
 Eindhoven University of Technology

MASTER

Setting up a quality database for analysis of software development process information

Ahogado Alvarez, D.C.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f993f352-1f47-489a-9713-69365de9e38d

I

Setting up a quality database for
analysis of Software

Development Process
Information

Diana Carolina Ahogado Alvarez

August 2009

Master Project

M.Sc. in Business Information Systems

Department of Mathematics and Computer Science

Supervisors:

dr.ir. J.J.M. Trienekens, TU/e, TM/IS

prof.dr. R.J. Kusters, TU/e, TM/IS

ir. J. Samalikova, TU/e, TM/IS

Eindhoven University of Technology

Department of Industrial Engineering and Innovation Sciences

Software Engineering Management Group

Information Systems

II

III

Contents

1 RESEARCH PROJECT DEFINITION 1

1.1 CONTEXT OF THE PROJECT 2
1.2 OBJECTIVE AND RESEARCH QUESTIONS 3
1.3 RESEARCH OUTLINE 4
1.3.1 CREATION OF THE DATABASE 4
1.3.2 TESTS THE INFORMATION: 4
1.4 THEORETICAL ASPECTS 4
1.5 STRUCTURE OF THE DOCUMENT 5

2 THEORETICAL BACKGROUND 6

2.1 DATA QUALITY 6
2.1.1 CONCEPT OF DATA QUALITY 6
2.1.2 MEASUREMENT OF DATA QUALITY IN AN EXISTING DATA MODEL 10
2.1.3 IMPROVEMENT OF DATA QUALITY IN AN EXISTING DATA MODEL 12
2.1.4 ADDITION OF DATA QUALITY TO A NEW DATA MODEL 15
2.1.5 THEORETICAL ASPECTS TO BE USED 18
2.2 DATA WAREHOUSE 18
2.2.1 ARCHITECTURE 19
2.2.2 ETL PROCESS 20
2.2.3 QUALITY 21
2.2.4 THEORETICAL ASPECTS TO BE USED 21

3 WORK METHODOLOGY 23

3.1 CREATION OF THE DATABASE 23
3.1.1 UNDERSTAND THE DATA 23
3.1.2 DATA CLEANING 24
3.1.3 DESIGN OF QUALITY DATABASE 27
3.1.4 IMPLEMENTATION OF THE DATABASE 30
3.2 TESTS TO THE INFORMATION: 30
3.3 DOCUMENTATION 31

4 DESCRIPTION OF PROCEDURE TO OBTAIN DATA 32

4.1 MEASUREMENT DATABASE 32
4.1.1 GRANULARITY OF THE DATA 32
4.1.2 DATA CATEGORIES 34

5 CLEANING PHASE AND DATABASE DESIGN 36

IV

5.1 DEFINITION 36
5.1.1 DIMENSIONS AND METRICS 36
5.1.2 FIELDS TO BE ASSESSED 38
5.2 MEASUREMENT 39
5.3 ANALYSIS AND IMPROVEMENT 42
5.3.1 COMPANY 1 43
5.3.2 COMPANY 2 46
5.4 DATABASE DESIGN 49

6 TESTS 52

6.1 DESCRIPTION OF THE TEST 52
6.1.1 CHANGE DURATION 53
6.1.2 COMPLIANCE 53
6.1.3 DEFECT SEVERITY 54
6.1.4 EFFORT DISTRIBUTION 54
6.1.5 REVIEW COVERAGE 54
6.1.6 ACTUAL COST OF THE WORK PERFORMED 55
6.2 CONCLUSION 55

7 CONCLUSIONS AND FUTURE WORK 56

8 APPENDIX A: SNAPSHOTS DOCUMENTATION 59

8.1 COMPANY 1 59
8.1.1 ARCHITECTURE DATA 59
8.1.2 DEFECT DATA 60
8.1.3 PROJECT DATA – “EFFORT DATA” 72
8.1.4 REVIEW DATA 77
8.1.5 SIZE DATA 81
8.2 COMPANY 2 83
8.2.1 ARCHITECTURE DATA 83
8.2.2 CASE DATA 84
8.2.3 CHANGE DATA 86
8.2.4 DEFECT DATA 91
8.2.5 ISSUE DATA 94
8.2.6 PROJECT DATA - “EFFORT DATA” 98
8.2.7 REQUIREMENTS DATA 104
8.2.8 RISK DATA 107
8.2.9 TEST DATA 111

9 APPENDIX B: QUALITY MEASUREMENTS 115

9.1 ATTRIBUTES AND METRICS 115
9.1.1 COMPANY 1 115
9.1.2 COMPANY 2 119

V

VI

9.2 MEASUREMENTS 124
9.2.1 COMPANY 1 125
9.2.2 COMPANY 2 134

10 APPENDIX C: DATABASE DOCUMENTATION 146

10.1 DBMS 146
10.2 DATABASE DESCRIPTION 146
10.2.1 COMPANY 146
10.2.2 PROGRAM 146
10.2.3 PROJECT 147
10.2.4 TEAM 147
10.2.5 PROJECTTEAM 148
10.2.6 PRODUCT 148
10.2.7 SYSTEM 149
10.2.8 SUBSYSTEM 149
10.2.9 GROUPCOMPONENT 149
10.2.10 COMPONENT 150
10.2.11 SIZEDATA 151
10.2.12 ISSUEDATA 152
10.2.13 CHANGEDATA 154
10.2.14 RISKDATA 156
10.2.15 TASK 158
10.2.16 REQUIREMENTSDATA 161
10.2.17 REVIEW 163
10.2.18 TEST 166
10.2.19 DEFECT 167
10.2.20 CASEDATA 170

11 TESTS RESULTS 172

11.1.1 CHANGE DURATION 172
11.1.2 COMPLIANCE 173
11.1.3 DEFECT SEVERITY 173
11.1.4 EFFORT DISTRIBUTION 174
11.1.5 REVIEW COVERAGE 176
11.1.6 ACTUAL COST OF THE WORK PERFORMED 177

12 APPENDIX E: WORK METHODOLOGY PROCESS MODEL 179

REFERENCES 183

1

CCChhhaaapppttteeerrr 111

1 Research Project Definition
The field of data quality [STR97] has been studied as a topic of importance in the
creation of Information Systems and the structuring of data resources that act as
their ground. This is because the necessity of producing information that can be
highly useful to the users of applications is notorious in every sector where software
is employed to support their daily operations.

Data quality refers to different characteristics that make data in a data source, such as
a database, more close to the real world they are representing, e.g. consistency,
completeness, reliability, and accuracy [BER07], among others. Of course, the
definition of the more suitable characteristics depends on the context where the data
is being used, and the requirements of its utilization by the users. For this reason,
many of those characteristics, called “data quality dimensions” [BAT06] have been
defined and used in literature and industry, without specifying a complete standard
group of them that should be added to a data source.

The addition of those quality dimensions can be done through different approaches.
It is possible to design a database where not only the information about entities of the
real world is represented, but also the characteristics of quality that are desired for
them. Additionally, it can be that during the software development process, some
activities are followed to support the work of developers in order to gather the
information needed to design the database in the described way.

But also, the addition of quality is feasible to be done even when an Information
System already exists and is being used. In this case once the quality dimensions are
defined, it is necessary to assess the existing data by using metrics related to those
dimensions and afterwards apply appropriate techniques that allow improving the
quality where errors are found.

For both approaches, methodologies have been proposed that indicate how to design
or improve applications and data sources [WAN93]; some of those methodologies
give the notion of how to add quality dimensions, by using metrics and techniques
for eliminating errors [BAT06]. Furthermore, some graphical methods have been
also created in order to serve as a tool that supports the representation of data and
their quality characteristics [SCA02].

The main focus of this research project is to mainly create a well founded and well
documented quality database, and depict the methodology to do it. By quality
database it must be understood, a database where the data stored has quality. This
quality is added after analyze the initial quality level and apply the corrective actions
to eliminate found errors.

Given this focus, the work results in three important deliverables; the quality
database, the quality documentation of the database, and, a model that describes the
process followed for the creation of the quality database.

1.1 Context of the project
The project is developed in the context of an agreement created between the
Information Systems group, research group of the Faculty of Technology
Management, and a consultant who works for companies on the analysis and
improvement of their software development process.

The objective of this consultant’s job is to solve the problems currently existing in
companies, where projects for software development are too long. One cause for this
problem is that data about the development activities is not stored frequently;
therefore there are not enough information sources that can be consulted to
understand what is wrong and what can be improved.

For his job as a consultant, he has created a procedure which is implemented in every
company where he provides his services. This procedure is supported by a tool called
“Measurement Database” [SIE09], which is in charge to frequently collect data about
different activities performed during the development process. Once enough data has
been collected, this tool is used to generate metrics about the projects, the products
constructed and the process followed for that construction.

Some of the information collected is about tasks performed during the development,
the context of the components that compose an application, defects found in the
components, and size of the files that constitute the component. Thus, after analysis
appropriate information about them, metrics are calculated in different areas such as
Productivity, Quality and Timing.

As the collected data are usually stored in different data bases, the “Measurement
Database” first retrieves them from those data bases, and then processes them and
stores them in a predetermined format in csv archives called the “snapshots”. These
archives are the basis for the next step, which consists in a new processing of the data
for store it in a consolidated data base that can be used to obtain the information
necessary to calculate the metrics.

The metrics calculated for every company are defined according to their information
needs, derived from their business goals. From the metrics some indicators are
defined to give information needed to the project and organizational management.

During the last years, through the agreement made with Eindhoven University of
Technology, the consultant has provided some of the data he collects from
companies, in order some research projects can be executed using them. The goal of
these projects has always been to understand the processes that are lying on the
information provided. Some of these projects have been focused in the analysis of
defect data [IB0E8] and the change control board [URE08]. The intention behind
providing this information to the university, is to allow that research on the field of
improvement of the software development process can be done, but also through the

2

job made by students and researchers, to gain some inside on how he could improve
the process he is following nowadays in the work with the companies.

The amount of data contained in the snapshots, which is the basis for research
provided by the consultant, is too big, and also requires time to be understood and
used for research. Therefore contemplated in objective of the current research project
a complete analysis of the structure of these files is included, before creating the
database where the data will be structured and which will be used as reference for
future research projects.

1.2 Objective and research questions
The objective of this research project is “the creation of a well-founded and well-
documented quality database to structure and analyze information, and the description of
the process followed to create this quality database”.

As already mentioned in the previous section, quality database refers to a database
where the information stored has quality. In this case the data provided by the
consultant is evaluated and its quality improved to be stored in a well documented
database where it is structured.

In order to achieve this objective, the next main questions are answered before
proceeding with the practical work:

 What does data quality mean? This is to understand what it means that a data
resource contains quality.

 How can data quality be measured in an existing database? Given the fact that
there is already information to be used which is stored in the snapshots, it is
essential to understand how to measure the quality level on it.

 How can data quality be improved in an existing database, which means, how
can data cleaning be made? Once the level of quality is measured in the
snapshots, it is necessary to find out some techniques to improve quality in an
existing data resource.

 How can data quality be added to a database? As a data model is designed and
implemented it is also necessary to know how to add quality to a data resource
that is completely new.

The information analyzed and stored in the database created based on the model is
related to the software development process of two companies, which in this report
are called Company 1 and Company 2 for confidentiality reasons.

Given this confidentiality to be respected one of the considerations taken into account
in the moment of the design of the model is making the information anonymous.
Nevertheless as also was required by the provider of the data, the information though
anonymous is also traceable; this means, that it is possible to find out whenever it is
necessary who is the owner of the data.

3

1.3 Research Outline
The execution of the research project starts with a literature review that is necessary
for understanding the concepts related with data quality that must be used to answer
the previously formulated questions; then, the process, called work methodology, to
be followed to improve quality of data in the snapshots, create the new database, and
prove its quality level is explained. Such methodology is based on the theoretical
aspects researched and is also aiming to show how the main questions are answered.

Once this theoretical background and the methodology are complete two main
phases are followed: Creation of the quality database and test of quality level on the
information stored in the database. Each of these phases is explained in the following
subsections.

1.3.1 Creation of the database

During the first phase, most of the important activities to achieve the goal proposed
for the project are performed. Such activities are oriented to the creation of the
quality database that is finally used to structure the information provided by the
consultant. These activities compose the work methodology which is one of the final
deliverables of the project.

The work methodology, which will be explained further in this report, consist mainly
on the understanding of the data provided by the consultant in the snapshots, to then
executing a cleaning of this information in order to improve its quality, and
afterwards proceed with the design, creation and documentation of the database
where the quality data is stored.

1.3.2 Tests the information:

During this phase the aim is to test the quality of the database created, in order to
verify whether it really contains the data quality characteristics improved and/or
added in the previous phase. Some experiments are thus performed to prove that the
data stored in the created database can be used. These experiments are designed and
executed by using some data mining techniques.

1.4 Theoretical aspects
As already mentioned, some of the practical activities performed during the project
are supported by literature. The theoretical aspects necessary for this were
investigated and are enumerated here; they are the basis for proposing the work
methodology followed. These theoretical aspects are:

1. Definition of quality data and setting up of rules to create data sources that
contain it, or improve it in already existing ones. Rules that are applied when
making the cleaning and during the creation of the database.

2. Establishment of the requirements to be followed when making a migration from
a database to a Data Warehouse. This topic was researched and is documented

4

although during the execution of the project a Data Warehouse was not created
for storing the data.

1.5 Structure of the document
The remaining part of this document is organized in 6 chapters where the
development of the phases explained above is described. In chapter 2, the literature
review about data quality is presented along with the theoretical aspects concerning
migration to Data Warehouses. Chapter 3 explains the work methodology to be
followed with the aim to improve the quality of the data and create the quality
database, which will be based on the findings introduced in chapter 2. Chapter 4 is
dedicated to initiate the application of the work methodology with the description of
the work made by the consultant and of the structure of the data contained in the
snapshots. Afterwards, in chapter 5 the practical application of the work methodology
is documented, relating the steps followed and results obtained at the end of this
activity. Then in chapter 6, the definition and execution of the tests to prove the
quality level of the database are exposed, and the conclusions obtained from these
tests are also elaborated. Finally, in chapter 7 the conclusions about the work made
and results obtained are done, along with some recommendations for future work.

At the end of the report the appendix A is depicting the structure of the data stored in
the snapshots. Appendices B, C and D, contain the quality documentation that is one
of the deliverables of the project; appendix B describes the quality level
measurements made to data in the snapshots and improvements performed,
appendix C contains the graphical models and documentation of the database and
appendix D contains the results of the tests performed. Appendix E presents a
process model which summarizes the work methodology that was followed to create
the database.

5

6

CCChhhaaapppttteeerrr 222

2 Theoretical background
This chapter is aimed to bring a conceptual background through which the main
questions formulated for the project can be answered; it will be the basis to produce
the three main deliverables of the project: the quality database, its quality
documentation and the process followed for the creation of the database. The first
section describes essential concepts about data quality, while the second one is
related to Data Warehouses.

2.1 Data Quality
In this section the following concepts about data quality are presented: meaning of
data quality, how to measure data quality, how to improve it and how to add it to a
database. At the end the conclusions about the ideas that are more relevant to create
the quality data model are summarized.

2.1.1 Concept of Data Quality

There is not a standardized consensus about the concrete meaning of data quality
means; nevertheless, it could be described as the characteristics that make the data in
a database the most possibly useful and reliable for users according to their
information needs. Therefore, according to [WAN93], the better the representation of
the real world is made by data in a database of an information system the better is its
quality.

Addition of quality characteristics to a database should be done during its design and
construction, and thus the quality depends on how good is the execution of those
phases [WAR96]. The designer of a database must consequently have a complete
understanding of the information necessities of the users, which reflect the real
world where they work, and also of the quality requirements they have for this
information.

Some design deficiencies that could conduce to inconformity are [WAR96]:

 Incomplete representation: When no exhaustive representation of all states in
the real world is made in the information system

 Ambiguous representation: When two or more states of the real world are
represented by the same state in the information system.

 Meaningless state: states that don’t represent any real world property.

2.1.1.1 Data Quality Dimensions

Data quality dimensions are a more formal way to name the characteristics of quality
that data should have. They depend on the context where data are used and therefore
many of them have been proposed by authors, but there is not a standard set that
should be used. Some of the most common are accuracy, timeliness, interpretability,
completeness [WAN93] and consistency [WAN95].

Table 1 shows dimensions proposed by several authors. In some cases, different
authors give a different connotation to the same dimension; therefore after analysis
to find common meanings, for every dimension a definition is given and in case it is
necessary, the different descriptions given by authors are presented.

Data quality dimension Description

Accuracy [WAN95] and [WAR96] agree on accuracy as the
conformity between a value recorded in the database and
the real world value.

Timeliness The value recorded in the data base is not out of date
[WAN95]. Also the availability of information on time
[WAR96].

Completeness All values for a certain variable are all recorded [WAN95]. It
means that every meaningful state of the represented real
world is stored, or according to [WAR96] there are not
missing states.

Unambiguous It is when there is a proper representation of the states of
the real world in the data. Not multiple states mapped to
the same one [WAR96].

Meaningful All the states stored in the database can be mapped to a
state existing in the real world [WAR96].

Correct All the information in the database is mapped to correct
states of the real world.

Consistency It is related to the values of data and it means that the
representation of the data is the same in all cases [WAN95],
[WAR96].

Reliability It indicates whether data can be counted on to
communicate the right information [WAR96].

7

Accessibility It is the extent to which data is available, or easily and
quickly retrievable [PIP02].

Understandability It is the extent to which data is easy to be comprehended
[PIP02].

Concise representation It is the extent to which the data is compactly represented
[PIP02].

Consistent
representation

It is the degree to which data is presented in the same
format [PIP02].

Believability It is the degree to which the data is regarded as true and
credible [PIP02]. When data consumers find no quality and
don’t know to whom the problem should be attributed,
there is a problem of believability [STR97].

Free of error It is the degree to which data is correct and reliable
[PIP02].

Ease of manipulation It is the extent to which data is easy to manipulate and
apply to different tasks [PIP02].

Interpretability It is the level to which data is in appropriate languages,
symbols, and units, and the definitions are clear [PIP02].

Objectivity It is the degree at which the data is unbiased, unprejudiced
and impartial [PIP02].

Relevancy It is the extent to which the data is applicable and helpful
for the task at hand [PIP02].

Appropriate amount of
data

It is the extent to which the volume of data is appropriate
for the task at hand [PIP02].

Security It is the extent to which access to data is restricted
appropriately to maintain its security [PIP02].

Currency It is the time a data item was stored [WAR96]

Table 1. Most cited data quality dimensions

2.1.1.2 Methodologies

Some methodologies have been proposed that allow designing a database adding the
characteristics necessary for it to have data quality, but that are also useful to improve

8

the quality on already existing databases. The addition or improvement in these
methodologies is made through quality dimensions.

Data Quality Requirements Analysis and Modeling

In [WAN93] the idea of tagging the data is suggested as a mean to give additional
information that can help users to obtain all the information they need when they
retrieve it from the application that uses the database. For example, in the case that
they require always the most updated information related to a bank transaction,
timeliness should be considered as a quality dimension to be included in the creation
of the data base.

During the design of the database all the information requirements must be modeled
as entities and the quality requirements must be modeled as tags (special fields) of
those entities for which a special quality dimension is desired. For example in the
case of adding a tag of timeliness to a transaction, a field such as the date it was done
would be appropriate.

Framework for analysis of data quality research

In [WAN95] a framework is proposed that not only considers the aspects related with
the design and control of data quality dimensions in a data base, but also gives
importance to the organization where the application that uses the data will be
employed. The process of creation of information is comparable with the
manufacturing process; consequently, it is necessary to include quality aspects in
every step.

The framework has 7 elements adapted from ISO9000:

1. Management of responsibilities: create a data quality policy that adapts to all the
phases of production of data products, according to quality requirements.

2. Operation and assurance costs: Constantly monitoring costs for data quality
assurance.

3. Research and development: Create technical specifications for the quality
requirements, including acceptance and rejection criteria.

4. Production: Constantly check the conformity of raw data with quality
requirements. Correct found errors in the process of creation of these data.

5. Distribution: Plan production of data and data quality products; control their
distribution and maintenance. It must be well documented.

6. Personnel management: Personnel must be trained, qualified and motivated
towards the use of data quality standards.

7. Legal function: Identify safety aspect of data products to enhance product safety
and minimize product liability.

9

TDQM

The TDQM program (Total Data Quality Management) proposed by Wang et al.,
provides a methodology aimed to produce high quality Information Products (IP)
through the implementation of a quality policy in an organizations [WAN98]. It is
based on the idea of manufacturing of products and compares it with the
manufacturing of Information Products, which is a process in which quality
requirements can be added to the data in an Information System.

It includes the modeling of data quality in the Entity-Relationship conceptual
database model [BER07]. This methodology is composed of four phases:

 Definition: In this phase the information requirements (IP characteristics) for
an application are defined and along with the quality requirements for the
information. Also the components derived from the requirements and their
relationships are defined and can be represented in an entity-relationship
model. From the IP characteristics and the assessment of quality
requirements, which indicates the necessary quality dimensions, the logical
and physical models can be developed; the quality attributes are added in these
models. The definition of models can be done using IP-UML [SCA02] as a
graphical support.

 Measurement: In this phase metrics are defined for data quality dimensions,
in order to track the level of quality of attributes in the database, e.g. the
number of records that violate referential integrity. On the other hand, at a
higher level, also some business rules must be observed, and therefore
procedures for this are developed.

 Analysis: In this phase, the results from measurements made in the previous
phase are analyzed to detect their causes.

 Improvement: In this last phase, the procedures to improve quality in the
areas where problems were detected are defined.

2.1.2 Measurement of Data Quality in an existing data model

Simple Ratio

In [PIP02] some techniques are proposed for performing objective assessments of
data quality. One of them is the use of a simple ratio which implies to perform some
simple mathematical operations using the quantity of registries in the data base, with
the aim to know how good or bad the data in the data base is regarding different
quality dimensions. For example, for measuring how much free of error is the data,
the number of units of data in error must be divided over the total number of unit
data, and the result must be subtracted from 1. The more the result obtained is close
to 1, the more the quality of the data related to the error it contains is.

10

Methodologies for assessment

In order to make the necessary evaluation of the data quality of an information
system with regard to data quality, specific assessment methodologies have been
created [BAT06]. Usually the steps followed in these methodologies are:

1. Choose the relevant dimensions that are going to be used to measure the quality
of the data bases and the data flows in the IS, and the metrics that are necessary
for this procedure. The dimensions can be classified into one of four categories:
sound, useful, dependable, and usable, and they are classified in order to provide
a context for every one of them and for their consequent evaluation.

2. Make subjective judgments of the measures obtained which are made by experts.

3. Compare the values obtained during measurement with values that are already
established as acceptable; or performing a benchmarking with best practices
providing at the end suggestions for improvements.

Data Quality Dimensions and metrics

Dimensions are defined in a qualitative way only providing a description of what they
mean, and therefore metrics must be associated to them in order to give a measure.
For the metrics there are measurement methods indicating where the measurements
are taken, what data they include, the measurement device and the scale on which
results are reported. Some dimensions and types of measurements associated are
presented next.

Accuracy:

Accuracy indicates how close value v of an attribute in a record is to the real value v’
that it aims to represent. There are two types of accuracy, syntactic and semantic
[BAT06].

Syntactic accuracy is the closeness of a value v to the elements of a domain D, i.e. that
the value belongs to that domain. This kind of accuracy is measured by comparison
functions, which evaluate the distance between v and the values in the domain; for
example the edit distance that measures the number of steps to convert a string like
“jon” into “john”.

Semantic accuracy measures how close a value of an attribute in a record is from the
real value that it should have; for example when the data about a person contains a
name “James” that is syntactically right but nevertheless the real name is “John”,
there is a semantic accuracy error. Semantic accuracy is better measured with a <yes,
no> or a <correct, not correct> domain.

Completeness

Completeness is “the extend to which data are of sufficient breath, depth and scope
for the task at hand” [BAT06]. There are three types of completeness: schema
completeness that indicates the degree to which concepts of the real world and their
attributes are not missing from the schema; column completeness, which measures

11

the missing values for a column in a table; and, population completeness which
evaluates missing values with respect to a reference population.

One of the ways of characterizing completeness in a relational model is by the
presence/absence and meaning of null values: It is important to understand why a
null value is present in a table, if it is because it exist but is unknown, or it does not
exists, or because it may exist but it is not known whether it actually exists or not. The
second case would not be considered as incompleteness.

There is a special case of this characterization called Closed World Assumption, in
which is sure that only the values present in a relational table represent facts of the
real world. In this case it is possible to define completeness with different levels of
granularity: value completeness (the presence of null values in some fields of a tuple),
tuple completeness (completeness of the tuple with respect to the values of all its
fields), attribute completeness (number of null values of a specific attribute in a
relation), and relation completeness (presence of null values in a whole relation).

Consistency

Consistency allows discovering the violation of semantic rules over a set of data, like
tuples in a relational table or records in a file; the integrity constraints are an example
of those rules, which must be satisfied by all instances of a database schema. Integrity
constraints may be defined for schemas and for instances.

There are two types of integrity constraints, intrarelation integrity constraints that
regard single attributes or multiple attributes of a relation, and interrelation integrity
constraints, which involve attributes of more than one relation. Most of the integrity
constraints are considered dependencies among which there exists a Key
dependency, which enforce that there are not duplicated values within the relation;
other option is the inclusion dependency which states that some columns of a
relational instance are contained in other columns of the same instance, or the
columns of another instance.

2.1.3 Improvement of data quality in an existing data model

After the measurement of data quality has been done many quality problems are
detected. Quality problems occur when capturing, gathering or importing
information; some of them are duplication of data, or not standardized format or
schema of the sources from which the data comes [BER07].

In [BAT06] a number of quality activities to correct errors and thus improve data are
described. Some of them are explained next.

Error localization and correction

Error localization and correction are useful every time data have been collected from
error-prone sources or acquired from sources whose reliability is not known at all.
There are three steps to follow: localize and correct inconsistencies, localize and
correct incomplete data, localize outliers (data that are anomalous with respect to
other data).

12

1. Localize and correct inconsistencies.

The localization of errors is done through the use of edit rules, which indicate the
semantic rules that should be complied by data in the tuples, e.g. Role = professor
and AnnualIncome < 100.000.

 The activity of localizing errors by means of edit rules and correcting them
according to these rules is called edit-imputation problem. When applying this
technique it is desired to achieve that the data in each record satisfy edit rules
by changing the fewest fields possible.

The model, proposed by Fellegi and Holt [WIN06] provides a way to find the
minimum number of fields to change in order to respect all the edit rules. There is
an important assumption in this method, which is that implicit edit rules are known.
An implicit edit rule is derived from explicitly defined edits. For example:

edit1: Age > 15 and MaritalStatus = married

edit2: MaritalStatus = married and Relationship-to-Head-of-Household = spouse

An implicit edit, as may easily be checked, is

edit3: Age > 15 and Relationship-to-Head-of-Household = spouse

2. Incomplete data

There are two cases of incompleteness, one when data is not complete in the context
of relational tables, and the other in the measurement of phenomena during a period
of time.

In the context of relational databases, the problem of finding the number of attributes
to be modified is related with finding the number of attributes that are missing.
“Thus, the goal that becomes critical is to maintain the marginal and joint frequency
distributions of the attributes. If the attributes to be considered are A1, A2,. . . , An,
an assumption can be made that attributes are missing monotonically, that is, Ai is
not missing only if Ai−1, Ai−2, . . . , A1 are not missing. In this case, a regression
method can be performed recursively, generating valid values from A1 to An”.

