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Abstract

High speed milling (HSM) has been known and used in industry for many years. Throughout
these years, in the HSM process, a problem known as chatter is encountered. Chatter is
often the most important factor limiting the spindle speed and depth of cut which together
determine the material removal rate (MRR) (i.e. the milling efficiency). Namely, chatter
causes large vibrations of the tool resulting in a damaged workpiece noise and tool wear.
In order to prevent chatter and optimize the MRR while maintaining the product quality,
TNO Science and Industry and the TU/e have jointly started the Chattercontrol project in
co-operation with Jabro Tools, VDL ETG and Somatech. In this project, an ”in process
chatter controller” is developed to ensure chatter-free milling.

In order to predict chatter in the milling process as accurately as possible, the dynamics
of the tool-toolholder-spindle-system of the HSM machine need to be known since they are an
important part of a model for the HSM process. These dynamic properties are different for
every single tool-toolholder-spindle-system combination on the HSM machine. Therefore, new
measurements have to be performed for every new tool-toolholder-spindle-system combination
to identify the corresponding dynamics.

Commonly, the dynamics of each combination are determined experimentally by perform-
ing impulse hammer experiments. Performing new experiments every time the combination
changes is a time-consuming process, which causes loss of operating time on the HSM machine.

In this work, we aim at increasing the efficiency of this identification process without
costly adaptations to the milling machine. This is done by dividing the dynamics of the
tool-toolholder-spindle-system into: on the one hand the tool dynamics and, on the other
hand, the toolholder-spindle dynamics. The dynamics of both subsystems are stored in a
data-base incorporating the dynamics for different toolholders (in combination with specific
spindle) and different tools. By making use of the receptance coupling (RC) technique to
couple the dynamics of the two separate subsystems from the data-base, joint models for
every tool-toolholder-spindle combination are available. Finite element methods (FEM) are
used to determine the dynamics of the freely supported tool. Measurements in combination
with inverse receptance coupling (IRC) are used to identify the dynamics of the toolholder-
spindle combination. Using the assembled dynamics in a model for the high-speed milling
process, the so called stability lobe diagram (SLD) can be constructed, which characterizes
combinations of the spindle speed and depth of cut avoiding chatter. Using such SLDs, a
suitable (chatter free) working point for the milling process can be calculated.

The RC and IRC procedure developed in this thesis is tested with models and validated
experimentally. The models of the RC and IRC method shows that the identification proce-
dure is exact. The validation is carried out on a Mikron HSM 700 machine available at TNO
Science and Industry. This milling machine is equipped with a shrink-fit tool holder and an
end-mill replacement.

The validation shows that, using the proposed identification strategy, the dynamics of the
tool-toolholder-spindle combination can be predicted accurately. Therefore, it is an efficient
method to identify the dynamics for a large number of machine-toolholder-tool combinations.
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Samenvatting

Hoge snelheid frezen (HSF) is al vele jaren bekend en wordt al vele jaren toegepast in de
industrie. Al sinds het begin kampt HSF met het zogenaamde chatter probleem. Chatter is
meestal de limiterende factor in spindel-snelheid en snede-diepte die samen de verspaning-
snelheid vaststellen (een maat voor de efficiëntie van het freesproces). Chatter veroorzaakt
grote vibraties van de frees wat resulteert in een inferieure kwaliteit van het werkstuk, een
onaangenaam geluid en slijtage van de frees. Voor het beheersen van het chatter verschijnsel
en het optimaliseren van de verspaning-snelheid met behoud van de product kwaliteit hebben
TNO Industrie en Techniek en de TU/e het Chattercontrol project opgestart in samenwerking
met Jabro Tools, VDL ETG en Somatech. In dit project, wordt een ”in process chatter
controller” ontwikkeld welke chattervrij frezen verzekert.

Om chatter tijdens het freesproces zo nauwkeurig mogelijk te voorspellen, moet de dynam-
ica van het spindel-freeshouder-frees-systeem van de HSF machine bekend zijn, aangezien dit
een belangrijk onderdeel voor het model van de HSF machine is. De dynamische eigenschap-
pen zijn voor elke combinatie van spindel-freeshouder-frees anders. Bij een andere spindel-
freeshouder-frees-systeem combinatie moet daarom de daarbij behorende dynamica opnieuw
gemeten worden.

Deze dynamica wordt tegenwoordig bepaald door het experimenteel meten van de be-
treffende spindel-freeshouder-frees-combinatie door middel van impuls hamer testen. Het
uitvoeren van deze hamer test, voor elke keer dat de spindel-freeshouder-frees-combinatie
verandert, is erg tijd rovend waardoor de machine onnodig vaak stil staat.

In dit verslag richten wij ons op het efficiënter maken van het identificatie proces, zonder
kostbare aanpassingen uit te voeren op de machine. Dit wordt gedaan door de dynamica op
te splitsen in enerzijds de dynamica van de frees en anderzijds de dynamica van het spindel-
freeshouder systeem. De dynamica van beide subsystemen wordt in een data-base opgeslagen.
Deze omvat de dynamica van de verschillende freeshouders (in combinatie met de specifieke
spindel) en de verschillende frezen. Door gebruik te maken van de receptantie koppeling
(RK) methode voor het aan elkaar koppelen van de subsystemen uit de data-base, kun-
nen samengevoegde modellen van de gewenste spindel-freeshouder-frees-systeem combinaties
berekend worden. Eindige elementen modellen (EEM) worden gebruikt voor het berekenen
van de vrij opgespannen frees. Metingen in combinatie met inverse reseptantie koppeling
IRK berekeningen worden gebruikt voor het identificeren van de dynamica van de spindel-
freeshouder-frees combinaties. Met deze dynamica worden zo genaamde stabiliteitslobben
(SLD) geconstrueerd, deze karakteriseren de combinatie van spindel-snelheid en snede-diepte
met het voorkomen van chatter. Door gebruik te maken van deze SLDs kan een geschikt
(chatter vrij) werkpunt voor het freesproces berekend worden.

De IRK en RK procedure, ontwikkeld in deze scriptie, is getest middels simulatie mod-
ellen en is experimenteel gevalideerd door middel van hamer experimenten. Uit de gemaakte
modellen van de RK en IRK methoden kan geconcludeerd worden dat de voorgestelde iden-
tificatie procedure exact is. De validatie is uitgevoerd op een Mikron HSM 700 machine van
TNO Industrie en Techniek. Deze freesmachine is uitgevoerd met een krimphouder en als
gereedschap een cilinder met twee vlakke kanten aan de punt.

De validatie laat zien dat bij het toepassen van de voorgestelde identificatie procedure,
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SAMENVATTING iii

de dynamica van de gewenste spindel-freeshouder-frees combinatie nauwkeurig voorspeld kan
worden. Hierdoor is het een efficiënte methode om de dynamica te identificeren van een groot
aantal combinaties van machine, gereedschapshouder en gereedschap.
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Chapter 1

Introduction

1.1 The high-speed milling process

Even though high-speed machining has been known for a long time, the first attempts for
milling at high speeds were not made until the early thirties of the past century. In 1931,
Carl Salomon [54] made his first attempt of high-speed milling (HSM). He assumed that at a
certain cutting speed which is 5-10 times higher than in conventional machining, the chip tool
interface temperature would start to decrease while the milling process remains stable. This
was the first discovery of milling with high speeds while maintaining a high product quality.

Nowadays high-speed milling is widely used in the manufacturing industry, mostly for
manufacturing of aluminium components. Also other materials such as synthetic materials
are processed with HSM, for example in the casting industry for the production of moulds. In
the aerospace industry, HSM has changed the way aircrafts are manufactured. HSM enables
the replacement of sheet-metal assemblies with machined monolithic components resulting
in cost savings and improved performance. These monolithic structures can be stronger,
lighter, and more precise than the sheet-metal build-ups. Machining with high speeds, up
to 50000 rev/min with a high load capacity, is nowadays one of the modern manufacturing
technologies that, in comparison with conventional cutting, enables to increase efficiency,
accuracy and quality of the resulting workpieces and, at the same time, enables to decrease
costs and machining time [66].

The ever increasing demand for products of high quality and lower manufacturing costs
requires a closer look at manufacturing operations. For the efficiency of the milling process,
high demands on the material removal rate (MRR) and the surface generation rate (SGR)
are posed. If we look at the fabrication of moulds and the aeroplane building industry, where
large amounts of material are removed from a large structure, up to 90% removal of the initial
amount of material. The milling process is most efficient if the MRR is as large as possible,
while maintaining a high quality level of the machined surface. This is the so-called maximum
material removal rate (MMRR).

Part errors may be due to forced vibrations or due to an instability in the cutting process
known as chatter. There is a well-established literature on chatter (unstable cutting) and its
linkage to the dynamics of the milling machine and its tooling as described by Altintas et al.
[2]. The tool-spindle dynamics of the HSM machine are highly important for the stability of
the cutting process (i.e. the occurrence of chatter). Both the maximum spindle speed and
maximum depth of cut are limited by these tool-spindle dynamics.

Research on the milling process and the stability of the cutting process has been done for
several decades. Schmitz has investigated the prediction of chatter [20, 40, 64], the role of
tool length on the stability in milling [63], the role of cutter eccentricity [62] and improving
the MRR [60]. Stépán et al. [70, 71, 73, 74] has performed research on HSM models, with a
focus on the nonlinearities occurring primarily in low-immersion high-speed milling. Altintas
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CHAPTER 1. INTRODUCTION 2

et al. describe the role of the tool-spindle dynamics in the analytical prediction of stability
lobes in milling [2, 3, 41, 43]. Herein, it is shown that these dynamics represent a very
important factor in the occurrence of chatter. More specifically, the tool-toolholder-spindle
dynamics forms an intricate part of state-of-the-art milling models used to predict so-called
stability lobe diagrams (SLD). SLDs depict the chatter boundary in the process parameter
space (i.e. spindle speed and depth of cut) and play an important role in guiding the machinist
in choosing a chatter-free working point.

Identification of the tool-spindle dynamics is therefore of great importance. Many differ-
ent methods to identify the tool-spindle dynamics have been proposed throughout the years.
Commonly, the dynamics of a specific tool-toolholder-spindle combination as a whole is deter-
mined with conventional hammer experiments [25]. This is a time-consuming process, which
has to be repeated for every tool-toolholder-spindle combination. This causes causes loss of
operating time on the HSM machine. Also, different methods to calculate the tool-spindle
dynamics have been proposed. On the one hand, coupling techniques to couple the spindle
dynamics with the dynamics of different tool-toolholder-systems in combination with coupling
parameters (for the cross-section stiffness and damping) are used to estimate the dynamics
of the tool-toolholder-spindle combination [1, 44, 45]. In this way, the dynamics of the HSM
machine are calculated off-line without the loss of operating time. Nevertheless, the coupling
parameters must be fit accurately to obtain realistic results. This parameter fitting process is
time consuming and therefore undesirable. On the other hand, coupling techniques and the
placement of force sensors in the spindle of the HSM machine are used in combination in [47].
With these methods the dynamics of the HSM machine-tool combinations are also estimated
off-line. However, equipping the HSM machine with force sensors integrated in the spindle
is a costly and difficult adaptation on the milling machine. Therefore, our goal is to develop
a method that is efficient and relatively simple to apply without making adaptations to the
milling machine. In this thesis, such a method is presented that can be used to efficiently
identify the dynamics of a spindle and a set of tools.

1.2 Chatter

The onset of chatter during machining is primarily caused by the variation in chip thickness
that occurs due to vibration of the tool, workpiece, or both. This situation is shown schemat-
ically in Figure 1.1. In this figure, the flexible tool engages the workpiece and, due to the
time-varying cutting force, begins to vibrate. This vibration is imprinted on the machined
surface. In milling, the next tooth on the rotating cutter encounters this wavy surface pro-
duced by the previous tooth. This wavy surface varies the instantaneous chip thickness which,

Figure 1.1: Chip thickness variation due to cutter vibrations.



CHAPTER 1. INTRODUCTION 3

in turn, modulates the cutting force and the cutter vibration (i.e., a feedback mechanism is
produced that can lead to self-excited vibrations known as regenerative chatter). Depending
on the relationship between the wavy surface left by the previous tooth and the current cutter
vibration, the resulting deflections and forces can grow very large, which results in rapid tool
wear, an inferior surface quality of the workpiece and noise [2, 19, 25, 76]. Chatter can be
recognized by the noise provided by these vibrations, the chatter marks on the machined
surface, see Figure 1.2, and the appearance of the chips. Correspondingly, the depth of cut

Figure 1.2: Chatter marks on the machined surface.

and the spindle speed (i.e. the MRR) must be kept below the limit at which chatter occurs.
In this respect, chatter is often the most important factor limiting the MMRR. Consequently,
the model-based prediction of regenerative chatter is of great interest. In the current work, we
contribute to the prediction of chatter by focusing on the part of the milling model involving
the identification of the dynamics of the tool-toolholder-spindle combination.

1.3 The Chattercontrol project

The MRR of the high-speed milling process is restricted by the chatter phenomenon. In order
to maximize the MRR while avoiding chatter, TNO Science and Industry and the TU/e have
jointly started the Chattercontrol project in co-operation with Jabro Tools, VDL ETG and
Somatech. The Chattercontrol project started in June 2003 with a duration of four years.
The goal of this project is to develop an ”in process chatter control”.

To pursue this goal an advanced controller is developed that can detect the onset of
chatter and interfere in the process, such that chatter does not occur. The main goals of
the Chattercontrol project are: (1) development of a new model of the milling process; (2)
development of a method to predict chatter reliably and efficiently; (3) online detection of
the onset of chatter and the interference in the milling process with the ”in process chatter
controller” to maintain stable cutting by preventing chatter; (4) development of a hardware
device that can be coupled to an NC milling machine to prevent and control chatter.

