
 Eindhoven University of Technology

MASTER

Reducing power usage in wireless sensor networks using software abstractions

Paffen, T.F.P.

Award date:
2010

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0b5921a9-11de-46bd-affb-ad6027a58dda

Eindhoven University of Technology
Department of Mathematics and Computer Science

Confidential

Author:
Paffen, T.F.P. (s0549987)
t.f.p.paffen@student.tue.nl

Supervisor Technical University Eindhoven:

Hilbers, P.A.J.
p.a.j.hilbers@tue.nl

Supervisor Philips Research Eindhoven:

Stok, P.D.V. van der
Peter.van.der.Stok@philips.com

Eindhoven, July 2008

Master Thesis
Reducing Power Usage in Wireless Sensor

Networks using Software Abstractions

By
T.F.P. Paffen

 1

 2

Summary
Wireless sensor networks (WSN) are a very diverse and relatively new area of
research. WSNs consist of sensor nodes able to communicate wirelessly and it is
preferred that they operate for a longer period of time. Since many wireless sensor
nodes are powered by an independent power source such as a battery, power
consumption is an important issue in the WSN research field. In this project, two
objectives are set: to reduce power consumption using software abstractions (1) and to
create the software abstractions in such a way that the development for the sensor
nodes is made easier and natural (2). The hardware that is going to be used is the blue
box, a sensor node developed by Philips Research. These nodes contain a CoolFlux
DSP [10], a CC2430 radio chip with an 8051 microcontroller (packaged called AG2)
[7], three one-axis gyroscopes [6], two two-axis magnetometers [8] and one three-axis
accelerometer [9]. The nodes run Flex-OS as the operating system, which is a port of
FreeRTOS with in addition peripheral abstraction architecture, time and task
synchronization and Media Access Control (MAC) services.

To realize the two objectives, three abstraction layers are devised on top of the
peripheral drivers of the OS. On top of the peripheral driver architecture, device
drivers are designed for sensors and radios. There are two drivers, one for sensors and
one for the radio. It provides the programmer with API functions as create, configure,
sample, send, receive, etc. Above that layer, the network schedule layer is placed.
This handles the network scheduling to allow the radio to shut down. The necessity of
a schedule is due to the fact that a radio needs to know when it needs to be powered to
receive a message from a gateway (computer, PDA, etc.) or other node. If the radio
does not know when to expect a message, it continuously has to be powered and listen
for messages, making it very power consuming. The top layer is the Program
Specification Functions (PSFs) layer. These PSFs are four functions with which the
node can be programmed. The four PSFs are: sample, send, receive and compute.

Figure 1: Proposed abstraction layers

The sample function allows the programmer to set the sampling frequency, use the
shutdown function of the sensor for a specific sensor. For example, if the
accelerometer needs to be sampled periodically at 25 Hz and the sensor can power
down between sampling, the program would specify the following PSF:
sample(Sensor, frequency, ShutdownBetween, ShutdownInactive, name of the
sensor). In the specific case of the accelerometer this would be: sample(Acceleromter,
25, 1, 0, “Accelerometer”). The blue boxes contain three sensors which can have
different sampling frequencies in the implementation with PSFs. All sensors are
sampled in a separate task when the frequencies are different, but sensors sampling at
the same frequency are grouped in one task. The send PSF allows the programmer to
specify the send frequency at which the radio needs to send the information to the

Program Specification Functions

Network Schedule

Sensor drivers Radio drivers

Peripheral Drivers (UART/I2C/SPI/MAC/…)

Sampling Schedule

 3

sink. If the sampling frequency is higher than the send frequency, several samples are
grouped together in one message. For the AG2 radio the following example of the
PSF with a send frequency of 25 Hz can be called: send(AG2radio, 25, 1). If the send
PSF is called, a task is created (as with the sensors) which will handle the actual
sending. In this project it was chosen to use a network schedule which allows
asynchronous sending and receiving. The sending can happen according to the send
frequency, while the receiving is periodic once every second. The reason this is done
is that the specific application which this project focused on did not need to receive
anything from other nodes and only occasionally needed to receive data. The receive
PSF sets up a task which will periodically power up the radio to receive data. The last
PSF, compute, is currently not used. It can be used to do calculations on the node
itself before sending data to the host or other nodes. This can be done by manually
programming the computations that are done on the data.

All PSFs are connected via queues. The sensor driver allows every sensor to have one
queue associated with it in which the samples need to be stored. The radio driver
allows two queues to be associated with the radio, namely a send and a receive queue.
The former is used to store samples which need to be send by the send PSF and the
latter stores packets which are received by the radio.

After implementation of the abstraction layers, measurements were done to see how
much overhead was produced by the abstractions (both in time and in memory). There
were also measurements done to see the percentage of total time, the devices of the
node (radio and sensors) are powered up. In the case of sampling at 100 Hz and
sending at 25 Hz (the physiotherapy application), the magnetometer is shut down
87.5% of the total time and the radio 91.4%. The power consumption of the node is
reduced by approximately 42% allowing the node to operate for approximately 12
hours (approximately 2.5 times longer than the original application).

Especially for the magnetometer, the accelerometer and the radio a big decrease in
usage can be seen. The gyroscope, which is the most power consuming device in the
blue box, has a start-up time of 40ms and can therefore only be shut down between
samples for frequencies lower than 25 Hz. The additional memory usage of the
abstraction layers was almost 10 kilobytes. The data memory of the CoolFlux DSP is
64 kWords (one word is 24 bits). This means the overhead of the abstraction layers is
within reasonable limits and the trade-off between memory usage and ease of
development and power reduction is worth it. The overhead in execution time is
mostly found in the start-up time of the devices. Since the DSP is sequential, the
devices have to wait until it is their turn to be powered on to take a sample. Since the
actual time to take the sample or send the data is negligible, the main overhead is in
the start-up times of the devices. This is also the main reason why the gyroscope (with
a start-up time of 40ms) is sampled last of all three sensors to minimize the
interference of this start-up time on the other two sensors.

 4

Contents
1. Introduction .. 6

2. Problem description ... 8

3. Objectives .. 10

4. Improvement .. 11

4.1 Program Specification Functions ... 12

4.2 Sampling Schedule ... 15

4.3 Network Schedule .. 15

4.3.1 Schedule option one: Timeframe and slot division 16

4.3.2 Schedule option two: Only schedule for receiving 17

4.3.3 Schedule option three: TICOSS schedule for multi-hop 17

4.3.4 Chosen schedule for this project .. 18

4.3.5 Changing the network schedule ... 19

4.3.6 Effect of the network schedule on power consumption 19

4.4 Sensor & Radio Drivers ... 19

4.5 Order of implementation .. 20

5. Implementation .. 22

5.1 Sensor Driver .. 22

5.1.1 Structure of the sensor handle ... 22

5.1.2 API functions of the sensor driver ... 23

5.1.3 Implementation of the three sensors using the device driver 24

5.1.4 Problems encountered during sensor driver implementation 25

5.2 Radio driver .. 25

5.2.1 Structure of the radio handle ... 25

5.2.2 API functions of the radio driver ... 26

5.2.3 Actual radio implemented via radio driver .. 27

5.3 Program Specification Functions ... 27

 5

5.3.1 Implementation of the Program PSFs .. 28

5.3.2 Tasks created by the PSFs ... 30

5.4 Network Schedule .. 31

5.4.1 Send schedule .. 31

5.4.2 Receive schedule ... 31

5.5 Physiotherapy application .. 32

5.6 Testing .. 33

5.6.1 Testing the device drivers .. 33

5.6.2 Testing the Program Specification Functions .. 33

5.6.3 Testing the network schedule layer ... 34

5.6.4 Testing the whole system and taking measurements 34

5.7 Measurement Results ... 34

6. Future Work ... 38

6.1 PSFs from flash memory without recompiling code .. 38

6.2 Graphical User Interface to create application with PSFs 38

6.3 Compute function with a PSF-like block structure .. 39

6.4 Implementation of schedule and start up and shutdown on AG2 39

6.5 Implementation of shutdown during longer periods of inactivity 40

6.6 Scalable sampling frequencies for sensors ... 40

7. Conclusions .. 41

8. References .. 43

 6

1. Introduction
Wireless sensor networks (WSN) are a relatively new area of research. There is a
diverse range of possible applications for such networks from body sensor networks
to large-scale networks such as forest fire monitoring. As the name WSN suggests,
the networks consist of sensor nodes able to communicate wirelessly. The sensor
nodes often have an independent power source (for example a battery) and their own
processor and radio. Body sensor networks already existed before the introduction of
WSNs but were not practical due to the cumbersome cabling necessary to connect the
nodes to the controller. This setup can of course be unpleasant for the wearer and
restricts his/her movement with the length of the wires. Wireless sensor nodes would
bring a lot of freedom to this field and this is one of the reasons why wireless sensor
networks are an important research topic. In the area of wireless sensor networks the
reduction of power consumption is an important field of research. Due to the
limitations of batteries (in most cases the power source of the wireless sensor nodes),
the amount of time a node can operate is severely limited.

Several types of wireless sensor nodes exist, but our research focuses on the blue
boxes [11], nodes developed by Philips Research for body sensor networks. These
blue boxes contain the CoolFlux DSP [10], a CC2430 radio chip with an 8051
microcontroller (packaged called AG2) [7], three one-axis gyroscopes [6], two two-
axis magnetometers [8] and one three-axis accelerometer [9]. The gyroscope,
magnetometer and accelerometer are seen as three axes sensors in the application and
no distinction is made between a sensor with three axes and three separate one-axis
sensors. They are powered by a lithium polymer battery. Flex-OS [12] is the operating
system running on the CoolFlux DSP and contains also a complete peripheral
abstraction architecture, time and task synchronization and Media Access Control
(MAC) services. Flex-OS is not only used on the blue boxes but also on the SAND
nodes. These nodes are also developed by Philips Research and have a similar
hardware layout as the blue boxes. The main difference between the nodes is that the
SAND nodes use a CC2420 radio (which has no integrated microcontroller) and the
blue boxes use an AG2 radio chip (which includes a microcontroller). The MAC
services integrated in Flex-OS are only used for the CC2420 which has no dedicated
microcontroller that runs MAC services. The MAC services for the CC2430 run on
the 8051 microcontroller embedded in the AG2 chip which is connected via UART
(Universal Asynchronous Receiver/Transmitter) and GPIO (General Purpose Input
Output) to the CoolFlux DSP and the sensors are connected to the DSP via SPI (Serial
Peripheral Interface) and GPIO. Figure 1.1 shows a simplified schematic of the blue
boxes. A software application that runs on the blue boxes helps with physiotherapy
exercises for stroke recovery by providing feedback. This application provides
patients, recovering from a stroke, with feedback on exercises they perform to help
their rehabilitation process. The sensors are used to measure if the patient correctly
performs the physiotherapy exercises and then provide feedback to the patient on the
PC. The application uses a PC as the sink to receive all data from the sensors and
perform further computations on it. On the node itself, no computations are done. In
this application the nodes do not need to communicate with each other, only with the
sink, thus creating a star network.