In the case of time series there are two types of incompleteness, truncated data and
censored data. Truncated data corresponds to records that are dropped from an
analyzed dataset. Censored data corresponds to data that is known not to have been
collected before a certain time t1 (left censored data) or after a certain time t2 (right
censored data). This time series problem could maybe used to detect whether
information is not complete for a period of time in the snapshots, e.g. data for a
problem concerning requirements is included for a period, but not the data for
testing.

3. Discovering outliers

An outlier is a value usually larger or smaller than other values in a dataset, which
could exist due to one of different cases:

13

 It was incorrectly observed, recorded, or entered in the database.

 It comes from a different population, in relation to other values.

 It is correct but represents a rare event.

It is important to distinguish between the cases when there are data glitches,
corresponding to the two first cases, and cases when there are correct but rare data, as
in the third case. It helps to follow the method for managing outliers, which consists
on discovering outliers, and then decide whether they are rare data or they are data
glitches.

Some methods useful for the detection of outliers are:

 Control charts: Several data samples are collected, and then statistics, such as
mean and standard error are computed and analyzed.

 Distributional outliers. According to this method, outliers are seen as points
which are in a region of low density.

Object Identification

The quality activity of object identification is related to the case when information
related to the same object is stored in different sources, where some attributes are
common among the sources and others are particular of every one of them. The
techniques used to deal with the activity of object identification depend on the type of
data used to represent objects. There are three types:

 Simple structured data, which correspond to pairs of files or relational tables.

 Complex structured data, which are groups of logically related files or
relational tables.

 Semi-structured data, such as pairs of xml documents.

Most of the methods proposed in the literature for record linkage consist of the five
following steps [BER07]:

1. Pre-processing for coding, formatting and standardizing the data to compare

2. Select a blocking method to reduce the search space by partitioning the datasets
into mutually exclusive blocks to compare.

3. Select and compute a comparison function: this step consists of measuring the
similarity distance between the pairs of records for string matching.

4. Select a decision model: this step consists on assigning and classifying pairs of
records as matching, non-matching or potentially matching with a method that
can be probabilistic, knowledge-based or empirical.

5. Validation of the method and feedback.

Standardization

This is a way to change the values of the existing data according to standard formats
e.g. change from Channel Str. to Channel Street. It is usually performed as a

14

preprocessing activity in error localization, data integration and mainly object
identification.

2.1.4 Addition of data quality to a new data model

During the design of a data model a conceptual schema represents the requirements
for an application; this is translated into a logical schema, where the queries and
transactions are expressed [BAT06].

Conceptual models (schemas)

In conceptual models quality can be added by extending the Entity Relationship
model based on the attributes of the entities.

One option is to create a data quality schema composed of:

1. The original data schema with its entities and corresponding attributes.

2. Additional entities with the attributes <DimensionName, Rating>, which
represent quality dimensions and their corresponding ratings; rating corresponds
to the possible corresponding values from measurements

3. The relationships between attributes of the normal entities, and the
corresponding entities that represent their Data Quality Dimensions.

4. A DataQualityMeasure entity employed to represent metrics for dimensions and
its relationship with entities, attributes and dimensions. It has an attribute Rating,
which values depend on the specific dimension modeled.

5. The relationship between the attributes and their related Data Quality Dimension
entities, and their Data Quality Measure entities with a new representation
structure that extends the Entity Relationship model, and relates entities and
relationships.

The figure 1 presents a graphical example of this approach:

Figure 1. Extension of a conceptual data model [BAT06]

15

 Logical models (schemas)

One possibility to give quality to a logical model is to extend the relational model
adding quality values to each attribute, resulting in a quality attribute model. Those
quality values represented by quality indicators are linked to the attributes through a
quality key, and they indicate the value of every quality dimension for every attribute
in an entity; there is also a value for every dimension that summarizes the values
associated to the attributes to the whole dimension. The figure 2 shows an example of
this approach:

Figure 2. Example of a quality attribute model [BAT06]

2.1.4.1 Quality dimensions for a schema

Interpretability is a general dimension that can be added to give quality to any
schema (data model) during its creation [BAT06]. It consists on the creation of
documentation and metadata to correctly interpret the meaning and properties of the
data sources. The types of documentation that should be available are:

 The conceptual schema of the database.

 The integrity constraints that hold among data.

 A set of metadata for information about the resource including creator,
subject, description, publisher, data, format, source, and language.

 A certificate describing available measures of data quality dimensions and
schema dimensions.

 Information on the history and provenance of the data.

 Correctness with respect to the model: concerns the correct use of the
categories of the model in representing requirements.

 Correctness with respect to requirements: Correct representation of
requirements in terms of the model categories.

16

 Minimalization: Every part of the requirements is represented only once in the
schema, which is useful to avoid redundancy.

 Completeness: It measures the extend to which a conceptual schema includes
all the conceptual elements necessary to meet some specified requirements.

 Pertinence: It is a measure of how many unnecessary conceptual elements are
included in the conceptual schema.

 Readability: It means create diagrams and schemas in an entity relationship
model that are clear enough for their intended use.

 Normalization: Normalization in the relational model is related to the
structure of functional dependencies. In the case of this project it will be
enough to reach the third normal form.

2.1.4.2 Graphical representation

Regarding the management of data quality in Information Systems there is a
graphical model called the Information Production Map (IP-MAP) [BAL98] which
allows analyzing the production of information as a process comparable with the
normal manufacturing process in a company. In this model several graphical
constructs are used to compose the model that illustrates the process. This is useful
for understanding who the owners of the process phases are, understand the
organizational boundaries and estimate time and quality metrics associated with the
production process.

The IP- MAP model has been extended to include more characteristics for
representation of other aspects related with the production of information; for
example, the IP-UML [SCA02] is a modeling formalism created extending UML with
a data quality profile based on IP-MAP. The data quality profile consists of three
different models:

 Data analysis model: represents the data that are important for consumers as
its quality is critical for the organization’s success. It has labeled classes that
represent the raw data, the component data and the information products
(elements of IP-MAP).

 Quality analysis model: contains elements that represent quality requirements
of data, related to quality dimensions. In order to model the dimension-related
requirements, two stereotypes are introduced: A quality requirement class that
represents the quality requirements that can be specified on a quality data
class, and a quality association class that associates quality requirement
classes with quality classes.

 Quality design model: specifies the perspective in which processes are
described together with the exchange of data, by combining the UML activity
diagrams with the UML [STE06] object flow diagrams. The stereotyped

17

activities, actors and dependencies from UML are added to represent IP-MAP
elements.

2.1.5 Theoretical aspects to be used

The concepts necessary to understand the meaning of quality data have been given,
answering the first main question of this project.

For the other questions, how to measure data quality, how to improve it and how to
add it, it was understood that the basic way to manage quality is through quality
dimensions. In this manner any activity oriented to the creation of the quality
database, will be based on this idea.

Some general definitions of many of these dimensions were given, but in three
specific cases, Accuracy, Completeness and Consistency, more extended descriptions
have been presented. These descriptions give a suggestion about what aspects can be
measured in the data to assess their quality level, and how to improve it.

In order to measure the quality level and to improve it, different approaches and
methodologies have been proposed. Some of them, such as the TDQM methodology,
present a series of steps that give a complete guide considered very useful in the
context of the project. This methodology is intended to orientate the process of
creation of information systems providing the necessary activities to include quality
in the data in every step of the process. Given such a scope, it must be adapted to be
used in this project.

The adaptation of the methodology consists on using only the activities of every phase
that are related to the improvement of quality, and to the creation of the data model,
since there is not an information system to be created. More concisely, the activities
from the methodology to be taken into account are those related with defining quality
dimensions to be measured in the data, measure the current quality level, and
improving it, as well as designing the database taking into account new possible
quality dimensions for the information to be stored there.

Besides, the idea of adding the general concept of interpretability to the database will
serve to reach the goal of making it well documented. And the support given by
graphical models such as IP-UML is appropriate to analyze and give an initial
structure to the data model that will be used for the creation of the database.

2.2 Data Warehouse
In this section, a brief concept of Data Warehouse is given placing special attention to
the way preparation of data must be done for migration to this kind of system. This
topic is treated here only with the aim of giving an idea of what this technology can
be used for, and state that in future work, the data stored from snapshots into the
new database could be migrated to a Data Warehouse.

A Data Warehouse is a system aimed to support the decision processes in
organizations. This is made by storing data from different sources such as

18

organizational databases, legacy systems, files, or external databases, and providing
information out of those sources according to the requirements of the users.

The presence of different data sources introduces a heterogeneity characteristic that
brings with it issues like semantic difference among the data. This characteristic of
heterogeneity is one of the most important issues to be addressed when creating and
maintaining a data warehouse, given that data stored there must be standardized
before introducing it into the warehouse schema. That standard structure depends on
the requirements of the users and on the business rules of the organization where
the warehouse is intended to be used [JAR03].

The management of heterogeneity is also important because the nature of the
warehouse has a tendency to change continuously, given that information
requirements and business rules are evolving with time; therefore the design process
is made iteratively to maintain the warehouse updated to comply with those changes,
making it flexible [GAR98].

Additionally, designers must manage the production of an enterprise model for the
data warehouse, followed by the derivation of the logical structure of relations.

2.2.1 Architecture

The architecture of a data warehouse is composed by several layers [JAR03]:

 The lowest layer is composed by all the heterogeneous data sources that
provide the initial set of data in different formats.

 The central layer contains atomic data and lightly summarized data in a set of
integrated databases called the global data warehouse. Therefore the volume of
information here is high. The schema in this level is oriented towards query
efficiency at the cost of schema normalization.

 The third layer contains highly aggregated data from the global warehouse,
e.g. data marts or OLAP databases, which are accessed by the final users of the
system. Here the data is less voluminous.

There is a fourth layer present in some cases which is called Operational Data Store
(ODS). This layer is located between the original data sources and the global
warehouse, and contains a set of materialized views with low granularity aggregation
that summarize the data in the data sources. This data is constantly changing and is
always up to date with the last changes occurred in those data sources. Data cleaning
and aggregation occur in this level.

In order to create a good architecture a close collaboration between IP people and
business users can be very helpful. This is because once the design has been done, it
must be validated within the organizational context, and also because the
maintenance of the warehouse, which implies constant changes, is also directly
related to the requirements of users [GAR98].

19

Also, according to [ANN06] strategic and tactical requirements must be taken into
account for the design of the warehouse. Strategic requirements are high
performance indicators that allow taking high level decisions, while tactical
requirements are functional objectives expressed by end users.

During early stages of the data warehouse design the designers must perform two
tasks in parallel. One is collecting the requirements of information from the users,
and the other is the analysis of the structure and content of the existing data sources
and their intentional mapping to the common data warehouse model. The crucial
deliverable is the mapping of the attributes of the data sources to the attributes of the
data warehouse tables [VAS02].

2.2.2 ETL process

Once the architecture of a data warehouse has been created, the activities to be
performed to introduce the data there are performed. These activities consists on
loading, transforming, cleaning and updating data from the data sources, and also on
integrating the data into the data source for resolving inconsistencies among
different sources [Jar03]. In order to facilitate the execution of the named activities,
Extraction-Transformation-Loading tools have been created.

The creation of metadata is a key concept during the creation of the warehouse, since
it acts as a blueprint of all the objects that compose the warehouse, like a table, a
column or a query. This metadata manages all the process of extraction,
transformation and loading of the data performed by the ETL tools, and it serves as a
pointer that allows locating objects and data into the warehouse [GAR98].

As it is stated by [VAS02], the task of defining the process that guides all the activities
performed by an ETL requires modeling, design and methodological foundations.

The ETL process consists on extracting the data from data sources and then creating
some snapshots out of them. Then those snapshots are propagated to an area called
the “Data Staging Area” (DSA) where they are cleaned and transformed, to finally
store them in the data warehouse data stores, e.g. fact tables and dimension tables.

The conceptual model proposed by [VAS02] is aimed to model the initial phases of
the design, with a particular focus on the interrelationships of attributes and
concepts, and the necessary transformations that need to take place during the
loading of the warehouse.

They call transformation to the process of restructuring the schema and values, or
even to the selection and transformation of data. In the model the relationships in the
original sources are mapped to relationships in the data warehouse. Also constraints
and transformation composition are captured. The design model in [VAS02] follows
some steps that conduce to the attribute interrelationships; that model is the
conceptual part of the overall ETL process.

Also as this is considered an expensive process, given that it is designed and
performed once the data warehouse has been created, some authors such as [MAZ03]

20

even propose graphical models based on UML to assist on the execution of the design
of the process.

2.2.3 Quality

Given the many information necessities expressed by the users of the data warehouse
there are also different quality requirements that should be fulfilled. For managers of
organizations it is important to assess the importance of these requirements, and
decide which of them should be given priority during the implementation of the
warehouse. This kind of trade-off is due to the fact that there is a limited amount of
resources which make not possible to take the measures necessary to satisfy all the
possible required quality aspects.

For example a manager must decide which part of the information is more
important; a set of data that supports several low level organizational activities, or a
set of data that supports only one highly important organizational activity [BAL99].

Once the needed quality improvements have been selected, it is necessary to identify
the data sources that support the related organizational processes, to see whether they
already exist or not and thus identify potential quality problems. For example that the
data set exist but can not be obtained for any reason, which creates a problem of
accessibility.

Various projects can be undertaken to improve the quality of the data, such as solving
the syntactic differences among customer data records. Solve differences among
different sources, or the mechanisms to gather the data that is stored in the data
warehouse.

Quality must be implemented in all phases of data warehousing: planning,
implementation and maintenance. And as the data in data warehouses are
supporting different activities, the manager must make and assess the trade-offs to
decide which data sets and activities must be enhanced to have more quality.

2.2.4 Theoretical aspects to be used

As it has been explained, a Data Warehouse is used to structure information from
different sources with the aim to support organizational decisions.

The process for structuring the information from different sources and migrate it to a
Data Warehouse requires among the main steps, standardization and improvement
of its quality. These activities are usually performed by ETL tools once the design of
the Data Warehouse has been performed and the structure of its data source is
known.

In this project there is not a Data Warehouse definition already made. Nevertheless,
the activities performed to structure the data and improve their quality, can be
considered as equivalent to some of the activities performed by an ETL tool.

That consideration can be done because the data provided as work resource, which
was retrieved from different databases which belong to different companies, has been

21

given a first structure and standardization in the snapshots. Now, through the
process followed in this project, quality is improved and a new and more concrete
structure is given to the data.

The resulting database can be thus considered as an intermediate resource for a Data
Warehouse where the information from different companies will be stored with a
unique standard structure; this is because the data stored in the database is ready to
be used for analysis and won’t possibly need more procedures of standardization or
quality management.

Some additional transformations to the data could be needed considering that the
data source employed in the Data Warehouse could have a different way to structure
the information, given the information requirements used to design it. In that case
the information stored in the database created in this project, would be transformed
to be adapted to the structure of the data source in the Data Warehouse.

It can be concluded then that the execution of this project is going in an appropriate
direction when considering the creation of the Data Warehouse for the future storage
and analysis of the information.

22

23

CCChhhaaapppttteeerrr 333

3 Work Methodology
In this chapter, one of the final deliverables of the project, the work methodology to
be followed in order to create and document the quality database, is explained. This
methodology aims to answer the main questions stated in chapter 1. The activities
proposed are based on the results obtained during the literature review, which gave
key concepts that are adapted here according to the specific requirements of the
project.

Two phases compose the methodology: the first of the following sections describes
the phase in which the creation of the database is performed; then, the second section
explains the way the resulting data base is tested.

A process model that depicts the steps of the methodology is presented in Appendix
E, as a complement to the description given in this chapter. The documents that are
result of its application are also enumerated there.

3.1 Creation of the database
During the first phase, most of the important activities to achieve the goal proposed
for the project are performed. Such activities are oriented to the creation of the
database that is finally used to structure the information provided by the consultant;
this database has been built following a sequence of steps that conduce to the
generation of quality data, by first executing a cleaning of the original information,
and then proceeding with the design and construction of the database.

The steps followed in this phase are detailed in the next subsections.

3.1.1 Understand the data

To facilitate the creation of the database it is necessary to start by realizing which the
structure given by the consultant to the information in the snapshots is. Then, after
comprehending the underlying structure and relationships it is also important to
detect how the data about the software development process was stored into this
structure, with the aim to discover possible problems in it. For this, the
understanding of the work done by the consultant with companies, in order to get
acquainted with the approach he uses to retrieve and analyze their data is useful.

The execution of this first step is supported by the documents provided by the
consultant and communication through meetings and emails during the
development of the research project.

3.1.2 Data Cleaning

The data cleaning goal is to assess the quality of the data stored in the snapshots and
perform the activities that can be necessary to improve it. As it has been told before,
one of the goals in the revision of literature was to obtain a clear idea about
measurement and improvement of quality; after researching, several descriptions
concerning these concepts were found along with approaches aimed to serve as a
guide to implement them.

The ideal approach would be one that comprehends all the activities involved in
measuring, improving and adding quality in the data, and that clearly indicate how to
do this through the use of quality dimensions.

The approaches found and explained in the literature review chapter are:

 Data Quality requirements and analysis [WAN93]: which is focused in the
design of a database adding special tags to model quality requirements.

 Framework for analysis of data quality research [WAN95]: which gives
importance to the design of a database adding quality dimensions, but also to
the organizational context where it will be used.

 TDQM (Total Data Quality Management) [WAN98] which is a methodology
that indicates how to implement data quality policies for the creation of
information products in information systems. This is done following four
steps: definition, measurement, analysis and improvement, which have
already been explained in chapter 2.

After an analysis to conclude which of these approaches complains better with the
requirements for the creation of the quality database, the TDQM methodology was
selected. This is because thorough the four steps that compose it, there are activities
oriented to measure and improve quality, but also to create a new database where
information of quality can be stored. Therefore it is more complete than the two other
approaches that are more focused only on the creation of the database.

Since the TDQM is intended to orientate a complete implementation of quality in the
information systems used to produce information products at organizations, it has to
be adapted to the context of this project, where only a database must be created and
information of quality stored there.

The adaptation of that methodology is done both for the data cleaning and for the
creation of the database. In the case of the cleaning, the four steps of the
methodology are adapted for the improvement of quality in the snapshots. In the next
subsections the four steps to follow are explained.

3.1.2.1 Definition:

During the definition phase of the TDQM [WAN98] methodology the requirements
of information and quality for an application are defined. For the cleaning phase only

24

quality requirements must be defined in order to analyze and improve the data in the
snapshots. The following activities must be performed:

1. Definition of the quality dimensions [WAN93] that are used to perform the
quality assessment of the attributes chosen from the snapshots.

2. After determining the dimensions, the metrics related [BAT06] which are the
basis for the assessment are established. Usually in the TDQM methodology the
metrics are defined during the measurement step, but in the adaptation made for
this project it has been chosen to do it during this step in order to have a clear
idea of what must be measured and how, before starting with the measurements.

3. Selection of the data attributes from the snapshots that will be assessed to
determine their quality level and improve it in case it is necessary. This attributes
are those considered as more relevant for the production of information from the
data contained in the snapshots.

4. Get information from the business context in order to define which metrics can
be applied to the selected attributes according to the availability of this
information.

5. Once the information has been provided, make the final decision about metrics
that will be applied and over which attributes.

There are different dimensions according to which quality of information can be
evaluated, and the selection of them depends on the context where the information is
used. As there is not a standard set of dimensions, some of the most common used
can be those chosen for the cleaning of the snapshots.

3.1.2.2 Measurement:

Once the dimensions and their related metrics have been selected, the next phase of
the work methodology is to perform the necessary measurements on the attributes in
the snapshots. During this activity, according to TDQM, besides measuring the
quality level of the information, some business rules are observed. For the context of
this project there are neither information requirements nor business rules to comply,
so this part of the TDQM is not applied.

TDQM doesn’t indicate how to specifically perform the measurements, so it has been
decided to follow the approach of localization of errors described in [BAT06] with the
goal of finding errors related to the quality dimensions selected, and then count them
according to the metrics.

The activities proposed for this phase are:

1. Perform a quantitative assessment. Use an algorithm to localize errors in the
attributes previously chosen according to what the metrics defined for every
dimension are aimed to measure, and count them.

2. Calculate the level of quality. Once the number of errors is calculated for every
metric, it will be possible to use a simple ratio [PIP02] which is a mathematical

25

calculation that takes the number of data in error and divides it by the total
number of data, to finally subtract the result from 1. The final value is a
percentage that indicates the level of quality of the information in every
dimension; the closer this value is to 1, the higher the quality level is. The use of
this ratio is an addition made to the original proposal made by TDQM.

3.1.2.3 Analysis:

In the analysis phase of TDQM the measures obtained with the metrics, are used to
investigate the cause of the quality problems. This is done with the help of business
experts.

In the case of the data cleaning, this phase is oriented to compare the quality levels
calculated with a predetermined bound, to find out how good is the quality of the data
regarding a desired level. This activity is therefore a qualitative assessment for which
the steps to follow are:

1. Define a standard quality level. A definition of quality values that are acceptable
for metrics is done with the help of the consultant. He can indicate for the
attributes that are being evaluated during the cleaning, which are the expected
quality levels; also, the allowed discrepancy between them and the quality level of
the data stored in the snapshots. This level must be a numerical value, so it can be
compared with the values obtained through the metrics.

2. Analyze the results of the metrics, by comparing them against the standard
parameters of quality that have been specified. The comparison between them
and the values obtained in the measurements is done to establish which
improvements are necessary for the data.

3.1.2.4 Improvement:

In the improvement phase of TDQM, the procedures necessary to increase the
quality level of the data are applied. In the case of improvement of a complete
information system, activities such as aligning the creation of information products
with the information needs are performed. Nevertheless, as already said in this case it
is only necessary to improve the quality of the data in the snapshots, so the correction
of errors should be done by applying specific techniques, which are adequate
according to the quality dimensions used for the assessment.

One technique that could be used is edit-imputation [BAT06], which is an activity
that implies the application of edit rules to the data with the aim of decreasing their
inconsistency. An edit rule is an expression that indicates a constraint for the range
or type of values that can be stored in a field of a tuple, e.g. “Age > 15 and
MaritalStatus = married”, indicates that there could be an inconsistency in case the
field Age contains a value less or equal than 15 and the field MaritalStatus has the
value married.

The steps to follow in this activity are:

26

1. Decide whether improvements must be done according to the results of the
analysis.

2. In case there are not necessary improvements, this activity is finished.

3. In case there are necessary improvements, it is necessary to get information from
the business context. This information is the data considered correct for the
values that contain errors, and must be asked to the consultant, since he has a
better knowledge of the context where the information was obtained. This
restriction is made given the fact that definition of edit rules must be done based
on constraints of the business, and also under the use of an established reference
domain where values allowed for the attributes assessed are known [BAT06].

4. In case the information is not available, no improvements can be performed. This
must be documented and the possible causes of the errors must be explained. The
activity must be finished in this point.

5. In case the information is available, the proposed improvements must be
performed.

6. Once the proposed improvements have been done, the new quality level of the
attributes for which the errors were corrected must be measured with the simple
ration [PIP02] and documented.

3.1.3 Design of quality database

After the cleaning of the data has been performed, the data in the snapshots are
already complying with quality characteristics that will make it more suitable for the
creation of information. It is not possible to talk about a 100% quality level, but it
would be acceptable to make an improvement of the data in order to reach a quality
level advised by the consultant, regarding the parameters established as allowable in
the phase of analysis during the cleaning activities.

The activities for the creation of the quality database proposed next are based on the
definition phase of TDQM [WAN98]. As it was described in the cleaning section, this
methodology can be applied for the improvement of information systems, and also,
as in this second activity, for the creation of information systems that include quality
characteristics.

The specific task to be performed here is the creation of the database, then answering
the question about how to add quality to a new data source. It starts by following two
steps:

1. Define the information needs which will be represented as the entities in the
database. Create a data analysis model based on this definition.

2. Define the information quality requirements which are associated to the
attributes of the main entities. This definition must be made along with the
consultant. In case there are new quality requirements, and thus quality
dimensions, create a quality analysis model based on the definition made.

27

For example, an attribute could be the date of execution of a test in an entity test,
and then the information quality requirement could be the timeliness of the
information on that date. Every quality requirement can be translated into a
measurable characteristic, and in the case of the timeliness for the date there
could be a quality attribute called age, which indicates how old the information
about the test is.

3. Design the entity relationship model of the database. This is made based on the
data analysis model, and then quality analysis model (in case this last one exists).

Some remarks to be done about the enumerated steps are made in the following
subsections.

Special requirements

It is important to mention here that as a special requirement for the representation of
the information in the database, the confidentiality of the data must be kept.
Therefore, it is necessary to define during the creation of the database a mechanism
that will allow to make anonymous the information but that in case that it is
necessary, let the user of the information make a mapping to find out the identity of
the entities. In the case of this project, the name of the projects, systems and
subsystems must be maintained anonymous.

Other aspect that will be taken into account is the granularity of the information. As
it is described in the reference documentation provided by the consultant, the data
collected during the software development process can be analyzed at different levels:
Projects, subprojects, teams; systems, subsystems, groups of components,
components; given this fact, the data in the snapshots has been stored at the lowest
levels, which means it has a fine granularity, and for the creation of information
related to the higher levels, such as projects or systems, it is necessary to perform an
aggregation of data.

In the case of the database, the granularity given by the snapshots is preserved, since
it is considered a proper way to retrieve information at different levels. For example,
in the case of requiring information about a component of a specific subsystem it will
be easy to create a query that retrieve it from the entity that represents it; and in the
case of requiring information about a whole project, a more advanced query that
allows retrieving information from different entities related to the project could be
necessary. This level of granularity also respect the correctness desired with respect to
the adequate use of the elements of an entity-relationship model, since for example
the information about components of a system can be stored in entities independent
from the entity that represent the system they belong to.

Graphical method

A graphical method suggested in TDQM to represent the analysis models of the
database is presented by Information Production MAP (IP-MAP) [BAT06]. The IP-
MAP graphical model allows the production of information starting from the
knowledge of requirements and quality characteristics desired. Therefore it can be

28

used to analyze the whole process of creation of information in an Information
System, but in the context of this project, it is only necessary to define the entities
that will compose the database, and their quality characteristics. For this
representation the model defines the use of entities representing concepts of the real
world and entities representing the quality attributes of those first entities.

As the approach given by IP-MAP has been included in IP-UML [SCA02], which is
an extension of UML with the quality profile of IP-MAP, two of the models suggested
by that modeling language are used. Nevertheless, since the main focus is on the
representation of the entities and their quality, only some of the elements proposed
by these models are employed. The models are:

 Data analysis model: To represent the entities of real world that will be
included in the database. This is the model to be made in step 1.

 Quality analysis model: To represent the quality requirements defined for
every entity. It is only created in case there are specific quality requirements
suggested by the consultant. This is the model to be made in step 2.

Interpretability

One important dimension that must be added to the model and documentation of the
database is interpretability [BAT06], with the aim to obtain a well documented and
correct model. This correctness is related with the necessity of including all the
concepts related to the information in the snapshots that are supposed to be
represented, and do it avoiding redundancy. Therefore the following aspects must be
taken into account in steps 3:

 Integrity constraints that hold among data.
 Metadata about the schema including creator, subject, description, publisher,

data, format, source, and language.

 Correctness with respect to the model. This concerns the correct use of the
categories of the model in representing requirements. For example the
entities in created in the Entity Relationship model should be created only for
concepts that have a unique existence in the real world and then have a unique
identifier.

 Minimalization. Every part of the information in the snapshots is represented
only once in the schema, which will avoid redundancy.

 Completeness. All the information in the snapshots will be represented in the
model.

 Pertinence. Not including in the model unnecessary conceptual elements.

