R. The specific parameters L and C

62

Master Thesis Liu, Jie

Figure 6.4: Voltage controlled oscillator, f(v) = S tanh(GnS v(t))

Figure 6.5: PSS Solution

are to give f = 4.8Ghz.

In Figure 6.5, we see the PSS solution for this LC-oscillator. The solution of the
voltage v(t) has a maximum value of 0.6 no matter what initial value is given due
to it’s special structure.

63

Master Thesis Liu, Jie

Figure 6.6: Compare Initial guess and PSS solution

Figure 6.6 gives the initial guess (dotted curve) and the PSS solution (continu-
ous line) on the same scaled time domain [0, 1].
In Table 6.1, the total number of iterations is listed. We compare our initial guess

Tol 10−5 10−10 10−12 10−13 10−15

DC 8 9 9 10 34
TR 6 7 7 7 15

Table 6.1: The numbers of iterations by the modified DC initial guess and
TR initial guess

with the initial value produced by a modified DC solution which is the DC solu-
tion plus a small perturbated cosine wave. When decreasing the tolerance for the
corrections of the Newton procedure from 10−5 to 10−15, we can see that when
starting with the modified DC solution the number of iterations increases faster
than when starting with the solution provided by the transient method.
In Fig 6.7, these two kinds of initial guess are compared with PSS solution, we
can see that the waveform guess generated by our numerical method is much more
sinusoidal.

64

Master Thesis Liu, Jie

Figure 6.7: Comparison of two initial guesses with PSS

65

Master Thesis Liu, Jie

Chapter 7

Conclusion

7.1 Conclusions

The following conclusions can be reached:

1. In this report, several methods for finding a PSS have been introduced.

2. A numerical method for giving a good initial estimate has been used, it saves
numerical cost compared to other initial guesses.

3. Stability analysis for a ODE system with different cases has been listed, also
some counterexamples are provided.

4. Several methods for computing eigenvalues and eigenvectors are compared,
specific eigenvalues can be selected by DPA or RQI.

5. Three ways to estimate the frequency of the oscillator are used, and both of
them are efficient.

7.2 Future research

1. It seems that not all the information from eigenvalues and eigenvectors is
used. The eigenvector for the specific dominant pole may become a good
initial guess for the time derivative of the PSS solution.

2. Comparisons of the initial estimate generated by our numerical method to
other ways of initial guess can be implemented.

3. Research directed towards applying this initial estimate to other different and
more complicated oscillators.

66

Master Thesis Liu, Jie

References

[1] BEZERRA, L. H. : Written discussion to [23]. IEEE Trans. Power Syst. 11, 1
(Feb 1996), 168.

[2] K. E. Brenan, S.L. Campbell, L.R. Petzold,: Numerical solution of initial-
value problems in differential-algebraic equations. SIAM, Philadelphia, PA,
1996.

[3] A. Demir, A. Mehrotra, J. Roychowdhury: Phase noise in oscillators: A uni-
fying theory and numerical methods for characterisation, DAC98, San Fran-
cisco, June 1998. Extended version in IEEE Trans. on Circuits and Systems -
I: Fundamental Theory and Applications, Vol. 47, No. 5, pp. 655-674, 2000.

[4] A. Demir: Phase noise in oscillators: DAEs and coloured noise sources,
Proc. ICCAD’98, Int. Conf. on Computer Aided Design, Nov. 8-12, 1998,
San Jose, CA, USA, pp. 170-177, 1998.

[5] Peng Li and Wei Dong Parallel Preconditioned Harmonic Balance for Ana-
log Circuit Analysis ,Texas A and M University, SIAM 09 CSE, Presentation

[6] R. M. Gray :Toeplitz and Circulant Matrices: A Review Deptartment of Elec-
trical Engineering, Stanford University, 2006

[7] J. K. Hale :Ordinary Differential Equations, 2nd ed., Robert E. Krieger,
Huntington, NY, 1980

[8] D. Harutyunyan , J. Rommes, E.J.W. ter Maten, W.H.A. Schilders Simulation
of mutually coupled oscillators using nonlinear phase macromodels CASA
Report, Eindhoven, Tu/e 2008

[9] D. Hinrichsen, A. Pritchard,: Mathematical Systems Theory, Springer-Verlag,
Berlin, 2005