This work is part of the Chattercontrol project and this thesis focusses on the reliable
and efficient prediction of chatter by identifying the tool-spindle dynamics for a variety of
tool-toolholder-spindle combinations. The identified tool-toolholder-spindle dynamics can be
used off-line in milling models to provide a working-point for the milling process (in terms of
depth of cut and spindle speed) guaranteeing both a large MRR and stable cutting conditions.
This stable working-point is kept stable on-line by the developed controller to perform highly
efficient milling with robustness against changing conditions (tool wear, temperature etc.).

1.4 Problem statement

In order to predict chatter in the milling process as accurately as possible, the dynamics
of the tool-toolholder-spindle-system needs to be known for a collection of tool-toolholder-
spindle combinations. Therefore, the dynamic properties of the different spindle, toolholder,
tool combinations on the HSM machine under evaluation need to be categorized in the form
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of a data-base. The data-base can be filled by performing analytic calculations, finite ele-
ment (FE) calculations or by performing measurements in the form of hammer experiments
(impulse response measurements), shaker experiments or non-contact measurements [21, 35].
Commonly, the dynamics of a specific tool-toolholder-spindle combination as a whole is de-
termined experimentally. This is a time-consuming process, which has to be repeated for
every tool-toolholder-spindle combination, which causes loss of operating time on the HSM
machine.

In this work, we aim at increasing the efficiency of this identification process. We aim to
do so by separately modelling, firstly, the tool dynamics and, secondly, the toolholder-spindle
dynamics. By coupling these models, joint models for every tool-toolholder-spindle combina-
tion can than become available. A study needs to be done to determine which of the existing
coupling techniques is most suited for the coupling of the models of the tool and toolholder-
spindle. By integrating the dynamics of the tool-toolholder-spindle-system from the data-base
in the overall milling process model, a ’chatter-free’ working-point for the ”in process chatter
controller” can be calculated. This calculation takes place off-line such that interference with
ongoing work on the milling-machine on the work-floor is avoided. In this thesis, the chosen
coupling technique will be tested in practice on a specific tool-toolholder-spindle-system com-
bination. The result will be validated with conventional hammer experiments on that specific
tool-toolholder-spindle-system combination.

With this method, the dynamics of the spindle of the HSM machine can be identified for a
range of combinations of tools and toolholders to provide a working-point for the ”in process
chatter controller” to start and maintain chatter-free milling.

1.5 Outline of the report

The history of chatter in HSM, the modelling of the HSM process and the importance of the
dynamics of the machine, tool and toolholder combination herein is explained in Chapter 2.
Substructuring techniques are discussed in Chapter 3 since these techniques will be used to
couple the dynamics of the tool and toolholder-spindle combination. From a range of coupling
methods, the one that is most suited for this application is chosen where characteristics as
efficiency, reliability, accuracy and level of implementation difficulty are considered. In Section
3.2, this specific method (receptance coupling (RC) method) is explained and, in Section 3.3,
an example of the chosen coupling method is presented to provide insight in the method. Not
only the coupling of substructures to form a total joint structure is possible; it is also possible
to use the substructuring techniques to calculate the dynamics of one of the substructures
instead of the dynamics of the total joint structure. The applications and background of this
decoupling of structures is treated in Section 3.4. An example of this decoupling is presented
in Section 3.5. In Section 3.6, the influence of measurement errors is examined on this example
since the reliability of the method in the face of measurement errors is highly important in
practice. A literature investigation of coupling the spindle-toolholder-toolsystems is treated in
Chapter 4 where we apply the substructuring techniques to the spindle-toolholder-toolsystems
in Section 4.1. In Section 4.2, the importance of rotational degrees of freedom (RDOFs) in
coupling the spindle-toolholder-toolsystems and the introduction of RDOFs in the coupling
process on the HSM machine is discussed. The identification of the dynamics of the tool
and toolholder-spindle combination is treated in Section 4.3 and 4.4, respectively. In Section
4.5, the developed RC and IRC procedure is discussed. The implementation of the coupling
technique on the HSM machine is presented in Chapter 5. Herein, the IRC and RC technique
is validated in Section 5.1 and 5.2, respectively. Finally conclusions and recommendations
are presented in Chapter 6.



Chapter 2

Models of the HSM process

The pioneering models for the prediction of chatter were introduced by Tlusty and Polacek
[77], and Tobias and Fiswick [78]. They independently formulated the chatter stability law.
This law describes the chatter boundaries as a function of process parameters, such as spindle
speed and depth-of-cut. This method has been widely used since the 1950’s. Tobias and
Fiswick studied chatter in a one-degree-of-freedom model. They utilized the properties of the
chatter stability law and introduced spindle speed dependent chatter stability lobes. In order
to consider the process damping in chatter stability, the International Academy for Produc-
tion Engineering (CIRP - from the French name College International pour la Recherche en
Productique, 1951), formed a task force identifying the dynamic cutting coefficients using a
common test set-up proposed by Peters, Vanherck and Brussel [49]. Tlusty summarized the
research findings in great detail in [75]. The dynamic cutting coefficients were calibrated ex-
perimentally by correlating the tool geometry, chatter vibration frequency and cutting speed.
However, the experimental set-ups were limited to low vibration frequencies and cutting
speeds. Montgomery and Altintas attempted to model the penetration of a hard tool into the
softer work material with wavy surface finish using laws of contact mechanics [43]. However,
the model is not accurate at high frequencies.

The chatter stability law presented by Tlustly et al. and stability lobes introduced by
Tobias et al. has had a fundamental impact in designing machine tools and selection of pro-
ductive cutting conditions, and has led to expanded stability formulations and interpretations
[46, 50].

Therefore, these theories form a basis of the milling model developed for the chattercontrol
project. This milling model is created by Faassen et al. [25–27]. In the model, the chip
thickness, encountered by the tool in cut, is related to the rotation angle of the end-mill,
cutting force, machine dynamics and delay caused by the tooth passing period. A block
diagram of the milling process is depicted in Figure 2.1, as presented in [25]. In this diagram,

Figure 2.1: Block diagram of the model of the milling process.
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CHAPTER 2. MODELS OF THE HSM PROCESS 6

the total chip thickness of tooth j, hj(t), is the sum of the static and dynamic chip thickness,

hj(t) = hj,stat(t) + hj,dyn(t). (2.1)

The static chip thickness hj,stat(t) is a result of the predefined motion of the tool with respect
to the workpiece and is described by

hj,stat(t) = fz sinφj(t), (2.2)

with φj(t) the rotation angle of tooth j and fz the chip load. The chip thickness results, via
the cutting process (block Cutting in Figure 2.1), in a force F that acts on the tool. The
forces in tangential and radial direction are described by

Ftj (t) =
(
Kt ap hj(t)xF + Kte ap

)
gj

(
φj(t)

)
,

Frj (t) =
(
Kr ap hj(t)xF + Kre ap

)
gj

(
φj(t)

)
,

(2.3)

where 0 < xF ≤ 1, Kt,Kr > 0 and Kte,Kre ≥ 0 are cutting parameters, and ap is the axial
depth of cut. The function gj

(
φj(t)

)
describes whether a tooth is in or out of cut:

gj

(
φj(t)

)
=

{
1, φs ≤ φj(t) ≤ φe ∧ hj(t) > 0,

0, else.
(2.4)

Via trigonometric functions, the force can easily be converted to x (feed) and y (normal)
direction. This force interacts with the spindle and tool dynamics (block Machine) in Figure
2.1, modelled via a linear state-space model,

ż(t) = Az(t) + BF (t),
v(t) = Cz(t),

(2.5)

where z is the state (the order of this model primarily depends on the order of the spindle-
tool dynamics model). This results in a dynamic displacement of the tool v(t) which is
superimposed on the predefined tool motion. The dynamic chip thickness is the result of this
displacement v(t) =

[
vx(t) vy(t)

]T and the displacement of the cutter at the previous tooth
pass at time v(t − τ). This is called the regenerative effect and results in the block Delay in
Figure 2.1. Via trigonometric relations, the tool motion results in a dynamic chip thickness
hj,dyn(t) given by,

hj,dyn(t) =
[

sinφj(t) cosφj(t)
] (

v(t)− v(t− τ)
)
, (2.6)

which is added to the static chip thickness. We introduce Z as the number of teeth of the
end-mill. Hence, when summing for all Z teeth, the cutting forces in x- and y-direction can
be described by

F (t) = ap

Z−1∑

j=0

gj

(
φj(t)

)((
hj,stat(t)+

[
sinφj(t) cosφj(t)

] (
v(t)−v(t−τ)

))xF

S(t)
[
Kt

Kr

]
+S(t)

[
Kte

Kre

])
,

(2.7)
with F (t) =

[
Fx(t) Fy(t)

]T and Fx(t) and Fy(t) the cutting forces in x- and y-direction,
respectively, and

S(t) =
[− cosφj(t) − sinφj(t)

sinφj(t) − cosφj(t)

]
.
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Substitution of (2.7) in (2.5) yields the delay differential equations describing the milling
process,

ż(t) =Az(t) + Bap

Z−1∑

j=0

gj

(
φj(t)

)((
hj,stat(t) +

[
sinφj(t) cosφj(t)

]

C
(
z(t)− z(t− τ)

))xF

S(t)
[
Kt

Kr

]
+ S(t)

[
Kte

Kre

])
,

v(t) =Cz(t).

(2.8)

Model (2.8) is used to describe the milling process for different tool-toolholder-spindle com-
binations (each of which leads to different ”Machine” dynamics (2.5)). The goal in this thesis
is to find a method to determine the dynamics of the tool-toolholder-spindle combinations.
Therefore, the focus is on the dynamics of the tool-toolholder-spindle-system combination
(2.5) of the milling machine; i.e. the second block in Figure 2.1 named Machine: This part
represents the modelling of the tool-spindle dynamics, i.e. the tool, toolholder and spindle.
The variety of tools, toolholders and spindles used in combination with each other has a
great influence on the machine dynamics, see [8]. Nowadays, these dynamics are commonly
measured with hammer-tests: Herein, the system is manually excited with a calibrated force
hammer inducing a time-varying displacement, see [23]. The combination of the time history
of impact force and displacement can be used to determine the dynamics of that particu-
lar system (i.e. the specific tool-toolholder-spindle-system combination). This identification
process has to be repeated for every single tool-toolholder-spindle system combination which
is time consuming and, therefore, undesirable. Therefore, it is necessary to use an accurate
method that can identify the dynamics for all possible tool, toolholder and spindle combina-
tions in an efficient way. These dynamics can then be incorporated in the HSM model (2.8)
for effective prediction of chatter vibrations.

Many possible combinations exist for the tool-toolholder-spindle system. Therefore, the
total combination is divided into two substructures. All the different tools are considered
as a substructure and all the toolholder-spindle combinations are considered as a substruc-
ture. These substructures can be combined to form the desired tool-toolholder-spindle-system
combination. The advantage of this method compared to impulse hammer-tests is that the
identification of the substructures can take place off-line. The modelling and identification of
substructures and coupling of substructures will be discussed in the next chapter.



Chapter 3

Coupling of substructures

Since the 1960s, substructuring has been used to model complex mechanical structures. Sub-
structuring involves dividing the structure to be evaluated into a number of substructures, or
components. For each component, a model is obtained and then these models are assembled
into a model of the entire joint structure. These models are mostly obtained by the appli-
cation of first principles (such as Newton’s second law) or experiments. The primary uses
of dynamic substructuring are: the coupling of reduced-order models of moderately complex
structures (e.g. airplane components or systems of automotive components) and the coupling
of substructures that are exchangeable or modifiable.

3.1 Substructuring

A substructure can be described by a defined part of the total system. The total structure
must fulfil the following properties:

• the total system should consist of more than one component,

• the components are attached to each other through a discrete number of locations and

• the components show linear and time-invariant behavior.

The coupling methods of substructures can be classified into two groups:

• coupling in the time domain; component mode synthesis (CMS), see [28, 31, 82],

• coupling in the frequency domain using (measured) frequency response functions (FRFs);
frequency domain structural synthesis (FSS), see [33, 80, 82].

Model reduction is one of the major objectives in CMS. The mode set describing the
dynamics of a substructure is usually reduced to a smaller set of modes. To apply CMS, it is
necessary to describe the substructures with a model, for example modelling with Lagrange-
Euler equations. By applying a Lagrange multiplier-based generalized substructure coupling
procedure, these equations can be coupled [14]. The result is one total Lagrange-Euler equa-
tion which can be used for further analysis of the overall dynamics.

In the mid-1960s, Hurty published several reports and papers on substructure coupling
in the time domain [30, 31]. In collaboration with Hurty, Bamford created a CMS computer
program that employed several kinds of modes [5]. A simplification of Hurtys method was
presented by Craig and Bampton in 1968 [15], and in the early 1970s, MacNeal and Rubin
introduced important alternatives to Hurtys CMS method [39, 53]. A number of CMS meth-
ods are described and compared in [6]. Nowadays most finite element (FE) programmes, such
as Ansys [34] or MSC/NASTRAN [12], use the CMS coupling method in the time domain.

