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Abstract

This thesis focuses on the problem of dimensioning a link in a communication network which
carries data of both consumers and a small number of corporate users. The corporate users
have an access rate that is much larger than that of the consumers, but possibly they are
only active a small fraction of the time. The main goal is to develop a modelling approach
to determine the required link capacity in order to satisfy specific Quality of Service (QoS)
levels in terms of delays (for streaming traffic) and user throughputs (for elastic traffic). In
particular, the impact of the presence of corporate users and their characteristics on the re-
quired link capacity will be examined.

In the modelling approach two separate models are used for streaming and elastic traffic. For
streaming traffic an exact expression for the QoS is derived and used to numerically evaluate
the required capacity to satisfy the performance requirements. For elastic traffic it is not pos-
sible to derive an exact expression for the QoS and the required capacity will be determined
by simulation. With the results from these models the impact of different behaviors of the
corporate users and the number of corporate users is examined.

In operational capacity management, as implemented by network operators, the average work-
load on the link is used to determine the required capacity. If the traffic characteristics of
corporate users are not known, a network operator has to provide the capacity that is required
to fulfill the performance requirements in the worst-case scenario. However, the required ca-
pacity for a given value of the average workload strongly depends on the number of corporate
users and their behavior, so an operator can improve the estimate for the required capacity
when the behavior of a corporate user is known. We provide practical recommendations to
obtain insight into the traffic characteristics at the end of this thesis.

Whether an operator should provide the required capacity for the worst-case scenario or
perform the practical recommendations to get insight into the traffic characteristics depends
on the trade-off between the potential profit of the knowledge of the traffic characteristics and
the complexity of determining the traffic characteristics.
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1 Introduction

Communication services such as electronic mail, file transfer, web browsing, online chat, IP
telephony and real-time video are frequently used in today’s life. These services (for both
corporate users and consumers) generate traffic streams consisting of small packets that have
to be transported via an underlying communication network. These traffic streams are highly
variable and unpredictable. The quality of a service, as experienced by a user, degrades when
packets are delayed or files are transmitted with a low throughput (average transmission rate).
In order to limit packet delays and low user throughputs caused by congestion in the network,
the link capacity in the communication network should be sufficiently large.

The objective of capacity management is to ensure that communication services are offered
with the required quality, while minimizing the costs. The challenge of capacity management
is that traffic continuously increases over time. The capacity of the network links should be
increased before the service degrades due to congestion. On the contrary, when the capacity
is expanded too early, this leads to unnecessary expenses.

We focus on the problem of dimensioning a link in a communication network which carries
data of both consumers and a small number of corporate users. The corporate users can have
an access rate that is much larger than that of the consumers. The traffic behavior of the
corporate users is not specified. If a company purchases a high access rate, the traffic of this
company can be the aggregate of many independent ‘small’ users (employees). Other types of
behavior are also possible for a corporate user, e.g. the full link can be used only for a small
fraction of the time when at the end of the day all data changes are transferred to update or
backup a system.

In this thesis we present a modelling approach to determine the required capacity of a link in
order to fulfill specific Quality of Service (QoS) levels in terms of delays and user throughputs.
In particular, the impact of the presence of corporate users on the required link capacity is
examined.

1.1 Outline of the thesis

This thesis starts with some background information on communication networks and mod-
elling techniques in Section 2. In Section 3 we describe the situation considered in this thesis
and translate it into a mathematical model. Two models are distinguished for the different
types of services, i.e. streaming and elastic services. Performance requirements and parame-
ters for the purpose of numerical evaluation are also stated in this section. The two models are
analyzed separately in Sections 4 and 5. The analyses consist of the stationary distributions of
the models, mathematical expressions for the performance requirements and the computation
of quantities needed to determine the performance. The last parts of these sections contain
numerical results. A comparison of the required capacities in the two models is presented in
Section 6, along with some practical recommendations for determining the required capacity
of a network link. Finally, the conclusions of this thesis are summarized in Section 7.
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2 Background

We present a more comprehensive description of communication networks in Section 2.1 and
in Section 2.2 we refer to some literature on modelling network traffic.

2.1 Communication networks

Communication services

A communication service generates traffic streams that have to be transported via an un-
derlying communication network. These traffic streams consist of small packets (datagrams).
Communication services can be divided into two categories: streaming and elastic services.

• Streaming services Examples of streaming services are real-time video and Voice over
IP (VoIP). The latter is used to transport voice via packet-switched networks such as the
internet and networks of operators. Streaming services generally have a real-time nature
and continuously generate traffic. Insufficient link capacities lead to loss and delays of
packets and cause degradation of the QoS. For streaming services it is important that
an individual packet is delivered within certain delay restrictions. An occasional packet
loss is typically allowed. Packets for streaming services are mostly transmitted using
UDP (User Datagram Protocol) [15].

• Elastic services Examples of elastic services are web browsing and file transfer. For
these services, users only notice the total transfer time of a file. As the sizes of files
vary (email, web pages, backup’s, mp3, movies), the average transfer rate of a file is
a more adequate performance measure than the transfer time. Elastic services adapt
their transmission rate to the level of congestion in the system while they are active.
The protocol used to control the transmission rate is called TCP (Transmission Control
Protocol) [16, 20].

Multiplexing

In a communication network the network operator does not have to provide the sum of all
access rates due to so-called multiplexing gains in the core of the network. These gains arise
because a user with a certain access rate does not use this total rate continuously for several
reasons. The first reason is that he does not continuously use his computer during day and
night. The second is that during a session, he is not always sending or receiving data. For
example when he is using his computer for web browsing, data has to be transferred only
when he clicks to load a new page and not when he reads a loaded page. The third reason is
that not all applications use the full access rate.
For a network it suffices to provide less capacity than the sum of all access rates as active
users fill the gaps of inactive users. This phenomenon is called multiplexing.

In practice multiplexing works as follows: each home has a DSL (Digital Subscriber Line)
link to the DSLAM (DSL Access Multiplexer) and the DSLAM aggregates these data flows
onto a single link with a high rate. After the DSLAM, the data is transferred over a link
with a higher rate. For the moments that the amount of offered traffic briefly exceeds the link
capacity, a buffer is used at the DSLAM to handle the excess of input data.
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Quality of Service

The quality of a communication service is determined by user experience, which is a subjec-
tive measure. Moreover, the QoS (Quality of Service) requirement differs per service. For
example, for email a user does not notice a few seconds delay of an individual packet, but
only the total transfer time of a file. For VoIP however, a small delay already degrades the
quality of the call, but an occasional packet loss is not noticed. For streaming video services,
packet loss is annoying, as the loss of a single packet causes blocks in the images.

The two categories of communication services (streaming and elastic) basically have their own
QoS requirements, e.g. see [17]. A typical performance measure used to describe the QoS of
streaming (real-time) services formally is the fraction of packets with a large delay. For elastic
services a typical performance measure is the fraction of files with a low throughput (average
transfer rate).

A QoS requirement (performance requirement) states what fraction of traffic should be trans-
ferred with a sufficiently high performance. When traffic is transferred with this performance,
the user does not notice QoS degradation. For streaming services the QoS requirement will
state that a high fraction of packets is required to have a delay not exceeding a certain thresh-
old. When the delay exceeds this threshold, the package is handled as if it is lost. For elastic
services, a high fraction of the files is required to have a high throughput.

The communication network should have sufficient resources to offer the communication ser-
vices with the required Quality of Service.

Capacity management

The objective of capacity management is to ensure that sufficient resources are available to
handle the offered traffic, such that the required levels of Quality of Service (QoS) are sat-
isfied. In terms of the performance measures mentioned above, this means determining the
required capacity of a network link to fulfill the performance requirement.

Figure 1: Connection between the three components of capacity management.

In Figure 1 the relation between the traffic, the QoS requirement and the link capacity is
shown. Once two out of the three quantities are chosen, the third quantity can be determined.

The challenge of capacity management is that the amount of traffic continuously grows over
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time and the traffic behavior varies with the introduction of new highly-demanding services
and continuously increasing access rates. The capacity of the network links should be in-
creased before the service level degrades due to traffic congestion. On the contrary when the
capacity is expanded too early this leads to unnecessary expense.

An example of a study for the dimensioning of a network link is performed by Fraleigh in
his PhD thesis [7]. He studied the dimensioning for highly aggregated network links with a
focus on delay-sensitive applications (streaming services). Another dimensioning approach
is performed by Bonald, Olivier and Roberts [3]. They concentrate on data traffic at the
flow-level and dimension the network link such that the throughput rates of TCP-connections
remain above a certain threshold (for elastic traffic).

Service differentiation

Because of the diverse QoS requirements, one option is to handle packets from different
services with different priorities. The packets for time-sensitive applications get a higher
priority than packets from applications for which a little delay is allowed. An advantage is
that the required bandwidth is smaller, because packets from services with a lower QoS can
wait for a short period when there is no capacity left. A disadvantage is that the network
complexity increases. Another option is to handle all packets equally within the requirements
of the highest demanding service. This requires more bandwidth (overprovisioning), but the
network operation is simpler, see e.g. [8].

Traffic measurements

Because of the growing use of internet services, we have to monitor the performance of the
services. In practice, it is not possible to measure the direct perceived QoS. Instead we moni-
tor the traffic load on the network links to get an indication for the performance of the services.

The traffic load can be measured at different time scales. Users already experience QoS degra-
dation on a very small time scale, e.g. seconds for file transfers or web browsing and even less
for interactive, real-time applications. But measuring the traffic on this time scale puts too
much load on the network. An often used time scale for the measurements is 5 minutes. The
workload that is used for determining the required capacity of the network link is the average
workload in 5 minutes in the busiest hour of the day. With these 5-minute measurements we
observe how the average traffic load grows in time, but actually we are interested in the tail
of the traffic distribution, because data will be delayed when the amount of traffic exceeds
a certain level. So we need to translate the 5-minute measurements into the traffic load on
a shorter time scale. We need modelling to determine the required capacity to fulfill the
performance requirements.
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2.2 Modelling techniques

Modelling of network traffic

Large aggregates of internet traffic are often modelled as Gaussian traffic, which means that
the amount of traffic in a period [0, t] is a Gaussian process. An argument for this is provided
by the Central Limit Theorem ([12], chapter 3). The assumption of Gaussian traffic is that
the traffic on a link is the superposition of the traffic of many independent users. In [13] the
Gaussianity of network traffic is examined.

In [2] a formula is derived for the required bandwidth as a function of the traffic load when the
traffic distribution is Gaussian, i.e. under the assumption that the aggregate traffic originates
from a large number of independent users. In this thesis the aggregates are not large enough
to assume Gaussianity, so we cannot use the formula derived in [2].

If only a small number of users share a link, the traffic can be modelled as a superposition of
ON-OFF sources. A user either is active and data is transmitted at a certain rate (ON) or
the user is inactive, i.e. no data is transmitted (OFF).

Another option is to model the arrival process as a Compound Poisson process. Then requests
for amounts of data arrive following a Poisson process. The difference in the interpretation of
an ON-OFF arrival process and a Compound Poisson process is that with ON-OFF sources,
we have a fixed pool of sources that alternate between being active or inactive. With a
Compound Poisson process however, the active sources are not necessarily from a fixed pool
of sources. In that case, it is possible to have a lot more sources which are all active less often
than with ON-OFF sources. The arrival process cannot be modelled as a Compound Poisson
process when the network consists of only a few traffic sources.
A second difference between an ON-OFF arrival process and a Compound Poisson process is
that with a Compound Poisson process requests for amounts of data arrive instantaneously,
while with an ON-OFF process they arrive gradually at a certain rate.

Markov fluid modelling

Standard Markov fluid queues consist of traffic sources feeding into a queue with a constant
output rate. The sources are for instance of the ON-OFF type: they alternate between active
and inactive periods. An overview of Markov fluid-models is presented in [9].

Streaming traffic flows into the buffer at a constant rate during a session. If the total input
rate can exceed the constant output rate of the queue, every now and then the buffer of the
queue fills. When the system is stable, the buffer content has a steady-state distribution.
One of the first papers that contains a detailed performance analysis of the buffer content
for statistically independent exponential ON-OFF sources is the paper of Anick, Mitra and
Sondhi [1]. These results have been extended in many directions. In [14] for example, sources
with a more general structure than exponential ON-OFF are considered.

Elastic traffic is transferred at a rate adjusted to the level of congestion in the network.
Processor-sharing disciplines are used to share the capacity of the output link.
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Processor-sharing disciplines

Under the processor-sharing discipline, all active flows are assumed to be processed simulta-
neously, each receiving a share of the server capacity. The Egalitarian PS (EPS) discipline is
a basic model in which the capacity of the resource is assumed to be shared equally between
all the users in the system. One of the main limitations of the EPS model is that it does
not apply to heterogeneous systems, where flows may receive different service shares. A more
abstract generalization of PS with a state-dependent service rate is the Generalized Proces-
sor Sharing (GPS) model as considered by Cohen [5]. In this model the total service rate
is an arbitrary positive function of the total number of users in the system. As in the EPS
discipline, all users receive an equal share of the total service rate. A model that allows for
unequal sharing is Discriminatory Processor Sharing (DPS), where flows of different classes
receive service at different rates. An analysis of the mean sojourn time conditioned on the
service requirement in the M/G/1 queue with a DPS discipline is performed in [6].
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3 The model

In this chapter we describe the situation we consider in this thesis in Section 3.1 and translate
it into a mathematical model. We describe the properties of this model in Sections 3.2 to 3.5.
In Section 3.6 we mention some reasonable values for parameters which can be used for the
purpose of numerical evaluation.

3.1 Problem context

The goal of this thesis is to dimension a network link used by consumers together with one
or two corporate users with an access rate significantly higher than the access rates of the
consumers. The communication services of the users are either streaming or elastic services.
In the first situation the packets generated by the service are transferred at a constant rate
when the user is active. In the second situation the transmission rates are adapted to the
level of congestion.

Traffic streams are aggregated by the network router using multiplexing (see Section 2.1). The
rate (capacity) of the output link of the network router is higher than the rate of each single
input link, but substantially smaller than the sum of all input rates. The required capacity
of the output link depends on the traffic characteristics and the QoS requirements.

The traffic characteristics of a corporate user are not known. The traffic generated by a com-
pany can be the sum of the data traffic of the employees, but another possibility is that from
time to time a large amount of data has to be transferred to the main office to update the
system. In the first situation the traffic is handled as if it originates from many consumers.
In the second situation we need to consider a different type of user with a larger access rate
and longer interarrival and transmission times.

We want to be able to compare the required capacity in the two situations described above.
To determine the required link capacity to satisfy the required Quality of Service we translate
the situation described in this section into a mathematical model in the following sections.

3.2 Source behavior

We have two classes of sources representing two types of users (corporate users and con-
sumers). In the case that the traffic of a corporate user is just the sum of the data traffic
of the employees, the required capacity can be determined by only considering consumers, so
then the number of corporate users is zero. In the model we assume that a corporate user
transmits large files from time to time. The access rates of the corporate users are significantly
higher than the access rates of the consumers. Therefore, we call the sources representing the
corporate users the high-rate sources and the sources representing the consumers the low-rate
sources. Define NL as the number of low-rate sources and NH as the number of high-rate
sources. We consider a network with one or two corporate users, so NH ≤ 2. The model with
NL = N and NH = 1 is illustrated in Figure 2.

We use fluid-modelling (see Section 2.2) and model the arrival pattern as an ON-OFF pro-
cess, which means that all sources alternate independently between the ON and OFF state.
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Figure 2: Model with 1 high-rate source and N low-rate sources.

We assume that the durations of the OFF periods are exponentially distributed. The rate
at which a low-rate source turns on is λL and the rate for a high-rate source is λH . The
durations of the ON periods are the transfer times of the files.

The file sizes are exponentially distributed, with mean file sizes f−1
L and f−1

H for the files
originating from the low-rate and high-rate sources, respectively. The rate at which sources
are allowed to transmit data can depend on the number of active sources. A low-rate source
(high-rate source) can transmit data at rate RL(i, j) (RH(i, j)) when i low-rate sources and
j high-rate sources are active. The maximum rate at which data can be transmitted is the
access rate of a source, which is denoted by rL and rH for the low-rate and the high-rate
sources respectively.

All data is transmitted to a data-handling switch, which models the network router or switch.
The rate (or capacity) of the output link of the switch is c. We vary the way the switch
handles data originating from the low-rate and high-rate sources. When the total input rate
into the buffer is in excess of the maximum transmission rate c, data is buffered in a single
buffer or in separate buffers for each traffic class.
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3.3 Models for streaming and elastic traffic

In this thesis two models are distinguished for the different types of services (streaming and
elastic services). The way the data is generated and handled depends on the type of service.

3.3.1 The streaming model

Streaming services, such as VoIP and video generate data continuously. We assume that all
sources transmit data at their access rates (rL for the low-rate sources and rH for the high-rate
sources) and the data is served in order of arrival. In case of congestion data can be stored
in a buffer. The switch can differentiate the treatment of the traffic of different classes, by
handling traffic from a class with priority. In this case data of different classes is stored in
separate buffers. If data of the high-rate source has strict priority over data of the low-rate
source, the maximal output rate of the high-rate buffer is c and the output rate of the low-rate
buffer is the remaining capacity.

The durations of the ON periods do not depend on the state of the system in the streaming
model, so the distribution of the duration of an ON period of the sources is known. The
durations of the active periods are exponentially distributed with rates rLfL and rHfH for
the low-rate and high-rate sources respectively.

3.3.2 The elastic model

For data originating from elastic services, e.g. web browsing or file transfer, typically only the
transfer time of the entire file matters. In the elastic model the output rate of the switch
is shared between all sources and the sources are allowed to send data to the switch at that
rate. In this way all data that arrives at the switch can immediately depart from the switch,
so we do not need a buffer in the model in this situation. The data-handling discipline for the
elastic model is Discriminatory Processor Sharing (DPS), which means that the capacity is
shared between all active sources, but some sources receive a larger part of the capacity than
other sources (see Section 2.2). The maximum rate at which data is transmitted while the
source is active is rL for the low-rate sources and rH for the high-rate sources. Suppose that i
low-rate sources and j high-rate sources are active at a certain moment. When irL + jrH ≤ c,
all sources can transmit at their maximum transmission rate, but when irL + jrH > c, the
capacity has to be shared between the sources, and the transmission rates for the low-rate
and high-rate sources become RL(i, j) and RH(i, j) respectively. We can vary the way the
low-rate and high-rate sources are handled with the choice of RL(i, j) and RH(i, j). A few
options are given:

• All sources receive a rate that is proportional to their access rate. Then the transmission
rates are

RL(i, j) = min
(
rL,

rL
irL + jrH

c

)
, (1)

RH(i, j) = min
(
rH ,

rH
irL + jrH

c

)
. (2)
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• Data of the high-rate sources has strict priority over data of the low-rate sources. Then
the high-rate sources send their data at rate rH or share the capacity when the number
of active high-rate sources exceeds cr−1

H . The low-rate sources share the remaining
capacity (which can be 0). In this case

RH(i, j) = min(rH ,
1
j
c), (3)

RL(i, j) = min(rL,
1
i
(c− jRH(i, j)))

= min(rL,
1
i
(c− jrH)+). (4)

Where in the streaming model a buffer was used to deal with an excess of incoming data
to the switch, in the elastic model an excess of incoming data is handled by decreasing the
transmission rate of the sources. Hence in this case the duration of the ON period of a source
depends on the number of sources in the system. As a consequence less data is transferred,
because the durations of the OFF periods are unchanged. This is a realistic assumption,
because for example a user who has to wait till his internet page is loaded still needs the same
time to read the page.

