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Abstract

Computer simulation is a useful method for analyzing information systems as it enables

“what if” analysis, i.e. looking into the future under certain assumptions [20]. In this

thesis, simulation models are used to estimate the eventual effect of changes in the process.

Simulation models are supposed to represent certain key characteristics or behaviors of the

business processes. One of these key behaviors is the decision making in the process.

A traditional way to obtain such simulation models is to create them manually, according

to documentation and close observation of the real systems. However, it is rather error-

prone and time-consuming. In [15], Rozinat et al. introduced a methodology to derive

simulation models with data dependencies or probability distributions from logs, which

are historical executions recorded by information systems. Real business processes involve

decisions, which are possibly correlated globally, i.e. one decision may be affected by the

decisions made before. As data is not always available in logs, simulation models with data

dependencies can not be mined in most cases. Moreover, data dependencies in real systems

are often much more complex than the ones that can be mined with the existing techniques.

For derived simulation models [15] with probability distributions, the correlations between

the decisions and the change propagation capability are missing.

A simulation modeling framework, called History-Dependent Stochastic Petri Nets (HD-

SPNs) [16], was proposed to derive simulation models from logs including history-dependent

correlations. The expectation was that this framework will allow to propagate process

changes by taking the correlations and history into account.

The goal of this thesis is to verify whether HDSPNs are able to propagate process changes

through the process, especially on the decisions. To archive so, process mining algorithms

are introduced to discover correlations. Based on an example process which produces logs,

vi
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the HDSPN is constructed with the correlations mined from the log which is generated by

the example process. Before introducing process changes, we validate whether the HDSPN

approximates the behavior of the example process well enough by comparing the frequencies

of certain decisions in the process. To verify the propagation of changes, process changes

are injected into the example process and the HDSPN. The frequencies of the decisions in

the example process and the HDSPN are measured after the change injection.

The simulation results show to us that when process changes are injected, HDSPNs

are able to propagate process changes in the process. The quality of the approximation

obtained for HDSPNs depends on the relationship between process changes introduced, the

correlations incorporated and the abstractions used for mining.



Introduction

Computer simulation is a useful method for analyzing information systems as it enables
precisely “what if” analysis, i.e. to look into the future under certain assumptions [20].
Simulation models are needed to drive the simulation experiments. In this thesis, they are
used to estimate the eventual effect of changes in the process.

Simulation models are supposed to represent certain key characteristics or behaviors
of business processes. One of these key behaviors is the decision making in the processes.
Normally, business processes involve decisions which are possibly correlated globally, i.e.
one decision may be affected by the decisions made before. Once some process change
emerges, e.g. economic factors or client profiles, due to the existence of correlations, the
change is propagated through the process. For instance, consider a travel agency process.
The decision of the client to book a pickup service is mainly influenced by the distance
of the hotel booked from the airport and by the client’s budget. So we can expect the
existence of a correlation between the pickup booking decision and the hotel choice. When
some process changes emerge, e.g. hotels near the airport are more preferred, probably
fewer pickup services would be booked, i.e. the change will be probably propagated to
the correlated decision. Therefore, simulation models are required to take correlations into
account and be able to propagate process changes.

A traditional way to obtain such simulation models is to create them manually, ac-
cording to documentation and close observation of the real systems. However, it is rather
error-prone and time-consuming. In [15], Rozinat et al. introduced a methodology to de-
rive simulation models including data dependencies or probability distributions from logs,
which are historical executions recorded by information systems. Data dependencies attach
data attributes to decisions. For instance, the decision whether to book a pickup service is
mainly influenced by the distance from the hotel booked to the airport. The distance here
can be a data attribute binding two decisions. If the client decides to change the hotel, the
corresponding distance is changed and the pickup booking decision is probably changed as
well. Simulation models with data dependencies indeed address process changes locally, i.e.
where the data attributes are used. However, in the reality, logs do not always record these
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data attributes. Moreover, data dependencies in real systems are often much more com-
plex than the ones that can be mined with the existing techniques. Therefore, simulation
models including data dependencies are not always derivable. Another option Rozinat et
al suggested is to incorporate frequencies in the simulation models. By using probability
distributions derived from the history, they proposed to replace simulation models with
complex data dependencies by Petri nets with frequencies. However, Petri nets with fre-
quencies fail to propagate process changes due to the absence of the correlations between
decisions.

In [16], a simulation modeling framework called History-Dependent Stochastic Petri Nets
(HDSPNs) was introduced. HDSPN is an extension of a classical Petri net with probability
distributions which considers not only the history but also the correlations. HDSPNs are
assumed to be able to propagate the process changes well by taking correlations into account.
However, the existing HDSPNs framework [16] introduced a general approach to discover
correlations among decisions and was not applied to a case study.

In this thesis, our goal is to assess the hypothesis that HDSPNs are able to propagate
process changes through the process. The methodology shown in Figure 1 to assert our
hypothesis is summarized as follows:

1. Acquire a log and the corresponding control flow of an example process to be used in
next steps;

2. Introduce algorithms to discover correlations and implement them as a plug-in in the
ProM framework;

3. Develop a HDSPN with mined correlations in CPN tools;

4. Validation: assess if the HDSPN approximates the behavior of the example process
well enough before the introduction of process changes;

5. Change propagation analysis: assess if the HDSPN propagates the process changes,
i.e. whether it approximates the behavior of the example process well enough after
the introduction of process changes.

First of all, we need a log and the corresponding control flow from a concrete business
process. For our research, we are interested in the propagation of process changes through
the process, which is not in any existing logs yet. To observe the change propagation,
process changes need to be introduced to the process. It is too risky and costly to ask a
company or an organization to execute their processes with respect to the process changes.
Consequently, we construct an example process which contains some correlations between
decisions (introduced in Chapter 4).
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Figure 1: Overview of our methodology.

To discover correlations between decisions from the log generated by the example pro-
cess, specific process mining algorithms are introduced and applied (introduced in Chapter
3). All ingredients, e.g. the correlations, the history, and the control flow, are then inte-
grated into our simulation model, i.e. HDSPN (introduced in Chapter 2).

To make sure that the simulation model is a reasonable representation of the example
process, the behaviors of simulation models without process changes are then validated.
Without applying process changes to a decision in the process, we measure the frequencies
of the correlated decisions for both the HDSPN and the example process. Comparison is
conducted based on the simulation measurements.

For the valid HDSPN, which produces similar frequencies of decisions as the example
process does, change propagation analysis is conducted. Change propagation analysis as-
sesses if the HDSPN propagates the process changes well. With applying process changes
to certain decisions in the process, we again measure the frequencies of the correlated de-
cisions for both HDSPN and the example process. Comparison is conducted based on the
simulation measurements. Detailed experimental settings and results of the validation and
the change propagation analysis are discussed in Chapter 4 and Chapter 5 respectively.
Conclusions and future work are discussed in Chapter 6.



Chapter 1

Preliminaries

In this chapter, we introduce some basic concepts.

N denotes the set of natural numbers. Let S be a set. A multiset M over S, i.e. M(S)
is a mapping M : S → N, with domain(M) = S. Suppose S = {a, b, c}; an example of a
multiset over S could be {a2, b, c3}, which is a multiset containing two a’s, one b, and three
c’s. We denote the sum of multisets, the difference of multisets, and sub-multisets by +,
−, and ≤ respectively. The notations |S| and |M| are used to denote the number of the
elements in the set and multiset respectively.

Let S be a set. A sequence over S of length n is a function σ : {0, . . . , n − 1} → S.
It is represented by a string, e.g. σ = 〈a0, . . . , an−1〉 where σ(i) = ai for i ∈ [0, n −
1]. The length of a sequence is denoted by |σ|. The sequence of length 0 is called the
empty sequence and is denoted by ε. The set of infinite sequences over S is denoted by
S∗. The concatenation σ; s of sequence σ = 〈a0, . . . , an−1〉 with s ∈ S is the sequence
〈a0, . . . , an−1, s〉, and the concatenation σ; γ of σ with sequence γ = 〈b0, . . . , bn−1〉 is the
sequence 〈a0, . . . , an−1, b0, . . . , bn−1〉.

Let S be a set and σ be a sequence. A projection σ ↑ S is the projection of σ over
a set S, removing all elements from σ that are not in S. For instance, S = {a, b, c} and
σ = 〈a, b, b, b, c, d, c, e〉, then σ ↑ S = 〈a, b, b, b, c, d, c, e〉 ↑ {a, b, c} = 〈a, b, b, b, c, c〉.

For any sequence σ over S, the Parikh vector par(σ) maps every element s of S onto
the number of occurrences of s in σ, i.e. par(σ) ∈M(S) where for any s ∈ S : par(σ)(s) =
|σ ↑ {s}|. Suppose S = {a, b, c} and σ = 〈a, b, b, b, c, d, c, e〉, then par(σ) = {a1, b3, c2}. For
any s ∈ S, par(σ)(s) counts the frequency of s in σ.

4
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1.1 Business Process

Business processes consist of a collection of related tasks that produce a specific service
or product in a structured order [19]. A task here refers to a logical unit of work, e.g.
registering an application, sending an email, filling a complaint. This definition implies
that business processes are case-based, which means that every piece of work is executed for
a specific case. A concrete example of a case is a tax declaration, an order, or a request for
information. Let us take a running example shown in Figure 1.1 as an example to illustrate
these definitions.

Register p0

Flight

Cruise

Exp

Hotel

Med

Hotel

Low

Hotel

PickUp

NoPick

Up

p1 p2 p3 Confirm

Book

More

NoPre

sent

Present

Install

ment

Non-

install

ment

Finish

p4

p5

p6

p7

End

Figure 1.1: Example process: travel agency process.

Figure 1.1 outlines the processing of a travel package booking request within a travel
agency. The process starts with the registration (Register in Figure 1.1). Some data related
to the request is registered. Then either flight or cruise for transportation is chosen (Flight
or Cruise). The requirement for a pick-up service (PickUp or NoPickUp) can be put after
a hotel is booked. Three classes of hotel are available, i.e. luxury (ExpHotel), middle class
(MedHotel), and budget hotels (LowHotel). Afterwards, either confirmation or going back
to book more packages is submitted. Once confirmation is submitted, the payment type is
checked (Installment or Non-installment) and the present option for special clients (Present
or NoPresent) is evaluated. Finally, the case is archived and closed (Finish).
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In this example, we define the procedures how the agency handles customers’ requests as
the business process where a customer’s request is a case. Units of work such as “register”,
“book flights”, and “book expensive hotels” are concrete examples of tasks. The order in
which tasks are performed is called sequence. A task here is a generic piece of work rather
than an actual one. It becomes an actual piece of work only when it is bound with a specific
case. The term activity refers to the execution of an actual piece of work. It means that as
soon as a task combined with a case is executed, it is considered to be an activity.

1.2 Petri Nets

Petri nets is one of the formal modeling languages used to describe the structure of tasks
in information systems. A Petri net, consisting of nodes (places and transitions) and arcs,
represents logical interactions among activities in a natural way. Places in Petri nets identify
the processing status of the system (working, idle, queuing, failed, etc.), and transitions
describe the passage from one status to another (end of a task, failure, repair, etc.) [5]. In
the context of Petri nets, a business process refers to a net, a task to a transition, and a
case to an instance of the net.

Typical system properties, such as synchronization, sequentiality, iteration, and par-
allelism, can be modeled by Petri nets. Besides, abundant properties have been formally
defined, including liveness, boundedness, safety, as well as analysis techniques of Petri nets,
e.g. reachability graph and reachability trees [14]. These formally defined properties fa-
cilitate the analysis of information systems. Thus, due to the formal semantics of Petri
nets, explicit states modeling, and the abundance of theoretically proven analysis tech-
niques, gradually, the use of Petri net-based models has become a widely used practice for
modeling information systems in academia [17].

Definition 1.1 (Petri nets). A Petri net is defined as a tuple 〈P, T, F 〉 where:

1. P is a finite set of places,

2. T is a finite set of transitions such that P ∩ T = Ø and

3. F : (P × T ) ∪ (T × P ) → N is a flow relation mapping pairs of places and transitions
to the naturals such that for any pair of nodes (x, y) with F (x, y) ≥ 1, F (x, y) is the
weight of an arc (x, y) .

Given t ∈ T , the preset •t and the postset t• of t are the multisets of places where every
p ∈ P occurs F (p, t) times in •t and F (t, p) times in t•.

A marking m of a net N = 〈P, T, F 〉 is a multiset over P ; markings are states of a net.
A pair (N, m) is called a marked Petri net. A transition t ∈ T is enabled in marking m if
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and only if •t ≤ m. An enabled transition t may fire. This results in a new marking m′

defined by m′ = m−• t + t•.

The process in Figure 1.1 is modeled as a Petri net. Suppose there is one token in
place p0, i.e. the marking is {p1

0}. Since •Flight and •Cruise both are {p0}, and {p0} is a
sub-multiset of {p1

0}, both transitions, Flight and Cruise, are enabled, although only one
of them can fire. No matter which transition fires, one token is consumed from the input
place and produced to the output place. The resulting marking will be {p1

1}. Now, Flight

and Cruise are no longer enabled.

A Petri net class of particular practical interests for us is free-choice Petri nets [7].
In these nets, choice and synchonisation are separated like in many other graphical pro-
cess modeling notations. Moreover, free-choice nets are derived by many process mining
algorithms [18].

Definition 1.2 (Free–choice nets). A net, N = 〈P, T, F 〉 is a free–choice if for every
transition t1 and t2, •t1 ∩• t2 6= Ø implies that •t1 =• t2.

In [7], the following important property of free-choice nets is introduced. When a tran-
sition t is enabled in a marking m, all other transitions in t’s Tcluster are enabled as well.

Definition 1.3 (TCluster). Let t ∈ T of a Petri net N = 〈P, T, F 〉. The cluster of t,
denoted by [t], is the set of transitions such that

• t ∈ [t],

• For every t′ ∈ T , t′ ∈ [t] iff •t′ =• t.

Note that such TCluster is different from the traditional concept of cluster in [7],
which contains both places and transitions. In the remainder of this thesis, all “clusters”
or notations [t] refer to TClusters only. Concrete examples of TClusters in Figure 1.1
are [Flight] = [Cruise] = {Flight, Cruise}, [Register] = {Register}, [ExpHotel] =
[MedHotel] = [LowHotel] = {ExpHotel, MedHotel, LowHotel}, etc.

