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Summary 
Wireless sensor networks (WSN) are a very diverse and relatively new area of 
research. WSNs consist of sensor nodes able to communicate wirelessly and it is 
preferred that they operate for a longer period of time. Since many wireless sensor 
nodes are powered by an independent power source such as a battery, power 
consumption is an important issue in the WSN research field. In this project, two 
objectives are set: to reduce power consumption using software abstractions (1) and to 
create the software abstractions in such a way that the development for the sensor 
nodes is made easier and natural (2). The hardware that is going to be used is the blue 
box, a sensor node developed by Philips Research. These nodes contain a CoolFlux 
DSP [10], a CC2430 radio chip with an 8051 microcontroller (packaged called AG2) 
[7], three one-axis gyroscopes [6], two two-axis magnetometers [8] and one three-axis 
accelerometer [9]. The nodes run Flex-OS as the operating system, which is a port of 
FreeRTOS with in addition peripheral abstraction architecture, time and task 
synchronization and Media Access Control (MAC) services. 
 
To realize the two objectives, three abstraction layers are devised on top of the 
peripheral drivers of the OS. On top of the peripheral driver architecture, device 
drivers are designed for sensors and radios. There are two drivers, one for sensors and 
one for the radio. It provides the programmer with API functions as create, configure, 
sample, send, receive, etc. Above that layer, the network schedule layer is placed. 
This handles the network scheduling to allow the radio to shut down. The necessity of 
a schedule is due to the fact that a radio needs to know when it needs to be powered to 
receive a message from a gateway (computer, PDA, etc.) or other node. If the radio 
does not know when to expect a message, it continuously has to be powered and listen 
for messages, making it very power consuming. The top layer is the Program 
Specification Functions (PSFs) layer. These PSFs are four functions with which the 
node can be programmed. The four PSFs are: sample, send, receive and compute.  
 
 
 
 
 
 
 
 

Figure 1: Proposed abstraction layers 
 
The sample function allows the programmer to set the sampling frequency, use the 
shutdown function of the sensor for a specific sensor. For example, if the 
accelerometer needs to be sampled periodically at 25 Hz and the sensor can power 
down between sampling, the program would specify the following PSF: 
sample(Sensor, frequency, ShutdownBetween, ShutdownInactive, name of the 
sensor). In the specific case of the accelerometer this would be: sample(Acceleromter, 
25, 1, 0, “Accelerometer”). The blue boxes contain three sensors which can have 
different sampling frequencies in the implementation with PSFs. All sensors are 
sampled in a separate task when the frequencies are different, but sensors sampling at 
the same frequency are grouped in one task. The send PSF allows the programmer to 
specify the send frequency at which the radio needs to send the information to the 
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sink. If the sampling frequency is higher than the send frequency, several samples are 
grouped together in one message. For the AG2 radio the following example of the 
PSF with a send frequency of 25 Hz can be called: send(AG2radio, 25, 1). If the send 
PSF is called, a task is created (as with the sensors) which will handle the actual 
sending. In this project it was chosen to use a network schedule which allows 
asynchronous sending and receiving. The sending can happen according to the send 
frequency, while the receiving is periodic once every second. The reason this is done 
is that the specific application which this project focused on did not need to receive 
anything from other nodes and only occasionally needed to receive data. The receive 
PSF sets up a task which will periodically power up the radio to receive data. The last 
PSF, compute, is currently not used. It can be used to do calculations on the node 
itself before sending data to the host or other nodes. This can be done by manually 
programming the computations that are done on the data.  
 
All PSFs are connected via queues. The sensor driver allows every sensor to have one 
queue associated with it in which the samples need to be stored. The radio driver 
allows two queues to be associated with the radio, namely a send and a receive queue. 
The former is used to store samples which need to be send by the send PSF and the 
latter stores packets which are received by the radio.  
 
After implementation of the abstraction layers, measurements were done to see how 
much overhead was produced by the abstractions (both in time and in memory). There 
were also measurements done to see the percentage of total time, the devices of the 
node (radio and sensors) are powered up. In the case of sampling at 100 Hz and 
sending at 25 Hz (the physiotherapy application), the magnetometer is shut down 
87.5% of the total time and the radio 91.4%. The power consumption of the node is 
reduced by approximately 42% allowing the node to operate for approximately 12 
hours (approximately 2.5 times longer than the original application).  
 
Especially for the magnetometer, the accelerometer and the radio a big decrease in 
usage can be seen. The gyroscope, which is the most power consuming device in the 
blue box, has a start-up time of 40ms and can therefore only be shut down between 
samples for frequencies lower than 25 Hz. The additional memory usage of the 
abstraction layers was almost 10 kilobytes. The data memory of the CoolFlux DSP is 
64 kWords (one word is 24 bits). This means the overhead of the abstraction layers is 
within reasonable limits and the trade-off between memory usage and ease of 
development and power reduction is worth it. The overhead in execution time is 
mostly found in the start-up time of the devices. Since the DSP is sequential, the 
devices have to wait until it is their turn to be powered on to take a sample. Since the 
actual time to take the sample or send the data is negligible, the main overhead is in 
the start-up times of the devices. This is also the main reason why the gyroscope (with 
a start-up time of 40ms) is sampled last of all three sensors to minimize the 
interference of this start-up time on the other two sensors.  
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1. Introduction 
Wireless sensor networks (WSN) are a relatively new area of research. There is a 
diverse range of possible applications for such networks from body sensor networks 
to large-scale networks such as forest fire monitoring. As the name WSN suggests, 
the networks consist of sensor nodes able to communicate wirelessly. The sensor 
nodes often have an independent power source (for example a battery) and their own 
processor and radio. Body sensor networks already existed before the introduction of 
WSNs but were not practical due to the cumbersome cabling necessary to connect the 
nodes to the controller. This setup can of course be unpleasant for the wearer and 
restricts his/her movement with the length of the wires. Wireless sensor nodes would 
bring a lot of freedom to this field and this is one of the reasons why wireless sensor 
networks are an important research topic. In the area of wireless sensor networks the 
reduction of power consumption is an important field of research. Due to the 
limitations of batteries (in most cases the power source of the wireless sensor nodes), 
the amount of time a node can operate is severely limited. 
 
Several types of wireless sensor nodes exist, but our research focuses on the blue 
boxes [11], nodes developed by Philips Research for body sensor networks. These 
blue boxes contain the CoolFlux DSP [10], a CC2430 radio chip with an 8051 
microcontroller (packaged called AG2) [7], three one-axis gyroscopes [6], two two-
axis magnetometers [8] and one three-axis accelerometer [9]. The gyroscope, 
magnetometer and accelerometer are seen as three axes sensors in the application and 
no distinction is made between a sensor with three axes and three separate one-axis 
sensors. They are powered by a lithium polymer battery. Flex-OS [12] is the operating 
system running on the CoolFlux DSP and contains also a complete peripheral 
abstraction architecture, time and task synchronization and Media Access Control 
(MAC) services. Flex-OS is not only used on the blue boxes but also on the SAND 
nodes. These nodes are also developed by Philips Research and have a similar 
hardware layout as the blue boxes. The main difference between the nodes is that the 
SAND nodes use a CC2420 radio (which has no integrated microcontroller) and the 
blue boxes use an AG2 radio chip (which includes a microcontroller). The MAC 
services integrated in Flex-OS are only used for the CC2420 which has no dedicated 
microcontroller that runs MAC services. The MAC services for the CC2430 run on 
the 8051 microcontroller embedded in the AG2 chip which is connected via UART 
(Universal Asynchronous Receiver/Transmitter) and GPIO (General Purpose Input 
Output) to the CoolFlux DSP and the sensors are connected to the DSP via SPI (Serial 
Peripheral Interface) and GPIO. Figure 1.1 shows a simplified schematic of the blue 
boxes. A software application that runs on the blue boxes helps with physiotherapy 
exercises for stroke recovery by providing feedback. This application provides 
patients, recovering from a stroke, with feedback on exercises they perform to help 
their rehabilitation process. The sensors are used to measure if the patient correctly 
performs the physiotherapy exercises and then provide feedback to the patient on the 
PC. The application uses a PC as the sink to receive all data from the sensors and 
perform further computations on it. On the node itself, no computations are done. In 
this application the nodes do not need to communicate with each other, only with the 
sink, thus creating a star network.  
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Figure 1.1: Simplified schematic of the blue boxes (base image from [4]) 
 
By turning on and off the sensors and radio when they are not active 
sampling/sending/receiving, power can be saved and therefore the battery life of the 
node extended. Furthermore, to ease development on these sensor nodes several 
abstractions are proposed and implemented to provide programmers with a 
straightforward way of programming applications. The physiotherapy application will 
be seen as the main application on which this approach will be tested. Therefore, 
design decisions that need to be made will try to be as generic as possible but are 
largely motivated by this specific physiotherapy application.  
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2. Problem description 
Programming wireless sensor nodes of the blue box type at this point requires that the 
programmer needs to be familiar with the hardware layout of the nodes. This 
familiarization requires time and thus the time to develop the WSN application 
increases (1).   
The second problem is battery live of sensor nodes in wireless sensor networks. In the 
current software, a programmer has to shut down and start sensors and radio by 
programming this explicitly. The programmer also has to manage that the radio and/or 
sensors are started up before taking a sample or sending/receiving a message. This not 
only complicates the development for a programmer, it can also mean a programmer 
does not even use the start up and shutdown functionality (2).  
This presents the third problem for the programmer. The moment to shut down and 
start up the radio should be known. Because the node may need to receive information 
from another node or a gateway/sink, the program needs to know when data is 
expected from other nodes. In our case, a network schedule can help to determine the 
intervals at which the radio can be shut down (3).  
The fourth and last problem addressed here is the power consumption of wireless 
sensor nodes. For nodes with active sensors and radios, the power consumption can be 
high. In [2] an analysis was done on the power consumption of the blue boxes running 
a specific application. Since nodes are battery powered (for the blue boxes a cell 
phone battery is used) power consumption is a big issue. The blue boxes with the 
physiotherapy application currently runs 3.5 hours continuously while weeks are 
needed (4). 
 
To tackle the first problem (1), a software abstraction is devised to hide the 
underlying hardware from the programmer while retaining the freedom to set 
application parameters. These include the sampling frequency, sending frequency and 
the option of shutting down a sensor between taking samples. 
The second problem (2) will be addressed by the software abstractions mentioned 
above. The abstractions, provided by this project, will include the functionality to turn 
a radio or sensor off between taking samples or sending/receiving data (2). 
This project will use one fixed network schedule (3) which is calculated offline (see 
section 4.4). For the sensors, the sampling schedule does the same but leaves the 
programmer with the ability to change the sampling frequency and thus the sleeping 
periods. Both the radio and the sensor drivers will allow the programmer to specify if 
and when the shutdown functions should be applied. All improvements will have a 
reduction of the power consumption as effect by switching off sensors and the radio 
for a given period of time while maintaining communication. 
Because the software abstractions (4) simplify the use of shutdown functions for both 
the sensors and the radio, the power consumption of these components will reduce 
significantly. Especially by shutting down power consuming components like a 
magnetometer and the radio when they are not used, it will help prolong the time a 
node can run continuously. 
 