 7

Figure 1.1: Simplified schematic of the blue boxes (base image from [4])

By turning on and off the sensors and radio when they are not active
sampling/sending/receiving, power can be saved and therefore the battery life of the
node extended. Furthermore, to ease development on these sensor nodes several
abstractions are proposed and implemented to provide programmers with a
straightforward way of programming applications. The physiotherapy application will
be seen as the main application on which this approach will be tested. Therefore,
design decisions that need to be made will try to be as generic as possible but are
largely motivated by this specific physiotherapy application.

AG
2

CoolFlux

DSP

UART, GPIOs

Radio Frequency

Sensors SPIs,

GPIOs

 8

2. Problem description
Programming wireless sensor nodes of the blue box type at this point requires that the
programmer needs to be familiar with the hardware layout of the nodes. This
familiarization requires time and thus the time to develop the WSN application
increases (1).
The second problem is battery live of sensor nodes in wireless sensor networks. In the
current software, a programmer has to shut down and start sensors and radio by
programming this explicitly. The programmer also has to manage that the radio and/or
sensors are started up before taking a sample or sending/receiving a message. This not
only complicates the development for a programmer, it can also mean a programmer
does not even use the start up and shutdown functionality (2).
This presents the third problem for the programmer. The moment to shut down and
start up the radio should be known. Because the node may need to receive information
from another node or a gateway/sink, the program needs to know when data is
expected from other nodes. In our case, a network schedule can help to determine the
intervals at which the radio can be shut down (3).
The fourth and last problem addressed here is the power consumption of wireless
sensor nodes. For nodes with active sensors and radios, the power consumption can be
high. In [2] an analysis was done on the power consumption of the blue boxes running
a specific application. Since nodes are battery powered (for the blue boxes a cell
phone battery is used) power consumption is a big issue. The blue boxes with the
physiotherapy application currently runs 3.5 hours continuously while weeks are
needed (4).

To tackle the first problem (1), a software abstraction is devised to hide the
underlying hardware from the programmer while retaining the freedom to set
application parameters. These include the sampling frequency, sending frequency and
the option of shutting down a sensor between taking samples.
The second problem (2) will be addressed by the software abstractions mentioned
above. The abstractions, provided by this project, will include the functionality to turn
a radio or sensor off between taking samples or sending/receiving data (2).
This project will use one fixed network schedule (3) which is calculated offline (see
section 4.4). For the sensors, the sampling schedule does the same but leaves the
programmer with the ability to change the sampling frequency and thus the sleeping
periods. Both the radio and the sensor drivers will allow the programmer to specify if
and when the shutdown functions should be applied. All improvements will have a
reduction of the power consumption as effect by switching off sensors and the radio
for a given period of time while maintaining communication.
Because the software abstractions (4) simplify the use of shutdown functions for both
the sensors and the radio, the power consumption of these components will reduce
significantly. Especially by shutting down power consuming components like a
magnetometer and the radio when they are not used, it will help prolong the time a
node can run continuously.

Several constraints are placed on this design. First the network schedule is going to be
calculated before operation of the nodes, which means that during operation it is
predetermined beforehand when a node needs to listen to the wireless medium and
when it can send data over the medium. The second constraint is that the project
assumes a connected (all nodes can directly communicate with the sink) body sensor
network environment. The applications of interest have in general not more than eight

 9

nodes in their network. Therefore the network schedule can be simple. For the nodes,
only communication with the gateway/sink is needed, no communication between
nodes. The nodes send their data to a sink and must be able to receive data from the
sink (to keep the implementation as generic as possible). Furthermore the sensors and
radio drivers will be implemented for the blue boxes running Flex-OS. A different
connection of sensors or radio might require a different implementation. On the blue
boxes, Flex-OS is used. The consequence is that time- and task synchronisation
functions are implemented in the Flex-OS environment as well as peripheral drivers
(SPI, UART, etc) and a MAC layer implementation. The time synchronisation
algorithm runs in a separate task that is not further considered in this project.

Problem formulation
The shutdown of sensors in between taking samples and the shutdown of the radio
between sending/receiving realize the two improvements on the power consumption
that are gained from these implementations. The shutdown of sensors during
inactivity (application on the gateway has not yet started, sensor is still being
attached, etc) is not taken into account for the calculation of this improvement since it
also requires information from the application running on the gateway. The number of
nodes is fixed to a maximum of eight nodes.
The second part of our hypothesis is that the time to develop should be decreased by
increasing the usability of the software for the programmer. Therefore drivers and
high level abstractions are presented to the programmer.

 10

3. Objectives
Two objectives are set for this project. These objectives are interwoven with each
other. The first objective of this project is to develop software abstractions as an
extension of the current operating system for wireless sensor nodes. These software
abstractions will provide the programmer with a way to develop applications without
having to be familiar with the underlying hardware and with low level software. The
second objective is to use the software abstractions to control the hardware in such a
way that a reduction in energy use is realised.
The software abstractions will be validated on the blue box sensor nodes [11]
developed by Philips Research. They contain a CoolFlux DSP [10], a CC2430 radio
chip [7] (with an 8051 microprocessor) and three 3-axis sensors (an accelerometer [9],
magnetometer [8] and gyroscope [6]). The CoolFlux DSP runs Flex-OS [12], based
on the FreeRTOS micro-kernel, which provides the programmer with a complete
peripheral abstraction layer, MAC services and time and task synchronisation.

 11

4. Improvement
As described in chapter three, one of the goals of this project is to simplify the
programming of wireless sensor nodes, but within the confines of the FreeRTOS
environment. The Flex-OS software platform has been designed to be easily portable
to new microcontrollers. This exchangeability over different hardware platforms
requires a certain level of abstraction over the underlying hardware. On top of that,
the reason to increase the level of abstraction in this project is to improve the ease of
development for programmers and therefore shortening the time to develop. The
current abstractions implemented in Flex-OS provide the programmer with peripheral
drivers as UART, SPI, etc, but not yet more generic drivers as sensor and radio
drivers (the latter holds for the version of Flex-OS running on the blue boxes since a
radio driver analog already exists in the MAC services for the CC2420). These extra
abstractions of course cost both program memory as well as a small amount of delay.
It is felt however that the ease of programming is for now more important than the
possible increase in delay. Only after testing can it be concluded if the amount of
delay is acceptable or not. The same holds for the memory usage. After actual testing
it can be concluded if the memory usage with the new abstractions is acceptable.
First, a global overview will be given of the abstractions that are envisaged and why
these need to be made. After that, a more detailed description will be given for every
abstraction.

The highest level of abstraction that is going to be provided is the “Program
Specification Functions” (PSFs). These PSFs are four functions which the
programmer uses to specify the temporal aspects of the application. An example is the
frequency with which data needs to be sampled and the frequency at which the data
has to be sent. PSFs use the network schedule and sampling schedule layers to access
underlying device drivers like the radio and the sensors. This way the PSFs are
completely separate from the underlying radio and sensor implementations. In section
4.1 these PSFs will be discussed in more detail.

Figure 4.1: Proposed abstraction layers

The second abstraction layer is composed of the schedules. They consist of the
network schedule and the sampling schedule. The network schedule regulates when
the radio can send data and when it has to receive data. This is to allow the radio to be
shut down in between. The main reason to keep the schedule as a separate abstraction
layer is that a schedule can vary depending on the application. Therefore by
separating this in a separate abstraction layer, the schedule can independently be
(ex)changed. While the network schedule is fixed beforehand in this project,
separating the network schedule layer will make it easier for programmers to develop
different schedules than if the schedule was integrated into the PSFs or radio drivers.

Program Specification Functions

Network Schedule

Sensor drivers Radio drivers

Peripheral Drivers (UART/I2C/SPI/MAC/…)

Sampling Schedule

 12

The sampling schedule regulates the moments when the sensors take samples. Every
sensor has its own sampling schedule that is set by the PSF (see section 4.1). This
facilitates the shutting down and starting up of the sensor in between samples. The
programmer does not need to take care of that. A sensor is seen as one entity, so for
example a gyroscope is seen as a 3-axis gyroscope and not as 3 separate 1-axis
gyroscopes. This makes sure the number of sensors does not become too large and the
sensor samples of all 3 axes are kept together. It also keeps the gyroscope as one
device, making the use of the device driver easier.

The third abstraction layer consists of two parts: the sensor driver and the radio driver.
These will be briefly discussed here and then in greater detail in section 4.4. The
sensor driver abstracts from the peripheral drivers (GPIO, SPI, etc). It provides the
programmer with functions to access the sensors. This way the peripheral drivers are
hidden to the programmer and thus provide an interface to the schedule layers. It will
also include the automatic start up and shutdown before and after sampling a sensor.
The programmer will have the option to shut down the sensor by the application. By
automating this start up and shutdown, reducing power becomes more intuitive for the
programmer.
The radio driver abstracts the access to MAC functions used to access the radio. This
abstraction provides an interface to the network schedule layer and, as with the sensor
driver, facilitates the shutdown and start up of the radio by calling a function. These
power reduction functions are incorporated in the sending and receiving functions so
the programmer does not need to switch the radio off manually.

The second goal, as stated in chapter two, is to reduce the energy consumption in the
wireless sensor nodes. This will be achieved by using the software abstractions
specified in the first part of this section. The highest software abstraction, the set of
PSFs, gives programmers the option to shutdown both the chosen sensors as well as
the radio. The sensor will then shut down in between taking samples. Depending on
the sampling frequency and the energy consumption of the sensor, this can already
reduce the energy consumption of the node significantly. The network schedule
performs a similar function for the radio, allowing it to shut down if it does not need
to receive or send information. One of the PSFs (as is discussed in more detail in
section 4.1) is going to be used to do calculations on the node before the data is sent.
Depending on the calculations that are done on the node, usually less data needs to be
sent. For example, the three x-values from the three sensors need to be averaged.
Doing it after sending means three x-values need to be sent. If the averaging is done
on the node, only one average x-value has to be sent, reducing the amount of energy
used by the radio. The CoolFlux DSP is a processor which cannot be shut down due
to hardware limitations. Therefore the processor is always on and the increase of
computation that has to be done is negligible in comparison to the amount of energy
used by sending data via the radio.

4.1 Program Specification Functions
The program specification functions (PSFs) will be used to give the programmer a
way to define the desired application at a high level. These functions will use
functions in lower level abstraction layers to keep the layers as separate as possible.
PSFs will set up tasks for the program to run, so the programmer does not have to do
this explicitly. The programmer should be able to create the application by specifying
the desired tasks and the way they should be connected (for example as shown in

 13

figure 4.2). The interaction between tasks as seen in figure 4.2 will be done via
queues. By calling multiple instances of the sample task for example, multiple sensors
will take samples. There are limitations to this approach. The first is that a sample
task cannot be directly linked to a receive task since both are producing data. The next
limitation is that a send task will have only one send queue, which can be accessed
from the compute task or from one of the sample tasks. The connections between
blocks can vary depending on the type of application. It is possible to not use the
compute task and directly connect the sampling tasks via the send queue to the send
task. This has as a consequence that the queue may be accessed from multiple tasks
(depending on the number of sample tasks). The data in this queue will be sent. To
limit the number of tasks that are running, sample tasks that sample at the same
frequency will be merged. Both the receive and compute tasks can be omitted if there
is no computation to be done or if no information needs to be received from the sink
(the time synchronisation is not considered in this).