Definition 1.4 (Cluster set). Let t ∈ T of a Petri net N = 〈P, T, F 〉. The cluster set
denoted by C is the set of TClusters of N , i.e. C = {[x]|x ∈ T}.

1.3 PAISs and Logs

Currently, many companies have adopted information systems that are configured on the
basis of process models to support their business processes in some form. Such information
systems are so-called Process Aware Information Systems (PAISs) [12]. In such systems,
explicit process models describe how the business processes should be executed. In addition,
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these systems typically log events (e.g. in transaction logs or audit trails) related to the
actual business process executions. An event is the reflection in the log of an activity in
the real life. The concept of event is defined as follows.

Definition 1.5 (Event). Let E be a set of events. Every e ∈ E is a touple consisting of
the event name, case ID and possibly some additional information.

An event logged in most information systems includes not only the name of the execution
and the case ID but also other additional properties, such as timestamp and the originator.
All these properties can be used for different process discovery techniques. However, in this
thesis, only case ID is taken into account, as other additional properties are often absent.

Definition 1.6 (Trace). We define a trace λ as a sequence over event names and case IDs.

Referring to the case IDs, traces having same case ID are grouped. Without the times-
tamps, originators, or other properties in events, one concrete example of a trace for the pro-
cess in Figure 1.1 could be 〈Register, F light, ExpHotel, P ickUp, Confirm, Installment,

Present, F inish〉 corresponding to case ID 1. A log contains finite traces.

Definition 1.7 (Log). A log L is a set of traces.

1.4 Markov Processes

A function f : A × B → [0, 1], where A and B are finite or countable sets, is called a
transition probability function if for all b ∈ B : f(., b) is a probability over A, i.e. for all
b ∈ B :

∑
a∈A f(a, b) = 1.

A discrete stochastic process is a finite or infinite sequence of random variable X1, X2, X3, . . .

with values in some domain X, defined on some probability space (Ω,=,P), where Ω is
the sample space, = is a σ-algebra on Ω and P is a probability measure on =, such that
P(∅) = 1 − P(Ω) = 0. We characterize P without explicit construction of Ω and =, by
conditional probabilities:

P[Xn+1 = y|X0 = x0, . . . , Xn = xn] = f(y, 〈x0, . . . , xn〉)

for y ∈ X and xi ∈ X, i = 0, 1, 2, . . . , n. We assume that transition probabitlity f is a
computable function on X ×X∗. Note that by the theory of Ionescu Tulcea (see [11]) the
transition probability function characterizes the probability measure P completely. In fact,
this is a generalization of the result of A. Kolmogorove presented in [4].



Chapter 2

Models for Simulation Experiments

In this thesis, we intend to estimate the eventual effect of process changes through the
process by means of computer simulations. Computer simulation is a useful method for
analyzing information systems as it enables “what if” analysis, i.e. looking into the future
under certain assumptions [20]. In our case, we investigate what the frequencies of the
decisions in the process will be if process changes are injected into the process. Let us take
the process in Figure 1.1 as an example. In the travel agency process, there is a pickup
booking decision and a process change that more clients book hotels near the airport. “What
if” analysis helps predict the average number of pickup services booked when more such
hotels are reserved. This kind of prediction is unlikely to obtain by experiments running in
real systems.

Normally simulations are driven by models. To simulate the eventual effects of certain
alternatives in a computer, simulation models are required to represent certain key behaviors
of the actual systems [20]. One of these key behaviors in real systems is the decision making.
Normally, business processes involve decisions which are possibly correlated globally, i.e. one
decision may be affected by the decisions made before. Once some process change emerges
on some decision, e.g. economic factors or client profiles, due to the existence of correlations,
the correlated decisions should be affected, i.e. change is propagated through the process.
For instance, consider a travel agency process. The decision of the client to book a pickup
service is mainly influenced by the distance of the hotel booked from the airport and by
the client’s budget. So we can expect the existence of a correlation between the pickup
booking decision and the hotel choice. When some process changes emerge, e.g. hotels near
the airport are more preferred, probably fewer pickup services would be booked, i.e. the
change will be probably propagated to the correlated decision. Therefore, for simulating
the change propagation, the simulation model is required to take correlations into account
and be able to propagate process changes.

Traditionally, simulation models are generated manually according to human being’s

9
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understandings of the real processes after a series of interviews, close observation, and
documentation studies have been done. However, this method is rather time-consuming
and possibly error-prone. In [15], Rozinat et al. introduced a methodology to discover
the simulation models from logs. To mimic the decisions made in the real systems, they
suggested two alternatives: 1) to discover and involve data dependencies; and 2) to discover
and involve probability distributions in simulation models.

For alternative 1), data dependencies attach data attributes to decisions. For instance,
a decision to book a five-star hotel or a hostel is dependent on the budget. Budget here
is the data attribute. If the budget changes, the decision on the hotel (or hostel) could
change as well. Simulation models with data dependencies indeed address process changes
locally, i.e. where the data attributes are used. However, in the reality, logs do not always
record these data attributes. Moreover, data dependencies in real systems are often much
more complex than the ones that can be mined with the existing techniques. Therefore,
simulation models including data dependencies are not always derivable from logs. For
alternative 2), simulation models with complex dependencies are replaced by Petri nets
with frequencies. A firing probability distribution, derived from the log, is assigned to each
alternative of the choices to mimic the decision making by users. For instance, a decision to
book a five-star hotel or a hostel is dependent on the budget. However, the data attribute
about budget is not recorded in the log. It is only known from the log that 70% of the
clients who booked five-star hotels while 30% for hostels. Instead of the data dependencies,
it is proposed to assign 70% to the alternative of the five-star hotel and 30% to the hostel.
According to the experimental results, Petri nets with frequencies approximate the behavior
of the real systems well with respect to a number of performance indicators. However, they
are not able to propagate changes through the process due to the absence of the correlations.
Thus, Petri nets with frequencies are unsuitable for simulating the change propagation.

A simulation modeling framework called History-Dependent Stochastic Petri nets (HD-
SPNs) [16] has caught our eyes as it considers not only the history but also the correlations.
To build HDSPNs, additional elements are needed to be incorporated for simulation purpose.
Essential elements include (1) the history-dependent transition probabilities extracted from
logs; and (2) the global history. In the remainder of this chapter, details about HDSPNs
are introduced.

2.1 History-Dependent Stochastic Petri Nets

In this section, we give a definition of our simulation model, History-Dependent Stochastic
Petri Nets, as well as definitions of history-dependent probability measures.

A History-Dependent Stochastic Petri net is an extension of a classical Petri net with
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history [22] denoted by H, dummy transition δ, and transition probability function denoted
by f .

Definition 2.1 (HDSPNs). A History-Dependent Stochastic Petri net (HDSPN) N is a

tuple 〈P, T, F,m0, f〉, where N = 〈P, T ∪ {δ}, F 〉 is a Petri net with •δ = δ• = ∅, m0 is an

initial marking, and f : (T ∪{δ})×H → [0, 1] is a transition probability function, depending

on the history H.

From the definition, it is explicit that an HDSPN is indeed an extension of a classical
Petri net. Moreover, HDSPN exhibits the behavior of a stochastic process which is described
as a sequence of random variables X1, X2, X3, . . ., where the domain of X is X ∪ {δ}, Xn

denotes the corresponding nth transition of a marked Petri net (N, m0) that fires from an
initial marking m0. δ is an isolated dummy transition and enables nets (business processes)
to keeping firing infinitely even when a deadlock occurs or the final state is reached. For
convenience, shorthand notation Hn denotes X1, . . . , Xn, the domain of H is X∗, i.e. the set
of all possible histories. Note that the transition probability function f in the definition is
vital for the generation of history-dependent transition probabilities. The formal definition
of f is as follows.

Definition 2.2 (Transition Probability Function f(t, h)). For t ∈ T , h ∈ H, we define

P[Xn = t|Hn = h] = f(t, h), where f : T ×H → [0, 1] is the transition probability function.

f(t, h) is assumed to satisfy: (1) the sum of the probabilities over all transitions and dummy

transition δ is 1; (2) the transition probability function of a transition equals to 0 if this

transition is disabled; (3) δ can fire if and only if every transition in the net is disabled.

To generate history-dependent transition probabilities for free choice Petri nets, the
approach from [16] to further specify f(t, h) is applied. For free-choice Petri nets, when a
transition in a cluster is enabled, all transitions in this cluster are enabled. The selection of
a transition to fire can be seen as a procedure first to choose an enabled cluster and then
a transition from this cluster to fire. As a result, the transition probability function f(t, h)
can be further specified as

f(t, h) = p(t, h) · q(t, h),

where p(t, h) is the probability to select transition t in a cluster after history h and q(t, h)
is the probability to select cluster [t].

As choosing one cluster to fire from several simultaneously enabled clusters will not
disable other enabled clusters, we assume that the probability to choose one cluster from a
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population of simultaneously enabled clusters is equal, i.e. q(t, h) for every simultaneously
enabled clusters is same. Then, the problem of determining f(t, h) is restricted to deter-
mining p(t, h). In real life, p(t, h) is usually unknown. We propose to estimate p(t, h) on
the logs which record history. The formal definition of p(t, h) is given in Section 2.4.

2.2 Abstractions

As mentioned previously, we can estimate p(t, h) by using the logs. A naive way to approxi-
mate p(t, h) is to count the number of the occurrences of the transition t after whole history
h in the log. However, if we consider the entire history h for estimating the transition
probability for a transition t, we will normally find out that we have not enough data in
our log to make any reliable estimations.

Let us take a concrete example to illustrate the motivation to introduce abstractions. In
the travel agency example process in Figure 1.1, we suppose that one case is running in the
process and we have a log L. When the decision PickUp or NoPickUp is going to proceed
for the first time, the observed history h = 〈Flight, ExpHotel〉, which never happened
in the log before. Since h is never observed in L, no reliable estimation of the transition
probability can be estimated on the log. However, if we only consider part of history h, i.e.
h′ = 〈ExpHotel〉, and h′ is observed in L, a reliable estimation of the transition probability
can be obtained from the log. It shows that many possible situations would be omitted
when using the whole history to estimate p(t, h). Therefore, abstractions are preferred to
be used for the history h. Here we introduce two types of abstractions, transition frequency
abstraction and last fired cluster transition abstraction.

Definition 2.3 (Transition Frequency (TF) Abstraction). Let C be a cluster set of

a net 〈P, T, F 〉, c ∈ C, and H be the history. We define the transition frequency abstraction

αtf : H × C → par(H ↑ C):

αtf (h, c) = par(h ↑ c),

where par(h ↑ c) projects history h on cluster c and results in a multiset over c.

The transition frequency abstraction actually observes the frequencies of all transitions
from the defined cluster in the history. For instance, let h = 〈a, x, y, b, a, a, b〉, c1 = {a, b, c},
and c2 = {e, f}, then αtf (h, c1) = {a3, b2, c0} and αtf (h, c2) = {e0, f0}. If h = ε, then
αtf (h, c1) = {a0, b0, c0} and αtf (h, c2) = {e0, f0}.
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Definition 2.4 (Last Fired Cluster Transition (LFCT) Abstraction). Let C be the

cluster set of a net 〈P, T, F 〉, c ∈ C, and H be the history. We define the last fired cluster

transition abstraction αlfct : H × C → T ∪ {⊥i|i ∈ C}, where ⊥i stands for no transition

fired yet in cluster i:

αlfct(h, c) =





t, if h = (σ; t; γ) and t ∈ c and σ ∈ T ∗ and γ ∈ (T\c)∗

⊥c, if h ∈ (T\c)∗

The last fired cluster transition abstraction observes whether any transition in the cluster
occurred in the history. If so, only the last occurred transition is counted. For instance, let
h = 〈a, x, y, b, a, a, b〉, c1 = {a, b, c}, and c2 = {e, f}, then αlfct(h, c1) = b and αlfct(h, c2) =
⊥c2. If h = ε, then αlfct(h, c1) = ⊥c1 and αlfct(h, c2) = ⊥c2.

2.3 Correlations

As we stated, decisions are often globally correlated. Future decision might be correlated
with decisions made in the past. It implies that the estimation of p(t, h) for a transition
t in cluster [t] depends on the abstracted history associated with [t]’s correlated decision.
The formal definition of correlation is introduced as follows.

Definition 2.5 (Correlations). Let C be the cluster set of a net 〈P, T, F 〉, c1, c2 ∈ C,

and H be the history. The correlation is a function R : C ×H → C mapping c1 to c2, i.e.

R(c1, h) = c2.

We introduce a short-hand notation for the correlated cluster R([t]) for cluster [t]. In
the travel agency example, we assume the pickup booking decision is correlated with the
hotel booking decision, denoted by R([PickUp]) = [ExpHotel].

Assuming that decisions (clusters) are probably not based on the entire history, we pro-
pose to use abstractions introduced previously over the history to discover correlations from
the logs. Types of correlations then differ in abstractions applied to discover correlations.
For correlations given by the LFCT abstraction, only the last activity is considered. This
is useful when only the most recent history is relevant for the decisions. For correlations
given by the TF abstraction, the firing frequencies of some correlated cluster transitions are
considered. For example, the more repair iterations have been executed on a product, the
less likely it will be accepted.
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Only when the correlation is discovered, p(t, h) can be estimated. Since both the estima-
tion of p(t, h) and the correlation discovery are associated with abstractions, the abstraction
for p(t, h) estimation is given by the strongest correlation. The general approach and the
implementation to discover correlations are discussed in Section 2.3.1 and Section 3.1 re-
spectively.

2.3.1 Detecting Dependencies

In principal, correlations can either be provided by domain experts or be discovered from
the logs, but usually such knowledge from domain experts is not available. In this section,
we introduce a procedure to check whether the decision made in one cluster is significantly
dependent on the decision made before based on log observations.

Abstraction value c1. y1 · · · yj · · · ym .cn

Range(α(C1))
x1
...
xi nij
...
xl

Range(α(Cn))

Table 2.1: Log observation matrix for clusters c1 . . . cn. For simplicity, only the rows and
columns for clusters cx and cy are shown. x1, . . . , xl stand for the abstractions of history
associated with cx and y1, . . . , ym stand for all the transitions in cy. nij is the number of
occurrences that abstraction value xi appears in the prefix of transition yj .