Several constraints are placed on this design. First the network schedule is going to be 
calculated before operation of the nodes, which means that during operation it is 
predetermined beforehand when a node needs to listen to the wireless medium and 
when it can send data over the medium. The second constraint is that the project 
assumes a connected (all nodes can directly communicate with the sink) body sensor 
network environment. The applications of interest have in general not more than eight 
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nodes in their network. Therefore the network schedule can be simple. For the nodes, 
only communication with the gateway/sink is needed, no communication between 
nodes. The nodes send their data to a sink and must be able to receive data from the 
sink (to keep the implementation as generic as possible). Furthermore the sensors and 
radio drivers will be implemented for the blue boxes running Flex-OS. A different 
connection of sensors or radio might require a different implementation. On the blue 
boxes, Flex-OS is used. The consequence is that time- and task synchronisation 
functions are implemented in the Flex-OS environment as well as peripheral drivers 
(SPI, UART, etc) and a MAC layer implementation. The time synchronisation 
algorithm runs in a separate task that is not further considered in this project.  
 
Problem formulation 
The shutdown of sensors in between taking samples and the shutdown of the radio 
between sending/receiving realize the two improvements on the power consumption 
that are gained from these implementations. The shutdown of sensors during 
inactivity (application on the gateway has not yet started, sensor is still being 
attached, etc) is not taken into account for the calculation of this improvement since it 
also requires information from the application running on the gateway. The number of 
nodes is fixed to a maximum of eight nodes.  
The second part of our hypothesis is that the time to develop should be decreased by 
increasing the usability of the software for the programmer. Therefore drivers and 
high level abstractions are presented to the programmer.  



  10

3. Objectives 
Two objectives are set for this project. These objectives are interwoven with each 
other. The first objective of this project is to develop software abstractions as an 
extension of the current operating system for wireless sensor nodes. These software 
abstractions will provide the programmer with a way to develop applications without 
having to be familiar with the underlying hardware and with low level software. The 
second objective is to use the software abstractions to control the hardware in such a 
way that a reduction in energy use is realised.  
The software abstractions will be validated on the blue box sensor nodes [11] 
developed by Philips Research. They contain a CoolFlux DSP [10], a CC2430 radio 
chip [7] (with an 8051 microprocessor) and three 3-axis sensors (an accelerometer [9], 
magnetometer [8] and gyroscope [6]). The CoolFlux DSP runs Flex-OS [12], based 
on the FreeRTOS micro-kernel, which provides the programmer with a complete 
peripheral abstraction layer, MAC services and time and task synchronisation.  



  11

4. Improvement 
As described in chapter three, one of the goals of this project is to simplify the 
programming of wireless sensor nodes, but within the confines of the FreeRTOS 
environment. The Flex-OS software platform has been designed to be easily portable 
to new microcontrollers. This exchangeability over different hardware platforms 
requires a certain level of abstraction over the underlying hardware. On top of that, 
the reason to increase the level of abstraction in this project is to improve the ease of 
development for programmers and therefore shortening the time to develop. The 
current abstractions implemented in Flex-OS provide the programmer with peripheral 
drivers as UART, SPI, etc, but not yet more generic drivers as sensor and radio 
drivers (the latter holds for the version of Flex-OS running on the blue boxes since a 
radio driver analog already exists in the MAC services for the CC2420). These extra 
abstractions of course cost both program memory as well as a small amount of delay. 
It is felt however that the ease of programming is for now more important than the 
possible increase in delay. Only after testing can it be concluded if the amount of 
delay is acceptable or not. The same holds for the memory usage. After actual testing 
it can be concluded if the memory usage with the new abstractions is acceptable.   
First, a global overview will be given of the abstractions that are envisaged and why 
these need to be made. After that, a more detailed description will be given for every 
abstraction.  
 
The highest level of abstraction that is going to be provided is the “Program 
Specification Functions” (PSFs). These PSFs are four functions which the 
programmer uses to specify the temporal aspects of the application. An example is the 
frequency with which data needs to be sampled and the frequency at which the data 
has to be sent. PSFs use the network schedule and sampling schedule layers to access 
underlying device drivers like the radio and the sensors. This way the PSFs are 
completely separate from the underlying radio and sensor implementations. In section 
4.1 these PSFs will be discussed in more detail.  
 
 
 
 
 
 
 
 
 

Figure 4.1: Proposed abstraction layers 
 
The second abstraction layer is composed of the schedules. They consist of the 
network schedule and the sampling schedule. The network schedule regulates when 
the radio can send data and when it has to receive data. This is to allow the radio to be 
shut down in between. The main reason to keep the schedule as a separate abstraction 
layer is that a schedule can vary depending on the application. Therefore by 
separating this in a separate abstraction layer, the schedule can independently be 
(ex)changed. While the network schedule is fixed beforehand in this project, 
separating the network schedule layer will make it easier for programmers to develop 
different schedules than if the schedule was integrated into the PSFs or radio drivers.  

Program Specification Functions 

Network Schedule 

Sensor drivers Radio drivers 

Peripheral Drivers (UART/I2C/SPI/MAC/…) 

Sampling Schedule 



  12

The sampling schedule regulates the moments when the sensors take samples. Every 
sensor has its own sampling schedule that is set by the PSF (see section 4.1). This 
facilitates the shutting down and starting up of the sensor in between samples. The 
programmer does not need to take care of that. A sensor is seen as one entity, so for 
example a gyroscope is seen as a 3-axis gyroscope and not as 3 separate 1-axis 
gyroscopes. This makes sure the number of sensors does not become too large and the 
sensor samples of all 3 axes are kept together. It also keeps the gyroscope as one 
device, making the use of the device driver easier.  
 
The third abstraction layer consists of two parts: the sensor driver and the radio driver. 
These will be briefly discussed here and then in greater detail in section 4.4. The 
sensor driver abstracts from the peripheral drivers (GPIO, SPI, etc). It provides the 
programmer with functions to access the sensors. This way the peripheral drivers are 
hidden to the programmer and thus provide an interface to the schedule layers. It will 
also include the automatic start up and shutdown before and after sampling a sensor. 
The programmer will have the option to shut down the sensor by the application. By 
automating this start up and shutdown, reducing power becomes more intuitive for the 
programmer. 
The radio driver abstracts the access to MAC functions used to access the radio. This 
abstraction provides an interface to the network schedule layer and, as with the sensor 
driver, facilitates the shutdown and start up of the radio by calling a function. These 
power reduction functions are incorporated in the sending and receiving functions so 
the programmer does not need to switch the radio off manually.  
 
The second goal, as stated in chapter two, is to reduce the energy consumption in the 
wireless sensor nodes. This will be achieved by using the software abstractions 
specified in the first part of this section. The highest software abstraction, the set of 
PSFs, gives programmers the option to shutdown both the chosen sensors as well as 
the radio. The sensor will then shut down in between taking samples. Depending on 
the sampling frequency and the energy consumption of the sensor, this can already 
reduce the energy consumption of the node significantly. The network schedule 
performs a similar function for the radio, allowing it to shut down if it does not need 
to receive or send information. One of the PSFs (as is discussed in more detail in 
section 4.1) is going to be used to do calculations on the node before the data is sent. 
Depending on the calculations that are done on the node, usually less data needs to be 
sent. For example, the three x-values from the three sensors need to be averaged. 
Doing it after sending means three x-values need to be sent. If the averaging is done 
on the node, only one average x-value has to be sent, reducing the amount of energy 
used by the radio. The CoolFlux DSP is a processor which cannot be shut down due 
to hardware limitations. Therefore the processor is always on and the increase of 
computation that has to be done is negligible in comparison to the amount of energy 
used by sending data via the radio.  
 
4.1 Program Specification Functions 
The program specification functions (PSFs) will be used to give the programmer a 
way to define the desired application at a high level. These functions will use 
functions in lower level abstraction layers to keep the layers as separate as possible. 
PSFs will set up tasks for the program to run, so the programmer does not have to do 
this explicitly. The programmer should be able to create the application by specifying 
the desired tasks and the way they should be connected (for example as shown in 
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figure 4.2). The interaction between tasks as seen in figure 4.2 will be done via 
queues. By calling multiple instances of the sample task for example, multiple sensors 
will take samples. There are limitations to this approach. The first is that a sample 
task cannot be directly linked to a receive task since both are producing data. The next 
limitation is that a send task will have only one send queue, which can be accessed 
from the compute task or from one of the sample tasks. The connections between 
blocks can vary depending on the type of application. It is possible to not use the 
compute task and directly connect the sampling tasks via the send queue to the send 
task. This has as a consequence that the queue may be accessed from multiple tasks 
(depending on the number of sample tasks). The data in this queue will be sent. To 
limit the number of tasks that are running, sample tasks that sample at the same 
frequency will be merged. Both the receive and compute tasks can be omitted if there 
is no computation to be done or if no information needs to be received from the sink 
(the time synchronisation is not considered in this).  
 

 
 
 
 
 
 
 
 
 

Figure 4.2: Graphical depiction of a possible arrangement of tasks created by PSFs 
 
A main advantage of sensor node applications is that many have similar tasks and 
requirements. Most sensor nodes are used to sense data, process this data and 
communicate this data to the outside world. Because of this generally common pattern 
there are four functions that sensor nodes need to perform: taking samples using 
sensors, sending information, receiving information and performing different 
computations on sensor data. This presents an opportunity to help the programmer 
with creating an application. By only providing functions that achieve these four 
functions for a sensor node, the programmer does not need to program these 
manually. The “program specification functions” are thus restricted to four functions, 
namely the following: 
Sample: This function lets the programmer specify the sampling frequency for a 
certain sensor and indicate the use of the shutdown functions of the sensor (both the 
“between samples” and “during inactivity” shutdown separately) 
Compute: Since the programmer is the only one who exactly knows what 
computations need to be performed on the data, a generic implementation of a 
computation function would not be feasible. Therefore the programmer has to 
manually write part of this function. A pre-created task for the compute function is 
already there, with access to the radio queues (send and receive) and all sensor 
queues. The programmer can manually program what computations the compute 
function actually has to perform on the code. The send queue of the radio can be used 
by the programmer to store the end result(s) which can later on be sent by the send 
PSF. This task is automatically created when the compute PSF is invoked.   
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Send: This function lets the programmer specify the data to send, the radio to be used 
and the frequency the data has to be sent. The use of the shutdown function in 
between sending can also be enabled or disabled.  
Receive: The programmer can specify the radio that has to receive data and if the 
radio should shut down. What should be done with the received data can also be 
specified by implementing a custom function developed by the programmer (as with 
the compute function). If the data is used in the compute function than the receive 
queue can be accessed in the compute function that a programmer has to implement 
manually and the receive function should not be used. Since the send part of the radio 
already knows if the radio should shut down in between, this does not have to be 
specified in this PSF again. This is to avoid conflicting shutdown parameters if they 
are specified in both the send and receive PSF.  One option is to let it be specified in 
both but give priority to one of the two functions, so that if they both have a different 
parameter the send PSF always overwrites the one from the receive PSF or the other 
way around. This can lead to confusion as to which PSF has precedence and therefore 
it is decided to only let the shutdown of the radio be specified in the send PSF.   
 