3.4 Stability conditions

We assume that the system is stable. For the streaming model, we therefore have the following
stability condition:

ρ := ρL + ρH < c, (5)

where ρH and ρL represent the workload (the mean instantaneous total rate) of the high-rate
and low-rate sources respectively. With ON-OFF sources this workload is given by:

ρL =
NLλL rL
λL + rLfL

ρH =
NHλH rH
λH + rHfH

. (6)

The elastic model with ON-OFF values is always stable, because in that model the sources
alternate slower when the server is very busy.

3.5 Performance requirements

The performance requirements that we use should guarantee that the performance of a com-
munication service is satisfactory (see Section 2.1). However, there is no rule that prescribes
which performance criterion should be used for which situation. We use the following perfor-
mance criterions.

• For streaming services it is important that every individual packet is delivered on time.
When a delay of d seconds does not cause a serious QoS degradation, but a higher delay
does, the delay of most of the packets should not exceed d seconds. The performance
requirement is then

P(D > d) < ε, (7)
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where D is the delay of a packet and ε is small. This performance requirement will be
used for the low-rate sources and high-rate sources with dL, εL and dH , εH denoting the
particular delays and probability thresholds respectively.
The delay of a packet depends on the buffer content at the moment the packet arrives.
With a joint buffer for all traffic, the delay of a packet exceeds d when the buffer content
exceeds dc. If two separate buffers are used for high-rate and low-rate traffic, the delay of
a low-rate packet also depends on whether the high-rate source is active or not, because
in that case the output rate of the low-rate buffer alternates.

• For elastic services it is important that the total file transmission does not take too long.
Assume that the transmission time is still short enough when the average transmission
rate is α times the access rate (r), but that the transmission takes too long when the
average transmission rate is less than αr. Then the performance requirement is

P(T < αr) < ε, (8)

where T is the throughput (average transmission rate) of a file and ε is small. Let
αL, rL, εL and αH , rH , εH denote the respective values for the low-rate and high-rate
sources respectively.

3.6 Parameters for numerical evaluation

We present numerical values for the parameters of the model, which are used to obtain nu-
merical results in Sections 4, 5 and 6. We consider the case that the corporate user is only
active for a relatively short time and sends a comparably large file during his active period.
The parameters are chosen as follows:

• The access rate of a high-rate source is 50Mb/s and the access rate of a low-rate source
is 5Mb/s, so rH = 50 and rL = 5.

• The file that the corporate user wants to transmit is 100 MB, so fH = 1/800 (note that
a Byte is 8 bits). The file size for the low-rate sources is 5MB, so fL = 1/40.

• The high-rate source is active 1% of the total time. We achieve this with λH = 1/(99·16)
We also consider the situation that the high-rate source is active 10% of the total time.
In this case λH = 1/144. A low-rate source is active 2/7 of the total time, so λL = 1/20.

• We consider a maximum of 70 low-rate sources and two high-rate sources, so NL =
0, . . . , 70 and NH = 0, 1, 2.

• At most 1% of the packets from a low-rate or high-rate source are allowed to have
a delay more than 0.02 s (for streaming services). That means dL = dH = 0.02 and
εL = εH = 0.01.

• At most 1% of the files for elastic services are allowed to have a throughput less than
0.8 times the access rate, so αL = αH = 0.8 and εL = εH = 0.01.

We now define three quantities that can be used as shorthand notations and describe some
traffic characteristics.
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• The first two quantities describe the fraction of time that a single source is active:

γL :=
λL

λL + rLfL
, γH :=

λH

λH + rHfH
.

Note that γH denotes the fraction of time a single high-rate source is active, so when
there are two high-rate sources, each high-rate source is active a fraction γH of the time.

• The third quantity is the fraction of traffic that is from a high-rate source, which is

ηH :=
ρH

ρ
,

with ρ and ρH as in Equations (5) and (6).

The parameter values defined in this section are summarized in Table 1.

Low-rate Source High-rate Source
NL 0, . . . , 70 NH 0, 1, 2
λL

1
20 λH

1
1584 ,

1
144

fL
1
40 fH

1
800

rL 5 rH 50
αL 0.8 αH 0.8
dL 0.02 dH 0.02
εL 0.01 εH 0.01
γL

2
7 γH 0.01, 0.1

Table 1: Parameters for numerical evaluation.
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4 Analysis of the streaming model

In this chapter we present an analysis of the streaming model. In the analysis of the model
we assume that the buffer has infinite capacity (or both buffers have infinite capacity). This
assumption provides a conservative approximation for the required capacity in order to ful-
fill the performance requirements. The reason is that no data is lost in the infinite-capacity
buffer, so the buffer content of an infinite-capacity buffer is always greater or equal to the
content of a finite-capacity buffer. The assumption of a buffer with infinite capacity provides
a good approximation for the content of a buffer with finite capacity when the buffer content
hardly ever exceeds the buffer capacity.

We calculate the joint distribution of the buffer content and the state of the system (the
number of active high-rate and low-rate sources) in Section 4.1. In Section 4.2 we derive
an expression for the performance measures we use to determine the required capacity and
in Section 4.3 we derive the distribution of the delay of a low-rate packet if high-rate data
has strict priority. In Section 4.4 an approximation based on time-scale decomposition is
described. Finally, we show numerical results for the streaming model in Section 4.5.

4.1 Stationary distribution

We calculate the joint distribution of the total buffer content and the number of active sources.
We assume that all data is handled equally such that we only have one buffer. However,
the total buffer content and the state in a system with strict priority for high-rate data is
identically distributed. We first consider the situation with only one high-rate source (NH = 1)
in Section 4.1.1 and then extend the results to the situation with multiple high-rate sources
in Section 4.1.2.

4.1.1 Stationary distribution with a single high-rate source

Consider the situation NH = 1, NL = N . We can represent the process as a Markov process
with a two-dimensional state space, representing the number of low-rate and high-rate sources
that are active. Define states (i, j), where i is the number of active low-rate sources, i =
0, . . . , N and j the number of active high-rate sources, j = 0, 1. The transition rates are
shown in Figure 3.

Figure 3: Transition rates.

The one-dimensional state space consists of 2N + 2 states, where states 0 to N denote the
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states in which the high-rate source is inactive ((0, 0) to (N, 0)) and states N + 1 to 2N + 1
are the states in which the high-rate source is active. In this way, the states are ordered
colexicographically. The generator matrix Q is as follows:

Q =
[
M− λHIN+1 λHIN+1

rHfHIN+1 M− rHfHIN+1

]
, (9)

where

M =


−NλL NλL

rLfL −((N − 1)λL + rLfL) (N − 1)λL

. . . . . . . . .
(N − 1)rLfL −(λL + (N − 1)rLfL) λL

NrLfL −NrLfL


and In represents the identity matrix of order n.

The diagonal matrix R lists the net input rates into the buffer (depending on the state of the
system):

R = diag{−c, rL − c, . . . , NrL − c, rH − c, rH + rL − c, . . . , rH +NrL − c}. (10)

Let Nt denote the state of the system at time t, Nt ∈ {0, . . . , 2N +1}, and Vt ∈ R+
0 the buffer

content at time t. The buffer content is a continuous measure, because we use fluid modelling
for the data. We define the stationary joint distribution of Nt and Vt as

Fn(x) = lim
t→∞

P(Nt = n, Vt ≤ x).

We can calculate Fn(x) as in [1]. With (zj ,ψj) an eigenvalue-eigenvector pair of R−1QT ,
j = 0, . . . , 2N + 1, the solution is

F(x) = F(∞) +
∑
zj<0

ajψj exp(zjx), (11)

where F(x) = (F0(x), . . . , F2N+1(x))T . The coefficients aj , j ∈ {i|zi < 0} in Expression (11)
can be obtained by using the boundary conditions Fn(0) = 0 for all states n for which Rnn > 0.
These conditions hold because the buffer cannot be empty when the system is in a state with
positive drift. Theorem 1 of [14] states that the number of negative eigenvalues is equal to the
number of positive diagonal elements of R. So the number of negative eigenvalues is equal to
the number of states with a positive drift. That means we have enough boundary conditions
to calculate the aj in Expression (11) uniquely.

When states exist for which the net input rate is zero, R has a 0 on the diagonal and R−1

does not exist. In [14] it is explained how to deal with this situation.

For F(∞) in Equation (11) we know that

Fn(∞) = lim
t→∞

P(Nt = n, Vt ≤ ∞) = lim
t→∞

P(Nt = n) = πn,
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where πn is the stationary probability distribution of the process being in state n. Observe
that π is the normalized eigenvector that corresponds to eigenvalue 0, because the equations
QTπ = 0 and R−1QTπ = 0 = 0 ·π are equivalent. According to the definitions of stationary
probabilities and eigenvectors, the former equation defines π to be the vector of stationary
probabilities and the latter equation defines π to be the eigenvector that corresponds to
eigenvalue 0. Moreover, the marginal numbers of active low-rate and high-rate sources are
binomially distributed and independent of each other, so the stationary probability for a state
n with nL low-rate and nH high-rate sources active is

πn = π(nL,nH) = b

(
nL;NL,

λL

λL + rLfL

)
b

(
nH ;NH ,

λH

λH + rHfH

)
,

where

b(n;N, p) =
(
N
n

)
pn(1− p)N−n.

The authors of [1] analyzed a birth-death process and therefore the generator matrix had a
tridiagonal form. In our process, we cannot only jump from n to n− 1 and n+ 1, but also to
n +N + 1 or n −N − 1. So now we lose the tridiagonal form of the generator matrix. The
consequence is that now we do not have an explicit form for the eigenvalues and eigenvectors,
so they can only be determined numerically.

The stationary marginal distribution of the buffer content follows from Expression (11) sum-
ming over all states. Define V as the buffer content at an arbitrary time instant. Then

P(V ≤ x) =
2N+1∑
n=0

Fn(x) = 1 +
∑
zj<0

aj1Tψj exp(zjx). (12)

If data of the high-rate source has strict priority over data of the low-rate source and rH < c,
the high-rate buffer remains empty and the content of the low-rate buffer is equal to the total
buffer content.

4.1.2 Stationary distribution with multiple high-rate sources

We can generalize the results of Section 4.1.1 to the situation with an arbitrary number of
high-rate sources (NH). The stationary distribution of the buffer content can be obtained in
the same way as for one high-rate source, but now Q exists of NH +1 by NH +1 sub-matrices
of size NL + 1. The (j, l)th sub-matrix of Q is given by

Q[j, l] :=


(NH − j)λHINL+1 if l = j + 1,
jrHfHINL+1 if l = j − 1
M−Q[j, j + 1]−Q[j, j − 1] if l = j,

0 otherwise,

(13)

in which
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M =


−NLλL NLλL

rLfL −((NL − 1)λL + rLfL) (NL − 1)λL

. . . . . . . . .
(NL − 1)rLfL −(λL + (NL − 1)rLfL) λL

NLrLfL −NLrLfL

 .
The diagonal matrix R is

R = diag{{−c, rL − c, . . . , NrL − c}, . . . , {NHrH − c,NHrH + rL − c, . . . , NHrH +NrL − c}}.

The rest of the analysis in Section 4.1.1 remains the same.

4.2 Performance requirements

We derive expressions for the performance measures for streaming services as defined in Sec-
tion 3.5 (Inequality (7)). Define

DL := Delay of a low-rate packet,
DH := Delay of a high-rate packet.

The performance requirements for low-rate and high-rate sources are respectively:

P(DL > dL) < εL, (14)
P(DH > dH) < εH . (15)

Below we express these performance requirements in formula-form, for the case that a joint
buffer is used in Section 4.2.1 and for the case that high-rate traffic has strict priority over
low-rate traffic in Section 4.2.2.

4.2.1 Joint buffer

With a joint buffer all packets are handled equally after they arrive at the buffer. A packet
that finds an amount of work B when it arrives at the buffer, has a delay of B/c seconds.
Define

VL := Buffer content as observed by a low-rate packet,
VH := Buffer content as observed by a high-rate packet.

The distributions of the buffer content as observed by a packet and the buffer content at an
arbitrary moment are generally not equal, because the former is a packet-average measure
and the latter is a time-average measure. Therefore, we have to translate the time-average
measure into a packet-average measure.

The Performance Requirements (14) and (15) are now given by:

P(DL > dL) = P(VL > dLc) =

∑
i,j(πi,j − Fi,j(dLc))RL(i, j)i∑

i,j πi,jRL(i, j)i
< εL, (16)
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and

P(DH > dH) = P(VH > dHc) =

∑
i,j(πi,j − Fi,j(dHc))RH(i, j)j∑

i,j πi,jRH(i, j)j
< εH , (17)

where Fi,j(x) = F(N+1)j+i(x). The numerator in Inequality (16) (Inequality (17)) is the
expected number of low-rate (high-rate) packets transmitted per second while the buffer
content exceeds dLc (dHc). So it is the expected number of packets with a delay of more
than dL (dH) seconds. The denominator is the total number of low-rate (high-rate) packets
transmitted per seconds. RL(i, j) (RH(i, j)) is the input rate of a low-rate (high-rate) source
into the buffer when i low-rate sources and j high-rate sources are active. Recall that in this
section we assume RL(i, j) = rL and RH(i, j) = rH for all i and j, thus Inequalities (16) and
(17) can be simplified to ∑

i,j

Fi,j(dLc)i > γLNL(1− εL), (18)

and ∑
i,j

Fi,j(dHc)j > γHNH(1− εH), (19)

which are the performance requirements for the low-rate and high-rate sources in the streaming
model with a joint buffer. Expressions (63) and (64) for the average packet delay in this case
are derived in Appendix A.

4.2.2 Strict priority for high-rate traffic

If traffic originating from the high-rate sources has strict priority over traffic originating from
the low-rate sources, we need two separate buffers. Observe that due to the assumption
c > rH the high-rate buffer is always empty when NH = 1. In this case the performance
of the high-rate source is always excellent. In the case that NH = 2 the high-rate buffer
can contain data when both high-rate sources are active at the same time. The performance
requirement for a high-rate source is then equal to the performance requirement of a high-rate
source with a joint buffer when no low-rate sources are present.

Although a packet from a low-rate source always has to wait for at least the service of the
total buffer content, which is distributed identically to the buffer content of a joint buffer,
the distributions of the delay of a low-rate source are generally not equal in both situations.
This is caused by the difference in the output rates of the low-rate buffer and the joint buffer
without priorities. The output rate of the low-rate buffer alternates between c − rH and c
when the high-rate source is active or inactive respectively. The output rate of the joint buffer
without priorities is constant c.

Define

DLP := Delay of a low-rate packet when high-rate traffic has strict priority,
DHP := Delay of a high-rate packet when high-rate traffic has strict priority,
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and
Gi,j(d) := lim

t→∞
P(DLP > d,Nt = (NL + 1)j + i). (20)

For the performance requirement for the low-rate sources in this situation we again need to
translate the time-average measure Gi,j(d) into a packet-average measure:

P(DLP > dL) =

∑
i,j Gi,j(dL)RL(i, j)i∑

i,j πi,jRL(i, j)i
< εL, (21)

The numerator in Inequality (21) is the expected number of packets per second of which the
delay exceeds dL. The denominator is the total number of low-rate packets transmitted per
second. We use RL(i, j) = rL for all i and j to simplify Inequality (21):∑

i,j

iGi,j(dL) < γLNLεL. (22)

This inequality is the performance requirement for a low-rate source in the streaming model
if traffic originating from high-rate sources has strict priority over traffic originating from
low-rate sources. The performance requirement for a high-rate source in this situation is:

P(DHP > dH) = P(DH > dH) < εH (23)

in a system where NL = 0.

4.3 Delay of a low-rate packet with strict priority for high-rate traffic

We calculate the joint probability that the delay of a low-rate packet exceeds dL seconds and
the state of the system is (i, j) when high-rate traffic has strict priority over low-rate traffic
and two separate buffers are used. The calculation in this section is for the situation with
only one high-rate source (NH = 1). For two high-rate sources only an expression for the
left-hand side of Inequality (22) is given and the calculation can be found in Appendix B.

Consider a system with only one high-rate source. The high-rate buffer is always empty,
because rH < c. The output rate of the low-rate buffer alternates between c − rH and c,
depending on whether the high-rate source is active or inactive. The state of the high-rate
source can change during the period that a low-rate packet is in the buffer. Theoretically,
the high-rate source can turn ON and OFF infinitely many times during the period that a
low-rate packet is in the buffer. However, with the parameters as in Table 1, the probability
that the state of the high-rate source changes two or more times is negligible. Therefore, we
assume that the state of the high-rate source can change at most once while a packet is in
the low-rate buffer.

The joint distribution of the buffer content and the state of the system is given by the cumu-
lative distribution function in Expression (11). The probability that the buffer content is less
than b and the state of the system is (i, j) is thus

Fi,j(b) = πi,j +
∑
zk<0

ak(ψk)(NL+1)j+i exp(zkb),
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and the probability density function is

fi,j(b) =
∑
zk<0

akzk(ψk)(NL+1)j+i exp(zkb). (24)

For the calculation of Gi,j(d) (see Definition (20)), we condition on the buffer content b at the
moment that a low-rate packet arrives at the buffer (when the state of the system is (i, j)).
For a given buffer content b, the probability that the delay of a low-rate packet exceeds d is
denoted by Gi,j(d|V = b).

The maximal output-rate of the low-rate buffer is c (when the high-rate source is inactive).
This implies that when b > cdL, the delay of the packet always exceeds dL seconds. On
the contrary, when b ≤ (c − rH)dL, the delay of the packet never exceeds dL seconds, even
when the high-rate source is active. When (c− rH)dL < b ≤ cdL, the exceedance probability
depends on the time that the high-rate source changes state.