By analyzing the log, trace by trace, event by event, we first derive a matrix (see
Table 2.1) with observations from the log associated with all clusters in the process. This
kind of matrix is called log observation matrix. The rows of the log observation matrix are
identified by the values of the range of all abstractions associated with each cluster and
columns by the transitions from the set of clusters in the process. nij is the number of
occurrences that abstraction value xi appears in the prefix of transition yj . Although the
row identifiers of the log observation matrix differ per abstraction, the derivation of the log
observation matrix and following procedures are applicable to each abstraction. Details of
the log observation matrix derivation method are explained in Section 3.1.

For testing the dependency between two clusters, a contingency matrix is then derived
from the log observation matrix. A contingency matrix is a matrix summarizing the condi-
tional frequencies of two variables (clusters) and showing how these two variables (clusters)
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Abstraction value y1 · · · yj · · · ym

x1 r1
...

...
xi nij ri
...

...
xl rl

k1 · · · kj · · · km N

Table 2.2: Contingency matrix for two clusters c1 and c2 for some abstraction α. x1, . . . , xl

stand for the abstraction values of history associated with c1 and y1, . . . , ym stand for all
the transitions in c2.

are dependent on each other. Suppose there are two random variables: X and Y , repre-
senting the abstractions of cluster c1 and all transitions in the cluster c2 respectively.

An illustration of a contingency matrix is shown in Table 2.2. The rows of the contin-
gency matrix denoted by x1, . . . , xl stand for the abstractions of the history associated with
c1 and columns denoted by y1, . . . , ym stand for all the transitions in c2. nij is the number
of occurrences that abstraction xi appears in the prefix of transition yj , kj is the total
number of occurrences of transition yj in the log, ri is the total number of occurrences that
abstraction xi appears in the prefix of all transitions in c2, and

∑m
j=1 kj =

∑l
i=1 ri = N .

Having this contingency matrix, we apply the chi-square test to assess the null-hypothesis
that X and Y are independent. The test statistic,

χ(X, Y ) =
l∑

i=1

m∑

j=1

(nij −Eij)2

Eij
, with Eij =

ri · kj

N
,

is used to determine whether the null-hypothesis is accepted or rejected. Eij in the equation
stands for the estimated number of occurrences that abstraction xi appears in the prefix of
transition yj .

As χ(X,Y ) is χ2−distributed with the degree of freedom (m− 1)(l − 1) , if χ(X, Y ) is
larger than the chi-square random value with the degree of freedom (m− 1)(l− 1) and the
defined significance level, the null-hypothesis is rejected, i.e. c1 is significantly dependent
with c2. For instance, let χ(X, Y ) = 125.516 with the degree of freedom = 4. Then we
reject the null-hypothesis with 95% confidence, since the test statistic is bigger than 9.488,
the critical value for the significance level 0.05 and the degree of freedom 4.

Note that during the dependency detection procedure, in order to discover all dependen-
cies for any pair of clusters, from one log observation matrix, multiple contingency matrixes
are derived so that multiple chi-square tests are carried out. Suppose that we have one log
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observation matrix and k clusters. To investigate k2 correlations for k2 cluster pairs, k2

contingency matrixes and chi-square tests are required.

2.3.2 Selecting Correlations

After we have determined the dependent clusters, for one cluster c1, it is possible to discover
a set of clusters dependent on c1. We could take all dependent clusters. However, not all
dependent clusters are strongly correlated. For instance, for the travel agency process in
Figure 1.1, suppose we have detected that cluster [BookMore] is dependent with [Flight ],
[ExpHotel ], and itself. However, we also find out that the effect of booking flights or hotels
on booking more packages is rather weak, i.e. it is a weak correlation. When significant
changes occur on the booking flights or hotels, no significant changes are propagated to
booking more packages of flights and hotels. By contrast, it is found out that the effect
of booking more on itself is strong. Then, we consider [Flight ] and [ExpHotel ] is a weak
correlation whereas we consider [BookMore] and itself as a srong correlation. For now, we
propose only to consider the strongest correlated cluster.

To find out the strongest correlated clusters, we need to discover the strength of all
dependencies. Chi-square test is not suitable as it only tests the significance of a dependency
between two variables [8]. Instead, the correlation coefficient describes the strength of a
dependency between two variables [8]. In principle, further analysis methods, such as data
mining techniques or regression analysis can be conducted to determine the correlation
coefficient. However, they are outside of the scope of this thesis. In this thesis, the strongest
correlation in our simulation experiments is determined by the domain expert knowledge of
the example process.

2.4 Determining p(t, h)

So far, having abstractions and the corresponding strongest correlation(s), we are ready
to estimate transition probabilities p(t, h) which are dependent on the strongest correlated
cluster derived from the log. A log L is a finite set of possible histories H. This section
defines p(t, h) corresponding to the abstractions introduced in Section 2.2.

2.4.1 p(t, h) for TF Abstraction

First, we estimate for every t the probability to choose t under the condition that s is the
TF abstracted history of cluster R([t]). As long as the TF abstracted history associated
with R([t]) is indeed observed in the log, i.e. there are historical observations in the log, we
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use the conditional probability to choose t. This conditional probability is called history-
dependent conditional probability. For this purpose, we divide the frequency ϑ(t, s) of s

being the abstracted history of cluster R([t]) occurring before t by the frequency ξ(t, s) of s

being the abstracted history of cluster R([t]) occurring before some transition in cluster [t].

ϑ(t, s) =
∑

h∈L

L(h) · |{h̃|∃h̃, γ ∈ T ∗ : h = (h̃; t; γ) ∧ αtf (h̃, R([t])) = s}|,

ξ(t, s) =
∑

h∈L

L(h) · |{h̃|∃h̃, γ ∈ T ∗, x ∈ [t] : h = (h̃; x; γ) ∧ αtf (h̃, R([t])) = s}|.

In case the abstracted history associated with R([t]) is never observed before any tran-
sition from [t] in the log, which results in ξ(t, s) = 0, we take the history-independent
estimation of the probability of t by dividing the number of occurrences of t ϑ̄(t) in the log
by the number of occurrences of cluster [t] ξ̄(t) in the log. This unconditional probability
is called history-independent probability.

ϑ̄(t) =
∑

h∈L

L(h) · |{h̃|∃h̃, γ ∈ T ∗ : h = (h̃; t; γ)}|,

ξ̄(t) =
∑

h∈L

L(h) · |{h̃|∃h̃, γ ∈ T ∗, x ∈ [t] : h = (h̃; x; γ)}|.

In case there are no observations of transitions from cluster [t] in the log, we assume
that each transition in [t] fires with equal probability. Then the full definition of ptf (t, h) is
as follows:

ptf (t, h) =





ϑ(t, αtf (h,R([t])))
ξ(t, αtf (h, R([t])))

if ∃h ∈ L, x ∈ [t] : x ∈ h ∧ ξ(t, αtf (h,R([t]))) 6= 0;

ϑ̄(t)
ξ̄(t)

if ∃h ∈ L, x ∈ [t] : x ∈ h ∧ ξ(t, αtf (h,R([t]))) = 0;

|[t]|−1 if ∀h ∈ L, x ∈ [t] : x /∈ h.

2.4.2 p(t, h) for LFCT Abstraction

Following the idea to generalize ptf (t, h), we define p(t, h) for the LFCT abstraction straight-
forwardly:

plfct(t, h) =





ϑ(t, αlfct(h,R([t])))
ξ(t, αlfct(h,R([t])))

if ∃h ∈ L, x ∈ [t] : x ∈ h ∧ ξ(t, αlfct(h,R([t]))) 6= 0;

ϑ̄(t)
ξ̄(t)

if ∃h ∈ L, x ∈ [t] : x ∈ h ∧ ξ(t, αlfct(h,R([t]))) = 0;

|[t]|−1 if ∀h ∈ L, x ∈ [t] : x /∈ h.
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Note that the history-dependent conditional probability for the LFCT abstraction has a
different interpretation from the TF abstraction. For the LFCT abstraction, the history-
dependent conditional probability estimates the probability to choose t under the condition
that s is the last fired transition in cluster R([t]) in the history, whereas in the definition of
p(t, h) for the TF abstraction s is a multiset of transitions of R([t]).

ϑ(t, s) =
∑

h∈L

L(h) · |{h̃|∃h̃, γ ∈ T ∗ : h = (h̃; t; γ) ∧ αlfct(h̃, R([t])) = s}|,

ξ(t, s) =
∑

h∈L

L(h) · |{h̃|∃h̃, γ ∈ T ∗, x ∈ [t] : h = (h̃; x; γ) ∧ αlfct(h̃, R([t])) = s}|,

where ϑ(t, s) denotes the occurrences that the last choice made in cluster R([t]) was observed
before t in the log, and ξ(t, s) denotes the last choice made in cluster R([t]) was seen before
some transition in [t].

Similarly, in case the last fired transition from R([t]) is never observed before any tran-
sition from [t] in the log or no observations of transitions from cluster [t] in the log, we use
the history-independent probability and equal probability respectively to estimate p(t, h).

The idea for determining ptf (t, h) and plfct(t, h) can be straightforwardly transplanted
for p(t, h) definitions corresponding to any other abstractions. In the case that the ab-
stracted history s associated with cluster R([t]) is observed before cluster [t] in the log, the

history-dependent probability
ϑ(t, s)
ξ(t, s)

is applied. In the case that the abstracted history

s associated with cluster R([t]) is never observed before cluster [t] in the log, the history-

independent probability
ϑ̄(t, s)
ξ̄(t, s)

is applied instead. Otherwise (if [t] is never observed in the

log), the equal probability |[t]|−1 is assumed.



Chapter 3

Implementation

In Chapter 2, we have introduced the methods to discover correlations and p(t, h) for HD-
SPNs. In this chapter, we introduce our approach to implement these ideas by process min-
ing techniques. The essence of process mining is to extract knowledge from logs recorded by
information systems and to analyze the underlying processes by using the knowledge from
logs [18]. Process mining aims at improving the processes by providing techniques and tools
for discovering process, control, data, organizational, and social structures from logs [18].
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Figure 3.1: Overview about the process mining techniques used in this thesis.
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In our research, process mining techniques assist us to discover correlations and estimate
the history-dependent transition probabilities from the log. As depicted in Figure 3.1, with
the help of the cluster discovery algorithm which is the existing work, the cluster sets
are extracted from the log1. Afterwards, taking the cluster set and the log, the correlation
discovery algorithm generates the log observation matrix and detects the correlated clusters.
Based on the log observation matrix, transition probabilities p(t, h) are calculated and
integrated into HDSPNs.

For convenience, several concepts and notations are recalled and introduced first.

Let C be a cluster set, c ∈ C, and h be the history. The abstraction function α(h, c)
keeps track of the current abstraction value of cluster c during the observation of the log.
For every abstraction function, different abstraction values are kept. Implementation details
about the LFCT abstraction and the TF abstraction are discussed in Section 3.1.2.

Let C be a cluster set, c ∈ C, e be a event, and h be the history. Let M be a m × n

matrix with M [i][j] the element at ith row and jth column. For every M [i][j], the index
j (index i) could be stored in a vector that you access by event names (a vector that you
access by abstraction values), i.e. M [Row(α(h, c))][Column(e)].

3.1 Implementation of Correlations Discovery

The general algorithm to test whether the cluster is significantly dependent on a cluster
is described in Section 3.1.1. As the general algorithm description does not specify im-
plementation details associated with specific abstraction functions, these implementation
details are further discussed in Section 3.1.2, in which the LFCT abstraction and the TF
abstraction are given.

3.1.1 Algorithm Description

First of all, by analyzing the log, trace by trace, event by event, we try to derive the Log
Observation Matrix denoted by O. Although some issues such as the abstraction values
differ per abstraction, further procedures are applicable to any abstraction.

For every abstraction α, we first initialize the abstraction values for each cluster (step 1
in Table 3.1). For every event e in trace σ, we find column e in the log observation matrix
(step 3.1) and check the rows to update, given by the current abstraction values for each
cluster (step 3.2.1). For each row to be updated, we add an observation for event e (step
3.2.2). Meanwhile, for all clusters, we update abstraction values before reading the next

1Note that the cluster set can be obtained from the control flow as well.
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Correlation Discovery Algorithm Part 1
inputs: Log, Cluster set, an abstraction type
outputs: Log observation matrix
function Log-Observer(Log, C, absType) returns a log observation matrix O
inputs: Log, the log to be mined

C, a set of clusters in the net
absType, a selected abstraction function to discover correlations

variables: O, the log observation matrix, initially empty;
~α, a vector containing the abstraction values for all clusters;

an abstraction value is accessed by cluster denoted by ~α(c);
colIndex, an integer indexing the column of O, initially 0;
rowIndex, an integer indexing the row of O, initially 0;

1. ~α ← initialize()*]

2. For each trace λ in Log do
3. For each event e ∈ λ do

3.1. colIndex ← getColumnIndex(e)*;
3.2. For each cluster c ∈ C do

3.2.1. rowIndex ← getRowIndex(~α(c))*;
3.2.2. O[rowIndex][colIndex] ← O[rowIndex][colIndex] + 1.

3.3. End for each cluster c ∈ C do
3.4. ~α ← updateAbs(absType, e, ~α)*]

4. End each event e ∈ λ do
5. ~α ← initialize()*]

6. End each trace λ in Log do
7. Return O

Table 3.1: The pseudo code used to generate the log observation matrix. * User defined
functions are called. ] Differ for specific abstractions discussed in Section 3.1.2.
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event in trace σ (step 3.4). Before reading the next trace, abstraction values for all clusters
need be re-initialized, i.e. cleared and assigned with the initial values (step 5).

On the derived log observation matrix, we then apply Chi-square Test. In order
to apply chi-square test to detect the dependencies between two clusters, the contingency
matrix is required. Values (the number of occurrences) for the contingency matrix can be
extracted from the log observation matrix. The sum of every row (ri in Table 2.2) and
the sum of each column (kj in Table 2.2) can easily be added as well. Each extracted
contingency matrix is the input for the apache library [2] that calculates the chi-square
p-value for the corresponding dependency.

3.1.2 Implementation Details Associated with Specific Abstractions

As stated previously, some implementation issues differ per abstraction applied. The main
differences lie in the initialization and updating of the abstraction values during the log
observation matrix derivation phase. In this section, we address these specific implementa-
tions briefly with respect to the transition frequency abstraction and the last fired cluster
transition abstraction.