Restricting the number of functions the sensor node can perform is of course a trade 
off between ease of development and what a programmer can specify. Certain nodes 
may still need to perform additional tasks or programmers may wish to expand the 
number of functions the node can perform, but this will also again increase the 
complexity for the programmer to create his application. Due to the layered nature of 
the software abstraction, additional PSFs can later always be written if the desired 
functions of sensor nodes change or the set of functions is enlarged to encompass 
other tasks. This will make this approach more flexible even if other features are 
needed.  
Increasing the number of computations on the node is actually a good practice since in 
most cases it reduces the number of messages or the length of messages that need to 
be sent. Especially at this time trading sending energy for computation energy is more 
efficient since the processor of the blue boxes cannot be turned off due to hardware 
limitations but the radio can. In general this is already an efficient trade off since in 
most cases the power consumption of the processor is much lower than the power 
consumption of the radio. Also, the use of the PSFs will make it easier for 
programmers to use the start up and shutdown functions of the sensors and radio 
without having to devote time on when and how start up and shutdown functions need 
to be evoked.  
 
The sampling and sending frequencies can be specified in the PSFs. Therefore, to 
verify that the sampling and sending frequencies are valid, the following three 
conditions are tested: 

 Sampling frequency ≥ Send frequency (avoid sending empty packets) 
 Sampling frequency / Send frequency ≤ 20 (avoid overflowing the queue 

which stores data samples, it has 60 places for samples (1 sample is 3 
integers), 20 for each sensor) 

 1/sampling frequency > Start-time sensor (only applicable if the shutdown 
function between samples is used, to make sure the sensor has enough time to 
start) 
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Example 
To illustrate the use of these PSFs, an example will be given. A programmer wants 
the sensor nodes to sample two sensors (sensor A and B) at a frequency of 100 Hz. 
Both sensors provide him with x, y and z values each. The programmer wants to add 
the x-values, the y-values and z-values and then send these triplets at a frequency of 
50 Hz. The way the programmer would do this using the PSFs would be as follows: 

1. First use the sample function to set up both sensors with the desired frequency 
and shutdown parameters: Sample(sensor A, 100Hz, shutdown, …) and 
Sample(sensor B, 100Hz, shutdown,  …) 

2. Then the pre-made function is implemented to take the three parameters of 
the sensors and add them. The result of this computation is stored in the send 
queue. Now he invokes the compute function: Compute(…) 

3. Now he needs to specify the sending function to concatenate two processed 
samples in one packet and send it. The two samples are concatenated because 
the send frequency is half of the send frequency. This gives the following 
function: Send(Radio A, 50Hz,…). This function will retrieve the items in the 
send queue and sent the data at the indicated frequency.  

 
4.2 Sampling Schedule 
The sampling schedule is used to determine at which points in time the sensor needs 
to take a sample. The sensor can be shut down in between these samples, a parameter 
set by the programmer. As stated in [2] shutting off the sensor between samples can 
corrupt the sampled data. An example is aliasing, which can occur to accelerometer 
data if there is no continuous sampling. Therefore turning the accelerometer off at 
random times should not be done. Each sensor can have a different schedule. The 
schedule is made by providing the sampling frequency in the PSF. The sampling 
schedule is not a separately implemented schedule like the network schedule. The 
schedule is enforced by the sample PSF.  
The reason to choose for an integration of the sampling schedule in the sample PSF is 
threefold. First, the sampling schedule is not as complicated as a network schedule. 
Since sensors only sample data at a certain frequency and no outside influences 
require a sensor to be powered up (like a radio that needs to receive) the sampling 
schedule can be kept simple. A second reason is that all data is available at the level 
of the PSF like frequency and shutdown boolean. Placing this outside the PSF would 
complicate the implementation and later also the understanding of the sample PSF. A 
third consideration is that the only real setting for the sample schedule is the 
frequency at which the sensor needs to sample. With that information, the schedule 
knows when the sensor can sleep and when to wake up. Since the frequency can 
directly be set in the PSF, the schedule can be changed by the programmer on that 
level.  
 
4.3 Network Schedule 
To be able to shut down the radio when there is no data to be sent or received, a 
network schedule is made. If there is no schedule, the application does not know when 
the radio has to wake up. Since many factors play a role in determining which 
network schedule works best in a specific case, the network schedule layer has been 
separated from both the radio driver layer and the program specification layer. The 
network schedule is fixed during operation of this network. If a different schedule is 
needed a new schedule should be made and replace the current network schedule.  
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Figure 4.3: Layout of a star network supported by this implementation 
 
In the application where these abstractions will be validated, a star topology is 
applied. End-nodes do not need to communicate with each other; they communicate 
their data to the sink. The sink is in this case a PC which does all calculations on the 
data sampled by the sensors. The sink only needs to communicate time 
synchronisation messages to the nodes. There will be no multi-hop topology applied, 
since it is not necessary in the example body network environment. As a result the 
schedule that will be used can be simple. The schedule is adhered to by both the sink 
and all the nodes. The use of such a topology places limitations on what can be done 
in the network. The first limitation is that no inter-node communication is possible. 
Secondly, nodes that are outside the range of the sink cannot communicate at all with 
the sink, since there is no multi-hop supported. There are several options in which this 
star topology (without multi-hop) can be represented in a schedule. Three options will 
be discussed further in the coming sections and advantages and disadvantages will be 
noted to propose a selection.  
 
4.3.1 Schedule option one: Timeframe and slot division 
The first option for a network schedule is to divide a timeframe into slots. The length 
of both the frame and slots can be set with a function. The first eight slots are used for 
sending information and the last two for receiving. In these last two timeslots, the 
radios of all nodes need to be powered up. If a node does not need to send anything, 
the radio will not be started and remains in “power down mode”. The number of slots 
is chosen to be ten because there needs to be two receiving slots (one for time 
synchronisation and one for additional information from the gateway/sink) and eight 
sending slots since in the current setup there will be no more than eight nodes, making 
it possible to give each node its own slot later on if necessary. 
 
 
 

Figure 4.4: Division of slots in one timeframe for schedule option one 
 
The API that this network layer would offer to the PSFs consists of three functions: 

 sendASAP(…): sends the data in the first send slot that is available 
 received(…): provides the received information to the higher layers 
 configure(framelength, slotlenght, …): configures the network schedule 

 
The main advantage of this schedule is that every node can have its own sending slot 
and therefore the chance of having to retransmit due to collisions is greatly reduced. It 
also allows the programmer to shuffle the slots (including framelength and slotlength) 
around to the desired need of the application. A big drawback of this schedule is the 
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larger restriction on sending information than necessary. However as a generic 
approach, this is much more usable when for example the receiving gateway/sink has 
to shut the radio down as well. Since the receiving radio of the sink is always on, 
adhering to a network schedule that restricts sending to slots creates unnecessary 
delays in receiving the samples at the sink. This is a disadvantage that of course only 
holds for this application specification.  
 
4.3.2 Schedule option two: Only schedule for receiving 
Exploiting the fact that the physiotherapy application does not need communication 
between nodes, a strict schedule for sending data to the sink computer is not needed. 
The application needs to receive information from the gateway/sink like time 
synchronisation messages. Thus a schedule is needed for system messages but a 
schedule for sending application messages over the network is not. This option for a 
network schedule will therefore only schedule the receiving part and not the sending 
part. The way the current task synchronisation works is that only one task (which 
according to [4] has to have the highest task priority for the scheduler of the OS) can 
synchronise with identical tasks on different nodes. To ensure that all nodes turn on 
their radio at the same time, task synchronisation will be used in the receive task. In 
pseudo-code the receive schedule would look as follows: 
 
//Period that the radio has to wake up in ms 
const int period = 1024;  
//Synchronise tasks on all nodes using synchronise function from task synchronisation 
int xLastWakeTime = synchronizeTask(period); 
for ( ; ;) 
{ 
 //Wait till next receive moment 
 vTaskDelayUntil (&xLastWakeTime, period); 
 //Turn on the radio 
 vStartUpRadio(xRadio); 
 //Receive data using the receive function from the radio driver 
 vReceiveData(xRadio); 
 //Turn the radio off 
 vShutDownRadio(xRadio); 
} 
 
The sending of messages to the sink becomes completely asynchronous from 
receiving messages and is not scheduled in the network schedule. Sending messages 
to the radio happens at the frequency determined by the send frequency stated by the 
programmer in the send PSF.  
One of the main advantages is that sending data is not constrained by a schedule. The 
receiving task will always have the highest priority due to the restrictions of task 
synchronisation so sending will not interfere with receiving. The drawback of this 
schedule is that collision detection and avoidance is completely delegated to the MAC 
services running on the AG2 and a programmer has no direct control over it with this 
schedule.  
 
4.3.3 Schedule option three: TICOSS schedule for multi-hop 
One of the schedules developed for extensive power reduction tests on nodes was V-
Scheduling created by Antonio Ruzzelli from University College Dublin visiting 
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Philips Research. It is called TICOSS (TImezones COordinate Sleeping Scheduling) 
and was created for multi-hop networks. A network was divided in time zones (figure 
4.5). Only adjacent timezones can communicate with each other and there are fixed 
slots for sending and receiving. The schedule works from one node (designated the 
Personal Area Network (PAN) coordinator) outwards and is set up so that if nodes in 
one zone are sending, the nodes in the zone one further away are listening. This is the 
first stage of the schedule. The second stage is the other way around. The nodes in the 
outermost zone can send and the nodes in the zone that is one closer to the PAN 
coordinator are listening and so back to the lowest zone and PAN coordinator. After 
that, the schedule has one local broadcast in which all radios have to be on. This is 
used for time synchronisation (see figure 4.6 for a representation of the schedule). 

 
Figure 4.5: Time zone division in TICOSS 

 
The power reduction that could be achieved by implementing this schedule was 
extensively tested and was 56.4% (see [1] for more information on the schedule and 
the testing). The versatility of the schedule is the main advantage. It can easily be 
used by a diverse variety of applications, both single and multi-hop. A drawback is 
actually the same as for the first schedule: it restricts the sending of information and 
therefore creates delays as to when the data is received by the gateway/sink (at least 
for an application which does not need inter-node communication). It is also more 
complex to implement.  