8
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Frequency-domain techniques for linear structural synthesis (FSS) are not new in them-
selves; the basic equation for synthesis can be found in many references. An application of
frequency-domain techniques to structural analysis appeared in 1946, see Sofrin [69]. Sykes
[72] derived the same equation for structural synthesis as Sofrin. The derivations are based on
an implicit statement of force and displacement continuity between the substructures known
as the compatibility and equilibrium conditions:

xS = x1 = x2 = ... = xn,

FS =
n∑

i=1

Fi, (3.1)

where xS represents the displacement of, and FS represents the resulting force acting on the
connection coordinate on the assembly S, x1 and x2 until xn represent the displacements
of, and F1 until Fn represent the forces acting on the connection coordinates (1 until n) on
the substructures where n is the chosen number of connection coordinates. The coupling of
FRFs can be done with two different methods: the impedance coupling (IC) technique and the
receptance coupling (RC) technique. Research on these techniques can be found in [51] and an
implementation of the IC and RC technique can be found in [33] and [80], respectively. The IC
technique translates the compatibility and equilibrium conditions into a matrix representation
concerning all the degrees of freedom (DOFs) of the substructures. In this way, the technique
satisfies the criterium of physical generality, meaning that the calculation satisfies the laws
of physics. It is also very simple to implement. However, this technique is computationally
inefficient, since two inversions of the full size substructure matrices are required. Because
the full size matrix inversion is required, the numerical error can be significant. When the full
size receptance matrix is singular, the IC technique collapses and no results can be obtained
at all. In this prospect the IC method is not reliable. The requirement of the inversions of the
full size substructure matrices and the computationally inefficiency makes the IC technique
unpractical for our tool-toolholder-spindle-system application.

The principle of RC or receptance coupling substructure analysis (RCSA) is described in
[7]. The term ”receptance” as used by Bishop and Johnson is, for this purpose, equivalent to
FRF. Bishop and Johnson provide analytic expressions for the receptances of simple beams.
Later on, the receptance technique is used in all kind of fields, e.g. automotive engineering
[17], evaluating dynamic characteristics of design alternatives for a reconfigurable machine tool
(RMT) in an automated design environment [83], micro cutting [10] and aerospace engineering
[4]. This wide variety of applications shows that RC has a lot of potential. The main reason
for this wide use of the RC technique is the advantage that the RC technique requires only one
matrix inversion. The size of the matrix to be inverted is determined by the number of joint
coordinates on the assembly, which can be chosen by the user and is usually much smaller
than the size of the whole receptance matrix. It is also more likely to be a well-conditioned
matrix because of the much smaller size compared to the matrices used in the IC technique.
In other words, the RC technique is mathematically more robust and computationally more
efficient than the IC technique. However, the RC technique is not applicable to cases in
which two coordinates to be coupled are located on the same structure. This means that
the substructures must be independent of each other. The RC technique has advantages
especially in an experimental environment. Firstly, often FRFs are the quantities which are
measured directly. Secondly, in general, the final number of coupling degrees of freedom plus
interesting internal degrees of freedom will be relatively small. Also characteristic features,
e.g. irregularities and the type and level of damping of the structure, are inherently present
in the measurements of the FRFs.

The possibility to choose the coupling degrees of freedom and internal degrees of freedom
ourselves, the mathematical robustness in combination with the computational efficiency and
the advantages in an experimental environment make this technique most appropriate for the
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tool-toolholder-spindle-system application. In the next section, we will discuss the receptance
coupling technique in more detail.

3.2 The receptance coupling technique

To minimize the size of the matrix to be inverted in the RC technique, a minimum number
of coordinates should be picked on the assembly, which is, however, still enough to satisfy
the compatibility and equilibrium conditions (3.1). The minimum number of coordinates to
fulfil these conditions is two, one on each substructure and to evaluate the assembly on any
spatial location, an additional coordinate on that spatial location is necessary. This makes
the minimum number of coordinates three. A simple example of a structure fulfilling these
conditions is illustrated in Figure 3.1. It is unnecessary to use more than three coordinates in
the RC technique unless an additional coordinate on the structure is chosen to be evaluated.
In Figure 3.1, the points i and c indicates the chosen internal and coupling coordinates,

Figure 3.1: Minimum number of coordinates required for the RC technique.

respectively. In the remainder of this section, we will explain these coordinates in more detail.
The translational DOFs xA,B

i,c are the DOFs of the internal (i) or coupling (c) coordinates
of component A or B. The external forces FA,B

i,c are acting on the internal (i) or coupling
(c) coordinates of component A or B. This notation of substructures, internal and coupling
coordinates is used throughout this thesis. The assembly S is chosen to be evaluated on the
free-end at point i. Therefore, coordinate xA

i is picked on the tip, at point i, of the free-free
substructure A. The other two coordinates xA

c and xB
c , at point c, are located on the cross-

section, where the assembly is split into two substructures. These coordinates must be placed
on the cross-section to make it possible to fulfill the compatibility and equilibrium conditions
(n = 2 in (3.1)).

In this example, it may be possible that experiments can be performed directly on location
i of the joint structure. In this case the RC technique is unnecessary. The RC technique is
used in cases where this possibility to accurately measure assembly dynamics is not present.
Either one of the substructures is exchangeable for a range of different substructures or one
of the substructures is a model (e.g. based on finite-elements) resulting in hybrid methods.
In hybrid methods, measured and modeled components are coupled using rigid, flexible, or
flexible/damped compatibility conditions to predict the assembly response at any spatial lo-
cation. In all of these cases, the RC technique is particularly helpful. Practical examples
exist where the RC technique is used for different applications. For example, the RC tech-
nique is used to compensate for scaling and frequency distortion errors arising from non-ideal
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sensor placement on mechanical structures [56]. Additionally, knowledge of the response at
any location on the structure enables mode shape prediction and, therefore, selection of high
signal-to-noise ratio sensor locations. Also complex models, with or without the application
of reduction techniques, are coupled with the RC technique, for example in the automotive
industry where the development of car-engines is performed separately from that of the car-
riage work of the car. These two components are then coupled with the RC technique for
further analysis or optimization in the racing industry [16]. Analysis and optimization can
be done without the physical coupling of the two components which reduces costs.

The RC technique is an FRF-based substructuring technique that predicts the dynamic
behavior of the coupled system on the basis of free-interface FRFs of the uncoupled compo-
nents. The basic strategy of an FRF-based receptance coupling technique is as follows. We
define the substructure systems

xA(jω) = HA
xF (jω)FA(jω),

xB(jω) = HB
xF (jω)FB(jω), (3.2)

where superscript A and B represents the substructures A and B respectively, FA,B(jω) is the
Fourier transform of the excitation (force) on a chosen DOF on the substructures A and B.
xA,B(jω) is the Fourier transform of the response (displacement) vector of the chosen DOF
of substructures A and B and HA,B

xF (jω) is the free-interface FRF matrix of the substructures
A and B. ω represents the angular frequency and j equals

√−1. For the sake of brevity, we
will omit the notation (jω) in the remainder of this thesis.

For every component, the available DOFs are classified into two sets, namely:

1. the coupling DOFs,

2. the internal DOFs.

Therefore, the indices c and i are used to represent the coupling and internal DOFs respec-
tively, see Figure 3.1. The DOFs correspond with the excitation and response location of the
uncoupled components. In this way, the substructures can be written in the partitioned form
as [

xA,B
i

xA,B
c

]
=

[
HA,B

xiFi
HA,B

xiFc

HA,B
xcFi

HA,B
xcFc

][
FA,B

i

FA,B
c

]
, (3.3)

with

• HA,B
x(i,c)F(i,c)

the FRF matrix of component A or B between every combination of DOF i

and c,

• xA,B
(i,c) the response on the internal (i) or coupling (c) DOFs of component A or B,

• FA,B
(i,c) the force on the internal (i) or coupling (c) DOFs of component A or B,

• i the subscript for the internal DOFs of component A and B,

• c the subscript for the coupling DOFs of component A and B.

In order to present the RC technique, we take the example of Figure 3.1, where the objective
is to identify the FRF HS

xiFi
at the free end of the total joint structure S (point i in Figure

3.1). There is no interest in evaluating the internal coordinates of substructure B. Then, only
the DOF on the connection point of substructure B, xB

c , is sufficient to identify the dynamics
of substructure B to calculate the dynamics of the total joint structure S. Therefore, the
substructure can be expressed in the coupling DOF, which yields:

xB
c = HB

xcFc
FB

c . (3.4)
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Substructure A is expressed in the minimum number of two DOFs namely the coupling DOF
xA

c and the internal DOF xA
i . Substructure A is written in the partitioned form as follows:
[

xA
i

xA
c

]
=

[
HA

xiFi
HA

xiFc

HA
xcFi

HA
xcFc

] [
FA

i

FA
c

]
. (3.5)

At the cross-section, the equilibrium and compatibility conditions (3.1) provide the fol-
lowing boundary conditions

Fc = FA
c + FB

c ,

xc = xA
c = xB

c . (3.6)

The force Fc is an external force which equals the sum of the two internal forces acting on
the cross-section of the two substructures. Under equilibrium conditions, the sum of the two
internal forces is equal to zero and no external force Fc will be present. The compatibility
equation for xc describes a kinematic coupling of the two substructure coordinates xA

c and
xB

c . It is also possible to use flexible, or flexible/damped compatibility conditions to predict
the assembly response [44].

Substitution of (3.4) and (3.5) into (3.6) yields:

xB
c = xA

c

HB
xcFc

FB
c = HA

xcFi
FA

i + HA
xcFc

FA
c

= HA
xcFi

FA
i + HA

xcFc

(
Fc − FB

c

)

FB
c =

(
HA

xcFc
+ HB

xcFc

)−1 (
HA

xcFi
FA

i + HA
xcFc

Fc

)
. (3.7)

From now on, the internal DOF xA
i is called x1 and the applied forces FA

i and Fc are called
F1 and F2, respectively. The internal DOF x1 can be expressed as a function of the applied
forces from the partitioned form presented in (3.5). If we include the boundary condition
FA

c = F2 − FB
c , we obtain the following equation of x1:

x1 = HA
xiFi

F1 + HA
xiFc

(
F2 − FB

c

)
. (3.8)

By substituting (3.7) into (3.8)

x1 = HA
xiFi

F1 + HA
xiFc

F2 −HA
xiFc

((
HA

xcFc
+ HB

xcFc

)−1 (
HA

xcFi
F1 + HA

xcFc
F2

))
(3.9)

=
(
HA

xiFi
−HA

xiFc

(
HA

xcFc
+ HB

xcFc

)−1
HA

xcFi

)
F1 +

(
HA

xiFc
−HA

xiFc

(
HA

xcFc
+ HB

xcFc

)−1
HA

xcFc

)
F2,

we obtain an expression for x1 as a function of the two applied forces F1 and F2. Since, the
external force F2 is zero, we obtain the following assembled FRF (x1 = HS

xiFi
F1) at the tip

of the joint structure

HS
xiFi

= HA
xiFi

−HA
xiFc

(
HA

xcFc
+ HB

xcFc

)−1
HA

xcFi
. (3.10)

With this equation, two substructures are coupled to form a assembled structure. This joint
structure can be used for further analysis. Therefore, the RC technique is suitable for our
tool-toolholder-spindle-system application. For obvious reasons this equation is called the
coupling equation. This coupling equation is tested for its accuracy in an example of a four
DOF mass-spring-damper model in the next section.
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3.3 Receptance coupling applied to a 4DOF mass-spring-damper
model

The example presented in Figure 3.1 is modeled in a 4DOF mass-spring-damper model. Sub-
structures A and B are both modeled as 2DOF mass-spring-damper systems. Jointly these
systems form the 4DOF mass-spring-damper assembly S as depicted in Figure 3.2.

Let us consider the 4DOF mass-spring-damper system to test the coupling equation (3.10).
The goal is to obtain HS

q4F by coupling substructures A and B. HS
q4F represents the frequency

response function from the input force (F ) to translational displacement (q4) on assembly S.

Figure 3.2: A 4DOF mass-spring-damper system consisting of two substructures.

The 2DOF subsystem A is a free-free system which is characterized by three generalized
coordinates qA =

[
qA
1 qA

2 qA
3

]T . The 2DOF subsystem B is supported at one end and is
characterized by two generalized coordinates qB =

[
qB
1 qB

2

]T . The total system S is a 4DOF
mass-spring-damper system that is clamped on one end. The total system S is characterized
by four generalized coordinates qS =

[
qS
1 qS

2 qS
3 qS

4

]T . The number of generalized coordinates
of the substructures and the total system are chosen differently. This shows that the individual
number of generalized coordinates of the subsystems and total joint system are independent
of each other. The parameters used for the masses, spring constants and damping-ratios
are collected from a parameter-fit performed on a tool-spindle combination in [26]. The two
most dominant modes of the tool and the two most important modes of the spindle of an
HSM machine are used to parameterize subsystem A and B, respectively. The parameters
characterizing these dynamics are shown in Table 3.1.

The three mass-spring-damper systems (subsystem A, subsystem B and the total system
S) are each described by a mass matrix (M), stiffness matrix (K) and damping matrix (D).
This yields for subsystem A:

MA =




0 0 0
0 m3 0
0 0 m4


 , KA =




k3 −k3 0
−k3 k3 + k4 −k4

0 −k4 k4


 , DA =




b3 −b3 0
−b3 b3 + b4 −b4

0 −b4 b4


 ,
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i=1 i=2 i=3 i=4
mi[kg] 0.8705 0.3301 0.03228 0.01574

ki[N/m] 4.271 · 107 3.075 · 107 2.481 · 107 2.229 · 107

bi[Ns/m] 0.04348 0.03551 0.04754 0.03364

Table 3.1: Parameters used in the 4DOF mass-spring-damper model.

for subsystem B

MB =
[

m1 0
0 m2

]
, KB =

[
k1 + k2 −k2

−k2 k2

]
, DB =

[
b1 + b2 −b2

−b2 b2

]
,

and for the total system S

MS =




m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4


 , KS =




k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 −k4

0 0 −k4 k4


 ,

DS =




b1 + b2 −b2 0 0
−b2 b2 + b3 −b3 0
0 −b3 b3 + b4 −b4

0 0 −b4 b4


 .