[10] M. W. Hirsch, S. Smale, AND R. L. Devaney, :Differential Equations, Dy-
namical Systems, and an Introduction to Chaos, 2nd ed. Pure Appl. Math.
(Amst.) 60, Elsevier/ Academic Press, Amsterdam, 2004

[11] S.H.M.J. Houben : Algorithms for periodic steady state analysis on electric
circuits Eindhoven : Eindhoven University of Technology, 1999

67

Master Thesis Liu, Jie

[12] E.J.W. ter Maten, J.G. Fijnvandraat, S.H.M.J. Houben, J.M.F. Peters Time-
domain fd-method for the periodic steady-state of free running oscillators
ED&T Analogue Simulation, Technical Note, 2002

[13] S.H.M.J. Houben,: Circuits in motion : the numerical simulation of electrical
oscillators , PhD Thesis, Eindhoven : Technische Universiteit Eindhoven,
2003

[14] ROMMES, JOOST, AND MARTINS, N. :Efficient computation of multi-
variable transfer function dominant poles using subspace acceleration.
PREPRINT 1344, UTRECHT UNIVERSITY, JAN. 2006.

[15] ROMMES, JOOST, Methods for eigenvalue problems with applications in
model order reduction PHD THESIS, UTRECHT UNIVERSITY, 2007.

[16] ROMMES, JOOST, SLEIJPEN,G.L.G., Convergence of the dominant pole
algorithm and Rayleigh quotient iteration, SIAM JOURNAL ON MATRIX

ANALYSIS AND APPLICATIONS, VOL. 30, ISSUE 1, 2008, PP. 346-363

[17] KAILATH, T. :Linear Systems. PRENTICE-HALL, 1980.

[18] KREŠIMIR JOSIĆ , ROBERT ROSENBAUM :Unstable Solutions of Nonau-
tonomous Linear Differential Equations , SIAM 2008 ,VOL. 50 , NO. 3 .
PP. 570-584.

[19] X. LAI AND J. ROYCHOWDHURY : Capturing oscillator injection locking
via nonlinear phase-domain macromodels, IEEE TRANS. MICRO. THEORY

TECH., 52(9):2251-2261, SEPTEMBER 2004.

[20] R. LAMOUR, R. MÄRZ, R. WINKLER: How Floquet Theory applies to
Index 1 differential algebraic equations, J. OF MATH. ANALYSIS AND AP-
PLICS, VOL. 217, PP. 372-394, 1998.

[21] R. LAMOUR: Floquet-Theory for differential-algebraic equations (DAE),
ZAMM, VOL. 78-3, PP. S989-S990, 1998.

[22] L. MARKUS , H. YAMABE, :Global stability criteria for differential systems,
OSAKA MATH. J. 12(1960) , PP. 305-317.

[23] MARTINS, N., LIMA, L. T. G., AND PINTO, H. J. C. P. : Computing
Dominant Poles of Power System Transfer Functions. IEEE TRANS. POWER

SYST. 11, 1 (FEB 1996), 162–170.

[24] AM OSTROWSKI: On the convergence of the Rayleigh quotient iteration for
the computation of the characteristic roots and vectors ARCH.RATIONAL

MECH. ANAL. 3 (1959), 325-340

68

Master Thesis Liu, Jie

[25] B.N. PANTAZIS AND D.B. SZYLD, The Rayleigh quotient iteration and
some generalizations for nonnormal matrices, MATH.COMP. 28 (1974) NO.
127, 679-693

[26] G. PETERS AND J.H.WILKINSON, Inverse iteration, ill-conditioned equa-
tions and Newton’s method, SIAM REVIEW 21(1979) , NO.3, 339-360

[27] B. RAZAVI :A study of injection locking and pulling in oscillators, IEEE J.
SOLID-STATE CIRC.,39(9):1415-1424, SEPTEMBER 2004.

[28] D. RAOULX: Oscillator’s phase noise: theory and simulation, PHILIPS RE-
SEARCH, LEP - TECHNICAL REPORT NO. C 2000-751, 2000.

[29] SMITH, J. R., HAUER, J. F., TRUDNOWSKI, D. J., FATEHI, F., AND

WOODS, C. S. : Transfer Function Identification in Power System Appli-
cation. IEEE TRANS. POWER SYST. 8, 3 (AUG 1993), 1282–1290.

[30] J. STOER AND R. BULIRSCH Introduction to Numerical Analysis SPRINGER

1992.