Figure 4.2: Graphical depiction of a possible arrangement of tasks created by PSFs

A main advantage of sensor node applications is that many have similar tasks and
requirements. Most sensor nodes are used to sense data, process this data and
communicate this data to the outside world. Because of this generally common pattern
there are four functions that sensor nodes need to perform: taking samples using
sensors, sending information, receiving information and performing different
computations on sensor data. This presents an opportunity to help the programmer
with creating an application. By only providing functions that achieve these four
functions for a sensor node, the programmer does not need to program these
manually. The “program specification functions” are thus restricted to four functions,
namely the following:
Sample: This function lets the programmer specify the sampling frequency for a
certain sensor and indicate the use of the shutdown functions of the sensor (both the
“between samples” and “during inactivity” shutdown separately)
Compute: Since the programmer is the only one who exactly knows what
computations need to be performed on the data, a generic implementation of a
computation function would not be feasible. Therefore the programmer has to
manually write part of this function. A pre-created task for the compute function is
already there, with access to the radio queues (send and receive) and all sensor
queues. The programmer can manually program what computations the compute
function actually has to perform on the code. The send queue of the radio can be used
by the programmer to store the end result(s) which can later on be sent by the send
PSF. This task is automatically created when the compute PSF is invoked.

Sample
task

Sample
task

Sample
task

Compute

task

Send
task

Receive
task

 14

Send: This function lets the programmer specify the data to send, the radio to be used
and the frequency the data has to be sent. The use of the shutdown function in
between sending can also be enabled or disabled.
Receive: The programmer can specify the radio that has to receive data and if the
radio should shut down. What should be done with the received data can also be
specified by implementing a custom function developed by the programmer (as with
the compute function). If the data is used in the compute function than the receive
queue can be accessed in the compute function that a programmer has to implement
manually and the receive function should not be used. Since the send part of the radio
already knows if the radio should shut down in between, this does not have to be
specified in this PSF again. This is to avoid conflicting shutdown parameters if they
are specified in both the send and receive PSF. One option is to let it be specified in
both but give priority to one of the two functions, so that if they both have a different
parameter the send PSF always overwrites the one from the receive PSF or the other
way around. This can lead to confusion as to which PSF has precedence and therefore
it is decided to only let the shutdown of the radio be specified in the send PSF.

Restricting the number of functions the sensor node can perform is of course a trade
off between ease of development and what a programmer can specify. Certain nodes
may still need to perform additional tasks or programmers may wish to expand the
number of functions the node can perform, but this will also again increase the
complexity for the programmer to create his application. Due to the layered nature of
the software abstraction, additional PSFs can later always be written if the desired
functions of sensor nodes change or the set of functions is enlarged to encompass
other tasks. This will make this approach more flexible even if other features are
needed.
Increasing the number of computations on the node is actually a good practice since in
most cases it reduces the number of messages or the length of messages that need to
be sent. Especially at this time trading sending energy for computation energy is more
efficient since the processor of the blue boxes cannot be turned off due to hardware
limitations but the radio can. In general this is already an efficient trade off since in
most cases the power consumption of the processor is much lower than the power
consumption of the radio. Also, the use of the PSFs will make it easier for
programmers to use the start up and shutdown functions of the sensors and radio
without having to devote time on when and how start up and shutdown functions need
to be evoked.

The sampling and sending frequencies can be specified in the PSFs. Therefore, to
verify that the sampling and sending frequencies are valid, the following three
conditions are tested:

 Sampling frequency ≥ Send frequency (avoid sending empty packets)
 Sampling frequency / Send frequency ≤ 20 (avoid overflowing the queue

which stores data samples, it has 60 places for samples (1 sample is 3
integers), 20 for each sensor)

 1/sampling frequency > Start-time sensor (only applicable if the shutdown
function between samples is used, to make sure the sensor has enough time to
start)

 15

Example
To illustrate the use of these PSFs, an example will be given. A programmer wants
the sensor nodes to sample two sensors (sensor A and B) at a frequency of 100 Hz.
Both sensors provide him with x, y and z values each. The programmer wants to add
the x-values, the y-values and z-values and then send these triplets at a frequency of
50 Hz. The way the programmer would do this using the PSFs would be as follows:

1. First use the sample function to set up both sensors with the desired frequency
and shutdown parameters: Sample(sensor A, 100Hz, shutdown, …) and
Sample(sensor B, 100Hz, shutdown, …)

2. Then the pre-made function is implemented to take the three parameters of
the sensors and add them. The result of this computation is stored in the send
queue. Now he invokes the compute function: Compute(…)

3. Now he needs to specify the sending function to concatenate two processed
samples in one packet and send it. The two samples are concatenated because
the send frequency is half of the send frequency. This gives the following
function: Send(Radio A, 50Hz,…). This function will retrieve the items in the
send queue and sent the data at the indicated frequency.

4.2 Sampling Schedule
The sampling schedule is used to determine at which points in time the sensor needs
to take a sample. The sensor can be shut down in between these samples, a parameter
set by the programmer. As stated in [2] shutting off the sensor between samples can
corrupt the sampled data. An example is aliasing, which can occur to accelerometer
data if there is no continuous sampling. Therefore turning the accelerometer off at
random times should not be done. Each sensor can have a different schedule. The
schedule is made by providing the sampling frequency in the PSF. The sampling
schedule is not a separately implemented schedule like the network schedule. The
schedule is enforced by the sample PSF.
The reason to choose for an integration of the sampling schedule in the sample PSF is
threefold. First, the sampling schedule is not as complicated as a network schedule.
Since sensors only sample data at a certain frequency and no outside influences
require a sensor to be powered up (like a radio that needs to receive) the sampling
schedule can be kept simple. A second reason is that all data is available at the level
of the PSF like frequency and shutdown boolean. Placing this outside the PSF would
complicate the implementation and later also the understanding of the sample PSF. A
third consideration is that the only real setting for the sample schedule is the
frequency at which the sensor needs to sample. With that information, the schedule
knows when the sensor can sleep and when to wake up. Since the frequency can
directly be set in the PSF, the schedule can be changed by the programmer on that
level.

4.3 Network Schedule
To be able to shut down the radio when there is no data to be sent or received, a
network schedule is made. If there is no schedule, the application does not know when
the radio has to wake up. Since many factors play a role in determining which
network schedule works best in a specific case, the network schedule layer has been
separated from both the radio driver layer and the program specification layer. The
network schedule is fixed during operation of this network. If a different schedule is
needed a new schedule should be made and replace the current network schedule.

 16

Figure 4.3: Layout of a star network supported by this implementation

In the application where these abstractions will be validated, a star topology is
applied. End-nodes do not need to communicate with each other; they communicate
their data to the sink. The sink is in this case a PC which does all calculations on the
data sampled by the sensors. The sink only needs to communicate time
synchronisation messages to the nodes. There will be no multi-hop topology applied,
since it is not necessary in the example body network environment. As a result the
schedule that will be used can be simple. The schedule is adhered to by both the sink
and all the nodes. The use of such a topology places limitations on what can be done
in the network. The first limitation is that no inter-node communication is possible.
Secondly, nodes that are outside the range of the sink cannot communicate at all with
the sink, since there is no multi-hop supported. There are several options in which this
star topology (without multi-hop) can be represented in a schedule. Three options will
be discussed further in the coming sections and advantages and disadvantages will be
noted to propose a selection.

4.3.1 Schedule option one: Timeframe and slot division
The first option for a network schedule is to divide a timeframe into slots. The length
of both the frame and slots can be set with a function. The first eight slots are used for
sending information and the last two for receiving. In these last two timeslots, the
radios of all nodes need to be powered up. If a node does not need to send anything,
the radio will not be started and remains in “power down mode”. The number of slots
is chosen to be ten because there needs to be two receiving slots (one for time
synchronisation and one for additional information from the gateway/sink) and eight
sending slots since in the current setup there will be no more than eight nodes, making
it possible to give each node its own slot later on if necessary.

Figure 4.4: Division of slots in one timeframe for schedule option one

The API that this network layer would offer to the PSFs consists of three functions:

 sendASAP(…): sends the data in the first send slot that is available
 received(…): provides the received information to the higher layers
 configure(framelength, slotlenght, …): configures the network schedule

The main advantage of this schedule is that every node can have its own sending slot
and therefore the chance of having to retransmit due to collisions is greatly reduced. It
also allows the programmer to shuffle the slots (including framelength and slotlength)
around to the desired need of the application. A big drawback of this schedule is the

Send Send Send Send Send Send Send Send Receive
(TS)

Receive

Gateway

Node

Node

Node

Node

 17

larger restriction on sending information than necessary. However as a generic
approach, this is much more usable when for example the receiving gateway/sink has
to shut the radio down as well. Since the receiving radio of the sink is always on,
adhering to a network schedule that restricts sending to slots creates unnecessary
delays in receiving the samples at the sink. This is a disadvantage that of course only
holds for this application specification.

4.3.2 Schedule option two: Only schedule for receiving
Exploiting the fact that the physiotherapy application does not need communication
between nodes, a strict schedule for sending data to the sink computer is not needed.
The application needs to receive information from the gateway/sink like time
synchronisation messages. Thus a schedule is needed for system messages but a
schedule for sending application messages over the network is not. This option for a
network schedule will therefore only schedule the receiving part and not the sending
part. The way the current task synchronisation works is that only one task (which
according to [4] has to have the highest task priority for the scheduler of the OS) can
synchronise with identical tasks on different nodes. To ensure that all nodes turn on
their radio at the same time, task synchronisation will be used in the receive task. In
pseudo-code the receive schedule would look as follows:

//Period that the radio has to wake up in ms
const int period = 1024;
//Synchronise tasks on all nodes using synchronise function from task synchronisation
int xLastWakeTime = synchronizeTask(period);
for (; ;)
{
 //Wait till next receive moment
 vTaskDelayUntil (&xLastWakeTime, period);
 //Turn on the radio
 vStartUpRadio(xRadio);
 //Receive data using the receive function from the radio driver
 vReceiveData(xRadio);
 //Turn the radio off
 vShutDownRadio(xRadio);
}

The sending of messages to the sink becomes completely asynchronous from
receiving messages and is not scheduled in the network schedule. Sending messages
to the radio happens at the frequency determined by the send frequency stated by the
programmer in the send PSF.
One of the main advantages is that sending data is not constrained by a schedule. The
receiving task will always have the highest priority due to the restrictions of task
synchronisation so sending will not interfere with receiving. The drawback of this
schedule is that collision detection and avoidance is completely delegated to the MAC
services running on the AG2 and a programmer has no direct control over it with this
schedule.