 Readability. Create diagrams and schemas that are clear enough. Regarding
the diagrams it means to make drawings following aesthetic criteria such as
crossing lines the less possible. For schemas the simplicity of representation,
which means create them as compact as possible for representing the
concepts.

29

 Normalization. Normalization in the relational model is related to the
structure of functional dependencies. In the case of this project it will be
enough to reach the third normal form.

3.1.4 Implementation of the database

Once the design of the model for the database has been finished two steps must be
followed

1. Definition of the DBMS to be used.

2. Creation of the database and migration of the data from the snapshots.

Previously to the storage of the data from the snapshots into the data model some
preprocessing of data can be performed as a preliminary preparation step, in case it is
considered necessary. Two activities to follow here are:

 Standardization [BAT06]: Change existing values according to standard
formats, e.g. the use of capital letter in the names of systems. It is necessary to
define whether there are some standards that should be complied by the data
and decide whether this activity is necessary then.

 Data linkage [Fel69]: For every entity identify data which is stored in different
snapshots, with the aim of unify all the information about it and then proceed
to store it in the database.

3.2 Tests to the information:
As it is necessary to prove that the data from the snapshots stored into the database
contains the quality dimensions that were defined during the previous phases, some
experiments must be done. Thorough them information can be retrieved out of the
data to prove that it can be used. The steps to follow during the test phase are:

1. Define tests to be done.

 First it must be established which are the objectives when analyzing the data.
During this activity it is decided which aspects of the data provided by the
companies are desirable to be analyzed. These aspects constitute the basis of
the test cases created and executed in order to prove that the data model
complies with the quality characteristics proposed.

 Then it must be defined how the tests will be performed using data mining
and/or process mining techniques

2. Apply selected techniques to make analysis and determine the level of quality of
the data stored in the database. The results obtained after the completion of this
activity are the basis for conclusions and recommendations about the work done.

30

3.3 Documentation
The quality documentation of the database is one of the three deliverables of this
project. It is a result of all the activities performed following the proposed work
methodology, and consists of the following documents:

 The report that describes the quality level of the data that were evaluated and
improved during the cleaning phase, in order to inform the users of the
database which is the quality level of the information stored there.

 The graphical models:

o Data analysis model: This shows the entities of the real world that are
represented in the database.

o Quality analysis model: This shows the quality requirements of the
entities depicted in the data analysis model. It is only created in case
new quality requirements are defined by the consultant.

 An entity relationship model that represents the entities and their
relationships. The entities are derived from the data analysis model, and in
case there are additional quality requirements, the corresponding attributes or
additional entities are also represented. In this model it is taken into account
to apply characteristics that give it interpretability: Integrity constraints,
correctness, minimalization, completeness, pertinence, readability and
normalization.

 The report where the entities of the entity relationship model are described
along with their attributes and relationships. It is also included metadata
about the schema in order to improve the interpretability of the
documentation.

 The report where the results of the tests performed to the quality data once
stored in the database are described.

31

32

CCChhhaaapppttteeerrr 444

4 Description of procedure to obtain data
This chapter is aimed to present a brief description of the work made by the
consultant who provided the data, and of the structure of the data which are stored in
the snapshots. With this description the application of the work methodology
proposed in chapter 3 is initiated.

4.1 Measurement Database
As it was mentioned in chapter 1, the work of the consultant consists on analyzing
information about the software development process in companies, in order to help
on its improvement. For this labor, he has developed a procedure which is supported
by a tool called “Measurement Database”. The objective of this tool is to collect data to
calculate project, product and process metrics.

The measurement database architecture is composed by three layers [SIE03]:

 Data collection layer, where the data from different sources in the projects are
collected and filtered creating then the snapshots. The snapshots are csv files
where the information is structured and are used to pass information to the
data storage layer.

 Data storage layer, where the data from the collection layer is stored; here
some views of the data can be prepared in order to show them in the data
presentation layer.

 Data presentation layer, which provides access to the data stored in the data
storage layer through reports and graphs.

The snapshots created in the collection layer are the tool of work provided for this
project. The data in the collection layer is collected periodically, so there are
snapshots of the data created every time the procedure is performed, and thus
historical data is available.

4.1.1 Granularity of the data

For the storage and analysis of the data retrieved from the companies, data are
considered at different levels of granularity. These levels are [SIE04]:

 Products are composed by systems, where each system is a version of the
product. Each system is made of subsystems, while in turn each subsystem
consists of groups of components. Finally, every group of components is built
of components. Within the context of the projects analyzed by the consultant,
the hierarchy described has 3 to 4 levels.

 A program is a sequence of projects where a project follows another. Projects
are organized in a hierarchy of subprojects, and the subprojects in the last
level are called teams. Teams are responsible for working on the development
of components, which are part of products.

 A team constructs a component by following a process. Every process is
composed by a number of steps, called activities, and each activity produces a
work product (such as a specification, design, source, tests among others)
through a series of tasks. The creation of every work product is based on
previous work and refinement of the information.

Some effort is spent on the tasks performed to produce work products; also, during
their production defects are injected, which are reported on the components, not on
the work products. The defects are solved by creating new versions of work products.

The data in the snapshots are stored at the lowest granularity level, which means for
example that all the information about requirements, tests, defects, etc. is associated
to the components. Then, when information related to the elements that are
composed by these components is necessary, aggregation procedures must be
executed to get the desired result.

The aggregation can be done to create information for the following views:

 Product view that contains information about systems, subsystems and
groups, which can be done aggregating by components.

 Project view that contains information about projects, subprojects and teams,
which can be done aggregating information by activity.

 Process view which is obtained aggregating data by activity type.

Metrics are generated for every one of the three views. The figure 3 shows the data
model employed by the consultant, which reflects those concepts:

33

Activity

ActivityName
ActivityStartDate
ActivityFinishDate
ActivityEffortSpent

ActivityDuration

WorkProduct

WorkProductType
WorkProductStyle
WorkProductName
WorkProductRevision

WorkProductSize
WorkProductUnit

Created By

ProcessName
ProcessIdent
ProcessVersion
ProcessTailoring

TailoredProcess

Implemented By

Project-Increment

ProjectName
ProjectIdent
ProjectCustomer

Delivers

Consists of

Applies

Defect

DefectEffortSpent
DefectCause

Contains

Solves

Inserts

Detects

DefectReport

DefectIdent
DefectType
DefectSeverity
DefectDescriptionHas

Reports

Assembled
from

Derived
from Manages

Causes

Directs

Component-Version

ComponentName
ComponentIdent
ComponentVersion
ComponentType
ComponentOwner

Figure 3. Data model used in the Measurement Database [SIE03]

4.1.2 Data categories

The collection of data in the snapshots is made in the following categories:

 Architecture data

 Project data

 Review data

 Size data

 Defect data

 Case data

34

 Change data

 Issue data

 Requirements data

 Risk data

 Test data

The structure of every one of this categories and the type of information they store
are described in the Appendix A of this document.

35

36

CCChhhaaapppttteeerrr 555

5 Cleaning phase and database design
In this chapter the application of the work methodology proposed in chapter 3, which
is based on some of the activities proposed by TDQM methodology, continues. Here
the activities followed for data cleaning and the creation of the database are described

5.1 Definition
In this section the definition of the quality dimensions and the metrics to use during
the cleaning phase is done. Then the fields of the snapshots that will be assessed
according to those metrics are presented.

5.1.1 Dimensions and metrics

Table 1 presents the selection of the data quality dimensions that are used for the
assessment of the data stored in the snapshots. Also, the metrics that are proposed
for the evaluation are described for every dimension; these metrics are suggested
based on the definition of what the related dimension means.

For every metric there is an explanation of the measurement method to be followed;
it is also discussed whether additional information to the already contained in the
snapshots should be provided by the consultant, in order to make possible to employ
such methods. This helps to evaluate the feasibility of applying every one of the
methods.

The general idea of every measurement method is to find errors in the data, to then
count the number of them found and finally calculate a ratio that gives an idea of the
quality level of the attributes evaluated.

Dimension Metrics Measurement method

Accuracy
[BAT06]

Number of
syntactic errors

Create and use rules to find out whether values in
attributes are correctly spelled with respect to
values in a reference domain. E.g. the stored value
is “Jon” and it should be “John”.

The application of this metric is only possible if
the consultant has enough information about the
business context, and can provide a reference
domain about the values that are allowed for every
attribute.

Number of
semantic errors

Create and use rules to find out whether value of
an attribute is correct, i.e. it should be “Charles”,
but is “John”.

The application of this metric is only possible if
the consultant has enough information about the
business context, and can provide a reference
domain about the values of that are allowed for
every field.

Number of
duplicated values

Use of an algorithm to check whether values that
should be unique for an entity are stored more
than once in the file.

Tuple
completeness:

Number of values
missing in a tuple

Check number of values that are missing in the
fields of the tuples in the snapshots.

In order to use this metric it is necessary to
determine the reason why null values exist:

 Exist but are unknown.
 Do not exist.
 Exist but it is unknown whether they exist or

not.

The recognition of null values that are an error
and those that are not is only possible if the
consultant can provide more information about
the business context.

Completeness
[BAT06]

Attribute
completeness:

Number of null
values of a specific

attribute in a
relation

Check the number of missing values for an
attribute in a snapshot.

In order to use this metric it is necessary to
determine the reason why null values exist:

 Exist but are unknown.
 Do not exist.
 Exist but it is unknown whether they exist or

not.

37

Number of
violations to

semantic rules

Use of algorithm that checks whether values of
attributes comply with semantic rules. Find the
number of errors regarding rules.

The application of this metric is only possible if
the consultant has enough information about the
business context, and can provide constraints for
the data that can be translated into semantic
rules.

Consistency
[BAT06]

Number of outliers Use of an algorithm to detect outliers in
numerical fields.

Outliers are data that are anomalous with respect
to other data; they can be correct but exceptional
values, or values incorrectly recorded.

It is possible to identify values that are not
common among the data, but it would be
necessary to have some information provided by
the consultant in order to know whether those
values are correct or not.

Table 2. Data quality dimensions for data cleaning

5.1.2 Fields to be assessed

As it was explained in the definition of measurement methods in table 1, it is
necessary have more information about the business context and reference domains,
so it can be feasible to apply such methods. It was established from conversations
with the consultant, that given the big amount of data it was not possible to provide
reference domains for many of the attributes.

He also explained that during the process he performs to store the data in the
snapshots a number of repairs are performed for known problems. During
calculations, everything that can not be mapped on the expected range of values is
mapped to the value “OTHER”.

Given these facts the conclusions about the feasibility of applying the measurement
methods are:

 Accuracy:

o Number of syntactic errors: This method is applied only for the
attributes for which the reference domains are known. These reference
domains are taken from the documentation of the snapshots that is
described in Appendix A.

38

o Number of semantic errors: This method is not applied for any of the
attributes. The reason is that even when there are reference domains,
there is not an exact knowledge of which the correct values that should
be stored in every field are.

o Number of duplicated values: This method is applied to evaluate
duplicated values in the attributes that represent the unique identifiers
of entities. E.g. the id of the Tests.

 Completeness:

o Tuple completeness: This measurement method is not applied, given
that there is a big amount of data and it is not possible to know for
every tuple when the absence of a value can be qualified as
incompleteness. It is more practical to measure the level of
incompleteness at a higher granularity level.

o Attribute completeness: This method is applied to measure the
number of null values of a specific attribute. E.g. to evaluate the
number of incomplete values in the attribute DefectCost of the defects.

 Consistency:

o Number of violation to semantic rules: Since there is not additional
information from the business context, only a few edit rules are
defined to be evaluated on the attributes of the snapshots. These rules
are defined based on the documentation that is available in Appendix
A.

o Number of outliers: There is not information that could indicate when
values contained in numeric fields are outliers, or are correct but
unusual. Therefore this rule is applied to identify negative values in the
attributes that should contain positive values, such as the effort spent
in the correction of a defect.

In the section “Attributes and metrics” of appendix B the attributes of every snapshot
category to be evaluated are listed, along with the metrics to be used for the
evaluation.

5.2 Measurement
After defining the dimensions and metrics for cleaning and the attributes to be
cleaned, the corresponding measurements were performed.

These measurements were made through an algorithm that detects the errors in the
values stored for the attribute evaluated. The algorithm is briefly explained next for
every metric evaluated:

39

Accuracy: Syntactic errors

In order to measure the quality level of an attribute selected in a category of
information, e.g. “Priority” in the category Requirements Data:

1. For every snapshot :

a) The values of the attribute to be assessed are read, and every one of them is
compared with the values that belong to the reference domain.

b) In case the value is misspelled or doesn’t belong to the reference domain it is
counted as an error.

c) Once all the values of the attribute that are stored in the snapshot have been
assessed, the number of errors is counted, and the simple ratio (which
indicates the quality level) is calculated for the snapshot. It is calculated by
dividing the number of errors by the total number of values evaluated, and
then subtracting that value from 1.

2. Once all the snapshots have been checked, the average number of errors is
calculated summing up the number of errors of all the snapshots, and dividing
the result by the number of snapshots. Also the average simple ratio is calculated
by summing up the simple ratio obtained in every snapshot, and then dividing by
the number of snapshots.

Accuracy: Duplicated Values

1. In order to measure the quality level of an attribute selected in a category of
information, e.g. “defectId” in the category Defect Data:

For every snapshot :

a) For every value of the attribute in the snapshot it is checked whether it is
unique by comparing it with the other values.

b) In case it is found that the value is duplicated, this duplication is counted as
an error.

c) Once all the errors have been counted the simple ratio (which indicates the
quality level) is calculated for the snapshot, dividing the number of errors by
the total number of values evaluated, and then subtracting that value from 1.

2. Once all the snapshots have been checked, the average number of errors is
calculated summing up the number of errors of all the snapshots, and dividing
the result by the number of snapshots. Also the average simple ratio is calculated
by summing up the simple ratio obtained in every snapshot, and then dividing by
the number of snapshots.

Completeness: Attribute completeness

In order to measure the quality level of an attribute selected in a category of
information. E.g. “System” in the category Architecture Data:

1. For every snapshot :

40

a) Every value of the attribute is checked to verify whether it is empty.

b) In case the value is empty this is counted as an error.

c) Once all values of the attribute in the snapshot have been checked, the
number of errors is counted and then the simple ratio (which indicates the
quality level) is calculated. It is calculated by dividing the number of errors by
the total number of values evaluated, and then subtracting that value from 1.

2. Once all the snapshots have been checked, the average number of errors is
calculated summing up the number of errors of all the snapshots, and dividing
the result by the number of snapshots. Also the average simple ratio is calculated
by summing up the simple ratio obtained in every snapshot, and then dividing by
the number of snapshots.

Consistency: Edit rules

In order to measure the quality level, it is checked that the attributes related to the
edit rule contain values that are correct according to this, e.g. the attributes
“StartDate” and “FinishDate” in the rule StartDate < FinishDate.

1. For every snapshot :

a) In every tuple the values associated with the attributes are read and for them
the edit rule is verified.

b) In case the values don’t accomplish with the rule this is counted as an error.

c) Once the rule has been evaluated for all the tuples in the snapshot, the
number of errors is counted, and then the simple ratio of the snapshot is
calculated. This is done by dividing the number of errors by the total number
of tuples evaluated, and then subtracting the result from 1.

2. Once all the snapshots have been checked, the average number of errors is
calculated summing up the number of errors of all the snapshots, and dividing
the result by the number of snapshots. Also the average simple ratio is calculated
by summing up the simple ratio obtained in every snapshot, and then dividing by
the number of snapshots.

Consistency: Outliers

In the case of the outliers, it is evaluated the presence of negative numbers in the
values of attributes that should contain positive values, e.g. “ReworkEffort” in the
category Review Data.

1. For every snapshot :

a) Every value of the attribute to be evaluated is checked to verify whether it
contains a negative number.

b) In case a negative number is found, it is counted as an error.

c) Once all t he values have been assessed, the number of errors is counted and
then the simple ratio is calculated for the snapshot. It is done by dividing the

41

number of errors by the total number of values evaluated, and then
subtracting the result from 1.

2. Once all the snapshots have been checked, the average number of errors is
calculated summing up the number of errors of all the snapshots, and dividing
the result by the number of snapshots. Also the average simple ratio is calculated
by summing up the simple ratio obtained in every snapshot, and then dividing by
the number of snapshots.

Once all the snapshots have been checked, the average number of errors is calculated
summing up the number of errors of all the snapshots, and dividing the result by the
number of snapshots. Also the average simple ratio is calculated by summing up the
simple ratio obtained in every snapshot, and then dividing by the number of
snapshots.

The resulting averages of the measurements can be found in the section
“Measurements” of appendix B; these results indicate the quality level of every
attribute in the dimensions selected to evaluate them.

5.3 Analysis and Improvement
In this section the analysis of the data obtained during the measurement phase is
done. In order to decide which of the attributes evaluated should be taken into
account to improve their quality level, it was necessary to define first a reference
boundary. This is used to define which attributes have an acceptable quality level.

To define the mentioned boundary the consultant was inquired, given the fact that he
has a better knowledge of the context where the information was retrieved. After this
consult, it was established that the quality level of the information depends on the
type of use of the data. For the consultant the objective of retrieving the data from the
companies and analyze it, is to give the users of the information an insight in the
process and the project status. Therefore it is correct to allow the presence of errors in
the data, since it will show to the users where in the process the mechanisms of
creation of data should be improved.

Given the considerations provided by the consultant, it was decided to define a
boundary of 80% as an approximate good quality level for the attributes. Based on it
in the following subsections the attributes for which quality of data should be
improved are mentioned. In some cases, for some of the attributes that obtained
more than 80% there is also an analysis of the possible reason for the corresponding
value.

In every case there is also an explanation about whether the necessary improvements
can be done or not, given the knowledge of the business context.

42

5.3.1 Company 1

5.3.1.1 Completeness

Defect

The completeness dimension was assessed for the following attributes. Since there
are not known values that can be used as reference, no improvements are possible to
be done:

Subcategory 1

 DefectEstimate: 0%

 DefectCost: 0%

 Injected: 0%

 Detected: 0%

 DefectAnalysis: 44.88%

 DefectResolution: 2.7%

 DefectEvaluation: 78.49%

 DefectFinish: 78.49%

Subcategory 2

 DefectCost: 0%

 Injected: 0%

 Detected: 0%

 DefectAnalysis: 21.68%

 DefectResolution: 2.64%

 DefectEvaluation: 71.40%

 DefectFinish: 71.40%

Subcategory 3

 Defect_type: 6.31%

 Caused_during: 79.38%

 Act_total_eff: 57.31%

 Analysed_time: 31.95%

 Resolved_time: 47.46%

 Evaluated_time: 41.08%

43

In the case of the defect data there is not a known reason why the null values exist,
but it can be identified that these data are related with effort, costs, phases of the
project, and dates involved on the resolution of the defects; therefore, it could be said
that the most probable reason for incompleteness in this case is that information
existed but it was not stored.

5.3.1.2 Accuracy: Syntactic errors

Some of the following attributes obtained a quality level lower than 80% in the
Accuracy dimension when evaluating syntactic errors. For these attributes, reference
domains were used to check whether the values stored are correct. It was found that
in many cases the values stored don’t belong to the reference domains which were
established from the information in the documentation of the snapshots. This
explains the presence of the errors.

Given this fact, it was asked to the consultant whether the values that were found
should be also included in the reference domains, with the aim to add them and
perform a new assessment. According to his answer improvements could be done for
some of the attributes since the correct values were indicated; for some others no
improvements were made, since it is not sure that the error values belong to the
corresponding reference domains.

For the values not corrected it must be taken into account that according to the
consultant, the errors that appear in a set of snapshots taken on an early date are
improved with time in snapshots taken on posterior dates.

Defect

Subcategory 1

 DefectStatus: In the case of this attribute, the found value that doesn’t belong
to the reference domain is “WontFix”. According to the consultant this value
could be replaced by “Rejected”, which belongs to the reference domain.
Before making the change the quality level of the attribute was 97.94%; after
making the appropriate change the new quality level is 100%.

Subcategory 2

 DefectStatus: In the case of this attribute, the found value that doesn’t belong
to the reference domain is “WontFix”. As in the previous category, the value
was changed to “Rejected”. The quality level before performing the change
was 92.35%; after the improvement the new quality level is 100%

 Severity: 79.56%

The found values that don’t belong to the reference domain of this attribute
seem to be values that correspond to the value stored in the attribute Priority.
For example, in the cases the value “M” appears in this attribute in a record,
the value “Medium” appears in the attribute Priority for the same record; the
same happens with the values “L” and “Low”, and “H” and “High”. It is not

44

known which should the correct values stored in the cases where “L”, “M” and
“H” appear, therefore there is not possibility to make a correction to improve
the quality level.

 Priority: 76.56%

The found values that don’t belong to the reference domain of this attribute
are values that belong to the reference domain of the attribute Severity. It
seemed that there was a switch on the values of these attributes in the records
where the errors were found, but after analysis of the values, this hypothesis
was discarded. The values in the attribute Severity were correct in the cases
where the attribute Priority was not. There is not knowledge of the correct
values that should be stored instead of the error values; therefore the
improvement on the quality level is not possible.

Subcategory 3

 Priority: In the case of this attribute the errors found were not mostly related
to values that don’t belong to the reference domain used. Some of the values
stored were syntactically incorrect, for example the value “Hign” was stored
instead of the value “High”. The quality level of this attribute was initially
94.51%. Once the corresponding improvements in the error values were
made, the new quality level is 99.68%.

 Crstatus: 92.25%

Review

 State: 99.93%

Size

 Unit: 0%

The only value stored in all fields is “ncsl”. Despite the reference domain is known,
there is not certainty of which are the values that should be stored in every field.
Therefore there are not possible improvements to be done.

5.3.1.3 Consistency: Edit rules

Defect

Subcategory 3

The following fields were evaluated for checking the consistency of the edit rule:

 DefectAnalysis < DefectResolution. The quality level obtained was 74.17%.

It is possible that the dates that are wrong were known but they were incorrectly
stored. Given that there is not additional knowledge of the business context, it is not
possible to determine the correct values of these dates. Therefore the quality level of
these attributes can not be improved.

45

5.3.2 Company 2

5.3.2.1 Completeness

For every of the following attributes there are not reference values that can be used to
correct the null values, therefore there are not possible improvements to be done.

Case

 CaseFinish: 0%

The most probable reason for the existence of null values in these fields is that the
dates of finalization existed but they were not stored in the database.

Change

 ApprovalDate: 64.68%

 Raised: 74.78%

 Assigned: 23.30%

 Completed: 17.06%

 Approval: 54.85%

 Approved: 64.67%

 Closed: 36.17%

 Cancelled: 10.54%

 Rejected: 1.8%

Since the data related with these fields corresponds to the different dates when the
change management process happened, the most probable reason for the incomplete
fields is that the corresponding information existed but it was not stored.

Defect

 Severity: 38.77%

 DefectFinish: 79.36%

The most probable reason for the presence of incomplete values is that the data for
these fields existed but it was not stored.

Issue

 Completed: 57.45%

 Closed: 69.68%

Since the data that correspond to these fields is associated with some of the fields
where changes of state in the revision of the issues happened, it could be concluded
that most probably the information was known but not inserted.

46

Requirements

 Priority: 49.05%

 ReqPreparation: 46.82%

 ReqExecution: 27.99%

 ReqFailed: 9.11%

 ReqPassed: 23.15%

The most probable reason for the existence of these incomplete fields is that the
information existed but it was not stored. This is because the data corresponds to the
dates where the change of status of the requirements happened, and also to the
priority it was given to them for being implemented.

Risk

 Raised: 66.29%

 Assigned: 63.13%

 Completed: 53.06%

 TargetDate: 64.49%

Since those fields correspond to the dates when the state of the evaluation of the risks
happened, the most probable reason for the incompleteness is that the information of
the dates existed but it was not stored.

Test

 TestPreparation: 0%

 TestExecution: 0%

 TestFailed: 0%

 TestPassed: 0%

Since there are not reference values that can be used to fill the null values, no
improvements can be done. Again, the most probable reason for the existence of
those values is that the information about the dates when the execution of the test
happened was known, but this was not stored in the database.

5.3.2.2 Accuracy: Syntactic errors

As it happened with the accuracy errors described for company 1, the evaluation of
accuracy for the following attributes showed that there were values stored which
doesn’t belong to the reference domains used. It was also asked to the consultant
about the correctness of these values, in order to know whether they should be added
to the corresponding reference domains, and then perform new assessments.

47

According to the answer obtained, the errors that appear in snapshots taken on an
early date are corrected in snapshots that were taken on posterior dates. It is not sure
that the found error values belong to the reference domain, therefore no
improvements were made.

Case

 CaseStatus: 1.21%

Change

 ChangeStatus: 39.30%

 ChangeState: 88.97%

Defect

 DefectStatus: 87%

 Priority: 83.46%

Issue

 IssueStatus: 69.68%

 IssueState: 94.5%

 Criticality: 99.24%

Risk

 RiskStatus: 67.12%

 RiskState: 90.1%

5.3.2.3 Consistency: Edit rules

Project

The following attributes were evaluated to check whether they comply with the edit
rule:

 Psn_Start < Psn_Finish. The quality level obtained was 58.27%

Requirements

The following fields were assessed to check whether they comply with the edit rule:

 ReqExecution < ReqFailed. The quality level found is 62.13%

In both cases it is possible that real values of the wrong dates were known but the
values were not correctly inserted. As there is not additional knowledge of the
business context, no improvements are possible.

48

5.4 Database design
After analyzing the information stored in the snapshots and understanding the
granularity levels used by the consultant to structure the data, the Data Analysis
model was produced. This model is based on some of the stereotype classes
suggested by IP-UML and is shown in figure 4.

Since no additional quality dimensions were defined for the data that will be stored in
the database, there is not a Quality Analysis model to be elaborated. The entities that
are finally represented in the design model which is the Entity Relationship model
are based on the classes of the Data Analysis model.

Figure 5 presents the Entity Relationship model, where only the entities and their
relationships are depicted. The documentation of the entities and attributes can be
found in Appendix C.

Regarding the documentation and the model, it is taken into account to add the
interpretability dimension to make them readable, correct, complete and pertinent.

Also during the design of the database it was decided that in order to make
anonymous the information required by the consultant, the names of the Companies,
Systems, Subsystems, Groups of components, Components, Tasks, Programs,
Projects, Teams, Resources and Deliverables will be fictitious. There is an external
file where the real names can be consulted and mapped to the data stored in the
database.

49

Figure 4. Data Analysis model

50

Figure 5. Entity Relationship model

51

52

CCChhhaaapppttteeerrr 666

6 Tests
In this chapter the tests performed over the data stored in the database are described.
They are based on real metrics that the consultant obtains in his job with companies.
The goal is to demonstrate that the created database can be used to retrieve data to be
processed, in order to generate information about the software development process
of the companies.

That information could be for example related with effort of people working on
different activities, or duration of tasks, among others. It would be therefore
employed to calculate the metrics that are useful to analyze how different tasks
during the development of applications are being performed.

The results of the tests are presented in Appendix D.

6.1 Description of the test
Through his job with the companies, the consultant uses the data stored in the
snapshots to produce metrics that indicate levels of productivity, quality and timing
in the software development process. The determination of the metrics to be
calculated depends on the goals of every company. For example, for a company it
could be essential to know what the effort implied in requirements management
activities is, with the aim to improve the way they are performed; in that case the
metrics will be related with requirements management.

The tests described in table 3 are planned based on the metrics proposed in [SIE07]
and [SIE04]. Every one of them is aimed to measure one aspect of quality on the
software development process.

Quality
characteristic

Metric Description Definition

Maintainability-
Changeability

Change duration How long does it
take to
implement a
change?

Σ change.duration / #
change

Maintainability -
Compliance

Compliance To what extend
has the required
functionality
been provided

% req.status [met]

Reliability -
Maturity

Defect Severity How severe were
defects found?