 
Figure 4.6: Representation of the schedule with period local broadcast 

 
4.3.4 Chosen schedule for this project 
The second schedule (section 4.3.2) is chosen (only receiving schedule while sending 
when ready) to fit well with the application that is tested in this project (the 
physiotherapy application as described in chapter one). The main reasons are its 
simplicity and the fact that data is immediately sent when it needs to (in accordance 
with the send frequency). The use of schedule three was rejected mainly because of its 
unnecessary complexity. The implementation that was developed for [1] was for a 
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different sensor node platform. The first schedule introduces delays while not adding 
functionality that was needed for the application.  
 
4.3.5 Changing the network schedule 
If the network schedule needs to undergo major changes (like supporting send slots, 
supporting multi hop networks, supporting complex network schemes, etc), the 
network schedule should be rewritten manually. It is possible to have configuration 
functions for an existing schedule which changes parameters on a limited scale. 
Another possibility is to have several implementations of schedules of which the 
programmer can chose one. These improvements fall outside the scope of this project. 
The lower levels provide the network schedule with the radio driver to access the 
radio and also the send and receive queues containing the data that needs to be sent 
and that has been received respectively. The send and receive functions of the radio 
driver will insert and extract the data into messages respectively. The difficulty of 
programming a new schedule depends heavily on the requirements for it and the 
extensiveness of the services it should be able to support (multi hop, reserved slots, 
etc). Since the two functions called by the PSFs using the radio (the send and receive 
PSFs) are from the network schedule layer (sendASAP and received), if the 
implementation of these functions is changed by for example implementing network 
schedule one (section 4.3.1) the PSFs do not need to be changed.  
 
4.3.6 Effect of the network schedule on power consumption 
Implementation of a network schedule will reduce the power consumption of the node 
because the radio will have sufficient time to sleep while it does not need to send or 
receive data. During receive slots however the radio always has to listen. Since these 
receive slots are fixed in time, the radio will not miss packets it needs to receive, as 
long as the sending radio also upholds the receive scheme as its sending slots. In this 
case the sink computer holds the sending radio during receive slots. The reduction in 
power by using a network schedule as envisioned in option two in combination with 
start up and shutdown of the radio should be approximately 90 percent with a send 
frequency of 25 Hz and combining four data samples in one packet. One packet 
contains nine integers per data sample and packet overhead. It takes the radio 
approximately 4 ms to send this giving it a power consumption of approximately 8 
mW (with 25 packets per second). This is together with receiving a time 
synchronization packet every second approximately 10 percent of the total time the 
radio is powered on (see [2] for more information).  
 
4.4 Sensor & Radio Drivers 
Two types of drivers will be provided, one for the sensors and one for the radio. The 
set of functions provided for both sensor and radio is done with a device driver so 
only the underlying implementation of the functions has to be changed for different 
hardware configurations.  
 
The sensors and the radio will both have a device driver, but these will be separate 
from each other. There is no generic device driver for both the sensors and the radio. 
The set of functions for the sensor handle will at least consist of the following (based 
on the peripheral handles of FreeRTOS): 

 xSensorCreate: creates the sensor 
 vInitSensor: initialize the sensor 
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 vConfigSensor: configures the sensor with correct values for ADC, start-up 
time, etc.  

 vStartUpSensor: start the sensor (when it is shut down) 
 vShutDownSensor: shut the sensor down to conserve energy 
 xSampleData: retrieve a sample from the sensor 

 
For the radio there is also a minimum set of functions that should be provided: 

 xRadioCreate: create the radio 
 vInitRadio(included in the create function): initialize the radio 
 vConfigRadio: configures the radio with start-up time, queues to be used, etc.  
 vStartUpRadio: start the radio (when it is shut down) 
 vShutDownRadio: shut down the radio to conserve energy 
 vSendData: write data to the radio to be sent 
 vReceiveData: receive data from the radio 

 
One of the advantages of this separate radio and sensor setup is that functions can be 
specifically tailored to be used with either the radio or sensor. Parameters for the 
functions can be specific for that function thus having only one purpose. A 
disadvantage of this separate API is that a program has two separate sets of functions 
instead of just one for all devices.  
 
These specific functions were chosen because all actions that are necessary to access 
the device can be done with these two sets of six functions. They are derived from the 
physiotherapy application as analysed in [2] and the proposed API for the WASP 
project (for more information see [5]). The main difference with the WASP API is 
that the WASP API uses one set of functions for all device drivers (radio, sensors, 
flash, etc). The main advantage is that all device access is done in the same way, no 
matter which device is accessed. This main advantage also holds the main drawback 
and the reason it was not chosen in this project. Due to the generality of the drivers as 
envisioned in WASP, one function is used to perform many functions (start up, 
shutdown, initialisation, calibration, etc). Some of these functions are only for the 
sensors, some only for the radio and some for both devices. This would mean that the 
function itself has to distinguish which device is calling the function and also the 
different parameters that need to be conveyed to the function can be different. This 
would make the parameter list longer and more complicated. Such generality is not 
necessary for this project and therefore it was chosen to use separate drivers for radio 
and sensors.  
 
The energy reduction that can be gained from these device drivers is mainly in the 
start up and shutdown functions. By offering the programmer device drivers, the use 
of these drivers will be more natural than if the programmer has to type in GPIO 
commands to start up and shutdown the device. It also offers the higher level PSFs a 
more fixed implementation of the devices, thus increasing portability of the system 
and PSFs.  
 
4.5 Order of implementation 
The implementation of these proposed improvements should be made in stages to 
allow for good testing and to allow a good control over the development. It will also 
help spot errors and faults early on. The sensor driver will be implemented first. This 
allows for all three sensors that are present in the blue boxes to be implemented using 
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a sensor driver and then tested to see if it works correctly. After this, the driver for the 
radio will be created. As with the sensor, the radio of the blue boxes will be 
implemented using the radio driver and then tested. This concludes the lowest 
abstraction layer as suggested in section 4.4.  
The next implementation will be the Program Specification Functions. These will be 
tested by first separately testing each PSF and after that by implementing the stroke 
rehabilitation software in this format. The sampling schedule will be included in the 
sample PSF and thus implemented here.  
The last abstraction layer, the network and sampling schedules, are implemented 
third. The sampling schedule is incorporated in the sample PSF and thus already 
implemented.  
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5. Implementation 
The implementation order proposed in section 4.5 is followed during the 
implementation of the abstractions. Indeed, after the construction of the sensor and 
radio drivers, the PSFs were implemented for an easy testing of these functions 
without adhering to any network schedule. After this was tested, the network schedule 
was implemented and the direct calling of radio driver functions was substituted by 
network schedule functions with similar functionality. Before the sensor driver was 
implemented, two other parts of code were incorporated into the project, delay 
functions and functions for the AG2 radio. Timing is an important part of the 
implementation of the PSFs and the underlying abstractions. Therefore the delay 
functions mentioned in [3] (section 6.2) are incorporated and tested. After that, 
functions abstracting the use of the specific AG2 radio were incorporated into the 
project and tested. All queues mentioned in this project are the standard queues 
provided by FreeRTOS (Flex-OS is a port of FreeRTOS and the queues are directly 
ported from their FreeRTOS implementation). It has a “create” function to allocate 
the memory for the queue and to set it up and "send” and “receive” functions to put 
data in the queue and to take data out of the queue respectively.  
 
5.1 Sensor Driver 
The first implemented abstraction was the sensor driver, a generic template with 
which to create a sensor handle and API functions to control the sensor. The first 
section will outline the information and structure of the sensor handle. In the second 
section the implementation of the API functions that are offered by the sensor driver 
to manipulate the sensor are discussed and the third section deals with how the actual 
three sensors (accelerometer, magnetometer and gyroscope) are implemented in the 
main file. The last section discusses problems that were encountered during 
implementation of the sensor driver. 
 
5.1.1 Structure of the sensor handle 
The sensor handle that is created and used by the various functions is a pointer to a 
data structure containing information about the sensor. The information stored in the 
data structure is needed for the API functions that the sensor driver is offering to the 
programmer. This information includes the following:  
 

 bDirection: Input (1) or output (0). In the case of sensors, the direction is 
always input. 

 bInterruptEnable: Enabled (1) or disabled (0). 
 bPolarity: Falling edge (1) or rising edge (0). 
 eGPIOLine: The GPIO line that is connected to the sensor; is used for 

shutdown and start up commands. 
 iNumberOfChannels: The number of channels a sensor needs to read from, for 

example 3, being x, y, z. 
 aADCChannels[sensorMax_Channels]: The channels connected to the ADC 

with the order x, y, z, referenceV, etc. 
 eUsedADC: The designation of the ADC to which the sensor is connected. 

Since all sensors in the blue boxes use an ADC and in the sample function the 
ADC is read, if a sensor would be connected without an ADC, the sensor 
driver should be changed.  

 xShutdownInactive: Indicates if the sensor should shut down during inactivity. 
(this value can be set, but nothing is done with it in this project).  
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 xShutdownBetween: Indicates if the sensor should shut down between 
samples. 

 xStartupTime: The start-up time of the sensor in milliseconds (rounded up) 
after it receives the start-up command. This value is the start-up time as noted 
in the datasheet of the particular sensor. It is used to wait the appropriate 
amount of time after starting to assure the sensor is started up properly.  

 xSampleFrequency: The frequency at which this sensor has to take samples. 
 xSampleQueue: A pointer to the queue associated with this sensor. The queue 

itself is a data structure with its own set of functions offered by the OS. The 
queue is created outside of the sensor driver (in the main file). Only the 
pointer to the data structure of a queue is associated to a sensor.  

 
5.1.2 API functions of the sensor driver 
The functions described in section 4.4 are implemented with the specified 
functionality. The implementation of the sensor and radio drivers is modelled on the 
implementation of the peripheral drivers of the Flex-OS environment. The create 
function of the sensor only allocates memory for the data structure and sets all 
information of the structure to NULL. Therefore the create function does not need 
parameters. After the creation of a sensor handle, the information is inserted into the 
structure via the ConfigSensor function. All other functions have the sensor handle as 
input and therefore have access to all the information contained in it. This limits the 
parameters that have to be given to a function and makes it easier to change the 
implementation without having to modify higher level function. Since queues are used 
to communicate data between PSFs, none of the functions has a return type. A pointer 
to the queue is found in the sensor driver structure as well, thus making it possible to 
access the sample data elsewhere. The functions of the sensor driver have the 
following parameters, return types and operation: 
 

 xSensorHandle xSensorCreate( void )  
This function creates the sensor handle and returns it. The sensor handle is a 
pointer to a structure containing sensor information, like the used GPIO line, if 
it need to shutdown between samples, sample frequency, used ADC, and other 
information.  

 void vInitSensor( xSensorHandle xSensor )  
The initialisation of the sensor is done with this function. It initializes the 
GPIO port that is used and shuts down the sensor (if shutdown between 
samples is desired) or makes sure the sensor is powered up (if shutdown is not 
desired for this sensor). 

 void vConfigSensor( xSensorHandle xSensor, int Direction, int  
InterruptEnable, int Polarity, portBASE_TYPE GPIOLine, int   
ADCChannels[sensorMax_Channels], portBASE_TYPE UsedADC,int   
NumberOfChannels, int StartupTime, int ShutdownBetween, int   
ShutdownInactive, int SampleFrequency, xQueueHandle SampleQueue )  
The configuration function of the sensor is done here. It sets all values in the 
structure of the sensor.  

 void vStartUpSensor( xSensorHandle xSensor )  
To start a sensor, this function is used. It uses the GPIO line of the sensor to 
send a start-up command to the senor.  
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 void vShutDownSensor( xSensorHandle xSensor )  
The shutdown function shuts down the sensor by using the GPIO line 
connected to the sensor and sending the off command (a 0 in this case).  

 void xSampleData( xSensorHandle xSensor, xQueueHandle xSampleQueue )  
This function starts up the sensor, waits the amount of time needed for start up 
(if the shutdown mode of the sensor is used) and then takes a sensor reading 
on all specified channels (as specified in the structure representing the x,y and 
z values). These results are put into the queue that is passed to this function 
and from which the data can later be retrieved. The last action of this function 
is shutting down the sensor (if the shutdown mode is active). 