4.3.3 Schedule option three: TICOSS schedule for multi-hop
One of the schedules developed for extensive power reduction tests on nodes was V-
Scheduling created by Antonio Ruzzelli from University College Dublin visiting

 18

Philips Research. It is called TICOSS (TImezones COordinate Sleeping Scheduling)
and was created for multi-hop networks. A network was divided in time zones (figure
4.5). Only adjacent timezones can communicate with each other and there are fixed
slots for sending and receiving. The schedule works from one node (designated the
Personal Area Network (PAN) coordinator) outwards and is set up so that if nodes in
one zone are sending, the nodes in the zone one further away are listening. This is the
first stage of the schedule. The second stage is the other way around. The nodes in the
outermost zone can send and the nodes in the zone that is one closer to the PAN
coordinator are listening and so back to the lowest zone and PAN coordinator. After
that, the schedule has one local broadcast in which all radios have to be on. This is
used for time synchronisation (see figure 4.6 for a representation of the schedule).

Figure 4.5: Time zone division in TICOSS

The power reduction that could be achieved by implementing this schedule was
extensively tested and was 56.4% (see [1] for more information on the schedule and
the testing). The versatility of the schedule is the main advantage. It can easily be
used by a diverse variety of applications, both single and multi-hop. A drawback is
actually the same as for the first schedule: it restricts the sending of information and
therefore creates delays as to when the data is received by the gateway/sink (at least
for an application which does not need inter-node communication). It is also more
complex to implement.

Figure 4.6: Representation of the schedule with period local broadcast

4.3.4 Chosen schedule for this project
The second schedule (section 4.3.2) is chosen (only receiving schedule while sending
when ready) to fit well with the application that is tested in this project (the
physiotherapy application as described in chapter one). The main reasons are its
simplicity and the fact that data is immediately sent when it needs to (in accordance
with the send frequency). The use of schedule three was rejected mainly because of its
unnecessary complexity. The implementation that was developed for [1] was for a

 19

different sensor node platform. The first schedule introduces delays while not adding
functionality that was needed for the application.

4.3.5 Changing the network schedule
If the network schedule needs to undergo major changes (like supporting send slots,
supporting multi hop networks, supporting complex network schemes, etc), the
network schedule should be rewritten manually. It is possible to have configuration
functions for an existing schedule which changes parameters on a limited scale.
Another possibility is to have several implementations of schedules of which the
programmer can chose one. These improvements fall outside the scope of this project.
The lower levels provide the network schedule with the radio driver to access the
radio and also the send and receive queues containing the data that needs to be sent
and that has been received respectively. The send and receive functions of the radio
driver will insert and extract the data into messages respectively. The difficulty of
programming a new schedule depends heavily on the requirements for it and the
extensiveness of the services it should be able to support (multi hop, reserved slots,
etc). Since the two functions called by the PSFs using the radio (the send and receive
PSFs) are from the network schedule layer (sendASAP and received), if the
implementation of these functions is changed by for example implementing network
schedule one (section 4.3.1) the PSFs do not need to be changed.

4.3.6 Effect of the network schedule on power consumption
Implementation of a network schedule will reduce the power consumption of the node
because the radio will have sufficient time to sleep while it does not need to send or
receive data. During receive slots however the radio always has to listen. Since these
receive slots are fixed in time, the radio will not miss packets it needs to receive, as
long as the sending radio also upholds the receive scheme as its sending slots. In this
case the sink computer holds the sending radio during receive slots. The reduction in
power by using a network schedule as envisioned in option two in combination with
start up and shutdown of the radio should be approximately 90 percent with a send
frequency of 25 Hz and combining four data samples in one packet. One packet
contains nine integers per data sample and packet overhead. It takes the radio
approximately 4 ms to send this giving it a power consumption of approximately 8
mW (with 25 packets per second). This is together with receiving a time
synchronization packet every second approximately 10 percent of the total time the
radio is powered on (see [2] for more information).

4.4 Sensor & Radio Drivers
Two types of drivers will be provided, one for the sensors and one for the radio. The
set of functions provided for both sensor and radio is done with a device driver so
only the underlying implementation of the functions has to be changed for different
hardware configurations.

The sensors and the radio will both have a device driver, but these will be separate
from each other. There is no generic device driver for both the sensors and the radio.
The set of functions for the sensor handle will at least consist of the following (based
on the peripheral handles of FreeRTOS):

 xSensorCreate: creates the sensor
 vInitSensor: initialize the sensor

 20

 vConfigSensor: configures the sensor with correct values for ADC, start-up
time, etc.

 vStartUpSensor: start the sensor (when it is shut down)
 vShutDownSensor: shut the sensor down to conserve energy
 xSampleData: retrieve a sample from the sensor

For the radio there is also a minimum set of functions that should be provided:

 xRadioCreate: create the radio
 vInitRadio(included in the create function): initialize the radio
 vConfigRadio: configures the radio with start-up time, queues to be used, etc.
 vStartUpRadio: start the radio (when it is shut down)
 vShutDownRadio: shut down the radio to conserve energy
 vSendData: write data to the radio to be sent
 vReceiveData: receive data from the radio

One of the advantages of this separate radio and sensor setup is that functions can be
specifically tailored to be used with either the radio or sensor. Parameters for the
functions can be specific for that function thus having only one purpose. A
disadvantage of this separate API is that a program has two separate sets of functions
instead of just one for all devices.

These specific functions were chosen because all actions that are necessary to access
the device can be done with these two sets of six functions. They are derived from the
physiotherapy application as analysed in [2] and the proposed API for the WASP
project (for more information see [5]). The main difference with the WASP API is
that the WASP API uses one set of functions for all device drivers (radio, sensors,
flash, etc). The main advantage is that all device access is done in the same way, no
matter which device is accessed. This main advantage also holds the main drawback
and the reason it was not chosen in this project. Due to the generality of the drivers as
envisioned in WASP, one function is used to perform many functions (start up,
shutdown, initialisation, calibration, etc). Some of these functions are only for the
sensors, some only for the radio and some for both devices. This would mean that the
function itself has to distinguish which device is calling the function and also the
different parameters that need to be conveyed to the function can be different. This
would make the parameter list longer and more complicated. Such generality is not
necessary for this project and therefore it was chosen to use separate drivers for radio
and sensors.

The energy reduction that can be gained from these device drivers is mainly in the
start up and shutdown functions. By offering the programmer device drivers, the use
of these drivers will be more natural than if the programmer has to type in GPIO
commands to start up and shutdown the device. It also offers the higher level PSFs a
more fixed implementation of the devices, thus increasing portability of the system
and PSFs.

4.5 Order of implementation
The implementation of these proposed improvements should be made in stages to
allow for good testing and to allow a good control over the development. It will also
help spot errors and faults early on. The sensor driver will be implemented first. This
allows for all three sensors that are present in the blue boxes to be implemented using

 21

a sensor driver and then tested to see if it works correctly. After this, the driver for the
radio will be created. As with the sensor, the radio of the blue boxes will be
implemented using the radio driver and then tested. This concludes the lowest
abstraction layer as suggested in section 4.4.
The next implementation will be the Program Specification Functions. These will be
tested by first separately testing each PSF and after that by implementing the stroke
rehabilitation software in this format. The sampling schedule will be included in the
sample PSF and thus implemented here.
The last abstraction layer, the network and sampling schedules, are implemented
third. The sampling schedule is incorporated in the sample PSF and thus already
implemented.

 22

5. Implementation
The implementation order proposed in section 4.5 is followed during the
implementation of the abstractions. Indeed, after the construction of the sensor and
radio drivers, the PSFs were implemented for an easy testing of these functions
without adhering to any network schedule. After this was tested, the network schedule
was implemented and the direct calling of radio driver functions was substituted by
network schedule functions with similar functionality. Before the sensor driver was
implemented, two other parts of code were incorporated into the project, delay
functions and functions for the AG2 radio. Timing is an important part of the
implementation of the PSFs and the underlying abstractions. Therefore the delay
functions mentioned in [3] (section 6.2) are incorporated and tested. After that,
functions abstracting the use of the specific AG2 radio were incorporated into the
project and tested. All queues mentioned in this project are the standard queues
provided by FreeRTOS (Flex-OS is a port of FreeRTOS and the queues are directly
ported from their FreeRTOS implementation). It has a “create” function to allocate
the memory for the queue and to set it up and "send” and “receive” functions to put
data in the queue and to take data out of the queue respectively.

5.1 Sensor Driver
The first implemented abstraction was the sensor driver, a generic template with
which to create a sensor handle and API functions to control the sensor. The first
section will outline the information and structure of the sensor handle. In the second
section the implementation of the API functions that are offered by the sensor driver
to manipulate the sensor are discussed and the third section deals with how the actual
three sensors (accelerometer, magnetometer and gyroscope) are implemented in the
main file. The last section discusses problems that were encountered during
implementation of the sensor driver.

5.1.1 Structure of the sensor handle
The sensor handle that is created and used by the various functions is a pointer to a
data structure containing information about the sensor. The information stored in the
data structure is needed for the API functions that the sensor driver is offering to the
programmer. This information includes the following:

 bDirection: Input (1) or output (0). In the case of sensors, the direction is
always input.

 bInterruptEnable: Enabled (1) or disabled (0).
 bPolarity: Falling edge (1) or rising edge (0).
 eGPIOLine: The GPIO line that is connected to the sensor; is used for

shutdown and start up commands.
 iNumberOfChannels: The number of channels a sensor needs to read from, for

example 3, being x, y, z.
 aADCChannels[sensorMax_Channels]: The channels connected to the ADC

with the order x, y, z, referenceV, etc.
 eUsedADC: The designation of the ADC to which the sensor is connected.

Since all sensors in the blue boxes use an ADC and in the sample function the
ADC is read, if a sensor would be connected without an ADC, the sensor
driver should be changed.

 xShutdownInactive: Indicates if the sensor should shut down during inactivity.
(this value can be set, but nothing is done with it in this project).

 23

 xShutdownBetween: Indicates if the sensor should shut down between
samples.

 xStartupTime: The start-up time of the sensor in milliseconds (rounded up)
after it receives the start-up command. This value is the start-up time as noted
in the datasheet of the particular sensor. It is used to wait the appropriate
amount of time after starting to assure the sensor is started up properly.

 xSampleFrequency: The frequency at which this sensor has to take samples.
 xSampleQueue: A pointer to the queue associated with this sensor. The queue

itself is a data structure with its own set of functions offered by the OS. The
queue is created outside of the sensor driver (in the main file). Only the
pointer to the data structure of a queue is associated to a sensor.