First consider Gi,0(dL|V = b) and look at the moment that the high-rate source becomes
active, which is t seconds after the arrival of the low-rate packet at the buffer. The remaining
buffer content in front of that packet is then b − ct, so the total delay of that packet will be
t+(b−ct)/(c−rH). The delay exceeds dL when t < (b−(c−rH)dL)r−1

H , which has probability
1− exp(−λH(b− (c− rH)dL)r−1

H ), because the length of the OFF period of a high-rate source
is exponentially (λH) distributed. We have

Gi,0(dL)

=
∫ ∞

0
fi,0(b)Gi,0(dL|V = b)db

≈ πi,0 − Fi,0(cdL) +
∫ cdL

(c−rH)dL

fi,0(b)
(

1− exp
(
−λH

b− (c− rH)dL

rH

))
db

= πi,0 − (πi,0 +
∑
zk<0

ak(ψk)i exp(zkcdL))

+
∫ cdL

(c−rH)dL

∑
zk<0

akzk(ψk)i exp(zkb)
(

1− exp
(
−λH

b− (c− rH)dL

rH

))
db

= −
∑
zk<0

ak(ψk)i exp(zkcdL)

+
∑
zk<0

akzk(ψk)i

∫ cdL

(c−rH)dL

(
exp(zkb)− exp

(
zkb− λH

b− (c− rH)dL

rH

))
db

= −
∑
zk<0

ak(ψk)i exp(zkcdL) +
∑
zk<0

akzk(ψk)i

[ 1
zk

(exp(zkcdL)− exp(zk(c− rH)dL))

− 1
zk − λH

rH

(exp(zkcdL − λHdL)− exp(zk(c− rH)dL))
]

=
∑
zk<0

ak(ψk)i

[
λH

rHzk − λH
exp(zk(c− rH)dL)− rHzk

rHzk − λH
exp(zkcdL − λHdL)

]
.
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Next consider Gi,1(dL|V = b) and look at the moment that the high-rate source becomes
inactive, which is t seconds after the arrival of the low-rate packet at the buffer. The remaining
buffer content in front of that packet is then b−(c−rH)t, so the total delay of that packet will
be t+ (b− (c− rH)t)c−1. The delay exceeds dL when t > (cdL− b)r−1

H , which has probability
exp (fH(b− cdL)), because the length of the ON period of a high-rate source is exponentially
(rHfH) distributed. We have

Gi,1(dL)

=
∫ ∞

0
fi,1(b)Gi,1(dL|V = b)

≈ πi,1 − Fi,1(cdL) +
∫ cdL

(c−rH)dL

fi,1(b) exp (fH(b− cdL)) db

= πi,1 − (πi,1 +
∑
zk<0

ak(ψk)NL+1+i exp(zkcdL))

+
∫ cdL

(c−rH)dL

∑
zk<0

akzk(ψk)NL+1+i exp(zkb+ fH(b− cdL))db

= −
∑
zk<0

ak(ψk)NL+1+i exp(zkcdL)

+
∑
zk<0

akzk(ψk)NL+1+i
1

zk + fH
(exp(zkcdL)− exp(zk(c− rH)dL − rHfHdL))

= −
∑
zk<0

ak(ψk)NL+1+i

[
fH

zk + fH
exp(zkcdL) +

zk
zk + fH

exp(zk(c− rH)dL − rHfHdL)
]
.

The left-hand side of Inequality (22) can now be computed:

∑
i,j

iGi,j(dL)

=
∑
zk<0

ak

[∑
i

i(ψk)i

(
λH

rHzk − λH
exp(zk(c− rH)dL)− rHzk

rHzk − λH
exp(zkcdL − λHdL)

)

−
∑

i

i(ψk)NL+1+i

(
fH

zk + fH
exp(zkcdL) +

zk
zk + fH

exp(zk(c− rH)dL − rHfHdL)
)]

.
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For NH = 2 the calculation of the left-hand side of Inequality (22) can be found in Appendix
B and the result is:

∑
i,j

iGi,j(dL)

=
∑
zk<0

ak

[∑
i

i(ψk)i

(
2λH

rHzk − 2λH
exp(zk(c− rH)dL)

− rHzk
rHzk − 2λH

exp(zkcdL − 2λHdL)

)
−
∑

i

i(ψk)NL+1+i

(
fH

zk + fH
exp(zkcdL)

+
zk

zk + fH
exp(zk(c− rH)dL − rHfHdL)− exp(zk(c− rH)dL)

− λH

rHzk − λH
exp(zk(c− 2rH)dL) +

rHzk
rHzk − λH

exp(zk(c− rH)dL − λHdL)

)

−
∑

i

i(ψk)2(NL+1)+i

(
2fH

zk + 2fH
exp(zk(c− rH)dL)

+
zk

zk + 2fH
exp(zk(c− 2rH)dL − 2rHfHdL)

)]
.

4.4 Approximations based on time-scale decomposition

If the ON and OFF periods of the high-rate source are very long compared to the ON and
OFF periods of the low-rate sources, the high-rate source alternates much slower than the
low-rate sources and the buffer content in the streaming model can almost reach a stationary
distribution when the high-rate source is active or inactive. To reach this situation we assume
that

λL � λH , rLfL � rHfH . (25)

This situation can be analyzed using time-scale decomposition, because the low-rate and high-
rate sources alternate at a different time-scale. In this section we assume that there is only
one high-rate source. The approximation that we introduce consists of two parts, for two
separate regimes.

• Regime I is for the situation rH + ρL ≥ c (Section 4.4.2). In this case the drift for the
buffer is positive when the high-rate source is active and negative when the high-rate
source is inactive. We approximate the input of the low-rate sources with their mean in
this regime.

• Regime II is for the situation rH + ρL < c (Section 4.4.3). Then the mean input rate
is always less than the capacity, even when the high-rate source is active. However,
the mean input rate is much higher when the high-rate source is active than when
it is inactive. In this regime we use a quasi-stationary approximation, in which the
stationary distribution is a combination of the stationary distributions of the system
where the high-rate source is active or inactive respectively.
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4.4.1 Two equivalent models

In this section we consider two equivalent manners to model the sources and the switch for the
situation with NH = 1. Further, assume that the rate at which the high-rate source transmits
data is less than the total service rate, i.e. rH < c.

• The first manner is that we consider a model in which NL sources are of the same type
and one source is of a different type. In this system, the service rate (the rate at which
data can stream out of the buffer) is constant c. This manner is used in Section 4.4.2.

• The second manner models only the NL low-rate sources, but now the service rate is
time-varying. In this model, rH is subtracted from the total service rate c when the
high-rate source is active. So now we have an alternating service rate, which is c when
the high-rate source is inactive and c − rH when the high-rate source is active. This
manner is used in Section 4.4.3.

These two models are the same in the sense that they result in the same distribution for the
total buffer content. This is because in the first model, the service rate is constant, but when
the high-rate source is active, rH Mb/s is needed to serve the data from this source. So the
remaining service rate is the same as in the second model.

4.4.2 Regime I: approximation low-rate sources
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Figure 4: Sample-path of the buffer content in Regime I.

This regime covers the situation where rH + ρL > c. When the high-rate source is active, the
drift is positive, so the buffer content is expected to increase. When the high-rate source is
inactive, the drift is negative, because then the mean rate of traffic that arrives is ρL < c,
according to the stability condition stated in Equation (5). To fulfill Assumption (25), we fix
λH and fH and let λL and fL tend to infinity with γL (as defined in Section 3.6) fixed.

The rate at which the buffer content increases or decreases is not constant during an active
or inactive period of the high-rate source, because the low-rate sources are alternating (see
the solid line in Figure 4). However, because we assume that the low-rate sources alter-
nate considerably faster than the high-rate source, we approximate the rate at which data of
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the low-rate sources flows into the buffer with the average rate ρL (the dashed line in Figure 4).

This approximate model can be explicitly analyzed as in [1] with a single ON-OFF source
(the high-rate source). This source has an exponentially (λH) distributed OFF period, an
exponentially (rHfH) distributed ON period, transmission rate of the source rH and maximum
output rate ĉ := c− ρL. We know that rH > c− ρL = ĉ, according to the regime we examine.
This means that when the high-rate source is ON, the buffer content grows. The stationary
distribution of the state of the source and the buffer content in this case is denoted with FH .

FH(x) = FH(∞) +
∑
zj<0

ajψj exp(zjx), (26)

where (zj ,ψj) is an eigenvalue-eigenvector pair of R−1QT , j = 0, 1.
Let πH denote the stationary distribution of the number of active high-rate sources (0 or 1):

πH := FH(∞) =
[
1− γH

γH

]
.

Next we compute the eigenvalues of R−1QT .

Q =
[
−λH λH

rHfH −rHfH

]
and R =

[
−ĉ 0
0 rH − ĉ

]
, so

R−1QT =
−1

ĉ(rH − ĉ)

[
rH − ĉ 0

0 −ĉ

] [
−λH rHfH

λH −rHfH

]
=

[
λH
ĉ − rHfH

ĉ
λH

rH−ĉ − rHfH
rH−ĉ

]
.

The eigenvalues of R−1QT are the roots of the characteristic equation det
(
R−1QT − zI

)
= 0.

So

0 = det
(
R−1QT − zI

)
= z2 −

(
λH

ĉ
− rHfH

rH − ĉ

)
z − λHrHfH

ĉ(rH − ĉ)
+
λHrHfH

ĉ(rH − ĉ)

= z

(
z −

(
λH

ĉ
− rHfH

rH − ĉ

))
.

We conclude that the eigenvalues are z0 = λH
ĉ − rHfH

rH−ĉ and z1 = 0. According to Expressions
(5) and (6), the stability condition in this regime is γHrH < c − ρL = ĉ, which implies
λH
ĉ − rHfH

rH−ĉ < 0. So z0 is the only contributor to the sum in Expression (26). The eigenvector
with eigenvalue z0 is

ψ0 =
[

rH−ĉ
ĉ
1

]
.

Now Equation (26) becomes

FH(x) =
[
1− γH

γH

]
+ a0

[
rH−ĉ

ĉ
1

]
exp

{(
λH

ĉ
− rHfH

rH − ĉ

)
x

}
.
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The constant a0 can be found from the boundary condition F1(0) = 0, because in state 1, the
drift is upwards and the buffer cannot be empty. This gives a0 = −γH , so the solution of the
simplified problem is

FH(x) =
[
1− γH

γH

]
− γH

[
rH−ĉ

ĉ
1

]
exp

{(
λH

ĉ
− rHfH

rH − ĉ

)
x

}
.

Further, we get the following approximation for the buffer content distribution:

P(V ≤ x) ≈ FH
0 (x) + FH

1 (x) = 1− γHrH
ĉ

exp
{(

λH

ĉ
− rHfH

rH − ĉ

)
x

}
. (27)

Note that with this approximation, we have

P(V > x|V > 0) ≈ exp
{(

λH

ĉ
− rHfH

rH − ĉ

)
x

}
.

So the distribution of the buffer content, conditioned on the buffer being non-empty, is ap-
proximated with an exponential distribution. This is explained by the exponential duration
of the ON periods of the high-rate source.

In this approximation, an underlying assumption is that the buffer content does not depend
on the number of active low-rate sources in the system. Therefore, to get an approximation
for the joint distribution of the state of the system and the buffer content, we just have to
multiply the probability that a certain number of low-rate sources are active with the right
entry of FH(x). Let F̂(x) denote the approximate joint distribution of the state of the system
and the buffer content. Then for state n = (nL, nH), we have:

F̂n(x) =
(
NL

nL

)
(γL)nL (1− γL)NL−nL FH

nH
(x). (28)

We now show that the approximate distribution of the buffer content (Expression (27)) equals
the limit of the exact distribution (Expression (12)) in the following way:

lim
λL→∞,fL→∞

γLconstant

P(V ≤ x) = 1− γHrH
ĉ

exp
{(

λH

ĉ
− rHfH

rH − ĉ

)
x

}
. (29)

Equation (29) implies that for λL →∞ and fL →∞ while γL remains constant, the contribu-
tion of the eigenvalues in the summation in Expression (12) becomes negligible, except for the
dominant eigenvalue (the largest eigenvalue that is less than zero). The numerical evaluation
shown in Figure 5 suggests that this dominant eigenvalue converges to λH

c−ρL
− rHfH

rH−(c−ρL) when
λL → ∞ and γL is kept constant. For this figure, we used the parameters as listed in Table
1 with NL = 25, NH = 1, γH = 0.01 and c = 82.

The rate of convergence of the dominant eigenvalue depends on the parameter values. When
c is small (but larger than ρL + ρH for stability reasons), the numerical results indicate that
the convergence is fast. When c is close to rH + ρL, the convergence is slow.
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Figure 5: Convergence of the dominant eigenvalue. The solid line is the dominant eigenvalue
for the exact distribution. The dashed line is λH

c−ρL
− rHfH

rH−(c−ρL) .

4.4.3 Regime II: a quasi-stationary approximation

Regime II covers the situation where rH + ρL < c. Here, when the high-rate source is active,
the rate at which data arrives at the switch is still on average less than the capacity c. This
means that the buffer content does not grow very large, as can be seen in Figure 6.
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Figure 6: Sample-path of the buffer content in Regime II.

We use the equivalence between an extra high-rate source or an alternating service rate, as
described in Section 4.4.1. Until now, we used the first point of view, but now we switch to
the second (equivalent) manner to model the system. Hence we only consider data originating
from the low-rate sources, but with an alternating service rate. The service rate alternates
between c− rH when the high-rate source is ON and c when the high-rate source is OFF.
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To fulfill Assumption (25) we now fix λL and fL and let λH and fH decrease to 0 with γH

fixed. In the limit situation, the high-rate source cannot turn ON or OFF any more. So if the
high-rate source alternates slow enough compared to the low-rate sources, we can approxi-
mate the buffer content conditioned on the high-rate source being ON or OFF with the buffer
content when the high-rate source is always ON or OFF. Both cases can be explicitly analyzed
separately with the theory of [1]. We describe how to compute the conditional distribution of
the buffer content when the high-rate source is always inactive (service rate c).

The conditional distribution of the buffer content when the high-rate source is always OFF
is:

P(V ≤ x|H always OFF) = 1 +

NL−b c
rL
c−1∑

j=0

aj1Tψj exp(zjx)

= 1 +

NL−b c
rL
c−1∑

j=0

ajΦj(1) exp(zjx),

and the conditional joint distribution of the state of the system and the buffer content is:

FOFF (x) = πL +

NL−b c
rL
c−1∑

j=0

ajψj exp(zjx)

where:

• zNL−b c
rL
c−1 < · · · < z1 < z0 < 0 are the negative eigenvalues of R−1QT and ψj the

corresponding eigenvectors, j = 0, . . . , NL − b c
rL
c − 1. The matrix Q is the generator

matrix and R is the matrix containing the net rates at which data flows into the buffer.
These matrices are as follows:

Q =


−NLλL NLλL

rLfL −((NL − 1)λL + rLfL) (NL − 1)λL

. . . . . . . . .
(NL − 1)rLfL −(λL + (NL − 1)rLfL) λL

NLrLfL −NLrLfL


and R = diag{−c, rL − c, 2rL − c, . . . , NLrL − c}.

• aj = −γNL
L

∏NL−b c
rL
c−1

i=0,i6=j
zi

zi−zj
, 0 ≤ j ≤ NL − b c

rL
c − 1.

• Φj(x) is the generating function of the jth eigenvector, i.e.

Φj(x) =
NL∑
i=0

(ψj)ix
i.

The value of Φj(1) can be determined without explicitly calculating the eigenvectors [1].
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• πL is the stationary distribution of the number of active low-rate sources, which is bi-
nomially distributed.

The distribution of the buffer content, conditioned on the high-rate source to be always ON
can be found analogously when replacing c by c− rH . The same holds for FON(x), the joint
distribution of the state of the system and the buffer content, conditioned on the high-rate
source being active. Further, the stationary probability that the high-rate source is OFF is
1− γH and that the high-rate source is ON is γH .

An approximation for the unconditional distribution of the buffer content in this case is

P(V ≤ x) ≈ (1− γH)P(V ≤ x|H always OFF) + γHP(V ≤ x|H always ON). (30)

This is the distribution of the total buffer content and also the distribution of the buffer con-
tent of the low-rate buffer in case data of the high-rate source has strict priority over the data
of the low-rate source. In the latter situation, the high-rate buffer remains empty, because in
this regime rH < rH + ρL < c.

The approximation for the joint distribution of the state of the system and the buffer content
is F̂(x), which is for state n = (nL, nH):

F̂n(x) = (1− nH)(1− γH)FOFF
nL

(x) + nHγHF
ON
nL

(x). (31)

As for regime I, the exact distribution of the buffer content (Expression (12)) should converge
to the approximate distribution (Expression (30)) when Assumption (25) is fulfilled. In the
quasi-stationary approximation for regime II, this means

lim
λH→0,fH→0
γH constant

P(V ≤ x) = (1− γH)P(V ≤ x|H always OFF)

+γHP(V ≤ x|H always ON) (32)

should hold.

We now give an outline of the proof for Equation (32). We take the limit λH → 0 and fH → 0
in Equation (12). In this distribution, λH and fH appear in the eigenvalues zj and eigenvec-
tors ψj of the matrix R−1QT , with Q and R as in Definitions (9) and (10). The eigenvalues
of a matrix are the roots of the characteristic polynomial. The roots of a polynomial are con-
tinuous functions of its coefficients ([10], p. 539), so the eigenvalues of a matrix are continuous
functions of the entries of that matrix. That means when we take the limit of a few entries
going to zero, the limits of the eigenvalues are the eigenvalues of the limit of the matrix. So
the eigenvalues of R−1QT when λH → 0 and fH → 0 are the eigenvalues of R−1QT after
taking the limit of the entries of this matrix.

In the limit, we have

Q →
[
M 0
0 M

]
and R =

[
D 0
0 rHINL+1 + D

]
,
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with M as on page 22 and D = diag{−c, rL − c, . . . , NLrL − c}.

The limit of R−1QT then consists of two submatrices with nonzero entries, i.e. D−1MT and
(rHINL+1 + D)−1MT . That means the set of eigenvalues of R−1QT is the union of the set of
eigenvalues of D−1MT and the set of eigenvalues of (rHINL+1 + D)−1MT . These two matri-
ces are exactly the matrices we used to find the eigenvalues for the distribution of the buffer
content in case that the high-rate source is always active or inactive. Hence the eigenvalues
used in the exact and approximate distribution of the buffer content are equal.