3.1.2.1 Transition Frequency Abstraction

The TF abstraction function counts the frequencies of the transitions for the defined clus-
ter. Recalling the definition of the transition frequency abstraction function, it projects the
history h onto a cluster c and produces a multiset over cluster c (see Section 2.2). Conse-
quently, the TF abstraction values should be in form of multiset over all clusters, i.e. for
all c ∈ C, αtf (h, c) = par(h ↑ c), where C is a cluster set and h is the history.

For initialization (step 1 in Table 3.1), since the log is not read and no occurrence of
any transition is observed (empty history, i.e. h = ε), for every cluster c ∈ C, αtf (h, c) =
par(ε ↑ c).

When updating the TF abstraction for event e (step 3.4 in Table 3.1), we update the
abstraction value given by e by adding 1 to the current frequency. The formal TF abstraction
updating function for event e ∈ c can be written as

αtf (h; e, c) = par(h; e ↑ c) = par(h ↑ c) + par(〈e〉 ↑ c),

where “;” is the concatenation. This definition implies that when updating the TF abstrac-
tion given by some new event, we do not use the history for computing the new abstraction
value every time. As par(h ↑ c) is known, only the new value par(〈e〉 ↑ c) needs computing.

For instance, c1 = {a, b, c}, c2 = {d, e}, then initially αtf (ε, c1) = {a0, b0, c0} and
αtf (ε, c2) = {d0, e0}. When updating the TF abstraction for event b, as b ∈ c1, we compute
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αtf (〈b〉, c1) = {a0, b1, c0}. The updated αtf (ε; b, c1) = {a0, b0, c0}+ {a0, b1, c0} = {a0, b1, c0}
and αtf (ε; b, c2) = {d0, e0}.

3.1.2.2 Last Fired Cluster Transition Abstraction

The LFCT abstraction function extracts the last fired cluster transition in the defined
cluster. Recalling the definition of the LFCT abstraction function, the outcome is either
a transition t or undefined ⊥c (see Section 2.2). As a result, the LFCT abstraction values
should be in form of a transition or undefined, i.e. for all c ∈ C, αlfct(h, c) ∈ c ∪ {⊥c},
where C is a cluster set and h is the history.

For initialization (step 1 in Table 3.1), since no cluster transition has been fired before,
i.e. h = ε and ε ∈ (T \ c)∗, for each cluster c ∈ C, αlfct(h, c) = ⊥c.

When updating the LFCT abstraction for event e (step 3.4 in Table 3.1), we update the
abstraction value given by e by replacing the current cluster abstraction value by event e.
The formal LFCT abstraction updating function for event e ∈ c can be written as

αlfct(h; e, c) = e,

where “;” is the concatenation. This definition implies that when updating the LFCT
abstraction given by some new event, we do not consider the history for computing the new
abstraction value. Only the new event e is counted.

For instance, c1 = {a, b, c}, c2 = {d, e}, then initially αlfct(ε, c1) = ⊥c1 and αlfct(ε, c2) =
⊥c2 . When updating the LFCT abstraction for event b, as b ∈ c1, we replace the last fired
cluster transition in cluster c1 by event b, i.e. αlfct(ε; b, c1) = b, while αlfct(ε; b, c2) = ⊥c2 .

3.2 p(t, h) Calculation and Implementation

In this section, we discuss the implementation of HDSPNs in CPN tools. Colored Petri Nets
(CPNs) [10] is a discrete-event modeling language combining Petri nets with the functional
programming language Standard ML [3]. This extended Petri net makes it possible to
implement hierarchical structures and data dependencies. CPN tools [1], a high level Petri
net tool, supports Colored Petri nets, and its simulator and monitors assist us to accomplish
performance analysis.

First of all, we introduce the required additional elements in CPN models to support the
history-dependent probability mechanism for HDSPNs. Afterwards, we propose a approach
to calculate p(t, h) from the log and to integrate the calculated p(t, h) values into HDSPNs
working with additional elements in Colored Petri Nets.
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In HDSPNs, the global history is kept in a special place that contains a token with
the history information, similarly to the implementation of History Nets [22]. Initially it
contains a token containing the empty history. Every transition of the Petri net is then
linked to the history place and transition firings update the history token by adding the
information about the firing. Since our HDSPNs involve multiple abstractions, we keep the
entire global history rather than an abstracted history for a case. To obtain the abstracted
history, an ML implemented abstraction function is mapped onto the entire history and
produces the corresponding abstracted history. Recall that the TF abstraction takes the
history and a cluster and produces the multiset over the cluster (ML implementation see
Appendix A.2) while the LFCT abstraction produces the last fired transition in the cluster
(ML implementation see Appendix A.2).

To introduce a history-dependent probability mechanism, we need one random value for
the entire cluster to make it work. Therefore, we add a fusion place random that contains
a token whose value is randomly chosen from 0 to 999. Every firing of a transition results
in updating the value of this token with a new random number. Within each cluster,
transition guards capturing the probability mechanism are defined as follows: Let cluster
c contain transition t1, . . . , tn and given history h, the probability to choose transition ti
under condition that cluster c is chosen is p(ti, h). Then the guard for ti is defined as

1000×
i−1∑

j=1

p(tj , h) ≤ prob < 1000×
i∑

j=1

p(tj , h) (3.2.1)

(for transition t1, the lower border is 0), where prob is the value of the token on random.
This definition of the guards ensures that in every cluster at every moment at most one
transition can be enabled.

Now, let us take an example to see how p(t, h) values, the global history place, and the
fusion place random work together for HDSPNs. Figure 3.2 (a) depicts a net. In this net,
there are clusters [x] = {x}, [y] = {y}, [a1] = {a1, a2} and [b1] = {b1, b2, b3}. The fusion
place History connected to every transition is used to keep track of the firings. Every time
a transition fires, the history is updated by adding the fired transition into the firing history
(see the arc inscription “b1 :: hist” in Figure 3.2 (b): b1 is appended to the history hist

when b1 fires). The fusion place Probability connected to every transition in all clusters
is used to generate a random value between 0 and 999. We assume that p(b1, h) = 0.1,
p(b2, h) = 0.35, and p(b3, h) = 0.55. By applying the transition guard definition 3.2.1, the
guard for b1 is defined as

0 ≤ prob < 1000× p(b1, h) = 100.

The guard for b2 is defined as

1000× p(b1, h) = 100 ≤ prob < 1000× (p(b1, h) + p(b2, h)) = 450.
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Figure 3.2: A sample of HDSPNs.

The guard for b3 is

1000× (p(b1, h) + p(b2, h)) = 450 ≤ prob < 1000× (p(b1, h) + p(b2, h) + p(b3, h)) = 1000.

So far we did not explain how p(t, h) can be obtained from the log. The calculation of
p(t, h) starts with the log observation matrix derived from the log by the algorithm described
in Section 3.1.1. To calculate p(t, h) for transition t, the contingency matrix associated with
[t] and R([t]) is required. As values in the contingency matrix are exactly the occurrences
p(t, h) requires, p(t, h) for HDSPNs can be easily calculated from the contingency matrix.
Calculated p(t, h) values are then implemented into an ML function in CPN tools of the
HDSPN. The implemented ML function is placed in the guard on transition t in the HDSPN
(see Figure 3.3). Every time t is enabled, the ML function takes the history and selects a
probability for firing t according to the abstraction value on the history. In the example in
Figure 3.2, ML functions can be defined that replace the constant values in the transition
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guards (i.e. 100, 450, and 1000) and that find the correct values given the history. Thus,
the firing of the transition t is not only determined by the marking of the net but also by
the history concerns.
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Figure 3.3: The dependencies among calculated p(t, h), ML functions, and HDSPNs in
Colored Petri Nets.

Let us recall the transition probabilities p(t, h) defined in Section 2.4. Both for ptf (t, h)
and plfct(t, h) (for other abstractions as well), three possible probabilities under three sit-
uations would be considered, i.e. (1) a history-dependent conditional probability if the
correlated abstraction value on the history is observed as the prefix of cluster [t] in the log;
(2) a history-independent probability if there are no correlated abstraction values as the
prefix of [t], but the log contains observations of cluster [t]; and (3) an equal probability if
no observation about the entire cluster [t] is found in the log.

Suppose that we have a transition tj and its correlated cluster R([tj ]), the p(tj , h)
calculation starts from the contingency matrix associated with [tj ] and R([tj ]). Table 3.2
gives a table view of a contingency matrix associated with clusters [tj ] and R([tj ]). The
interpretation of the contingency matrix has already been introduced in Section 2.3.1. Here,
based on this contingency matrix, we explain how three probabilities ((1), (2) and (3)) of
p(tj , h) are obtained.

Suppose cluster [tj ] with marked history h and abstraction value α(h,R([tj ])) = xi, then
we determine p(tj , h) using the contingency matrix. The history-dependent conditional
probability for tj is formalized as

p(tj , h) =
nij

ri
, if α(h,R([tj ])) = xi,
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α(h,R([tj ])) t1 · · · tj · · · tm
x1 r1
...

...
xi nij ri
...

...
xl rl

k1 · · · kj · · · km N

Table 3.2: Contingency matrix for clusters [tj ] and R([tj ]). x1, . . . , xl stand for the ab-
stracted history associated with R([tj ]) and t1, . . . , tm stand for all the transitions in [tj ].
nij is the number of occurrences that abstraction xi happened before transition tj . ri is the
number of occurrences that abstraction xi happened before cluster [tj ]. kj counts the total
number of occurrences of transition tj regardless of the abstractions.

where h stands for the history of tj and α is some abstraction function determined by the
strongest correlation.

αtf (h, [Flight]) Present NoPresent [Present] p(Present, h)
{Cruise0, F light2} 0 380 380 0/380=0
{Cruise0, F light3} 1 170 171 1/171=0.6%
{Cruise0, F light4} 8 89 97 8/97=8.2%
{Cruise0, F light5} 19 23 42 19/42=45.2%

...
...

...
...

...
Total 3274 6726 10000 3274/6726=32.7%

Table 3.3: The extended contingency matrix with p(t, h) calculations for clusters [Present]
and [Flight]. Note that the abstraction in this example is TF abstraction.

A concrete example for calculating p(t, h) is shown in Table 3.3. Here, it is assumed that
according to the TF abstraction cluster [Present] is strongly correlated with cluster [Flight]
in the travel agency process in Figure 1.1. Column “p(Present, h)” lists the transition
probabilities for transition Present. Given an abstracted history is {Cruise0, F light3}, the
corresponding p(Present, h) is then equal to 0.6%, and so on and so forth.

If no abstraction value in the contingency matrix is found to be same as the abstracted
history associated with R([tj ]) in HDSPNs, history-dependent conditional probability is not
available and history-independent probability is used instead.

p(tj , h) =
kj

N
, if ∀i ∈ [1, l] : α(h,R([tj ])) 6= xi.

It is calculated exactly same as the transition probability calculation introduced in [15]. In
Table 3.3, the history-independent probability for Present is “3274/6726=32.7%”.
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If the entire cluster [tj ] is never observed in the log regardless of the abstraction values,
i.e. N = 0, we define that all the transitions in cluster [tj ] share the same probability to
fire. Thus, in this situation, equal probability is preferred, which equals to the reciprocal of
the cluster size [tj ]−1. For instance, [Present] cluster contains two elements and the equal
probability is then 1

2 , i.e. 50%.

Since p(tj , h) values are dependent on the history, in the CPN implementation of HD-
SPNs, ML functions are defined to select a p(tj , h) value for tj according to the abstraction
values on history. If the observed abstracted history is xi, i ∈ [1, l], then (1) is selected
by ML functions. If the observed abstracted history doesn’t exist in the log (contingency
matrix), then (2) is selected. If the value of N = 0, then (3) is selected. The general
structure of the function is defined in Table 3.4.

p(t, h) Function Implementation
Input: transition name, history
Output: probability value
function p(tj, h) returns a probability
inputs: tj , the transition to fire

h, the history observed before tj
variable: p, the transition probability, initially 0

1. If [tj ] is not observed in the log (N = 0)
1.1. p ← [tj ]−1

2. End If 1
3. Else If α(h,R([tj ])) = xi

3.1. p ← nij

ri
4. End Else If 3

5. Else p ← kj

N
6. Return p

Table 3.4: The pseudo code of p(t, h) ML function. α is the abstraction function.

In Figure 3.4, we give a segment of the calculated and the ML implemented p(t, h)
for the TF abstraction for cluster [Present] and cluster [Flight] corresponding to the
travel agency process. From the extended contingency matrix, we know that when the
abstracted history is {flight4, cruise0}, the calculated p(t, h) is 8.2% (see red circle 1 in
Figure 3.4). The history-independent probability p(t, h) is 32.7% (see red circle 2), which
is the history-independent probability. In the ML code on the bottom, the “if” clause in
function TFprob() handles the condition which abstracted history is observed and “then”
clause yields a corresponding p(t, h) × 1000 for the transition guard in [Present] (refer to
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Equation 3.2.1). Note that in our experiments, only (1) and (2) are incorporated due to
the size of the log2.

3.3 ProM Implementation

We implemented our algorithm (see Section 3.1.1) to discover correlations from the log as a
plug-in in the ProM framework3. Our plug-in is named “cluster correlation miner”. ProM
framework can read files in the XML format through its own component, which is able to
deal with large data sets [21]. Our research requires mechanisms to read logs which are
exactly ProM framework offers.

Another important feature of the ProM framework is that it allows for the interaction
between a large number of plug-ins [21]. Due to this feature, our cluster correlation miner is
chained with another miner called “cluster/decision miner”. This miner outputs the cluster
set which is one input of our “cluster correlation miner”. Besides, cluster correlation miner
is also chained with the log as another input. The last input, i.e. abstractions, is either
selected from the GUI or from the default setting. Multiple selections of abstractions are
allowed from GUI (see GUI selection in Figure 3.5). These chained objects can be defined
in a macro (see Figure 3.5). The outputs of our plug-in are log observation matrices and the
correlation results. The log observation matrix normally prints the whole log observation
matrix for each abstraction. The correlation result shows the correlation detection results
for every two clusters. The manual describing how to play with the “cluster correlation
miner” is available in Appendix D.