5.1.2 API functions of the sensor driver
The functions described in section 4.4 are implemented with the specified
functionality. The implementation of the sensor and radio drivers is modelled on the
implementation of the peripheral drivers of the Flex-OS environment. The create
function of the sensor only allocates memory for the data structure and sets all
information of the structure to NULL. Therefore the create function does not need
parameters. After the creation of a sensor handle, the information is inserted into the
structure via the ConfigSensor function. All other functions have the sensor handle as
input and therefore have access to all the information contained in it. This limits the
parameters that have to be given to a function and makes it easier to change the
implementation without having to modify higher level function. Since queues are used
to communicate data between PSFs, none of the functions has a return type. A pointer
to the queue is found in the sensor driver structure as well, thus making it possible to
access the sample data elsewhere. The functions of the sensor driver have the
following parameters, return types and operation:

 xSensorHandle xSensorCreate(void)
This function creates the sensor handle and returns it. The sensor handle is a
pointer to a structure containing sensor information, like the used GPIO line, if
it need to shutdown between samples, sample frequency, used ADC, and other
information.

 void vInitSensor(xSensorHandle xSensor)
The initialisation of the sensor is done with this function. It initializes the
GPIO port that is used and shuts down the sensor (if shutdown between
samples is desired) or makes sure the sensor is powered up (if shutdown is not
desired for this sensor).

 void vConfigSensor(xSensorHandle xSensor, int Direction, int
InterruptEnable, int Polarity, portBASE_TYPE GPIOLine, int
ADCChannels[sensorMax_Channels], portBASE_TYPE UsedADC,int
NumberOfChannels, int StartupTime, int ShutdownBetween, int
ShutdownInactive, int SampleFrequency, xQueueHandle SampleQueue)
The configuration function of the sensor is done here. It sets all values in the
structure of the sensor.

 void vStartUpSensor(xSensorHandle xSensor)
To start a sensor, this function is used. It uses the GPIO line of the sensor to
send a start-up command to the senor.

 24

 void vShutDownSensor(xSensorHandle xSensor)
The shutdown function shuts down the sensor by using the GPIO line
connected to the sensor and sending the off command (a 0 in this case).

 void xSampleData(xSensorHandle xSensor, xQueueHandle xSampleQueue)
This function starts up the sensor, waits the amount of time needed for start up
(if the shutdown mode of the sensor is used) and then takes a sensor reading
on all specified channels (as specified in the structure representing the x,y and
z values). These results are put into the queue that is passed to this function
and from which the data can later be retrieved. The last action of this function
is shutting down the sensor (if the shutdown mode is active).

As stated before, a sensor has a queue associated with it where the samples are stored
for use by other PSFs. Queues are implemented in Flex-OS as data structures and
have their own set of functions to create the queue, receive a value from the queue
and send a value into the queue. When a value is received from the queue, it is deleted
from the queue. During creation of the queue, the size of the queue and the type of
values that will be stored in the queue has to be specified.

5.1.3 Implementation of the three sensors using the device driver
The physiotherapy application does not require on-node processing. Data can directly
be put into the send queue of the radio which is called xAG2SendQueue. This queue
is created before the three sensors via xQueueCreate(60, (unsigned portBASE_TYPE)
sizeof(DataSample)). The DataSample type is an array of three integers (the three
values a sensor samples, x, y, z) and memory is allocated for 60 elements in the queue
(thus the sample frequency can be maximally 60/3 times higher than the send
frequency assuming all three sensors sample at the same frequency). After the three
sensor handles are created, they are added to the sensor lists which is a global
variable. This makes them easy to access for the compute function if that would be
necessary. As an example only the accelerometer is shown. The other two are
analogous with only different initialisation parameters.

//Create Accelerometer Handle
xSensorHandle Accelerometer = xSensorCreate();
SensorADCChannels[0] = 5;
SensorADCChannels[1] = 4;
SensorADCChannels[2] = 6;
vConfigSensor(Accelerometer, 0xffffff, 0, 0, 0x1000, SensorADCChannels,
(GPIOSIGNAL__ADC1GVT | GPIOSIGNAL__FLASH),3, 2, 0, 0, 1,
xAG2SendQueue);
vInitSensor(Accelerometer);

//Create Magnetometer Handle
Analogous to accelerometer handle, but with some other parameters in the
configuration

//Create Gyroscope Handle
Analogous to accelerometer handle, but with some other parameters in the
configuration

//Add the sensors to the sensorlist for easy access

 25

vSensorListAdd(Accelerometer);
vSensorListAdd(Magnetometer);
vSensorListAdd(Gyroscope);

The actual configuration of the sensors is done in the vConfigSensor function and for
the accelerometer, the configuration looks as follows:

xSensor->bDirection = 0xffffff;
xSensor ->bInterruptEnable = 0;
xSensor ->bPolarity = 0;
xSensor ->eGPIOLine = 0x1000;
xSensor ->aADCChannels[0] = 5;
xSensor ->aADCChannels[1] = 4;
xSensor ->aADCChannels[2] = 6;
xSensor ->eUsedADC = (GPIOSIGNAL__ADC1GVT | GPIOSIGNAL__FLASH);
xSensor ->xShutdownInactive = 0;
xSensor ->xShutdownBetween = 0;
xSensor ->xSampleFrequency = 1;
xSensor ->iNumberOfChannels = 3;
xSensor ->xStartupTime = 2;
xSensor ->eGPIOLine = 0x1000;
xSensor ->xSampleQueue = xAG2SendQueue;

5.1.4 Problems encountered during sensor driver implementation
The major problem encountered while testing the implementation of the radio driver
was that the initialisation order done in the configuration function of the sensor
mattered. When all values were set before calling the vInitSensor function, several
values were set back to zero. No other negative effects seemed to transpire so the
values that were set to zero were reset to the proper value after the initialisation
function and if the specific value was not needed for the initialisation, it was set after
this function had been called. This seemed to solve the problem but did obsolete the
configuration function. It also meant that a lot of additional initialisation was done in
the main file instead of in the appropriate configuration of the sensor. The problem
appeared to be in the memory allocation of the structure and this was eventually
solved and all initialisation was moved to the configuration function as shown above.

5.2 Radio driver
The radio driver was implemented after the sensor driver. It provides a generic way of
accessing the radio by providing a radio handle to the programmer and offering API
functions to access the radio.

5.2.1 Structure of the radio handle
The radio handle is a pointer to a data structure containing information on the radio.
The information in the data structure is the following:

 xShutdown: Indicates if the radio should be shutdown.
 xStartupTime: The start-up time of the radio in milliseconds (rounded up) after

receiving the start-up command. This value is the start-up time as noted in the
datasheet of the particular radio. It is used to wait the appropriate amount of
time after starting to assure the radio is started up properly.

 26

 xSendFrequency: The frequency at which the radio needs to send the data
samples.

 xSendQueue: A pointer to the queue containing the data to be sent. The queue
itself is a data structure with its own set of functions offered by the OS. The
queue is created outside of the radio driver. Only the pointer to the data
structure of a queue is associated to a radio.

 xReceiveQueue: A pointer to the queue containing the data that is received by
the radio. The queue is a data structure with associated functions. These are
offered by the OS. The creation of the queue is not done in the radio driver
and only the pointer to the data structure of a queue is associated to a radio.

5.2.2 API functions of the radio driver
For the radio, the functions stated in section 4.4 with its functionality are
implemented. As with the sensor driver, the radio driver was modelled after the
peripheral drivers of Flex-OS. The sensor and radio drivers were meant to be as
identical as possible. The create function of the radio allocates the memory for the
data structure of the radio and initialises all values. The correct values have to be
added with the configuration function after the handle is created. The radio functions
also all have the radio handle as input to keep it as generic as possible. The only
exception is the send function. This also requires the sample period of the samples put
into the message (deltatime) and the number of samples per packet (latency). The
number of samples per measurement (for example 3: x, y, z) is needed to make sure
that the values of one sensor are kept together when they are sent. The ReceiveData
and SendData functions both use the locking mechanism of the OS to make sure the
radio is not used simultaneously by the receive and send PSFs. The start-up and
shutdown functions are used in these two functions and are included in the locking.
This is done to prevent that for example after powering up the radio via the send PSF,
the receive PSF pre-empts it and again starts up the sensor (which the application will
note is started already and will not do this again). After the sensor is started and the
data is received, the radio is shut down by the receive PSF. The pre-empted send PSF
can continue assuming the radio is powered up and will send its data. To prevent these
mistakes the start-up and shutdown are also done in the critical section. The radio
driver functions have the following parameters, return types and operation:

 xRadioHandle xRadioCreate(void)
Creating the radio handle is done with this function. It returns the pointer
(radio handle) to a structure containing information on the radio.

 void vInitRadio(xRadioHandle xRadio)
The initialisation of the radio is done with this function. It invokes the AG2
radio initialisation function with the correct parameters for baudrate, parity,
etc.

 void vConfigRadio(xRadioHandle xRadio, int StartupTime, int Shutdown, int
SendFrequency, xQueueHandle Sendqueue, xQueueHandle ReceiveQueue)
Configuring the radio is done with this function. The parameters given in this
function are set in the structure of the radio to which the radio handle is a
pointer.

 void vStartUpRadio(xRadioHandle xRadio)
This function is used to start the radio after it has been put in sleep mode.

 void vShutDownRadio(xRadioHandle xRadio)
With this function, the radio is put in sleep mode.

 27

 void vSendData(xRadioHandle xRadio, int SamplesPerMeasurement, int
DeltaTime, int Latency)
This function adds the data put in xSendQueue into (a) message(s) and adds
timestamp, send frequency and sample frequency to the message. The message
is then send with the AG2 send function. If the data in the queue contains
more data than fits into one packet, as soon as the first packet is sent, the
remaining data is put into the next packet and send and so on.

 void vReceiveData(xRadioHandle xRadio)
To receive data, this function is used. Data that is received via the UART
connection with the AG2 radio is put into the receive queue and can be
retrieved by other functions like the compute function.

5.2.3 Actual radio implemented via radio driver
The AG2 radio was implemented via a radio driver in the same manner as the sensors
were. The radio driver needs two queues, a send and a receive queue. The send queue
is the one already discussed in section 5.1.3 and the receive queue is created via
xQueueCreate(60, (unsigned portBASE_TYPE) sizeof(char*)). It has the same
number of maximum elements as the send queue but uses a pointer to the character
data type, the format in which a packet is offered. The queue can handle a maximum
of 60 packets. This was chosen to allow applications that send data between nodes to
be able to store for example 20 data samples for each sensor (if the other nodes for
example send data samples per sensor to other nodes). This queue is not actually used
since the receive function is not used in the physiotherapy application. In the
physiotherapy application, the receive PSF is used to simulate the receiving of time
synchronisation packets (since this is not implemented). Therefore the receive
function will start up periodically to measure how often the radio is turned on more
accurately.

//Radio Handle Creation
xRadioHandle AG2Radio = xRadioCreate();
vConfigRadio(AG2Radio, 2, 0, 1, xAG2SendQueue, xAG2ReceiveQueue);

In the configuration function of the radio, the following values are set in the data
structure of the radio:
AG2Radio->xShutdown = 0;
AG2Radio->xStartupTime = 2;
AG2Radio->xSendFrequency = 1;
AG2Radio->xSendQueue = xAG2SendQueue;
AG2Radio->xReceiveQueue = xAG2ReceiveQueue;

5.3 Program Specification Functions
The program specification functions (PSFs) perform three functions: setting the
values the programmer configures (frequency, shutdown, etc) in the appropriate
handle, make sure only one task is created for sensors with the same sample
frequency and if the task needs to be created, creating it. There are four PSFs with
four corresponding task functions which are started by the appropriate PSF. The
functionality of the PSFs is described in section 4.1. The sample PSF has five
parameters. The first four are as stated in the specification (the sensor handle, the
sampling frequency, the shutdown between taking samples and the shutdown during
long inactivity) and the last one (the name of the sensor) is used to give the task that is

 28

created by the PSF a unique name. The shutdown during longer inactivity (for
example if the sensor is being attached or the application on the host is not started yet)
is included in the PSF but not yet implemented. It is added in such a way that the API
of the sample PSF does not need to be changed if this functionality is added
afterwards. The compute PSF has as parameter the radio handle. A list of sensors is
also available in the compute function but since this is a global list, it is not needed as
a parameter. One of the main reasons for this is that only one parameter can be given
to the task that is created and since the sensor list was already global, only the radio
had to be given as a parameter. The sample and send functions in addition set the
frequency and shutdown parameters in the data structure of the sensor handle.