 
As stated before, a sensor has a queue associated with it where the samples are stored 
for use by other PSFs. Queues are implemented in Flex-OS as data structures and 
have their own set of functions to create the queue, receive a value from the queue 
and send a value into the queue. When a value is received from the queue, it is deleted 
from the queue. During creation of the queue, the size of the queue and the type of 
values that will be stored in the queue has to be specified.  
 
5.1.3 Implementation of the three sensors using the device driver 
The physiotherapy application does not require on-node processing. Data can directly 
be put into the send queue of the radio which is called xAG2SendQueue. This queue 
is created before the three sensors via xQueueCreate( 60, (unsigned portBASE_TYPE) 
sizeof( DataSample ) ). The DataSample type is an array of three integers (the three 
values a sensor samples, x, y, z) and memory is allocated for 60 elements in the queue 
(thus the sample frequency can be maximally 60/3 times higher than the send 
frequency assuming all three sensors sample at the same frequency). After the three 
sensor handles are created, they are added to the sensor lists which is a global 
variable. This makes them easy to access for the compute function if that would be 
necessary. As an example only the accelerometer is shown. The other two are 
analogous with only different initialisation parameters. 
 
//Create Accelerometer Handle 
xSensorHandle Accelerometer = xSensorCreate(); 
SensorADCChannels[0] = 5; 
SensorADCChannels[1] = 4; 
SensorADCChannels[2] = 6; 
vConfigSensor(Accelerometer, 0xffffff, 0, 0, 0x1000, SensorADCChannels, 
(GPIOSIGNAL__ADC1GVT | GPIOSIGNAL__FLASH),3, 2, 0, 0, 1, 
xAG2SendQueue); 
vInitSensor(Accelerometer); 
    
//Create Magnetometer Handle 
Analogous to accelerometer handle, but with some other parameters in the 
configuration  
 
//Create Gyroscope Handle 
Analogous to accelerometer handle, but with some other parameters in the 
configuration  
 
//Add the sensors to the sensorlist for easy access 
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vSensorListAdd(Accelerometer); 
vSensorListAdd(Magnetometer); 
vSensorListAdd(Gyroscope); 
 
The actual configuration of the sensors is done in the vConfigSensor function and for 
the accelerometer, the configuration looks as follows: 
 
xSensor->bDirection = 0xffffff; 
xSensor ->bInterruptEnable = 0; 
xSensor ->bPolarity = 0; 
xSensor ->eGPIOLine = 0x1000; 
xSensor ->aADCChannels[0] = 5; 
xSensor ->aADCChannels[1] = 4; 
xSensor ->aADCChannels[2] = 6; 
xSensor ->eUsedADC = ( GPIOSIGNAL__ADC1GVT | GPIOSIGNAL__FLASH); 
xSensor ->xShutdownInactive = 0; 
xSensor ->xShutdownBetween = 0; 
xSensor ->xSampleFrequency = 1; 
xSensor ->iNumberOfChannels = 3; 
xSensor ->xStartupTime = 2; 
xSensor ->eGPIOLine = 0x1000; 
xSensor ->xSampleQueue = xAG2SendQueue; 
 
5.1.4 Problems encountered during sensor driver implementation 
The major problem encountered while testing the implementation of the radio driver 
was that the initialisation order done in the configuration function of the sensor 
mattered. When all values were set before calling the vInitSensor function, several 
values were set back to zero. No other negative effects seemed to transpire so the 
values that were set to zero were reset to the proper value after the initialisation 
function and if the specific value was not needed for the initialisation, it was set after 
this function had been called. This seemed to solve the problem but did obsolete the 
configuration function. It also meant that a lot of additional initialisation was done in 
the main file instead of in the appropriate configuration of the sensor. The problem 
appeared to be in the memory allocation of the structure and this was eventually 
solved and all initialisation was moved to the configuration function as shown above.  
 
5.2 Radio driver 
The radio driver was implemented after the sensor driver. It provides a generic way of 
accessing the radio by providing a radio handle to the programmer and offering API 
functions to access the radio.  
 
5.2.1 Structure of the radio handle 
The radio handle is a pointer to a data structure containing information on the radio. 
The information in the data structure is the following:  
 

 xShutdown: Indicates if the radio should be shutdown. 
 xStartupTime: The start-up time of the radio in milliseconds (rounded up) after 

receiving the start-up command. This value is the start-up time as noted in the 
datasheet of the particular radio. It is used to wait the appropriate amount of 
time after starting to assure the radio is started up properly. 
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 xSendFrequency: The frequency at which the radio needs to send the data 
samples. 

 xSendQueue: A pointer to the queue containing the data to be sent. The queue 
itself is a data structure with its own set of functions offered by the OS. The 
queue is created outside of the radio driver. Only the pointer to the data 
structure of a queue is associated to a radio.  

 xReceiveQueue: A pointer to the queue containing the data that is received by 
the radio. The queue is a data structure with associated functions. These are 
offered by the OS. The creation of the queue is not done in the radio driver 
and only the pointer to the data structure of a queue is associated to a radio.  

 
5.2.2 API functions of the radio driver 
For the radio, the functions stated in section 4.4 with its functionality are 
implemented. As with the sensor driver, the radio driver was modelled after the 
peripheral drivers of Flex-OS. The sensor and radio drivers were meant to be as 
identical as possible. The create function of the radio allocates the memory for the 
data structure of the radio and initialises all values. The correct values have to be 
added with the configuration function after the handle is created. The radio functions 
also all have the radio handle as input to keep it as generic as possible. The only 
exception is the send function. This also requires the sample period of the samples put 
into the message (deltatime) and the number of samples per packet (latency). The 
number of samples per measurement (for example 3: x, y, z) is needed to make sure 
that the values of one sensor are kept together when they are sent. The ReceiveData 
and SendData functions both use the locking mechanism of the OS to make sure the 
radio is not used simultaneously by the receive and send PSFs. The start-up and 
shutdown functions are used in these two functions and are included in the locking. 
This is done to prevent that for example after powering up the radio via the send PSF, 
the receive PSF pre-empts it and again starts up the sensor (which the application will 
note is started already and will not do this again). After the sensor is started and the 
data is received, the radio is shut down by the receive PSF. The pre-empted send PSF 
can continue assuming the radio is powered up and will send its data. To prevent these 
mistakes the start-up and shutdown are also done in the critical section. The radio 
driver functions have the following parameters, return types and operation: 
 

 xRadioHandle xRadioCreate( void )  
Creating the radio handle is done with this function. It returns the pointer 
(radio handle) to a structure containing information on the radio.  

 void vInitRadio( xRadioHandle xRadio )  
The initialisation of the radio is done with this function. It invokes the AG2 
radio initialisation function with the correct parameters for baudrate, parity, 
etc.  

 void vConfigRadio(xRadioHandle xRadio, int StartupTime, int Shutdown, int 
SendFrequency, xQueueHandle Sendqueue, xQueueHandle ReceiveQueue) 
Configuring the radio is done with this function. The parameters given in this 
function are set in the structure of the radio to which the radio handle is a 
pointer.  

 void vStartUpRadio( xRadioHandle xRadio )  
This function is used to start the radio after it has been put in sleep mode.  

 void vShutDownRadio( xRadioHandle xRadio )  
With this function, the radio is put in sleep mode.  
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 void vSendData( xRadioHandle xRadio, int SamplesPerMeasurement, int 
DeltaTime, int Latency )  
This function adds the data put in xSendQueue into (a) message(s) and adds 
timestamp, send frequency and sample frequency to the message. The message 
is then send with the AG2 send function. If the data in the queue contains 
more data than fits into one packet, as soon as the first packet is sent, the 
remaining data is put into the next packet and send and so on.   

 void vReceiveData( xRadioHandle xRadio )  
To receive data, this function is used. Data that is received via the UART 
connection with the AG2 radio is put into the receive queue and can be 
retrieved by other functions like the compute function.  

 
5.2.3 Actual radio implemented via radio driver 
The AG2 radio was implemented via a radio driver in the same manner as the sensors 
were. The radio driver needs two queues, a send and a receive queue. The send queue 
is the one already discussed in section 5.1.3 and the receive queue is created via 
xQueueCreate( 60, (unsigned portBASE_TYPE) sizeof( char* ) ). It has the same 
number of maximum elements as the send queue but uses a pointer to the character 
data type, the format in which a packet is offered. The queue can handle a maximum 
of 60 packets. This was chosen to allow applications that send data between nodes to 
be able to store for example 20 data samples for each sensor (if the other nodes for 
example send data samples per sensor to other nodes). This queue is not actually used 
since the receive function is not used in the physiotherapy application. In the 
physiotherapy application, the receive PSF is used to simulate the receiving of time 
synchronisation packets (since this is not implemented). Therefore the receive 
function will start up periodically to measure how often the radio is turned on more 
accurately.  
 
//Radio Handle Creation 
xRadioHandle AG2Radio = xRadioCreate(); 
vConfigRadio( AG2Radio, 2, 0, 1, xAG2SendQueue, xAG2ReceiveQueue); 
 
In the configuration function of the radio, the following values are set in the data 
structure of the radio: 
AG2Radio->xShutdown = 0; 
AG2Radio->xStartupTime = 2; 
AG2Radio->xSendFrequency = 1; 
AG2Radio->xSendQueue = xAG2SendQueue; 
AG2Radio->xReceiveQueue = xAG2ReceiveQueue; 
 
5.3 Program Specification Functions 
The program specification functions (PSFs) perform three functions: setting the 
values the programmer configures (frequency, shutdown, etc) in the appropriate 
handle, make sure only one task is created for sensors with the same sample 
frequency and if the task needs to be created, creating it. There are four PSFs with 
four corresponding task functions which are started by the appropriate PSF. The 
functionality of the PSFs is described in section 4.1. The sample PSF has five 
parameters. The first four are as stated in the specification (the sensor handle, the 
sampling frequency, the shutdown between taking samples and the shutdown during 
long inactivity) and the last one (the name of the sensor) is used to give the task that is 
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created by the PSF a unique name. The shutdown during longer inactivity (for 
example if the sensor is being attached or the application on the host is not started yet) 
is included in the PSF but not yet implemented. It is added in such a way that the API 
of the sample PSF does not need to be changed if this functionality is added 
afterwards. The compute PSF has as parameter the radio handle. A list of sensors is 
also available in the compute function but since this is a global list, it is not needed as 
a parameter. One of the main reasons for this is that only one parameter can be given 
to the task that is created and since the sensor list was already global, only the radio 
had to be given as a parameter. The sample and send functions in addition set the 
frequency and shutdown parameters in the data structure of the sensor handle.  
 