Above we proved that the left and right sides of Equation (32) both are linear combinations
of the same exponentials. Now it remains to prove that also the coefficients of these linear
combinations coincide. The details are not contained in this thesis.

4.4.4 Usefulness of the time-scale decomposition approximations

Next we discuss whether the approximations in Sections 4.4.2 and 4.4.3 are useful for our
model, with the parameters as in Table 1.

We distinguished between two regimes for the approximations based on time-scale decompo-
sition. Regime I presented an approximation for the buffer content when rH +ρL > c. In this
regime the buffer content starts to grow when the high-rate source becomes active, caused by
a positive drift in this regime. To satisfy the required QoS, the high-rate source is then only
allowed to be active for a really short time. But this contradicts Assumption (25), which we
need for the approximation to be accurate.

Most common in real life is the situation in regime II, where rH + ρL < c as described in
Section 4.4.3. In this regime, the high-rate source can be active for a very long time, because
there is no positive drift in this case. However, the active and inactive periods of the high-
rate source do not always satisfy Assumption (25). For example, if at the end of the day a
company transmits a large amount of data to the main office to update or backup the system,
the inactive period is large compared to the inactive periods of the low-rate sources, but the
active period is not long enough for the low-rate sources to reach stationarity.

4.5 Numerical results for the streaming model

The goal of the numerical study in this section is to examine whether the required capacity
depends on the kind of traffic in the system. With a given workload of the system, we want to
know whether the knowledge of the number of high-rate sources and the fraction of the time
these sources are active gives us important information in order to determine the required
capacity. We also present some rules-of-thumb to estimate the required capacity in several
situations.

In this section we present numerical results with the parameter values as listed in Table 1 in
Section 3.6 (unless mentioned otherwise). We determine both the required capacity to satisfy
the performance requirement for the low-rate sources and for the high-rate sources. These
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capacities are denoted with:

Notation Sources Service differentiation Performance requirement
cL low-rate no service differentiation (18)
cH high-rate no service differentiation (19)
cLP low-rate strict priority for high-rate sources (22)
cHP high-rate strict priority for high-rate sources (23)

To fulfill the performance requirements for all sources, the required capacity is max(cL, cH)
(or max(cLP , cHP )). When NH = 0 the capacities cH , cHP and cLP are not defined, so then
the required capacity is just cL.

Required capacity as function of the workload

In Figure 7 we present the required capacity as a function of the workload in the system. We
use the exact distribution of the buffer content as given in Expression (11). In the top figure
a high-rate source is active 1% of the time (γH = 0.01, λH = 1/1584) and in the lower figure
this is 10% of the time (γH = 0.1, λH = 1/144). The required capacity for a low-rate or
high-rate source can only be determined if at least one source of that kind is present in the
network. This explains the different starting values for ρ in the figure.

We observe that the required capacity for a high-rate source is higher than the required ca-
pacity for a low-rate source. This is because a high-rate source always experiences a busy
system.

For a particular workload, the required capacity depends on the number of high-rate sources.
This is because, although the average load is equal in all situations, the behavior is more
bursty when more high-rate sources are present. When the workload is low the dependence
of the required capacity on the number of high-rate sources is the largest, because then the
difference in the total transmission rate when the high-rate source is active or inactive is the
most extreme.
If a high-rate source is only active 1% of the time (as in the top diagram of Figure 7), only
a small amount of extra capacity is required for the low-rate sources in a system with two
high-rate sources, compared to a system with one high-rate source. This is because the frac-
tion of time that both high-rate sources are active at the same time, i.e. 0.01%, is negligible.
However, for the performance of a high-rate source holds that during its active period, on
average 1% of the time a second high-rate source is active. So the capacity required for the
high-rate source does increase when two high-rate sources are present in the network instead
of one.
If a high-rate source is active 10% of the time (as in the lower diagram of Figure 7), both cL and
cH increase significantly when two high-rate sources are present in the network instead of one.

Remarkable in Figure 7 is the difference between the shapes of the curves. In the top diagram,
the curves for {cL, NH = 0} and {cH , NH = 1} look like square-root functions, while the other
three curves have a different shape. We know that the required capacity as a function of the
workload on a link with a large number of identical users has a square-root behavior [2].
Below we analyze which sources we have to take into account when determining the required
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Figure 7: Required capacity depending on the workload in the system for streaming traffic.
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capacity in each curve when γH = 0.01:

• cL, NH = 0: The required capacity for a low-rate source. No high-rate sources are
present.

• cL, NH = 1: The required capacity for a low-rate source when 1% of the time a high-rate
source is active.

• cH , NH = 1: The required capacity for a high-rate source. Apart from this high-rate
source, only low-rate sources are present. The required capacity is approximately rH
plus the required capacity for a low-rate source with NH = 0.

• cL, NH = 2: The required capacity for a low-rate source when 1.98% of the time one
high-rate source is active and 0.01% of the time two high-rate sources are active. This
last percentage is negligible, because it is equal to εL/10.

• cH , NH = 2: The required capacity for a high-rate source. Another high-rate source
is active 1% of the time. The required capacity is approximately rH plus the required
capacity for a low-rate source with NH = 1.

With this information we can conclude that the capacity has a square-root behavior when we
only have low-rate sources to take into account. In the lower diagram of Figure 7 the curves
for {cL, NH = 1} and {cH , NH = 2} also look like square-root functions. In these cases, one
extra high-rate source is present (apart from the source for which the capacity is determined).
This high-rate source is active 10% of the time, which is 10 times εL. It follows that almost
the full access rate needs to be reserved for the high-rate source, because only a fraction εL
of the low-rate packets are allowed to have a large delay. The required capacity is then this
reserved rate plus the required capacity for the low-rate sources. The curve for {cL, NH = 2}
does not look like a square-root function, because when a low-rate source is active, 18% of the
time one high-rate source is active and also 1% of the time two high-rate sources are active.
Now the latter percentage is not negligible.

Trade-off between γH and εL

While inspecting Figure 7 we got the suspicion that the required capacity to satisfy a certain
QoS level strongly depends on the trade-off between the fraction of the time a high-rate source
is active and the fraction of data that can be delayed. Let us consider a network with one
high-rate source. In Figure 8 a sample path of the buffer content is drawn. The color of the
curve shows whether the high-rate source is active or not. During the red parts of the figure,
this source is active and during the blue parts it is inactive. A long delay is caused by a large
buffer content.

We consider the required capacity for a low-rate source (cL) and we distinguish between three
possible situations for the relation between γH and εL:

• γH � εL. In this case the high-rate source is only active for a very small fraction of
the time such that data from the low-rate sources is allowed to be delayed more than
dL seconds (almost) always when the high-rate source is active. A consequence is that
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Figure 8: Sample path of the buffer content.

the buffer content is allowed to exceed the level dLc when the high-rate source is active.
Then an approximation for the required capacity in this case is the required capacity
for the low-rate sources only. However, εL should be decreased, because of the delayed
data when the high-rate source is active. We use some formulas to explain this.

The performance requirement that we use is P(DL > dL) < εL, where DL is the delay
of a low-rate packet. We have

P(DL > dL) = P(DL > dL|H ON)γH + P(DL > dL|H OFF )(1− γH) (33)
≤ γH + P(DL > dL|H OFF )(1− γH).

If γH < εL and the parameter settings are as stated in Table 1 then P(DL > dL|H ON)
is close to 1, so the upper bound for P(DL > dL) is very tight. We approximate
P(DL > dL|H OFF ) with P(DL > dL|H always OFF ). The latter probability is less
than the former, which causes that the required capacity is a little higher than the
capacity obtained with the following approximate performance requirement:

P(DL > dL|H always OFF ) <
εL − γH

1− γH
.

An indication for the required capacity compared to the level of the buffer content such
that the delay of 100(1− εL)% of the data is less than dL seconds is given by level I in
Figure 8.

• γH > εL. In this case the fraction of low-rate traffic that is allowed to be delayed is
less than the fraction of time that the high-rate source is active. The buffer content
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exceeds the level dLc mainly when the high-rate source is active, which is illustrated by
level II in Figure 8. Therefore we assume that the buffer content only exceeds this level
when the high-rate source is active and we approximate the required capacity with the
capacity that is needed when the high-rate source is always active. However, a larger
fraction of packets is allowed to be delayed in this case, because then a fraction 1− γH

a the time the buffer content is below dLc. Again, we use Formula (33) to explain this.
Now we approximate P(DL > dL|H OFF ) with 0 and get

P(DL > dL) ≥ P(DL > dL|H ON)γH ,

which is a tight bound with the parameter settings as stated in Table 1. We approximate
P(DL > dL|H ON) with P(DL > dL|H always ON). Now the latter probability is
higher than the former, which causes that the required capacity is a little less than the
capacity obtained with the following performance requirement:

P(DL > dL|H always ON) <
εL
γH

.

• γH ≈ εL. In this situation the level dLc is situated somewhere between the levels in the
foregoing situations as illustrated by level III in Figure 8.
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Figure 9: Required capacity depending on the fraction of time the high-rate source is active
when εL = 0.05.

In Figure 9 the required capacity as a function of the workload is plotted for several values of
γH with εL = 0.05. The approximations introduced above are also plotted in this figure (the
dotted curves). In this figure, we can see that if γH ≈ εL, the required capacity as function
of the workload does not look like a square-root function, but if γH ≥ 5εL or γH ≤ εL/5,
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it does look like a square-root function. The explanation for this phenomenon comes from
[2], because the required capacity is determined by the low-rate sources in these cases (with
an adapted value for εL) and we reserve the full access-rate for the high-rate source if γH > 5εL.

As we can see in Figure 9, the approximation introduced above for the situation γH < εL is
a good approximation if γH < εL/5, especially for higher workloads. The approximation for
the situation γH > εL is immediately very good. An advantage of the latter approximation is
that the capacity obtained is an upper bound for the required capacity.

Although we analyzed the trade-off between γH and εL with NH = 1, we can also use these
results for the trade-off between γH and εH with NH = 2, because then a high-rate source
observes a system with (apart from itself) only one high-rate source.

Remarkable in Figure 9 is that the curve for γH = 0.25 crosses the curve for γH = 0.1.
The explanation is that the required capacity is not a monotonously increasing or decreasing
function of the fraction of traffic originating from a high-rate source (ηH), as can be seen in
Figure 10 and is explained in the next part of this section.

Required capacity as function of the fraction of traffic from high-rate sources

The top diagram of Figure 10 illustrates the required capacity for a varying number of high-
rate sources and the fraction of traffic that originates from the high-rate sources. The average
workload is kept at a constant value of 60 Mb/s. Hence when we have a system with the high-
rate sources sending a larger amount of data to the buffer, there are less low-rate sources.
In this figure, the red lines (corresponding to three high-rate sources) are drawn only for
illustration. The curves corresponding to one high-rate source end at ηH = 5/6, because one
high-rate source (with access rate 50) is not enough to reach ρ = 60.

First consider the required capacity for a low-rate source. If there are no high-rate sources at
all, the required capacity is a little less than 100, as can be seen in the top diagram of Figure
10 (zero traffic from high-rate sources). If only a small fraction of the total traffic originates
from the high-rate source(s), the required capacity increases rapidly. Then it reaches a max-
imum value and after that the capacity decreases. With two or three high-rate sources, we
see some inflection points. This is because if the high-rate sources are only active a very little
fraction of the time, the probability that two or more of them are active at the same time is
negligible. But if the high-rate sources are active more frequently, this probability grows and
becomes significant. With NH = 3, the same holds for 3 high-rate sources active at the same
time. The location of the inflection points can be explained by considering the probability
that multiple high-rate sources are active as is displayed in the second diagram of Figure 10.
The inflection points in the top diagram are located approximately at the point where this
probability is εL.

The fact that the required capacity is not a monotone increasing or decreasing function of the
fraction of traffic originating from the high-rate source can be explained by analyzing the vari-
ance of the instantaneous input rate from the sources into the buffer. If the high-rate source
is only active for a small fraction of the time, The workload originates from a higher number
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Figure 10: Required capacity depending on the fraction of traffic that is from high-rate sources.
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of low-rate sources. With many independent sources with low access rates, the instantaneous
input rate is less variable. If the high-rate sources are responsible for a larger amount of data,
there is more variability in the system. However, when a large part of the data is from the
high-rate source(s), there are less low-rate sources and the peak rates are lower. In Appendix
C.1 the variance of the instantaneous rate is calculated. The variance function is plotted in
the third diagram of Figure 10.

Although the variance of the instantaneous rate explains the fact that the required capacity
is not a monotonous function of the fraction of traffic originating from a high-rate source, the
maximum value for the required capacity is reached for a fraction of traffic from the high-rate
source that is lower than the fraction that gives the maximum variance.

The delay restrictions (dL = 0.02 and εL = 0.01) are very stringent. When the total input rate
exceeds the output rate of the buffer, the level 0.02c is reached almost immediately. When we
would use dL = 0.0001 instead of dL = 0.02, the shapes of the curves as in the top diagram of
Figure 10 do not change. The curves are only shifted up a little. In the bottommost diagram
of Figure 10, the 99% quantile of the instantaneous input rate is displayed. This quantile
is the solution of 0.01 = P(RI > x0.99). The calculation of this quantile can be found in
Appendix C.2. The quantile is a step function of ηH , because the number of low-rate sources
in the system is discrete and so the instantaneous rate also is a step function. We observe
that the required capacity for a low-rate source is close to the 99% quantile.

Next consider the required capacity for a high-rate source. When apart from the high-rate
source only low-rate sources are present, the required capacity depends on the number of
low-rate sources in the system, which decreases when ηH increases. In a system with two or
three high-rate sources, a high-rate source observes a system with the low-rate sources and
(apart from itself) one or two high-rate sources respectively. This explains that the shape of
a curve for cH is very much the same as the shape of a curve for cL with one high-rate source
less.

Numerical results time-scale approximation

Next we examine the performance of the approximations based on time-scale decomposition
(see Section 4.4). In the top diagram of Figure 11 the required capacity for both a low-rate
and a high-rate source is drawn. The solid curves show the required capacities computed
with the exact formula for the buffer content (given in Expression (11)). The dotted curves
show the capacities as a result of the approximation based on time-scale decomposition. For
this approximation we use Expressions (28) and (31) for the joint distribution of the buffer
content and the state of the system when c < rH + ρL (regime I) and c > rH + ρL (regime II)
respectively. The parameters used for this figure are stated in Table 1.

In the two other diagrams of Figure 11 the fraction of delayed packets is plotted as a func-
tion of the capacity of the switch. We observe a singular point in the approximated curves.
This singular point is situated at c = rH + ρL and separates the approximation in regime I
from the approximation in regime II. The existence of this singular point can be easily seen
in Expression (27). When rH + ρL = c, we have rH − ĉ = rH − (c − ρL) = 0. So in the
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Figure 11: Approximation based on time-scale decomposition when γH = 0.01.

approximation this point is not defined, which causes a singular point.
The intuitive explanation for the existence of the singular point is that in regime I we approxi-
mate the input rate of the low-rate sources with their average input rate, so when c = rH +ρL

the buffer is always empty in this approximation.

In the two lower diagrams of Figure 11, we can see how the capacity is determined with the
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exact and approximate distributions for the buffer content. The required capacity is the in-
tersection of the fraction of delayed packets with the horizontal line at level εL = εH = 0.01.
With the exact distribution this intersection point is unique. However, with the approximated
buffer content there are multiple points at which the fraction of delayed packets can cross the
line 0.01. To obtain a good approximation for the required capacity we start looking for an
intersection point in regime II.

As we can see in the middle diagram of Figure 11, the capacity obtained with the approximate
buffer distribution and the exact capacity differ most when c ≈ rH +ρL. The required capacity
for the low-rate sources is less than rH + ρL on the left side of ρ = 70Mb/s and more than
rH + ρL on the right side. Although in this case c ≈ rH + ρL, the capacity that follows from
the approximated buffer content already is quite good. If c � rH + ρL as is the case in the
lowermost diagram of Figure 11, the approximation is very good.

Strict priority for high-rate traffic

We examine the required capacity in case high-rate traffic has strict priority over low-rate
traffic and compare this capacity to the required capacity with a joint buffer. Figure 12
is equal to Figure 7 with extra curves which show the required capacities cLP and cHP if
traffic originating from the high-rate sources has strict priority over traffic originating from
the low-rate sources. We observe that

cL ≤ cLP ≤ cH . (34)

The leftmost inequality of Statement (34) can be explained by considering the amount of
data that is served before the low-rate packet can be served. With a joint buffer, the delay
of a low-rate packet is the transfer time of the amount of data that is present in the buffer
upon arrival. With two separate buffers and strict priority for a high-rate source, a low-rate
packet still has to wait until the total buffer content at arrival is transmitted and also for the
high-rate packets that arrive during the waiting period of the low-rate packet. Therefore, the
delay of a low-rate packet in this case is greater or equal to the delay in a system with a joint
buffer, so cLP ≥ cL.

The explanation for the rightmost inequality of Statement (34) is that a high-rate source
always experiences a busy system. If traffic originating from high-rate sources gets priority
and the buffers are empty most of the time, only a fraction γH of the time (for one high-rate
source) low-rate packets are extra delayed and the delay of the rest of the low-rate packets
remains small. This is also the reason that the difference between cL and cLP is negligible,
together with the fact that the delay of most of the low-rate packets already exceeds dL with
a joint buffer when the high-rate source is active. So when the delay of a packet is high with
a joint buffer, the delay would be very high when using priorities. However, the fraction of
traffic for which the delay exceeds dL does not increase significantly.



4.5 Numerical results for the streaming model 47

0 20 40 60 80 100
0

40

80

120

160

200

ρ −−>

c 
−

−
>

Required capacity when γ
H

 = 0.01

 

 
c

H
, N

H
=2

c
H

, N
H

=1

c
L
, N

H
=2

c
LP

, N
H

=2

c
L
, N

H
=1

c
LP

, N
H

=1

c
L
, N

H
=0

c
HP

, N
H

=2

c
HP

, N
H

=1

c=ρ

0 20 40 60 80 100
0

40

80

120

160

200

240

ρ −−>

c 
−

−
>

Required capacity when γ
H

 = 0.1

 

 
c

H
, N

H
=2

c
L
, N

H
=2

c
LP

, N
H

=2

c
H

, N
H

=1

c
L
, N

H
=1

c
LP

, N
H

=1

c
L
, N

H
=0

c
HP

, N
H

=2

c
HP

, N
H

=1

c=ρ

Figure 12: Required capacity with strict priority for high-rate sources.
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Comparison of the required capacities

We compare the required capacities in the different situations with a workload ρ = 100Mb/s.
Define the relative capacity with respect to the workload as the extra capacity that is required
to take care of the bursty traffic behavior:

∆c := 100
c− ρ

ρ
%. (35)

We examine the relative capacity with ρ = 100Mb/s in Table 2.