5.3.1 Implementation of the Program PSFs
The PSFs are available to programmers in the main file of the Flex-OS project. Due to
the nature of FreeRTOS it is advised to use the already created task to change the
PSFs as needed and not directly from the main function. Furthermore, the three
sensors that are present in the blue boxes and the AG2 radio (including their
respective queues) are already created in this task. The following four PSFs are
available:

 void vSample(xSensorHandle Sensor, int SampleFrequency, int
ShutDownBetween, int ShutdownInactive, const signed portCHAR * const
SensorName)

 void vCompute(xRadioHandle Radio)
 void vReceive(xRadioHandle Radio)
 void vSend(xRadioHandle Radio, int SendFrequency, int Shutdown)

The vSample PSF sets up a sensor at a specific sampling frequency and starts a task
(if there are not already other sensors with the same sample frequency). The PSF
checks if there is already a sensor that samples at the same frequency. If this is the
case, no new task is created. If no sensor with the same frequency is already started, a
task is created for the sensor (with idle priority + 3, one higher as the send task) and
the frequency is added to an array (xSampleFrequencies). The sensor handle of the
sensor that has to gather the sampling data, has to be specified with the name of the
sensor (a string which is needed to give the created task a unique name). Furthermore,
the programmer can specify the desired sampling frequency of the sensor and the
shutdown parameters (shutdown between taking samples and shutdown during
inactivity). The PSF, before creating the task, also checks whether the sampling
frequency is low enough for the sensor to start up between taking samples (for
example sampling at 25 Hz with a sensor with 40 ms start up time means it cannot
shutdown between sampling; 1000/40 > 25 has to hold). If this condition is not met,
the shutdown for that sensor is disabled. The sample PSF which creates the sample
task looks as follows:

 29

int i = 0;
int foundFrequency = 0;
while (xSampleFrequencies[i] != -1 && foundFrequency == 0)
{
 if (xSampleFrequencies[i] == SampleFrequency)
 {
 foundFrequency = 1;
 }
 else
 {
 i++;
 }
}
if (foundFrequency == 0)
{
 xSampleFrequencies[i] = SampleFrequency;
}

SampledSensor->xShutdownInactive = ShutdownInactive;
SampledSensor->xShutdownBetween = ShutDownBetween;
SampledSensor->xSampleFrequency = SampleFrequency;

//Check dependency: 1/sampling frequency > Start-time sensor
if (((1000/SampledSensor->xSampleFrequency) <= SampledSensor->xStartupTime)
&& (SampledSensor->xShutdownBetween == 1))
{
 //No time to power down, so do not shut the sensor down

SampledSensor->xShutdownBetween = 0;
}

//Create the task only if the frequency was not yet found, so not to create multiple
//tasks for sensors with the same sampling frequency
if (foundFrequency == 0)
{

xTaskCreate(vSampleTask, SensorName, configMINIMAL_STACK_SIZE,
SampledSensor, tskIDLE_PRIORITY + 2, (xTaskHandle *) NULL);

}

The compute PSF (vCompute) provides the programmer with a task to do
computations or calculations on the collected data. This PSF only creates the task
called vComputeTask which is where the programmer can manually implement which
computations this task should perform on the data (see section 5.3.2 for more
information on the task). The compute task will receive the lowest priority of the tasks
created by the PSFs (idle priority + 1). The vReceive PSF is used to receive data. It
starts the receive task as which in turn calls the received function of the network
schedule layer. The receive task is given the highest priority of all PSF created tasks
to make sure it always pre-empts other tasks and can always receive messages in time
(idle priority + 3 is its priority).

 30

The PSF to send the data (vSend) that is gathered by the sensors or after computation
is done with this function. The frequency at which to send the data and the use of the
shutdown function can be set by the programmer. This information is added to the
radio handle that is given in the PSF (here called SendingRadio). This handle is also
given as a parameter to the task via the task creation function. The priority of the send
task is chosen to be one lower than that of the sampling task(s). The send PSF is
implemented as shown here:

SendingRadio->xShutdown = Shutdown;
SendingRadio->xSendFrequency = SendFrequency;
xTaskCreate(vSendTask, "RadioSend", configMINIMAL_STACK_SIZE,
SendingRadio, tskIDLE_PRIORITY + 1, (xTaskHandle *) NULL);

5.3.2 Tasks created by the PSFs
The four PSFs create tasks that are implemented beforehand. These tasks all run in a
continuous loop. There are four tasks (one for each PSF): vSampleTask,
vComputeTask, vReceiveTask and vSendTask.

The sample task uses the sample frequency to periodically take samples. Since
sensors with equal sampling frequencies are sampled in one task, the list of sensors is
used to check all sensors if they have the same sampling frequency as the sensor
which is given as a parameter to the sample task (this is the sensor which created the
task; see section 5.3.1 for more information). This task periodically starts up and then
samples every sensor with the same frequency. The implementation of the sample
task is shown below:

period = (1000/pxSensor->xSampleFrequency) - pxSensor->xStartupTime;
portTickType xLastWakeTime = xTaskGetTickCount();
for(; ;)
{
 vTaskDelayUntil (&xLastWakeTime, period);
 ListOfSensors = xSensorListing();

while (ListOfSensors != NULL)
 {
 if (ListOfSensors->pxSensor->xSampleFrequency ==

pxSensor->xSampleFrequency)
 {
 xSampleData(ListOfSensors->pxSensor,

ListOfSensors->pxSensor->xSampleQueue);
 }
 ListOfSensors = ListOfSensors->pxNextSensor;
 }
}

The compute task provides the programmer with access to the sensor handles and the
radio handle. The programmer has to program the computations he wants to perform
on the data manually. Access to the sensors is provided by the sensor list in the same
manner it is used in the sample task. The radio handle is provided as a parameter of
the task and thus is also available. The handles are available in the compute function
so the sample queues and the send and receive queues can be accessed in this function

 31

(depending on what computations need to be done, some or all of the data in these
queues may be needed).

The receive task directly calls the received function of the network schedule (see
section 5.4.2). The send task sets three values which need to be included in the
message as defined for the physiotherapy application in the AG2 implementation.
These three values are hard coded at this moment. To relate these to sample
frequencies, a coupling has to be made between the sensors and the send task. This is
not done here because sensors may have different sampling frequencies while still all
data is being placed into one send queue. Another reason is that if computations have
to be done on the data, the sampling frequency may not have any meaning anymore if
sensors have different sampling frequencies. The SamplesPerMeasurement variable is
needed in the send function of the radio driver to know how many samples need to be
kept together as one measurement (for example one measurement consists of a sample
from the accelerometer, magnetometer and gyroscope taken at the same moment in
time). The send task that is created by the send PSF is implemented as follows:

int SamplesPerMeasurement = 3; //samples per measurement (1 sample is 3 integers)
int DeltaTime = 100; //sample period in ms
int Latency = 4; //samples per packet
period = (1000/pxRadio->xSendFrequency) - pxRadio->xStartupTime;
portTickType xLastWakeTime = xTaskGetTickCount();
for(; ;)
{
 vTaskDelayUntil (&xLastWakeTime, period);
 vSendASAP(pxRadio, SamplesPerMeasurement, DeltaTime, Latency);
}

5.4 Network Schedule
The network schedule consists of two parts, the sending of messages and the receiving
of messages. As stated in section 4.3.2 the two parts work asynchronously from each
other. The receiving part is periodic with a period of 1024 OS ticks (1 tick is 1 ms).
The sending of messages is controlled by the send frequency and not according to a
specifically created schedule. The API of the network schedule consists of two
functions: sendASAP() and received() for sending and receiving respectively. These
are the functions that are used in the PSFs and not the send and receive functions of
the radio driver.

5.4.1 Send schedule
The sendASAP function of the network schedule actually only calls the send function
of the radio driver. The reason it is called in the send PSF instead of directly calling
the send function of the radio driver is to keep the schedule abstraction layer in place
atop of the device driver layer. This also makes it easier for programmers to change
either the radio driver without changing the network schedule and PSF layers or the
network schedule layer without changing the PSF layer.

5.4.2 Receive schedule
The implementation of the receiving part of the network schedule uses the method of
implementing task synchronisation as described in [4]. It first sets the last wake time
by calling the synchronizeTask function of task synchronisation and then using

 32

vTaskDelayUntil to delay from the last wake time a given period (which must be a
power of two, in this case 1024). Due to the problems with time synchronisation, the
local time was set by calling the xTaskGetTickCount (the OS timer ticks where one
tick is equivalent to approximately 1 ms) from the operating system and delaying
from there. This avoided the problems of having to test with two nodes while still
simulating the receiving of information every 1024 ticks (approximately 1 second in
real time). After waiting for the next period, the radio is powered up and after this, the
data is received using the receive function of the radio driver. When this is finished,
the radio is shut down and it waits for the next receive period. The following part of
code illustrates the implementation described above:

const portTickType period = 1024;
portTickType xLastWakeTime = xTaskGetTickCount();
for (; ;)
{
 //Wait till next receive slot
 vTaskDelayUntil (&xLastWakeTime, period);
 vReceiveData(xRadio);
}

5.5 Physiotherapy application
The specifications for the physiotherapy application are to sample all three sensors at
a frequency of 100 MHz and send this data out at a frequency of 25 MHz. No
messages need to be received by the node except for the time synchronisation
messages and no computations are done on the data gathered with the sensors. All
three sensors are used (accelerometer, magnetometer and gyroscopes) and only the
magnetometer needs to shut down between taking samples. The accelerometer can
also shut down but this would distort the samples so is not done. The start-up time for
the gyroscope is too long to shutdown with a frequency of 100 MHz and is therefore
also not set to shut down. If it would be set to shutdown, the start up time would be
too long and the shutdown for this sensor would be automatically disabled. The radio
is the AG2 radio and only needs to be powered up if something needs to be sent or a
time synchronisation message needs to be received. The time synchronization
messages are handled directly by the AG2 radio and not by the CoolFlux DSP. Due to
problems with the time synchronization for the blue boxes it was chosen to simulate
the receiving of the time synchronization messages every second to allow for more
accurate measurements instead of using time synchronization. It is assumed that the
handles for the sensors and the radio (which is hardware that is fixed on the blue
boxes) are already available with the following names: Accelerometer,
Magnetometer, Gyroscope and AG2Radio (see section 5.1.3 for information on how
they are created). The invocation of the PSFs for the physiotherapy application is
done as follows:

vSample(Accelerometer, 100, 0, 0, (const signed portCHAR * const)
“Accelerometer");
vSample(Magnetometer, 100, 1, 0, (const signed portCHAR * const)
"Magnetometer");
vSample(Gyroscope, 100, 0, 0, (const signed portCHAR * const) "Gyroscope");
vSend(AG2Radio, 25, 1);
vReceive(AG2Radio);

 33

5.6 Testing
To make these proposed changes and frameworks, material is needed. The first is the
version of Flex-OS as it was in December of 2007 when this project started. This
allows for the integration of the abstraction layers into the latest version (at that
moment) of the operating system. The software running on the AG2 is needed to
allow the radio to be turned on and off, but this functionality is not yet implemented.
For compiling Flex-OS and the application, Target’s ChessDE compiler is needed.
The last material that is needed is a blue box to test the software abstractions and
measure the energy that is used by the node.