The FRFs of the individual systems are calculated from the M, K and D matrices with a
damped MIMO frequency response function for linear systems

Hxi,cFi,c =
(−ω2M + jωD + K

)−1
, (3.11)

in which Hxi,cFi,c represents the frequency response function from the input force (Fi,c) to
translational displacement (xi,c) on the locations i and c, respectively. The derived FRFs of
subsystem A are written in the partitioned form. Again, substructure B is not presented in
the partitioned form because there is no internal coordinate of interest on substructure B to
be evaluated:

[
xA

i

xA
c

]
=

[
HA

xiFi
HA

xiFc

HA
xcFi

HA
xcFc

] [
FA

i

FA
c

]
,

xB
c = HB

xcFc
FB

c . (3.12)

The result of the application of the coupling equation (3.10) with the calculated FRFs
(as in 3.11) is displayed in Figure 3.3. The left two figures are (from top to bottom) the
magnitude and phase of HS

xiFi
. In these left figures, two FRFs are presented; the first FRF

shown is HS
xiFi

derived from the equations of motion which is derived with Newton’s second
law by using the MS , KS and DS matrices of the total joint structure S. The second FRF
HS

xiFi
RCmethod is calculated with the coupling equation (3.10) of the RC technique. The right

figures represent the absolute error between these FRFs in magnitude and phase, respectively.
The two FRFs match perfectly. The error is very small and only due to numerical round off
errors, concluding that the RC technique is exact.

With the RC technique, it is not only possible to couple substructures to form an assembly,
but also the decoupling of the assembly into substructures is possible (as explained in the
next section).
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Figure 3.3: RC calculation of HS
xiFi

for the 4DOF mass-spring-damper system.

3.4 Decoupling of substructures

The system of interest that needs to be evaluated can be one of the substructures instead
of a total joint structure. The ability to accurately measure assembly dynamics allows data
recorded at one location on the structure to be compensated by the structural dynamics
between the measurement point and actual location of interest. For example, consider a
system as depicted in Figure 3.1, where the system under evaluation is substructure B while
the assembled system S consists of the joint substructures A and B. Suppose that we aim
to obtain the dynamics of substructure B of the joint structure S from which substructure
A and B can not be physically detached to perform individual measurements. Then, only
measurements on the assembled structure S can be performed. Suppose that the dynamics of
substructure A can be modeled (in this case e.g. beam-theories [32, 84] can be applied). Then,
the inverse receptance coupling (IRC) technique can be applied to decouple the dynamics of
substructure B from assembly S. In other words, the dynamics of substructure B can be
derived by using the dynamics of assembly S and substructure A [56]. The background on
this IRC technique is the following.

The derived coupling equation (3.10) for the RC technique is an equation with complex
scalar numbers. Therefore, this equation can be considered in the same way as any other
normal scalar equation; only the coupling equation needs to be evaluated for every single
frequency in the frequency domain of interest. This quality makes it possible to rewrite
the coupling equation such that an explicit expression for every FRF, used in the coupling
equation, can be obtained. This is the basic idea behind the IRC technique also known as
the inverse receptance coupling substructure analysis (IRCSA).

In the next section, the IRC technique is illustrated by applying it on the 4DOF mass-
spring-damper system presented in Figure 3.2.
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3.5 Inverse receptance coupling with a mass-spring-damper
model

We assume that the dynamics of subsystem B of the system presented in Figure 3.2 needs
to be evaluated. With the IRC technique the dynamics of subsystem B can be derived from
the measurements performed on the assembly S and subsystem A. The ability to measure
assembly dynamics allows data recorded at one location on the structure to be compensated
by the structural dynamics between the measurement point and actual location of interest.

To test the IRC technique on its accuracy, the FRF HB
xcFc

in the 4 DOF mass-spring-
damper model (see Section 3.3) is written explicitly from the coupling equation (3.10):

HB
xcFc

=
(
HS

xiFi
−HA

xiFi

)−1
HA

xcFc

(
HS

xiFi
−HA

xiFi

)
+ HA

xiFc
HA

xcFi
(3.13)

The result of the application of the IRC equation to the 4DOF model is displayed in Figure
3.4.
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Figure 3.4: IRC calculation of HB
xcFc.

The result is presented in the same way as in Figure 3.3. Two figures are presented on
the left; the top figure is the magnitude of HB

xcFc
and the bottom figure is the phase of HB

xcFc
.

In these left figures, two FRFs are presented; the first FRF shown is HB
xcFc

derived from the
equation of motion obtained by applying Newton’s second law on substructure B. The second
FRF HB

xcFc
IRCmethod is calculated with the inverse receptance coupling equation (3.13) of

the IRC technique. The right figures represent the absolute error between these FRFs in
magnitude and phase, respectively. These two FRFs match perfectly. The error is very small
concluding that in theory the IRC technique is exact.

Hence, it is shown that both the methods RC and IRC are exact.
In practice, the data used in the RC and IRC technique will not be as ideal as in the used
4DOF model. Therefore, the coupling (RC) and decoupling (IRC) of the 4DOF model are
tested under the influence of measurement uncertainties in the next section.



CHAPTER 3. COUPLING OF SUBSTRUCTURES 17

3.6 Influence of measurement uncertainties on the coupling
equation

The prediction of the dynamic behavior of a coupled structure can be obtained by (a) ana-
lytical modeling and (b) experimental modal analysis. Specifically, when the first approach
is employed, first principles are used in order to formulate the equations of motion. The
advantage is that it causes no problems due to measurement uncertainties such as mea-
surement noise. By application of the second approach, namely the experimental analysis,
measurements of FRFs are performed on the structures. A benefit of this approach is that
characteristic features, i.e. irregularities and damping of the structure, are inherently present
in the measurement. A drawback is the influence of measurement noise. This can cause poor
results of the prediction of the coupled structure [29].

In this work, the influence of the measurement noise is tested in a model based envi-
ronment. In the 4DOF mass-spring-damper system used for the testing of the RC and IRC
technique, depicted in Figure 3.2, noise is added to the FRFs of the substructures. Then, the
RC and IRC technique are tested with these FRFs added with noise. The results of these
tests can be found in Appendix A. In these results of the RC and IRC calculations the im-
portant resonance frequencies of the structure are clearly visible but unfortunately, resonant
frequencies also appear on unexpected frequencies. These unexpected frequencies are the
natural frequencies of the substructures. Overall it can be concluded that the measurement
noise makes the RC and IRC technique less accurate. It can be concluded that it is of great
importance for the accuracy of the result of the coupling equation (3.10) that the response
data of the substructures is as accurate as possible.

The influence of measurement noise can be reduced. This can be done by averaging all
the measurement results for each individual structure to one averaged FRF for all the FRFs
used in the RC and IRC technique. An average of a total of ten equivalent measurements
proved to be sufficient for a reliable averaged FRF in this case. Then, this averaged FRF is
without the turbid of the noise, which is causing the undesired resonance peaks of the natural
frequencies of the substructure in the RC and IRC result. The measurements performed on
the HSM machine are therefore averaged to perform a proper RC and IRC calculation using
measured FRFs of the HSM machine.

The error that still can occur by averaging FRFs is the performance of biased measure-
ments. By performing biased measurements, the response data of the substructures are not
accurate. To investigate the influence of biased response data of the substructures on the
coupling result, tests are performed with shifted resonance peaks of substructure A, as in
Figure 3.5 where HA

xcFcbiased has shifted resonance peaks and HA
xcFc

is derived with the use
of Newton’s second law. In the upper and lower left plots both HA

xcFcbiased and HA
xcFc

are
plotted in magnitude and phase, respectively. In the right figures, the absolute errors of the
magnitude and the phase are presented. An error is inserted to the location of the resonance
and anti-resonance peaks of substructure A. Substructure B is assumed to be measured ac-
curately. The result of the RC calculation with the shifted resonances of substructure A is
presented in Figure 3.6. The left figures represent the magnitude and phase of the calculated
FRF HS

xiFi
RCtechnique. The result is compered with HS

xiFi
of the total coupled structure de-

rived with the use of Newton’s second law. In the right figures, the absolute errors of the
magnitude and phase are presented. In these right figures, the coupling result is clearly af-
fected by the influenced substructure A. The resonance and anti-resonance peaks of the joint
structure S are shifted. It can be concluded that the RC technique handled the influenced
substructure A as an other structure with other resonance and anti-resonance peaks. In prac-
tice, the detection of such an error is difficult; this states the importance of the accuracy of
the response data of the substructures. The response data of the substructures must be as
accurate as possible. This conclusion is also supported by the performed IRC calculation with
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Figure 3.5: HA
xcFc

, biased measurements.
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Figure 3.6: HS
xiFi

calculated with the RC technique.

the inaccurately measured substructure A and accurately measured assembly S. This result
can be found in Appendix B.



Chapter 4

Modelling of the tool-spindle
dynamics

The RC and IRC technique will be used to couple the tool dynamics with the toolholder-
spindle dynamics. By coupling the models for the tool dynamics and the toolholder-spindle
combination, joint models for every tool-toolholder-spindle combination can be calculated
efficiently based on these submodels.

A major difficulty for the choice of the location of the cross-section between these sub-
models is the determination of the dynamics at the intersection of the two substructures, i.e.
the stiffness and damping in the cross-section. The location of the cross-section and the dy-
namics at the cross-section are linked with each other, and create different possibilities for the
coupling of the modeled components using rigid, flexible, or flexible/damped compatibility
conditions. This results in a great variety of strategies of the RC technique for modelling the
dynamics of the HSM machine. These variations are presented throughout the years in the
references [1, 8, 11, 21, 36, 44, 45, 47, 48, 57–61, 65, 85]. For example, more than two sub-
structures can be used [47, 65] and the modelling of cross-section stiffness and/or damping can
be considered [1, 44, 45]. When considering dynamics in the intersection of two substructures,
often an optimization method based on a genetic algorithm is employed to find parameters
of the joint model in [44, 45]. Herein, for every tool-spindle combination the parameters of
the joint model need to be adjusted to model the reality accurately. For a large number of
tool-spindle combinations this constitutes a rather unpractical approach. In [57, 61], the RC
technique (equivalent to forward RC used in these papers) and coupling parameters (for the
cross-section stiffness and damping) are used to estimate the dynamics of the machine-tool
combination. A disadvantage is that the coupling parameters must be fit accurately to have
realistic results. This parameter fitting process is time consuming and therefore undesirable
in our tool-toolholder-spindle application. It is preferred to use kinematic coupling because
the determination of the dynamics at the cross-section is unnecessary. Another approach is
proposed by Esterling et al. [21] and Kiefer [35]. They developed a non-contact electromag-
netic measurement device to capture the machine and tool dynamics. A disadvantage of this
approach is that this measurement has to be carried out for every individual machine-tool
combination.

Therefore, other methods have been developed. Park et al. [47] use inverse RC. They use a
force sensor in the spindle of the HSM machine in combination with inverse RC techniques to
calculate the FRFs that are difficult to measure. The difficulty of the measurement of some
FRFs will be discussed in the following chapters. With the FRFs calculated with inverse
RC techniques, Park estimates the dynamics of the tool- HSM machine combination off-line.
Hereby, Park uses finite element analysis (FEA) to model the end-mill. A drawback of this
approach is that every HSM machine under evaluation needs to be equipped with a force
sensor integrated in the spindle, which is a costly and large-scaled undertaking. Another,

19
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similar approach is presented by Schmitz et al. [58, 59, 61, 65]. He presents a finite element
modeling approach to determine the stiffness and damping behavior between the tool and
toolholder in thermal shrink fit conditions. Moreover, the spindle of the HSM machine is
decoupled from the toolholder, creating three substructures. Then, RC techniques are used
to couple the three substructures off-line. Here, a drawback is that the determination of the
dynamics in the cross-sections takes a lot of effort and the coupling result is very sensitive
for errors. Esterling [22] also calculates the toolholder-spindle combinations off-line. Hereby,
Esterling uses analytic equations to describe the free-free supported tool. The disadvantage
is that the tool is approximated by applying beam theories [32, 84] instead of using, generally
more accurate, FE modelling. The variation in geometry of the range of tools used in an
average HSM machine can not be presented by the simple geometry of a beam. This implies
an error in the accuracy of the receptance data of the end-mill.

Therefore, in this work FE calculation, kinematic coupling in the RC and IRC techniques
are used off-line to calculate the joint models of the tool-toolholder-spindle combinations.

4.1 Substructuring on the HSM machine

Commonly, the dynamics of a specific tool-toolholder-spindle combination as a whole is deter-
mined by performing hammer experiments. A typical HSM machine has as many as 50 to 100
tools in its tool carrousel, leading to a large number of measurements, that is for every tool,
toolholder, spindle, HSM machine combination. This is a time-consuming process, which has
to be repeated for every tool-toolholder-spindle combination.

In this work, we aim at increasing the efficiency of this identification process. We aim to
do so by separately modelling, firstly, the tool dynamics and, secondly, the toolholder-spindle
dynamics. By coupling these models, joint models for every tool-toolholder-spindle combi-
nation are available. This method does not require on-line measurements on the required
tool-toolholder-spindle combinations on the HSM machine. The aim is to identify the dy-
namics of the joint HSM machine coupling combinations, in terms of FRFs from a force at
the tip of the tool where the tool comes in contact with the milling-material to a displacement
of the tool-tip. The location at the tip of the tool is the point of the tool that is excited during
the milling process.

By choosing the cross-section as indicated in Figure 4.1, at the free-free end of the end-mill
the dynamics of the cross-section are considered stiff. Now, a kinematic coupling assumption
is valid because displacements and accelerations acting on the cross-section dynamics are
negligibly small. The cross-section divides the total structure S into two substructures: sub-
structure A and substructure B. Substructure A represents the free-free part of the end-mill
and substructure B represents the HSM machine, spindle, toolholder and fixed part of the
end-mill, respectively.