[31] LIOYD N. TREFETHEN :Spectral methods in MATLAB PHILADELPHIA ,
SIAM, 2000

[32] FERDINAND VERHULST :Nonlinear Differential Equations and Dynamical
Systems SECOND EDITION SPRINGER

[33] M.- Y. WU, Some new results in linear time-varying systems, IEEE TRANS,
AUTOMAT, CONTROL, 20(1975), PP. 159-161.

69

Master Thesis Liu, Jie

Appendix A

appendix

A.1 Matlab Code

A.1.1 Code for eigenvalues algorithm and Initial guess
Different Circuit can be chosen.
Provide different initial guess and 3 ways for computing eigenvalues and eigenvec-
tor: DPA , RQI and matlab commend eig.

function [XPSS,XPSS0,XREAL,KREAL]=DPAdtest3(epsilon,circuit,x)
circuit =char(’Jie_LC’);
plotconv=0;
usexpss0=0;
useeig=0;
usedpa=1;

iniv=[];
X=[];
XPSS0=[];%estimate for XPSS
XREAL=[];% Estimate for Xreal
KREAL=[];
ALPHAA=[];
XPSS=[];
RIGHTEV=[];
POLES=[];

T=2*1e-9;
delta0=2*1e-12;
Nt=T/delta0; % number of time steps
delta=1/(Nt);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%initial value
x =[0.5 , -0.5]’;
%x= 1.0e-009 * [1 , 1]’;

70

Master Thesis Liu, Jie

[jukhhjkh,Y] = ode45(@(t,y) rigidLC(t,y),[0 delta0/100],[x’]);
% [jukhhjkh,Y] = ode45(@(t,y) rigid(t,y,epsilon),[0 delta/100],[x’]);
% [jukhhjkh,Y] = ode45(@(t,y) rigid(t,y,epsilon),[0 T],[x’]);
%[jukhhjkh,Y] = ode45(@(t,y) rigidLC(t,y),[0 T],[x’]);

x1=(Y(length(Y),:))’;

% hold on
% plot(jukhhjkh,Y(:,1),’r-’)
%return

y=(x1-x)/delta0*100;
xpss=x;
eval(circuit);
y=C*y;

for n = 1 : Nt
eval(circuit);

A=-G*inv(C);
if useeig

[V,D]=eig(A);
leftev=V;
poles=D;

end

if usedpa
E=eye(2);
b=rand(2,1);
c=b;
d=0;
p=2;

s0=zeros(p,1);
s0(1)=1.0e+012 *(-0.0041 + 3.0160i);
s0(2)=1.0e+012 *(-0.0041 - 3.0160i);
s0(3)=80i;
tol=1e-2;
imagtol=1e-7;
normres=1;
k=0;
poles = [] ;
leftev = [] ;
rightev = [] ;
residues = [] ;
nr_it = 0 ;
iter = 0 ;
%shifts = s0 ;
nr_it=[];

it=0;
while it<p

71

Master Thesis Liu, Jie

norms=1;
st=s0(it+1);

while norms > tol & iter<10000
k=k+1;
iter=iter+1;
nr_it(k)=iter;
sEmA = st * E - A ;

v = sEmA \ b ;
w = sEmA’ \ c ;
st=(w’ * A * v) / (w’ * E * v);

xnorm=v/norm(v);
ynorm=w/norm(w);
res=A*xnorm-st*(E*xnorm);
normres(k)=norm(res);
norms=norm(res);

end
v=v/(w’ * E * v);

%Deflation b and c
b=b- E * v * w’ *b;
c=c- E’ * w * v’ *c;

it=it+1;
poles(it,it)=st;
leftev=[leftev,xnorm];
rightev=[rightev,ynorm];

end

end

% lambda=imag(poles(1,1))/2/pi
% disp(’ ’)
% pause
% plotpo=plot(n,imag(poles(1,1))/2/pi,’*’);
% xlabel(’time step ’);
% ylabel(’Estimate of frequency’);
% set(plotpo,’LineWidth’, 2)
% hold on

%%%%%%%%%%%%%compute alpha %%%%%%%%%%%%%%%%

iniv=[leftev(:,1)*exp(poles(1,1)*n*delta0) , leftev(:,2)*exp(poles(2,2)*n*delta0)];

%pause
andy=inv(iniv)*y;

alpha=andy(1); % changed everytime

72

Master Thesis Liu, Jie

beta=andy(2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%plot the error and number of iteration
% plot(nr_it, normres,’k-+’);
%hold on