2Enough observations ensure N 6= 0.
3www.processmining.org
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Figure 3.4: A segment of a extended contingency matrix with p(t, h) calculations and ML
implementation for the TF abstraction. Here we assume that cluster [Present] is corre-
lated with cluster [Flight] in the travel agency process. Circle 1 highlights an illustra-
tion of history-dependent conditional probability and circle 2 is an illustration of history-
independent probability. The highlighted circle 1 in p(t, h) calculation corresponds to the
circled 1 in the ML TFprob function. So does highlighted circle 2.
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Figure 3.5: The macro defined to execute the cluster correlation miner. Here, selecting
abstractions from GUI is predefined.



Chapter 4

Simulation with HDSPNs

In this chapter, we introduce our procedures to conduct simulation experiments for evalu-
ating process change propagation through simulation models. The goal of our simulation
experiments is to verify that HDSPNs are able to propagate process changes through the
process. Section 4.1 gives an overview of simulation experiments. Section 4.2 describes an
extension of the running example in Figure 1.1. The running example is extended with
data in order to obtain a more realistic example. This running example provides a log and
a control flow for simulation modeling and further experiments. By using the log and the
control flow, in Section 4.3, we will discuss the construction of different simulation models
for the running example, i.e. (1) HDSPNs; and (2) Petri Nets with frequencies.

4.1 Experimental Overview

This section introduces a global setting of our simulation experiments.

Before we launch our simulation experiments, we need a process log and the correspond-
ing control flow. In principal, there are a lot of logs and control flows available in the reality.
However, by using these real processes and logs, only the current processes without process
changes can be analyzed. For our research, we are interested in the propagation of the
process change through the process, which is not in the logs yet. To observe the change
propagation, process changes need to be introduced to the process. It is too risky and costly
to ask a company or an organization to execute their processes in a changed setting to pro-
vide such logs. Therefore, we use an artificial example process on which we apply process
changes and that provides the log. We extend the running example depicted in Figure 1.1
with data to play the role of this example process M0. Details about this example process
are in Section 4.2. On the log and the control flow, we construct simulation models.

As explained in Chapter 2, our hypothesis is that HDSPNs have the ability to propagate
changes through business processes. In Section 4.3, we explain the implementation details

32
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of the HDSPN. In our experiments, we refer to the HDSPN model as M1. We compare
the HDSPN’s capability of change propagation with existing work on extracting simulation
models [15], which is proved to be unable to propagate changes. For this purpose, the Petri
net with frequencies (denoted by M2 in our experiments) is considered in experiments. All
models involved in our experiments are summarized in Table 4.1.

Denotation Description Data History Frequency
M0 Petri nets with data dependency + - -
M1 HDSPNs simulation model - + +
M2 Petri nets with frequency - - +

Table 4.1: Summary of models for simulation experiments. + stands for the presence of the
property and - for the absence.

Our simulation experiments start with validation without process changes in order to
ensure the simulation models (M1 and M2) used in further experiments behave approxi-
mately as the example process (M0) does before the change injection (See Figure 4.1). We
first simulate M0 without applying any process change repeatedly. During the repeat simu-
lations, M0 generates logs repeatedly. We randomly select a log among multiple logs. The
log is used for mining correlations and p(t, h) values for M1. The frequencies for construct-
ing M2 are mined from the same log. Then, M1 and M2 are simulated repeatedly without
applying any process change.

By running all models repeatedly without applying any process change, we record the
transitions related to the performance indicators during the simulations. The performance
of this running example is measured by decisions “Present” and “PickUp”. Both decisions
have complex dependencies with other parts of the process (see Section 4.2.1). Due to
the financial concern, it is important to have an idea about the number of presents to
order. Besides, estimating the number of “PickUp” is helpful for selecting the seasonal
contracts with the taxi company for the pickup service. Therefore, we monitor the number
of occurrences of these two decisions during the simulations by user-defined monitors in
CPN tools.

When doing performance analysis, it is often necessary to collect statistically reliable
data. As our example process is a finite process, i.e. a process which has an explicit
start and an explicit end, replication simulations are preferred [6]. Replication simulations
are simulation experiments with multiple observations on a group of individual cases. 50
replications are conducted to collect statistically reliable data as 30 replications are mini-
mum [20]. In CPN tools, the function CPN’Replications.nreplications can be used to
automatically run a given number of replications of simulations. To this end, a summary
of experimental definitions for validation without changes is given in Table 4.2.
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Figure 4.1: High-level Simulation experiment procedures.

By running simulation models repeatedly, we generate a sample of data on each perfor-
mance indicator for each model. By applying statistic calculations, we can get the estimate
and the confidence interval for each sample data. An estimate is a calculated approxima-
tion of the true performance that models would output [13]. Normally, the estimate is the
mean value of the sample data. Confidence interval (CI) is an interval estimate for a data
population [13]. As it is risky to estimate the true performance of the simulation model
by a single value, an interval likely to include the true performance should be given. The
formal calculation of CI is

[x− zα/2σ√
n

, x +
zα/2σ√

n
],

where x is the sample mean, n is the size of observations, and zα/2 is the upper 100α/2
percentage point of the standard normal distribution at a significance level α = 95%.

We use CI analysis to compare the experimental results. By observing CIs of ]Present

and ]P ickUp for M0, M1, and M2, the simulation model (M1 or M2) having the closer CI
to M0’s CI is considered to be more precise.
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Goal investigate whether M1 and M2

approximately behave as M0 without process changes
Object occurrences of transitions “Present” and “PickUp”
Input Parameters number of cases k

number of replications n

Performance frequencies of transition “Present” ]Present
Indicators frequencies of transition “PickUp” ]P ickUp

Table 4.2: Summary of notions and notations used in the validation before introducing
changes.

Further, change propagation analysis is conducted to verify whether M1 is able to propa-
gate process changes through the process well enough as M0. The difference between change
propagation analysis and validation is the introduction of process changes. Each individual
process change is introduced into M0, M1, and M2 respectively. In other words, in our
change propagation analysis, only one process change is independently introduced into the
process at the same time without incorporating with other process changes (if there are).
Note that the remainder of the simulation models is unchanged, i.e. no new correlations,
or frequencies are extracted from the log of the changed situation. Scenarios about what
process changes are introduced into our process are given in Section 5.2.1. We record the
number of occurrences of transition “Present” and transition “PickUp” after the injection
of process changes. The experimental results are then analyzed by means of CI comparison
as introduced above. The summary of experimental definitions is given in Table 4.3.

Goal investigate whether M1 approximately behave
as M0 after injecting process change;

Object occurrences of transitions “Present” and “PickUp”;
number of cases k
number of replications n

Input Parameters probability to fire transition “Flight”, pF light;* (scenario 1)
probability to fire transition “ExpHotel”, pExpHotel;* (scenario 2)
probability to fire transition “MedHotel”, pMedHotel;* (scenario 2)

Performance frequencies of transition “Present”, denoted as ]Present
Indicators frequencies of transition “PickUp”, denoted as ]P ickUp.

Table 4.3: Summary of notions and notations used in the change propagation analysis after
introducing changes. * These are parameters to which the changes will be applied.
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4.2 Example Process and Its Model

As mentioned, we need to artificially construct an example process for our simulation ex-
periments. To ensure the representativeness of actual processes, typical system properties,
such as synchronization, sequentiality, parallelism, free choices, and data dependencies are
required in this example process. In the travel agency process introduced in Chapter 1,
synchronization, sequentiality, parallelism, and free choices are all involved. To make the
stochastic behavior of the process more realistic and involved, we extend this running ex-
ample with data. We next introduce data dependencies that influence the routing of a case,
and its implementation in CPN tools.

4.2.1 Data Perspective of the Example Process

Let us recall our travel agency process (see Figure 4.2). Actually, the travel agency process
depicted is an integration of processes of two parties, the external (clients) and the travel
agency. Some activities are accomplished by clients and some are by the agency staff or the
system. These processes spanning different parties could be modeled as an open net [9].
Since no effect would be given on the experiment results, we combine both processes into
one process orchestration involving clients’ behaviors and the system behavior. Table 4.4
shows the behaviors and the corresponding executors. The environment (client) behaviors
and the system behaviors are further specified by the data perspective.

Transition Client Company
Register

√
Flight/Cruise

√
ExpHotel/MedHotel/LowHotel

√
PickUp/NoPickUp

√
BookMore/Confirm

√
Installment/Noninstallment

√
Present/NoPresent

√
Finish

√

Table 4.4: Transitions and their executors.

During the execution of activity Register, clients provide information about the number
of additional bookings. After clients select transportation Flight or Cruise, the system adds
the transportation costs to the total cost. During the selection of ExpHotel, MedHotel, or
LowHotel, clients determine the number of nights to stay in the hotel, whose cost is added
to the total cost by the system. Besides, the distances from the hotel to the airport/port
and to the center are specified by the system. Normally, luxury hotels are expensive but
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Figure 4.2: Example process: travel agency process.

near the center or the airport. Budget hotels are usually price-friendly but far away from
the center and the airport. Middle class hotels balance between the cost and the location.

In addition to these transitions determining data, some decision rules are incorporated.
During booking pickup services (PickUp or NoPickUp), clients determine to book or not
mainly on the hotel’s location and the hotel class. If the hotel booked is far from the center
and the airport, clients who booked luxury hotels are more likely to prefer pickup services,
while clients with budget hotels usually prefer walking. For the clients whose hotels are
near both the center and the airport, pickup services are usually not necessary indeed. The
BookMore activity is dependent on the number of the additional bookings predefined by
clients initially. Finally, the present distribution (Present) is determined by the total cost.
Only when the total cost exceeds 1000 euros, the agency distributes a present to the client.
The dependencies between the decisions are summarized in Table 4.5.

4.2.2 CPN Implementation of the Example Process M0

The example process is modeled in CPN tools in a hierarchical way as a Colored Petri net
with data dependencies. The model is denoted by M0.
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Transitions Decision dependencies Client Company
PickUp/NoPickUp depending on the hotel’s class and

location

√

BookMore/Confirm depending on the number of the ad-
ditional bookings predefined

√

Present/NoPresent depending on the total cost
√

Table 4.5: Decision dependencies and corresponding executors.

4.2.2.1 General Structure
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Figure 4.3: Hierarchical Structure of Example Process in CPN model

The top-level page in the hierarchical CPN model is shown in Figure 4.3. The environ-
ment generates cases and puts them into the Start place. Finally, it removes those that have
reached the End place. Every case enters the “Process” page via the Start place and leaves
the page via the End place. Note that there are two approaches to model the generation of
cases, i.e. cases are simulated one by one or multiple cases are handled simultaneously. In
our experiments, we assume that only one case is being handled at a time in the process.
The next case is only handled when the previous one is finished. In this way, there is no
need to check the case ID every time updating the data attributes. Simulation speed is
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enhanced without affecting the results.

For the data perspective, a separate token containing a record of case data attributes
defined by the CASE ID×CASE DATA color set is created and initialized. The initial values
represent default values for data attributes until they are explicitly specified. Note that
since we simulate one case by one case, the CASE ID color set is not necessarily defined.
However, to make our models extendable, we keep CASE ID color set and CASE ID in
CASE ID×CASE DATA color set. The place CASE DATA is modeled as a fusion place
as activities may need to read or write data attribute values on different pages in the
hierarchical model.

Figure 4.3 shows the sub-page containing the example CPN model, which looks exactly
like the original Petri net (see Figure 4.2). Every task on the process page has its own
implementation. The remainder of this section illustrates the representation of certain
process characteristics and inspecting or modifying data attributes in terms of CPN sub-
pages.

4.2.2.2 Data and Data Dependency in M0

Now we are going to incorporate the data and data dependencies into the model. Data
attributes incorporated through M0 are summarized in Table 4.6.

Attributes Type Value Range
ADDITIONAL LOOPS Numerical [1, 7]

COST Numerical [0, 9999]
CURRENT ITERATIONS Numerical [2, 8]

HOTEL Enumeration Lux/Med/Low
NIGHTS Numerical [1, 5]

DISTANCE c Enumeration Far/Near
DISTANCE p Enumeration Far/Near

Table 4.6: Data attributes involved in the model: where DISTANCE c refers to the distance
to center and DISTANCE p refers to the distance to (air)port.

Every data attribute is assigned with values by some transition. Table 4.7 summarizes
the transitions, corresponding data attributes and assigned values, as well as the correspond-
ing ML Functions we defined to perform assigning values to data attributes. In registration
Register, function setA() selects a random numerical value from [1, 7] for attribute AD-
DITIONAL LOOPS. It mimics the client behavior to register the number of additional
bookings. In the action part of transition Flight, the function setB1() selects a random
numerical number for attribute COST. It simulates an action of adding transportation fee
into the total cost. Similar configurations could be found in sub-process of Cruise.
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Activity Attributes ML Functions Values
Register ADDITIONAL LOOPS setA() discrete(1,7)
Flight COST setB1() discrete(120,300)
Cruise COST setB2() discrete(50,80)

COST discrete(150,300)
ExpHotel DISTANCE c setC1() 50% Near

DISTANCE p 50% Near
HOTEL Lux
NIGHTS discrete(1,5)
COST discrete(80,150)

MedHotel DISTANCE c setC2() 40% Near
DISTANCE p 40% Near
HOTEL Med
NIGHTS discrete(1,5)
COST discrete(30,80)

LowHotel DISTANCE c setC3() 10% Near
DISTANCE p 10% Near
HOTEL Low
NIGHTS discrete(1,5)

PickUp COST setE() 10
BookMore CURRENT ITERATIONS setMore() +1*
Confirm COST setD1() discrete(2,10)

CURRENT ITERATIONS setMore() +1*

Table 4.7: Parameters for data provision rules. * stands for adding 1 to the old value of
CURRENT ITERATIONS.

More complex implementations of provision of case data can be seen in the action
part of transition ExpHotel (in Figure 4.4). Function setC1() writes five values into five
data attributes, i.e. COST, HOTEL, DISTANCE c, DISTANCE p, and NIGHTS. Two
fusion places Probability1 and Probability2 in the sub page ExpHotel (see Figure 4.4 (a))
are used to control the probabilities to determine the DISTANCE type (“Near” or “Far”)
for attributes DISTANCE c and DISTANCE p in function setC1(). The idea behind is
to determine the distance with certain probabilities. All the modified data values are
stored in the CASE ID×CASE DATA token. Similar implementations are in sub-pages of
MedHotel and LowHotel. Functions setD1() and setE() select a random numerical value
and a constant value respectively for data attribute COST when PickUp and Confirm are
fired. It simulates an action of adding the pickup service fee and the confirmation service
fee into the total cost.