These substructures are used in the derived coupling equation (3.10). The coupling equa-
tion (3.10) only includes translational DOFs (TDOFs). However, rotational degrees of free-
dom (RDOFs) have to be taken into account as independent coordinates because the location
of interest is on the tip of the tool where the tool is excited during the milling process [38].

4.2 Rotational FRFs

Various authors have discussed the inclusion of RDOFs in dynamic models. In coupling
techniques, the consideration of rotations in the coupling coordinates may be decisive, as
they can be responsible for force or moment transmissions between the various substructures
[24, 52]. Furthermore, the combined use of translations and rotations may reduce the number
of measurements that are necessary to represent the vibration with an accuracy identical to
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Figure 4.1: Substructures of the HSM machine.

the one which would be obtained by measuring only translations [9]. Therefore, the coupling
equation derived with TDOFs (3.10) is extended with RDOFs.

Now, the FRFs in the coupling equation (3.10) contains both TDOFs and RDOFs defined
by [

xα

θα

]
=

[
HI

xαFβ
HI

xαMβ

HI
θαFβ

HI
θαMβ

][
Fβ

Mβ

]
=: HI

αβ

[
Fβ

Mβ

]
,

where subscripts α, β ∈ {i, c} represents the relation to the internal or coupling DOF, super-
script I ∈ {A,B, S} represents substructure A or B or the assembly S, Hαβ represent the
specific FRF matrix where the input and output are determined by α and β, respectively and
θα and Mβ represent the rotational response and input momentum on the chosen internal or
coupling RDOF, respectively. This can be done for all the components in equation (3.10),
yielding:

HS
ii =

[
HA

xiFi
HA

xiMi

HA
θiFi

HA
θiMi

]
−

[
HA

xiFc
HA

xiMc

HA
θiFc

HA
θiMc

]
(4.1)

([
HA

xcFc
HA

xcMc

HA
θcFc

HA
θcMc

]
+

[
HB

xcFc
HB

xcMc

HB
θcFc

HB
θcMc

])−1 [
HA

xcFi
HA

xcMi

HA
θcFi

HA
θcMi

]
.

Because we are only interested in the relation between the force and the displacement on the
tip of the tool on the HSM machine (HS

xiFi
) the number of required FRFs can be reduced.

We introduce the term kernel matrix for the matrix inversion in (4.1). This kernel matrix can
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be notated more briefly
([

HA
xcFc

HA
xcMc

HA
θcFc

HA
θcMc

]
+

[
HB

xcFc
HB

xcMc

HB
θcFc

HB
θcMc

])−1

=:
[

H2,xcFc H2,xcMc

H2,θcFc H2,θcMc

]−1

,

where H2,qcRc := (HA
qcRc

+ HB
qcRc

) for each element (q ∈ {x, θ}) and (R ∈ {F, M}). The
inversion of the kernel matrix can be expressed in a simpler notation by making use of the
Kramer notation [37]:

[
H2,xcFc H2,xcMc

H2,θcFc H2,θcMc

]−1

=
1

H2,θcFcH2,xcMc −H2,θcMcH2,xcFc

[ −H2,θcMc H2,xcMc

H2,θcFc −H2,xcFc

]
.

(4.2)
By using this representation of the kernel matrix (4.2) while evaluating the (1,1) element of
HS

ii, representing HS
xiFi

, HS
xiFi

can be expressed as

HS
xiFi

=
x1

F1
= HA

xiFi
+

1
H2,θcFcH2,xcMc −H2,θcMcH2,xcFc

(HA
xiFc

H2,θcMc −HA
xiMc

H2,θcFc)H
A
xcFi

+ (HA
xiMc

H2,xcFc −HA
xiFc

H2,xcMc)H
A
θcFi

. (4.3)

This coupling equation consists of both TDOFs and RDOFs at the substructure interface.
In an ideal situation, one would assume that all the TDOFs and RDOFs on the HSM machine
can be measured accurately. Under such ideal circumstances, the coupling equation consisting
of both TDOFs and RDOFs is tested in a 6DOF mass-spring-damper model. This model can
be found in Appendix C. The results show that this coupling equation consisting of both
TDOFs and RDOFs is exact.

Obviously, in practice, the ideal circumstances as in the 6DOF model in Appendix C can
not be achieved. An additional problem is that, in particular, the possibilities for measuring
responses at RDOFs are limited [55]. The measurement equipment used nowadays allows for
obtaining the relationships between TDOFs and applied forces with high accuracy. However,
the other RDOF relations are often not considered because of the difficulties in applying
a pure moment excitation or in measuring rotational responses [42, 81]. In general, this
implies a reduction of the complete dynamic model, in which relations to RDOFs will not
be modeled. On the other hand, if an RC or IRC calculation includes rotational inertia, the
rotational receptances of the unmodified system are needed. Nowadays, it is recognized that
RDOFs (and hence rotational FRFs) may represent an important role in the characterization
of the dynamic behavior of structures [18]. In our tool-toolholder-spindle coupling application
we deal with rotational inertias, so the rotational FRFs must be calculated or determined
experimentally.

In one experimental method, a so-called T-block is attached to the structure [81]. Then,
a force, applied to an arm of the T-block, generates a moment together with a force at the
connection point. The T-block also allows for angular displacement measurements. Neverthe-
less, the results are often not quite satisfactory. Therefore, the identification of the dynamics
of the substructures A and B needs additional study.

4.3 Identification of substructure A

Similar to the receptance coupling technique proposed by Schmitz et al. [58, 61], the struc-
tural dynamics model of the end-mill at its two free ends can be modeled analytically using
continuous beam formulations [57], finite element techniques [16] or it can be measured in
practice.

In this application, the RDOFs of the end-mills (substructure A) can not be measured in
practice without cutting through one of all the end-mills that need to be evaluated. Cutting
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Figure 4.2: Substructure A, end-mill JH421100R080Z2-Mega-T.

through one of all the different end-mills constituting in the collection of tool-toolholder-
spindle-system combinations is not an option from the cost-effectiveness point of view. More-
over, this will be rather time consuming. Moreover, considering the range of tools on the HSM
machine, the smaller end-mills do not provide enough attachment area to apply a T-block.
Therefore, the rotational FRFs of substructure A (the end-mill) must be computed.

Calculation of the rotational FRFs can be performed with the aid of FE programmes or
by using analytic equations. Expressing the range of tools by using approximations such as
cylindrical shapes in analytic equations takes a lot of categorization of the different tools and
calculations are less accurate compared to a finite element analysis (FEA). Therefore, in this
thesis we use FE calculations. An advantage of using FE calculations is that rotational FRFs
are calculated in a straightforward fashion. A disadvantage is that the stiffness and damping
characteristics are modeled (as opposed to measured); therefore, the material properties of
the end-mill must be known. These material properties and tool geometry are provided by the
manufacturer of the end-mills, Jabro-Tools, who is a partner in the Chattercontrol project.
An end-mill that can be used as a specimen for the RC calculation is displayed in Figure 4.2.

4.3.1 Finite-element model of the end-mill

The substructure A depicted in Figure 4.1 represents the end-mill. The rotational FRFs
and translational FRFs that need to be evaluated on the tip of the end-mill are depicted
in more detail in Figure 4.3 where the inputs and outputs of the individual rotational and
translational FRFs are presented by arrows and the rotational and translational FRF matrix
is on the right. The FE calculations are performed with the FEM program Ansys [34]. Six
(rotational) FRFs do not need to be calculated by using symmetry properties of the FRF.
The free-free condition of the end-mill dynamics is needed because rigid body modes are
important in the coupling of the substructures.

The 3-D tool geometry of the end-mills, necessary for the FE calculation, are obtained
from the mill designer. The 3-D tool geometry of the end-mills is imported into the computer
aided design (CAD) program UniGraphics. A manual for the exact implementation of the
geometry of the end-mill into UniGraphics can be found in Appendix D.

Next, this geometric file (in UniGraphics) is imported in Ansys through the Ansys con-
nection for UniGraphics. In Ansys, nodes are positioned on the desired locations where the
FRFs need to be evaluated. Subsequently, the model is meshed using the SOLID 72 element
type to evaluate both translational and rotational DOFs. Further calculations of the neces-
sary FRFs for the coupling equation are performed in Matlab after exporting the mass and
stiffness matrices to Matlab. The diagram in Figure 4.4 illustrates this procedure.
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Figure 4.3: The required FRFs of substructure A, the end-mill.

Figure 4.4: Diagram of the calculation procedure for the FRFs of subsystem A.

4.3.2 FRF calculation with Ansys and Matlab

Ansys does not support the calculation of the rotational FRFs in its dynamic design analysis
toolbox. Therefore, the Modal Analysis solver in Ansys is only used to calculate the M and K
matrices for the FE model of the end-mill. The matrices are computed without the influence
of specific solvers in Ansys, thus without mode extraction or frequency range evaluation.

These matrices are exported to Matlab where the equations of motion (in first order
form) are formed from the calculated M, K matrices. The assumed proportional damping is
added to the equation of motion with the proportional damping matrix (D). A proportional
damping model can easily be employed since the damping level (only due to material damping)
is expected to be rather low. Let ω be the frequency of interest, U(jω) the Fourier transform
of the column of actual displacements, j =

√−1 and F (jω) represent the Fourier transform
of the column of actual forces. Then,

(−ω2M + jωD + K
)
U(jω) = F (jω), (4.4)

where we will omit the (jω) argument from now on. The imported M and K matrices have
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a size equal to the total number of DOFs (m) used in the FE-model of the end-mill in Ansys.
This size needs to be reduced. This is done by multiplying with the transpose of the matrix
containing the eigenmodes introduced as the reduction matrix T. Herein, T is a m×n matrix
where n is equal to the number of reduced eigenmodes in T. These eigenmodes are sorted with
respect to the smallest eigenfrequency. The higher order modeshapes of the end-mill occur in
very high frequencies where we have no interest in. Therefore, the first fourteen modeshapes,
including the six rigid-modes, are used in the calculation and the rest is omitted, which gives

TT
(−ω2M + jωD + K

)
U = TT F = FT . (4.5)

The reduced column of generalized forces is called FT and is defined by FT = TT F . Let Q
be the Fourier transform of the reduced generalized coordinates such that

U = TQ (4.6)

and thus
TT

(−ω2M + jωD + K
)
TQ = FT . (4.7)

The equation of motion is now uncoupled due to the proportionality of the damping. So
(−ω2 MT + jω DT + KT

)
Q = FT , (4.8)

where MT , KT and DT are diagonal matrices defined by TTMT, TTKT and TTDT, respec-
tively. We introduce mi, ki and di representing the mass parameters m1, ..., mn as diagonal
elements of MT , stiffness parameters k1, ..., kn as diagonal elements of KT and damping pa-
rameters d1, ..., dn as diagonal elements of DT , respectively.

We define
ai = −ω2mi + jωdi + ki, i = 1, ..., n, (4.9)

By applying proportional damping di = 2ξiω0imi, where ξi is the dimensionless damping
factors ξ1, ..., ξn and ω2

0i = ki/mi, (4.9) yields

ai =
(−ω2 + jω (2ξiω0i) + ω2

0i

)
mi, i = 1, ..., n. (4.10)

Then, (4.11) can be written as
AQ = FT , (4.11)

where A is the diagonal matrix with {ai} on the diagonal. Now,

Q = A−1FT (4.12)

and finally the actual displacement response U = TQ is calculated with

U = TA−1TT F. (4.13)

With HA = TA−1TT , the substructure A representing the end-mill is now fully identified for
the use in the coupling equation (4.3). Now, substructure A can be used to represent various
end-mills participating in the large numbers of tool-toolholder-spindle combinations.

However, we still need to identify the dynamics of substructure B, i.e. the HSM machine,
before we can use the coupling equation (4.3).
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Figure 4.5: The required rotational and translational FRFs of substructure B (the HSM
machine).

4.4 Identification of substructure B

The input and output locations of the translational and rotational FRFs that are necessary
for the RC technique are displayed in Figure 4.5, where the input and output of the individual
rotational and translational FRFs are presented with arrows and the corresponding symmetric
FRF-matrix is depicted on the right side of the figure. The identification of the individual
FRFs in the FRF-matrix will now be presented.

The FRF HB
xcFc

of substructure B can be measured with hammer experiments. This is
done by inserting the toolholder with a short blank representing the upper part of the end-mill
from the cross-section to the end of the shaft of the end-mill. The exact dimensions of this
blank can be found in Appendix E. For the acceleration measurement needed to identify HB

xcFc
,

a Kistler accelerometer (Model 8696) is used. This sensor can measure both translational
and rotational accelerations, however, the angular acceleration can be too small to measure
accurately. In contrast to the small angular accelerations, the translational accelerations are
of such size that they can be measured accurately, resulting in an accurate measurement of the
corresponding translational FRF, provided that the input force can be accurately measured
as well. The measurement of this translational FRF HB

xcFc
is performed as displayed in Figure

4.6. In this figure, the location of the input Fc as well as the location of the outputs θc and
xc are indicated with an arrow.

The possibilities for measuring the rotational FRFs HB
θcMc

and HB
θcFc

or HB
xcMc

are limited
but we can not confine ourselves to the measured translational FRF for reasons explained
in Section 4.2. The measurements involved in the identification of HB

xcFc
with the Kistler

accelerometer (Model 8696) showed that rotational accelerations on the cross-section of the
HSM machine are too small to be measured accurately. The direct experimental measurement
of the rotational FRFs HB

θcMc
, HB

xcMc
or HB

θcFc
of the spindle of the HSM machine (substruc-

ture B) is therefore not an option. With other techniques, such as FE calculations or analytic
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Figure 4.6: Measurement of HB
xcFc

.

models, it takes a lot of effort to determine these FRFs accurately. Doing so for all the tool-
toolholder-spindle-system combinations is not efficient. Therefore, in this work, an alternative
method based upon the RC coupling technique is developed, in which rotational receptances
of substructure B are estimated without the need of applying a moment excitation.