The testing of the abstraction layers is done during implementation of the different
layers. As each layer is implemented, it is tested to spot and correct errors and faults
as early as possible. This also helps to find errors in the design and therefore makes it
easier to correct it. To control the evaluation and validation of the implemented
abstraction layers, print statements over UART are used. With HyperTerminal, these
statements could be printed on the screen.

5.6.1 Testing the device drivers
The sensor driver is the first sub layer that is implemented. It is tested by first adding
print statements to the code to check the initialisation of the driver. The accelerometer
is implemented first. After the initialisation is tested, the queue is tested to see if all
values are put in as they should. First the value is printed to the screen and then put in
the queue. They are then taken out and again printed. These two values are then
manually compared.
After the implementation of the radio driver and the creation of the AG2 radio handle,
the radio is first tested by comparing the values that arrive at the host computer via the
radio with the values that are put into the message. After that is tested, the values are
put in the send queue and taken out by the radio driver and sent. This way the
workings of the queue can be tested as well. It is done the same way by sending to the
sink and manually checking if the values are correct with the ones put in. The
combination of sensor and radio should be tested next by letting one sensor put data
into the send queue and let the radio send it to the sink to be checked manually again.

5.6.2 Testing the Program Specification Functions
The PSFs are tested one by one after their implementation. The sample task is the
first. It can use the implementation of the sensor driver and the print functions used to
test this. The sample PSF will first be tested if it starts up and if the data is indeed
sampled (by printing the sampled values to the screen as for the sensor driver). After
this, the merging of calls to the sample PSF with the same sample frequency is tested.
By printing to the screen the tasks that are started and the sensors in each task, it can
be determined if they are grouped correctly.
The compute PSF is only tested to see if the radio and sensor handles are available in
the function (by printing information from both on the screen) and if it starts up the
compute task when it is called.
The testing of the send PSF is done by first checking if the task is started and then if
the data is sent via the radio (as it is tested for the send function of the radio driver).
The last function to test is the receive PSF. This function actually only starts the
receive task of the network schedule. Therefore nothing extra has to be tested for this
specific function.

 34

5.6.3 Testing the network schedule layer
The last layer to be implemented and tested is the schedule layer. Since the sampling
schedule will be implemented in the sample PSF, it is already tested. The send part of
the network schedule is also already tested when the send function of the radio driver
was tested (sending does not need to adhere to a schedule). The receiving part of the
schedule builds on the task synchronisation to synchronise the receiving part of the
node with the sending part of the sink. Since testing has to be done with one node, it
has to be determined if the task synchronisation can actually work with only one node
and then test if packets are actually received by the node by printing to the screen as
soon as a message is received on the node. The task synchronisation uses a function to
set the current local time and synchronise this over all nodes. This time is then used to
synchronise the tasks. The main problem is that this value, as well as the local time
value stored by time synchronisation, is not updated if time synchronisation is not
running or if there is no second node to synchronise with. The value will stay zero.
One solution which will allow for testing is to use the timer tick count. This is what
was actually done, since time synchronisation was not working in the OS for the blue
boxes. Due to this, the task synchronization used in the receive schedule could not be
tested. The receive function was used to simulate the receiving of a time
synchronization packet without being synchronized with other nodes. This was done
to have more accurate measurements for the power consumption of the radio.

5.6.4 Testing the whole system and taking measurements
After this, the PSFs should be called with their appropriate frequencies and shutdown
parameters (accelerometer and magnetometer shut down and sample at 100 Hz,
gyroscope does not shut down and samples at 100 Hz, the radio sends information at
25 Hz and shuts down and receives according to the schedule with intervals of 1024
timer ticks). This will generate three tasks: one for the three sensors combined, one
for sending and one for receiving. To measure how long the sensors and the radio are
on and off respectively, the current time is marked (at shutdown or start up) and
subtracted from the previous change in state (start up after shutdown and shutdown
after start up). This time is then added to the total time the radio has been on or off.
This is done for all three sensors and the radio and regularly printed out to the screen.

5.7 Measurement Results
As described in section 5.6, the three sensors and the radio were measured as to how
long they were on and how long they were off. These were periodically printed to the
screen. For the sensors that were shut down (the accelerometer and the magnetometer)
the percentage of time they were powered up was almost the same. The gyroscope
was always on due to the long start up time and when it was set to shutdown in the
PSF, it is automatically detected that this is not possible with a sampling frequency of
100 Hz and the shutdown is turned off. In the eventual application, the accelerometer
will not be turned off between samples due to aliasing in the measurements. As stated
in section 5.4, the time is measured in OS ticks and not in milliseconds. Since only the
percentage of the time a sensor is on is needed, this will give the same results. From
the percentage that the device is on, the power consumption per second can be
calculated using the datasheets of the various devices ([6], [7], [8], [9]). The
percentage of the time the device is on multiplied by the power consumption per
second gives the power consumption per second that the device is on and vice versa.
Table 5.1 lists the percentage of the total time each of the devices is powered up at

 35

different frequencies. The measurements where done with all devices running at the
same frequency (so if the accelerometer samples at 1 Hz, the magnetometer and
gyroscope also sample at 1 Hz and the radio sends data at 1 Hz). This was done to
ensure all frequencies were measured in the same manner. During all tests, the receive
PSF was periodically powering up the radio to simulate the receiving of time
synchronization packets. This was done at 1024 OS timer tick intervals (1 OS tick is 1
ms, see section 5.4.2 for an explanation why 1024 ticks were chosen).

Frequency (Hz) Accelerometer Magnetometer Gyroscope Radio
1 0.2% 0.1% 4.0% 1.1%
5 1.0% 0.5% 20.2% 1.7%
10 2.0% 1.0% 40.8% 3.1%
15 3.1% 1.6% 62.5% 4.7%
25 7.9% 2.7% 100.0% 8.6%
40 13.0% 4.6% 100.0% 13.5%
50 16.6% 5.6% 100.0% 16.9%
75 27.2% 9.1% 100.0% 27.4%

100 37.5% 12.5% 100.0% 37.5%
150 50.0% 25.0% 100.0% 75.0%
200 53.3% 33.3% 100.0% 99.9%
300 53.3% 33.3% 100.0% 99.9%

Table 5.1: The percentage of total time the devices are powered up at different
frequencies

Figure 5.1: The percentage of the total time the four devices are powered on in
contrast to the frequency of sampling/sending

The measurements from table 5.1 are plotted in figure 5.1. It shows clearly that the
difference in the power down percentage of the three sensors is closely related to the
start-up time of the sensors. The gyroscope has a start-up time of 40 OS ticks (40ms),

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

1 5 10 15 25 40 50 75 100 150 200 300

Frequency (Hz)

Pe
rc

en
ta

ge
 d

ev
ic

e
on

Accelerometer Magnetometer Gyroscope Radio

 36

the start-up time of the magnetometer is 1 OS tick and of the accelerometer it is 2 OS
ticks. This explains the differing graphs of the three sensors, showing that the
magnetometer is powered on the least of all three. The jump that can be seen from 15
to 25 Hz in the graph of the gyroscope is due to this start-up time of 40ms. Sampling
at 25 Hz is not enough for the sensor to start up (40 ms is not smaller than 1/25).
Sampling at 24 Hz would give the sensor enough time to complete its start up and
therefore is the highest sampling frequency of the gyroscope which reduces the power
consumption for that sensor.

The specific sampling frequencies of the physiotherapy application (100Hz for the
sensors and 25Hz for sending) give the results shown in table 5.2. This is run as a
separate test result to eliminate possible overhead due to the higher sending frequency
in the original results as shown in table 5.1. In section 5.5 the accelerometer and
gyroscope are noted as not being shut down, but to test the amount of time the
accelerometer would be powered up the shutdown parameter in the sample PSF of the
accelerometer is set to 1 for this test. As can be seen from table 5.2, the accelerometer
is shut down longer in this configuration than the one with a 100 Hz send frequency
as depicted in table 5.2. A possible reason for this is that due to the higher send
frequency, the receive function pre-empts this sending more and this delays the
sampling of the accelerometer. This can happen because sometimes the radio begins
its start-up before the accelerometer is shut down but after sampling its data.

Frequency (Hz) Accelerometer Magnetometer Gyroscope Radio
100 25.0% 12.5% 100.0% --
25 --- -- -- 8.6%

Table 5.2: The percentage of total time the devices are powered up in the
physiotherapy setup

Figure 5.2 shows the periods of time when the four devices (accelerometer,
magnetometer, gyroscope and radio) are powered up. The execution shown here
samples at 1 Hz and also sends data at 1 Hz. The magnetometer is the first sensor to
be sampled, followed by the accelerometer and after that the gyroscope. This is not a
necessary order although sampling the gyroscope last helps for the frequencies at
which the gyroscope does need to power up (frequencies below 25 Hz). This is due to
the longer start up time of the gyroscope which will delay the sample taking of the
other sensors as well if it was done before other sensors. Therefore sampling the
gyroscope last will minimize the effect of its start up time on the other sensors. The
time the radio is on to receive data is not shown in this graph since it is asynchronous
of the sampling and sending procedure and only takes place once every second. Since
it runs in a task with the highest priority, it will always pre-empt the other tasks if
necessary. The time axis shown in figure 5.2 is relative to the start of a period (since
the sampling and sending frequencies are the same this period is also the same).

 37

Figure 5.2: Periods of the execution time the devices are powered up (relative to the
start of a period)

The memory usage of the application including all abstraction layers is approximately
9942 bytes. The memory of the CoolFlux DSP consists of two times 64 kWord of data
memory and one times 64 kWord of program memory. One Word consists of 24 bits.
The main components of the software abstractions are individually measured to see
which parts have the biggest memory usage. This is shown in table 5.3.

 Number of Instances Memory Usage per instance (bytes)
Send queue 1 618

Receive queue 1 258
Sensor driver structure 3 192
Radio driver structure 1 39

Tasks 5 1269
Table 5.3: Memory usage of the main components of the software abstraction layers

Execution time (OS Ticks)

Accelerometer

Magnetometer

Gyroscope

Radio
0 43 1 45 3

 38

6. Future Work
This chapter will cover the possible extensions that can be made to these abstractions
to make them more usable and further decrease the time to develop an application.
The future changes can use the already created abstractions as a basis and would not
require a redesign of the abstraction layers. It merely extends them.