The decision rules in Table 4.8 depend on data attributes (see in Table 4.6) evoked by
tasks Register, Flight, Cruise, ExpHotel, MedHotel, and LowHotel. These data dependencies
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Figure 4.4: Data dependencies Implementation.

are modeled in sub-pages by transition guards. If the transition is enabled from a marking
perspective, it additionally needs to satisfy the given guard condition to be fired. When
distributing presents, the guard []v3 data>1000] restricts that presents can only be sent
when the cost is above 1000 euros. “]v3 data” in the guard refers to the data attribute
COST, i.e. the total cost.

There are some more complicating implementations of data dependencies, such as func-
tions PickUpProb() and fireP ickUp() in the transition guard given in Figure 4.4 (b). Func-
tion PickUpProb() determines the probability for booking a pickup service corresponding
to the distance to the center and to the airport, as well as the hotel class. The intuition
is that not all clients would like to have the pickup service. Clients booked different ho-
tels (luxury, middle-class, or budget) with different distances to the center and the airport
have different demands for pickup services. A boolean function fireP ickUp() compares
whether the random number generated by the fusion places Prob is smaller than the num-
ber PickUpProb() function determined, in other words, whether PickUp can fire. PickUp
fires only when it is enabled from a marking perspective and fireP ickUp() returns true.
Similar implementation can be seen in setMore() and fireMore() functions.

Detailed implementations of ML functions mentioned above, as well as the other func-
tions involved in M0, can be found in the CPN source code in Appendix A.1.
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Activity Variables Rule Function
BookMore ADDITIONAL LOOPS,

CURRENT ITERATIONS
CURRENT ITERATIONS <
ADDITIONAL LOOPS

setMore(),
fireMore()

Confirm ADDITIONAL LOOPS,
CURRENT ITERATIONS

CURRENT ITERATIONS ≥
ADDITIONAL LOOPS

setMore(),
fireConfirm()

PickUp (Far, Far) with 85%/65%/50%
(Lux/Med/Low),

DISTANCE c, (Far, Near) with 60%/35%/20%
(Lux/Med/Low),

PickUpProb(),

DISTANCE p, (Near, Far) with 60%/35%/20%
(Lux/Med/Low),

fireP ickUp()

HOTEL (Near, Near) with 5%/5%/5%
(Lux/Med/Low)

DISTANCE c, PickUpProb(),
NoPickUP DISTANCE p, 1− PickUpProb() fireNoPickUp()

HOTEL
Present COST COST > 1000 /

NoPresent COST COST < 1000 /

Table 4.8: Parameters for data dependency rules.

4.3 CPN Implementation of HDSPN with Correlations M1

This section illustrates a HDSPN with correlations as a Colored Petri net for the example
process. Two correlations are incorporated, i.e. an LFCT abstraction strongest correlation
and a TF abstraction strongest correlation. According to the domain expert knowledge
of the example process, we deduce that [PickUp] is strongly correlated with [ExpHotel]
under the LFCT abstraction and [Present] strongly correlated with [ExpHotel] under the
TF abstraction (see Table 4.9).

Cluster Correlated Cluster Abstraction Type
[PickUp] [ExpHotel] LFCT abstraction
[Present] [ExpHotel] TF abstraction

Table 4.9: Clusters and their correlated clusters.

As described in Section 3.2, two additional elements are required to support the history-
dependent probability mechanism for HDSPNs (see in Figure 4.5). A fusion place “History”
containing a token with the history information is used to keep track of the global history.
Every transition connected to “History” updates the history token by adding the firing
information when it fires. Another fusion place random “Probability” is added, which
contains a token whose value is randomly chosen from 0 to 999. Motivations to introduce
these two fusion places are discussed in Section 3.2.
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Figure 4.5: Hierarchical Structure of M1 HDSPNs in CPN model.

With the help of the cluster correlation miner implemented in ProM framework, the
ptf (Present, h) values and the plfct(PickUp, h) values are calculated from the log gener-
ated by M0 by following the procedures to calculate p(t, h) values proposed in Section 3.2.
The calculated ptf (Present, h) values are partially summarized in Table 4.10 and complete
plfct(PickUp, h) values are in Table 4.11.

Calculated ptf (Present, h) values are integrated into the ML function TFprob2(history).
According to the observed history, getTF(history) function abstracts the desired TF ab-
straction value on the history associated with the correlated cluster [ExpHotel]. Then,
TFprob2(history) selects a calculated ptf (Present, h) value according to the abstraction
value generated by getTF(history) function. The boolean function firePresent(pro, history)
compares whether the random number generated by the fusion places Probability is smaller
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αtf (h, [ExpHotel]) p(Present, h)
...

...
{ExpHotel0,MedHotel1, LowHotel3} 0
{ExpHotel0,MedHotel1, LowHotel4} 3.1%
{ExpHotel0,MedHotel1, LowHotel5} 22.2%
{ExpHotel0,MedHotel1, LowHotel6} 0

...
...

History − independent 32.7%

Table 4.10: Partial calculated p(t, h) values for clusters [Present] and [ExpHotel]. Note
that the abstraction in this example is the TF abstraction. Due to the size of the results,
only part of them is shown.

αlfct(h, [ExpHotel]) p(PickUp, h)
ExpHotel 52.9%
MedHotel 41.4%
LowHotel 44.1%

History − independent 46.1%

Table 4.11: p(t, h) values for clusters [PickUp] and [ExpHotel]. Note that the abstraction
in this example is the LFCT abstraction.

than the number TFprob2(history) function selected. The boolean function is directly
placed in the transition guard of Present to control the firings (see in Figure 4.6 (b) and
(c)). Present fires only when it is enabled from a marking perspective and firePresent(pro,
history) returns true. Similar implementations are applied to the LFCT abstraction correla-
tion between [ExpHotel] and [PickUp]. The ML functions supporting HDSPNs mechanism
in M1 are summarized in Table 4.12 and Table 4.13.

Function Action
getTF(history) Returns the TF abstracted history of cluster [ExpHotel]
TFprob2(history) Returns ptf (Present, history)
firePresent(prob,history) Returns true if 0 ≤ prob < ptf (Present, history)

Table 4.12: The TF abstraction correlation for cluster [Present]; “history” is a list; “prob”
is a random value.

Details about the ML functions in Table 4.13 and Table 4.12 as well as other ML
functions involved in M1 can be found in the CPN source code in Appendix A.2.
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Figure 4.6: Correlation implementations for M1. It is assumed that [Present] is strongly
correlated with [ExpHotel] under the TF abstraction and [PickUp] is strongly correlated
with [ExpHotel] under the LFCT abstraction.

4.4 CPN Implementation of Petri Nets with Frequencies M2

To construct a Petri Net with frequencies to simulate our travel agency process as a com-
parison with the HDSPN, we adopt the approach introduced in [15]. Complex dependencies
are replaced by probability distributions. A firing probability is assigned to each alternative
of the decision to mimic the decision making by users. These history-independent prob-
ability for all branches of the decisions can be derived from the same log, which is used
for constructing M1, by means of the approach introduced in 3.2. The history-independent
probabilities incorporated in M2 are summarized in Table 4.14.

In M2, the hierarchical CPN model looks similar to the M1’s hierarchy. One difference is

Function Action
getLFCT(history) Returns the last fired transition of [ExpHotel] in the history
LFCTprob(history) Returns plfct(PickUp, history)
firePickUp(prob,history) Returns true if 0 ≤ prob < plfct(PickUp, history)

Table 4.13: The LFCT abstraction correlation for cluster [PickUp]; “history” is a list;
“prob” is the random value.
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Cluster Transition Percentage
[Flight] Flight 50%

Cruise 50%
ExpHotel 33.3%

[ExpHotel] MedHotel 33.3%
LowHotel 33.3%

[PickUp] PickUp 46.1%
NoPickUp 53.9%

[BookMore] BookMore 90%
Confirm 10%

[Present] Present 32.7%
NoPresent 67.3%

[Installment] Installment 50%
Noninstallment 50%

Table 4.14: History-independent probabilities in M2.

the absence of the fusion place “History”. M2 does not consider the correlations; therefore
there is no need to keep track of transitions’ firings. Instead, static probabilities are assigned
to the transition guards. Differing from M1 that uses many ML functions for determining
p(t, h) in the guards, guards in M2 only involve constant values (see Figure 4.7). Present
or PickUp fires only when it is enabled from a marking perspective and the guard returns
true.
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Figure 4.7: CPN sub-page implementations for M2. The probability to fire PickUp is
46.1%. The probability to fire Present is 32.7%



Chapter 5

Simulation Results with HDSPNs

This chapter presents the results for the experiments described in Chapter 4. The results
for the experiments without applying change are presented in Section 5.1. Section 5.2
presents the results for the experiments after applying change.

5.1 Validation Results without Process Changes

Before we introduce process changes to simulation experiments, we validate the behavior of
the models in absence of change. We define several sets of strongest correlations to validate
and verify the change propagation of HDSPNs (see Table 5.1).

Correlation Set Correlated Cluster Abstraction Type
R([PickUp]) = [ExpHotel] LFCT abstraction

1 R([Present]) = [Flight] TF abstraction
R([BookMore]) = [BookMore] TF abstraction

R([PickUp]) = [ExpHotel] LFCT abstraction
2 R([Present]) = [ExpHotel] TF abstraction

R([BookMore]) = [BookMore] TF abstraction
R([PickUp]) = [ExpHotel] LFCT abstraction

3 R([Present]) = [BookMore] TF abstraction
R([BookMore]) = [BookMore] TF abstraction

Table 5.1: Clusters and their strongly correlated clusters.

According to the data perspective of the example process, we know that the more
flights, more expensive hotels, or more travel packages are booked, the more presents are
distributed. Thus, we deduce that cluster [Present] can be strongly correlated with clus-
ter [Flight], [ExpHotel], or [BookMore] under the TF abstraction. As determining the

47
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strength of the correlation is out of the scope of this thesis, we try these different corre-
lations one by one in the experiments. As the more travel packages have been booked,
the more unlikely it is that another travel package in the next round would be booked.
Therefore, we deduce that cluster [BookMore] is strongly correlated with itself under the
TF abstraction. Besides, we also know that the decision to book a pickup service is only af-
fected by the hotel booked. Thus, we determine that cluster [PickUp] is strongly correlated
with cluster [ExpHotel] under the LFCT abstraction.

Here we present the validation results for M1 with a TF abstraction correlation be-
tween the clusters [Present] and [Flight], a TF abstraction correlation between the clusters
[BookMore] and [BookMore], and an LFCT abstraction correlation between the clusters
[PickUp] and [ExpHotel]. Validation results for M1 with other correlation sets can be
found in Appendix B. To determine whether a deviation between two values is significant
or negligible, we define a rule as follows.

Rule 5.1. Let υ be the actual value and υappro be the approximate value. when the relative

deviation definition ρ = |υ−υappro|
|υ| is smaller then 2% 1, we say the deviation is negligible

otherwise the deviation is significant.

In our travel agency process, we initially assume that the travel agency process has 1000
individual cases. By running 1000 cases with 50 replications on M0, M1 and M2 respectively,
the validation results are represented in Figure 5.1. Figure 5.1 shows that both M1 and
M2 closely approximate the fraction of presents and pickups of the example process M0,
with a relative deviation (ρ) of 0.9% and 0.6% respectively for the presents and a relative
deviation (ρ) of 0.2% and 0.09% for pickups. They are all negligible according to Rule 5.1.

In addition, as an extra check, we further investigate the mined p(t, h) values for clus-
ter [PickUp], which is correlated with cluster [ExpHotel] under the LFCT abstraction.
These mined p(t, h) values are compared with the estimated p(t, h) values from statistical
calculations2. Here, we give an example how the estimated p(t, h) values are calculated.
Referring to the data dependency rules in Table 4.8, the estimated p(PickUp, ExpHotel) =
p((Far, Far)|Lux) + p((Near, Far)|Lux) + p((Far,Near)|Lux) + p((Near,Near)|Lux) =
50%× 50%× 85% + 50%× 50%× 60% + 50%× 50%× 60% + 50%× 50%× 85% = 52.5%.
Other estimated p(t, h) values and mined p(t, h) values are in Table 5.2.

Surprisingly, deviations exist between estimated and mined p(t, h) values. Especially
when the last fired cluster transition is MedHotel, the relative deviation is around 4.6%

1The threshold for the relative deviation is user-defined. In this thesis, 2% is selected.
2According to the data dependency between [PickUp] and [ExpHotel], it is possible to estimate p(t, h)

by means of conditional probability calculation.
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Number of cases:1000
Validation Result: No process change has introduced
Correlations: [Present]&[Flight]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]

(a) TF abstraction: R([Present])=[ ]Flight (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure 5.1: Validation result with 1000 cases and 50 replications without applying process
changes. The diamond refers to the performance mined from the log that is used to create
simulation models. The left figure (a) depicts the performances of three models on indica-
tor ]Present. The right figure (b) depicts the performances of three models on indicator
]P ickUp. Note that we use a fraction scaling, which is indicator

k=1000 (×100%).

(see in Table 5.2), which is significant according to Rule 5.1. Significant deviations would
impact on the precision of the change propagation analysis.

These deviations are probably caused by the number of cases, which fails to provides
sufficient observations for mining p(t, h). Table 5.3 shows the newly mined p(t, h) values
after increasing the number of cases to 10000. It is explicit that the mined p(t, h) values
from a 10000-case log are closer to the estimated p(t, h) values. The relative deviations
which are smaller than 2% can are negligible in our experiments. Therefore, the following
experiments are simulated with 10000 cases for all models.