4.4.1 IRC calculation of HB
θcFc

and HB
θcMc

It is preferred that the FRFs of substructure B, the HSM machine, are measured in prac-
tice. In this way, the real dynamics, including all stiffness and damping characteristics, are
measured accurately.

Silva et al. [67, 68] proposed a method, the inverse RC technique, in which rotational
receptances are estimated without having to measure them directly. It is also shown that
neither a moment exciter nor an eccentric force applied to a rigid fixture are needed in the
estimation of rotational receptances. This technique is studied and applied on the coupling
equation derived for the joint HSM machine models for all possible combinations of tools,
toolholders and spindles. Therefore, it is desired to use this method that can determine these
FRFs based on measurements, including stiffness and damping characteristics. The stiffness
and damping characteristics are calculated from measurements performed on locations where
measurements can be performed reliably and accurately.

The methodology presented by Silva et al. estimates rotational receptances for one rota-
tional FRF under evaluation. In our case, we have more than one rotational FRF to evalu-
ate. By using symmetry, i.e. HB

xcMc
= HB

θcFc
, there is one rotational FRF less to determine.

Now, we have two unknown receptances namely, HB
θcMc

and HB
xcMc

(or HB
θcFc

). Therefore,
in this thesis the equation used by Silva et al. is extended to a set of two equations with
two unknowns. Hereto, it is necessary to derive a second coupling equation. This is done by
introducing the second force F2 as input in the coupling equation (3.10). The derivation of
the second coupling equation is the same as the derivation of the original coupling equation
(3.10). Recapitulating the substitution of (3.7) into (3.8); which yields (3.9)

x1 =
(
HA

xiFi
−HA

xiFc

(
HA

xcFc
+ HB

xcFc

)−1
HA

xcFi

)
F1 +

(
HA

xiFc
−HA

xiFc

(
HA

xcFc
+ HB

xcFc

)−1
HA

xcFc

)
F2,

where we obtained an expression of x1 as a function of the two applied forces F1 and F2.
Now, by assuming the external force F1 to equal zero, the derivation leads to:

x1

F2
= HS

xiFc
= HA

xiFc
−HA

xiFc
(HA

xcFc
+ HB

xcFc
)−1HA

xcFc
. (4.14)
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Similar to the derivation of the original coupling equation, the corresponding RDOFs need
to be inserted into this second coupling equation, which leads to

HS
ic =

[
HA

xiFc
HA

xiMc

HA
θiFc

HA
θiMc

]
−

[
HA

xiFc
HA

xiMc

HA
θiFc

HA
θiMc

]
(4.15)

([
HA

xcFc
HA

xcMc

HA
θcFc

HA
θcMc

]
+

[
HB

xcFc
HB

xcMc

HB
θcFc

HB
θcMc

])−1 [
HA

xcFc
HA

xcMc

HA
θcFc

HA
θcMc

]
.

By using the simplified representation of the kernel matrix (4.2) while writing out the (1,1)
element of HS

ic representing HS
xiFc

, HS
xiFc

can be expressed as

HS
xiFc

=
x1

F2
= HA

xiFc
+

1
H2,θcFcH2,xcMc −H2,θcMcH2,xcFc

(HA
xiFc

H2,θcMc −HA
xiMc

H2,θcFc)H
A
θcFc

+ (HA
xiMc

H2,xcFc −HA
xiFc

H2,xcMc)H
A
xcFc

. (4.16)

The two coupling equations (4.3) and (4.16) can be rewritten in the following form

z = a +
g(ec− fb) + h(fd− eb)

b2 − cd
,

y = e +
i(ec− fb) + j(fd− eb)

b2 − cd
, (4.17)

where the meaning of the symbols are presented in Table 4.1 for a more abbreviated notation.
We consider the two sums of rotational FRFs b and c to be unknowns in (4.17). These two

HA
xiFi

= a H2,xcMc = H2,θcFc = b H2,θcMc = c H2,xcFc = d

HA
xiFc

= e HA
xiMc

= f HA
xcFi

= g HA
θcFi

= h

HA
xcFc

= i HA
θcFc

= j HS
xiFi

= z HS
xiFc

= y

Table 4.1: Meaning of the symbols used in the two coupling equations.

unknowns can be written explicitly according to the IRC method presented in Section 3.4.
Then, (4.17) is solved with respect to b and c with the aid of the mathematical program
Maple, resulting in:

b =
−ehd + ehi− egj + hdy + adj − zdj

−eg + gy − zi + ai
, (4.18)

c =
1

(−eg + gy − zi + ai)2
(e2h2d + h2dy2 + j2z2d+

j2a2d + jfeg2 − e2h2i + fi2ha− 2eyh2d− fi2hz − j2ega−
2j2adz + j2egz + 2yhadj − 2yhzdj + 2ehzdj − 2ehadj − feghi+

fyghi− jehiz − jeghy + jehia− jfiga + jfigz + eh2iy + je2gh− jfyg2). (4.19)

With the FE calculations of the rotational FRFs HA
θcMc

and HA
θcFc

of substructure A, the two
rotational FRFs concerning substructure B, HB

θcMc
and HB

θcFc
can now be obtained by:

HB
θcMc

= c−HA
θcMc

,

HB
θcFc

= b−HA
θcFc

. (4.20)

These FRFs can be stored in a data-base as constant properties for the different toolholder-
spindle combinations.



CHAPTER 4. MODELLING OF THE TOOL-SPINDLE DYNAMICS 29

These IRC calculations are tested on the 6-DOF mass-spring-damper model in Appendix
F. The resulting error in the prediction of the rotational FRFs HB

θcMc
and HB

θcFc
through

(4.18), (4.19) and (4.20) is very small, from which we can conclude that the IRC technique
to determine the two FRFs HB

θcMc
and HB

xcMc
= HB

θcFc
is exact.

This IRC technique can therefore be applied on the tool-toolholder-spindle-system com-
bination.

4.4.2 IRC calculation on the HSM machine

To implement the derived IRC technique on the HSM machine to calculate HB
θcFc

= HB
xcMc

and HB
θcMc

, the following strategy is used:
The total assembly S is replaced by an assembly S*. S* exist of substructures B and

A* such that S* = B + A*, see Figure 4.7. Throughout this thesis the superscript * will
be used to indicate the involvement in the replacement of the substructure A with A*. The
substructure A* is a simple cylinder made from the same material as the end-mill. All
FRFs of A* are known by FE calculations. This is a simplification (from a real end-mill
to a cylinder) to perform calculations and measurements more easily and as accurately as
possible. It is important to note that this does not have any consequence for the fact that
exactly the same FRFs HB

θcFc
and HB

θcMc
can be obtained in this way (as opposed to using

the end-mill). The exact dimensions of this cylinder used can be found in Appendix E. The
position indicated by c is the coupling surface and i indicates the end point of the end-mill
that we want to evaluate. By performing hammer experiments on the assembled structure
S* on the HSM machine at the tip (indicated with i), see Figure 4.8, the left-hand side HS∗

xiFi

of the first coupling equation (3.10) is measured. Now with the IRC technique, presented
in Subsection 4.4.1, b∗, representing HS∗

θcFc
, can be computed with (4.18) by substituting the

FRFs of substructure A by those concerning A*. Finally, the rotational FRF HB
θcFc

can be
calculated with

HB
θcFc

= b∗ −HA∗
θcFc

. (4.21)

However, for the calculation of b∗ the measurement of HS∗
xiFc

is needed. By performing hammer
experiments on the coupling section of the assembly S* at the location indicated with c, see
Figure 4.8, the FRF HS∗

xiFc
of the second coupling equation (4.19) is measured. Since both

HS∗
xiFi

and HS∗
xiFc

are now available, the set of two equations, (4.18) and (4.19), can be solved.
The calculation of c∗, representing HS∗

θcMc
, can be done with (4.19), by again substituting the

FRFs of substructure A by those concerning A*. Finally the rotational FRF HB
θcMc

can be
calculated with

HB
θcMc

= c∗ −HA∗
θcMc

. (4.22)

The substructure B is now fully identified for the use of the coupling equation (4.3), in
which substructure A can be used for various end-mills to predict the dynamics of the total
system S consisting of all possible tool-toolholder-spindle combinations.

4.5 Discussion

The coupling equation (3.10) is extended with rotational FRFs to calculate the dynamics
of the joint models for every tool-toolholder-spindle combination. It is preferred that the
rotational and translational FRFs used in the extended coupling equation (4.3) are measured
in practice. In this way, the real dynamics, including all stiffness and damping characteristics,
are measured accurately.

The substructures A and B representing the end-mill and toolholder-spindle combination,
respectively, each form a component of the total joint structure S.
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Figure 4.7: Substructures A, A* and B and assembled systems S and S*.

Six (rotational) FRFs of substructure A do not need to be calculated by using symmetry.
The remaining rotational and translational FRFs of substructure A (the end-mill) are identi-
fied as follows. The 3-D tool geometry of the end-mill is obtained from the mill designer. After
adjusting the model of the end-mill in UniGraphics, the model is opened in Ansys. Further
calculations of the necessary FRFs for the coupling equation are performed in Matlab after
exporting the mass and stiffness matrices based on the FE calculations to Matlab. A propor-
tional damping model is employed since the damping level (only due to material damping)
is expected to be rather low. In Matlab the equations of motion are uncoupled due to the
proportionality of the damping. For the further calculation of the FRFs the number of modes
are reduced to the first fourteen (sorted in ascending order of the related eigenfrequencies).
This makes the calculations more easily and as accurately as possible.

The FRFs of substructure B are identified as follows: the translational FRF HB
xcFc

is mea-
sured experimentally. The remaining FRFs of substructure B, HB

θcFc
= HB

xcMc
and HB

θcMc
,

are both calculated with the IRC technique based on the work of Silva et al. as follows: a sec-
ond coupling equation is derived. With these two coupling equations, the two measurement
locations are moved to the tip of the tool and to the cross-section where accurate measure-
ments on translational FRFs can be performed. All FRFs used in the IRC technique are
now available, therefore, HB

xcMc
and HB

θcMc
can be calculated by replacing the total assembly

S by an assembly S*. S* exist of substructures B and A* such that S* = B + A*,where
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Figure 4.8: Measurement of HS∗
xiFi

and HS∗
xiFc

.

substructure A* is a simple cylinder made from the same material as the end-mill of which
all FRFs are known by the calculation routine with UniGraphics, Ansys and Matlab. This is
a simplification to perform calculations and measurements more easily and as accurately as
possible.

In the next chapter, the IRC and RC strategy is tested in practice on a specific tool-
toolholder-spindle combination available at TNO Science and Industry. Hereby, the imple-
mentation of the IRC and RC technique on the HSM machine used in the Chattercontrol
project is obtained and validations with conventional hammer experiments are performed.



Chapter 5

Experiments

The IRC and RC procedure explained in the previous chapter will be validated experimentally.
This validation is performed on a Mikron HSM 700 machine. This milling machine is equipped
with a shrink fit tool holder and an end-mill replacement. The end-mill replacement is used
because no software data on an existing end-mill was available at the time for the project. The
replacement of the end-mill is a cylinder with two flat sides on the tip. The exact dimensions
of this cylinder with two flat sides used can be found in Appendix E. The Mikron HSM 700
machine is depicted in Figure 5.1, where the tool, toolholder and spindle are indicated.

Figure 5.1: The HSM 700 machine.

The FRFs necessary for the RC and IRC calculation are determined by performing ham-
mer experiments. The technical data of the hammer and acceleration sensors used can be
found in Table 5.1. The measurements are performed with the parameters presented in Table

type sensitivity range eigenfrequency
sensor SN C194546 2.51 mV/g 1000 g 125 kHz
sensor SN C142403 2.37 mV/g 1000 g 125 kHz
hammer SN 13496 1.17 mV/N − −

Table 5.1: Technical data of the measurement equipment.

32
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parameter value
sampling rate 30000 Hz

measurement time 0.25 s
trigger delay 0.125 s
low-pass filter 10000 Hz

Table 5.2: Technical data of the measurement equipment.

Figure 5.2: Measurement signal.

5.2. The chosen frequency range of interest is from 0 to 10000 Hz. Therefore, the sampling
rate is chosen at 30000 Hz according to the Nyquist-Shannon theorem [13], i.e. the highest
observable frequency is 15000 Hz. To avoid the possibility of aliasing a low-pass filter is used
at 10000 Hz. The stored input and response data is analyzed using Fourier transformations.
The trigger delay is set at half the measurement time to assure that the input and response
are located in the middle of the time frame of the used window, see Figure 5.2. Hereby, the
signal distribution in the applied Hanning window is optimal. The FRFs are averaged using
a total of at least ten individual measurements.

For the measurement of the translational FRF HB
xcFc

a blank with a total length of 50
mm and a diameter of 10 mm is inserted in the toolholder-spindle combination. This blank
used can be found in Appendix E. The short blank extends from the toolholder with a free
length of 11.75 mm, see Figure 5.3. Hereby, the location of the cross-section is defined by the

Figure 5.3: Short blank inserted in the toolholder.
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Figure 5.4: Measurement of the translational FRF HB
xcFc

.
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Figure 5.5: Measurement results of HB
xcFc

.

free length of 11.75 mm. It is important that this location of the cross-section is the same for
all the measurements performed on the different blanks. A detailed picture of the experiment
to determine HB

xcFc
is presented in Figure 5.4 where the acceleration sensor is located at the

tip of the short blank, around 11.75 mm from the tip of the toolholder. The impact location
of the hammer is on the opposite side of this cylinder.