%%%%%%%%%%%%%%%%%%%%%%%%%%check for solution
y=zeros(2,1);

% alpha=1;
% beta=1;

y=alpha*leftev(:,1)*exp(poles(1,1)*(n+1)*delta0);
y=beta*leftev(:,2)*exp(poles(2,2)*(n+1)*delta0)+y;

y=inv(C)*y;
%y=C*y;

%xpss=xpss+y;

% first order euler

%xpss=xpss+delta0*y;

kreal=(real(alpha)*real(leftev(:,1))-imag(alpha)*imag(leftev(:,1))+
real(beta)*real(leftev(:,2))-imag(beta)*imag(leftev(:,2)))/abs(poles(1,1));
xreal=kreal*(real(poles(1,1))*cos(real(poles(1,1))*(n+1)*delta)+
imag(poles(1,1))*sin(imag(poles(1,1))*(n+1)*delta));
XREAL=[XREAL,xreal];
KREAL=[KREAL,kreal];
%mid point rule

%xpss=xpss + delta *[0.5*?(y+alpha*rightev(:,1)*exp(poles(1,1)*(n+1)*delta)+beta*rightev(:,2)*exp(poles(2,2)*(n+1)*delta))];

%simpson rule
%xpss
xpss=xpss+delta0/6*[y+alpha*leftev(:,1)*exp(poles(1,1)*(n+1)*delta0)+beta*leftev(:,2)*exp(poles(2,2)*(n+1)*delta0)+ 4*(alpha*leftev(:,1)*exp(poles(1,1)*((n+1+n)/2)*delta0)+beta*leftev(:,2)*exp(poles(2,2)*((n+1+n)/2)*delta0))];
%xpss
%pause

n=n+1;
X=[X , y];
XPSS=[XPSS, xpss];
x=xpss;
y=C*y; % scale back to w

end

73

Master Thesis Liu, Jie

%%%%%%%%%%%%%%%%%Plot PSSsolution X with Y%%%%%%%%%%%%%%%
%length(n)
% plot3(XPSS(1,:),XPSS(2,:),n,’*’)
% %grid; axis([-1.5 1.5 -1.5 1.5]);
% % hold on
% plot(XPSS(1,:),XPSS(2,:));

% length(XPSS);
if plotconv

t=delta0:delta0:T;
% length(t);
% % length(XPSS);
% % %hold on
% % % plot(t,XPSS,’k-’,t,XPSS0,’r’,t,XREAL,’g’)
% % %plot(t,XREAL,’g’,t,KREAL,’r’)

plotxpss=plot(t,XPSS)
set(plotxpss, ’LineWidth’, 2);

% T0=2*pi/imag(poles(1,1))
end

A.1.2 Code for PSS

% Using Newton .method for model problem dx/dt = -y + epsilon(1-r)x
% dy/dt= x + epsilon(1-r)y

clc
clear all

%initial Value
circuit =char(’Jie_LC’);
N=2; % dimension of the solution
steps=100; % number of time steps
dt = 1/steps;
bigx = zeros(N*steps + 1,1);
epsilon=1e-1; %coefficient of the model problem
tol=1e-10;
amp=0.4;
%amp=0.0000001;
x =[amp , -amp]’;
%x=[-1.5, 0.1]’;
%T0=2*pi;
T0=2.08*1e-10; %must be a good estimate

oscnode=1;
plotfactor=0; %plot the damping factor

74

Master Thesis Liu, Jie

plotconv=0; %plot the norm of error
plotconv2=0; % plot the pss solution
plotconv3=1; % compare the initial guess and pss solution
plotxy=0; % plot x with y
plotpoles=0; %plot the pole on each iteration
eiAB=0; % see the poles of matrix A and B
useprecondition=0;
useDCsolution=0;
method=1;
X=[];
POLESA=[];
POLESB=[];
LEFTEV=[];
RIGHTEV=[];
POLESAm=[];
errPOLES=[];