5.3.1 Implementation of the Program PSFs 
The PSFs are available to programmers in the main file of the Flex-OS project. Due to 
the nature of FreeRTOS it is advised to use the already created task to change the 
PSFs as needed and not directly from the main function. Furthermore, the three 
sensors that are present in the blue boxes and the AG2 radio (including their 
respective queues) are already created in this task. The following four PSFs are 
available: 
 

 void vSample(xSensorHandle Sensor, int SampleFrequency, int 
ShutDownBetween, int ShutdownInactive, const signed portCHAR * const 
SensorName) 

 void vCompute(xRadioHandle Radio) 
 void vReceive(xRadioHandle Radio) 
 void vSend(xRadioHandle Radio, int SendFrequency, int Shutdown) 

 
The vSample PSF sets up a sensor at a specific sampling frequency and starts a task 
(if there are not already other sensors with the same sample frequency). The PSF 
checks if there is already a sensor that samples at the same frequency. If this is the 
case, no new task is created. If no sensor with the same frequency is already started, a 
task is created for the sensor (with idle priority + 3, one higher as the send task) and 
the frequency is added to an array (xSampleFrequencies). The sensor handle of the 
sensor that has to gather the sampling data, has to be specified with the name of the 
sensor (a string which is needed to give the created task a unique name). Furthermore, 
the programmer can specify the desired sampling frequency of the sensor and the 
shutdown parameters (shutdown between taking samples and shutdown during 
inactivity). The PSF, before creating the task, also checks whether the sampling 
frequency is low enough for the sensor to start up between taking samples (for 
example sampling at 25 Hz with a sensor with 40 ms start up time means it cannot 
shutdown between sampling; 1000/40 > 25 has to hold). If this condition is not met, 
the shutdown for that sensor is disabled. The sample PSF which creates the sample 
task looks as follows: 
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int i = 0; 
int foundFrequency = 0; 
while (xSampleFrequencies[i] != -1 && foundFrequency == 0)  
{  
 if ( xSampleFrequencies[i] == SampleFrequency) 
 { 
  foundFrequency = 1; 
 } 
 else  
 { 
  i++; 
 }  
} 
if (foundFrequency == 0)  
{ 
 xSampleFrequencies[i] = SampleFrequency; 
} 
 
SampledSensor->xShutdownInactive = ShutdownInactive; 
SampledSensor->xShutdownBetween = ShutDownBetween; 
SampledSensor->xSampleFrequency = SampleFrequency; 
 
//Check dependency: 1/sampling frequency > Start-time sensor  
if ( ((1000/SampledSensor->xSampleFrequency) <= SampledSensor->xStartupTime) 
&& (SampledSensor->xShutdownBetween == 1) ) 
{ 
 //No time to power down, so do not shut the sensor down 

SampledSensor->xShutdownBetween = 0; 
} 
 
//Create the task only if the frequency was not yet found, so not to create multiple 
//tasks for sensors with the same sampling frequency 
if (foundFrequency == 0)  
{ 

xTaskCreate( vSampleTask, SensorName, configMINIMAL_STACK_SIZE, 
SampledSensor, tskIDLE_PRIORITY + 2, ( xTaskHandle * ) NULL );  

} 
 
The compute PSF (vCompute) provides the programmer with a task to do 
computations or calculations on the collected data. This PSF only creates the task 
called vComputeTask which is where the programmer can manually implement which 
computations this task should perform on the data (see section 5.3.2 for more 
information on the task). The compute task will receive the lowest priority of the tasks 
created by the PSFs (idle priority + 1). The vReceive PSF is used to receive data. It 
starts the receive task as which in turn calls the received function of the network 
schedule layer. The receive task is given the highest priority of all PSF created tasks 
to make sure it always pre-empts other tasks and can always receive messages in time 
(idle priority + 3 is its priority).  
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The PSF to send the data (vSend) that is gathered by the sensors or after computation 
is done with this function. The frequency at which to send the data and the use of the 
shutdown function can be set by the programmer. This information is added to the 
radio handle that is given in the PSF (here called SendingRadio). This handle is also 
given as a parameter to the task via the task creation function. The priority of the send 
task is chosen to be one lower than that of the sampling task(s). The send PSF is 
implemented as shown here: 
 
SendingRadio->xShutdown = Shutdown; 
SendingRadio->xSendFrequency = SendFrequency; 
xTaskCreate( vSendTask, "RadioSend", configMINIMAL_STACK_SIZE, 
SendingRadio, tskIDLE_PRIORITY + 1, ( xTaskHandle * ) NULL ); 
 
5.3.2 Tasks created by the PSFs 
The four PSFs create tasks that are implemented beforehand. These tasks all run in a 
continuous loop. There are four tasks (one for each PSF): vSampleTask, 
vComputeTask, vReceiveTask and vSendTask.  
 
The sample task uses the sample frequency to periodically take samples. Since 
sensors with equal sampling frequencies are sampled in one task, the list of sensors is 
used to check all sensors if they have the same sampling frequency as the sensor 
which is given as a parameter to the sample task (this is the sensor which created the 
task; see section 5.3.1 for more information). This task periodically starts up and then 
samples every sensor with the same frequency. The implementation of the sample 
task is shown below: 
 
period = (1000/pxSensor->xSampleFrequency) - pxSensor->xStartupTime; 
portTickType xLastWakeTime = xTaskGetTickCount(); 
for( ; ; ) 
{ 
 vTaskDelayUntil (&xLastWakeTime, period); 
 ListOfSensors = xSensorListing(); 

while (ListOfSensors != NULL) 
 { 
  if (ListOfSensors->pxSensor->xSampleFrequency ==  

pxSensor->xSampleFrequency) 
  { 
   xSampleData(ListOfSensors->pxSensor,  

ListOfSensors->pxSensor->xSampleQueue); 
  } 
  ListOfSensors = ListOfSensors->pxNextSensor; 
 } 
} 
 
The compute task provides the programmer with access to the sensor handles and the 
radio handle. The programmer has to program the computations he wants to perform 
on the data manually. Access to the sensors is provided by the sensor list in the same 
manner it is used in the sample task. The radio handle is provided as a parameter of 
the task and thus is also available. The handles are available in the compute function 
so the sample queues and the send and receive queues can be accessed in this function 
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(depending on what computations need to be done, some or all of the data in these 
queues may be needed).  
 
The receive task directly calls the received function of the network schedule (see 
section 5.4.2). The send task sets three values which need to be included in the 
message as defined for the physiotherapy application in the AG2 implementation. 
These three values are hard coded at this moment. To relate these to sample 
frequencies, a coupling has to be made between the sensors and the send task. This is 
not done here because sensors may have different sampling frequencies while still all 
data is being placed into one send queue. Another reason is that if computations have 
to be done on the data, the sampling frequency may not have any meaning anymore if 
sensors have different sampling frequencies. The SamplesPerMeasurement variable is 
needed in the send function of the radio driver to know how many samples need to be 
kept together as one measurement (for example one measurement consists of a sample 
from the accelerometer, magnetometer and gyroscope taken at the same moment in 
time). The send task that is created by the send PSF is implemented as follows: 
 
int SamplesPerMeasurement = 3; //samples per measurement (1 sample is 3 integers) 
int DeltaTime = 100; //sample period in ms 
int Latency = 4; //samples per packet 
period = (1000/pxRadio->xSendFrequency) - pxRadio->xStartupTime; 
portTickType xLastWakeTime = xTaskGetTickCount(); 
for( ; ; ) 
{ 
 vTaskDelayUntil (&xLastWakeTime, period); 
 vSendASAP(pxRadio, SamplesPerMeasurement, DeltaTime, Latency); 
} 
 
5.4 Network Schedule 
The network schedule consists of two parts, the sending of messages and the receiving 
of messages. As stated in section 4.3.2 the two parts work asynchronously from each 
other. The receiving part is periodic with a period of 1024 OS ticks (1 tick is 1 ms). 
The sending of messages is controlled by the send frequency and not according to a 
specifically created schedule. The API of the network schedule consists of two 
functions: sendASAP() and received() for sending and receiving respectively. These 
are the functions that are used in the PSFs and not the send and receive functions of 
the radio driver.  
 
5.4.1 Send schedule 
The sendASAP function of the network schedule actually only calls the send function 
of the radio driver. The reason it is called in the send PSF instead of directly calling 
the send function of the radio driver is to keep the schedule abstraction layer in place 
atop of the device driver layer. This also makes it easier for programmers to change 
either the radio driver without changing the network schedule and PSF layers or the 
network schedule layer without changing the PSF layer.  
 
5.4.2 Receive schedule 
The implementation of the receiving part of the network schedule uses the method of 
implementing task synchronisation as described in [4]. It first sets the last wake time 
by calling the synchronizeTask function of task synchronisation and then using 
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vTaskDelayUntil to delay from the last wake time a given period (which must be a 
power of two, in this case 1024). Due to the problems with time synchronisation, the 
local time was set by calling the xTaskGetTickCount (the OS timer ticks where one 
tick is equivalent to approximately 1 ms) from the operating system and delaying 
from there. This avoided the problems of having to test with two nodes while still 
simulating the receiving of information every 1024 ticks (approximately 1 second in 
real time). After waiting for the next period, the radio is powered up and after this, the 
data is received using the receive function of the radio driver. When this is finished, 
the radio is shut down and it waits for the next receive period. The following part of 
code illustrates the implementation described above: 
 
const portTickType period = 1024; 
portTickType xLastWakeTime = xTaskGetTickCount(); 
for ( ; ; ) 
{ 
 //Wait till next receive slot 
 vTaskDelayUntil (&xLastWakeTime, period); 
 vReceiveData(xRadio); 
} 
 