6.1 PSFs from flash memory without recompiling code
One of the major drawbacks of programming and using the Flex-OS code on nodes is
that for every change, the code has to be recompiled. This is especially noticeable by
the developers of the physiotherapy application who are often asked to implement
small changes for others using their software but without access to the compiler. Now
that the PSFs became the highest level of programming, the number of parameters
that the programmer needs to/can set is greatly reduced. The way a programmer
would construct an application with the PSFs is by stating which PSFs should be
evoked and with what parameters. If this information is stored in the flash memory of
the node, the code would not need to be recompiled, but can read the information
from its flash memory. One problem with the current implementation of the compute
PSF is that it needs to be written by hand, thus requiring a compiler to change this
function. A possible solution for this is presented in section 6.3. Another main
advantage (besides not recompiling) is that a lot of dependencies (like the sample
frequency larger or equal to the send frequency) can be checked beforehand by the
tool used to upload and create the code/data that needs to be in the flash memory. This
will make the life of the programmer easier since error messages can be generated on
the PC instead of from the sensor node.

6.2 Graphical User Interface to create application with PSFs
After the possible improvement from section 6.1 is implemented, a graphical user
interface (GUI) can be constructed on top of this. This will facilitate the programmer
to write his application on a graphical level by drawing the PSFs as blocks connecting
them with lines representing queues. Figure 6.1 is an indication of how such a GUI
could look like, with the programmer being able to set the parameters for the PSFs as
well.

Figure 6.1: Possible GUI for PSFs

The programmer then also needs to set the different parameters of the required
functions which can be accomplished with simple dialog boxes containing the
parameters that can then be set by the programmer. The tool should then
automatically convert this to the format developed for the future addition of section
6.1 and uploaded to the node. By solving the issue of the compute function (see
section 6.3) clicking on the compute task in such a GUI could open a new field with

Sample
task

Sample
task

Sample
task

Compute

task

Send
task

Receive
task

 39

in- and output queues where the different compute functions can be selected and put
together.

6.3 Compute function with a PSF-like block structure
To alleviate the problem of having the programmer completely write the compute
function himself, a structure can be created in which pre-made operations can be
linked together in a dataflow fashion. The queues from the sample tasks and the
receive task are seen as input for the entire compute task and the queue from the send
task is its output. Since using queues takes time for every access and the possible
number of operations that has to be done in the compute task, using queues inside this
task is not possible. Therefore performing an operation on the data avoids this
problem. The incoming data is consumed and the desired data is produced, not
necessarily having the same type. The incoming type needs to match the desired input
of the function, so if for example the output of a function is needed as input for the
next function, it needs to be checked if the output of the first type matches the input
type of the second. A small example in pseudo-code depicted graphically in figure 6.2
would look as follows:
AverageSamples(AddSamples(FilterSamples(SampleQueue 1), FilterSamples(
SampleQueue 2))).

Figure 6.2: Graphical representation of a block-like compute PSF

There are several important issues that need to be addressed if this future addition has
to be implemented. First of all, the incoming queues store integer values, so for a
specific sample three integers (or more, depending on the sensors) needs to be taken
out and given to the first function. This can not be done inside the function since this
would mean that certain functions (the outer ones connected to the queues) have a
queue as input and certain functions have only one sample (three integer values) as
input. Since they need to be interchangeable, it would be a good idea to have a “split”
block/function directly after the queue that offer only one sample value at a time. The
same holds for the send queue at the end: have a separate “merge” block/function
which puts the sample value in the queue for sending.
A second issue deals with how to check whether the functions can be linked or not. If
this addition is implemented in such a way that constructing this structure of blocks
without the need to recompile (as discussed in section 6.1), then the tool used to
create these (either graphical or text-based) can check whether these dependencies
hold.

6.4 Implementation of schedule and start up and shutdown on AG2
Currently starting and shutting down the radio is simulated in the code. This is due to
the fact that these commands are not implemented in the code that runs on the AG2.
This is a separate code from the one running on the CoolFlux DSP where the

Send queue

 Sample queue 2

Sample queue 1
Add

Samples
Filter

Samples
Average
Samples

Filter
Samples

 40

operating system is running. Information is exchanged between these two processors
via UART and send and receive commands are also done via this UART connection.
There is however currently no implementation of a command that can be given to
place the radio in sleep mode. This should later on be implemented to give the full
functionality and power reductions from starting and shutting down the radio.
The second issue that still has to be implemented on the AG2 is the sending of time
synchronisation packets between nodes. This is done in the code running on the AG2
and thus not controlled by the CoolFlux DSP or the operating system. Therefore it
will not adhere to a schedule. This schedule should be implemented on the AG2 or,
for a more generic approach, should be made configurable by the CoolFlux DSP. This
would avoid having to change the code on the AG2 again when the schedule changes.

6.5 Implementation of shutdown during longer periods of inactivity
During the operation of a wireless sensor node, circumstances and surroundings may
change depending on where the node is used. For nodes of body sensor networks for
example in the physiotherapy application, the time the user is attaching the nodes to
the body or the user is starting the application on the host computer, the node does not
need to take samples or send information to the host. This is an improvement which
later could be made by having the application on the host send a start signal
constantly when it is ready to start. The nodes can then periodically (for example once
every 10 ms) start the radio and listen for this start message from the host. Before this
message is received, all sensors can be shut down until the application is actually
started.

6.6 Scalable sampling frequencies for sensors
Related to these changing surroundings of a sensor node, the sampling frequency
could also be automatically changed depending on the activity the sensor is
monitoring. For example, if the sensor constantly reads the same value during its
sampling, it can lower its sampling frequency and therefore save more energy. When
the values it samples then start fluctuating more, the sampling frequency can be
increased again. This improvement is not suited for every application. Especially
sensitive monitoring (for example heart rate of patients) which are inherently stable
will not work with this improvement.

 41

7. Conclusions
The test results described in section 5.7 indicate that the power consumption of the
blue boxes can indeed be reduced. The amount of power that could be saved as stated
in the problem formulation was split into two parts. The first part was the reduction of
power consumption during the use of the sensors and the second part the reduction of
power consumption during the use of the radio.

Generally speaking, without looking at the specific sampling frequency of the
physiotherapy application, the amount of time the three sensors need to be powered
up is reduced. The amount of time the sensor is on depends on the frequency at which
the sensor needs to sample. Comparing the three sensors shows that the difference is
all in the start up time of the sensor. The sensor sampling time is negligible and the
dominant factor in the amount of time the devices are powered is the start up time.
The magnetometer has the biggest reduction in the amount of time it is powered.
Adding this to the large power consumption of the magnetometer (almost 60 mJ/s) the
power reduction of the entire sensor node is already drastically reduced. For the
frequencies below 25 Hz the gyroscope is also able to power down. Due to its large
power consumption (90 mJ/s), shutting it down for even a small amount of time
already has an effect. As can be seen from figure 5.2 the highest sample frequency of
the three sensors is dependent on the start up time of the three sensors. In the case of
the three sensors in the blue boxes this would be 43 ms (1 ms for the magnetometer, 2
ms for the accelerometer and 40 ms for the gyroscope). With a total start up time of
43 ms the maximum sampling frequency at which all three sensors can be shut down
is 23 Hz. By starting all sensors at the same time, this can be reduced to the length of
the longest start up time (40 ms in this case of the gyroscope). This would require the
start-up and shutdown function currently in the sample function of the sensor driver to
be moved to the PSF level. This is an improvement which is not yet implemented.

The second part of the power consumption, the power consumption of the radio, has
also decreased. The amount of time the radio is powered up scales with the frequency
at which it needs to send data. When the frequency becomes larger than 100 Hz the
accumulated power-on time of the radio increases significantly per period. The
reduction of power for the radio is not completely the same as with the sensors since
sensors are completely turned off between taking samples, while the radio goes into
power saving mode which still uses energy (approximately 0.7 percent of the sending
energy cost in the highest power down mode).

The overall power reduction in the specific case of the physiotherapy application is
mainly found in the shutting down of the magnetometer and radio. The magnetometer
is shut down 87.5% and the radio 91.4% (see table 5.2). The accelerometer is also
shut down 75.0% of the time but the power consumption is not as high as for the other
two devices. The gyroscope does not have the time to shut down in the physiotherapy
application and still remains a large power drain. The sampling and sending
frequencies used in the physiotherapy application (100 Hz for sampling the three
sensors and 25 Hz for sending data) can still be achieved with the software abstraction
layers without compromising the timing of the application. The power consumption of
the radio would thus become approximately 1 mW (the original power consumption
was approximately 88 mW) and the power consumption of the magnetometer would
be almost 0.8 mW (with an original power consumption of 59.4 mW). The power
consumption of the node would be reduced by approximately 42% meaning it would

 42

be able to operate approximately 2.5 times as long as originally (approximately 12
hours) (see [2] for more information about the power consumption of the different
devices and components of the node not included in this report).

The other area of focus in the problem formulation dealt with decreasing the time to
develop applications on the blue boxes by increasing the usability of the software. By
increasing the abstractions in the operating system environment, the programmer is
able to program the nodes with only four functions. To determine how programmers
of the nodes experience this, further tests with programmers are needed. The future
improvements which are mentioned in sections 6.1, 6.2 and 6.3 will increase the
usability of the software even further, especially the graphical interface.

 43

8. References
[1] Timezones sleep scheduling over IEEE802.15.4 in multihop environment -

Integrating energy saving scheduling and routing; A.G. Ruzelli, Philips
Research Eindhoven, 2006

[2] Internship Report: Reducing Power Usage in Wireless Sensor Nodes;
T.F.P. Paffen, Philips Research Eindhoven, 2007

[3] FreeRTOS - A Real Time Kernel for Wireless Sensor Network Platforms;
Julien Catalano, Philips Research Eindhoven, 2008

[4] Master Thesis: Distributed Task Synchronisation in Wireless Sensor
Networks; Marc Aoun, Department of Wireless Networks RWTH Aachen

[5] WASP API proposal; Ramon Serna Oliver,Gerhard Fohler (TUKL),
Michael Hauspie,Gilles Grimaud,Sylvain Buisine (INRIA Lille), Carlo
Brandolese(CEFRIEL); Information Society Technologies 2007

[6] Datasheet ±300°/s Single Chip Yaw Rate Gyro with Signal Conditioning
ADXRS300. Analog Devices, Inc. March 2004.

[7] Datasheet CC2430: A True System-on-Chip solution for 2.4 GHz IEEE
802.15.4 / ZigBee®. Chipcon Products from Texas Instruments

[8] Datasheet Integrated Compass Sensor HMC6052. Honeywell International
Inc.

[9] Datasheet KXM52 Series Accelerometers and Inclinometers. Kionix Inc.
September 9, 2005.

[10] CoolFlux DSP, the embedded ultra low power C-programmable DSP core.
Philips Applied Technologies. September 2005.

[11] Leaflet π-node: Wireless tracking system, the easy way to capture motion
with high accuracy. Philips Research. May 2007.

[12] FreeRTOS: A real time kernel for wireless sensor network platforms.
Julien Catalano, Philips Research Eindhoven. January 2008.

	Summary
	Contents
	1. Introduction
	2. Problem description
	3. Objectives
	4. Improvement
	5. Implementation
	6. Future Work
	7. Conclusions
	8. References