% defect.severity [very
high+urgent]

Performance -
estimation

Effort
distribution

How is the effort
distributed over
project activities?

Σ task.actualwork
[task.tasktype]

Performance -
effectiveness

Review Coverage To what extend
have deliverables
been reviewed

Σ review.size [accepted]/
Σ document.size

Earned value
analysis

Actual Cost of
the Work
Performed

ACWP(t)

Cumulative work
spent on tasks
actually
completed , i.e.
the sum of the
Actual Work of
all tasks that
have Actual
Finish <= t.

Σ task.actual [completed]
upto time t

Table 3. Metrics for planning tests

6.1.1 Change duration

Steps to calculate the metric were implemented in an algorithm:

1. Retrieve the dates when snapshots about change information were taken.

2. For every date retrieve assigned date and closed date of changes that have closed
status and are associated to the program with Id 18.

3. For every change calculate the duration in number of days it took to implement it.

4. Sum up the results of duration of all changes.

5. Divide the result of the sum by the total number of changes that were evaluated.

The results are presented in figure 1 of appendix D.

6.1.2 Compliance

The steps to obtain the metric were implemented through an algorithm:

1. Retrieve the dates when snapshots about requirements information were taken.

2. For every date calculate the number of requirements that exist and are associated
to program with id 11.

3. For every date calculate the number of requirements that are in state closed and
are associated to program with id 11.

53

4. Calculate the percentage of met requirements dividing the number of
requirements in state closed, by the total number of requirements, and then
multiplying by 100.

The results are presented in figure 2 of appendix D

6.1.3 Defect Severity

The steps to obtain the metric were implemented through an algorithm:

1. Retrieve the dates when snapshots about defects information were taken.

2. For every date calculate the number of defects associated to program with id 2.

3. For every date calculate the number of defects associated to program with id 2 and
which severity is S = show stopper/ blocker, or A = major function affected.

4. Calculate the defect severity dividing the number of defects with severity S or A by
the total number of defects, and then multiplying by 100.

The results are presented in figure 3 of appendix D.

6.1.4 Effort Distribution

The steps to obtain the metric were implemented through an algorithm:

1. Retrieve the dates when snapshots about tasks information were taken.

2. For every date obtain the actual work of tasks which type of activity is REQ
(Requirements), DSG (Design) or TST (test) and are related to program with id 8.

3. For type of activity sum up the actual work of all the related tasks.

The results are presented in figure 4 of appendix D.

6.1.5 Review Coverage

The steps to obtain the metric were implemented through an algorithm:

1. Retrieve the dates when snapshots about review information were taken.

2. For every date calculate the sum of the sizes of reviews associated to project with
id 49.

3. For every date calculate the sum of the sizes of reviews associated to project with
id 49 and which state is accepted.

4. Calculate the review coverage by dividing the result of the sum of sizes of
accepted reviews, by the sum of sizes of all the reviews; then multiplying the
result by 100.

The results are presented in figure 5 of appendix D.

54

6.1.6 Actual Cost of the Work Performed

The steps to obtain the metric were implemented through an algorithm:

1. Retrieve the dates when snapshots about task information were taken.

2. For every date calculate the sum of actual work of all the tasks associated to
program with id 8, and which actual finish date is previous to the date of the
snapshot.

The results are presented in figure 6 of appendix D.

6.2 Conclusion
The tests described and performed have been useful to confirm that the structure
given to the original data provided by the consultant in the database, is appropriate to
generate information about the software development process.

Six tests were performed, every one related with the generation of a selected metric.
For every one of them, an algorithm was created using queries over the database and
then making some type of processing required to calculate the related metric.

The results obtained and shown through different graphics, were useful to obtain an
idea of the time and effort spent on the execution of some activities related with areas
of software development such as requirements and risks management. Initial
conclusions were derived out of the results, and also new inquiries about the reason
of the behaviors observed, or the reason why in some opportunities the information
generated seems to be not accurate enough.

It can be concluded that in the future many ideas could be proposed to analyze the
different areas of the software development process for which data is stored in the
database. Researchers will be able to detect how the related activities were performed,
detect possible errors, propose new questions about the results found and try to solve
them by creating the needed queries, or consulting with the provider of the data.

55

56

CCChhhaaapppttteeerrr 777

7 Conclusions and Future work
The goal of this project was the creation of a quality database where information
about the software development process from two companies was structured, and
stored after going through a procedure of quality improvement. This was made to
accomplish with the objective of the consultant who provided the data, who intends to
contribute with academic research, and obtain also a feedback on techniques he could
use to make better his own work procedures.

As final result, three deliverables are available: the quality database, the quality
documentation of the database, and a work methodology which was followed for their
creation.

The work methodology has been proposed as a result of literature review on quality
data. It is intended to explain the steps that should be followed to improve the quality
on the data provided by the consultant, and then create a database where to store
these data and keep their quality.

Through the data cleaning phase of the work methodology, the data provided by the
consultant was analyzed in three quality dimensions: consistency, completeness and
accuracy. Some of the attributes of the snapshots were selected for that analysis, and
their quality was measured using some metrics proposed for every dimension.
Afterwards, improvements that were possible according to the availability of business
context information were performed. The final results obtained after these activities
have been documented to be used as reference of the quality of the data.

Once the cleaning phase finished, the analysis and design of the database were made,
and finally the database was implemented. The work methodology proposes the
creation of the database taking into account possible new quality dimensions. In this
particular case, the consultant didn’t suggest new quality dimensions, so no special
entities or attributes were created apart from those used to store the information
provided by the companies. Some special considerations made were to keep
anonymous the main data about the companies and give interpretability to the
database and the documentation of the same.

The documentation contains the description of the entities that were created, their
relationships, data types and kind of information they store.

Regarding the tests to prove that the structure given to the information is useful,
some calculations of metrics were performed. Those metrics are based on the actual
measurements that the consultant makes through his job, in order to generate
indicators of how the software development process is being followed, and then
suggest improvements. Many of them are specifically oriented to analyze a certain
area of the process which the company has the goal to improve.

The results obtained with the measurements are useful to interpret some facts
concerned with the development in the companies, but also show that in several
cases the data could be incomplete and thus calculations were not possible to be done
for all the dates. It must be taken into account that the indicators are not 100%
reliable since neither the data has a 100% quality level.

Talking about the benefit of the work performed during this project for future
researchers, it can be said that they will have an inside on the quality and structure of
the data, and will be able to use it in order to analyze the software development
process of the companies. That analysis could be done through the calculation of
metrics, or the application of methods such as process mining that can help to
understand the procedures followed to execute different activities; for example those
involved in requirements management.

Additionally, among the future perspectives for using the database and the results
provided by the project, is the creation of a data warehouse to store the information.
This can provide the consultant an idea about how to introduce also the use of a data
warehouse in his own job.

A literature review about the topic of data warehouses has been presented in order to
give the perspective of how it could be implemented in future work. As it was
concluded, the work made during this project is part of what is necessary for the
creation of a data warehouse; this is because activities for quality improvement,
standardization and structuring of the data performed here, are part of a normal data
warehouse design and implementation. Therefore the database is an intermediate
result which can be easily adapted for the migration of the data to the data structure
of a warehouse.

The work methodology is also useful for the consultant because he could consider
complementing the current procedures he follows to analyze the data, with the
activities proposed to perform data quality measurement and improvement. Those
activities are useful for him to get an inside of the errors that are made when data is
stored by people in companies; therefore after performing quality measurements, he
could indicate to them the kind of improvements that they should do in order to
avoid those errors when storing the information.

Once the improvements to the methods to store data would be made, the consultant
could have more quality data stored in the snapshots. This would be useful to
generate more accurate calculations of the metrics he uses to indicate enhancements
that must be done in the software development process of the companies. For
example on the procedures they use to correct defects, which could be making them
to spend more effort than estimated.

Additionally, the work methodology can also be useful for giving an idea to the
consultant about how to structure the data after it is stored in the snapshots.
Currently he already uses a database to make this structure, and he employs the
information there to create the metrics that will give to the companies, indicators of
their performance during the software development process. Nevertheless, taking

57

into account the perspective of adding more quality to the data, the consultant could
figure out whether there are quality dimensions that he could add to the information
in his database, in order to make it more useful for his job; with this in mind he
could add some new entities to his database, which would be used with the aim to
add the considered quality dimensions.

As already explained the database created during this project will be used by other
researchers in future work. Having in mind the quality figures presented in chapter
5, they will be able to indicate the level of reliability of the results they obtain with
their job. The consultant could also use these results to understand the errors made
by the companies that provided data for this project.

Finally, the work methodology proposed here, can be followed in the future by other
students in case they receive new data from the consultant and want to improve their
quality and store it in the database for their job.

58

59

AAAppppppeeennndddiiixxx AAA

8 Appendix A: Snapshots Documentation
In this appendix a description of the structure of the snapshots for both companies is
made. In both cases the snapshots are classified in different categories according to
the type of data they store. For every type of snapshot it is indicated the type of
information it contains, the list of the fields that compose it, the description of every
field, and the data type stored in every field.

The snapshots from Company 1 are shown in tables of section 1, and the snapshots
from Company 2 are shown in tables of section 2. The information used for the
description was obtained from original documentation of the design of the tool that
generates the snapshots, and comments made to complement given by the provider
of the information.

8.1 Company 1

8.1.1 Architecture data

The architecture data represents the common key among all the snapshots.

Field name Description Values – Data type

Data Set Identification of the dataset in the
snapshot.

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

History Date Date the snapshot was taken Date

Product_SubSys Short indicator for the
subsystem/cmpgroup/component. Will
be mapped to the proper item in the
database.

String

System System name – System = topmost
deliverable; often Program name and
System name look alike.

String

SubSystem Subsystem from which the snapshot was
taken – Continuous database the
snapshot is taken from. Due to multisite
cooperation multiple databases can be
included as source.

Subsystem = major part of system;
system = assembly of 1 or more
subsystems.

String

CmpGroup Name of the components group.

Cmpgroup is major part of subsystem;
subsystem = assembly of 1 or more
cmpgroups

String

Component Name of the component. Component is
major part of cmpgroup; cmpgroup =
assembly of 1 or more components

String

External Field not present in all snapshots.

Indicates that some part of a system is
not created by the program / project /
team but delivered by or bought from an
external party

Integer

Table A1. Architecture Data

8.1.2 Defect data

The information in the snapshots that correspond to the Defect data is related with
the defects, tests requirements, tests cases, tests steps, and bugs that were used or
originated during the test phase in the software development process at both
companies.

In this group there are three types of snapshots which have different fields, which are
described in the following tables. The information used for the documentation was
obtained from the document [SIE08] provided by the consultant, and from the master
thesis [URE08] and [IBE08].

60

Subcategory 1

Field name Description Values – Data
type

Data Set Identification of the dataset in the snapshot –

Dataset = set of snapshots from the same source
at regular intervals.

Project – All teams – Type of data

String

History Date Date the snapshot was taken Date

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

Team from configuration – Name of the team in
charge of the creation of a component

Team has 1 or more projects to serve

String

ProdSubSys from configuration – Short indicator for the
subsystem/cmpgroup/component. Will be
mapped to the proper item in the database

String

System System name – System = topmost deliverable;
often Program name and System name look
alike.

String

Version

from QC –Version of the system or subsystem
etc.

String

DefectId from QC – Identification of the defect being
documented

Integer

DefectType from QC – Description of the defect. This data is
not always available.

The data contain real defects (PR), changes to the
requirements (CR) and impact of normal work
(IR). The classification is not always known
immediately

String

DefectState based on status from QC – This is the same as
CrStatus but mapped onto a standard set of

String

61

states.

Main State Substate Meaning

Deferred On hold Not solved

Submitted Reported

Analysis Investigation

Resolution Fixing

Open

Evaluation Verifying the fix

Closed Closed Closed after fixing

Duplicate Already reported

Nonrepro Can’t solve, not
reproducible

Rejected Won’t solve, live
with it

Rejected

By design Shouldn’t solve,
intended behavior.

DefectStatus from QC – State is the main state, open, closed,
deferred or rejected. Status is the substate of the
main state. To keep them separate is easier when
handling this data in queries.

String

DefectEstimate from QC – Not in all snapshots. Estimated cost
to repair the defect (PR) or to implement the
change (CR) or the task (IR). In many cases there
is a symbol “?”, instead of data.

String

DefectCost from QC – Actual cost to repair the defect (PR)
or to implement the change (CR) or the task (IR).
In many cases there is a symbol “?”, instead of
data.

String

Severity from QC –

S = show stopper/ blocker

A = major function affected

String

62

B = minor function affected

C = cosmetic

D = all other

How much the defect/change affects the
performance or behavior of system

Priority from QC –

Priority given to the defect for its treatment.

[From defects project]

Ordering to address things in the project:

1 = Low

2 = Medium

3 = High

4 = Top

How soon we want the issue to be solved

String

Injected from QC – This variable explains in which phase
the defects has been caused:

1 = Requirements definition and specification

2 = Architectural design

3 = Implementation

4 = Integration

5 = Qualification

6 = Not applicable

There is data of this kind but not much, in many
cases there is a symbol “?”

String

Detected from QC – When was the defect detected.

This variable explains in which phase the defects
has been discovered:

1 = Requirements definition and specification

2 = Architectural design

3 = Implementation

4 = Integration

String

63

5 = Qualification

6 = Not applicable

There is data of this kind but not much, in many
cases there is a symbol “?”

DefectStart status transition date from QC – Creation of the
defect

Date

DefectAnalysis status transition date from QC –

State set to in-analysis [sub of analysis]. Date
when the analysis started.

Date

DefectResolution status transition date from QC –

State set to in-resolution [sub of resolution]. Date
when the defect entered to resolution

Date

DefectEvaluation status transition date from QC –

state set to in-evaluation [sub of evaluation]. Date
when the defect entered to the evaluation
process.

Date

DefectFinish status transition date from QC –

state set to closed or to rejected

Date

Table A2. Defect Data 1

Subcategory 2

Field name Description Values – Data
type

Data Set Identification of the dataset in the snapshot –

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

History Date Date this snapshot was taken Date

Program Program – architectural components. This is
the name of the programme of which the
project is a part.

String

64

Program = collection of Projects

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

Team from configuration – Name of the team in
charge of the creation of a component

Team has 1 or more projects to serve

String

ProdSubSys from configuration – Short indicator for the
subsystem/cmpgroup/component. Will be
mapped to the proper item in the database

String

System System name – System = topmost deliverable;
often Program name and System name look
alike.

String

Version Version of software. Data not always available String

DefectId Id of the defect Integer

Defect Type Description of the defect. This data is not
always available.

The data contain real defects (PR), changes to
the requirements (CR) and impact of normal
work (IR). The classification is not always
known immediately.

String

based on status from QC – This is the same as
CrStatus but mapped onto a standard set of
states.

Main State Substate Meaning

Deferred On hold Not solved

Submitted Reported

Analysis Investigation

Resolution Fixing

DefectState

Open

Evaluation Verifying the fix

String

65

Closed Closed Closed after fixing

Duplicate Already reported

Nonrepro Can’t solve, not
reproducible

Rejected Won’t solve, live
with it

Rejected

By design Shouldn’t solve,
intended behavior.

DefectStatus from QC – State is the main state, open, closed,
deferred or rejected. Status is the substate of
the main state. To keep them separate is easier
when handling this data in queries.

String

DefectCost from QC – Actual cost to repair the defect (PR)
or to implement the change (CR) or the task
(IR). In many cases there is a symbol “?”,
instead of data.

Severity This variable explains the impact of the defect:

1 = S(Showstopper / blocker)

2 = A (Major Function affected)

3 = B (Minor Function affected)

4 = C (Cosmetic)

6 = D (All Others)

How much the defect/change affects the
performance or behavior of system

String

Priority Priority given to the defect for its treatment.

[From defects project]

Ordering to address things in the project:

1 = Low

2 = Medium

3 = High

4 = Top

String

66

How soon we want the issue to be solved

Injected This variable explains in which phase the
defects has been caused:

1 = Requirements definition and specification

2 = Architectural design

3 = Implementation

4 = Integration

5 = Qualification

6 = Not applicable

Data not available

String

Detected This variable explains in which phase the
defects has been discovered:

1 = Requirements definition and specification

2 = Architectural design

3 = Implementation

4 = Integration

5 = Qualification

6 = Not applicable

Data not available

String

DefectStart status transition date from QC – Creation of
the defect

Date

DefectAnalysis Status transition date from QC –

State set to in-analysis [sub of analysis]. Date
when the analysis started.

Date

DefectResolution Status transition date from QC –

State set to in-resolution [sub of resolution].
Date when the defect entered to resolution

Date

DefectEvaluation status transition date from QC –

state set to in-evaluation [sub of evaluation].
Date when the defect entered to the evaluation
process.

Date

67

DefectFinish status transition date from QC –

state set to closed or to rejected

Date

Table A3. Defect Data 2

Subcategory 3

Field name Description Values – Data
type

Data Set Name of the dataset. Project name + date of
snapshot

String

History Date Date this snapshot was taken Date

System System name String

Subsystem Subsystem from which it was taken the
snapshot - Continuous database the snapshot is
taken from. Due to multisite cooperation
multiple databases

The commercial database application uses this
name with a different meaning than consultant
does

Subsystem = major part of system; system =
assembly of 1 or more subsystems

String

Problem_number Unique id within the continuous database

Maps onto defect id

Integer

Product_name used differently by each project String

Product_subsys Name of the subsystem where the defect is
stored. Product name.

Short indicator for the
subsystem/cmpgroup/component. Will be
mapped to the proper item in the database.

String

Version Version of the defect.

1 (always)

Integer

68

Release Release label. Product name +

Release Number

String

Priority Priority given to the defect for its treatment.
Priority of the defect to be solved?

[From defects project]

Ordering to address things in the project:

1 = Low

2 = Medium

3 = High

4 = Top

String

Severity Level of severity of the defect –

S = show stopper/ blocker

A = major function affected

B = minor function affected

C = cosmetic

D = all other

String

Defect_type Description of the defect. This data is not
always available.

String

Problem_type

Depending the hierarchy of the defect, the
defect can be parent or child

Not of interest; is a check for correctly getting
the right records from the source database

String

Request_type Explain the needs of the resolution of the
defect:

PR = Problem report

CR = Change Request

IR = Implementation Request

String - with
three possible
values

Crstatus Current state of the defect in the resolution
process

Analysed

Concluded

String

69

Created

Duplicate

Duplicate_analysed

Duplicate_concluded

Duplicate_evaluated

Evaluated

In_analysis

In_evaluation

In_resolution

Later_release

Not_reproducible

On_hold

Rejected

Resolved

Submitted

Caused_during when was the defect injected –

This variable explains in which phase the
defects has been caused:

1 = Requirements definition and specification

2 = Architectural design

3 = Implementation

4 = Integration

5 = Qualification

6 = Not applicable

Phases described in snapshots:

Alpha testing, Architecture, Beta testing,
Component testing, Design, Implementation,
Integration testing, Not Applicable,
Requirements, Scenarios.

The data is not available in all cases.

String

Discovered_

during

when was the defect detected –

This variable explains in which phase the

String

70

defects has been discovered:

1 = Requirements definition and specification

2 = Architectural design

3 = Implementation

4 = Integration

5 = Qualification

6 = Not applicable

Phases described in snapshots:

Alpha testing, Architecture, Beta testing,
Component testing, Design, Implementation,
Integration testing, Not Applicable,
Requirements, Scenarios.

Act_total_eff Estimated total effort spent on solving the
defect.

Float

Create_time Creation of the record Date

Submitted_time Date of submission of the defect. State set to
submitted.

Date

In_analysis_time State set to in_analysis. The analysis started.

Data not always available.

Date

Analysed_time State set to Analysed. Date when the analysis
ended.

Data not always available.

Date

In_resolution_

time

State set to in_resolution. Date when the defect
entered to resolution.

Data not always available.

Date

Resolved_time State set to resolved. Date when the resolution
ended.

Data not always available.

Date

In_evaluation_

time

State set to in-evaluation. Date when the defect
entered to the evaluation process.

Data not always available.

Date

71

Evaluated_time State set to evaluated. Date when the evaluation
ended.

Data not always available.

Date

Modify_time Latest change date of the defect’s status. When
it is closed or closured.

Date

Modifiable_in Name of the subsystem (local database of the
responsible party) where the changes will be
carried out.

String

Discovered_on The project = MTR-A String

Team Team in charge of handling the defect.

Field not present in all snapshots.

String

Program Program – architectural components. This is
the name of the programme of which the
project is a part

Program = collection of Projects

Field not present in all snapshots.

String

Scope Not used.

Table A4. Defect Data 3

8.1.3 Project data – “Effort Data”

The data stored in the snapshots in the category Effort Data is related with the time,
effort, budget spent in projects for software development, and it has been retrieved
from different databases. The documentation of the snapshots is based on the
documents [SIE08], [SIE02-1] and [SIE02-2].

Field name Description Values – Data
type

Data Set Identification of the dataset in the snapshot String

History Date Date the snapshot was taken Date

Unique_ID from PSN – Unique ID of the task within the Integer

72

MsProject file, maintained over time (i.e. the
same snapshots unless task is deleted and
replaced)

Outline_

Number

from PSN – The structural ordering of the task in
the file, 1 comes before 2. 1.1 is the first child, etc.

String

Milestone Is the task a Milestone? Yes/No. YES if task is a
milestone.

String

Summary Is the task a summary task? Yes/No. A summary
task is a parent and as such, it is the sum of all its
child tasks. YES is the task is a parent.

String

Name from PSN – The description of the task in
MsProject.

String

Flag 10 Indicates task completion percentage (either 0 /
100). If it is 0 the task is ongoing. Yes/No
(100/0)

For milestones

• set to yes when milestone has been successfully
passed

For non-summary tasks

• set to yes when a task is complete; the task will
then be included in the work performed during
Earned Value calculations

Integer

Baseline_Start Start from Baseline 1 in
PSN when available

Date

Baseline_Finish Finish from Baseline 1
in PSN when available

Date

Baseline_Work Work from Baseline 1 in
PSN

Float (minutes)

Start_Date Scheduled start from
PSN

Date

Finish_Date Scheduled finish from
PSN

The start, finish and
scheduled work are
the current plan.

When the plan is
approved, a baseline
copy is saved of the
scheduled start, finish
and work (hours).

The actual start, finish
and work reflect

Date

73

Scheduled_

Work

Scheduled work
[Actuals+ETC] from
PCteam and PSN

Float (minutes)

Actual_Start from PCteam Date

Actual_Finish from PCteam. Only
recorded when the task
is 100% complete.
Included only for
completeness sake.

Date

Actual_Work from PCteam

progress. When the
actual start is set the
scheduled start is set
to the actual. For
ongoing tasks (Flag
10=0) the finish date
is set to the snapshot
date. The actual work
is always the effort
spent between start
and finish.

Float (minutes)

Text4 The type of activity involved, see explanation.
PDSL Activity Type*

Project Start

System Proposed

System Defined

Code Complete

System Complete

System Accepted

Project End

Project Start

Project Implementation Approval

SW Components Specified

SW Components Available

System Validated

System Release Approval

Project Complete

Kick Off

Concept Start

Product Range Start

Design Release

String

74

Commercial Release

Mass Production Release

PDSL Activity Type:

 Requirements
 Design
 Coding
 Testing
 Management
 Support
 Problems
 Other
OR PDSL Milestone:

 PS
 SP
 SD
 CC
 SC
 SA
 PE
OR OSRP Milestone:

 PS (=PS)
 PIA (=SP)
 SWCS (=SD)
 SWCA (=SC)
 SV
 SRA (=SA)
 PC (=PE)
OR SPEED Milestone:

 KO (=PS)
 CS (=SP)
 PRS (=SD)
 DR (=SC)
 CR (=SA)
 MPR (~PE)

From *

For milestones:
 Teammilestone
 projectmilestone

75

For non-summary tasks (see Quality Manual)
 REQ for Requirements/ Specification
 DES for Architecture / Design
 ARCSUP for Architecture Support
 IMP for Implementation / Coding
 ITS for Integration Test Specification
 ITI for Integration Test Implementation
 ITE for Integration Test Execution
 QTS for Qualification Test Specification
 QTI for Qualification Test Implementation
 QTE for Qualification Test Execution
 MGT for

Management/Planning/Tracking/Meeting
 SUP for CM/QA/Training
 REW for Problem Solving
 Other for non-project activities

Text5 Deliverable. If non-empty indicates that the task
has a deliverable with it.

String

Text15 This field is only used in some snapshots. e.g.
Healthy – living – Is it the Program.

This is the name of the programme of which the
project is a part.

Program = collection of Projects

It is not present in al files

String

Text16 It is the name of the project.

Project has 1 or more teams to serve it

For all tasks

String

Text17 Is it the name of the team

For all tasks

Team has 1 or more projects to serve

String

Text25 For all tasks. System Name, e.g. C-STEP

System is composed by subsystems

String

Text26 For tasks uniquely related to a single subsystem

• Subsystem Name, e.g. SV for Service Layer

String

76

Otherwise

• (same as) System Name

Subsystem is composed by cmpgroups

Text27 For tasks uniquely related to a single component
group.

• Component Group Name, e.g. SV_HDMAN

Otherwise

• (same as) Subsystem Name

Cmpgroup is composed by components

String

Text28 For tasks uniquely related to a single component

• Component Name

Otherwise

• (same as) Component Group Name

Note: for storage projects related to DVD+RW the
Component field is always set to the same value
as the Group field because defects are reported
only to the level of Component Groups

String

Text29 Release

There is not data available in some files.

String

Resource_

Names

From PSN – The name of the persons working
on the task, often suppressed for privacy reasons.

String

Table A5. Project Data

8.1.4 Review data

Some of the information used to document the snapshots in this category was obtained
from the document [IBE08]. The data contained in these snapshots is related with the
activity of reviewing documents used in different phases of the software development
cycle.

77

Field name Description Values – Data
type

Data Set Identification of the dataset in the snapshot
– Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

History Date Date the snapshot was taken Date

InitiationDate Day the tasks for review started Date

KickOffDate Date the review activity started Date

LoggingMeetingDate Date for meeting in the process of review Date

ClosureDate Date the review finished Date

DefectId Review id Integer

Project Name of the developed software project

Project has 1 or more teams to serve it

String

Team Name in charge of writing the document
under review.

Team has 1 or more projects to serve.

String

System System name

System = topmost deliverable; often
Program name and System name look
alike.

String

ProdSubsys Name of the subsystem where the review is
being made.

Short indicator for the
subsystem/cmpgroup/component. Will be
mapped to the proper item in the database.

String

Pool From which resource pool the moderatos of
the review is coming

String

WorkProductTitle Title of the document under inspection /
review

String

78

ActivityType The type of activity involved in each review:

1 = Requirements (REQ).

2 = Design (DES)

3 = Coding (IMP)

4 = Integration Test Specification (ITS)

5 = Integration Test Implementation (ITI)

6 = Other

String

NofParticipants Number of persons executing the review Integer

EntryEffort Effort spent on entry phase Integer

KickOffEffort Estimated effort spent on start activities Integer

PreparationEffort Estimated preparation effort spent on this
review, reading the documents and
preparing a list of mistakes.

Float

MeetingEffort Estimated effort in the review meeting Integer

ReworkEffort Estimated Rework effort Integer

VerificationEffort Estimated effort for the review of the
rework made

Integer

ReviewSize Number of logical pages or lines of code
(LOC) that the review has.

Integer

MajorDefects The most important defects that must be
solved in the review.

Integer

MinorDefects The least important defects that must be
solved in the review.