The results of the measurements of HB
xcFc

are presented in Figure 5.5, where the top figure
depicts the magnitude of the translational FRF HB

xcFc
; the phase of HB

xcFc
is plotted in the

figure below this. The plot at the bottom depicts the coherence function of the averaged
FRFs. From the coherence function, it can be concluded that the FRF of HB

xcFc
is reliable in

the frequency range from 350 to 7500 Hz; above 7500 Hz the coherence drops below 0.8. The
first 350 Hz are unreliable because of the use of acceleration sensors. These sensors can not
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be used to measure the FRF with respect to position at low frequencies.
The measurement of HB

xcFc
provides the first FRF of substructure B representing the

toolholder-spindle combination. Substructure B needs to be fully identified in terms of trans-
lational and rotational FRFs for the RC and IRC technique. By making use of symmetry,
yielding HB

xcMc
= HB

θcFc
, only two FRFs are still missing, namely HB

θcMc
and HB

xcMc
(or HB

θcFc
).

These FRFs are determined with the IRC technique.

5.1 Implementation and validation of the IRC technique

The derived IRC technique presented in Section 4.4 to calculate HB
θcMc

and HB
xcMc

(or HB
θcFc

),
is tested in practice on the Mikron HSM 700 machine. Unfortunately, the calculated FRFs
HB

θcMc
and HB

xcMc
or HB

θcFc
can not be validated directly with actual measured FRFs HB

θcMc

and HB
xcMc

or HB
θcFc

of the HSM 700 machine because these can not be measured in practice
by performing hammer experiments. The results of the IRC technique will be discussed and
these results will be tested in the scope of the validation of the RC technique.

5.1.1 Implementation of the IRC technique

The IRC calculation of HB
θcMc

and HB
xcMc

(or HB
θcFc

) is performed by the set of the two coupling
equations (4.3) and (4.16) that are written explicitly resulting in (4.18), (4.19) and (4.20),
see Section 4.4.2. Now, two FRFs need to be measured, namely HS∗

xiFi
and HS∗

xcFi
(or HS∗

xiFc
).

For this measurement, a long blank with a total length of 80 mm and a diameter of 10 mm
is inserted in the toolholder. The total length corresponds with the L1 + L2 = 80 mm used
in Figure 5.3. This cylinder used can be found in Appendix E. This cylinder is inserted in
the toolholder with a depth of 38.35 mm (L1) which is the same as the inserted depth of the
short blank resulting in a cross-section location of 11.75 mm from the tip of the toolholder.

HS∗
xiFi

is measured using a setup as depicted in Figure 5.6 where the acceleration sensor
is located at the tip of the long blank, 43 mm from the tip of the toolholder. The impact
location of the hammer is on the opposite side of the cylinder.

5.1.2 Measurement results of the IRC technique

The measurement results of HS∗
xiFi

are displayed in Figure 5.7, where again the top figure
depicts the magnitude of the FRF HS∗

xiFi
. The corresponding phase is plotted in the figure

below this. The bottom plot depicts the coherence function. From the coherence function, it
can be concluded that the coherence is closest to 1 in the frequency range from 350 to 1690
and from 1760 to 10000 Hz. The dip at 1730 Hz is related to the antiresonance in the FRF at
1730 Hz. This measurement is used in the IRC calculation. To perform the IRC calculation,
(to calculate HB

θcMc
and HB

xcMc
or HB

θcFc
), the measurement of HS∗

xcFi
or HS∗

xiFc
is needed.

The FRFs HS∗
xcFi

and HS∗
xiFc

are equal according to symmetry. This provides the possibility
to perform a validation if both FRFs are available. Therefore, two experiments are performed.
In the first experiment, depicted in Figure 5.8, HS∗

xcFi
is measured. The acceleration sensor

is located at the proposed cross-section of the long blank, 11.75 mm from the tip of the
toolholder. The impact location of the hammer is on the tip of the long blank, 43 mm from
the tip of the toolholder. In the second experiment, depicted in Figure 5.9, HS∗

xiFc
is measured.

The acceleration sensor is located at the tip of the long blank, 43 mm from the tip of the
toolholder. The impact location of the hammer is on the proposed cross-section of the long
blank, 11.75 mm from the tip of the toolholder.

The measurement results of HS∗
xiFc

and HS∗
xcFi

are displayed in Figure 5.10 where they
are presented in the same way as in Figures 5.5 and 5.7. Onely, two FRFs are plotted in
these figures; namely, HS∗

xcFi
and HS∗

xiFc
. From the magnitude and the phase plots, it can
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Figure 5.6: Measurement of the translational FRF HS∗
xiFi

.
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Figure 5.7: Measurement results of HS∗
xiFi

.

be concluded that the two FRFs correspond well, hereby reflecting the expected symmetry
and, additionally, validating these experiments. From the coherence function at 0 Hz to 7000
Hz, it can be concluded that the coherence of HS∗

xcFi
is higher than the coherence of HS∗

xiFc
.

The reliable frequency range that is used in the IRC calculations (4.18), (4.19) and (4.20) is
determined by the reliability of all the FRFs used in these IRC calculations. The coherence of
the earlier performed measurement of HB

xcFc
decreases at 7500 Hz meaning that the decrease

in the coherence of HS∗
xcFi

at 7200 Hz is not decreasing the reliable frequency range of the IRC
measurement any further. Therefore, HS∗

xcFi
is preferred over HS∗

xiFc
and the reliable frequency

range is from 350 to 1690 and from 1760 to 7200 Hz.
In order to perform the IRC calculations, the FRFs of the free-free part of the long blank,

(represented by A∗), with the length of 41.70 mm and a diameter of 10 mm are calculated using
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Figure 5.8: Measurement of the translational FRF HS∗
xcFi

.

Figure 5.9: Measurement of the translational FRF HS∗
xiFc

.

the FE calculation procedure as presented in Section 4.3. The translational and rotational
FRFs of A∗ are now available.

With the available measurement data of HB
xcFc

, HS∗
xiFi

and HS∗
xcFi

and the FE calculations
of the free-free cylinder, the IRC calculation can be performed using (4.18), (4.19) and (4.20).
The calculated FRFs HB

θcMc
and HB

θcFc
are presented in Figures 5.11 and 5.12, respectively.

By considering the coherence functions of all the measured FRFs HB
xcFc

, HS∗
xcFi

and HS∗
xiFi

necessary for the IRC calculation, the reliable frequency range is from 350 to 1690 Hz and
from 1760 to 6200 Hz. This reliable frequency range is illustrated in Figures 5.11 and 5.12
by shading the less reliable frequency ranges. In the reliable frequency range of HB

θcFc
, the

resonance frequency of the HSM machine is visible at 5000 Hz. This resonance frequency is
also visible in the measurement of HB

xcFc
, see Figure 5.5. This implies that the IRC calculated

FRFs HB
θcMc

and HB
θcFc

, are reliable.
Substructure B representing the toolholder-spindle-HSM 700 machine combination is now

fully identified with respect to the translational and rotational FRFs at the proposed cross-
section. Now, by calculating the dynamics of any type of end-mill that can be placed in the
proposed toolholder-spindle combination, the RC calculation can be used to calculate the
dynamics of the joint system.
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Figure 5.10: Measurement results of HS∗
xiFc

and HS∗
xcFi

.

5.2 Implementation and validation of the RC technique

In order to proceed with the implementation of the RC technique in practice, the cylinder
with two flat areas at the tip is used as a replacement of the tool JH421. The cylinder is
made from the same carbide material as a modern end-mill. The necessary translational and
rotational FRFs of this cylinder with two flat areas are calculated with the calculation routine
presented in Section 4.3.

The reliable frequency range that is used in the coupling equation (4.3) is determined
by the reliability of all the FRFs used in the RC calculations. The two FRFs HB

θcMc
and

HB
θcFc

which are calculated using the IRC technique, are now used in the RC calculation.
Therefore, the reliable frequency range of the IRC technique applies to the RC technique as
well. The reliable frequency range of the other measured FRF HB

xcFc
has already been taken

into account by the IRC calculation. The reliable frequency range is thereby still stretching
from 350 to 1690 Hz and from 1760 to 6200 Hz.

The validation is performed on the tool-toolholder-spindle-system combination. The val-
idation is performed at the tip of the tool where the actual milling forces act on the tool-
toolholder-spindle system. The results of both the hammer experiment identifying HS

xiFi
and

the RC calculation HS
xiFi

RCtechnique are plotted in Figure 5.13. The reliable frequency range
is again illustrated by shading the less reliable frequencies. The upper two plots depict the
magnitude and phase, respectively; the two lower plots depict the real and imaginary part of
both measured and calculated FRFs. In the last figure, the absolute error between the two
FRFs is plotted. If we take in mind the reliable frequency range, it can be concluded that the
RC technique provides an accurate prediction of the dynamics of this tool-toolholder-spindle-
system combination. The peak in the absolute error at 1700 Hz can be related to the dip in
the coherence function of the measurement of HS∗

xiFi
. Above 6000 Hz, the real and imaginary

part of the FRF are almost zero. This is due to the use of hammer experiments. The hammer
experiments provide insufficient input energy above this frequency.
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Figure 5.11: HB
θcMc

derived with the IRC technique.

Figure 5.12: HB
θcFc

derived with the IRC technique.

Experimental examples of the IRC and RC technique are discussed so that the working
of the methodology is proven experimentally. Conclusions, advantages and limitations of the
method are discussed in the next chapter.
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Figure 5.13: RC result HS
xiFi

RCtechnique validated experimentally with HS
xiFi

.



Chapter 6

Conclusions and recommendations

In order to predict the occurrence of chatter in the milling process as accurately as possible, the
dynamics of the tool-toolholder-spindle-system need to be known. In practice, such knowledge
has to be known for a collection of tool-toolholder-spindle combinations. Commonly, the
dynamics of a specific tool-toolholder-spindle combination as a whole is determined with
impulse hammer experiments. This is a time-consuming process, which has to be repeated
for every tool-toolholder-spindle combination.

In this work, we propose an identification approach that potentially increases the efficiency
of the identification process compared to that of impulse hammer experiments. This approach
involves a separate modelling of, on the one hand the tool dynamics and, on the other hand the
toolholder-spindle dynamics. By coupling these models, joint models for every tool-toolholder-
spindle combination are available. By integrating the dynamics of the tool-toolholder-spindle-
system in the overall milling process model, a ’chatter-free’ working-point (i.e. depth of cut
and spindle speed) can be calculated. The developed coupling technique is tested in a model
based environment. The developed coupling technique is also validated experimentally. This
validation shows that using the proposed identification strategy, the dynamics of the tool-
toolholder-spindle combination can be predicted accurately.

The following conclusions are drawn and we offer the following recommendations that
need attention in future work.

6.1 Conclusions

The end-mills can be modeled in the same way as the successfully modeled end-mill replace-
ment (the cylinder with two flat sides on the tip) by using computer edit designs, FEM cal-
culations and by applying reduction techniques. By performing impulse hammer experiments
and applying the proposed IRC calculations, the toolholder-spindle dynamics are successfully
identified. These models are successfully coupled with the proposed RC technique. In this
way, a joint model of this tool(replacement)-toolholder-spindle combination is available.

By making models of the subsystems, the derived coupling equations is tested in a model
based environment. These models shows that the identification procedure is exact. The
experimental validation has shown that the accuracy of the experimental models serving as
an input for the coupling equation is of great importance for the accuracy of the identification
procedure.

Similar to existing coupling methods introduced by Schmitz et al. [58, 59, 61, 65], Park
et al. [47] and Esterling [22], the proposed method requires no on-line measurements on the
required tool-toolholder-spindle combinations on the HSM machine. This method differs from
the existing coupling methods in the sense that no adaptations need to be carried out on the
milling machine and no accurate fitting of coupling parameters (for the cross-section stiffness
and damping) have to be performed.

41
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The proposed RC coupling methodology can be used in other applications where one of
the substructures is exchangeable and can be used as a basis in applications where the use of
substructures can support an efficient identification process. The IRC methodology can be
used in other applications where one is interested in the dynamic properties corresponding
to a specific response location of a system where measurements can not be performed. By
measuring assembly dynamics and by identifying the dynamics of the remaining substructures,
the structural dynamics between a measurement point and actual location of interest can be
compensated.

6.2 Recommendations

The identification method proposed in this thesis is validated with the use of an end-mill re-
placement. Therefore, the identification method has to be repeated with a real end-mill. From
this identification a stability lobe diagram (SLD) can be constructed which can be validated
with a experimentally constructed SLD. When such models indeed prove to be predictive,
the identification process can be performed to fill a data-base incorporating the dynamics for
different toolholders (in combination with specific spindle) and different tools. By coupling
the dynamics of the two separate subsystems from the data-base, joint models for every tool-
toolholder-spindle combination are available. In the future, the end-mill manufacturer could
possibly deliver dynamic models of the specific end-mills as technical data to the client.

Rotational speed dependencies of the spindle dynamics can be included in the model of the
HSM machine and are expected to be important for accurate chatter prediction. Esterling
et al. [21] and Kiefer [35] developed a non-contact electromagnetic measurement device to
capture the machine and tool dynamics with rotational speed dependency. With this device,
the substructure representing the milling machine can be measured with rotational speed
dependency. Also, gyroscopic effects can be included in the FE models of the end-mills, to
establish the possibility to make the working-point calculations spindle speed dependent.