x0=zeros(N,1);
debug=0;
damping=1;
maxdT=T0/10;
%[XPSS]=DPAd_nonlinear(epsilon);
% [XPSS,XPSS0,XREAL,KREAL]=DPAd_nonlinear2(epsilon,circuit);
[XPSS,XPSS0,XREAL,KREAL]=DPAdtest3(epsilon,circuit,x);
%size(XPSS)
%lines = plot([0 XPSS(1,1:100)],’.r’);
%return
[p,q]=size(XPSS0);
%plot(real(XPSS(2,:)))
%return
%Give initial value for bigx and x0
% x0=XPSS(:,q);
% for i = 1:steps
% bigx((i*N-N+1):(i*N),1) = XPSS(:,q-i+1);
% end

if useDCsolution

xDC=1.0e-006 *[0.1000 , 0.1623]’;

for i = 1:steps
bigx((i*N-N+1):(i*N),1) = xDC;

end
for i = 1:steps
bigx((i-1)*N+oscnode,1) = bigx((i-1)*N+oscnode,1) + amp*cos(2*pi*i/steps);

end
else

75

Master Thesis Liu, Jie

x0=XPSS(:,1);
for i = 1:steps

bigx((i*N-N+1):(i*N),1) = XPSS(:,i);
end

end

% for i = 1:steps
% bigx((i-1)*N+oscnode,1) = bigx((i-1)*N+oscnode,1) + amp*cos(2*pi*i/steps);
% end

bigx(N*steps+1,1) = T0;

step=0;
size(bigx);

if plotconv
nrms = [];

end

fprintf(1,’Method: convoluting with ’);
if method == 0

fprintf(1,’cosine\n’);
else method == 1

fprintf(1,’delta function\n’);
end

while 1

[bigf,bigPhi,bigA,bigB,bigY] = getBigStuff(bigx, N , circuit , steps , oscnode , amp , method);
%rank(bigY)

% %return
% A=bigA;
% B=bigB;
% E=eigs(A,B);

if eiAB
% size(bigA);
% size(bigB);
%

p=1;
A=bigA;
B=bigB;

76

Master Thesis Liu, Jie

E=B;
%E=eye(length(bigA));
%b=rand(length(bigA),1);
b=rand(length(bigA),1);
c=b;
tol=1e-8;
s0=-0.9;

% E=eig(A,B);

% E=eig(bigY);
% POLESA=[POLESA,E];
% [polesA,leftev] = DPAd(E,bigY,b,c,tol,s0);

[polesA,leftev,rightev] = DPA(E,A,b,c,tol,s0);
LEFTEV=[LEFTEV,leftev];
RIGHTEV=[RIGHTEV,rightev];
POLESA=[POLESA,polesA];

% polesAm=eigs(bigY,1,’sr’);
% POLESAm=[POLESAm,polesAm];

%POLESB=[POLESB,polesB];
% det(bigY)

end

% [bigdx] = solve(bigPhi,bigf,tol);
if useprecondition

preleftev=[leftev’,0];
prerightev=[rightev ; 0];

% kkk=prerightev(1)/bigf(1)
% prerightev(2)
% kkkk=prerightev(2)-kkk*bigf(2)
% alpha=-(preleftev * bigPhi * prerightev) \ (preleftev * bigf);
% alpha=- ((leftev’) * bigf(1:length(bigf)-1)) /
((leftev’)*bigPhi(1:length(bigf)-1 , 1:length(bigf)-1)*rightev) ;

%return
% bigdx=norm(alpha)*prerightev;

%size(preleftev)
%return

% bigdx=(-preleftev*bigPhi)\ (preleftev *bigf);
% bigdx=-[(((leftev’)*bigPhi(1:length(bigf)-1 , 1:length(bigf)-1))
%\ (leftev’*bigf(1:length(bigf)-1) - leftev’*bigPhi(1:200 , 1)*1)); 1];

else
bigdx = -bigPhi\bigf;

% preleftev=[www’,0];
%bigdx=(-preleftev*bigPhi)\ (preleftev *bigf);

77

Master Thesis Liu, Jie

end
error_linear_system=norm(bigPhi*bigdx+bigf);

nrm = norm(bigdx,inf);

step = step + 1;
fprintf(1,’Step %d: %e\n’, step, nrm);

waveform = bigdx(1:steps*N,1);
T = bigdx(steps*N+1, 1);

% plot(step, (rightev),’+-r’,step,nrm,’+g’)
% plot(real(rightev), imag(rightev),’b’)
% hold on