Integer

Type Explain the needs of the review

PR = Problem report

CR = Change Request

IR = Implementation Request

String

Severity Level of severity of the defect being
reviewed

String

79

S = show stopper/ blocker

A = major function affected

B = minor function affected

C = cosmetic

D = all other

ExternalWorkProduct 0 = internal

-1 = external

Integer

State Outcome of the review process: document
is

Accepted

Cancelled

Rejected

Rework

String

Unit Unit Of measurement lines or pages String

LeadTime Time it took to review and correct a
document

Integer

Moderator Name of the moderator of the review String

TargetDateVerification Date scheduled for the verification of the
rework

Date

TargetDateRework Date scheduled for the rework Date

TotalEffort Estimated total effort spent on the review.
It is the sum of EntryEffort, KickOfEffort,
PreparationEffort, MeetingEffort,
ReworkEffor, VerificationEffort

Float

PreparationRate Average Effort per page spent on
preparation

Float

RemovalRate Average Defects removed per page Float

AverageSize Review Size / Number of participants Float

DefectCost Total cost of review / major defects solved Float

80

SaneID Outcome of sanity checks Integer

SaneCD Outcome of sanity checks Integer

SaneLT Outcome of sanity checks Integer

SaneNP Outcome of sanity checks Integer

SaneTE Outcome of sanity checks Integer

SanePE Outcome of sanity checks Integer

SaneTD Outcome of sanity checks Integer

SaneSZ Outcome of sanity checks Integer

SanePR Outcome of sanity checks Integer

SaneDC Outcome of sanity checks Integer

Sane Outcome of sanity checks Integer

Recent Outcome of sanity checks – whether data
element is in the expected range

Integer

Table A6. Review Data

8.1.5 Size Data

The data in the snapshots that belong to this category give information about the
number size of the code developed during the software development process.

Field name Description Values – Data type

Data Set Identification of the dataset in the snapshot.

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

History Date Date the snapshot was taken Date

Program Program – architectural components. This is
the name of the programme of which the
project is a part.

Program = collection of Projects

String

81

System System name – System = topmost deliverable;
often Program name and System name look
alike.

String

ProdSubSys Short indicator for the
subsystem/cmpgroup/component. Will be
mapped to the proper item in the database.

String

BaseRootPath Path to the root directory of the base version String

NewRootPath Path to the root directory of the new version String

Unit Unit of measure to count the code lines String

Total Total number of code lines Integer

Blank Number of blank lines in the code file Integer

Comment Number of comment lines in the code file Integer

Deleted Number of lines deleted in the code file Integer

Equal Number of unaltered identical lines Integer

Moved Number of lines moved in the code file Integer

Modified Number of lines modified in the code file Integer

Added Number of lines added to the code in the file Integer

Source Number of lines in the original source

Equal + Moved+ Modified + Added

Integer

Delta It is equal to the number of lines

Modified + added

Integer

File Name of the file with the code String

Type Type of file. Depends on the programming
language

String

MatchPath There is not data available in snapshots

Is a file has been moved from one place to
another this is the other location

82

MatchFile There is not data available in snapshots

Is a file has been given another name, this is
the other name

Path0 The relative path below the baserootpath / new
rootpath where the file resides

Table A7. Size Data

8.2 Company 2

8.2.1 Architecture Data

The architecture data represents the common key among all the snapshots.

Field name Description Data type

DataSet Identification of the dataset in the
snapshot –

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

HistoryDate Date the snapshot was taken Date

Product_SubSys Short indicator for the
subsystem/cmpgroup/component. Will
be mapped to the proper item in the
database.

String

System System name – System = topmost
deliverable; often Program name and
System name look alike.

String

SubSystem Subsystem from which the snapshot was
taken – Continuous database the snapshot
is taken from. Due to multisite
cooperation multiple databases can be
included as source.

Subsystem = major part of system; system
= assembly of 1 or more subsystems.

String

83

CmpGroup Name of the components group.

Cmpgroup is major part of subsystem;
subsystem = assembly of 1 or more
cmpgroups

String

Component Name of the component. Component is
major part of cmpgroup; cmpgroup =
assembly of 1 or more components

String

External Indicates that some part of a system is not
created by the program / project / team
but delivered by or bought from an
external party

Integer

Table A8. Architecture Data

8.2.2 Case Data

The information for the documentation of the snapshots in this category was
obtained from the document [SIE08]. The data in these snapshots is related to the
test cases used in the tests made to the software during the software development
process.

Field name Description Values – Data type

DataSet Identification of the dataset in the
snapshot.

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

HistoryDate Date the snapshot was taken Date

Program from configuration –This is the name of
the programme of which the project is a
part.

Program = collection of Projects

String

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

84

Team from configuration – Name of the team in
charge of the creation of a component

Team has 1 or more projects to serve

String

ProdSubSys from configuration – Short indicator for
the subsystem/cmpgroup/component.
Will be mapped to the proper item in the
database

String

System System name – System = topmost
deliverable; often Program name and
System name look alike.

String

CaseId from QC – Identification of the test case Integer

based on status from QC – This is the
same as CrStatus but mapped onto a
standard set of states.

Main State Substate Meaning

Deferred On hold Not solved

Submitted Reported

Analysis Investigation

Resolution Fixing

Open

Evaluation Verifying
the fix

Closed Closed Closed after
fixing

Duplicate Already
reported

Nonrepro Can’t solve,
not
reproducible

CaseState

Rejected

Rejected Won’t solve,
live with it

String

85

By design Shouldn’t
solve,
intended
behavior.

CaseStatus from QC – State is the main state, open,
closed, deferred or rejected. Status is the
substate of the main state. To keep them
separate is easier when handling this data
in queries.

String

LinkedTests from QC – Identification of a related test Integer

CaseStart status transition – Date when the
execution of the test case started

Date

CaseFinish status transition – Date when the
execution of the test case finished

Date

Table A9. Case Data

8.2.3 Change Data

The information used to document the snapshots that belong to this category was
obtained from the document [SIE08]. The data in these snapshots refer to the
changes occurred in components during the software development process.

Field name Description Values – Data type

DataSet Identification of the dataset in the
snapshot

String

HistoryDate Date the snapshot was taken Date

Program Program – architectural components.
This is the name of the programme of
which the project is a part.

Program = collection of Projects.

String

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

86

Team from configuration – Name of the team in
charge of the creation of a component

Team has 1 or more projects to serve

String

System System name – System = topmost
deliverable; often Program name and
System name look alike

String

SubSystem Subsystem from which it was taken the
snapshot - Continuous database the
snapshot is taken from. Due to multisite
cooperation multiple databases

String

CmpGroup from configuration – Name of the group
where the component for which the
change request was made belongs to.

Cmpgroup is major part of subsystem;
subsystem = assembly of 1 or more
cmpgroups

String

Component from configuration – Name of the
component for which the change request
was made.

Component is major part of cmpgroup;
cmpgroup = assembly of 1 or more
components

String

ChangeIdent from RIC – Identification of the change
request

String

from RIC

Main State Substate Meaning

Deferred On hold Not solved

Submitted Reported

Analysis Investigation

Resolution Fixing

ChangeState

Open

Evaluation Verifying the
fix

String

87

Closed Closed Closed after
fixing

Duplicate Already
reported

Nonrepro Can’t solve,
not
reproducible

Rejected Won’t solve,
live with it

Rejected

By design Shouldn’t
solve,
intended
behavior.

ChangeStatus from RIC – State is the main state, open,
closed, deferred or rejected. Status is the
substate of the main state. To keep them
separate is easier when handling this data
in queries.

String

ChangeApproved from RIC – Was the change request
approved? Yes/NO

String

Category from RIC – Classification of the change
request:

 Budget

 Planning

 Scope

String

RootCause from RIC – Cause of the change request.
Some standard values are:

 External Business Impact

 Incomplete Business Impact Analysis

 Incomplete Functional Impact
Analysis

 Incomplete Technical Impact Analysis

String

88

 New Business Requirements

 Over-estimation of effort

 Requirements dropped

Priority Ordering to address change requests in
the project:

1 = Low

2 = Medium

3 = High

4 = Top

String

Detected from RIC – Phase of the project when the
need of a change was detected. Some of
the standard values are:

 Preparation system validation

 System Validation

 Launch

 Post Launch

 Validation

 Detailed Technical Design

 Preparation Operational Acceptance

 Coding

 Business Case

 Operational Acceptance

 Participant Acceptance

 System Validation

String

TargetDate from RIC – Date when the change request
should be solved

Date

EstCostsEUR from RIC – Estimated cost in euro of
solving the change request

Float

89

EstCostsMD from RIC – Estimated cost in mandays in
additional budget for solving the change
request

Float

EstContingencyM
D

from RIC – Estimated cost in mandays
from contingency budget for solving the
change request

?

CreateDate status transition date from RIC – Date the
change request was created

Date

ApprovalDate status transition date from RIC – Date the
change request was approved

Date

LastModified status transition date from RIC – Last
time the change request status was
modified

Date

Draft status transition date from RIC – Date
when the draft of the change request was
created

Date

Raised status transition date from RIC – Date
when the change request was raised

Date

Assigned status transition date from RIC – Date the
change request was assigned to be
analyzed

Date

Completed status transition date from RIC – Date the
change request was completed

Date

Approval status transition date from RIC – Date the
change request started the procedure for
approval

Date

Approved status transition date from RIC – Date the
change request was approved

Date

Closed status transition date from RIC – Date the
change request was closed

Date

Cancelled status transition date from RIC – Date the
change request was cancelled

Date

90

Rejected status transition date from RIC – Date the
change request was rejected

Date

Table A10. Change Data

8.2.4 Defect Data

The information used to document the snapshots that belong to this category was
obtained from the document [SIE08]. The data in these snapshots is related with test
requirements (usually TDS’s), test cases, tests steps, defects and bugs from a QC
database.

Field name Description Values – Data type

DataSet Identification of the dataset in the snapshot.

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

HistoryDate Date the snapshot was taken String

Program Program – architectural components. This
is the name of the programme of which the
project is a part.

Program = collection of Projects

String

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

Team from configuration – Name of the team in
charge of the resolution of the defect.

Team has 1 or more projects to serve

String

ProdSubSys from configuration – Short indicator for the
subsystem/cmpgroup/component. Will be
mapped to the proper item in the database

String

System from configuration – Name of the system

System = topmost deliverable; often
Program name and System name look alike

String

Version from QC – Version of the system or
subsystem etc.

String

91

DefectId from QC – Id of the defect Integer

DefectType from QC – Description of the defect. This
data is not always available.

The data contain real defects (PR), changes
to the requirements (CR) and impact of
normal work (IR). The classification is not
always known immediately.

String

based on status from QC – This is the same
as CrStatus but mapped onto a standard set
of states.

Main State Substate Meaning

Deferred On hold Not solved

Submitted Reported

Analysis Investigation

Resolution Fixing

Open

Evaluation Verifying
the fix

Closed Closed Closed after
fixing

Duplicate Already
reported

Nonrepro Can’t solve,
not
reproducible

Rejected Won’t solve,
live with it

DefectState

Rejected

By design Shouldn’t
solve,
intended
behavior.

String

92

DefectStatus from QC – State is the main state, open,
closed, deferred or rejected. Status is the
substate of the main state. To keep them
separate is easier when handling this data in
queries.

String

DefectEstimate from QC – Estimated cost to repair the
defect (PR) or to implement the change
(CR) or the task (IR). In many cases there is
a symbol “?”, instead of data.

Integer

DefectCost from QC – Actual cost to repair the defect
(PR) or to implement the change (CR) or the
task (IR). In many cases there is a symbol
“?”, instead of data.

Integer

Severity from QC –

S = show stopper/ blocker

A = major function affected

B = minor function affected

C = cosmetic

D = all other

How much the defect/change affects the
performance or behavior of system

String

Priority from QC –

Priority given to the defect for its treatment.

[From defects project]

Ordering to address things in the project:

1 = Low

2 = Medium

3 = High

4 = Top

How soon we want the issue to be solved

String

Injected from QC – phase of the project when the
defect was injected

String

93

Detected from QC – phase of the project when the
defect was detected

String

DefectStart status transition date from QC – Creation of
the defect

Date

DefectRestart Not in all files - status transition date from
QC – Date when the defect was restarted.

Date

DefectOpen Not in all files - status transition date from
QC –

Date when the defect was opened

Date

DefectReopen Not in all files - status transition date from
QC –

Date when the defect was reopened

Date

DefectAnalysis status transition date from QC - State set to
in-analysis [sub of analysis]. Date when the
analysis started.

Date

DefectResolution Status transition date from QC –

State set to in-resolution [sub of resolution].
Date when the defect entered to resolution

Date

DefectEvaluation status transition date from QC –

state set to in-evaluation [sub of evaluation].
Date when the defect entered to the
evaluation process.

Date

DefectFinish status transition date from QC –

state set to closed or to rejected

Date

Table A11. Defect Data

8.2.5 Issue Data

The information to document the snapshots that belong to this category was obtained
from the document [SIE08]. The data stored in these snapshots is related with the
issues arised during the software development process.

94

Field name Description Values – Data type

DataSet Identification of the dataset in the snapshot
–

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

HistoryDate Date the snapshot was taken Date

Program Program – architectural components. This
is the name of the programme of which the
project is a part.

Program = collection of Projects

String

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

Team from configuration – Name of the team in
charge of managing the issue

Team has 1 or more projects to serve

String

System System name – System = topmost
deliverable; often Program name and
System name look alike.

String

SubSystem Subsystem from which the snapshot was
taken – Continuous database the snapshot
is taken from. Due to multisite cooperation
multiple databases can be included as
source.

Subsystem = major part of system; system =
assembly of 1 or more subsystems.

String

CmpGroup from configuration – Name of the
component group where the component for
which the issue was identified belongs to.

Cmpgroup is major part of subsystem;
subsystem = assembly of 1 or more
cmpgroups.

String

Component from configuration – Name of the String

95

component for which the issue was
detected.

Component is major part of cmpgroup;
cmpgroup = assembly of 1 or more
components

IssueIdent from RIC – Identification of the issue Integer

from RIC

Main State Substate Meaning

Deferred On hold Not solved

Submitted Reported

Analysis Investigation

Resolution Fixing

Open

Evaluation Verifying the
fix

Closed Closed Closed after
fixing

Duplicate Already
reported

Nonrepro Can’t solve, not
reproducible

Rejected Won’t solve,
live with it

IssueState

Rejected

By design Shouldn’t
solve, intended
behavior.

String

IssueStatus from RIC – from QC –. Status is the
substate of the main state. To keep them
separate is easier when handling this data
in queries.

String

96

Category from RIC – Category of the issue – Some
default values for this field are:

 Change and configuration management

 Delivery

 Planning

 Resource equation

 Scope

 Vision and Strategy

String

Criticality from RIC- Criticality of the issue. Default
values:

 Major

 Minor

 Moderate

 Significant

String

PhaseDetected from RIC – Phase of the project when the
issue was detected

String

CreateDate status transition date from RIC – Date
when the issue was created

Date

LastModified status transition date from RIC – Last time
the issue was modified

Date

Draft status transition date from RIC – Date the
draft of the issue was created

Date

Raised status transition date from RIC – Date the
issue was raised

Date

Assigned status transition date from RIC – Date the
issue was assigned to be solved

Date

Completed status transition date from RIC – Date the
issue was completely solved

Date

Closed status transition date from RIC – Date the
issue was closed

Date

97

Cancelled status transition date from RIC – Date the
issue was cancelled

Date

Table A12. Issue Data

8.2.6 Project Data - “Effort Data”

The data stored in the snapshots in the category Effort Data is related with the time,
effort, budget spent in projects for software development, and it has been retrieved
from different databases. The documentation of the snapshots is based on the
documents [SIE08], [SIE02-1] and [SIE02-2].

Field name Description Values – Data type

DataSet Identification of the dataset in the snapshot String

HistoryDate Date the snapshot was taken Date

Unique_Id from PSN – Unique ID of the task within the
MsProject file, maintained over time (i.e. the
same snapshots unless task is deleted and
replaced)

Integer

Outline_Number from PSN – The structural ordering of the
task in the file, 1comes before 2. 1.1 is the
first child, etc.

Float

Milestone Is the task a Milestone? Yes/No. YES if task
is a milestone.

String

Summary Is the task a summary task? Yes/No. A
summary task is a parent and as such, it is
the sum of all its child tasks. YES is the task
is a parent.

String

Name from PSN – The description of the task in
MsProject.

String

Flag10 Indicates task completion percentage (either
0 / 100). If it is 0 the task is ongoing.
Yes/No (100/0)

For milestones

• set to yes when milestone has been

Integer

98

successfully passed

For non-summary tasks

• set to yes when a task is complete; the task
will then be included in the work performed
during Earned Value calculations

Initial_Start Is the baseline start when first baselines;
later baselining may cause baseline start to
differ. Not in all snapshots

Date

Initial_Finish Is the baseline finish when first baselines;
later baselining may cause baseline finish to
differ. Not in all snapshots

Date

Initial_Work Is the baseline work when first baselines;
later baselining may cause baseline work to
differ. Not in all snapshots

Float

Baseline_Start Start from Baseline 1 in
PSN when available

Date

Baseline_Finish Finish from Baseline 1
in PSN when available

Date

Baseline_Work Work from Baseline 1
in PSN

Float

Start_Date Scheduled start from
PSN

Date

Finish_Date Scheduled finish from
PSN

Date

Scheduled_Work Scheduled work
[Actuals+ETC] from
PCteam and PSN

Float

Actual_Start from PCteam - What
is PCteam

Date

Actual_Finish from PCteam. Only
recorded when the task
is 100% complete.
Included only for

The start, finish
and scheduled
work are the
current plan.

When the plan is
approved, a
baseline copy is
saved of the
scheduled start,
finish and work
(hours).

The actual start,
finish and work
reflect progress.
When the actual
start is set the
scheduled start is
set to the actual.
For ongoing tasks
(Flag 10=0) the
finish date is set to
the snapshot date.

Date

99

completeness sake.

Actual_Work from PCteam

The actual work is
always the effort
spent between start
and finish.

Float

Text4 The type of activity involved, see explanation.
PDSL Activity Type*

Project Start

System Proposed

System Defined

Code Complete

System Complete

System Accepted

Project End

Project Start

Project Implementation Approval

SW Components Specified

SW Components Available

System Validated

System Release Approval

Project Complete

Kick Off

Concept Start

Product Range Start

Design Release

Commercial Release

Mass Production Release

PDSL Activity Type:

 Requirements
 Design
 Coding
 Testing

String

100

 Management
 Support
 Problems
 Other
OR PDSL Milestone:

 PS
 SP
 SD
 CC
 SC
 SA
 PE
OR OSRP Milestone:

 PS (=PS)
 PIA (=SP)
 SWCS (=SD)
 SWCA (=SC)
 SV
 SRA (=SA)
 PC (=PE)
OR SPEED Milestone:

 KO (=PS)
 CS (=SP)
 PRS (=SD)
 DR (=SC)
 CR (=SA)
 MPR (~PE)

From *

For milestones:
 Teammilestone
 projectmilestone
For non-summary tasks (see Quality Manual)
 REQ for Requirements/ Specification
 DES for Architecture / Design
 ARCSUP for Architecture Support
 IMP for Implementation / Coding
 ITS for Integration Test Specification
 ITI for Integration Test Implementation
 ITE for Integration Test Execution

101

 QTS for Qualification Test Specification
 QTI for Qualification Test

Implementation
 QTE for Qualification Test Execution
 MGT for

Management/Planning/Tracking/Meeting
 SUP for CM/QA/Training
 REW for Problem Solving

Other for non-project activities

Text5 Deliverable. If non-empty indicates that the
task has a deliverable with it.

String

Text15 This field is only used in some snapshots.
This is the name of the programme of which
the project is a part.

Program = collection of Projects

Text16 It is the name of the project.

Project has 1 or more teams to serve it

For all tasks

String

Text17 Is it the name of the team

For all tasks

Team has 1 or more projects to serve

String

Text25 System

For all tasks. System Name, e.g. C-STEP

System has subsystems

String

Text26 Subsystem

For tasks uniquely related to a single
subsystem

• Subsystem Name, e.g. SV for Service Layer

Otherwise

• (same as) System Name

Subsystem has cmpgroups

String

Text27 Group String

102

For tasks uniquely related to a single
component group

• Component Group Name, e.g.
SV_HDMAN

Otherwise

• (same as) Subsystem Name

Cmpgroup has components

Text28 Component

For tasks uniquely related to a single
component

• Component Name

Otherwise

• (same as) Component Group Name

Note: for storage projects related to
DVD+RW the Component field is always set
to the same

value as the Group field because defects are
reported only to the level of Component
Groups

String

Text29 Release -

There is not data available in some files.

String

Resource_Names from PSN – Names of the people performing
the task

String

ETC from PSN – estimate to complete in
mandays

Float

Stage from PSN – Stage of the project – initiation -
execution

String

Phase from PSN – Same as activity type String

Skill from PSN – type of resource needed for the
task

String

TaskNumber from PSN – Identifier Integer

103

Predecessors from PSN – Tasks that this task depends on Integer

Successors from PSN – Tasks that depend on this task Integer

CriticalPath from PSN – See the literature on critical path
and critical chain in a network planning

String

Psn_Start from PSN Date

Psn_Finish from PSN Date

Psn_Work from PSN Float

ParentID from PSN – Identifier of the task higher in
the tree

String

ProjectID from PSN – Identifier of the account where
the cists are booked

String

PIC from PSN – Identifier within the account to
book the costs

String

SubProjName Not in all files - from PSN for use in
Crosslinks – some schedules have sub-
schedules that are kept in separate files –
this is the name of such a file

String

SubProjTaskId Not in all files - from PSN for use in
Crosslinks - This identified refers to a
specific task in the subschedule

Integer

Table A13. Project Data

8.2.7 Requirements Data

The information used for the documentation of these snapshots was obtained from
the document [SIE08]. The data stored in these snapshots is related to the
requirements for developing a software application.

Field name Description Values – Data type

DataSet Identification of the dataset in the snapshot.

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

104

HistoryDate Date the snapshot was taken Date

Program Program – architectural components. This is
the name of the programme of which the
project is a part.

Program = collection of Projects

String

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

Team Name of the team in charge of the
requirements.

String

ProdSubSys from configuration – Short indicator for the
subsystem/cmpgroup/component. Will be
mapped to the proper item in the database

String

System System name – System = topmost
deliverable; often Program name and System
name look alike.

String

ReqId Identification of the requirement Integer

ReqTraceBack Not in all files - from QC – Reference to a
higher level requirement in another database

Integer

ReqChildren from QC – Reference to more detailed
requirements below this requirement

Integer

ReqParent from QC – Reference to the higher level
requirement above the current one

Integer

ReqOrder from QC – Sequence number used to
determine the order of the requirements
when printing / reading

Integer

ReqReview from QC – Status of review of the
requirement

String

Priority from QC – Priority of the requirement

Ordering to address things in the project:

1 = Low

String

105

2 = Medium

3 = High

4 = Top

ReqType from QC – Type of requirement – Some
default values are:

 BTR

 BTRH

 TDS

 TDSH

 DAF

 Folder

String

from QC

Main State Substate Meaning

Deferred On hold Not solved

Submitted Reported

Analysis Investigation

Resolution Fixing

Open

Evaluation Verifying the
fix

Closed Closed Closed after
fixing

Duplicate Already
reported

Nonrepro Can’t solve, not
reproducible

Rejected Won’t solve,
live with it

ReqState

Rejected

By design Shouldn’t
solve, intended

String

106

behavior.

ReqStatus from QC – State is the main state, open,
closed, deferred or rejected. Status is the
substate of the main state. To keep them
separate is easier when handling this data in
queries.

String

LinkedTests from QC – Identification of the test case with
which the requirement will be tested

Integer

ReqStart status transition date from QC – Creation of
the requirement

Date

ReqDesign status transition date from QC – Date when
the requirement started design phase

Date

ReqPreparation status transition date from QC – Date when
the requirement started preparation for being
implemented

Date

ReqExecution status transition date from QC – Date when
the test was executed

Date

ReqFailed status transition date from QC – Date when
the test failed complying the requirement

Date

ReqPassed status transition date from QC – Date when
the test passed

Date

Table A14. Requirements Data

8.2.8 Risk data

The information used to document this field was obtained from the document
t[SIE08]. The data stored in these snapshots refers to the risks that appear and must
be managed during the software development process.

Field name Description Values – Data type

DataSet Identification of the dataset in the snapshot.

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

107

HistoryDate Date the snapshot was taken Date

Program Program – architectural components. This is
the name of the programme of which the
project is a part.

Program = collection of Projects

String

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

Team from configuration – Team in charge of the
management of the risks

Team has 1 or more projects to serve

String

System from configuration – Name of the system.
System = topmost deliverable; often Program
name and System name look alike.

String

SubSystem from configuration - Subsystem from which
it was taken the snapshot – Continuous
database the snapshot is taken from. Due to
multisite cooperation multiple databases can
be included as source.

Subsystem = major part of system; system =
assembly of 1 or more subsystems

String

CmpGroup from configuration – Name of the
components group

Cmpgroup is major part of subsystem;
subsystem = assembly of 1 or more
cmpgroups

String

Component from configuration – Name of the component
for which risks are managed. Name of the
component. Component is major part of
cmpgroup;

String

RiskId from RIC – Identification of the risk String

from RIC RiskState

Main State Substate Meaning

String

108

Deferred On hold Not solved

Submitted Reported

Analysis Investigati
on

Resolution Fixing

Open

Evaluation Verifying
the fix

Closed Closed Closed
after
fixing

Duplicate Already
reported

Nonrepro Can’t
solve, not
reproduci
ble

Rejected Won’t
solve, live
with it

Rejected

By design Shouldn’t
solve,
intended
behavior.

RiskStatus from QC – State is the main state, open,
closed, deferred or rejected. Status is the
substate of the main state. To keep them
separate is easier when handling this data in
queries.

String

Category from RIC – Category of the risk – Some
standard values are:

 Budget

 Delivery

String

109

 Performance

 Planning

 Resource equation

Probability from RIC – Probability that the risk will
become true – Default values:

 Likely

 Unlikely

 Possible

 Frequent

String

Impact from RIC – Impact on the project in case the
risk become true. – Default values:

 Significant

 Moderate

String

Exposure from RIC – Level of exposure to the risk.
Default values:

 High

 Low

 Minor

String

PhaseDetected from RIC – Phase in which the risk was
detected.

Some default values are:

 Preparation system validation

 Coding

 Business case

 Coding

String

PhaseImpacted from RIC – Phase that would be affected in
case the risk become true. Some default
values are:

 Launch

String

110

 System validation

 Operational acceptance

 System validation

 Participant acceptance

 Operational ready

CreateDate status transition date from RIC – Date the
risk was created

Date

LastModified status transition date from RIC – Last time
the risk statement was modified

Date

Draft status transition date from RIC – Date the
draft of the risk document was created

Date

Raised status transition date from RIC – Date the
risk was raised

Date

Assigned status transition date from RIC – Date the
risk was assigned to be analyzed.

Date

Completed status transition date from RIC – Date the
risk analysis was completed

Date

Closed status transition date from RIC – Date the
risk was assigned status closed

Date

Cancelled status transition date from RIC – Date the
risk was cancelled

Date

Target Date Not in all files - From RIC – Date the risk is
to be mitigated

Date

Table A15. Risk Data

8.2.9 Test data

The information used to document the snapshots that belong to this category was
obtained in the document [SIE08]. These snapshots contain data related to the tests
performed in the software development process.

111

Field name Description Values – Data type

DataSet Identification of the dataset in the snapshot.

Dataset = set of snapshots from the same
source at regular intervals.

Project – All teams – Type of data

String

HistoryDate Date the snapshot was taken Date

Program Program – architectural components. This is
the name of the programme of which the
project is a part.