To save simulation time, the number of replications is adjusted to 30, i.e. n=30. This

LFCT abstracted history Estimated
p(t,h)

Mined
p(t,h)

Relative De-
viation ρ

ExpHotel 52.5% 53.17% 1.3%
MedHotel 41% 39.11% 4.6%
LowHotel 44.15% 43.76% 0.8%

history − independent 46% 45.29% 1.5%

Table 5.2: Comparison between estimated and mined p(t, h) values from a 1000-case log,
where t=“PickUp” and history is abstracted by the LFCT abstraction.
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LFCT abstracted history Estimated
p(t,h)

Mined
p(t,h)

Relative De-
viation ρ

ExpHotel 52.5% 52.95% 0.9%
MedHotel 41% 41.36% 0.9%
LowHotel 44.15% 44.06% 0.2%

history − independent 46% 46.13% 0.3%

Table 5.3: Comparison between estimated and mined p(t, h) values from a 10000-case log,
where t=“PickUp” and history is abstracted by the LFCT abstraction.

adjustment does not influence the results significantly. The new validation results with
k=10000 and n=30 are shown in Figure 5.2. In Figure 5.2 (a), the first observation is that
the increase of k reduced the size of the CIs, i.e. the results are more precise. With the
reduced CIs, small gaps emerge between the CIs of indicator ]Present for M1 and M2 and
the CI for M0. The reason is that the performance of the log (the diamond in Figure 5.2
(a)) selected for creating simulation models is out of the 95% estimate intervals of M0. It
is reasonable as the log is randomly selected. Whereas, the log performance is still within
the estimate intervals of M1 and M2.

Number of cases:10000
Validation Result: No process change has introduced
Correlations: [Present]&[Flight]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]

(a) TF abstraction: R([Present])=[ ]Flight (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure 5.2: Validation result with 10000 cases and 30 replications without applying process
changes. The diamond refers to the performance mined from the log that is used to create
simulation models. The left figure (a) depicts the performances of three models on indica-
tor ]Present. The right figure (b) depicts the performances of three models on indicator
]P ickUp. Note that we use a fraction scaling, which is indicator

k=10000 (×100%).

In Figure 5.2 (b), statistical errors similarly result in fluctuations of the performance
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of M1 and M2 on the indicator ]P ickUp. the log performance is still within the estimate
intervals of M1 and M2. Therefore, we conclude that under the experiment setting, i.e.
k=10000 and n=30, M1 with correlation set 1 and M2 both approximate M0. Validation
results for other correlation sets are placed in Appendix C.

5.2 Change Propagation Analysis with Process Changes

Since our two simulation models, M1 and M2, can approximate M0 in absence of change.
Now, we are ready to investigate the performances of M1 and M2 when process changes
are injected into the process. In this section, we propose two scenarios where process
changes are injected and we describe how these changes are injected. Finally, we present
the experimental results.

5.2.1 Scenarios with Process changes

To investigate how decisions on PickUp and Present respond to process changes in M0, M1,
and M2, process changes should be introduced to the correlated clusters. Corresponding
to the correlated clusters we determined in Table 5.1, we design two individual scenarios
to apply changes as follows: the seasonal marketing research shows that (1) fewer clients
prefer flights due to the economic crisis; (2) more clients prefer budget hotels due to the
economic crisis.

Scenario Process Before After Estimated
Changes Changes Changes Effect

Scenario(1) pF light 50% 10% ]Present ↓,
pCruise 50% 90% ]P ickup †
pExpHotel 33.3% 10% ]Present ↓,

Scenario(2) pMedHotel 33.3% 25% ]P ickup ↓
pLowHotel 33.3% 65%

Table 5.4: Scenarios designed for the change propagation analysis. ↓ stands for drops and
† for remains.

In scenario (1), change is applied to the decision on Flight and Cruise, i.e. the proba-
bility to book flights (pF light) decreases. As fewer flights are taken, the total cost is lower
than before such that fewer presents would be given in M0 and M1. The decision on the
hotel is not changed such that the decision on a pickup service should not be affected in
M0 and M1. In scenario (2), changes are applied to the decision on ExpHotel, MedHotel,
and LowHotel, i.e. the probabilities to book luxury hotels (pExpHotel), middle-class ho-
tels (pMedHotel), and budget hotels (pLowHotel) are changed. As fewer expensive and



52

middle-class hotels are taken, the total cost is lower than before such that fewer presents
would be given in M0 and M1. Meanwhile, fewer pickup services would be taken in M0

and M1 due to the increasing number of budget hotels booked. M2 would not be affected
during both scenarios. The changes on corresponding input parameters and the expected
effects in M0 and M1 are summarized in Table 5.4.

5.2.2 Change Propagation Analysis Results

We simulate the proposed changes in Table 5.4 for different correlation sets in Table 5.1
with 10000 cases and 30 replications for M0, M1 and M2 respectively. The remainder of
this section describes the results.

5.2.2.1 Correlation Set 1

In this section, we discuss the change propagation results over the LFCT abstraction correla-
tion between [PickUp] and [ExpHotel], the TF abstraction correlation between the clusters
[BookMore] and [BookMore], and the TF abstraction correlation between [Present] and
[Flight].

In scenario (1), as estimated, due to fewer flights booked, the fraction of presents in
M0 indeed drops from 33.2% to 24.2% by 9% (see M0 and M ′

0 in Figure 5.3 (a)). In M1,
as the process change is applied to the cluster [Flight], with which [Present] is strongly
correlated, the fraction of presents in M1 is affected, decreasing from 32.6% to 25.9% by
around 6.7% (see M1 and M ′

1 in Figure 5.3 (a)). Although the decrease in M1 is not exactly
same as M0, the change is indeed propagated in M1 approximately. Besides, as estimated,
]P ickUp is not affected in the example process M0 (see M ′

0 in Figure 5.3 (b)). For M1, no
effect emerges on the fraction of pickups as well. As the process change is applied to the
cluster [Flight], with which [PickUp] is not strongly correlated, it is not surprising that the
change on [Flight] is not propagated. The fraction of pickups and the fraction of presents
in M2 remain similar as expected.

In scenario (2), as estimated, an increase in the booking of budget hotels, the fraction
of presents in M0 drops from 33.2% to 8.7% by around 24.5% (see M0 and M ′

0 in Figure 5.4
(a)). In M1, no effect emerges on the fraction of presents. It is not surprising because the
process change is applied to the cluster [ExpHotel], while [Present] is strongly correlated
with [Flight] under the TF abstraction. Meanwhile, as estimated, the fraction of pickups
in M0 decreases by 8% (see M0 and M ′

0 in Figure 5.4 (b)). As the process change is applied
to the cluster [ExpHotel], which [PickUp] is strongly correlated with under the LFCT
abstraction, the fraction of pickups in M1 is decreased by around 8.9% (see M1 and M ′

1
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Scenario(1): Fewer clients prefer flights
Correlations: [Present]&[Flight]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]
Process Change: pFlight: 50% to 10%

pCruise: 50% to 90%
Estimated Effect: #Present drops and #PickUp remains

(a) TF abstraction: R([Present])=[ ]Flight (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure 5.3: Change propagation analysis results for scenario (1) with 10000 cases and 30
replications. The diamond refers to the performance mined from the log that is used to
create simulation models. The left figure (a) depicts the performances of three models
on indicator ]Present. The right figure (b) depicts the performances of three models on
indicator ]P ickUp. M0, M1, and M2 (M ′

0, M ′
1, and M ′

2) correspond to the results before
(after) changes are applied.

in Figure 5.4 (b)). M1 does propagate the changes successfully in this scenario while M2

remains stable as expected.

5.2.2.2 Correlation Set 2

In this section, we discuss the change propagation results over the LFCT abstraction correla-
tion between [PickUp] and [ExpHotel], the TF abstraction correlation between the clusters
[BookMore] and [BookMore], and the TF abstraction correlation between [Present] and
[ExpHotel].

In scenario (1), as expected, the fraction of presents in M0 drops by 9%. Unlike the
behavior of M1 in Figure 5.3 (a), M1 in Figure 5.5 (a) fails to respond to the process change
on the flights. It is because the process change is applied to the cluster [Flight], while
[Present] is strongly correlated with [ExpHotel] under the TF abstraction. M2 is unable
to capture the change for this correlation. Similar to the results in Figure 5.3 (b), the
fraction of pickups remains similar in all models after the change is applied.

It is interesting to see the results for the scenario (2) in Figure 5.6. In this scenario, M1
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Scenario(2): More clients prefer budget hotels
Correlations: [Present]&[Flight]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]
Process Change: pExpHotel: 33% to 10%

pMedHotel: 33% to 25%
pLowHotel: 33% to 65%

Estimated Effect: #Present drops and #PickUp drops

(a) TF abstraction: R([Present])=[ ]Flight (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure 5.4: Change propagation analysis results for scenario (2) with 10000 cases and 30
replications. The diamond refers to the performance mined from the log that is used to
create simulation models. The left figure (a) depicts the performances of three models
on indicator ]Present. The right figure (b) depicts the performances of three models on
indicator ]P ickUp. M0, M1, and M2 (M ′

0, M ′
1, and M ′

2) correspond to the results before
(after) changes are applied.

with the correlation set 2 propagates the change and yields a decrease of both indicators,
indeed close to M0. In M1 (M0), the decrease of the fraction of presents is 24% (24.5%) and
the decrease of the fraction of pickups is 8.9% (8%). By comparison, M2 fails to capture
the process change. In this scenario and with this correlation setting, i.e. R([Present]) =
[ExpHotel], R([PickUp]) = [ExpHotel], and R([BookMore]) = [BookMore], it is clear
that M1 performs more precise than M2.

5.2.2.3 Correlation Set 3

In this section, we discuss the change propagation results over the LFCT abstraction correla-
tion between [PickUp] and [ExpHotel], the TF abstraction correlation between the clusters
[BookMore] and [BookMore], and the TF abstraction correlation between [Present] and
[BookMore].

Unlike the last two correlation sets, with the correlation under the TF abstraction,
M1 fails to propagate any changes to transition Present in both scenarios (see Figure 5.7
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Scenario(1): Fewer clients prefer flights
Correlations: [Present]&[ExpHotel]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]
Process Change: pFlight: 50% to 10%

pCruise: 50% to 90%
Estimated Effect: #Present drops and #PickUp remains

(a) TF abstraction: R([Present])=[ ]ExpHotel (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure 5.5: Change propagation analysis results for scenario (1) with 10000 cases and 30
replications. The diamond refers to the performance mined from the log that is used to
create simulation models. The left figure (a) depicts the performances of three models
on indicator ]Present. The right figure (b) depicts the performances of three models on
indicator ]P ickUp. M0, M1, and M2 (M ′

0, M ′
1, and M ′

2) correspond to the results before
(after) changes are applied.

and Figure 5.8). It is reasonable that when process changes are applied to some decisions
([Flight] and [ExpHotel]), with which the target decisions ([Present] and [PickUp]) are not
strongly correlated, no effect would be captured from the target decisions. In this situation,
both M1 and M2 fail to give an accurate estimation of the performance indicators. However,
when there is some change applied to the decision [BookMore] in M1, we believe that M1

would be able to capture the propagated effect on the decision [Present].

Previously, we compared the results across different models before and after applying
changes. Now, let us take a look at the results from another perspective. To investigate the
effect of changes on different correlation sets in some scenario, we compare the results across
M1 with different correlation sets before and after applying changes in some scenario. As
M2 does not capture any process change in both scenarios, this analysis is only conducted
on M1. Figure 5.9 and Figure 5.10 summarize the simulation results for M1 with different
correlation sets under two scenarios, where M0 plays as a benchmark.

In scenario (1), the change is introduced to [Flight]. Only M1(R1), M1 with correlation
set 1, succeeds in capturing the change on the decision [Present] (see Figure 5.9 (a) and
(b)). However, in scenario (2), the change is introduced to [ExpHotel]. Only M1(R2),



56

Scenario(2): More clients prefer budget hotels
Correlations: [Present]&[ExpHotel]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]
Process Change: pExpHotel: 33% to 10%

pMedHotel: 33% to 25%
pLowHotel: 33% to 65%

Estimated Effect: #Present drops and #PickUp drops

(a) TF abstraction: R([Present])=[ ]ExpHotel (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure 5.6: Change propagation analysis results for scenario (2) with 10000 cases and 30
replications. The diamond refers to the performance mined from the log that is used to
create simulation models. The left figure (a) depicts the performances of three models
on indicator ]Present. The right figure (b) depicts the performances of three models on
indicator ]P ickUp. M0, M1, and M2 (M ′

0, M ′
1, and M ′

2) correspond to the results before
(after) changes are applied.

M1 with correlation set 2, succeeds in completely capturing the change on both decisions
[Present] and [PickUp] (see Figure 5.10 (a) and (b)).

From the description above, we can see that the HDSPN is indeed able to propagate
process changes in the process when the changes are applied to some correlation. However,
the strongly correlated cluster is not always the best solution for selecting correlations, e.g.
if the change affects a weaker correlated cluster and not the strongest one, then it might be
better to use the weaker correlation. For instance (see Figure 5.10 M1(R1)), the strongest
correlation between [Flight] and [Present] under the TF abstraction fails to capture the
change when the change is applied to another correlated cluster [ExpHotel] (a weaker
correlation). Thus, we say that the effect of the change propagation is local, depending
on the correlation determined, the abstraction selected, and the change introduced. The
locality of the change propagation motivates some other abstractions such as the extensive
TF abstraction, which counts the frequency of every transition in the history without being
restricted in one correlated cluster. By doing so, the factor of selecting one (strong or weak)
correlation can probably be avoided. As it is outside the scope of this thesis, we do not
investigate deeper. Further research is needed to address these issues.
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Scenario(1): Fewer clients prefer flights
Correlations: [Present]&[BookMore]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]
Process Change: pFlight: 50% to 10%

pCruise: 50% to 90%
Estimated Effect: #Present drops and #PickUp remains

(a) TF abstraction: R([Present])=[ ]BookMore (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure 5.7: Change propagation analysis results for scenario (1) with 10000 cases and 30
replications. The diamond refers to the performance mined from the log that is used to
create simulation models. The left figure (a) depicts the performances of three models
on indicator ]Present. The right figure (b) depicts the performances of three models on
indicator ]P ickUp. M0, M1, and M2 (M ′

0, M ′
1, and M ′

2) correspond to the results before
(after) changes are applied.
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Scenario(2): More clients prefer budget hotels
Correlations: [Present]&[BookMore]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]
Process Change: pExpHotel: 33% to 10%

pMedHotel: 33% to 25%
pLowHotel: 33% to 65%

Estimated Effect: #Present drops and #PickUp drops

(a) TF abstraction: R([Present])=[ ]BookMore (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure 5.8: Change propagation analysis results for scenario (2) with 10000 cases and 30
replications. The diamond refers to the performance mined from the log that is used to
create simulation models. The left figure (a) depicts the performances of three models
on indicator ]Present. The right figure (b) depicts the performances of three models on
indicator ]P ickUp. M0, M1, and M2 (M ′

0, M ′
1, and M ′

2) correspond to the results before
(after) changes are applied.
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Change Propagation Scenario 1
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Figure 5.9: Performance of M1 with different correlation sets for scenario (1) with 10000
cases and 30 replications. The diamond refers to the performance mined from the log that
is used to create simulation models. The left figure (a) depicts the performances of three
models on indicator ]Present. The right figure (b) depicts the performances of three models
on indicator ]P ickUp. The figures in red (in blue) refer to the results before (after) changes
are applied. M1(R1) stands for the M1 with the correlation set 1, so as for M1(R2) and
M1(R3).