NH = 0 NH = 1 NH = 2
c ∆c c ∆c c ∆c

cL 148 48%

γH = 0.01
max(cL, cH) 194 94% 199 99%

max(cLP , cHP ) 155 55% 161 61%

γH = 0.1
max(cL, cH) 188 88% 214 114%

max(cLP , cHP ) 174 74% 188 88%

Table 2: Required capacity in the streaming model (absolute values c and relative values ∆c
with ρ = 100Mb/s).

In Table 2 the required capacities are collected for the different values for NH and γH we
considered in the numerical study. When NH ≥ 1 the required capacity is the maximum
of the required capacity for the low-rate and the high-rate sources, because the performance
requirements of both the low-rate and the high-rate sources should be fulfilled. Without
service differentiation max(cL, cH) = cH , because the high-rate sources always experience a
busy network. With strict priority for the high-rate source max(cLP , cHP ) = cLP when the
workload is high, because in this case low-rate data has to wait for high-rate data in case of
congestion. If NH = 0 only low-rate sources are present, so in that case cH , cHP and cLP are
not defined and the required capacity is cL.

In Section 3.1 we mentioned two scenarios for the traffic characteristics of a corporate user.
The first scenario was that traffic generated by a company is the sum of the data traffic of the
employees. In this case, traffic is handled as if it originates from many consumers (NH = 0)
and the required relative capacity is 48% when ρ = 100Mb/s. The other scenario for the
traffic characteristics of a corporate user was that from time to time a large amount of data
has to be transferred. In that case the required capacity is much higher. If a high-rate source
is active only 1% of the time, the required relative capacity is 94% or 99% when one or two
corporate users are present in the network, respectively. So when γH = 0.01, the relative
capacity is approximately doubled (from 48% to 94% or 99%). The absolute difference be-
tween the required capacity in a network with a few corporate users and a network with
only consumers is approximately 50, which is the access rate of a corporate user. If a high-
rate source is active 10% of the time, the required relative capacity in a network with two
corporate users (114%) is significantly higher than in a network with one corporate user (88%).

We also considered the required capacity of the network link in case traffic from corporate
users is handled with strict priority over traffic of consumers. If a corporate user only transmits
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data 1% of the time, this leads to a significant decrease of the required capacity. Then the
presence of one or two corporate users leads to an increase of the required relative capacity
from 48% to 55% or 61% respectively, instead of the doubling without service differentiation.
If a corporate user transmits data 10% of the time, service differentiation also decreases the
required capacity, but the gain is less than with γH = 0.01.
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5 Analysis of the elastic model

In this chapter we analyze the elastic model, as described in Section 3.3.2. We derive the
stationary distribution of the number of active sources in Section 5.1. In Section 5.2 we
introduce the performance requirements for the elastic model and we define quantities to
express these performance requirements. In the subsequent sections we derive expressions for
these quantities. Finally, we present numerical results in Section 5.6.

5.1 Stationary distribution

For the two-dimensional process, where in state (i, j) i low-rate sources and j high-rate sources
are active, the transition rates are:

From state To state Transition rate
(i, j) (i+ 1, j) (NL − i)λL

(i, j) (i, j + 1) (NH − j)λH

(i, j) (i− 1, j) iRL(i, j)fL

(i, j) (i, j − 1) jRH(i, j)fH

Throughout this section, we assume that RL(i, j) > 0 and RH(i, j) > 0 for all 0 ≤ i ≤ NL,
0 ≤ j ≤ NH .

When we translate the process into a one-dimensional process as we did in Section 4.1.1, we
obtain a process with generator matrix Q, which consists of NH + 1 by NH + 1 sub-matrices
of size NL + 1 by NL + 1. The (j, l)th sub-matrix of Q is given by

Q[j, l] :=


Mj if l = j,

(NH − j)λHINL+1 if l = j + 1,
Rj if l = j − 1
0 otherwise.

(36)

The (i, k)th element (i 6= k) of Mj is given by

Mj(i, k) :=


(NL − i)λL if k = i+ 1,
iRL(i, j)fL if k = i− 1,
0 otherwise.

The matrices Rj , j = 1, . . . , NH , are diagonal matrices, with

Rj(i, i) = jRH(i, j)fH .

The diagonal elements of Q are such that the row sums are zero.

The stationary distribution (π) of this process is given by QTπ = 0 together with |π| = 1. So
π is the normalized eigenvector of QT with eigenvalue 0. We retranslate this one-dimensional
stationary distribution into the two-dimensional distribution as follows:

πi,j = π(NL+1)j+i.
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A closed-form expression for the stationary distribution cannot be computed in general. How-
ever, if rH = rL the stationary distribution has a product-form and a closed-form expression
for the distribution can be found. The calculation is given in Appendix D.

With the stationary distribution, we can easily compute the fraction of time that the instan-
taneous transmission rate of an arbitrary high-rate or low-rate source is below a certain value.
However, a user does not necessarily notice service degradation when the transmission rate is
very low for a short time, because he only experiences the average transmission rate during
the transmission of a file. In the next section a performance requirement for the elastic model
is stated.

Later on in this thesis we will need the distribution of the process at an arrival moment of a
low-rate or high-rate file. In a closed product-form network, the distribution of the process
at an arrival moment is equal to the stationary distribution of the same closed network with
one source less (e.g. see Proposition 8.3 of [19]). The network considered in this thesis is
not product-form, but a reasonable approximation of the arrival distribution would be the
stationary distribution in a system with one low-rate or high-rate source less, which we denote
with π̂L and π̂H respectively. These distributions can be found earlier in this section, using
NL−1 low-rate sources and NH high-rate sources for π̂L and NL low-rate sources and NH−1
high-rate sources for π̂H .

Figure 13: Distribution at an arrival moment of a low-rate file (top) and a high-rate file
(bottom).
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In Figure 13 the approximated arrival distributions π̂L and π̂H are plotted against the simu-
lated distribution of the state of the system at an arrival moment of a low-rate or a high-rate
file. The parameter values used for this figure can be found in Table 1 (NL = 25, NH = 1,
γH = 0.01). The required capacity to fulfill the performance requirement for the low-rate
(high-rate) sources for these parameter settings is c = 66 (c = 88). Figure 13 shows that at
least for these parameter values, π̂L and π̂H are very good approximations for the arrival
distribution of a low-rate file (high-rate file).

5.2 Definitions and performance requirements

We introduce the performance requirements for the elastic model and define quantities for
the throughput and sojourn time (transfer time) in Section 5.2.1. We also give a roadmap to
calculate the required capacity in Section 5.2.2.

5.2.1 Performance requirements based on tail probabilities

The performance requirement in the elastic model is based on the throughput during the
transmission of a file, because the delay of a file is caused by a degradation of the rate at
which the file can be transmitted. Define TL (TH) as the throughput during the transmission
of a file originating from a low-rate (high-rate) source. This is the average rate at which the
source can transmit data during the file transmission. Now we can formulate the performance
requirements as follows:

P(TL < αLrL) < εL, (37)

P(TH < αHrH) < εH , (38)

where 0 < αL, αH ≤ 1 and εL and εH are very small positive numbers. The probabilities in
Performance Criterions (37) and (38) should be seen as the fractions of files that are trans-
mitted with an insufficient throughput.

Now we define and relate some quantities for the throughput and sojourn time. Let SL (SH)
be the state space containing the possible states of the process without the low-rate source
(high-rate source) for which we calculate the throughput. That means

SL = {(i, j)|0 ≤ i < NL, 0 ≤ j ≤ NH}
SH = {(i, j)|0 ≤ i ≤ NL, 0 ≤ j < NH}.

Assume that we have a low-rate file of size x and define

TL
i,j(x) :=

Throughput of an amount of data x
when the process is in state (i, j) ∈ SL at arrival,

and

SL
i,j(x) :=

Sojourn time (transfer time) of an amount of data x
when the process is in state (i, j) ∈ SL at arrival.



5.2 Definitions and performance requirements 53

The throughput during the transmission of an amount of data x is x divided by the total
transmission time of that file, so

TL
i,j(x) =

x

SL
i,j(x)

.

An expression for the probability of a low throughput (unconditional on the state of the
system at arrival and the file size) is then

P(TL < αLrL) =
NL−1∑
i=0

NH∑
j=0

π̂L
i,j

∫ ∞

0
fLe

−fLxP
(

x

SL
i,j(x)

< αLrL

)
dx.

To calculate the probability P(TL < αLrL) in Performance Requirement (37), we need to
know

P
(

x

SL
i,j(x)

< αLrL

)
= P

(
SL

i,j(x) >
x

αLrL

)
,

so we need the distribution of SL
i,j(x). In Section 5.3 we will see that it is very hard to

determine this distribution in a way that it can be used numerically. Therefore we proceed
with the calculation of the mean throughput instead.

5.2.2 Performance requirements based on means

The mean throughput conditional on the state of the system at arrival and the file size is

E
[
TL

i,j(x)
]

= E

[
x

SL
i,j(x)

]
≥ x

E
[
SL

i,j(x)
] .

An expression for the exact mean conditional throughput is given in Section 5.3, but this
expression is not numerically tractable either. Therefore, we use the approximate expression
for the mean throughput conditional on the state of the system at arrival and the file size in
the following alternative definition for the average throughput.

TL :=
NL−1∑
i=0

NH∑
j=0

π̂L
i,j

∫ ∞

0
fLe

−fLx x

S
L
i,j(x)

dx, (39)

where
S

L
i,j(x) = E

[
SL

i,j(x)
]

is the mean conditional sojourn time. The approximation for the conditional throughput is a
conservative approximation, because the exact throughput is larger than the approximation
of the throughput.

To determine the required capacity with Formula (39) for the average throughput, we need to
translate Performance Requirement (37) into a target value for the average throughput. So
we need to know the relation between P(TL < αLrL) and TL. There is no simple formula to
relate these two quantities, because the shape of the throughput distribution depends on the
parameters of the model. Instead, we will go through the following steps.
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1. Approximate the throughput of a file with the instantaneous transmission rate of a file
just after arrival. The assumption in this approximation is that the transmission rate
does not change during the transmission of the file. With this approximation we have

P(TL < αLrL) ≈
NL−1∑
i=0

NH∑
j=0

π̂i,j1{RL(i+1,j)<αLrL} (40)

and

TL ≈
NL−1∑
i=0

NH∑
j=0

π̂i,jRL(i+ 1, j). (41)

2. Now compute the minimum capacity that is required to satisfy P(TL < αLrL) < εL with
the approximation for the throughput as in Expression (40). Denote this capacity with
ca.

3. Compute TL with this capacity ca and the approximation as in Expression (41). Denote
the average throughput obtained in this way with T a

L.

4. Now T
a
L can be used as a target value for the average throughput of a low-rate file. The

capacity obtained following this procedure is denoted with c.

With this procedure we determine the required capacity with the formula for the average
throughput (c) in step 4, but we also determine an intermediate capacity ca in step 2 that is
used to find the relation between αL and the average throughput.

All expressions introduced for low-rate sources are defined for high-rate sources analogously.

5.3 The conditional sojourn time

In this section we define matrices for the computation of the conditional sojourn time and we
compute the Laplace transform of the conditional sojourn time distribution.

Consider a low-rate file. When this file finds the process in state (i, j) at arrival, there are
i+1 low-rate sources and j high-rate sources active directly after arrival of the new file. Then
the first transition of the process is either a departure of the source corresponding to the
new file (with rate RL(i + 1, j)fL) or a transition of the rest of the system. The transition
rates of the system without the new file are (NL− i− 1)λL, (NH − j)λH , iRL(i+ 1, j)fL and
jRH(i+ 1, j)fH to the states with one low-rate or high-rate source more and one low-rate or
high-rate source less, respectively.

In Figure 14 the process is drawn. The time until a transition of the process without the new
low-rate source is exponentially distributed with rate

A(i, j) := (NL − i− 1)λL + (NH − j)λH + iRL(i+ 1, j)fL + jRH(i+ 1, j)fH . (42)

Let Q∗
L be the generator matrix of the (one-dimensional version of the) process with state

space SL and an extra permanent low-rate source. In Q∗
L the transition rates from state
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Figure 14: Transition rates in a system with a special low-rate source (left) or high-rate source
(right).

(i, j) ∈ SL are the transition rates from (i, j) as displayed in Q (Expression (13)), with NL− i
replaced by NL−i−1 and the transmission rates RL(i, j) and RH(i, j) replaced by RL(i+1, j)
and RH(i+1, j) respectively. The diagonal elements of Q∗

L are such that the row sums are zero.

Let RL be the diagonal matrix in which the rates at which the extra low-rate source can
transmit data are stored for the states in SL. When i low-rate sources, j high-rate sources
and the permanent low-rate source are active, this rate is RL(i+ 1, j).

The vector S̃L(x, ω), containing the Laplace transforms of the distributions of SL
i,j(x) for all

(i, j) ∈ SL, is derived in Appendix E and is given by

S̃L(x, ω) = exp
(
R−1

L (Q∗
L − ωI)x

)
1.

Note that exp(Ax) with A a matrix is the matrix exponential. Unfortunately, we cannot
find a closed-form expression for the distribution of the conditional sojourn time having this
Laplace transform.

With the Laplace transform, we can calculate the mean conditional throughput:

E
[
TL

i,j(x)
]

= x

∫ ∞

0
S̃L

i,j(x, ω)dω. (43)

The calculation can be found in Appendix E.

The Laplace transform of the conditional sojourn time of a high-rate file can be found analo-
gously by using Q∗

H and RH instead of Q∗
L and RL. The matrix Q∗

H is the generator matrix
of the (one-dimensional version of the) process with state space SH with an extra permanent
high-rate source. In Q∗

H the transition rates from state (i, j) ∈ SH are the transition rates
from (i, j) as displayed in Q, with NH − j replaced by NL − j − 1 and the transmission rates
RL(i, j) and RH(i, j) replaced by RL(i, j + 1) and RH(i, j + 1) respectively. The diagonal
elements of Q∗

H are such that the row sums are zero.
The matrix RH is a diagonal matrix in which the rates at which the extra high-rate source
can transmit data are stored for the states in SH . When i low-rate sources, j high-rate sources
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and the permanent high-rate source are active, this rate is RH(i, j + 1).

The solution for the mean conditional throughput as given in Expression (43) is not numer-
ically tractable, so we proceed with the calculation of the average throughput as defined in
Expression (39).

5.4 Computation of the mean conditional sojourn time

In this section we derive an expression for the mean sojourn time (total transfer time), con-
ditional on the file size and the state of the system at arrival. We do this along the lines of
[11], page 116. Define

S
L
i,j(x) =

The mean transmission time of a file of size x from a low-rate source
when the process is in state (i, j) at arrival.

Consider an amount of low-rate data x and a time interval of length ∆ > 0, with ∆ sufficiently
small such that the transfer of the file for which we determine the sojourn time cannot finish
within this time, i.e. ∆ < xRL(i + 1, j)−1. We condition on all possible events occurring
during this interval. These events are the transitions as displayed in Figure 14, except for the
departure of the special low-rate source.

S
L
i,j(x) = E[SL

i,j(x)]

= ∆ + iRL(i+ 1, j)fL∆SL
i−1,j(x−O(∆)) + (NL − i− 1)λL∆SL

i+1,j(x−O(∆))

+ jRH(i+ 1, j)fH∆SL
i,j−1(x−O(∆)) + (NH − j)λH∆SL

i,j+1(x−O(∆))

+ (1−A(i, j)∆)SL
i,j(x−RL(i+ 1, j)∆) + o(∆).

Rearranging terms gives

S
L
i,j(x)− S

L
i,j(x−RL(i+ 1, j)∆)

RL(i+ 1, j)∆

=
1

RL(i+ 1, j)
+
iRL(i+ 1, j)fL

RL(i+ 1, j)
S

L
i−1,j(x−O(∆)) +

(NL − i− 1)λL

RL(i+ 1, j)
S

L
i+1,j(x−O(∆))

+
jRH(i+ 1, j)fH

RL(i+ 1, j)
S

L
i,j−1(x−O(∆)) +

(NH − j)λH

RL(i+ 1, j)
S

L
i,j+1(x−O(∆))

− A(i, j)
RL(i+ 1, j)

S
L
i,j(x−O(∆)) +

1
RL(i+ 1, j)

o(∆)
∆

.

Now let ∆ → 0. Then for all (i, j) ∈ SL

dSL
i,j(x)
dx

=
1

RL(i+ 1, j)
+
iRL(i+ 1, j)fL

RL(i+ 1, j)
S

L
i−1,j(x) +

(NL − i− 1)λL

RL(i+ 1, j)
S

L
i+1,j(x)

+
jRH(i+ 1, j)fH

RL(i+ 1, j)
S

L
i,j−1(x) +

(NH − j)λH

RL(i+ 1, j)
S

L
i,j+1(x)−

A(i, j)
RL(i+ 1, j)

S
L
i,j(x).
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In matrix notation this is

d
dx

SL(x) = R−1
L

(
1 + Q∗SL(x)

)
, (44)

where SL(x) is the vector with entries SL
i,j(x), (i, j) ∈ SL, ordered colexicographically.

The time needed to transfer no data is 0, so

SL(0) = 0. (45)

Now we make a substitution and write Equations (44) and (45) in terms of

W(x) := 1 + Q∗
LSL(x). (46)

The differential equation then becomes

d
dx

W(x) = Q∗
L

d
dx

SL(x) = Q∗
LR−1

L W(x), (47)

with
W(0) = 1. (48)

To get a numerical solution for Equations (47) and (48) we use the approach of Anick, Mitra
and Sondhi [1], which gives

W(x) = a0φ0 +
(NH+1)NL−1∑

k=1

ake
zkxφk, (49)

where zk are the eigenvalues of Q∗
LR−1

L and φk the corresponding eigenvectors.

From Theorem 1 of [14], we know that the number of negative eigenvalues is (NH + 1)NL− 1
and the multiplicity of the eigenvalue 0 is 1. So the eigenvalues of Q∗R−1

L are z(NH+1)NL−1 <
z(NH+1)NL−2 < · · · < z1 < z0 = 0. Note that the size of the matrices Q∗ and RL is
(NH + 1)NL × (NH + 1)NL, because we consider a process with one low-rate source less.