%calculate damping factor
factor = 1;

normwaveform = norm(waveform,inf);
% fprintf(1,’Norm of waveform: %e\n’, normwaveform);
if factor*normwaveform >= damping

factor = damping/normwaveform;
end

fprintf(1,’Suggested change in T: %e\n’, T);
fprintf(1,’Suggested change in waveform: %e\n’, normwaveform);

if factor*abs(T) >= maxdT
factor = maxdT/abs(T);

end
if plotfactor

plot(step,factor,’-.ob’)
hold on

end
%update x0 and T
if factor ˜= 1

fprintf(1, ’Damped with factor %d\n’, factor);
end

bigx = bigx + factor*bigdx;
fprintf(1, ’T = %e\n’, bigx(steps*N+1));
fprintf(1, ’f = %e\n’, 1/bigx(steps*N+1));
if plotconv

nrms = [nrms; log(nrm)]; % we can see the order of error
end

fprintf(1, ’\n error norm = %e\n’, nrm);
if nrm <= tol

break
end

78

Master Thesis Liu, Jie

% if debug
% plotx = x0;
% plott = 0;
%
% for i = 1:steps
% plotx(:,i) = bigx((i*N-N+1):(i*N),1);
% plott(:,i) = bigx(steps*N+1)*i*dt;
% end
%
% plotx=[x0 plotx]; % davit added
% plott=[0 plott]; % davit added
%
% lines = plot(plott, plotx);
% title([circuit ’: debug’]);
% xlabel(’time’);
%
% zoom on;
%
% eval(strcat(circuit,’_labels’));
% legend(labels);

% pause;
end

x0 = bigx((steps*N-N+1):(steps*N),1);
T = bigx(steps*N+1, 1);
%step
%size(nrms)
%choose two point to generate the order of Newton method

if plotconv
y1=nrms(step-2);
y2=nrms(step-6);
st=1:1:step;
ylin=-2*st + y2;

plot(st,ylin,’r’,st,nrms,’g’)
% plot(st,nrms,’r’);
% h = legend(’kreal’)

hold on
% pause;

end

plotx = x0;
plott = 0;

79

Master Thesis Liu, Jie

for i = 1:steps
plotx(:,i) = bigx((i*N-N+1):(i*N),1);
plott(:,i) = T*i*dt; % scale back to the real time domain

end

plotx=[x0 plotx]; % davit added
plott=[0 plott]; % davit added

xpss=plotx;
tpss=plott;

%size(plott)
%size(XPSS(2,:))

if plotconv2
set(gca,’FontSize’,14)

% lines = plot(plott, plotx,plott,[0 XPSS(2,1:100)],’.r’,plott,[0 XPSS(1,1:100)],’.b’);
%lines = plot(plott,[0 XPSS(2,1:100)],’.r’,plott,[0 XPSS(1,1:100)],’.b’);
lines = plot(plott, plotx);
set(lines,’LineWidth’,2)

grid on
title([’ PSS solution’]);
xlabel(’time’);
[N,trikajin]=size(plotx);

% l=[];
% for i=1:N
% l=[l
% [’x(’ num2str(i) ’)’]];
% end
l= [[’V’]

[’I’]];
legend(l)
zoom on;

% eval(strcat(circuit,’_labels’));
% legend(labels);

end
%size(plotx)
plot0=0;
for i = 1:steps

plot0(:,i) = i*dt; % scale back to the real time domain
end
plot0=[0,plot0];
%size(plot0)
if plotconv3

set(gca,’FontSize’,14)
lines = plot(plot0, plotx(1,:),plot0,[XPSS(1,1) XPSS(1,1:100)],’*r’);

% lines = plot(plot0, plotx(1,:),plot0,[0 XREAL(1,1:100)],’.r’);
set(lines,’LineWidth’,2)

80

Master Thesis Liu, Jie

grid on
title([’ PSS solution and Initial Guess’]);
hhh = legend(’PSS solution’,’Initial guess(waveform)’, 3);

set(hhh,’Interpreter’,’none’)
end

if plotxy
plot(plotx(1,:),plotx(2,:));
end

nrmP=[];
if plotpoles

str=1:1:step;
% poles1=POLESA(3);
% poles2=POLESA(4);
% poleslin=poles1+(str-3)*(poles2-poles1);
% poleslin=poles1-(str-3)*2;
% plot(str,real(POLESA),’r’,str,poleslin,’g’);

for i=1:step
errPOLES=POLESA(i)+1;
normsPOLES(i)=norm(errPOLES,inf);