Program = collection of Projects

String

Project from configuration – Name of the project

Project has 1 or more teams to serve it

String

Team from configuration – Name of the team that
will perform a test.

Team has 1 or more projects to serve

String

ProdSubSys from configuration – Short indicator for the
subsystem/cmpgroup/component. Will be
mapped to the proper item in the database

String

System System name – System = topmost
deliverable; often Program name and System
name look alike.

String

TestId from QC – Identification of the test Integer

TestType from QC – Type of the test – Default values:

 MANUAL

 VAPI-XP-TEST

 ALT-SCENARIO

 LR-SCENARIO

String

TestStatus from QC – State is the main state, open,
closed, deferred or rejected. Status is the
substate of the main state. To keep them
separate is easier when handling this data in

String

112

queries.

based on status from QC

Main State Substate Meaning

Deferred On hold Not solved

Submitted Reported

Analysis Investigation

Resolution Fixing

Open

Evaluation Verifying the
fix

Closed Closed Closed after
fixing

Duplicate Already
reported

Nonrepro Can’t solve,
not
reproducible

Rejected Won’t solve,
live with it

TestState

Rejected

By design Shouldn’t
solve,
intended
behavior.

String

TestReview Status of the revision of the test String

TestExec Has the test been executed String

LinkedSteps Reference to the steps that make up the test
case

Integer

FailedRuns Number of times the test has been executed
and failed

Integer

PassedRuns Number of times the test has been executed Integer

113

and passed

TestStart Date the test was created Date

TestPreparation Date the test became prepared Date

TestExecution Date the test was executed Date

TestFailed Date the test failed Date

TestPassed Date the test passed Date

Table A16. Test Data

114

115

AAAppppppeeennndddiiixxx BBB

9 Appendix B: Quality measurements
In this appendix the attributes that were defined to be assessed are listed in section 1,
and then, in section 2 the results of the measurements performed are presented.

9.1 Attributes and metrics
In the following subsections for every company there are tables that enumerate the
attributes assessed and the metrics used for the corresponding measurements.

9.1.1 Company 1

Architecture

Table B1 presents the attributes and metrics for the category Architecture.

Name of the field Metric to assess

Product_SubSys, System

SubSystem, CmpGroup

Component

Completeness

Table B1. Attributes and metrics of Architecture

Defect

Subcategory 1

Table B2 presents the attributes and metrics for the subcategory 1 of the category
Defect.

Name of the field Metric to assess

Project, Team, ProdSubSys, System Completeness

DefectId Accuracy: Duplicated values

DefectEstimate, DefectCost

Injected, Detected, DefectAnalysis

DefectResolution, DefectEvaluation

DefectFinish

Completeness: when the fields have
values like “?”, it is considered as null. It
is a case of incompleteness where the
value exists but is unknown.

DefectState, DefectStatus

Severity, Priority

Accuracy: Syntactic errors

There are reference domains to be used.

DefectStart, DefectAnalysis

DefectResolution, DefectEvaluation

DefectFinish

Consistency: Use of some edit rules.

DefectStart < DefectAnalysis

DefectAnalysis < DefectResolution

DefectResolution < DefectEvaluation

DefectEvaluation < DefectFinish

Table B2. Attributes and metrics Defect 1

Subcategory 2

Table B3 presents the attributes and metrics for the subcategory 2 of the category
Defect.

Name of the field Metric to assess

Program, Project, Team

Prodsubsys, System

Completeness

DefectId Accuracy: Duplicated values

Defect Type , DefectState

DefectStatus, Severity, Priority

Accuracy: Syntactic errors

There are reference domains to be used

DefectCost, Injected, Detected

DefectAnalysis, DefectResolution

DefectEvaluation, DefectFinish

Completeness: when the fields have
values like “?”, it is considered as null. It
is a case of incompleteness where the
value exists but is unknown.

DefectStart

DefectAnalysis

DefectResolution

DefectEvaluation

DefectFinish

Consistency: Use of some edit rules

DefectStart < DefectAnalysis

DefectAnalysis < DefectResolution

DefectResolution < DefectEvaluation

DefectEvaluation < DefectFinish

Table B3. Attributes and metrics Defect 2

116

Subcategory 3

Table B4 presents the attributes and metrics for the subcategory 3 of the category
Defect.

Name of the field Metric to assess

System, SubSystem, Product_subsys

Program

Completeness

Problem_number Accuracy: Duplicated values

Priority, Severity, Problem_type

Request_type, Crstatus

Accuracy: Syntactic errors

There are reference domains to be used

Defect_type, Scope, Priority

Problem_type, Caused_during

Discovered_during, Act_total_eff

Submitted_time, Analysed_time

Resolved_time

Incompleteness

Act_total_eff Consistency: Outliers such as negative
numbers.

Create_time

Submitted_time

Analysed_time

Resolved_time

Evaluated_time

Consistency: Use of some edit rules

Create_time < Submitted_time

Submitted_time < Analysed_time

Analysed_time < Resolved_time

Resolved_time < Evaluated_time

Table B4. Attributes and metrics Defect 2

Project

Table B5 presents the attributes and metrics for the category Project.

Name of the field Metric to assess

Text4 (type of activity)

Text15 (program)

Text16 (project)

Text17 (team)

Completeness

117

Text25 (System)

Text26 (subsystem)

Text27 (component group)

Text28 (component)

Unique_ID Accuracy: Duplicated values

Flag 10 Accuracy: Syntactic errors

There is a reference domain

Baseline_Work, Scheduled_Work

Actual_Work

Outliers such as negative numbers

Baseline_Start

Baseline_Finish

Consistency: Use edit rules

Baseline_Start < Baseline_Finish

Start_Date, Finish_Date Start_Date < Finish_Date

Actual_Start, Actual_Finish Actual_Start < Actual_Finish

Table B5. Attributes and metrics Project

Review

Table B6 presents the attributes and metrics for the category Review.

Name of the field Metric to assess

Project, Team, System, ProdSubsys Completeness

InitiationDate, ClosureDate Consistency: Use of some semantic rules

InitiationDate < ClosureDate

DefectId Accuracy: Duplicated values

ActivityType, Type, Severity

State, Unit

Accuracy: Syntactic errors

There are reference domains to be used

NofParticipants, PreparationEffort

MeetingEffort, ReworkEffort

VerificationEffort, ReviewSize

Consistency: Outliers such as negative
numbers

118

MajorDefects, MinorDefects

TotalEffort, PreparationRate

RemovalRate, AverageSize

DefectCost, LeadTime

Table B6. Attributes and metrics Review

Size

Table B7 presents the attributes and metrics for the category Size.

Name of the field Metric to assess

Program, System, ProdSubSys Completeness

Unit Accuracy: Syntactic errors.

There is a reference domain

Total, Blank, Comment, Deleted

Equal, Moved, Modified, Added

Consistency: Outliers such as negative
numbers.

Source

Delta

Accuracy: Use of edit rules

Source = Equal + moved + modified +
Added

Delta = Modified + added

Table B7. Attributes and metrics Size

9.1.2 Company 2

Architecture

Table B8 presents the attributes and metrics for the category Architecture.

Name of the field Metric to assess

Product_SubSys, System, SubSystem

CmpGroup, Component

Completeness

Table B8. Attributes and metrics Architecture

Case

Table B9 presents the attributes and metrics for the category Case.

119

Name of the field Metric to assess

Program, Project, Team, ProdSubSys

System, CaseFinish

Completeness

CaseId Accuracy: Duplicated values

CaseState

CaseStatus

Accuracy: Syntactic errors

There are reference domains to be used

CaseStart

CaseFinish

Consistency: Use of edit rule

CaseStart < CaseFinish

Table B9. Attributes and metrics Case

Change

Table B10 presents the attributes and metrics for the category Change.

Name of the field Metric to assess

Program, Project, Team, System

Subsystem, CmpGroup, Component

Completeness

ChangeState, ChangeStatus

Category, Priority

Accuracy: Syntactic errors

There are reference domains to be used

EstCostsEUR, EstCostsMD

EstContingencyMD

Consistency: outliers such as negative
values.

CreateDate, ApprovalDate

LastModified, Draft, Raised, Assigned

Completed, Approval, Approved

Closed, Cancelled, Rejected

Incompleteness

Table B10. Attributes and metrics Change

Defect

Table B11 presents the attributes and metrics for the category Defect.

Name of the field Metric to assess

Program, Project, Team, ProdSubsys Completeness

120

System, DefectState, DefectOpen

DefectAnalysis, DefectResolution

DefectEvaluation

DefectId Accuracy: Duplicated values

DefectType, DefectState, DefectStatus

Priority, Severity

Accuracy: Syntactic errors

There are reference domains to be used

DefectStart

DefectOpen

DefectAnalysis

DefectResolution

DefectEvaluation

DefectFinish

Consistency: Use some edit rules

DefectStart < DefectOpen

DefectOpen < DefectAnalysis

DefectAnalysis < DefectResolution

DefectResolution < DefectEvaluation

DefectEvaluation < DefectFinish

Table B11. Attributes and metrics Change

Issue

Table B12 presents the attributes and metrics for the category Issue.

Name of the field Metric to assess

Program, Project, Team, System

SubSystem, CmpGroup, Component

Completed

Completeness

IssueState, IssueStatus, Criticality Accuracy: Syntactic errors

There are reference domains to be used

CreateDate, Completed

Closed

CreateDate < Completed &&

CreateDate < Closed

Table B12. Attributes and metrics Change

Project

Table B13 presents the attributes and metrics for the category Project.

121

Name of the field Metric to assess

Text15 (Program)

Text16 (Project)

Text17 (Team)

Text25 (System)

Text26 (Subsystem)

Text27 (Component group)

Text28 (Component)

Completeness

Flag10 Accuracy: Syntactic errors

There is a reference domain to be used

Initial_work, Baseline_Work

Scheduled_Work, Actual_Work

Psn_Work, ETC

Consistency: Outliers (negative numbers)

Initial_Start

Initial_finish

Consistency: Use some edit rules.

Initial_Start < Initial_finish.

Baseline_Start

Baseline_Finish

Consistency: Use some edit rules.

Baseline_Start < Baseline_Finish.

Start_Date

Finish_Date

Consistency: Use some edit rules.

Start_Date < Finish_Date.

Actual_Start

Actual_Finish

Consistency: Use some edit rules.

Actual_Start < Actual_Finish.

Psn_Start

Psn_Finish

Consistency: Use of edit rule

Psn_Start < Psn_Finish

Table B13. Attributes and metrics Project

Requirements

Table B14 presents the attributes and metrics for the category Requirements.

122

Name of the field Metric to assess

Program, Project, Team, ProdSubSys

System, Priority, ReqDesign

ReqPreparation, ReqExecution

ReqFailed, ReqPassed

Completeness

ReqId Accuracy: Duplicated values

ReqType

Accuracy: Syntactic errors

There is a reference domain to be used

ReqStart

ReqDesign

ReqPreparation

ReqExecution

ReqFailed

ReqPassed

Consistency: Use some semantic rules

ReqStart < ReqDesign

ReqDesign < ReqPreparation

ReqPreparation < ReqExecution

ReqExecution < ReqFailed

ReqFailed < ReqPassed

Table B14. Attributes and metrics Project

Risk

Table B15 presents the attributes and metrics for the category Risk.

Name of the field Metric to assess

Program, Project, Team, System

SubSystem, CmpGroup, Component

Raised, Assigned, Completed

TargetDate

Completeness

RiskId Accuracy: Duplicated values

RiskState

RiskStatus

Accuracy: Syntactic errors

There are reference domains to be used

CreateDate, LastModified

Draft, Raised, Assigned, Completed

Completeness

Consistency: Use some edit rules.

123

Closed, Cancelled CreateDate < Assigned

CreateDate < Completed

CreateDate < Closed

CreateDate < Cancelled

Table B15. Attributes and metrics Risk

Test

Table B16 presents the attributes and metrics for the category Test.

Name of the field Metric to assess

Program, Project, Team, ProdSubSys

System, TestStart, TestPreparation

TestExecution, TestFailed, TestPassed

Completeness

TestId Accuracy: Duplicated values

TestStatus

TestState

Accuracy: Syntactic errors

There are reference domains to be used

TestType Accuracy: Syntactic errors

Reference domain can be established out
of the snapshots – There is not reference
domain established since not enough
information could be obtained.

Table B16. Attributes and metrics Risk

9.2 Measurements
In the following tables the results of the measurements made for the metrics selected
are presented. For every metric the average number of errors and the average simple
ratio were calculated and are shown as the final result.

For example in the case of completeness for the field “System”, the number of null
values was measured in every one of the snapshots that belong to the category
Architecture; then the average number of null fields for this field was calculated
using the results obtained for all the snapshots.

In the case of the average simple ratio, also the simple ratio for every snapshot was
calculated following the method explained in the chapter 3: the number of values with
errors is divided by the total number of values, and then the result is subtracted from
1. After the calculation of the simple ratio of the attribute was made for every

124

snapshot, an average simple ratio was calculated using the results of all snapshots in
the category evaluated. The resulting average gives a percentage of quality level for
the attribute in the dimension evaluated

9.2.1 Company 1

Architecture

Completeness Name of the field

Average
number of

error values

Average number of

total values

Average simple ratio

Product_SubSys 0.014084507 1288.7606 0.9999894 = 99.99%

System 0.014084507 1288.7606 0.9999894 = 99.99%

SubSystem 0.014084507 1288.7606 0.9999894 = 99.99%

CmpGroup 0.014084507 1288.7606 0.9999894 = 99.99%

Component 0.014084507 1288.7606 0.9999894 = 99.99%

Table B17. Measurements for Architecture

Defect

Subcategory 1

Completeness Name of the field

Average
number of error

values

Average number

of total values

Average simple ratio

Project* 46.166668 527.2222 0.9219657 = 92.20%

Team 0 527.2222 1.0 = 100%

ProdSubSys 0 527.2222 1.0 = 100%

System 0 527.2222 1.0 = 100%

DefectEstimate* 301.5 301.5 0.0 = 0%

DefectCost* 527.2222 527.2222 0.0 = 0%

125

Injected* 527.2222 527.2222 0.0 = 0%

Detected* 527.2222 527.2222 0.0 = 0%

DefectAnalysis* 297.27777 527.2222 0.44881868 = 44.88%

DefectResolution* 513.19446 527.2222 0.027010806 = 2.7 %

DefectEvaluation* 114.97222 527.2222 0.78496504 = 78.49%

DefectFinish* 114.97222 527.2222 0.78496504 = 78.49%

 Accuracy: Duplicated values

DefectId 0 527.2222 1.0 = 100%

 Accuracy: Syntactic errors

DefectState 0 527.2222 1.0 = 100%

DefectStatus 12.5 527.2222 0.979489 = 97.94%

Severity 0 527.2222 1.0 = 100%

Priority 0 527.2222 1.0 = 100%

 Consistency: Edit rules

DefectStart <
DefectAnalysis**

0 225.22223 1.0 = 100%

DefectAnalysis <
DefectResolution**

1.75 8.416667 0.8023568 = 80.23%

DefectResolution <
DefectEvaluation**

0.5555556 13.694445 0.9630406 = 96.30%

DefectEvaluation <
DefectFinish**

0 401.52777 1.0 = 100%

Table B18. Measurements for Defect 1

* This incomplete values are considered because of the presence of the symbol “?”
instead of the name of the project.

** These fields are only compared in the case that both values exist; therefore, the
calculation of the simple ratio in every file is made with respect to the total number of

126

records where both values exists, and not to the total number of records in the file.
The high values of the ratio are only taking into account that dates exist, but in
general terms it is not correct to say that these fields contain a high quality level since
many of the information is missing.

Subcategory 2

Completeness Name of the field

Average
number of error

values

Average number

of total values

Average simple ratio

Program 0 1718.1711 1.o = 100%

Project* 205.55856 1718.1711 0.88324195 = 88.32%

Team 0 1718.1711 1.o = 100%

Prodsubsys 0 1718.1711 1.o = 100%

System 0 1718.1711 1.o = 100%

DefectCost* 1718.1711 1718.1711 0.0 = 0%

Injected* 1718.1711 1718.1711 0.0 = 0%

Detected* 1718.1711 1718.1711 0.0 = 0%

DefectAnalysis* 1345.8739 1718.1711 0.2168106 = 21.68%

DefectResolution* 1672.919 1718.1711 0.026404854 = 2.64%

DefectEvaluation* 478.84683 1718.1711 0.7140664 = 71.40%

DefectFinish 478.84683 1718.1711 0.7140664 = 71.40%

 Accuracy: Duplicated values

DefectId 0 1718.1711 1.o = 100%

 Accuracy: Syntactic errors

DefectType 0 1718.1711 1.o = 100%

127

DefectState 0 1718.1711 1.o = 100%

DefectStatus 134.36937 1718.1711 0.92346597 = 92.35%

Severity 368.9189 1718.1711 0.7956158 = 79.56%

Priority 304.17117 1718.1711 0.7656734 = 76.56%

 Consistency: Edit rules

DefectStart <
DefectAnalysis**

0 372.2973 1.0 = 100%

DefectAnalysis <
DefectResolution**

4.6936936 17.738739 0.7417263 = 74.17%

DefectResolution <
DefectEvaluation**

5.5945945 45.25225 0.8761759 = 87.61%

DefectEvaluation <
DefectFinish**

0 1239.3243 1.0 = 100%

Table B19. Measurements for Defect 2

*This incomplete values are considered because of the presence of the symbol “?”
instead of the name of the project.

** These fields are only compared in the case that both values exist; therefore, the
calculation of the simple ratio in every file is made with respect to the total number of
records where both values exists, and not to the total number of records in the file.

Subcategory 3

Some files don’t have any content and therefore they were not used for the
measurement of errors.

128

Completeness Name of the field

Average
number of error

values

Average number

of total values

Average simple ratio

System 0 4161.7534 1.0 = 100%

SubSystem 0 4161.7534 1.0 = 100%

Product_subsys 0 4161.7534 1.0 = 100%

Program

(This field is not
present in all files)

0 2279.8523 1.0 = 100%

Priority 62.503735 4161.7534 0.89522976 = 89.52%

Problem_type 58.99564 4161.7534 0.8953923 = 89.53%

Defect_type 3717.5867 4161.7534 0.0631594 = 6.31%

Scope 4161.7534 4161.7534 0.0 = 0%

Caused_during 1217.0934 4161.7534 0.68420625 = 68.42%

Discovered_during 746.89355 4161.7534 0.79384345 = 79.38%

Act_total_eff 1383.6562 4161.7534 0.5730907 = 57.31%

Submitted_time 71.432755 4161.7534 0.8439392 = 84.39%

Analysed_time 2503.1438 4161.7534 0.31958532 = 31.95%

Resolved_time 1321.0803 4161.7534 0.4746583 = 47.46%

Evaluated_time 1511.9159 4161.7534 0.41079974 = 41.08%

 Accuracy: Duplicated values

Problem_number 335.85928 4161.7534 0.9581028 = 95.81%

 Accuracy: Syntactic errors

Priority* 22.284422 4578.1606 0.9451274 = 94.51%

129

Severity 0 4161.7534 1.0 =100%

Problem_type* 0 4582.0786 1.0 =100%

Request_type 0 4161.7534 1.0 =100%

Crstatus** 44.339973 4161.7534 0.9252044 = 92.25%

 Consistency: outliers (negative values)

Act_total_eff*** 0.36537102 3153.091 0.99994797 = 99.99%

 Consistency: edit rules

Create_time <
Submitted_time

0 4626.095 1.0 = 100%

Submitted_time <
Analysed_time****

4.0402083 1982.134 0.9922737 = 99.23%

Analysed_time <
Resolved_time****

33.3693 1107.8488 0.9818279= 98.18%

Resolved_time <
Evaluated_time****

3.9413128 3253.5027 0.9964815 = 99.65%

Table B20. Measurements for Defect 3

* The calculation of the syntactic errors is made only for the fields that contain a
value. There are some incomplete fields; therefore the simple ratio is calculated with
respect to the total number of fields that have a value, and not to the total number of
fields in the file.

** The domain reference in the documentation contains fewer values than the values
that could be introduced in this field. This is the reason why some syntactic errors
were found. More information about the values in the reference domain was not
found.

*** The calculation of the outliers is made only for the fields that contain a value,
since there are many that are incomplete. Therefore, the simple ratio is calculated
with respect to the total number of fields that have a value, and not to the total
number of fields in the file.

**** These fields are only compared in the case that both values exist; therefore, the
calculation of the simple ratio in every file is made with respect to the total number of
records where both values exists, and not to the total number of records in the file.

130

Project

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Text4 (type of
activity)

109.775055 1142.9816 0.9098861 = 90.99%

Text15 (program) 0 1085.814 1.0 = 100%

Text16 (project) 102.09064 1142.9816 0.9054161 = 90.54%

Text17 (team) 102.46049 1142.9816 0.9031471 = 90.31%

Text25 (System) 102.15552 1142.9816 0.90529555 = 90.52%

Text26 (subsystem) 102.56021 1142.9816 0.9043652 = 90.43%

Text27 (component
group)

102.9644 1142.9816 0.90398824 = 90.39%

Text28 (component) 103.05176 1142.9816 0.90379804 = 90.37%

 Accuracy: duplicated values

Unique_ID 0 1148.0818 1.0 = 100%

 Accuracy: syntactic errors

Flag 10 0 1142.9816 1.0 = 100%

 Outliers: negative numbers

Baseline_Work 0 1142.9816 1.0 = 100%

Scheduled_Work 0 1142.9816 1.0 = 100%

Actual_Work 0 1142.9816 1.0 = 100%

 Consistency: edit rules

Baseline_Start <
Baseline_Finish

0 1142.9816 1.0 = 100%

131

Start_Date <
Finish_Date

0 1142.9816 1.0 = 100%

Actual_Start <
Actual_Finish

0.0025759917 857.4413 0.99998677 = 99.99%

Table B21. Measurements for Project

Review

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Project 0 1209.4517 1.0 = 100%

Team 0 1209.4517 1.0 = 100%

System 0 1209.4517 1.0 = 100%

ProdSubsys 0 1209.4517 1.0 = 100%

 Consistency: edit rules

InitiationDate <
ClosureDate

0.61290324 1209.4517 0.999497 = 99.94%

 Accuracy: Syntactic errors

ActivityType 0 1209.4517 1.0 = 100%

Type 0 1209.4517 1.0 = 100%

Severity 0 1209.4517 1.0 = 100%

State 0.87096775 1209.4517 0.99927557 = 99.93%

Unit 0 1209.4517 1.0 = 100%

 Consistency: outliers (negative numbers)

NofParticipants 0 1209.4517 1.0 = 100%

132

PreparationEffort 0 1209.4517 1.0 = 100%

MeetingEffort 0 1209.4517 1.0 = 100%

ReworkEffort 0 1209.4517 1.0 = 100%

VerificationEffort 0 1209.4517 1.0 = 100%

ReviewSize 0 1209.4517 1.0 = 100%

MajorDefects 0 1209.4517 1.0 = 100%

MinorDefects 0 1209.4517 1.0 = 100%

TotalEffort 0 1209.4517 1.0 = 100%

PreparationRate 0 1209.4517 1.0 = 100%

RemovalRate 0 1209.4517 1.0 = 100%

AverageSize 0 1209.4517 1.0 = 100%

DefectCost 0 1209.4517 1.0 = 100%

LeadTime 0 1209.4517 1.0 = 100%

Table B22. Measurements for Review

Size

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Program

(this field is not in
all files)

0 1516.6239 1.0 = 100%

System 0 8731.976 1.o = 100%

ProdSubSys 0 8731.976 1.o = 100%

 Accuracy: Syntactic errors

133

Unit

(only value found is
ncsl)

8731.948 8731.948 0 = 0%

 Consistency: outliers (negative numbers)

Total 0 8731.976 1.0 = 100%

Blank 0 8731.976 1.0 = 100%

Comment 0 8731.976 1.0 = 100%

Deleted 0 8731.976 1.0 = 100%

Equal 0 8731.976 1.0 = 100%

Moved 0 8731.976 1.0 = 100%

Modified 0 8731.976 1.0 = 100%

Added 0 8731.976 1.0 = 100%

 Consistency: edit rules

Source = Equal +
moved + modified +
added

0 8731.976 1.0 = 100%

Delta = Modified +
added

0 8731.976 1.0 = 100%

Table B23. Measurements for size

9.2.2 Company 2

Architecture

134

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Product_SubSys 0 9.5 1.0 = 100%

System 0 9.5 1.0 = 100%

SubSystem 0 9.5 1.0 = 100%

CmpGroup 0 9.5 1.0 = 100%

Component 0 9.5 1.0 = 100%

Table B24. Measurements for Architecture

Case

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Program 0 303.0771 1.0 = 100%

Project 0.1667774 303.0771 0.99667776 = 99.67%

Team 0 303.0771 1.0 = 100%

ProdSubSys 0 303.0771 1.0 = 100%

System 0 303.0771 1.0 = 100%

CaseFinish* 303.02524 303.0771 0 = 0%

 Accuracy: Duplicated values

CaseId 0 303.0771 1.0 = 100%

 Accuracy: Syntactic errors

135

CaseState 0 303.0771 1.0 = 100%

CaseStatus 288.60132 303.0771 0.012111656 = 1.21%

 Consistency: edit rules

CaseStart <
CaseFinish**

0 1 1.0 = 100%

Table B25. Measurements for Case

* In this field the incomplete values are due to the presence of the symbol “?”

** This calculation is only made in the cases where both fields exist. Therefore the
simple ratio is calculated with respect to the number of records that are complete,
and not to the total number of records.

Change

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Program 0 162.94151 1.0 = 100%

Project 0 162.94151 1.0 = 100%

Team 0 162.94151 1.0 = 100%

System 0 162.94151 1.0 = 100%

Subsystem 0 162.94151 1.0 = 100%

CmpGroup 0 162.94151 1.0 = 100%

Component 0 162.94151 1.0 = 100%

CreateDate 0 162.94151 1.0 = 100%

ApprovalDate 58.47953 162.94151 0.64679176 = 64.68%

LastModified 0 162.94151 1.0 = 100%

Draft 0 162.94151 1.0 = 100%

136

Raised 49.526318 162.94151 0.74784744 = 74.78%

Assigned 91.55556 162.94151 0.23304215 = 23.30%

Completed 104.748535 162.94151 0.17057678 = 17.06%

Approval 76.67836 162.94151 0.54850984 = 54.85%

Approved 58.47953 162.94151 0.64679176 = 64.67%

Closed 94.17544 162.94151 0.36166227 = 36.17%

Cancelled 131.61403 162.94151 0.10544653 = 10.54%

Rejected 154.2807 162.94151 0.017934805 = 1.8%

 Accuracy: Syntactic errors

ChangeState 32.105263 162.94151 0.88975924 = 88.97%

ChangeStatus 83.128654 162.94151 0.39297074 = 39.30

Category 0 162.49123 1.0 = 100%

Priority 0 156.77193 1.0 = 100%

 Consistency: Outliers(negative values)

EstCostsEUR 0.3888889 39.642857 0.99249196 = 99.24%

EstCostsMD 3.1949685 136.55975 0.9410501 = 94.10%

EstContingencyMD 0.28865978 11.659794 0.9333873 = 93.34 %

Table B27. Measurements for Change

Defect

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Program 0 382.7927 1.o = 100%

137

Project 0 382.7927 1.o = 100%

Team 0 382.7927 1.o = 100%

ProdSubsys 0 382.7927 1.o = 100%

System 0 382.7927 1.o = 100%

DefectState 0.1527861 382.7927 0.9996716 = 99.96

Severity 262.22528 382.7927 0.38770524 = 38.77%

DefectOpen 12.574372 381.3458 0.91524696 = 91.52%

DefectAnalysis 12.261833 382.7927 0.9193228 = 91.93%

DefectResolution 14.177951 382.7927 0.9125623 = 91.25%

DefectEvaluation 14.9173155 382.7927 0.9112846 = 91.12%

DefectFinish 39.838825 382.7927 0.79359597 = 79.36%

 Accuracy: Duplicated values

DefectId 0 382.7927 1.o = 100%

 Accuracy: Syntactic errors

DefectType 0 382.7927 1.o = 100%

DefectState* 0 382.7927 1.o = 100%

DefectStatus 18.77112 339.47513 0.8699524 = 87%

Priority 76.709404 378.3667 0.8346582 = 83.46%

Severity* 0 165.211 1.0 = 100%

 Consistency: edit rules

DefectStart <
DefectOpen**

0.43337646 370.44113 0.99420184 = 99.42%

DefectOpen <
DefectAnalysis**

0.15976714 370.44113 0.99965465 = 99.96%

138

DefectAnalysis <
DefectResolution**

0.2635379 370.16727 0.99933 = 99.93%

DefectResolution <
DefectEvaluation**

2.087846 369.42477 0.9942107 = 99.42

DefectEvaluation <
DefectFinish**

4.5448275 358.8652 0.9933143 = 99.33%

Table B28. Measurements for Defect

*The syntactic errors for this value are calculated only for the fields that have a value.
Some of them are incomplete or have the character “?”. Therefore the calculation of
the simple ratio is made with respect to the total number of fields that are complete,
and not to the total number of fields that exist.