Further, from Equation (48), we have

(NH+1)NL−1∑
k=0

akφk = 1. (50)

Equation (50) gives enough boundary conditions to obtain a unique solution for the coefficients
ak, k = 0, . . . , (NH + 1)NL− 1. However, we compute these coefficients in a different manner.
We use the eigenvalue decomposition of the matrix Q∗R−1

L . Then

Q∗R−1
L = VDV−1, (51)

in which D is a diagonal matrix with the eigenvalues of Q∗R−1
L and V is the matrix with the

eigenvectors of Q∗R−1
L as columns. So

D = diag{0, z1, . . . , z(NH+1)NL−1}
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and
V = [φ0,φ1, . . . ,φ(NH+1)NL−1].

From Equations (47), (48) and (51) we obtain

W(x) = exp(Q∗R−1
L x)1 = V exp(Dx)V−11. (52)

Now we compare Equations (49) and (52) and find for a (which is the vector with coefficients
ak, k ∈ {0, . . . , (NH + 1)NL − 1}):

a = V−11.

We proceed with determining an expression for SL(x). Combining Equations (44), (46) and
(49) yields

d
dx

SL(x) = R−1
L W(x) = a0R−1

L φ0 +
(NH+1)NL−1∑

k=1

ake
zkxR−1

L φk. (53)

Note that R−1
L φ0 = RL(NL, NH)−11, since φ0 is the eigenvector of Q∗

LR−1
L corresponding

to the eigenvalue 0. So Q∗
LR−1

L φ0 = 0, which means that R−1
L φ0 is the eigenvector of Q∗

L

corresponding to the eigenvalue 0. Further, the row sums of Q∗
L are 0, so an eigenvector with

eigenvalue 0 should be a multiple of the unit vector. We assumed that the last entry of φ0 is
1, so the last entry of R−1

L φ0 is RL(NL, NH)−1.

Now we take integrals of both sides of Equation (53) and get

SL(x) =
a0

RL(NL, NH)
x1 +

(NH+1)NL−1∑
k=1

ak

zk
ezkxRL

−1φk + κ,

where κ is a constant factor which should be chosen such that SL(0) = 0.

The solution for the mean conditional sojourn time of a low-rate file (depending on the state
of the process at arrival) is then

SL(x) =
a0

RL(NL, NH)
x1 +

(NH+1)NL−1∑
k=1

ak

zk
(ezkx − 1)RL

−1φk, (54)

with zk, k ∈ {1, . . . , (NH +1)NL−1} the nonzero eigenvalues of Q∗
LR−1

L , φk the corresponding
eigenvectors (with last element 1) and [a0, . . . , a(NH+1)NL−1]T = [φ0,φ1, . . . ,φ(NH+1)NL−1]−11.

The solution for the mean conditional sojourn time of a high-rate source (depending on the
state of the process at arrival) can be found analogously and is given by

SH(x) =
b0

RH(NL, NH)
x1 +

NH(NL+1)−1∑
k=1

bk
vk

(evkx − 1)RH
−1ψk, (55)
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with vk, k ∈ {1, . . . , NH(NL+1)−1} the nonzero eigenvalues of Q∗
HR−1

H , ψk the corresponding
eigenvectors (with last element 1) and [b0, . . . , bNH(NL+1)−1]T = [ψ0,ψ1, . . . ,ψNH(NL+1)−1]−11.

We observe that the solution for the mean conditional sojourn time contains a linear term.
Further, the eigenvalues in the powers of the exponentials are negative, so when x becomes
very large only the linear term remains:

lim
x→∞

SL
i,j(x)
x

=
a0

RL(NL, NH)
.

This limit is the inverse of the average transmission rate during the transfer of a file of infinite
size from a low-rate source, so it is the average transmission rate of a low-rate source that is
permanent active. From this point of view we have

lim
x→∞

SL
i,j(x)
x

=

NL−1∑
i=0

NH∑
j=0

πL∗
i,jRL(i+ 1, j)

−1

, (56)

where πL∗
i,j is the stationary distribution of the state of the system with an extra permanent

low-rate source, so πL∗
i,j is the normalized eigenvector of Q∗

L
T with eigenvalue 0. Now we have

found

a0

RL(NL, NH)
=

NL−1∑
i=0

NH∑
j=0

πL∗
i,jRL(i+ 1, j)

−1

, (57)

and for the high-rate sources it follows analogously

b0
RH(NL, NH)

=

NL∑
i=0

NH−1∑
j=0

πH∗
i,j RH(i, j + 1)

−1

. (58)

Expression (54) has the same form as the expression in Lemma 2 of [6], in which Poisson
arrivals are used and the maximum transmission rate of a source is infinite.

The method used in this section is not the only method to obtain a numerical solution for
the mean conditional sojourn time. Another method is to derive an iterative relation for the
Laplace transforms and retranslate that relation into a numerical solution for the conditional
mean sojourn time. This method can be found in Appendix F. It is also shown in that
appendix that the two methods lead to the same solution.

5.5 Computation of the mean unconditional sojourn time

In this section we derive an expression for the mean transfer time of a file (the mean sojourn
time), dependent on the state of the system at arrival. We can find the mean unconditional
transfer time of a file from the file size distribution and the conditional transfer time as given
in Expression (54), but a simpler expression can be found when deriving the unconditional
sojourn time directly. Define
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S
L
i,j =

The mean transmission time of a file from a low-rate source
when the process is in state (i, j) at arrival.

Since all file sizes are assumed to be exponentially distributed, we can use the memoryless
property. The transitions of the process are drawn in Figure 14. The time until a transition of
the process without the source we are looking at is exponentially distributed with rate A(i, j)
(see Expression (42)). If nothing changes in the number of active sources, the transmission
of the file will be finished after an exponential (RL(i + 1, j)fL) period. Therefore, the mean
time until the total process makes a transition is (A(i, j)+RL(i+1, j)fL)−1. The probability
that this transition is to the state with one low-rate source less or more or one high-rate
source less or more is iRL(i+1,j)fL

A(i,j)+RL(i+1,j)fL
, (NL−i−1)λL

A(i,j)+RL(i+1,j)fL
, jRH(i+1,j)fH

A(i,j)+RL(i+1,j)fL
or (NH−j)λH

A(i,j)+RL(i+1,j)fL

respectively. Otherwise, the transmission of the file we are looking at is finished. This can be
summarized in the following equation:

S
L
i,j =

1
A(i, j) +RL(i+ 1, j)fL

+
iRL(i+ 1, j)fL

A(i, j) +RL(i+ 1, j)fL
S

L
i−1,j

+
(NL − i− 1)λL

A(i, j) +RL(i+ 1, j)fL
S

L
i+1,j +

jRH(i+ 1, j)fH

A(i, j) +RL(i+ 1, j)fL
S

L
i,j−1

+
(NH − j)λH

A(i, j) +RL(i+ 1, j)fL
S

L
i,j+1.

Rearranging terms gives

−iRL(i+ 1, j)fLS
L
i−1,j − (NL − i− 1)λL(NL − i− 1)λLS

L
i+1,j

+(A(i, j) +RL(i+ 1, j)fL)SL
i,j − jRH(i+ 1, j)fHS

L
i,j−1 − (NH − j)λHS

L
i,j+1 = 1,

for all (i, j) ∈ SL. In matrix form, this is

(−Q∗
L + fLRL)SL = 1,

with solution

SL = (−Q∗
L + fLRL)−1 1. (59)

The mean conditional sojourn time for a high-rate source can be found analogously:

SH = (−Q∗
H + fLRH)−1 1. (60)

5.6 Numerical results for the elastic model

In this section we present numerical results with the parameter values as listed in Table
1 of Section 3.6. We determine the required capacity in order to fulfill the performance
requirements for the low-rate sources and the high-rate sources in two situations. In the first
situation the transmission rates are proportional to the access rates and given in Equations (1)
and (2). In the second situation, traffic originating from a high-rate source has strict priority
over traffic originating from a low-rate source and the transmission rates are given in Equations
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(3) and (4). We use the notations cL, cH , cLP and cHP as defined in Section 4.5, with the
performance requirements for low-rate and high-rate sources replaced by Inequalities (37) and
(38) respectively. The required capacity in order to fulfill the performance requirements for
both the low-rate and the high-rate sources is max(cL, cH) or max(cLP , cHP ).

Required capacity as function of the workload

In Figure 15 we present the required capacity as a function of the realized workload in the
system. Both the required capacity and the realized workload are determined by simula-
tion. If sources can always transmit data at their access rates, the workload of the system is
NLγLrL +NHγHrH . However, in case of congestion the transmission rates decrease and the
durations of the active periods of the sources increase, with the total data volume during an
active period remaining equal. The durations of the inactive periods of the sources do not
change. Then the average amount of data that is transmitted per second decreases (although
sources are active for a longer time period). The realized workload is thus always less or equal
to NLγLrL +NHγHrH . This phenomenon is caused by the ON-OFF modelling of the sources,
together with the adaptation of the transmission rates.

In the top diagram of Figure 15 a high-rate source is active 1% of the time (γH = 0.01,
λH = 1/1584) and in the lower diagram this is 10% of the time (γH = 0.1, λH = 1/144).
The explanation for the different starting values of the curves in Figure 15 is already given
in Section 4.5 in the explanation of Figure 7. The shapes of the curves and the order of the
curves for cL and cH in the figure are also identical to the shapes and order of the curves in
Figure 7 for the streaming model. Therefore, we refer to Section 4.5 for the explanation.

Strict priority for high-rate traffic

Now we examine the required capacity in case high-rate traffic has strict priority over low-rate
traffic (cLP and cHP in Figure 15) and compare this capacity to the required capacity when
the transmission rates are proportional to the access rates (cL and cH in Figure 15).

We observe that cLP < cL with NH = 1 and γH = 0.01 when the workload is not too high.
This is against our intuition, because the remaining capacity for low-rate sources is less when
high-rate traffic has strict priority. This phenomenon is caused by the ON-OFF modelling of
the sources and the fact that the priority for high-rate source is strict, as explained below.
If c < rH the transmission rate of a low-rate source is zero when the high-rate source is active,
so low-rate sources cannot turn OFF when the high-rate source is active. This implies that
at most one file from each low-rate source observes that the high-rate source is active and all
other files from a low-rate source are transmitted during an inactive period of the high-rate
source. The fraction of low-rate files that is transmitted during an active period of a high-rate
source is less than εL = 0.01 when γH = 0.01, so the required capacity remains constant when
the throughput of low-rate files is sufficiently high when the high-rate source is inactive (NL is
small). When more low-rate sources are present, the performance of a low-rate source can also
be degraded when the high-rate source is inactive, so then cLP increases when the workload
increases.
If c > rH and c − rH is small, the low-rate files also receive positive transmission rates and
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Figure 15: Required capacity depending on the realized workload in the system for elastic
traffic.
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can finish a file transmission when the high-rate source is active. Then more low-rate files
experience a high level of congestion. The required capacity cLP is still less than cL, because
without priority for the high-rate source the throughput of a low-rate file already is less than
αLrL when the high-rate source is active. Furthermore, when the high-rate source has pri-
ority, the transmission time of a high-rate file is shorter and the low-rate sources alternate
slower, so less low-rate files experience an active period of the high-rate source.
With a high workload we observe cLP > cL for NH = 1. Apparently the low-rate sources are
not really slowed down any more when the workload is high and the fraction of low-rate files
with a throughput less than αLrL is higher when high-rate sources have strict priority than
when the transmission rates are proportional to the access rates.

For γH = 0.01 with NH = 2 we have cL < cLP < cH , as we would expect. In this case
cLP > rH for all values of ρ, so the low-rate files can always be transmitted (at an adjusted
rate) and they experience a high level of congestion when the high-rate sources are active.

If γH = 0.1 we observe that cLP > cH with NH = 1 for all values of ρ. This is again against our
intuition, because we would expect that the fraction of low-rate files with a low throughput
(if high-rate sources have strict priority) is less, because many low-rate files are transmitted
during the inactive period of the high-rate source. The explanation is that when proportional
transmission rates are used, the throughputs of all sources decrease in case of congestion, but
with strict priority for high-rate traffic the throughput for this source is always very high.
The performance for the high-rate source is then higher than necessary and more capacity is
required to satisfy the performance requirements of the low-rate sources.
Another explanation for cLP > cH in this case is that the high-rate source transmits a sig-
nificantly larger amount of data when this source gets strict priority. This is because the
high-rate source is active for a significant fraction of the time and with strict priority, the
source alternates faster.

For γH = 0.1 with NH = 2 we observe cLP > cH when the workload is low and cLP < cH
otherwise. The first relation can be explained with the same argument as given for NH = 1.
The fact that the capacity cH increases faster than cLP can be explained by examining the
link capacity that is used for high-rate data. If high-rate traffic has strict priority, it remains
constant. However, if traffic rates are proportional to the access rates, the capacity used for
high-rate data decreases when ρ increases (NL increases). So then the high-rate sources are
active a longer fraction of the time and more low-rate files experience a busy system.

Required capacity determined with the average throughput

We present numerical results for the required capacity as computed via the procedure de-
scribed at the end of Section 5.2.2. As we mentioned this procedure leads to two values for
the capacity, namely the required capacity c as determined with Expression (39) and the
intermediate capacity ca (in step 2 of the procedure), which is used to translate α into a
target value for the average throughput. The capacity ca is the required capacity in case the
throughput of a file is equal to the transmission rate of that file just after arrival. In Figure
16 the required capacities as determined by simulation are plotted against the two capacities
determined in the procedure when the transmission rates are proportional to the access rates
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(see Expressions (1) and (2)).

The curves for ca and c have a staircase behavior, because the instantaneous transmission
rate at arrival only depends on the state of the system at arrival and there are only a finite
number of states. Therefore we cannot always find a capacity ca such that the fraction of files,
for which the instantaneous throughput just after arrival is insufficient high, exactly equals ε.

In Figure 16, we observe that ca exceeds the actual required capacity c (as determined by
simulation) in most cases. The only exception is when NH = 2 with γH = 0.01. The difference
between c and ca is caused by two opposing effects:

• ca > c: The capacity ca is determined by the instantaneous transmission rate just after
the arrival of a file. However, a requirement based on an instantaneous transmission
rate is more stringent than a requirement based on the average transmission rate during
the transmission of a file. A user does not necessarily notice service degradation when
the transmission rate is very low for a short time, because he only experiences the total
transmission time of the file. Therefore, the required capacity c can be a little less than
ca.

• ca < c: After the arrival of a file the number of active sources is increased, which implies
that the transmission rates of all sources are decreased. As a result of this all files stay
in the system longer. Therefore, the number of new file arrivals will exceed the number
of file departures and the link becomes busier than at an arrival instant. This causes
that the throughput of a file is less than the instantaneous arrival rate. By this effect,
the required capacity c can exceed ca.

The relative magnitude of the above-mentioned effects determines the order of c and ca. From
Figure 16 we conclude that the second effect only dominates the first when a high-rate file
arrives and another high-rate file is present with γH = 0.01.

Another observation in Figure 16 is that always c > ca. The capacity c is the required capacity
such that the average throughput is equal to the average instantaneous transmission rate at
arrival. This is also caused by the second effect mentioned above.

In the curve for c with NH = 2, γH = 0.01, we observe that the slope of parts of the curve
is negative. This is when ca is constant for a few subsequent values of NL. In this case
the fraction of files with a degraded performance is less when NL is less (because ca could
not be chosen such that this fraction was closer to ε). The average throughput T a is then
based on a more stringent performance requirement, which causes that the capacity c is higher.

From Figure 16 we conclude that the capacity ca is a very good approximation of the required
capacity c, except for cH when NH = 2 and γH = 0.01, because in that case the capacity
is underestimated. The capacity c, as determined with the procedure at the end of Section
5.2, leads to an approximation of the required capacity c that is in general worse than the
approximation ca. Furthermore, the computation of the capacity ca is much simpler than the
computation of c. The computation time for c is very large, because numerical integration is
needed. To avoid this, we can also use the average unconditional throughput or the average
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Figure 16: Required capacity determined with simulation (c, solid), instantaneous transmis-
sion rate at arrival (ca, dotted) and average throughput (c, dashed).
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long-term throughput. These can be computed with the formulas for the average uncondi-
tional sojourn time (Expression (59) or (60)) or the average transmission rate of a source
that is permanently active (the inverse of Expression (57) or (58)). The resulting capacities
are slightly higher than the ones obtained with the average conditional throughput, so these
approximations are also worse than ca.

Comparison of the required capacities

We compare the required capacities in the elastic model for the different situations with a
workload ρ = 100Mb/s. In Table 3 the required relative capacities (as defined in Definition
(35)) are collected for the different values for NH and γH we considered in the numerical study.

NH = 0 NH = 1 NH = 2
c ∆c c ∆c c ∆c

cL 121 21%

γH = 0.01
max(cL, cH) 154 54% 161 61%

max(cLP , cHP ) 128 28% 137 37%

γH = 0.1
max(cL, cH) 149 49% 168 68%

max(cLP , cHP ) 150 50% 161 61%

Table 3: Required capacity in the elastic model (absolute values c and relative values ∆c with
ρ = 100Mb/s)

In Section 3.1 we mentioned two scenarios for the traffic characteristics of a corporate user.
The first scenario was that traffic generated by a company is the sum of the data traffic of the
employees. In that case, traffic is handled as if it originates from many consumers (NH = 0)
and the required relative capacity is 21% when ρ = 100 Mb/s. The other scenario for the
traffic characteristics of a corporate user was that from time to time a large amount of data
has to be transferred. In that case the required capacity is much higher. If a high-rate source
is active only 1% of the time, the required relative capacity is 54% or 61% when one or two
corporate users are present in the network, respectively. So if γH = 0.01, the relative capacity
is more than twice as much in this case. The absolute difference between the required capacity
in a network with two corporate users and a network with only consumers is 40, which is the
minimal transmission rate of a corporate user that does not cause service degradation. If a
high-rate source is active 10% of the time, the required relative capacity in a network with
one corporate user is 49%, which is less than in a network with one corporate user which is
active 1% of the time. The required relative capacity in a network with two corporate users
that are both active 10% of the time is more than when they are only active 1% of the time.

We also considered the required capacity of the network link in case traffic from corporate
users is handled with strict priority over traffic of consumers. If a corporate user only transmits
data 1% of the time, this leads to a significant decrease of the required capacity. If a corporate
user transmits data 10% of the time, service differentiation does not significantly decrease the
required capacity. With only one corporate user, the required capacity in case of service
differentiation is even more than the required capacity without service differentiation.
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6 Comparison of the streaming and the elastic model

In this chapter we compare the numerical results for the streaming model and the elastic
model and we explain the differences.