5.5 Physiotherapy application 
The specifications for the physiotherapy application are to sample all three sensors at 
a frequency of 100 MHz and send this data out at a frequency of 25 MHz. No 
messages need to be received by the node except for the time synchronisation 
messages and no computations are done on the data gathered with the sensors. All 
three sensors are used (accelerometer, magnetometer and gyroscopes) and only the 
magnetometer needs to shut down between taking samples. The accelerometer can 
also shut down but this would distort the samples so is not done. The start-up time for 
the gyroscope is too long to shutdown with a frequency of 100 MHz and is therefore 
also not set to shut down. If it would be set to shutdown, the start up time would be 
too long and the shutdown for this sensor would be automatically disabled. The radio 
is the AG2 radio and only needs to be powered up if something needs to be sent or a 
time synchronisation message needs to be received. The time synchronization 
messages are handled directly by the AG2 radio and not by the CoolFlux DSP. Due to 
problems with the time synchronization for the blue boxes it was chosen to simulate 
the receiving of the time synchronization messages every second to allow for more 
accurate measurements instead of using time synchronization. It is assumed that the 
handles for the sensors and the radio (which is hardware that is fixed on the blue 
boxes) are already available with the following names: Accelerometer, 
Magnetometer, Gyroscope and AG2Radio (see section 5.1.3 for information on how 
they are created). The invocation of the PSFs for the physiotherapy application is 
done as follows: 
 
vSample(Accelerometer, 100, 0, 0, ( const signed portCHAR * const ) 
“Accelerometer"); 
vSample(Magnetometer, 100, 1, 0, ( const signed portCHAR * const ) 
"Magnetometer"); 
vSample(Gyroscope, 100, 0, 0, ( const signed portCHAR * const ) "Gyroscope"); 
vSend(AG2Radio, 25, 1); 
vReceive(AG2Radio); 
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5.6 Testing 
To make these proposed changes and frameworks, material is needed. The first is the 
version of Flex-OS as it was in December of 2007 when this project started. This 
allows for the integration of the abstraction layers into the latest version (at that 
moment) of the operating system. The software running on the AG2 is needed to 
allow the radio to be turned on and off, but this functionality is not yet implemented. 
For compiling Flex-OS and the application, Target’s ChessDE compiler is needed. 
The last material that is needed is a blue box to test the software abstractions and 
measure the energy that is used by the node.  
 
The testing of the abstraction layers is done during implementation of the different 
layers. As each layer is implemented, it is tested to spot and correct errors and faults 
as early as possible. This also helps to find errors in the design and therefore makes it 
easier to correct it. To control the evaluation and validation of the implemented 
abstraction layers, print statements over UART are used. With HyperTerminal, these 
statements could be printed on the screen.  
 
5.6.1 Testing the device drivers 
The sensor driver is the first sub layer that is implemented. It is tested by first adding 
print statements to the code to check the initialisation of the driver. The accelerometer 
is implemented first. After the initialisation is tested, the queue is tested to see if all 
values are put in as they should. First the value is printed to the screen and then put in 
the queue. They are then taken out and again printed. These two values are then 
manually compared.  
After the implementation of the radio driver and the creation of the AG2 radio handle, 
the radio is first tested by comparing the values that arrive at the host computer via the 
radio with the values that are put into the message. After that is tested, the values are 
put in the send queue and taken out by the radio driver and sent. This way the 
workings of the queue can be tested as well. It is done the same way by sending to the 
sink and manually checking if the values are correct with the ones put in. The 
combination of sensor and radio should be tested next by letting one sensor put data 
into the send queue and let the radio send it to the sink to be checked manually again.  
 
5.6.2 Testing the Program Specification Functions 
The PSFs are tested one by one after their implementation. The sample task is the 
first. It can use the implementation of the sensor driver and the print functions used to 
test this. The sample PSF will first be tested if it starts up and if the data is indeed 
sampled (by printing the sampled values to the screen as for the sensor driver). After 
this, the merging of calls to the sample PSF with the same sample frequency is tested. 
By printing to the screen the tasks that are started and the sensors in each task, it can 
be determined if they are grouped correctly.  
The compute PSF is only tested to see if the radio and sensor handles are available in 
the function (by printing information from both on the screen) and if it starts up the 
compute task when it is called.  
The testing of the send PSF is done by first checking if the task is started and then if 
the data is sent via the radio (as it is tested for the send function of the radio driver).  
The last function to test is the receive PSF. This function actually only starts the 
receive task of the network schedule. Therefore nothing extra has to be tested for this 
specific function.  
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5.6.3 Testing the network schedule layer 
The last layer to be implemented and tested is the schedule layer. Since the sampling 
schedule will be implemented in the sample PSF, it is already tested. The send part of 
the network schedule is also already tested when the send function of the radio driver 
was tested (sending does not need to adhere to a schedule). The receiving part of the 
schedule builds on the task synchronisation to synchronise the receiving part of the 
node with the sending part of the sink. Since testing has to be done with one node, it 
has to be determined if the task synchronisation can actually work with only one node 
and then test if packets are actually received by the node by printing to the screen as 
soon as a message is received on the node. The task synchronisation uses a function to 
set the current local time and synchronise this over all nodes. This time is then used to 
synchronise the tasks. The main problem is that this value, as well as the local time 
value stored by time synchronisation, is not updated if time synchronisation is not 
running or if there is no second node to synchronise with. The value will stay zero. 
One solution which will allow for testing is to use the timer tick count. This is what 
was actually done, since time synchronisation was not working in the OS for the blue 
boxes. Due to this, the task synchronization used in the receive schedule could not be 
tested. The receive function was used to simulate the receiving of a time 
synchronization packet without being synchronized with other nodes. This was done 
to have more accurate measurements for the power consumption of the radio.  
 
5.6.4 Testing the whole system and taking measurements 
After this, the PSFs should be called with their appropriate frequencies and shutdown 
parameters (accelerometer and magnetometer shut down and sample at 100 Hz, 
gyroscope does not shut down and samples at 100 Hz, the radio sends information at 
25 Hz and shuts down and receives according to the schedule with intervals of 1024 
timer ticks). This will generate three tasks: one for the three sensors combined, one 
for sending and one for receiving. To measure how long the sensors and the radio are 
on and off respectively, the current time is marked (at shutdown or start up) and 
subtracted from the previous change in state (start up after shutdown and shutdown 
after start up). This time is then added to the total time the radio has been on or off. 
This is done for all three sensors and the radio and regularly printed out to the screen.  
 
5.7 Measurement Results 
As described in section 5.6, the three sensors and the radio were measured as to how 
long they were on and how long they were off. These were periodically printed to the 
screen. For the sensors that were shut down (the accelerometer and the magnetometer) 
the percentage of time they were powered up was almost the same. The gyroscope 
was always on due to the long start up time and when it was set to shutdown in the 
PSF, it is automatically detected that this is not possible with a sampling frequency of 
100 Hz and the shutdown is turned off. In the eventual application, the accelerometer 
will not be turned off between samples due to aliasing in the measurements. As stated 
in section 5.4, the time is measured in OS ticks and not in milliseconds. Since only the 
percentage of the time a sensor is on is needed, this will give the same results. From 
the percentage that the device is on, the power consumption per second can be 
calculated using the datasheets of the various devices ([6], [7], [8], [9]). The 
percentage of the time the device is on multiplied by the power consumption per 
second gives the power consumption per second that the device is on and vice versa. 
Table 5.1 lists the percentage of the total time each of the devices is powered up at 
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different frequencies. The measurements where done with all devices running at the 
same frequency (so if the accelerometer samples at 1 Hz, the magnetometer and 
gyroscope also sample at 1 Hz and the radio sends data at 1 Hz). This was done to 
ensure all frequencies were measured in the same manner. During all tests, the receive 
PSF was periodically powering up the radio to simulate the receiving of time 
synchronization packets. This was done at 1024 OS timer tick intervals (1 OS tick is 1 
ms, see section 5.4.2 for an explanation why 1024 ticks were chosen).  
 

Frequency (Hz) Accelerometer Magnetometer Gyroscope Radio 
1 0.2% 0.1% 4.0% 1.1% 
5 1.0% 0.5% 20.2% 1.7% 
10 2.0% 1.0% 40.8% 3.1% 
15 3.1% 1.6% 62.5% 4.7% 
25 7.9% 2.7% 100.0% 8.6% 
40 13.0% 4.6% 100.0% 13.5% 
50 16.6% 5.6% 100.0% 16.9% 
75 27.2% 9.1% 100.0% 27.4% 

100 37.5% 12.5% 100.0% 37.5% 
150 50.0% 25.0% 100.0% 75.0% 
200 53.3% 33.3% 100.0% 99.9% 
300 53.3% 33.3% 100.0% 99.9% 

Table 5.1: The percentage of total time the devices are powered up at different 
frequencies 

Figure 5.1: The percentage of the total time the four devices are powered on in 
contrast to the frequency of sampling/sending 

 
The measurements from table 5.1 are plotted in figure 5.1. It shows clearly that the 
difference in the power down percentage of the three sensors is closely related to the 
start-up time of the sensors. The gyroscope has a start-up time of 40 OS ticks (40ms), 
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the start-up time of the magnetometer is 1 OS tick and of the accelerometer it is 2 OS 
ticks. This explains the differing graphs of the three sensors, showing that the 
magnetometer is powered on the least of all three. The jump that can be seen from 15 
to 25 Hz in the graph of the gyroscope is due to this start-up time of 40ms. Sampling 
at 25 Hz is not enough for the sensor to start up (40 ms is not smaller than 1/25). 
Sampling at 24 Hz would give the sensor enough time to complete its start up and 
therefore is the highest sampling frequency of the gyroscope which reduces the power 
consumption for that sensor.  
 
The specific sampling frequencies of the physiotherapy application (100Hz for the 
sensors and 25Hz for sending) give the results shown in table 5.2. This is run as a 
separate test result to eliminate possible overhead due to the higher sending frequency 
in the original results as shown in table 5.1. In section 5.5 the accelerometer and 
gyroscope are noted as not being shut down, but to test the amount of time the 
accelerometer would be powered up the shutdown parameter in the sample PSF of the 
accelerometer is set to 1 for this test. As can be seen from table 5.2, the accelerometer 
is shut down longer in this configuration than the one with a 100 Hz send frequency 
as depicted in table 5.2. A possible reason for this is that due to the higher send 
frequency, the receive function pre-empts this sending more and this delays the 
sampling of the accelerometer. This can happen because sometimes the radio begins 
its start-up before the accelerometer is shut down but after sampling its data.  
 

Frequency (Hz) Accelerometer Magnetometer Gyroscope Radio 
100 25.0% 12.5% 100.0% -- 
25 --- -- -- 8.6% 

Table 5.2: The percentage of total time the devices are powered up in the 
physiotherapy setup 

 
Figure 5.2 shows the periods of time when the four devices (accelerometer, 
magnetometer, gyroscope and radio) are powered up. The execution shown here 
samples at 1 Hz and also sends data at 1 Hz. The magnetometer is the first sensor to 
be sampled, followed by the accelerometer and after that the gyroscope. This is not a 
necessary order although sampling the gyroscope last helps for the frequencies at 
which the gyroscope does need to power up (frequencies below 25 Hz). This is due to 
the longer start up time of the gyroscope which will delay the sample taking of the 
other sensors as well if it was done before other sensors. Therefore sampling the 
gyroscope last will minimize the effect of its start up time on the other sensors. The 
time the radio is on to receive data is not shown in this graph since it is asynchronous 
of the sampling and sending procedure and only takes place once every second. Since 
it runs in a task with the highest priority, it will always pre-empt the other tasks if 
necessary. The time axis shown in figure 5.2 is relative to the start of a period (since 
the sampling and sending frequencies are the same this period is also the same).  
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Figure 5.2: Periods of the execution time the devices are powered up (relative to the 
start of a period) 

 
The memory usage of the application including all abstraction layers is approximately 
9942 bytes. The memory of the CoolFlux DSP consists of two times 64 kWord of data 
memory and one times 64 kWord of program memory. One Word consists of 24 bits. 
The main components of the software abstractions are individually measured to see 
which parts have the biggest memory usage. This is shown in table 5.3. 
 