% nrmP=[nrmP ; log(normsPOLES(i))];
% nrmP(i)=log(normsPOLES(i));

end
nrmP=log(normsPOLES);
size(nrmP);

k1=nrmP(3);
k2=nrmP(4);
poleslin=k1-(str-3)*2;

% nrmP
% (normsPOLES)
% size(str)
% size(poleslin)
% plot(str,nrmP,’r’,str,poleslin,’g’);

xlabel(’Number of iteration’);
ylabel(’norm of the errors lambda+1’);

end

A.1.3 Code for Newton method solving DC problem

x0=[20,16,4]’;
Xini=x0;
XINI=[];
ATOL=1e-7;
FTOL=1e-6;
nrms=[];
X=[];
F=[];

81

Master Thesis Liu, Jie

cor=1;
res=1;
step=0;
while res >= FTOL

%bigf=zeros(3,1);
bigf=[-x0(3) - x0(1) + x0(2) , x0(1) - 2*x0(2) + 2* (x0(2))ˆ2 - (x0(2))ˆ3 , x0(1)-20]’;

bigDf=[-1, 1 -1 ; 1 , -2+4*x0(2) - 3*(x0(2)ˆ2) 0 ; 1 , 0 , 0];

x1= x0 - inv(bigDf)*bigf;
X=[X,x1];
cor=norm(x1- x0);
step=step + 1;
x0=x1;
nrms = [nrms; log(cor)];
res=norm(bigf,inf);
F=[F, log(res)];
% plot(step,cor,’*r’)
% hold on
end
% st=1:1:step;
% plot(st, nrms,’r’)
y1=F(step-2);

y2=F(step-6);
st=1:1:step;

% XINI(st)=Xini;
ylin=-2*st + y2;

lines=plot(st,ylin,’r’,st,F,’-go’ , st , log(1e-6),’*’);
set(lines,’LineWidth’,2);

xlabel(’iteration number for FTOL’)
ylabel(’log of residue ’)
%h= [[’quadratic curve’] [’numerical results’] ,-1];

% legend(h)
% zoom on;
h = legend(’quadratic curve’,’log of residue’, ’stopping criterion log(FTOL)’, 3);
set(h,’Interpreter’,’none’)

A.1.4 Computing the matrix needed for Newtion problem

function [bigf,bigPhi,bigA,bigB,bigY] = getBigStuff(bigx, N , circuit , steps , oscnode , amp , method)
theta=0.5;
dt = 1/steps;

82

Master Thesis Liu, Jie

Cs = cell(steps,1);
Gs = cell(steps,1);
qs = cell(steps,1);
js = cell(steps,1);

for i = 1:steps
x = bigx((i*N-N+1):(i*N),1);

j = 0;
t = i*dt;

eval(circuit);

Cs{i,1} = C;
Gs{i,1} = G;
qs{i,1} = q;
js{i,1} = j;

end

T = bigx(steps*N+1,1);

bigf = zeros(N*steps+1,1);
bigPhi = spalloc(N*steps+1,N*steps+1,2*steps*N*N+N*steps+steps);

bigA=zeros(N*steps,N*steps);
bigB=zeros(N*steps,N*steps);
bigY=zeros(N*steps,N*steps);
% bigA = spalloc(N*steps,N*steps,2*steps*N);
% bigB = spalloc(N*steps,N*steps,2*steps*N);
% bigY = spalloc(N*steps,N*steps,2*steps*N);

j = steps;

for i = 1:steps
bigf((i*N-N+1):(i*N),1) = (qs{i,1}-qs{j,1})/dt + T*theta*js{i,1} + T*(1-theta)*js{j,1};
bigPhi((i*N-N+1):(i*N),(i*N-N+1):(i*N)) = Cs{i,1}/dt + T*theta*Gs{i,1};
bigPhi((i*N-N+1):(i*N),(j*N-N+1):(j*N)) = - Cs{j,1}/dt + T*(1-theta)*Gs{j,1};
bigPhi((i*N-N+1):(i*N),N*steps+1) = theta*js{i,1} + (1-theta)*js{j,1};
bigA((i*N-N+1):(i*N),(i*N-N+1):(i*N)) = Cs{i,1}/dt;
bigA((i*N-N+1):(i*N),(j*N-N+1):(j*N)) = - Cs{j,1}/dt;
bigB((i*N-N+1):(i*N),(i*N-N+1):(i*N)) = T*theta*Gs{i,1}; %omit the T part
bigB((i*N-N+1):(i*N),(j*N-N+1):(j*N)) = T*(1-theta)*Gs{j,1};
bigY((i*N-N+1):(i*N),(i*N-N+1):(i*N)) = Cs{i,1}/dt + T*theta*Gs{i,1};
bigY((i*N-N+1):(i*N),(j*N-N+1):(j*N)) = - Cs{j,1}/dt + T*(1-theta)*Gs{j,1};