6.1 Required capacity as function of the workload

The results of the required capacities in the streaming and the elastic model are presented in
Figures 12 and 15. The shapes and the order of the curves for cL and cH in the diagrams are
almost identical in the streaming and the elastic model, because these depend on the trade-off
between γH and ε (as explained in Section 4.5). The required capacities cLP have a different
behavior in the two models. The main reason is that the durations of the active periods are
influenced by the level of congestion in the system in the elastic model (as explained in Section
5.6), while the sources can always transmit data at their access rate in the streaming model.
In the streaming model the amount of data that is transmitted is constant, while less packets
are generated in the elastic model in case of congestion.

The required capacities in the streaming model are significantly higher than the required ca-
pacities in the elastic model. To determine the required capacity of a network link, the only
quantity that can be measured on the link is the average workload. Given the average work-
load, we want to know the required capacity in order to fulfill the performance requirements
for both the consumers and the corporate users. If NH = 0 only low-rate sources are present,
so the required capacity is cL. If NH > 0 the required capacity is the maximum of the required
capacity for the low-rate and the high-rate sources, because the performance requirements of
both the low-rate and the high-rate sources should be fulfilled. Without service differentiation
max(cL, cH) = cH , because the high-rate sources always experience a busy network. With
strict priority for high-rate sources max(cLP , cHP ) = cLP when the workload is high, because
low-rate data has to wait for high-rate data in case of congestion.

NH = 0 NH = 1 NH = 2
c ∆c c ∆c c ∆c

Streaming

cL 148 48%

γH = 0.01
max(cL, cH) 194 94% 199 99%

max(cLP , cHP ) 155 55% 161 61%

γH = 0.1
max(cL, cH) 188 88% 214 114%

max(cLP , cHP ) 174 74% 188 88%

Elastic

cL 121 21%

γH = 0.01
max(cL, cH) 154 54% 161 61%

max(cLP , cHP ) 128 28% 137 37%

γH = 0.1
max(cL, cH) 149 49% 168 68%

max(cLP , cHP ) 150 50% 161 61%

Table 4: Required capacities (absolute values c and relative values ∆c with ρ = 100Mb/s)

In Table 4 the relative capacities (see Definition (35)) are collected for the streaming and
the elastic model with a workload ρ = 100Mb/s. This table contains the data of Table 2
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(for streaming services) and Table 3 (for elastic services). In the sections corresponding to
these tables the required capacities for different behaviors of a corporate user are compared
for streaming and elastic services separately. Now we only need to compare the required
capacities between the two models.

We observe that the relative capacities for the streaming model are significantly higher than
for the elastic model in all situations. The explanation is that the performance requirement
for the streaming model (with dL = dH = 0.02) is more stringent than the performance re-
quirement in the elastic model (with αL = αH = 0.8). A comparison of the performance
requirements for the streaming and the elastic model is presented in Section 6.2.

With stringent performance requirements (very small d and ε, large α) the behaviors of the
streaming and the elastic model are very much the same. In the streaming model the buffer
is empty most of the time and in the elastic model the transmission rates are close to the
access rates in this situation.

6.2 Comparison of the performance requirements

The goal of this section is to demonstrate that the performance requirements in the elastic
model are more stringent than the performance requirements in the streaming model.

The performance requirement for low-rate sources in the elastic model is

P(TL < αLrL) < εL.

The performance requirements in the streaming model are formulated in terms of packet de-
lays. A one-to-one relation between the throughput of a file and the delay of a packet does
not exist. However, we can relate the throughput of a file to the delay of the last packet of a
file to make an estimate.

Consider a low-rate file with size f−1
L and throughput αLrL. The sojourn time of this file is

(fLαLrL)−1. Without any congestion the sojourn time of the file would have been (fLrL)−1.
The delay dL of the last packet of this file is thus

dL =
1

fLαLrL
− 1
fLrL

=
1− αL

fLαLrL
, (61)

and for a high-rate source it follows analogously:

dH =
1− αH

fHαHrH
. (62)

When the same amount of data would have been transmitted in the streaming model, a delay
of dL (dH) as in Equation (61) (Equation (62)) for the last packet would thus coincide with
a throughput αLrL (αHrH) in the elastic model. Note that the delay of the last packet of a
file is in general larger than the delay of an arbitrary packet.

In Table 5 we show the results of the comparison above for the parameters as stated in Table
1 and in Figure 17 the required capacity in the streaming model is plotted with dL = 2 and
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Elastic Streaming
αL = 0.8 dL = 2
αH = 0.8 dH = 4

αL = 400/401 ≈ 0.9975 dL = 0.02
αH = 800/801 ≈ 0.9988 dH = 0.02

Table 5: Comparison of α and d.

dH = 4. Only the curves for cL with NH = 0, 1 and for cH with NH = 2 are displayed. The
solid curves are the required capacities in the elastic model with αL = αH = 0.8 (obtained
by simulation). The dashed curves are the required capacities in the streaming model with
dL = 2 and dH = 4. The dotted curves are the required capacities in the streaming model
with dL = dH = 0.02.
We observe that with dL = 2 and dH = 4 the required capacities in the streaming model are
indeed close to the required capacity in the elastic model with αL = αH = 0.8.

With Table 5 and Figure 17 we conclude that the performance requirements for streaming traf-
fic (with dL = dH = 0.02) are considerably more stringent than the performance requirement
for elastic traffic (with αL = αH = 0.8).
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Figure 17: Required capacity when dL = 2, dH = 4. Top: γH = 0.01, bottom: γH = 0.1.
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6.3 Practical recommendations for determining the required capacity of a
network link

In operational capacity management, as implemented by network operators, the 5-minute
workloads in the busiest hour of the day (see Section 2.1) are used to determine the required
capacity. However, in Sections 4.5, 5.6 and 6.1 we have seen that the required capacity for a
particular workload also depends on other characteristics.

If the traffic characteristics are not known, a network operator has to provide the capacity
that is required to fulfill the performance requirements in the worst-case scenario, such that
the performance requirements are satisfied in all cases. Then the provided capacity can be
significantly higher than necessary in a particular situation (see Table 4), so it is useful to get
more insight into the traffic characteristics. Important facts to know about the data traffic
are:

1. The category of the communication service by which data packets are generated (stream-
ing or elastic). In Section 6.1 we saw that the required capacity to fulfill the performance
requirements for streaming traffic is significantly higher than the required capacity for
elastic traffic.

2. The number of corporate users. These are the users with a high access rate.

3. The behavior of corporate users. Is traffic generated by a company the sum of the
data traffic of the independently behaving employees or does the corporate user behave
differently, e.g. he transfers a large amount of data from time to time? In Table 4 we
observed that the required capacity strongly depends on the behavior of a high-rate
source. If a corporate user transfers a large amount of data from time to time the
required relative capacity with respect to the workload can be twice as much as if traffic
from a corporate user is the sum of the data traffic of the employees.

4. The fraction of time that a corporate user transmits data in case he transfers a large
amount of data from time to time. The required capacity strongly depends on the
maximum number of sources that is active for a fraction of time exceeding ε, where ε is
the fraction of traffic with an insufficient high performance.

In practice, some of the characteristics mentioned above can be obtained by an operator.
The first characteristic is known by an operator in many cases, because service providers use
virtual network connections per service (web, VoIP, TV) to avoid that the performance of
a particular service is degraded by an excess of traffic from other services. In this way the
category of traffic on a (virtual) network link can be obtained.
Also the second characteristic can be obtained. For a given link, the access rates are stored in
a network administration system. From this administration system the number of users with
a large access rate can be obtained.
The third and fourth traffic characteristics (about the behavior of corporate users) cannot eas-
ily be obtained by an operator. However, in Table 4 we observe that an operator can strongly
improve the estimate for the required capacity when the behavior of a corporate user is known.
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We continue with some practical recommendations that can be used to get insight into the
traffic characteristics (also for the third and fourth characteristics):

• For the first traffic characteristic we mentioned that different (virtual) network con-
nections are used. To obtain whether the traffic on a link has a streaming or elastic
behavior, we can monitor the protocols over the link. If e.g. UDP is used, we know that
the traffic has a streaming behavior and if e.g. TCP is used, the traffic is elastic (see
Section 2.1).

• The number of users with a large access rate can be obtained from the network admin-
istration system. When all users have a small access rate, we know that the network
traffic is only generated by consumers and we can obtain the required capacity with
NH = 0.

• When a few users have a large access rate, we consider two scenarios for the behavior of
these corporate users as explained in Section 3.1. To obtain the behavior of the corporate
users we can monitor the data traffic of these users. When we observe that the full access
rate is used during a small fraction of the time and the amount of traffic transmitted
during the remaining part of the time is negligible, we know that the corporate user
should be modelled as a high-rate source. Otherwise, the data traffic of a corporate user
is not different from the data traffic of many independently behaving consumers and we
can use NH = 0 to obtain the required capacity.

• Another option to get insight into the traffic characteristics is to use incidental 1-second
measurements to obtain the peak rates. The level of these peak rates can then be
compared with the peak rates in the model for the different situations to determine
which model matches with the traffic characteristics on the link. With this model the
required capacity for other values of the workload can also be determined.

Many measurements are required to perform the above-mentioned recommendations. How-
ever, the estimate for the required capacity can be significantly improved with the knowledge
of these traffic characteristics. An operator can choose between performing these measure-
ments to make a better estimate of the required capacity or providing the required capacity
for the worst-case scenario. What the best option is depends on the trade-off between the
potential profit of the knowledge of the traffic characteristics (which can be determined with
the model) and the complexity of determining the traffic characteristics with the recommen-
dations mentioned above.
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7 Conclusions

This thesis presents a modelling approach for the dimensioning of an (IP) network link which
carries data of both consumers and a small number of corporate users. The users make use
of several applications, each having their own traffic characteristics. Two separate models are
used for streaming and elastic traffic. We summarize the most important mathematical results
for these models. Next we provide an overview of the most important results obtained in the
numerical studies for both models and in the comparison between the two models. Finally
we present practical recommendations to determine the required capacity on a network link.

For streaming traffic we derived exact expressions for the Quality of Service of the users for a
given capacity. This is done both for the situation that all data traffic is handled equally and
for the situation that data originating from corporate users is handled with strict priority.
The required capacities to satisfy the performance requirements can be evaluated numerically
with these expressions. Besides the exact expressions for the QoS, an approximation based
on time-scale decomposition is used to reduce the computation time of the required capacity.
It is shown that the approximation performs very well.
The numerical results for this model illustrate that for streaming traffic it is advantageous
to handle data originating from corporate users with strict priority, because in that case the
required capacity for low-rate sources hardly increases and the required capacity for high-rate
sources significantly decreases.

For elastic traffic it is not possible to derive an exact expression for the QoS, because only the
Laplace transform of the throughput distribution can be calculated and not the distribution
itself. Therefore the performance requirement in the elastic model (which is based on the
probability that the throughput of a file is insufficiently high) is translated into a target value
for the average throughput. An approximation for the average throughput of a file is used
to evaluate the required capacity. This approximation is time-consuming and performs worse
than a simple approximation based on the instantaneous transmission rate of a file. The last
approximation is quite good within the range of the realistic parameters used in this thesis.
Handling data originating from corporate users with strict priority is less advantegeous for
elastic traffic than for streaming traffic, because the performance requirements for elastic ser-
vices are less stringent. This causes that the performance for corporate users is unnecessarily
high at the expense of the performance for the consumers (on which the required capacity is
based in this case).

In the numerical studies in this thesis the required capacities to fulfill the performance re-
quirements are compared in several situations. In particular, the impact of the presence of
one or two corporate users on the required link capacity is examined. An observation for both
models is that a corporate user that transmits a large amount of data from time to time,
experiences a higher level of congestion in the network than consumers. Further the required
capacity to satisfy the performance requirements of all users strongly depends on the traffic
characteristics. We mention the most important traffic characteristics. The first one is the
category of the communication service by which data packets are generated (streaming or
elastic). The performance requirements for streaming traffic are more stringent than those
for elastic traffic. The second characteristic is the number of corporate users in the network.
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The third is the behavior of corporate users. When a corporate user transfers a large amount
of data from time to time the required capacity to fulfill the performance requirements is
higher than when traffic generated by a company is the sum of the data traffic originating
from independent employees. The final important traffic characteristic is the fraction of time
that a corporate user transmits data in case he transfers a large amount of data from time to
time. The required capacity to satisfy the performance requirements strongly depends on the
trade-off between the fraction of time that a corporate user transmits data and the fraction
of traffic that is allowed to be transmitted with an insufficiently high performance.

In operational capacity management, as implemented by network operators, the 5-minute
workloads in the busiest hour of the day are used to determine the required capacity. If the
traffic characteristics are not known, a network operator has to provide the capacity that
is required to fulfill the performance requirements in the worst-case scenario. We presented
some practical recommendations to determine the traffic characteristics in the network, such
that the required capacity can be better estimated. The first recommendation is to monitor
the protocols over the link to determine whether the traffic on a link has a streaming or elastic
behavior as elastic traffic requires less capacity. The second recommendation is to determine
the number of users with a large access rate from the network administration system as this
number has a strong impact on the required capacity. If a few users have a large access rate,
the third recommendation is to monitor the data traffic of these users to determine their
traffic characteristics.. Another option to get insight into the traffic characteristics is to use
incidental 1-second measurements to obtain the peak rates and match these to a correspond-
ing model such that the results of the model can be used to forecast the capacity for other
links and workloads.

Whether an operator should provide the required capacity for the worst-case scenario or
perform the recommendations mentioned above to get insight into the traffic characteristics
depends on the trade-off between the potential profit of the knowledge of the traffic charac-
teristics and the complexity of determining the traffic characteristics.
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A Average packet delay

We calculate the average packet delay if a joint buffer is used. From Expression (16) in Section
4.2.1 it follows that the exceedance probability of the delay of a low-rate packet is given by

P(DL > x) =

∑
i,j(πi,j − Fi,j(cx))i

γLNL
,

where DL is the delay of a low-rate packet when using a joint buffer. Then the probability
density function of DL is

fDL
(x) = − d

dx
P(DL > x)

1
γLNL

∑
i,j

icfi,j(cx)

=
c

γLNL

∑
i,j

i
∑
zk<0

akzk(ψk)(NL+1)j+i exp(zkcx)

=
c

γLNL

∑
zk<0

akzk

(∑
i,j

i(ψk)(NL+1)j+i

)
exp(zkcx),

where Fi,j(b) is given in Expression (24). Now we can compute the average packet delay of a
low-rate packet.

E[DL] =
∫ ∞

0
xfDL

(x)dx

=
c

γLNL

∑
zk<0

akzk

(∑
i,j

i(ψk)(NL+1)j+i

)∫ ∞

0
x exp(zkcx)dx

=
1

γLNLc

∑
zk<0

ak

zk

(∑
i,j

i(ψk)(NL+1)j+i

)
. (63)

The average delay of a high-rate packet is

E[DH ] =
1

γHNHc

∑
zk<0

ak

zk

(∑
i,j

j(ψk)(NL+1)j+i

)
. (64)
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B Delay of a low-rate packet with two high-rate sources with
strict priority

We calculate the joint probability that the delay of a low-rate packet exceeds dL seconds and
the state of the system is (i, j) when NH = 2 and the high-rate sources have strict priority.
We use the same method as for the situation with NH = 1 in Section 4.3. We assume that the
state of the high-rate source can change at most once while a packet is in the low-rate buffer,
because the probability that the state of the high-rate source changes two or more times is
negligible with the parameters as in Table 1.

• j = 0. The delay of a packet exceeds dL when the buffer content exceeds cdL and
possibly when the buffer content is between (c− rH)dL and cdL and a high-rate source
becomes active too soon. In the latter case the output rate of the low-rate buffer is c
until the moment a high-rate source becomes active (after t seconds) and c− rH for the
rest of the time. The total delay of a packet is then t+ (b− ct)/(c− rH), which exceeds
dL with probability 1− exp(−2λH(b− (c− rH)dL)r−1

H ).

• j = 1. The delay of a packet exceeds dL when the buffer content exceeds cdL and possibly
when the buffer content is between (c− rH)dL and cdL and the high-rate source departs
too late or the buffer content is between (c − 2rH)dL and (c − rH)dL and the second
high-rate source arrives too soon. With a source departure, the output rate of the low-
rate buffer is c− rH until the moment the high-rate source departs (after t seconds) and
c− rH for the rest of the time. The total delay of a packet is then t+(b− (c− rH)t)c−1,
which exceeds dL with probability exp (fH(b− cdL)). With an arrival of the second
high-rate source, the output rate of the low-rate buffer is c− rH until the moment the
high-rate source arrives (after t seconds) and c− 2rH for the rest of the time. The total
delay of a packet is then t+(b− (c−rH)t)/(c−2rH), which exceeds dL with probability
1− exp(−λH(b− (c− 2rH)dL)r−1

H ).

• j = 2. The delay of a packet exceeds dL when the buffer content exceeds (c−rH)dL and
possibly when the buffer content is between (c−2rH)dL and (c− rH)dL and a high-rate
source departs too late. In the latter case the output rate of the low-rate buffer is c−2rH
until the moment a high-rate source departs (after t seconds) and c− rH for the rest of
the time. The total delay of a packet is then t+(b− (c−2rH)t)/(c−rH), which exceeds
dL with probability exp (2fH(b− (c− rH)dL)).

The expression for Gi,0(dL) when NH = 2 is equal to the expression for NH = 1 with λH

replaced by 2λH .

Gi,0(dL)

≈
∑
zk<0

ak(ψk)i

[
2λH

rHzk − 2λH
exp(zk(c− rH)dL)− rHzk

rHzk − 2λH
exp(zkcdL − 2λHdL)

]
.
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For Gi,1(dL) we have

Gi,1(dL)

≈ πi,1 − Fi,1(cdL) +
∫ cdL

(c−rH)dL

fi,1(b) exp (fH(b− cdL)) db

+
∫ (c−rH)dL

(c−2rH)dL

fi,1(b)
(

1− exp
(
−λH

b− (c− 2rH)dL

rH

))
db

= −
∑
zk<0

ak(ψk)NL+1+i exp(zkcdL)

+
∑
zk<0

ak(ψk)NL+1+i
zk

zk + fH
(exp(zkcdL)− exp(zk(c− rH)dL − rHfHdL))

+
∑
zk<0

ak(ψk)NL+1+i

[
exp(zk(c− rH)dL)− exp(zk(c− 2rH)dL)

− rHzk
rHzk − λH

(exp(zk(c− rH)dL − λHdL)− exp(zk(c− 2rH)dL))

]

= −
∑
zk<0

ak(ψk)NL+1+i

[
fH

zk + fH
exp(zkcdL) +

zk
zk + fH

exp(zk(c− rH)dL − rHfHdL)

− exp(zk(c− rH)dL)− λH

rHzk − λH
exp(zk(c− 2rH)dL)

+
rHzk

rHzk − λH
exp(zk(c− rH)dL − λHdL)

]
.