 Number of Instances Memory Usage per instance (bytes)
Send queue 1 618 

Receive queue 1 258 
Sensor driver structure 3 192 
Radio driver structure 1 39 

Tasks 5 1269 
Table 5.3: Memory usage of the main components of the software abstraction layers 

 

Execution time (OS Ticks) 

Accelerometer 

Magnetometer 

Gyroscope 

Radio 
0 43 1 45 3 
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6. Future Work 
This chapter will cover the possible extensions that can be made to these abstractions 
to make them more usable and further decrease the time to develop an application. 
The future changes can use the already created abstractions as a basis and would not 
require a redesign of the abstraction layers. It merely extends them.  
 
6.1 PSFs from flash memory without recompiling code 
One of the major drawbacks of programming and using the Flex-OS code on nodes is 
that for every change, the code has to be recompiled. This is especially noticeable by 
the developers of the physiotherapy application who are often asked to implement 
small changes for others using their software but without access to the compiler. Now 
that the PSFs became the highest level of programming, the number of parameters 
that the programmer needs to/can set is greatly reduced. The way a programmer 
would construct an application with the PSFs is by stating which PSFs should be 
evoked and with what parameters. If this information is stored in the flash memory of 
the node, the code would not need to be recompiled, but can read the information 
from its flash memory. One problem with the current implementation of the compute 
PSF is that it needs to be written by hand, thus requiring a compiler to change this 
function. A possible solution for this is presented in section 6.3. Another main 
advantage (besides not recompiling) is that a lot of dependencies (like the sample 
frequency larger or equal to the send frequency) can be checked beforehand by the 
tool used to upload and create the code/data that needs to be in the flash memory. This 
will make the life of the programmer easier since error messages can be generated on 
the PC instead of from the sensor node.  
 
6.2 Graphical User Interface to create application with PSFs 
After the possible improvement from section 6.1 is implemented, a graphical user 
interface (GUI) can be constructed on top of this. This will facilitate the programmer 
to write his application on a graphical level by drawing the PSFs as blocks connecting 
them with lines representing queues. Figure 6.1 is an indication of how such a GUI 
could look like, with the programmer being able to set the parameters for the PSFs as 
well.  
 

Figure 6.1: Possible GUI for PSFs 
 
The programmer then also needs to set the different parameters of the required 
functions which can be accomplished with simple dialog boxes containing the 
parameters that can then be set by the programmer. The tool should then 
automatically convert this to the format developed for the future addition of section 
6.1 and uploaded to the node. By solving the issue of the compute function (see 
section 6.3) clicking on the compute task in such a GUI could open a new field with 
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in- and output queues where the different compute functions can be selected and put 
together.  
 
6.3 Compute function with a PSF-like block structure 
To alleviate the problem of having the programmer completely write the compute 
function himself, a structure can be created in which pre-made operations can be 
linked together in a dataflow fashion. The queues from the sample tasks and the 
receive task are seen as input for the entire compute task and the queue from the send 
task is its output. Since using queues takes time for every access and the possible 
number of operations that has to be done in the compute task, using queues inside this 
task is not possible. Therefore performing an operation on the data avoids this 
problem. The incoming data is consumed and the desired data is produced, not 
necessarily having the same type. The incoming type needs to match the desired input 
of the function, so if for example the output of a function is needed as input for the 
next function, it needs to be checked if the output of the first type matches the input 
type of the second. A small example in pseudo-code depicted graphically in figure 6.2 
would look as follows: 
AverageSamples( AddSamples( FilterSamples( SampleQueue 1 ), FilterSamples( 
SampleQueue 2 ) ) ).  
 
 
 
 
 
 
 
 
 

Figure 6.2: Graphical representation of a block-like compute PSF 
 
There are several important issues that need to be addressed if this future addition has 
to be implemented. First of all, the incoming queues store integer values, so for a 
specific sample three integers (or more, depending on the sensors) needs to be taken 
out and given to the first function. This can not be done inside the function since this 
would mean that certain functions (the outer ones connected to the queues) have a 
queue as input and certain functions have only one sample (three integer values) as 
input. Since they need to be interchangeable, it would be a good idea to have a “split” 
block/function directly after the queue that offer only one sample value at a time. The 
same holds for the send queue at the end: have a separate “merge” block/function 
which puts the sample value in the queue for sending.  
A second issue deals with how to check whether the functions can be linked or not. If 
this addition is implemented in such a way that constructing this structure of blocks 
without the need to recompile (as discussed in section 6.1), then the tool used to 
create these (either graphical or text-based) can check whether these dependencies 
hold.  
 
6.4 Implementation of schedule and start up and shutdown on AG2 
Currently starting and shutting down the radio is simulated in the code. This is due to 
the fact that these commands are not implemented in the code that runs on the AG2. 
This is a separate code from the one running on the CoolFlux DSP where the 
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operating system is running. Information is exchanged between these two processors 
via UART and send and receive commands are also done via this UART connection. 
There is however currently no implementation of a command that can be given to 
place the radio in sleep mode. This should later on be implemented to give the full 
functionality and power reductions from starting and shutting down the radio.  
The second issue that still has to be implemented on the AG2 is the sending of time 
synchronisation packets between nodes. This is done in the code running on the AG2 
and thus not controlled by the CoolFlux DSP or the operating system. Therefore it 
will not adhere to a schedule. This schedule should be implemented on the AG2 or, 
for a more generic approach, should be made configurable by the CoolFlux DSP. This 
would avoid having to change the code on the AG2 again when the schedule changes.  
 
6.5 Implementation of shutdown during longer periods of inactivity 
During the operation of a wireless sensor node, circumstances and surroundings may 
change depending on where the node is used. For nodes of body sensor networks for 
example in the physiotherapy application, the time the user is attaching the nodes to 
the body or the user is starting the application on the host computer, the node does not 
need to take samples or send information to the host. This is an improvement which 
later could be made by having the application on the host send a start signal 
constantly when it is ready to start. The nodes can then periodically (for example once 
every 10 ms) start the radio and listen for this start message from the host. Before this 
message is received, all sensors can be shut down until the application is actually 
started.  
 
6.6 Scalable sampling frequencies for sensors 
Related to these changing surroundings of a sensor node, the sampling frequency 
could also be automatically changed depending on the activity the sensor is 
monitoring. For example, if the sensor constantly reads the same value during its 
sampling, it can lower its sampling frequency and therefore save more energy. When 
the values it samples then start fluctuating more, the sampling frequency can be 
increased again. This improvement is not suited for every application. Especially 
sensitive monitoring (for example heart rate of patients) which are inherently stable 
will not work with this improvement.  
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7. Conclusions 
The test results described in section 5.7 indicate that the power consumption of the 
blue boxes can indeed be reduced. The amount of power that could be saved as stated 
in the problem formulation was split into two parts. The first part was the reduction of 
power consumption during the use of the sensors and the second part the reduction of 
power consumption during the use of the radio.  
 
Generally speaking, without looking at the specific sampling frequency of the 
physiotherapy application, the amount of time the three sensors need to be powered 
up is reduced. The amount of time the sensor is on depends on the frequency at which 
the sensor needs to sample. Comparing the three sensors shows that the difference is 
all in the start up time of the sensor. The sensor sampling time is negligible and the 
dominant factor in the amount of time the devices are powered is the start up time. 
The magnetometer has the biggest reduction in the amount of time it is powered. 
Adding this to the large power consumption of the magnetometer (almost 60 mJ/s) the 
power reduction of the entire sensor node is already drastically reduced. For the 
frequencies below 25 Hz the gyroscope is also able to power down. Due to its large 
power consumption (90 mJ/s), shutting it down for even a small amount of time 
already has an effect. As can be seen from figure 5.2 the highest sample frequency of 
the three sensors is dependent on the start up time of the three sensors. In the case of 
the three sensors in the blue boxes this would be 43 ms (1 ms for the magnetometer, 2 
ms for the accelerometer and 40 ms for the gyroscope). With a total start up time of 
43 ms the maximum sampling frequency at which all three sensors can be shut down 
is 23 Hz. By starting all sensors at the same time, this can be reduced to the length of 
the longest start up time (40 ms in this case of the gyroscope). This would require the 
start-up and shutdown function currently in the sample function of the sensor driver to 
be moved to the PSF level. This is an improvement which is not yet implemented.  
 
The second part of the power consumption, the power consumption of the radio, has 
also decreased. The amount of time the radio is powered up scales with the frequency 
at which it needs to send data. When the frequency becomes larger than 100 Hz the 
accumulated power-on time of the radio increases significantly per period. The 
reduction of power for the radio is not completely the same as with the sensors since 
sensors are completely turned off between taking samples, while the radio goes into 
power saving mode which still uses energy (approximately 0.7 percent of the sending 
energy cost in the highest power down mode).  
 
The overall power reduction in the specific case of the physiotherapy application is 
mainly found in the shutting down of the magnetometer and radio. The magnetometer 
is shut down 87.5% and the radio 91.4% (see table 5.2). The accelerometer is also 
shut down 75.0% of the time but the power consumption is not as high as for the other 
two devices. The gyroscope does not have the time to shut down in the physiotherapy 
application and still remains a large power drain. The sampling and sending 
frequencies used in the physiotherapy application (100 Hz for sampling the three 
sensors and 25 Hz for sending data) can still be achieved with the software abstraction 
layers without compromising the timing of the application. The power consumption of 
the radio would thus become approximately 1 mW (the original power consumption 
was approximately 88 mW) and the power consumption of the magnetometer would 
be almost 0.8 mW (with an original power consumption of 59.4 mW). The power 
consumption of the node would be reduced by approximately 42% meaning it would 
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be able to operate approximately 2.5 times as long as originally (approximately 12 
hours) (see [2] for more information about the power consumption of the different 
devices and components of the node not included in this report).  
 
The other area of focus in the problem formulation dealt with decreasing the time to 
develop applications on the blue boxes by increasing the usability of the software. By 
increasing the abstractions in the operating system environment, the programmer is 
able to program the nodes with only four functions. To determine how programmers 
of the nodes experience this, further tests with programmers are needed. The future 
improvements which are mentioned in sections 6.1, 6.2 and 6.3 will increase the 
usability of the software even further, especially the graphical interface. 
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