Change Propagation Scenario 2
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Figure 5.10: Performance of M1 with different correlation sets for scenario (2) with 10000
cases and 30 replications. The diamond refers to the performance mined from the log that
is used to create simulation models. The left figure (a) depicts the performances of three
models on indicator ]Present. The right figure (b) depicts the performances of three models
on indicator ]P ickUp. The figures in red (in blue) refer to the results before (after) changes
are applied. M1(R1) stands for the M1 with the correlation set 1, so as for M1(R2) and
M1(R3).



Chapter 6

Conclusions

The intention of this thesis is to verify that HDSPNs are indeed able to propagate process
changes through the process by simulations. This chapter concludes what we have achieved.
Some issues that this thesis does not cover are discussed in the remainder.

6.1 Achievements

To obtain a log and the corresponding control flow suitable for the change propagation anal-
ysis, we built an example process, shown in Figure 4.5, with data dependencies as Colored
Petri nets. To build a HDSPN, we introduced an algorithm with two abstraction functions
(the TF abstraction and the LFCT abstraction) to discover correlations. In addition, the
algorithm was implemented as a plug-in in the ProM framework. An approach about how
to calculate the transition probabilities from the log has been proposed. Having the mined
correlation and the calculated transition probability values, we constructed the HDSPN
which mimicked the example process.

Having the HDSPN model, we proposed a set of experiments to verify the change prop-
agation of the HDSPN. To compare the HDSPN framework with an existing logged simula-
tion model framework, Rozinat et al.’s extracted simulation model was introduced into the
simulation experiments. The experiments started with the validation without introducing
changes. Through the validation, we intended to assess if the HDSPN and Rozinat et al.’s
simulation model approximate the behavior of the example process without introducing
changes by comparing the frequencies of the decisions (denoted by D1). These decisions
were determined to be correlated with decisions made before (denoted by D2). Without
change injection, both HDSPNs framework and Rozinat et al.’s simulation framework closely
approximate the example process. However, the small-size log, which is used for creating
the HDSPN, could probably give unreliable history-dependent transition probabilities for
HDSPN framework.
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Afterwards, we conducted the change propagation analysis by injecting process changes
on decisions D2. By observing the frequencies of decisions D1, we assessed if the HDSPN
captured the process changes approximately as the example process did. The simulation
experimental results showed that when process changes are injected, to some extent (de-
pending on the correlation determined, the abstraction selected, and the change introduced),
HDSPNs are able to propagate process changes in the process, while Rozinat et al.’s simu-
lation framework is indeed incapable to capture the changes as the correlations are missing.

The most important results of this thesis are as follows. (1) From the experimental
results, we find out that when the change is applied to a weaker correlation, the strongest
correlation performs so poorly in propagating the change that no change would be captured.
Therefore, we say that to assess the change propagation, it is not always a good option
to select the strongest correlation. The selection of correlations should also consider the
change, e.g. where the change is applied. (2) Correlations are dependent on the abstractions
used. A strongest correlation under the TF abstraction is probably not the strongest one
under the LFCT abstraction. Therefore, the change propagation of HDSPNs depends on
the change where to apply, correlation selection, and the abstraction used.

One practical application of our work is to evaluate the process recommenders. Process
recommenders offer support to end users by suggesting which alternative could be done first,
based on historical information from an event log. Currently, several recommendation tech-
niques have been proposed. Evaluations of these techniques are necessary before they can
be used in a practical setting. Simulation models are used to simulate the effect of recom-
mendations on the running process and to compare different recommendation techniques.
As process changes are normally brought into the process by the process recommenders to
adjust the process executions, the simulation models to evaluate the recommendations are
required to be able to capture the change through the processes. Thus, compared with the
existing framework, HDSPNs could be a better simulation framework for evaluating process
recommenders .

6.2 Future Work

Although we have achieved the goal of this thesis, several issues, which this thesis does not
cover, are required to investigate further in the future.

First of all, as we stated one cluster is likely correlated with multiple clusters. In
this thesis, we only consider the strongly correlated cluster. However, we did not use any
scientific mechanism to determine the strength of the correlations. Instead, we determined
the strongest correlation according to the domain expert knowledge of the process. Further
work should focus on data mining techniques or regression analysis to detect the strength
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of the correlations.

During observing the log, we noticed that the log observation matrix mined under the TF
abstraction is sparse due to the existence of iterations in the process. The more iterations
are incorporated in the process, sparser the log observation matrix would be. A sparse
matrix may result in the unreliable test results of the chi-square test. For this problem,
machine learning techniques such as matrix clustering may help.

As we also argued, the correlation discovery algorithm is sensitive to the log size. If the
number of cases in the log, which is used for constructing HDSPNs, is not sufficient, the
mined correlations and transition probabilities are unreliable. In any case, small log-sizes
give less reliable results. Of course the same number of probabilities will be mined, but the
estimations are based on smaller samples, or even different estimation techniques could be
used if observations are missing. Large-size logs are recommended for mining correlations
and transition probabilities. For smaller logs, the results are more unreliable.

The last issue is disposed from the simulation experimental results. The experimental
results showed that the HDSPN is indeed able to propagate process changes in the pro-
cess when the changes are applied to some correlation. However, the experimental results
implied that the strongly correlated cluster is not always the best solution for selecting
correlations, e.g. if the change affects a weaker correlated cluster and not the strongest one,
then it might be better to use the weaker correlation. Thus, the effect of the change propa-
gation is local, depending on the correlation determined, the abstraction selected, and the
change introduced. The locality of the change propagation motivates some alternatives: (1)
“global” or “trace” abstraction, which is not restricted in one cluster; and (2) combination
of abstractions (strong and weak(er) abstractions).

By applying the alternative (1), the factor of selecting (strong or weak) correlations
can probably be avoided and the quality of abstractions could be improved. However, as
the history is less abstracted by high-quality abstractions, we will normally find out that
we have not enough data in our log to make any reliable estimations. More estimations
from the structure of the net are used such that the reliability of our estimations could
be harmed. The balance between the reliability and the quality of the abstractions is an
interesting topic for the future work. By applying the alternative (2), the factor of selecting
(strong or weak) correlations can probably be avoided. However, the contingency matrix
(row identifiers) and the p(t, h) estimations should be reconsidered probably.



Appendix A

ML Implementations in CPN Tools

A.1 ML Implementations in M0

Part of the declarations for the ML implementations in M0 are captured in Figure A.1. The
user defined ML functions are implemented as shown in Figure A.2. Monitors required to
produce the log and measure the performance are shown in Figure A.3.

Figure A.1: CPN declarations in M0. Note that the declarations related with the log
generation are not shown. They are explained in [15] in detail.
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A.2 ML Implementations in M1

Part of the declarations for the ML implementations in M1 are captured in Figure A.4. The
user defined ML functions are implemented as shown in Figure A.5. Monitors required to
measure the performance are same as in M0 (see Figure A.3).
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Figure A.2: User defined ML functions in M0.
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Figure A.3: CPN monitors in M0. There are two types of monitors, one for generating the
log and the other for measuring the performance. Red circle 1 highlights the monitor defined
for logging transition Register. Red circle 2 highlights the monitor defined for measuring
the occurrences of transition Present in the simulations.
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Figure A.4: CPN declarations in M1. Note that the declarations related with the log
generation are not shown. They are explained in [15] in detail.
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Figure A.5: User defined ML functions in M1. Note that in this implementation cluster
[Present] is set to be correlated with cluster [ExpHotel].



Appendix B

Correlation Mining Results

Here we present the log observation matrices mined by our “cluster correlation miner”. The
matrices are used for calculating plfct(t, h) and ptf (t, h) respectively. Due to the size of the
matrix, the complete log observation matrix for the LFCT abstraction are shown while for
the TF abstraction only part of the matrix is shown.

Figure B.1: Log observation matrix for the LFCT abstraction. Abstraction values with
[ ] refer to an undefined transition. Abstraction values without [ ] refer to the last fired
transition name.
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Figure B.2: Part of the log observation matrix for the TF abstraction. The string in the
[ ] refers to the cluster transition, and the number followed by refers to the transition’s
frequency.



Appendix C

Simulation Results

C.1 Validation Results w.r.t Correlation Set 2

Number of cases:10000
Validation Result: No process change has introduced
Correlations: [Present]&[ExpHotel]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]

(a) TF abstraction: R([Present])=[ ]ExpHotel (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure C.1: Validation result with 10000 cases and 30 replications without applying process
changes. The diamond refers to the performances mined from the log used to integrate
simulation models. The left depicts the performances of three models on indicator ]Present.
The right depicts the performances of three models on indicator ]P ickUp. Note that we
use a fraction scaling, which is indicator

k=10000 (×100%).

Here, we present the validation results before introducing changes over the LFCT
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abstraction correlation between [PickUp] and [ExpHotel], the TF abstraction correla-
tion between [Present] and [ExpHotel], and another TF abstraction correlation between
[BookMore] and [BookMore].

The first observation is that the increase of k reduced the size of the CIs, i.e. the results
are more precise. With the reduced CIs, small gaps emerge between the CIs of indicator
]Present for M1 and M2 and the CI for M0. The reason is still caused by the performance
of the log (the diamond in Figure C.1 (a)) selected for creating simulation models. Due to
the statistical errors, the true performance (log) is out of the 95% CI for M1. In Figure C.1
(b). However, the relative error is round 1.5% which is negligible according to Rule 5.1.
Statistical errors similarly result in negligible fluctuations of the performance of M1 and M2

on the indicator ]P ickUp. Therefore, we conclude that M1 with correlation set 2 and M2

both approximate M0.

C.2 Validation Results w.r.t Correlation Set 3

Number of cases:10000
Validation Result: No process change has introduced
Correlations: [Present]&[BookMore]; [PickUp]&[ExpHotel]; [BookMore]&[BookMore]

(a) TF abstraction: R([Present])=[ ]BookMore (b) LFCT abstraction: R([PickUp])=[ExpHotel]
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Figure C.2: Validation result with 10000 cases and 30 replications without applying process
changes. The diamond refers to the performances mined from the log used to integrate
simulation models. The left depicts the performances of three models on indicator ]Present.
The right depicts the performances of three models on indicator ]P ickUp. Note that we
use a percentage scaling, which is indicator

k=10000 (×100%).

Here, we present the validation results before introducing changes over the LFCT
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abstraction correlation between [PickUp] and [ExpHotel], the TF abstraction correla-
tion between [Present] and [BookMore], and another TF abstraction correlation between
[BookMore] and [BookMore].

The first observation is that the increase of k reduced the size of the CIs, i.e. the results
are more precise. With the reduced CIs, small gaps emerge between the CIs of indicator
]Present for M1 and M2 and the CI for M0. The reason is still caused by the performance
of the log (the diamond in Figure C.2 (a)) selected for creating simulation models. Whereas,
the log performance is still within the estimate intervals of M1 and M2. In Figure C.2 (b),
statistical errors similarly result in negligible fluctuations of the performance of M1 and M2

on the indicator ]P ickUp. Therefore, we conclude that M1 with correlation set 3 and M2

both approximate M0.



Appendix D

Cluster Correlation Miner Manual

Here, we introduce two ways to execute the “cluster correlation miner” in ProM framework.
One is to execute step by step manually. The other is to define a macro to set up the working
environment. In other words, we can chain the required (input) objects together and then
execute the miner.

D.1 Execution without Macro

To execute the “cluster correlation miner” in the ProM framework step by step manually,
the following procedures should be followed.

1. Load the log from which you need to derive the log observation matrices and to mine
the correlations. The loaded log is placed in the “provided objects” list (see in Figure D.1).

2. Mine the cluster set of the net from the log. Right click the log in the “provided
objects” list =⇒ Select available plugins =⇒ Select “Cluster/Decision Miner” (Default
settins). The mined cluster set of the net would appear in the “provided objects” list. It is
possible to view the mined cluster set by right-clicking the cluster set and selecting “show”.

3. Choose the abstraction(s) to derive the log observation matrices and the correlations.
Select both objects, i.e. the log and the cluster set, =⇒ Select available plugins =⇒ Select
“Cluster Correlation Miner (Select options to use)” (see in Figure D.2). The pop-up GUI
provides all available abstractions (multi-choices are allowed).

4. The log observation matrices for selected abstraction(s) can be viewed by right-
clicking the provided object “Log Observations” and “show” (see in Figure D.3). The
correlation results can be viewed in the same way. Note that the log observation matrix
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Figure D.1: Load the log.

shown on the GUI might be only part of the actual log observation matrix. Due to the
scale of the GUI, when the matrix is too big, not the whole matrix is presented. “Export”
feature can help to export the selected log observation matrix to txt/csv file.

D.2 Execution with Macro

To define a macro to set up the working environment, the following procedures should be
followed.

1. Load the log from which you need to derive the log observation matrices and to
mine the correlations. The loaded log would be placed in the “provided objects” list (see
in Figure D.1).

2. Define a macro to set the miner working environment. The “cluster correlation miner”
requires a log and a cluster set as input. We chain the log with the “cluster correlation
miner” and also with the “Cluster/Decision Miner”. The output of the “Cluster/Decision
Miner”, i.e. the cluster set, is then chained with the “cluster correlation miner”. The
chained objects are shown in Figure D.4. To execute the macro, do not forget to specify
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Figure D.2: Choose the abstraction(s) to derive the log observation matrices and the cor-
relations.

which execution type is preferred (GUI or the default setting).

To derive the log observation matrices and correlation results, the following procedures
are same as we introduced in Appendix D.1 (from step 3 to step 4).
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Figure D.3: View the mined log observation matrices for selected abstraction(s).
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Figure D.4: Define a macro.
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