83

Master Thesis Liu, Jie

%bigPhi((i*N-N+1):(i*N),N*steps+1) = theta*js{i,1} + (1-theta)*js{j,1};
j = i;

end

if method == 0
% convolution with cos

bigf(N*steps+1,1) = 0.5*steps*amp;

for i = 1:steps
bigf(N*steps+1,1) = bigf(N*steps+1,1) - cos(2*pi*i/steps)*bigx((i-1)*N+oscnode,1);
bigPhi(N*steps+1, (i-1)*N+oscnode) = cos(2*pi*i/steps);

end

else
% convolution with delta spike
bigf(N*steps+1,1) = bigx(oscnode,1) - amp;
bigPhi(N*steps+1,oscnode) = 1;

end

A.1.5 FFT to find the T

function [h,f_all,value_all]=data_plot(frequency,finj,V,dt,window_length,label)
if nargin==4

window_length=20;
end
% F0=frequency;
Tstep=dt;

l_sim=length(V);

wtx=V’;

mtx=abs(fft(wtx’)).ˆ2;
mtx=mtx/max(mtx);

%ploting
Fs=1/Tstep;
df=Fs/l_sim;
f=[df:df:Fs];

% % % % % % % % % % % % plot(f,10*log10(mtx))

84

Master Thesis Liu, Jie

% % % % % % % % % % % % return

% f1=frequency-0.5*frequency;
% f2=frequency+0.5*frequency;

% f1=df;
% f2=10*frequency;

f1=frequency-0.001*frequency;
f2=frequency+400*frequency;
l_sim;

n1=floor(f1/df);
n2=floor(f2/df);

if label==1

set(gca,’FontSize’,14);

h=plot((f(n1:n2)-df),10*log10(mtx(n1:n2)))
hold on
limit=axis;
plot([frequency frequency],[limit(3) limit(4)],’--b’)
xlabel(’frequency’)
ylabel(’PSD(dB)’)

% grid minor

elseif label==2
% plot using kaiser window

set(gca,’FontSize’,18);
win=kaiser(l_sim,window_length);

wtx=V’.*win;
mtx=abs(fft(wtx’)).ˆ2;
mtx=mtx/max(mtx);
h=plot((f(n1:n2)-df),10*log10(mtx(n1:n2)))

f_all=(f(n1:n2)-df);
value_all=10*log10(mtx(n1:n2));

85

Master Thesis Liu, Jie

% hold on
% plot([qw qw],[limit(3) limit(4)],’-.r’)

% l=get(gca,’XTick’);
% set(gca,’XTick’,sort([l 4.6e+9 4e+9 3e+9 2e+9 1e+9 5e+9 6e+9 7e+9]))
xlabel(’frequency’)
ylabel(’PSD(dB)’)

end

% figure(4)
% plot(t/T,x(1,:))
% legend(’x1’)
%
% % omega=2*pi*frequency;
% % omega=omega+omega/100*injection_param.tol;
% % b_out=max(x(1,:))*sin(omega*t);
% % hold on

86

Master Thesis Liu, Jie

% % plot(t/T,b_out,’-r’)
% % legend(’x1’,’injec’)
% % axis([0 cycle_value -1.5 1.5])
%
% figure(5)
% set(gca,’FontSize’,14);
% plot(t/T,x(2,:))
% legend(’x2’)

% omega=2*pi*frequency;
% omega=omega+omega/100*injection_param.tol;
% b_out=max(x(2,:))*sin(omega*t);
% hold on
% plot(t/T,b_out,’-r’)
% legend(’x2’,’injec’)
% axis([0 cycle_value -max(x(2,:))-max(x(2,:))/2 max(x(2,:))+max(x(2,:))/2])

87

	Contents
	1. Introduction
	2. Circuit Equations
	3. Periodic Steady State Solution
	4. Methods for Periodic SteadyState
	5. Numerical method and initialestimate
	6. Example
	7. Conclusion
	References
	Appendix A