The expression for Gi,2(dL) when NH = 2 is equal to the expression for Gi,1(dL) when NH = 1
with fH replaced by 2fH , c by c− rH and (ψk)NL+1+i by (ψk)2(NL+1)+i.

Gi,2(dL) ≈ −
∑
zk<0

ak(ψk)2(NL+1)+i

[
2fH

zk + 2fH
exp(zk(c− rH)dL)

+
zk

zk + 2fH
exp(zk(c− 2rH)dL − 2rHfHdL)

]
.
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C Variance and quantile of the instantaneous total input rate
in the streaming model

In this section we calculate the variance and the 99% quantile of the instantaneous total input
rate of the sources to explain the required capacity as plotted in the top part of Figure 10
in Section 4.5. Let RI be the instantaneous total input rate of all active sources together
at an arbitrary moment. Then RI = rLXL + rHXH , where XL and XH are the number of
active sources at a given moment. With ON-OFF sources, we have XL ∼ BIN (NL, γL) and
XH ∼ BIN (NH , γH).

In Figure 10, the workload ρ is kept at a constant value of 60 Mb/s. In this figure the required
capacity is plotted against the fraction of the traffic that originates from the high-rate source
(ηH). The workload is defined as the mean instantaneous total input rate, so we have

ρ = E[RI ] = rLγLNL + ηHρ. (65)

The workload is kept at a constant value by decreasing the number of active low-rate sources
when ηH increases. We can find this number from Equation (65):

NL =
ρ(1− ηH)
γLrL

.

Further, we can use the relation

γH =
ρ

rHNH
ηH (66)

to express the variance and quantile as a function of ηH .

C.1 Variance

The number of active high-rate sources is independent of the number of active low-rate sources,
so we can add the variances.

Var(RI) = r2LγL(1− γL)NL + r2HγH(1− γH)NH , 0 ≤ γH ≤ 1. (67)

Now we substitute Equations (66) and (66) in Expression (67) and obtain:

Var(RI) = rL(1− γL)ρ(1− ηH) + r2H
ρ

rHNH
ηH(1− ρ

rHNH
ηH)NH

= rL(1− γL)ρ+ ρηH

(
rH − rL(1− γL)− ρ

NH
ηH

)
=

1500
7

+ 60ηH

(
325
7
− 60
NH

ηH

)
, 0 ≤ ηH ≤ rHNH

ρ
=

5
6
NH .

In the last step, we substituted the parameters as used for Figure 10.

The variance as a function of the fraction of the traffic originating from a high-rate source is
a parabolic function. The maximum variance is achieved when the fraction of traffic from the
high-rate source isNH (rH − rL(1− γL)) /(2ρ). In our situation, this is when ηH = 65/168NH .
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Note that this maximum is always reached with the same value for the fraction that a single
high-rate source is active. The fraction that gives the maximum variance is γH = 13/28 in
our situation or γH = 1/2− (1− γL)rL/(2rH) in general.

C.2 Quantile

We denote the 99% quantile with x0.99. This quantile is the solution of the following equation.

0.01 = P(RI > x0.99)
= P(rLX + rHY > x0.99)

=
∑

rLnL+rHnH
>x0.99

(
NL

nL

)
γnL

L (1− γL)NL−nL

(
NH

nH

)
γnH

H (1− γH)NH−nH

=
∑

rLnL+rHnH
>x0.99

(
ρ(1−ηH)

γLrL

nL

)
γnL

L (1− γL)
ρ(1−ηH )

γLrL
−nL

·
(
NH

nH

)(
ρηH

rHNH

)nH
(

1− ρηH

rHNH

)NH−nH

.

In the last step, we substituted Equations (66) and (66). Next we substitute the parameters
as used for Figure 10. Then the 99% quantile is the solution of the following equation.

0.01 =
∑

5nL+50nH
>x0.99

(
42(1− ηH)

nL

)(
2
7

)nL
(

5
7

)42(1−ηH)−nL

·
(
NH

nH

)(
6ηH

5NH

)nH
(

1− 6ηH

5NH

)NH−nH

.
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D Product-form stationary distribution

We compute the stationary distribution of the elastic model of which the transition rates are
given in Section 5.1, with the extra assumption that rL = rH = r. This is not a realistic
assumption for the model, but with this assumption we can model the network as a closed
network of queues with a product-form distribution. The modelling of the network is shown
in Figure 18.

Figure 18: Closed network for the elastic model with rL = rH = r.

The queues on the left side model the inactive periods of the sources. These queues are infinite-
server queues. The inactive periods of the sources have exponential (λL) and exponential (λH)
durations, and the server rate is R(n) = n when n sources of the low-rate (high-rate) source
are inactive. The queue on the right side models the active periods of the sources. This is
a processor-sharing server with maximum server rate c. When n sources are active (low-rate
and high-rate sources together), the server rate is R(n) = min(nr, c). The durations of the
active periods are exponential (fL) and exponential (fH) for the low-rate sources and high-rate
sources respectively.
The stationary distribution of this network has a product-form. Define

π(nOFF
L , nOFF

H , nON
L , nON

H )

as the stationary probability that nOFF
L low-rate and nOFF

H high-rate sources are inactive and
nON

L low-rate and nON
H high-rate sources are active. In total we have NL (NH) low-rate (high-

rate) sources, so nOFF
L + nON

L = NL and nOFF
H + nON

H = NH . From these relations it follows
that the state of the process is determined by only nON

L and nON
H . The stationary distribution

has a product-form, so

π(nON
L , nON

H ) := π(nOFF
L , nOFF

H , nON
L , nON

H ) = GπL(nOFF
L )πH(nOFF

H )πON (nON
L , nON

H ), (68)

where πL, πH and πON are the stationary distributions of the infinite-server or processor-
sharing queues and G is the normalization constant. We have

πL(nOFF
L ) = GL

(ρOFF
L )nOFF

L

nOFF
L !

,

πH(nOFF
H ) = GH

(ρOFF
H )nOFF

H

nOFF
H !

,

πL(nON
L , nON

H ) = GON

(
nON

L + nON
H

nON
H

)
(ρON

L )nON
L (ρON

H )nON
H

R(1)R(2) · · ·R(nON
L + nON

H )
,
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whereGL, GH andGON are constants and ρOFF
L , ρOFF

H , ρON
L and ρON

H are the server utilizations.
These are

ρOFF
L =

vL

λL
, ρOFF

H =
vH

λH
, ρON

L =
vL

fL
, ρON

H =
vH

fH
,

where vL (vH) is the rate at which low-rate (high-rate) sources turn ON or OFF.

Substituting πL, πH and πON in Equation (68) and using nOFF
L +nON

L = NL and nOFF
H +nON

H =
NH gives

π(nON
L , nON

H ) = G
(ρOFF

L )NL−nON
L

(NL − nON
L )!

(ρOFF
H )NH−nON

H

(NH − nON
H )!

(
nON

L + nON
H

nON
H

)
·

(ρON
L )nON

L (ρON
H )nON

H

R(1)R(2) · · ·R(nON
L + nON

H )

= G

(
vL

λL

)NL
(
vH

λH

)NH 1
NL!NH !

(
λL

fL

)nON
L
(
λH

fH

)nON
H

·
(

NL

nON
L

)(
NH

nON
H

)
(nON

L + nON
H )!

R(1)R(2) · · ·R(nON
L + nON

H )

= G′
(

NL

nON
L

)(
λL

fL

)nON
L
(
λH

fH

)nON
H
(

NH

nON
H

)
(nON

L + nON
H )!

R(1)R(2) · · ·R(nON
L + nON

H )
.

The normalization constant G′ follows from the fact that π is a probability distribution:

G′ =

(
NL∑

nL=0

NH∑
nH=0

(
NL

nON
L

)(
λL

fL

)nON
L
(
λH

fH

)nON
H
(

NH

nON
H

)
(nON

L + nON
H )!

R(1)R(2) · · ·R(nON
L + nON

H )

)−1

.
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E Closed-form Laplace transform of the conditional sojourn
time distribution

We derive a closed-form expression for the Laplace transform of SL
i,j(x) along the lines of [11],

pages 105-108. The Laplace transform of the conditional sojourn time of a high-rate source
can be computed analogously.

Consider an amount of low-rate data x and a time interval of length ∆ > 0, with ∆ sufficiently
small such that the transfer of the file for which we determine the transfer time cannot finish
within this time, i.e. ∆ < xRL(i, j)−1. We condition on all possible events occurring during
this interval. These are the events illustrated in Figure 14, except for the departure of the
special source.

S̃L
i,j(x, ω)

= E[e−ωSL
i,j(x)]

= iRL(i+ 1, j)fL∆e−ω∆S̃L
i−1,j(x−RL(i+ 1, j)(∆−O(∆))−RL(i, j)O(∆), ω)

+(NL − i− 1)λL∆e−ω∆S̃L
i+1,j(x−RL(i+ 1, j)(∆−O(∆))−RL(i+ 2, j)O(∆), ω)

+jRH(i+ 1, j)fH∆e−ω∆S̃L
i,j−1(x−RL(i+ 1, j)(∆−O(∆))−RL(i+ 1, j − 1)O(∆), ω)

+(NH − j)λH∆e−ω∆S̃L
i,j+1(x−RL(i+ 1, j)(∆−O(∆))−RL(i+ 1, j + 1)O(∆), ω)

+(1−A(i, j)∆)e−ω∆S̃L
i,j(x−RL(i+ 1, j)∆, ω) + o(∆).

Rearranging terms and summarizing the decrease of the remaining amount of data with O(∆)
gives

S̃L
i,j(x, ω)− S̃L

i,j(x−RL(i+ 1, j)∆, ω)
RL(i+ 1, j)∆

=
iRL(i+ 1, j)fL

RL(i+ 1, j)
e−ω∆S̃L

i−1,j(x−O(∆), ω) +
(NL − i− 1)λL

RL(i+ 1, j)
e−ω∆S̃L

i+1,j(x−O(∆), ω)

+
jRH(i+ 1, j)fH

RL(i+ 1, j)
e−ω∆S̃L

i,j−1(x−O(∆), ω) +
(NH − j)λH

RL(i+ 1, j)
e−ω∆S̃L

i,j+1(x−O(∆), ω)

− A(i, j)
RL(i+ 1, j)

e−ω∆S̃L
i,j(x−O(∆), ω) +

e−ω∆ − 1
RL(i+ 1, j)∆

e−ω∆S̃L
i,j(x−O(∆), ω) +

o(∆)
∆

.

Now let ∆ → 0, then

∂S̃L
i,j(x, ω)
∂x

=
iRL(i+ 1, j)fL

RL(i+ 1, j)
S̃L

i−1,j(x, ω) +
(NL − i− 1)λL

RL(i+ 1, j)
S̃L

i+1,j(x, ω)

+
jRH(i+ 1, j)fH

RL(i+ 1, j)
S̃L

i,j−1(x, ω) +
(NH − j)λH

RL(i+ 1, j)
S̃L

i,j+1(x, ω)

− ω +A(i, j)
RL(i+ 1, j)

S̃L
i,j(x, ω).

In matrix notation this is
∂

∂x
S̃L(x, ω) = R−1

L (Q∗
L − ωI) S̃L(x, ω), (69)
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where S̃L(x, ω) is the vector with entries S̃L
i,j(x, ω) and Q∗

L and RL as defined in Section 5.1.

The time needed to transfer no data is 0, so SL
i,j(0, ω) = 0 for all (i, j) ∈ SL, which gives the

initial condition
S̃L(0, ω) = 1. (70)

The unique solution to Equations (69) and (70) is

S̃L(x, ω) = exp
(
R−1

L (Q∗
L − ωI)x

)
1. (71)

With the Laplace transform, we can calculate the mean (conditional and unconditional)
throughput. The mean conditional throughput is the mean throughput of a file with a known
file size and conditioned on the state of the process at arrival. This quantity can be calculated
in the following way ([11], page 191):

E
[
TL

i,j(x)
]

= E[
x

SL
i,j(x)

]

=
∫ ∞

0

x

t
dΦi,j,x(t)

= x

∫ ∞

0

(∫ ∞

0
exp(−ωt)dω

)
dΦi,j,x(t)

= x

∫ ∞

0

(∫ ∞

0
exp(−ωt)dΦi,j,x(t)

)
dω

= x

∫ ∞

0
S̃L

i,j(x, ω)dω,

where Φi,j,x(t) is the cumulative distribution function of SL
i,j(x) given file size x and state

(i, j) at arrival.

Deconditioning on x and (i, j) gives the unconditional mean throughput:

E[TL] =
NH∑
j=0

NL−1∑
i=0

π̂L
i,j

∫ ∞

0
fLe

−fLx

(
x

∫ ∞

0
S̃L

i,j(x, ω)dω
)

dx, (72)

where π̂ is the distribution of the state of the system at an arrival moment of a low-rate file.



84 F An alternative method to compute the mean conditional sojourn time

F An alternative method to compute the mean conditional
sojourn time

We describe an alternative method to compute the mean conditional sojourn time, as given
in Expression (54). This method is along the lines of [18] (page 137), which in turn relies on [4].

We derive a recursive relation for the Laplace transform of the mean transfer time SL
i,j(x). To

do this, we look at the first transition of the process and condition on the time t of this first
transition. We know that the remaining amount of data that has to be transmitted by the
source we are looking at is x, so when no sources change from active to inactive or the other
way round, the transmission will be completed after xRL(i+ 1, j)−1 seconds. Otherwise, the
transition of the rest of the process is the first event and we can express the average sojourn
time in terms of the average sojourn time of the remaining data.

A recursive relation for the mean conditional transfer time of a file is:

S
L
i,j(x) =

∫ ∞

x
RL(i+1,j)

A(i, j)e−A(i,j)t x

RL(i+ 1, j)
dt

+
∫ x

RL(i+1,j)

0
A(i, j)e−A(i,j)t

{
t+

iRL(i+ 1, j)fL

A(i, j)
S

L
i−1,j(x−RL(i+ 1, j)t)

+
(NL − i− 1)λL

A(i, j)
S

L
i+1,j(x−RL(i+ 1, j)t)

+
jRH(i+ 1, j)fH

A(i, j)
S

L
i,j−1(x−RL(i+ 1, j)t)

+
(NH − j)λH

A(i, j)
S

L
i,j+1(x−RL(i+ 1, j)t)

}
dt

=
x

RL(i+ 1, j)
e
−A(i,j) x

RL(i+1,j) +
∫ x

0

A(i, j)
RL(i+ 1, j)

e
−A(i,j) x−t

RL(i+1,j)

·
{ x− t

RL(i+ 1, j)
+
iRL(i+ 1, j)fL

A(i, j)
S

L
i−1,j(t) +

(NL − i− 1)λL

A(i, j)
S

L
i+1,j(t)

+
jRH(i+ 1, j)fH

A(i, j)
S

L
i,j−1(t) +

(NH − j)λH

A(i, j)
S

L
i,j+1(t)

}
dt.

By ψi,j(ω) we denote the Laplace transform of SL
i,j(x), i.e.

ψi,j(ω) =
∫ ∞

0
e−ωS

L
i,j(x)dx.

Now we take Laplace transforms of the recursive relation for the mean conditional transfer
time and get for all (i, j) ∈ SL (after some algebra):

ψi,j(ω) =
1
ω

1
RL(i+ 1, j)ω +A(i, j)

+
1

RL(i+ 1, j)ω +A(i, j)

(
iRL(i+ 1, j)fLψi−1,j(ω)

+(NL − i− 1)λLψi+1,j(ω) + jRH(i+ 1, j)fHψi,j−1(ω) + (NH − j)λHψi,j+1(ω)
)
.



85

This leads to the following system of linear equations:

1
ω

= −iRL(i+ 1, j)fLψi−1,j(ω)(NL − i− 1)λLψi+1,j(ω) + (RL(i1, j)ω +A(i, j))ψi,j(ω)

−jRH(i+ 1, j)fHψi,j−1(ω)− (NH − j)λHψi,j+1(ω),

for all (i, j) ∈ SL. In matrix notation, this is

1 = ωB(ω)ψ(ω),

where B(ω) := −Q∗ + ωRL and the states are ordered colexicographically to make the state
space one-dimensional.

The Laplace transform can be solved from the linear system by applying Cramer’s rule to
ωψ(ω) = (B(ω))−11. Then we get

ωψn(ω) =
det(B−n(ω))
det(B(ω))

, (73)

where B−n(ω) is defined as B(ω) with the column corresponding to state n replaced by 1.
The roots of det(B(ω)) = 0 are precisely the eigenvalues of R−1

L Q∗, because det(B(ω)) = 0
coincides with det(R−1

L Q∗ − ωI) = 0. From Theorem 1 of [14], we know that the num-
ber of negative eigenvalues is equal to the number of positive diagonal elements of R mi-
nus 1. Further, the multiplicity of the eigenvalue 0 is 1. So the eigenvalues of R−1

L Q∗ are
z(NH+1)NL−1 < z(NH+1)NL−2 < · · · < z1 < z0 = 0. Note that the size of the matrices Q∗ and
RL is (NH +1)NL× (NH +1)NL, because we consider a process with one low-rate source less.

With the roots of det(B(ω)) = 0, we can write down a partial-fraction representation of
Expression (73). We obtain

ωψn(ω) =
Un,0

ω
+

(NH+1)NL−1∑
k=1

Un,k

ω − zk
, (74)

where the constants Un,k are such that Expression (74) corresponds to Expression (73). Now
the solution for the Laplace transform is

ψn(ω) =
Un,0

ω2
+

(NH+1)NL−1∑
k=1

Un,k

ω(ω − zk)

=
Un,0

ω2
+

(NH+1)NL−1∑
k=1

Un,k

zk
(

1
ω − zk

− 1
ω

).

Inverting this Laplace transform yields the result for SL
i,j(x), namely

S
L
i,j(x) = UNLj+i,0 x+

(NH+1)NL−1∑
k=1

UNLj+i,k

zk
(ezkx − 1).
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We can check that this method leads to the same solution as the one given in Section 5.4 by
taking the Laplace transform of both sides of differential Equation (44). Then we get

ωψ(ω) = R−1
L (

1
ω

+ Q∗ψ(ω)),

which can be rewritten as
1 = ω(−Q∗ + ωRL)ψ(ω)

and is equal to Equation (69).
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