When the tool-toolholder-spindle combinations to be modeled involve a large number
of different toolholders, it may be more efficient to use three substructures in the coupling
process. The three substructures would then be: the milling machine, the toolholder and the
end-mill. In this way, the dynamics of the different toolholders can be calculated using FE
models instead of by performing measurements on all toolholder-machine combinations.
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Appendix A

Influence of measurement noise

The 4DOF mass-spring-damper system used to test the accuracy of the RC and IRC technique,
depicted in Figure 3.2, is used to test the influence of measurement noise on the RC and IRC
results. To test the influence of measurement noise, the FRFs of both substructure A and B
are deliberately contained with noise. This is done as follows,

H̃A,B
xi,cFi,c

= HA,B
xi,cFi,c

n (ω) (A.1)

where H̃A,B
xi,cFi,c

represents the FRFs of substructure A and B contained with noise, HA,B
xi,cFi,c

represents the FRFs of substructure A and B without the influence of measurement noise
and n (ω) represents the relative disturbance with a mean of 1 and a variance of 10% of the
specific FRF over the whole frequency range. The effect of the noise multiplication on the
FRFs is visualized by the contained FRF H̃A

xcFc
as depicted in Figure A.1 where the left
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Figure A.1: H̃A
xcFc

contained with measurement noise.

figures represent, from top to bottom, the magnitude and phase of HA
xcFc

. In these figures,
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HA
xcFc

is presented with and without the influence of noise. In the right figures the absolute
error is presented with; from top to bottom, the magnitude and the phase error.

By adding noise to the individual FRFs of both substructures, effects of noise on the cou-
pling equation (3.10) are tested. The coupling result of the RC technique, with the influence
of measurement noise on all the FRFs of both substructures, is displayed in Figure A.2. The
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Figure A.2: HS
xiFi

calculated with the RC technique.

left figures represents the magnitude end phase of the calculated FRF HS
xiFi

RCmethod. The
result is compared to HS

xiFi
of the total coupled system derived with Newton’s second law.

In the right figures the absolute errors of the magnitude and the phase are presented. The
coupling result is clearly influenced by the measurement noise. At 0 Hz the rigid body modes
of the free-free substructure A dominates the coupling result. Also at the natural frequency
of substructure A at 5900 Hz, see Figure A.1, this resonance peak is visible in the coupling
result. The resonance peaks and rigid body peak in the coupling result is very sensitive for
errors due to measurement noise on the substructures. Therefore, coupling results at these
frequencies must be handled carefully. We notice that the noise added to the individual FRFs
is relative, meaning that at the resonance peaks and for small frequencies (due to the rigid
body mode) the noise added to the FRF is larger than elsewhere. This test is therefore an
extreme case on the noise added to the resonance peaks. Nevertheless, it clearly shows that
the resonance peaks of the substructures can turn up as false resonance peaks in the coupling
result. In the left figures, the average error is acceptable. Overall, the prediction of HS

xiFi
is

still quite good despite the undesired resonance frequencies on the natural frequencies of the
substructures.

The IRC technique is also tested on the influence of measurement noise. Hereby, the
FRF of the calculated joint system S, HS

xiFi
, and the remaining FRFs of substructure A are

contained with noise. The IRC technique is used to calculate the FRF (HB
xcFc

) of substructure
B according to (3.13). The result of the IRC calculation is displayed in Figure A.3. In the
left figures, the magnitude end phase of the calculated FRF HB

xcFc
IRCmethod are presented.



APPENDIX A. INFLUENCE OF MEASUREMENT NOISE 51

0 2000 4000 6000 8000 10000

10
−10

10
−8

10
−6

10
−4

H
xcFc
B IRC

method

M
ag

ni
tu

de
 [m

/N
]

H
xcFc
B IRC

method
H

xcFc
B

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

Error of the magnitude

A
bs

ol
ut

e 
er

ro
r 

[m
/N

]

0 2000 4000 6000 8000 10000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Frequency [Hz]

P
ha

se
 [r

ad
]

H
xcFc
B IRC

method
H

xcFc
B

0 2000 4000 6000 8000 10000
10

−10

10
−5

10
0

10
5

Error of the phase

Frequency [Hz]

A
bs

ol
ut

e 
er

ro
r 

[r
ad

]

Figure A.3: HB
xcFc

calculated with the IRC technique.

Two FRFs are presented, the first FRF shown is HB
xcFc

derived with Newton’s second law
adopted on substructure B. The second FRF is calculated with the inverse coupling equation
(3.13) of the IRC technique. In the right figures, the absolute errors of the magnitude and
the phase are presented.

The influence of the measurement noise on the IRC technique can clearly be seen. Again
the resonant peaks of the systems used in the IRC calculation appear in the IRC result. The
rigid body mode at 0 Hz of substructure A is visible in the IRC result at 0 Hz. Also the mode
at 5850 Hz is clearly visible. This is due to the large relative error on these resonance peaks
of substructure A. This test is therefore comparable to the RC test which is an extreme case
of the noise added to the resonant peaks on the used systems. Nevertheless, it clearly shows
that the resonance peaks of the substructures can turn up as false resonance peaks in the
decoupling result.



Appendix B

IRC calculation with biased
measurements

The IRC technique is tested on the influence of biased measurements. It is assumed that
substructure A is affected by the performance of biased measurements and the assembly S
is measured accurately. The result of the IRC calculation is presented in Figure B.1. In the
upper and lower left plots of Figure B.1 both HB

xcFc
IRCtechnique and HB

xcFc
are plotted in

magnitude and phase, respectively. HB
xcFc

is derived with the use of Newton’s second law
and HB

xcFc
IRCtechnique is calculated with the IRC equation (3.13). In the right figures, the

absolute errors of the magnitude and the phase are presented. There is a large error visible at
the location of both resonance peaks of substructure B. The resonance peaks of substructure
B are shifted. It can be concluded that the IRC technique handled the influenced substructure
B as an other structure with other resonance frequencies. In practice, the detection of such
an error is difficult, this states the importance of the accuracy of the response data of the
substructures. The response data of the substructures must be as accurate as possible.
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Figure B.1: HB
xcFc

calculated with the IRC technique.
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Appendix C

Model with rotational FRFs

The introduction of the rotational FRFs into the RC equation is tested on the mass-spring-
damper model presented in Figure 3.2. The model is expanded with an extra translational
DOF for each substructure. This extra translational DOF, which is called θ, represents the
rotational DOF introduced in the RC equation (4.3). The replacement of the rotational DOF
with the translational DOF is done to keep the testing of the RC equation with RDOFs and
TDOFs as simple as possible. The expanded mass-spring-damper model is depicted in Figure
C.1.

Figure C.1: Model of the 6DOF structure and its substructures.

Substructure A is a free-free system described by five generalized coordinates qA =
[qA

1 qA
2 qA

3 qA
4 qA

5 ]T . Substructure B is supported at one end and is characterized by three
generalized coordinates qB = [qB

1 qB
2 qB

3 ]T . The total system S is clamped at one end and
is characterized by six generalized coordinates qS = [qS

1 qS
2 qS

3 qS
4 qS

5 qS
6 ]T . The cross-section
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consists of two coupling DOFs c1 and c2. The internal DOF i also consist of two DOFs i1
and i2. Both the DOFs c1, c2 and i1, i2 are dependent of each other with which we artificially
model the influence of the RDOF of the HSM machine for the testing of the RC equation.
The parameters used for the masses, spring constants and damping ratios are collected from a
parameter-fit performed in [26] and summarized in Table C.1. The six most important modes
of the spindle and tool of a HSM machine are used in this model.

i=1 i=2 i=3 i=4 i=5 i=6
mi[kg] 0.8705 0.3301 0.3228 0.03364 0.04124 0.01724

ki[N/m] 4.271 · 107 3.075 · 107 4.481 · 107 2.229 · 107 2.456 · 107 3.010 · 107, 1.947 · 107

bi[−] 0.04348 0.03551 0.04754 0.03364 0.03284 0.02754, 0.04924

Table C.1: Parameters used in the 6DOF mass-spring-damper model.

The three mass-spring-damper systems (A, B and S) are each described by a mass matrix
(M), stiffness matrix (K) and damping matrix (D). For substructure A,

MA =




0 0 0 0 0
0 0 0 0 0
0 0 m4 0 0
0 0 0 m5 0
0 0 0 0 m6




KA =




k4 0 −k4 0 0
0 k5 0 −k5 0
−k4 0 k4 + k6 0 −k6

0 −k5 0 k5 + k7 −k7

0 0 −k6 −k7 k6 + k7




DA =




b4 0 −b4 0 0
0 b5 0 −b5 0
−b4 0 b4 + b6 0 −b6

0 −b5 0 b5 + b7 −b7

0 0 −b6 −b7 b6 + b7




,

for substructure B

MB =




m1 0 0
0 m2 0
0 0 m3


KB =




k1 + k2 + k3 −k2 −k3

−k2 k2 0
−k3 0 k3


DB =




b1 + b2 + b3 −b2 −b3

−b2 b2 0
−b3 0 b3


 ,

and for the total system S

MS =




m1 0 0 0 0 0
0 m2 0 0 0 0
0 0 m3 0 0 0
0 0 0 m4 0 0
0 0 0 0 m5 0
0 0 0 0 0 m6




KS =




k1 + k2 + k3 −k2 −k3 0 0 0
−k2 k2 + k4 0 −k4 0 0
−k3 0 k3 + k5 0 −k5 0
0 −k4 0 k4 + k6 0 −k6

0 0 −k5 0 k5 + k7 −k7

0 0 0 −k6 −k7 k6 + k7
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DS =




b1 + b2 + b3 −b2 −b3 0 0 0
−b2 b2 + b4 0 −b4 0 0
−b3 0 b3 + b5 0 −b5 0
0 −b4 0 b4 + b6 0 −b6

0 0 −b5 0 b5 + b7 −b7

0 0 0 −b6 −b7 b6 + b7




.

The FRFs of the individual systems are calculated from the M, K and D matrices with
a damped MIMO frequency response function for linear systems given by

HxF (jω) =
1

−ω2M + jωD + K
, (C.1)

in which HxF (jω) represents the transfer function matrix, ω represents the angular frequency
range of interest and j =

√−1. The derived FRFs of substructure A are written in a parti-
tioned form with both translational and (fictionally) rotational coordinates. Also substructure
B is presented in the translational and (fictionally) rotational DOFs. The subscripts i1, i2
and c1, c2 correspond with the location indicated with i1, i2 and c1, c2 in Figure C.1. The
notation of x, F , θ and M corresponds with translational displacement response, input force,
rotational displacement response and input momentum, respectively.



xA
i1

θA
i2

xA
c1

θA
c2


 =




HA
xi1Fi1

HA
xi1Mi2

HA
xi1Fc1

HA
xi1Mc2

HA
θi2Fi1

HA
θi2Mi2

HA
θi2Fc1

HA
θi2Mc2

HA
xc1Fi1

HA
xc1Mi2

HA
xc1Fc1

HA
xc1Mc2

HA
θc2Fi1

HA
θc2Mi2

HA
θc2Fc1

HA
θc2Mc2







FA
i1

MA
i2

FA
c1

MA
c2


 ,

[
xB

c1

θB
c2

]
=

[
HB

xc1Fc1
HB

xc1Mc2

HB
θc2Fc1

HB
θc2Mc2

] [
FB

c1

MA
c2

]
.

(C.2)
Both the FRF matrices of substructure A and B are symmetrical matrices. This means that
either the upper or lower half of the matrix does not have to be calculated. The result of the
RC equation with two DOFs is displayed in Figure C.2
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In the left figure, two FRFs are presented; one of HS
xiFi

derived from the MS , KS and DS

matrices of the total system S and the second FRF is calculated with the coupling equation
(3.10) of the RC technique. These two FRFs match perfectly. The right figure presents the
relative error between these FRFs. The error is very small, from which we can conclude
that the RC technique with TDOFs and RDOFs is exact and can be used to calculate the
dynamics of the HSM machine.



Appendix D

Manual for implementation of the
STEP format into UniGraphics

Jabro Tools uses Cybergrind software to design the end-mills. This program directly con-
structs a CNC program from the parameters of a specific milling process used by a customer.
The geometrical end-mill design is converted into a STEP format [79]. STEP (STandard
for the Exchange of Product model data) is an international standard for the computer-
interpretable representation and exchange of product data, independent of any particular
system.

The next steps must be performed to implement the STEP file into UniGraphics:

1. The STEP file is imported into UniGraphics with the import toolbox in UniGraphics.
The settingsfile must be modified. The object types must be changed to solids. Now, a
solid body is formed from the STEP file.

2. In UniGraphics the solid body is modified. The part above the cross-section of the
end-mill is removed and the coordinate system is positioned.

3. Finally, the shortened and positioned free-free end-mill is converted to a PART file.

This PART file can be imported into Ansys through the Ansys connection for UniGraph-
ics.
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Appendix E

Dimensions of the used blanks and
the end-mill replacement

Figure E.1: Used blanks and end-mill replacement and dimentions in mm.
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Appendix F

Calculation of the rotational FRFs
in a model

The IRC theory with the methodology of two equations and two unknowns to construct the
two FRFs HB

θcMc
and HB

xcMc
= HB

θcFc
is tested on the mass-spring-damper model presented

in Figure C.1.
The FRFs HB

xcMc
= HB

θcFc
and HB

θcMc
are calculated with the inverse receptance coupling

equations (4.18) and (4.19), respectively.
The results of this IRC calculation are displayed in Figures F.1 and F.2. The left two

figures are from top to bottom: The magnitude and phase of HB
θcFc

and HB
θcMc

, respectively. In
these left figures, two FRFs are presented; the first FRF shown is derived from the equations
of motion which is derived with Newton’s second law by using the MB, KB and DB matrices
of substructure B. The second FRF is calculated with the IRC technique. The right figures
represent the absolute error between these FRFs in magnitude and phase, respectively.

It can be concluded that these two FRFs match perfectly. The error is very small, con-
cluding that the IRC technique is exact.
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Figure F.1: IRC calculation of HB
θcFc

.
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Figure F.2: IRC calculation of HB
θcMc

.