**The calculation of these edit rules was made only for the cases where both values
exists. Therefore the simple ratio is made with respect to the total number of fields
that are complete, and not to the total number of fields that exist.

Issue

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Program 0 81.76271 1.o = 100%

Project 0 81.76271 1.o = 100%

Team 0 81.76271 1.o = 100%

System 0 81.76271 1.o = 100%

SubSystem 0 81.76271 1.o = 100%

CmpGroup 0 81.76271 1.o = 100%

Component 0 81.76271 1.o = 100%

Completed 24.83051 81.76271 0.57453686 = 57.45%

Closed 13.734464 81.76271 0.6968171 = 69.68%

139

 Accuracy: Syntactic errors

IssueState 5.4519773 81.76271 0.94493544 = 94.5%

IssueStatus 13.734464 81.76271 0.6968171 = 69.68%

Criticality 0.32768363 80.519775 0.9924305 = 99.24%

 Consistency: Edit rules

CreateDate <
Completed*

0.73939395 61.072727 0.989928 = 99%

CreateDate <
Closed*

0 77.68387 1.0 = 100%

Table B29. Measurements for Issue

* The calculation of these edit rules was made only for the cases where both values
exists. Therefore the simple ratio is made with respect to the total number of fields
that are complete, and not to the total number of fields that exist.

Project

Four of the files could be read for these measurements.

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Text15 * 0 345.33966 1.0 = 100%

Text16* 0 345.33966 1.0 = 100%

Text17* 0 345.33966 1.0 = 100%

Text25* 0 345.33966 1.0 = 100%

Text27* 0 345.33966 1.0 = 100%

Text28 0 345.33966 1.0 = 100%

 Accuracy: Syntactic errors

Flag10 0 700.92554 1.0 = 100%

140

 Consistency: Outliers

Initial_work 6.010718 700.92554 0.9905695 = 99.06%

Baseline_Work 1.1575757 277.56537 0.99606353 = 99.61%

Scheduled_Work 7.103935 700.92554 0.9885842 = 98.86%

Actual_Work 7.7320547 700.92554 0.98781985 = 98.78%

Psn_Work 0.121139474 700.92554 0.9999218 = 99.99%

ETC 4.598646 700.92554 0.9807835 = 98.07%

 Consistency: edit rules

Initial_Start <
Initial_finish

3.0284867 700.92554 0.99374664 = 99.37

Baseline_Start <
Baseline_Finish

0.045021646 277.56537 0.99948096 = 99.94%

Start_Date <
Finish_Date

0.089127064 700.92554 0.9993087 = 99.93%

Actual_Start <
Actual_Finish

0 443.21945 1.0 = 100%

Psn_Start <
Psn_Finish

193.51643 700.92554 0.5827201 = 58.27%

Table B30. Measurements for Project

*This field is not present in all files

Requirements

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Program 0 1645.7375 1.o = 100%

141

Project 0 1645.7375 1.o = 100%

Team 0 1645.7375 1.o = 100%

ProdSubSys 0 1645.7375 1.o = 100%

System 0 1645.7375 1.o = 100%

Priority 1383.7932 1645.7375 0.49051768 = 49.05%

ReqDesign 0.021327015 1645.7375 0.9990732 = 99.90%

ReqPreparation 998.3756 1645.7382 0.46825817 = 46.82%

ReqExecution 1229.7299 1645.7382 0.27986038 = 27.99%

ReqFailed 1495.1161 1645.7382 0.091170475 = 9.11%

ReqPassed 1355.4852 1645.7382 0.2315096 = 23.15%

 Accuracy: Duplicated values

ReqId 0 1645.7375 1.o = 100%

 Accuracy: Syntactic errors

ReqState 0 1645.7375 1.o = 100%

 Consistency: Edit rules

ReqStart <
ReqDesign *

0.6552133 1645.7162 0.99749887 = 99.75%

ReqDesign <
ReqPreparation*

11.627858 757.27515 0.97675234 = 97.67%

ReqPreparation <
ReqExecution*

81.546715 542.25635 0.9264297 = 92.64%

ReqExecution <
ReqFailed*

46.034775 215.64885 0.6213494 = 62.13%

ReqFailed <
ReqPassed*

4.847518 151.33777 0.97008663 = 97%

Table B31. Measurements for Requirements

142

* The calculation of these edit rules was made only for the cases where both values
exists. Therefore the simple ratio is made with respect to the total number of fields
that are complete, and not to the total number of fields that exist.

Risk

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Program 0 140.52792 1.0 = 100%

Project 0 140.52792 1.0 = 100%

Team 0 140.52792 1.0 = 100%

System 0 140.52792 1.0 = 100%

SubSystem 0 140.52792 1.0 = 100%

CmpGroup 0 140.52792 1.0 = 100%

Component 0 140.52792 1.0 = 100%

CreateDate 0 140.52792 1.0 = 100%

LastModified 0 140.52792 1.0 = 100%

Draft 0 140.52792 1.0 = 100%

Raised 46.888325 140.52792 0.6629094 = 66.29%

Assigned 33.588833 140.52792 0.6313997 = 63.13%

Completed 42.335026 140.52792 0.53056604 = 53.06%

TargetDate 43.51639 184.65573 0.64458096 = 64.49%

 Accuracy: Syntactic errors

RiskState 9.329949 140.52792 0.900995 = 90.1%

RiskStatus 26.395939 140.52792 0.67121965 = 67.12%

 Consistency: Edit rules

143

CreateDate <
Assigned

19.926554 119.0226 0.8541393 = 85.41%

CreateDate <
Completed

0.2881356 109.28814 0.9961148 = 99.61

CreateDate <
Closed

0.023121387 129.96532 0.99669695 = 99.67%

CreateDate <
Cancelled

0 15.106558 1.0 = 100%

Table B32. Measurements for Risks

Test

Completeness Name of the field

Average
number of

error values

Average number

of total values

Average simple ratio

Program 0 1444.3602 1.0 = 100%

Project 1.8450813 1444.3602 0.9992254 = 99.92%

Team 0 1444.3602 1.0 = 100%

ProdSubSys 0 1444.3602 1.0 = 100%

System 0 1444.3602 1.0 = 100%

TestStart 0 1444.3602 1.0 = 100%

TestPreparation 1444.3602 1444.3602 0 = 0%

TestExecution 1444.3602 1444.3602 0 = 0%

TestFailed 1444.3602 1444.3602 0 = 0%

TestPassed 1444.3602 1444.3602 0 = 0%

 Duplicated values

TestId 0 1444.3602 1.0 = 100%

144

 Accuracy: Syntactic errors

TestState 0 1444.3602 1.0 = 100%

Table B33. Measurements for Test

145

146

AAAppppppeeennndddiiixxx CCC

10 Appendix C: Database Documentation
In this appendix the information concerning the database structure and
implementation is documented. In the first section the specifications about the
DBMS used are given. Then, in the second section, the database entities and their
attributes are described.

10.1 DBMS
The DBMS selected to implement the database is MySQL 5.1 [MYS09]. It was chosen
because it is open source and a dump of the database can be created in order to make
it portable to be copied and accessed from any pc where the MySQL server is
installed.

10.2 Database description
In the following tables every entity of the database is described indicating the type of
information it stores, and for every attribute it is explained the data type used and the
information related to the data stored there.

10.2.1 Company

This entity represents the companies for which the information of the software
development process is stored in the database. A company has many products and
many programs.

The fields are described in table C1:

 Name Data Type Description

companyId INT Primary Key. Id of the entity
Company

companyName VARCHAR(100) Name of the company

Table C1. Company Entity

10.2.2 Program

This entity represents the programs that are created in the companies for developing
software applications. A program is a sequence of projects where one project follows
another.

The fields are described in table C2:

 Name Data Type Description

programId INT Primary key. Id of the entity
Program

programName VARCHAR(100) Name of the program

companyId INT Foreign key. Id of the entity
Company that represents the
company where the program is
implemented

Table C2. Program Entity

10.2.3 Project

This entity represents the projects that compose a program. The goal of a project is to
develop one or more products through a set of activities (which are sequences of
tasks). Every project is performed by one or more teams.

The fields are described in table C3:

 Name Data Type Description

projectId INT Primary key. Id of the entity
Project.

projectName VARCHAR(100) Name of the project

programId INT Foreign key. Id of the entity
Program that represents the
program to which the project
belongs.

Table C3. Project Entity

10.2.4 Team

This entity represents the teams that perform a project through the development of
the project’s activities (sequences of tasks). As every product can be decomposed to
the component level, the teams are in charge to define, realize and assemble a
collection of a set of components that belong to the product that is being developed in
a project. Every team can be part of one or more projects.

The fields are described in table C4:

147

 Name Data Type Description

teamId INT Primary key. Id of the entity Team

teamName VARCHAR(100) Name of the team

Table C4. Team Entity

10.2.5 ProjectTeam

This is an intermediate entity used to break the many-to-many relationship between
the entity project and the entity team.

The fields are described in table C5:

 Name Data Type Description

projectId INT Foreign key. Id of the entity Project

TeamId INT Foreign key. Id of the entity Team

proTeamId INT Primary key. Id of the entity
ProjectTeam

Table C5. ProjectTeam Entity

10.2.6 Product

This entity represents the products that are developed at the companies. A product
can have many versions, and every one of these versions is called a system.

The fields are described in table C6:

 Name Data Type Description

productId INT Primary key. Id of the entity
Product

productName VARCHAR(100) Name of the product

companyId INT Foreign key. Id of the entity
Company that represents the
company to which the product
belongs

Table C6. Product Entity

148

10.2.7 System

This entity represents the systems that are versions of a product. A system is
composed by many subsystems.

The fields are described in table C7:

 Name Description

systemId INT Primary key. Id of the entity
System

systemName VARCHAR(100) Name of the system

productId INT Foreign key. Id of the entity
Product that represents the
product of which the system is a
version

Table C7. System Entity

10.2.8 Subsystem

This entity represents the subsystems that compose a system. Every subsystem is
composed by one or more groups of components.

The fields are described in table C8:

 Name Data Type Description

subsystemId INT Primary key. Id of the entity
Subsystem

subsystemName VARCHAR(100) Name of the subsystem

systemId INT Foreign key. Id of the entity
System that represents the
system to which the subsystem
belongs

Table C8. Subsystem Entity

10.2.9 GroupComponent

This entity represents the groups of components that compose a subsystem. A group
of components is composed by one or more components.

The fields are described in table C9:

149

 Name Data Type Description

groupId INT Primary key. Id of the entity
GroupComponent

groupName VARCHAR(100) Name of the group of components

subsystemId INT Foreign key. Id of the entity
Subsystem that represents the
subsystem to which the group of
components belong

Table C9. GroupComponent Entity

10.2.10 Component

This entity represents the components that compose a group of components. The
components are developed by teams through activities (series of tasks) that produce
workproducts (such as specifications, designs, sources, tests and others) that are part
of the process development of the components.

The fields are described in table C10:

 Name Data Type Description

componentID INT Primary key. Id of the entity
Component

componentName VARCHAR(100) Name of the component

external INT Indicates that some part of a
system is not created by the
program / project / team but
delivered by or bought from an
external party

groupId INT Foreign key. Id of the entity
Group that represents the group
of components to which the
component belongs.

Table C10. Component Entity

150

10.2.11 SizeData

This entity represents the size information of a component which is measured by a
team. For a component the size measurement can be performed one or more times.
Every team can perform one or many measurements of size.

The fields are described in table C11:

 Name Data Type Description

sizeDataId INT Primary key. Id of the entity Size

historyDate DATETIME Date when the information about
size was stored. It is used to keep
historical data.

baseRootPath VARCHAR(100) Path to the root directory of the
base version

newRootPath VARCHAR(100) Path to the root directory of the
new version

unit VARCHAR(100) Unit of measure to count the code
lines

total INT Total number of code lines

blank INT Number of blank lines in the code
file

comment INT Number of comment lines in the
code file

deleted INT Number of lines deleted in the
code file

equal INT Number of unaltered identical
lines

moved INT Number of lines moved in the code
file

modified INT Number of lines modified in the
code file

151

added INT Number of lines added to the code
in the file

source INT Number of lines in the original
source

Equal + moved+ modified + deleted

delta INT It is equal to the number of lines

Modified + added

file VARCHAR(100) Name of the file with the code

type VARCHAR(100) Type of file. Depends on the
programming language

matchPath VARCHAR(100) Is a file has been moved from one
place to another this is the other
location

matchFile VARCHAR(100) Is a file has been given another
name, this is the other name

path VARCHAR(100) The relative path below the
baserootpath / new rootpath where
the file resides

programId INT Foreign key. Id of the entity
Program that represents the
program where the components for
which the size of the code is
measured are

componentID INT Foreign key. Id of the entity
Component that represents the
component for which the size is
measured

Table C11. SizeData Entity

10.2.12 IssueData

This entity represents the issue information of components which is managed by a
team. Every team can have many issues. One team can manage issues of many
components.

The fields are described in table C12:

152

 Name Data Type Description

issueDataId INT Primary key. Id of the entity
IssueData

historyDate DATETIME Date when the information about
the issue was stored. It is used to
keep historical data.

issueIdent VARCHAR(100) Identification of the issue as it was
obtained from the original
database of the companies

issueState VARCHAR(100) Main state of the issue

issueStatus VARCHAR(100) Status is the sub state of the main
state

category VARCHAR(100) Category of the issue

criticallity VARCHAR(100) Criticality of the issue

phaseDetected VARCHAR(100) Phase of the project when the
issue was detected

createDate DATETIME Date when the issue was created

lastModified DATETIME Last time the issue was modified

draft DATETIME Date the draft of the issue was
created

raised DATETIME Date the issue was raised

assigned DATETIME Date the issue was assigned to be
solved

completed DATETIME Date the issue was completely
solved

closed DATETIME Date the issue was closed

cancelled DATETIME Date the issue was cancelled

153

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the
team which manages the issue and
the Project to which the Team
belongs

componentID INT Foreign key. Id of the entity
Component that represents the
component for which the issue
was raised

Table C12. IssueData Entity

10.2.13 ChangeData

This entity represents the information about change requests made for a component,
which are managed by a team. Every component can have one or many change
requests. One team can manage one or many change requests.

The fields are described in table C13:

 Name Data Type Description

changeDataId INT Primary key. Id of the component
ChangeData

historyDate DATETIME Date when the information about
the change was stored. It is used
to keep historical data

changeIdent VARCHAR(100) Identification of the change
request as it was obtained from
the original database of the
company

changeState VARCHAR(100) Main state of the change

chanteStatus VARCHAR(100) Status is the sub state of the main
state

changeApproved VARCHAR(100) Was the change request
approved? Yes/NO

category VARCHAR(100) Classification of the change
request

154

rootCause VARCHAR(100) Cause of the change request

priority VARCHAR(100) Ordering to address change
requests in the project

detected VARCHAR(100) Phase of the project when the
need of a change was detected

targetDate DATETIME Date when the change request
should be solved

estCostEUR FLOAT Estimated cost in euro of solving
the change request

estCostMD FLOAT Estimated cost in mandays in
additional budget for solving the
change request

estContingencyMD FLOAT Estimated cost in mandays from
contingency budget for solving
the change request

createDate DATETIME Date the change request was
created

approvalDate DATETIME Date the change request was
approved

lastModified DATETIME Last time the change request
status was modified

draft DATETIME Date when the draft of the change
request was created

raised DATETIME Date when the change request
was raised

assigned DATETIME Date the change request was
assigned to be analyzed

completed DATETIME Date the change request was
completed

approval DATETIME Date the change request started
the procedure for approval

155

approved DATETIME Date the change request was
approved

closed DATETIME Date the change request was
closed

cancelled DATETIME Date the change request was
cancelled

rejected DATETIME Date the change request was
rejected

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the
team which manages the issue
and the Project to which the
Team belongs

componentID INT Foreign key. Id of the entity
Component that represents the
entity component for which the
change was requested.

Table C13. ChangeData Entity

10.2.14 RiskData

This entity represents the information about risks present during the development of
a component, which are managed by a team. One component can have one or more
risks associated. One team can manage one or more risks.

The fields are described in table C14:

 Name Data Type Description

riskDataId INT Primary key. Id of the entity
RiskData

historyDate DATETIME Date when the data about the risk
was stored. It is used to keep
historical data

riskId VARCHAR(100) Identification of the risk as it was
obtained from the original
database of the company

156

riskState VARCHAR(100) Main state of the risk

riskStatus VARCHAR(100) Status is the sub state of the main
state

category VARCHAR(100) Category of the risk

probability VARCHAR(100) Probability that the risk will
become true

impact VARCHAR(100) Impact on the project in case the
risk become true

exposure VARCHAR(100) Level of exposure to the risk

phaseDetected VARCHAR(100) Phase in which the risk was
detected

phaseImpacted VARCHAR(100) Phase that would be affected in
case the risk become true

createDate DATETIME Date the risk was created

lastModified DATETIME Last time the risk statement was
modified

draft DATETIME Date the draft of the risk
document was created

raised DATETIME Date the risk was raised

assigned DATETIME Date the risk was assigned to be
analyzed

completed DATETIME Date the risk analysis was
completed

closed DATETIME Date the risk was assigned status
closed

cancelled DATETIME Date the risk was cancelled

targetDate DATETIME Date the risk is to be mitigated

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the

157

team which manages the issue and
the Project to which the Team
belongs

componentID INT Foreign key. Id of the entity
Component that represents the
component for which the risk is
being analyzed and managed.

Table C14. RiskData Entity

10.2.15 Task

This entity represents the information of the tasks that are performed by teams in the
development of a component. One component is developed through one or more
tasks. One team can perform one or more tasks.

The fields are described in table C15:

 Name Data Type Description

taskId INT Primary key. Id of the entity Task

historyDate DATETIME Date when the information about
the task was stored

uniqueId VARCHAR(100) Unique Id of the task as it was
obtained from the original
database of the company

outlineNumber VARCHAR(100) The structural ordering of the task
in the file, 1 comes before 2. 1.1 is
the first child, etc.

milestone VARCHAR(100) Is the task a Milestone? Yes/No.
YES if task is a milestone

summary VARCHAR(100) Is the task a summary task?
Yes/No. A summary task is a
parent and as such, it is the sum
of all its child tasks.

YES means the task is a parent.

name VARCHAR(2000) The description of the task as it
was obtained from the original
database.

158

flag10 INT Indicates task completion
percentage (either 0 / 100). If it is
0 the task is ongoing. Yes/No
(100/0)

InitialStart DATETIME Is the baseline start when first
baselines; later baselining may
cause baseline start to differ.

InitialFinish DATETIME Is the baseline finish when first
baselines; later baselining may
cause baseline finish to differ

InitialWork FLOAT Is the baseline work when first
baselines; later baselining may
cause baseline work to differ

startDate DATETIME Start date of the current plan

finishDate DATETIME Finish date of the current plan

scheduledWork FLOAT Scheduled work for the current
plan

baselineStart DATETIME It is a copy of the start date that is
made once the plan is approved

baselinefinish DATETIME It is a copy of the finish date that
is made once the plan is approved

baselineWork FLOAT It is a copy of the scheduled work
which is made once the plan is
approved

actualStart DATETIME This date reflects the progress of
the task. The actual start date of
the task. When it is set, the
scheduled start is set to this.

actualFinish DATETIME Reflect progress. It is only
recorded when the task is 100%
complete

actualWork FLOAT It is the effort spent between start
and finish

159

activityType VARCHAR(100) The type of activity involved

deliverable VARCHAR(100) If non-empty indicates that the
task has a deliverable with it

release VARCHAR(100) Release of the task

resources VARCHAR(5000) The names of the persons working
on the task

ETC FLOAT Estimate to complete in mandays

Stage VARCHAR(100) Stage of the project – initiation -
execution

Phase VARCHAR(100) Same as activity type

Skill VARCHAR(300) type of resource needed for the
task

TaskNumber VARCHAR(100) Identifier

Predecessors VARCHAR(1000) Tasks that this task depends on

Successors VARCHAR(1000) Tasks that depend on this task

CriticalPath VARCHAR(1000) See the literature on critical path
and critical chain in a network
planning

Psn_Start DATETIME from PSN

Psn_Finish DATETIME from PSN

Psn_Work FLOAT from PSN

ProjectID VARCHAR(100) Identifier of the task higher in the
tree

PIC VARCHAR(100) Identifier within the account to
book the costs

SubProjName VARCHAR(1000) From PSN for use in Crosslinks –
some schedules have sub-
schedules that are kept in separate
files – this is the name of such a

160

file

SubProjTaskId VARCHAR(1000) From PSN for use in Crosslinks -
This identified refers to a specific
task in the subschedule

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the
team which manages the issue
and the Project to which the Team
belongs

componentID INT Foreign key. Id of the entity
Component that represents the
component to which the task
belongs

Table C15. Task Entity

10.2.16 RequirementsData

This entity represents the requirements associated to the development of a
component, which are managed by a team. A component can be developed based on
one or more requirements. A team can manage one or more requirements. A
requirement can be tested by one or more tests.

The fields are described in table C16:

 Name Data Type Description

requirementDataId INT Primary key. Id of the entity
RequirementsData

historyDate DATETIME Date when the information about
the requirement was stored

reqId VARCHAR(100) Id of the requirement as it was
obtained from the original database
of the company

reqTraceBack INT Reference to a higher level
requirement in another database

reqChildren INT Reference to more detailed

161

requirements below this
requirement

reqParent INT Reference to the higher level
requirement above the current one

reqOrder INT Sequence number used to
determine the order of the
requirements when printing /
reading

reqReview VARCHAR(100) Status of review of the requirement

priority VARCHAR(100) Priority of the requirement

reqType VARCHAR(100) Type of requirement

reqState VARCHAR(100) Main state of the requirement

reqStatus VARCHAR(100) Status is the sub state of the main
state

reqStart DATETIME Creation of the requirement

reqDesign DATETIME Date when the requirement started
design phase

reqPreparation DATETIME Date when the requirement started
preparation for being implemented

reqExecution DATETIME Date when the test was executed

reqFailed DATETIME Date when the test failed complying
the requirement

reqPassed DATETIME Date when the test passed

LinkedTest VARCHAR(2000) Tests that are used to test the
requirement

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the
team which manages the issue and
the Project to which the Team
belongs

162

componentID INT Foreign key. Identification of the
entity component that represents
the information of the component
to which the requirement is
associated

Table C16. RequirementsData Entity

10.2.17 Review

This entity represents the review information of the work products that are associated
to a component. Every review is performed by a team and a team can perform one or
more reviews. One work product can be reviewed one or more times.

The fields are described in table C17:

 Name Data Type Description

reviewId INT Primary key. Id of the entity
Review

historyDate DATETIME Date when the information of the
review was stored. It is used to
keep historical data

initiationDate DATETIME Date the tasks for review started

kickOffDate DATETIME Date the review activity started

loggingMeetingDate DATETIME Date for meeting in the process
of review

closureDate DATETIME Date the review finished

Pool VARCHAR(100) From which resource pool the
moderatos of the review is
coming

workProductTitle VARCHAR(100) Title of the document under
inspection / review

activityType VARCHAR(100) The type of activity involved in
each review

nOffParticipants INT Number of persons executing the
review

163

entryEffort FLOAT Effort spent on entry phase

kickOffEffort FLOAT Estimated effort spent on start
activities

preparationEffort FLOAT Estimated preparation effort
spent on this review, reading the
documents and preparing a list
of mistakes.

meetingEffort FLOAT Estimated effort in the review
meeting

reworkEffort FLOAT Estimated Rework effort

verificationEffort FLOAT Estimated effort for the review of
the rework made

reviewSize INT Number of logical pages or lines
of code (LOC) that the review
has.

majorDefects INT The most important defects that
must be solved in the review

minorDefects INT The least important defects that
must be solved in the review

reviewtype VARCHAR(100) Explain the needs of the review

severity VARCHAR(100) Level of severity of the review

externalWorkProduct INT Indicates whether the product
being reviewed is internal or
external

state VARCHAR(100) Outcome of the review process

unit VARCHAR(100) Unit of measurement lines or
pages

leadTime FLOAT Time it took to review and correct
a document

moderator VARCHAR(100) Name of the moderator of the

164

review

targetDateVerification DATETIME Date scheduled for the
verification of the rework

targetDateRework DATETIME Date scheduled for the rework

totalEffort FLOAT Estimated total effort spent on
the review

preparationRate FLOAT Average effort per page spent on
preparation

removalRate FLOAT Average Defects removed per
page

averageSize FLOAT Review Size / Number of
participants

defectCost FLOAT Total cost of review / major
defects solved

defectId INT Id of defect reviewed

saneID INT Outcome of sanity checks

saneCD INT Outcome of sanity checks

saneLT INT Outcome of sanity checks

saneNP INT Outcome of sanity checks

saneTE INT Outcome of sanity checks

sanePE INT Outcome of sanity checks

saneTD INT Outcome of sanity checks

saneSZ INT Outcome of sanity checks

saneDC INT Outcome of sanity checks

sane INT Outcome of sanity checks

recent INT Outcome of sanity checks –
whether data element is in the

165

expected range

componentID INT Foreign key. Id of the entity
component that represents the
information of the component
for which the review is being
done

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the
team which manages the issue
and the Project to which the
Team belongs

Table C17. Review Entity

10.2.18 Test

This entity represents the information about the tests that are performed to a
component. Every test is executed by a team, and one team can execute one or more
test. For every component one or more test can be executed. One or more tests can be
used to test a requirement, and one or more tests are associated to a test case.

The fields are described in table C18:

 Name Data Type Description

testDataId INT Primary key. Id of the entity
TestData

historyDate DATETIME Date when the information of the
test was stored. It is used to keep
historical data

testId VARCHAR(100) Id of the test as it was obtained
from the original database of the
company

testType VARCHAR(100) Type of the test

testState VARCHAR(100) Main state of the test

testStatus VARCHAR(100) Status is the sub state of the main
state

166

testReview VARCHAR(100) Status of the revision of the test

testExec VARCHAR(100) Has the test been executed

linkedSteps INT Reference to the steps that make
up the test case

failedRuns INT Number of times the test has been
executed and failed

passedRuns INT Number of times the test has been
executed and passed

testStart DATETIME Date the test was created

testPreparation DATETIME Date the test became prepared

testExecution DATETIME Date the test was executed

testFailed DATETIME Date the test failed

testPassed DATETIME Date the test passed

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the
team which manages the issue
and the Project to which the Team
belongs

componentID INT Foreign key. Id of the entity
component that represents the
information of the component for
which the test is being done

Table C18. Test Entity

10.2.19 Defect

This entity represents the defect information related to a component, which is
managed by a team. Every component can have one or more defects. Every team can
manage one or more defects.

The fields are described in table C19:

167

 Name Data Type Description

defectId INT Primary key. Id of the entity
Defect

historyDate DATETIME Date when the information of the
defect was stored. It is used to
keep historical data

defectType VARCHAR(100) Description of the defect

defectState VARCHAR(100) Main state of the defect

defectStatus VARCHAR(100) Status is a sub state of the main
state

defectEstimate VARCHAR(100) Estimated cost to repair the defect

defectCost VARCHAR(100) Actual cost to repair the defect

severity VARCHAR(100) Severity of the defect

priority VARCHAR(100) Priority given to the defect for its
treatment

injected VARCHAR(100) In which phase the defects has
been caused

detected DATETIME When was the defect detected

defectStart DATETIME Creation of the defect

defectAnalysis DATETIME Date when the analysis of the
defect started

defectResolution DATETIME Date when the defect entered to
resolution

defectEvaluation DATETIME Date when the defect entered to
the evaluation process

defectFinish DATETIME Date when the state of the defect
was set to closed or to rejected

problemNumber INT Identification of the defect as it
was originally obtained from the

168

database of the company

version VARCHAR(100) Version of the defect

release VARCHAR(100) Release Number

requestType VARCHAR(100) Explain the needs of the
resolution of the defect

crStatus VARCHAR(100) Current state of the defect in the
resolution process

actTotalEffort FLOAT Estimated total effort spent on
solving the defect

createTime DATETIME Creation of the record

submittedTime DATETIME Date of submission of the defect.
State set to submitted

inAnalysisTime DATETIME Date when the analysis started

analysedTime DATETIME Date when the analysis ended

inResolutionTime DATETIME Date when the defect entered to
resolution

resolvedTime DATETIME Date when the resolution ended

inEvaluationTime DATETIME Date when the defect entered to
the evaluation process

evaluatedTime DATETIME Date when the evaluation ended

modifyTime DATETIME Latest change date of the defect’s
status. When it is closed or
closured

modifiableIn VARCHAR(100) Name of the subsystem (local
database of the responsible party)
where the changes will be carried
out

discoveredOn VARCHAR(100) The project = MTR-A

defectRestart DATETIME Date when the defect was

169

restarted

defectOpen DATETIME Date when the defect was opened

defectReopen DATETIME Date when the defect was
reopened

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the
team which manages the issue
and the Project to which the Team
belongs

componentId INT Foreign key. Id of the entity
component that represents the
information of the component for
which the defect is managed

Table C19. Defect Entity

10.2.20 CaseData

This entity represents the test cases associated to a component. Every test case is
managed by a team and one team can manage one or more test cases. Every
component can have one or more test cases associated. A test case can be associated
to one or more tests.

The fields are described in table C20:

 Name Data Type Description

caseDataId INT Primary key. Identification of the
entity CaseData

historyDate DATETIME Date when the information of the
use case was stored. This is used to
keep historical data

caseId INT Id of the use case as it was
retrieved from the original
database in the company

caseState VARCHAR(100) Main state of the test case

170

caseStatus VARCHAR(100) Status is a sub state of the main
state

caseStart DATETIME Date when the execution of the test
case started

caseFinish DATETIME Date when the execution of the test
case finished

LinkedTests VARCHAR(2000) Test that are related to this test
case

proTeamId INT Foreign key. Id of the entity
ProjectTeam that represents the
team which manages the issue and
the Project to which the Team
belongs

componentID INT Foreign key. Id of the entity
component that represents the
information of the component for
which the test case is being done

Table C20. CaseData Entity

171

172

AAAppppppeeennndddiiixxx DDD

11 Tests results

11.1.1 Change duration

Figure D1 shows the results obtained for change duration calculated for different
dates. It can be observed that the time spent on change management for program
with id 8, varies in a range between 50 to 170 days, but in the month of June it
reached an elevated value of almost 380 days.

In order to understand the reason of that long duration, it would be necessary to
answer new questions. For example, whether the number of changes that were closed
in that moment was higher than the number of changes closed in the rest of the
months; moreover, whether the number of people on the team in charge to manage
changes for program with id 8 was less in that month. New queries could answer
these questions.

Other way to obtain a response about the detected behavior would be to consult the
people who managed the project, to know whether the team in charge of change
management received a training to improve their skills in that area. That would help
to understand whether the reason for the high duration was the learning speed of the
people, combined with other factors such as the number of the risks or their severity.

Change Duration

0

50

100

150

200

250

300

350

400

5/
28

/2
00

8

6/
11

/2
00

8

6/
25

/2
00

8

7/
9/

20
08

7/
23

/2
00

8

8/
6/

20
08

8/
20

/2
00

8

9/
3/

20
08

9/
17

/2
00

8

10
/1

/2
00

8

10
/1

5/
20

08

10
/2

9/
20

08

11
/1

2/
20

08

11
/2

6/
20

08

History Date

C
h

an
g

e
D

u
ra

ti
o

n
 (

d
ay

s)

Change Duration

Figure D1. Change Duration

11.1.2 Compliance

Figure D2 shows for program with id 2, the percentage of compliance with
requirements for different dates. It can be seen that through time the percentage of
compliance varies in a range between 0% and 50%.

Since in different occasions it happened that the percentage of compliance with the
requirements was zero, it would be appropriate to create new queries in order to
figure out the reason; for example whether the severity of the requirements was too
high, and thus in the moment the information was stored none of them was
complete. It would also be necessary to check whether the information about the
requirements was complete for those dates, and in case it was not, consult with the
business experts the reason why the information was not stored.

In other cases it can be seen that the compliance percentage was always maintained
in a range from 25 to 35, with a unique case when it was more than 45 percent. In
order to understand the reason for this different behavior it would be necessary to
consult in the database the severity of the requirements. It would be also helpful to
ask the team in charge of requirements management, how the activities for
implementation of the requirements were scheduled in order to achieve the
discovered almost constant level of compliance.

Compliance

0

5

10

15

20

25

30

35

40

45

50

10
/3

0/
20

07

11
/3

0/
20

07

12
/3

0/
20

07

1/
30

/2
00

8

2/
29

/2
00

8

3/
30

/2
00

8

4/
30

/2
00

8

5/
30

/2
00

8

6/
30

/2
00

8

7/
30

/2
00

8

8/
30

/2
00

8

9/
30

/2
00

8

10
/3

0/
20

08

11
/3

0/
20

08

History Date

C
o

m
p

li
an

ce
 (

%
)

Compliance

Figure D2. Compliance

11.1.3 Defect Severity

Figure D3 presents the results for the calculation of defect severity for program with
id 2, in different dates. It can be seen that the level of severe defects is almost
constant, with a value of 25% approximately.

As in the previous case, there are dates when the number of severe defects was zero.
It would be useful to consult with the people who stored the data whether the

173

information about defects was not available and thus not stored in those moments.
Also it would be useful to make new queries in the database to figure out whether the
moments when zero severe defects exists, are moments when maybe not critical
components were tested.

Other question that could be answered to understand the reason of the percentage of
severe defects, would be to investigate from the data in the database which is the
effort the team spent on the tasks for solving defects; this would be useful to know
whether the dates when the percentage was zero could be also when the team was
more productive.

Defect Severity

0

5

10

15

20

25

30

8/
24

/2
00

7

9/
7/

20
07

9/
21

/2
00

7

10
/5

/2
00

7

10
/1

9/
20

07

11
/2

/2
00

7

11
/1

6/
20

07

11
/3

0/
20

07

12
/1

4/
20

07

12
/2

8/
20

07

1/
11

/2
00

8

1/
25

/2
00

8

2/
8/

20
08

2/
22

/2
00

8

3/
7/

20
08

3/
21

/2
00

8

History Date

D
ef

ec
t

S
ev

er
it

y
(%

)

Defect Severity

Figure D3. Defect Severity

11.1.4 Effort Distribution

Figure D4 depicts the effort distribution over 3 types of tasks related to program with
id 8 through time. It can be seen that the higher effort is always put on tasks oriented
to testing, and in second place to tasks oriented to requirements management. In
third place, the tasks oriented to design are invested less effort.

The results obtained for the activities related to this program show a behavior that is
not logical, since the effort remains constant in time; this would be an unusual case
in the context of a project. Therefore the effort distribution metric was calculated for
other programs, and it was discovered that the constant value also existed in the
related data.

Nevertheless, for other programs such as program with id 30, the pattern changed
and more variable values were found for the effort distribution metric. Figure D5
shows the effort distribution for the activities requirements, design and tests
associated to program with Id 30.

174

Given that it was found that the constant pattern is not related to all the programs, it
would be appropriate to make new queries that allow checking the values of actual
work for every month. It seems that the same values were recorded every time data
was stored. The people in charge to collect these data in the business context should
be consulted to figure out whether no new data was available and therefore the
database was not updated.

Effort Distribution

0

50

100

150

200

250

300

350

2/
1/

20
08

2/
8/

20
08

2/
15

/2
00

8

2/
22

/2
00

8

2/
29

/2
00

8

3/
7/

20
08

3/
14

/2
00

8

3/
21

/2
00

8

3/
28

/2
00

8

4/
4/

20
08

4/
11

/2
00

8

4/
18

/2
00

8

4/
25

/2
00

8

5/
2/

20
08

5/
9/

20
08

5/
16

/2
00

8

5/
23

/2
00

8

5/
30

/2
00

8

History Date

E
ff

o
rt

 D
is

tr
ib

u
ti

o
n

Effort_REQ

Effort_DSG

Effort_TST

Figure D4. Effort distribution program id 8

Regarding figure D5, it can be observed that the activities that required more effort
are the related with design, followed by those related with requirements, and then in
third place, those related with testing. Nevertheless at the end of the measurement
periods, it can be noticed that the effort spent on testing activities increased in a
significant amount, while the other two remained almost constant.

It would be appropriate to investigate whether the planning of the projects related to
program with id 30 was aiming to dedicate more time to requirements management
and design activities in order to perform them more effectively. The people in charge
of management of the projects could inform whether this kind of politic was applied
at the beginning of the projects, with the goal to minimize the number of possible
errors and therefore the time spent on testing activities.

It would be also appropriate to create new queries to figure out whether at the
beginning of the measurements, the components developed didn’t have a high
complexity and therefore the time spent in testing was not too much. Also whether
the complexity of the components increased and therefore the testing activities
required more effort. This information could be obtained checking the severity of the
tasks involved in the analyzed activities.

175

Effort distribution

0

50

100

150

200

250

300

2/
1/

20
08

2/
8/

20
08

2/
15

/2
00

8

2/
22

/2
00

8

2/
29

/2
00

8

3/
7/

20
08

3/
14

/2
00

8

3/
21

/2
00

8

3/
28

/2
00

8

4/
4/

20
08

4/
11

/2
00

8

4/
18

/2
00

8

4/
25

/2
00

8

5/
2/

20
08

5/
9/

20
08

5/
16

/2
00

8

5/
23

/2
00

8

5/
30

/2
00

8

History Date

E
ff

o
rt

 d
is

tr
ib

u
ti

o
n

 (
d

ay
s)

Effort_REQ

Effort_DSG

Effort_TST

Figure D5. Effort distribution program id 30

11.1.5 Review Coverage

Figure D6 depicts the result of the percentage of review coverage for the project with
id 49 through time. It can be seen that there is a high percentage of reviews that were
finished every time the snapshots were taken.

It would be appropriate to generate more information about the review tasks for
which information was stored in the dates presented in the figure. This would be
useful to compare the amount of effort spent on every one of them. Also, to check
whether the effort spent varied according to the size of the reviews being performed.
A manager in charge of the process management could explain whether the planning
of the review activities was made regarding their severity and size, in order to achieve
that the percentage of coverage remained high.

176

Review Coverage

93.515

93.52

93.525

93.53

93.535

93.54

93.545

10
/1

0/
20

06

10
/2

4/
20

06

11
/7

/2
00

6

11
/2

1/
20

06

12
/5

/2
00

6

12
/1

9/
20

06

1/
2/

20
07

1/
16

/2
00

7

1/
30

/2
00

7

2/
13

/2
00

7

2/
27

/2
00

7

3/
13

/2
00

7

3/
27

/2
00

7

4/
10

/2
00

7

4/
24

/2
00

7

History Date

R
ev

ie
w

 C
o

ve
ra

g
e

(%
)

Review Coverage

Figure D6. Review Coverage

11.1.6 Actual Cost of the Work Performed

Figure D7 shows the results of calculations for cost of work performed for program
with id 8 through time. It can be seen that at the beginning, the work invested on
tasks of different types was almost constant, and after the month of November its
value increased and acquired a new constant level.

As in the case of effort distribution, the constant cost of work performed seems to
have an unusual behavior in projects. The metric was calculated again for program
with id 30, and the results are presented in figure D8.

In the case of program with id 8, it would be appropriate to consult with the people in
charge to store the information about the actual work, whether the data was available
and thus updated every time it was stored. This would explain the very low variability
of the results.

177

Cost of Work Performed

0

1000

2000

3000

4000

5000

6000

7000

8000

2/
1/

20
08

2/
8/

20
08

2/
15

/2
00

8

2/
22

/2
00

8

2/
29

/2
00

8

3/
7/

20
08

3/
14

/2
00

8

3/
21

/2
00

8

3/
28

/2
00

8

4/
4/

20
08

4/
11

/2
00

8

4/
18

/2
00

8

4/
25

/2
00

8

5/
2/

20
08

5/
9/

20
08

5/
16

/2
00

8

5/
23

/2
00

8

5/
30

/2
00

8

History Date

C
o

st
 o

f
w

o
rk

 (
d

ay
s)

Cost of work

Figure D7. Cost of work performed program id 8

Regarding figure D8, it can be seen that there is variability in the cost of work
performed, and in some months such as April, June and October, the difference with
other months is considerable. The necessary queries to find out the severity of the
activities and the availability of the team in charge of performing them every month,
would help to explain why the high differences are present.

There are also several cases in which the value obtained is zero. The people in charge
to store data about actual work spent on activities should be consulted in this case,
with the aim to know whether the data was not properly stored for those dates.

Cost of Work Performed

0

2000

4000

6000

8000

10000

12000

2/
1/

20
08

2/
15

/2
00

8

2/
29

/2
00

8

3/
14

/2
00

8

3/
28

/2
00

8

4/
11

/2
00

8

4/
25

/2
00

8

5/
9/

20
08

5/
23

/2
00

8

6/
6/

20
08

6/
20

/2
00

8

7/
4/

20
08

7/
18

/2
00

8

8/
1/

20
08

8/
15

/2
00

8

8/
29

/2
00

8

9/
12

/2
00

8

9/
26

/2
00

8

10
/1

0/
20

08

10
/2

4/
20

08

11
/7

/2
00

8

11
/2

1/
20

08

12
/5

/2
00

8

History Date

C
o

st
 o

f
w

o
rk

 (
d

ay
s)

Cost of Work

Figure D8. Cost of work performed program id 30

178

179

AAAppppppeeennndddiiixxx EEE

12 Appendix E: Work Methodology Process Model
The figure E1 presents one of the three main deliverables of this project, a process
model that summarizes the work methodology that was proposed in chapter 3. This
work methodology was followed during the development of the project in order to
create the quality database. It is also intended to serve as a model that can be followed
in the future using new information from companies provided by the consultant. In
the figure the activities to be done, along with data and documents needed for these
activities or produced by them are represented.

The main steps to be followed are:

1. Analyze the structure of the data in the snapshots.

2. Define quality dimensions to be measured during data cleaning.

3. Define metrics associated to the dimensions.

4. Define the attributes of the snapshots which will be assessed with the metrics
during the cleaning.

5. Define information that is required from the business context to apply the
metrics. This is because in some cases not all the metrics can be applied
without having real world information that can be used to assess dimensions
such as accuracy.

6. Define the definitive metrics to be applied based on the knowledge of the
business context.

7. Perform measurements. In this activity algorithms can be developed, but also
some existing techniques or tools could be found that can be used according
to the dimensions that are being measured. In this project, algorithms were
developed.

8. Define a standard quality level to be used as reference to establish whether the
quality level obtained during measurements is good enough.

9. Analyze the results obtained during the measurements by comparing them
with the standard quality level defined. Establish which data should be
improved.

10. Obtain information necessary to perform improvements from the business
context. In case needed data is not available no improvements are possible to
be done. In this project the possible improvements were performed, and in
cases where the information was not available, it is explained why
improvements were not made.

11. Perform possible improvements. Once this is finished the data cleaning phase
has finalized, and the quality of the data has been improved.

12. Create Data Analysis model to define classes that will represent objects of the
real world which information will be stored in the database.

13. Define whether new quality dimensions must be added to the information to
be stored in the database. In case new dimensions are defined, a Quality
Analysis model must be created complementing the Data Analysis model to
indicate which are the dimensions and the data for which the dimensions will
be added. In this project no additional dimensions were necessary, so there is
not a Quality Analysis model.

14. Create the Entity Relationship model which represents the design of the
database. This model must be based on the Data Analysis model and the
Quality Analysis model (in case this exists). This is to define all the necessary
entities to represent the objects of the real world and the entities or attributes
that are necessary to add new quality dimensions. The model must be
readable, correct and normalized in order to give it interpretability.

15. Define the DBMS that will be used to create the database.

16. Create the database and store there data from the snapshots. This is the
second of the three main deliverables of the project.

17. Create documentation of the database taking into account the interpretability
characteristics explained in chapter 3. This is the third of the three main
deliverable of this project, and can be found in appendix C.

18. Define tests to be done in order to prove that the information of the database
can be used.

19. Perform the test and document the results.

180

Figure E1. Work Methodology Process Model

181

The quality database, as one of the deliverables of the project, has already been
created and data, which quality was measured and improved, was stored there.
Therefore the process model can be used as reference to work with new data provided
in the future, and only the steps that are necessary must be followed. For example, if
new data is proportioned, only the measurement and improvement of the quality
must be done, to then store the data in the database. If new quality dimensions are
necessary, the current Data Analysis model must be complemented with a new
Quality Analysis model where these dimensions are represented. Afterwards, the
design of the data model can be improved adding the entities or attributes that are
considered necessary to add new quality dimensions to the information stored there;
finally, also the consequent modifications to the database can be done.

182

References
[MYS09] http://dev.mysql.com/doc/refman/5.1/en/index.html

[SIE08] Siemons P., “Measurement System Design”, Pages 14, 16, 17, 21. Euroclear
2008.

[URE08] Ureña E., “Process Mining applied to the Change Control Board Process -
Discovering Real Processes in Software Development Process”. Page 27. Series
Master Theses Operations Management and Logistics. TUE Department Technology
Management. Eindhoven University of Technology. Eindhoven, The Netherlands.
2008.

[IBE08] Ibern A. and Morató R. “Statistical Analysis of defect data in software
development”. Pages 9, 12. Eindhoven University of Technology, Faculty of
Technology Management, Division of Information Systems. Eindhoven, The
Netherlands. 2008.

[SIE02-1] Siemons P., “Measurement database”. July 2002. Page 8.

[SIE02-2] Siemons P., “Measurement Plan Philips”. December 2002. Page 13.

[BAT06] Batini C., Scannapieca M. “Methodologies for Data Quality Measurement
and Improvement”, chapters 2, 3, 4, 5, 7. ISBN 978-3-540-33172-8. Book Series, Data-
Centric Systems and Applications. Publisher Springer Berlin Heidelberg. DOI
10.1007/3-540-33173-5. Copyright 2006.

[SIE03] Siemons P. “Design description for measurement database”. 2003.

[SIE04] Siemons P. “Software Measurement Guidebook”. Software Engineering
Methodologies for Embedded Systems. 2004.

[WAN98] Wang R. “A product perspective on Total Data Quality Management”.
Communications of the ACM. February 1998/Vol. 41, No. 2.

[WAN93] Wang R.Y., Kon H.B., Madnick, S.E. “Data quality requirements analysis
and modeling”. Sloan School. of Management, MIT, Cambridge, MA. Proceedings
Ninth International Conference on Data Engineering, 1993. 19-23 Apr 1993. On
pages: 670-677.

[PIP02] Pipino L., Lee Y., Wang R. “Data Quality Assessment”. 2002, ACM.
Communications of the ACM. April 2002/ Vol 45, No. 4ve.

[SCA02] Scannapieco M., Pernici B., Pierce E. “IP-UML: Towards a methodology for
quality improvement based on the IP-MAP framework”. Proceedings of the Seventh
International Conference on Information Quality. (ICIQ-02).

[Fel69] Fellegi I., Sunter A. “A Theory for Record Linkage”. Journal of the American
Statistical Association, Vol. 64, No. 328 (Dec., 1969), pp. 1183- 1210. Published by:
American Statistical Association

183

[WAN95] Wang, R.Y., Storey, V.C. Firth, C.P. “A framework for analysis of data
quality research”, IEEE Transactions on Knowledge and Data Engineering. On
page(s): 623-640, Volume: 7, Issue: 4, Aug 1995

[WAR96] Ward R., Wand Y. “Anchoring data quality dimensions in ontological
foundations” Communications of the ACM archive. Volume 39, Issue 11 (November
1996) Pages: 86 - 95. ACM New York, NY, USA

[STR97] Strong D., Lee Y., Wang R. “Data quality in context”. Communications of the
ACM archive. Volume 40, Issue 5 (May 1997). Pages: 103 – 110. ACM New York, NY,
USA

[BER07] Berti-´Equille L., “Measuring and Modelling Data Quality for Quality-
Awareness in Data Mining”, Studies in Computational Intelligence (SCI) 43, 101–126
(2007). IRISA, Campus Universitaire de Beaulieu, Rennes, France - Springer-Verlag
Berlin Heidelberg 2007

[BER07-1] Berti L., “Data Quality awareness: a case study for cost-optimal association
rule mining”. Knowledge and Information Systems (2007) 11(2) : 191 – 215. Springer
– Verlag London Limited 2006.

[BAL99] Ballou D., Kumar G. “Enhancing data quality in Data Warehouse
environments”. Communications of the ACM. January 1999/ Vol. 42, No. 1.

[GAR98] Gardner S., “Building the Data Warehouse”. Communications of the ACM.
September 1998/ Vol. 41, No. 9. pages 52 – 61.

[VAS02] Vassiliadis P., Simitsis A., Skiadopouls S. “Conceptual Modeling for ETL
Processes”. National Technical University of Athens, Dep. Of Electrical and
Computer Eng. November 8, 2002, McLean, Virginia, USA. ACM Comunnications.

[ANN06] Annoni E., Ravat F., Teste O., and Zurfluh G. “Towards Multidimensional
Requirement Design”. IRIT-SIG Institute. University of Paul Sabatier. DaWaK 2006,
LNCS 4081, pp. 75–84, 2006. Springer-Verlag Berlin Heidelberg

[MAZ08] Muñoz L., Mazón J., Pardillo J., Trujullo J. “Modeling ETL Processes of
Data Warehouses with UML Activity Diagrams”. OTM 2008 Workshops, LNCS 5333,
pp. 44–53. Springer-Verlag, Berlin Heidelberg 2008.

[JAR03] Jarke M., Lenzerini M., Vassiliou Y., Vassiliadis P. “Fundamentals of Data
Warehouses” 2nd Revised and Extended Edition. Springer-Verlag, 2003. 214 pages,
ISBN: 3-540-42089-4

[WIN06] Winkler W. “Data Quality: Automatic Edit/Imputation and Record
Linkage”. European Conference on Quality in Survey Statistics. Proceedings of
Q2006.

[BAL98] Ballou D., Wang R., Pazer H., Tayi G.K, “Modeling Information
Manufacturing Systems to Determine Information Product Quality”, Management
Science, 44(4), 1998.

184

185

[STE06] Steven P., Pooley R. “Using UML: Software Engineering with Objects and
Components”. Second Edition. Addison Wesley. Object Technology Series. Series
Editors. 2006

[SIE09] Siemons P., “Collecting metrics”. Metrific Management Consult. 2009.

[SIE07] Siemons P’, “Measurement and analysis Plan”. 2007

.

	1 Research Project Definition
	1.1 Context of the project
	1.2 Objective and research questions
	1.3 Research Outline
	1.3.1 Creation of the database
	1.3.2 Tests the information:

	1.4 Theoretical aspects
	1.5 Structure of the document

	2 Theoretical background
	2.1 Data Quality
	2.1.1 Concept of Data Quality
	2.1.1.1 Data Quality Dimensions
	2.1.1.2 Methodologies

	2.1.2 Measurement of Data Quality in an existing data model
	2.1.3 Improvement of data quality in an existing data model
	2.1.4 Addition of data quality to a new data model
	2.1.4.1 Quality dimensions for a schema
	2.1.4.2 Graphical representation

	2.1.5 Theoretical aspects to be used

	2.2 Data Warehouse
	2.2.1 Architecture
	2.2.2 ETL process
	2.2.3 Quality
	2.2.4 Theoretical aspects to be used

	3 Work Methodology
	3.1 Creation of the database
	3.1.1 Understand the data
	3.1.2 Data Cleaning
	3.1.2.1 Definition:
	3.1.2.2 Measurement:
	3.1.2.3 Analysis:
	3.1.2.4 Improvement:

	3.1.3 Design of quality database
	3.1.4 Implementation of the database

	3.2 Tests to the information:
	3.3 Documentation

	4 Description of procedure to obtain data
	4.1 Measurement Database
	4.1.1 Granularity of the data
	4.1.2 Data categories

	5 Cleaning phase and database design
	5.1 Definition
	5.1.1 Dimensions and metrics
	5.1.2 Fields to be assessed

	5.2 Measurement
	5.3 Analysis and Improvement
	5.3.1 Company 1
	5.3.1.1 Completeness
	5.3.1.2 Accuracy: Syntactic errors
	5.3.1.3 Consistency: Edit rules

	5.3.2 Company 2
	5.3.2.1 Completeness
	5.3.2.2 Accuracy: Syntactic errors
	5.3.2.3 Consistency: Edit rules

	5.4 Database design

	6 Tests
	6.1 Description of the test
	6.1.1 Change duration
	6.1.2 Compliance
	6.1.3 Defect Severity
	6.1.4 Effort Distribution
	6.1.5 Review Coverage
	6.1.6 Actual Cost of the Work Performed

	6.2 Conclusion

	7 Conclusions and Future work
	8 Appendix A: Snapshots Documentation
	8.1 Company 1
	8.1.1 Architecture data
	8.1.2 Defect data
	8.1.3 Project data – “Effort Data”
	8.1.4 Review data
	8.1.5 Size Data

	8.2 Company 2
	8.2.1 Architecture Data
	8.2.2 Case Data
	8.2.3 Change Data
	8.2.4 Defect Data
	8.2.5 Issue Data
	8.2.6 Project Data - “Effort Data”
	8.2.7 Requirements Data
	8.2.8 Risk data
	8.2.9 Test data

	9 Appendix B: Quality measurements
	9.1 Attributes and metrics
	9.1.1 Company 1
	9.1.2 Company 2

	9.2 Measurements
	9.2.1 Company 1
	9.2.2 Company 2

	10 Appendix C: Database Documentation
	10.1 DBMS
	10.2 Database description
	10.2.1 Company
	10.2.2 Program
	10.2.3 Project
	10.2.4 Team
	10.2.5 ProjectTeam
	10.2.6 Product
	10.2.7 System
	10.2.8 Subsystem
	10.2.9 GroupComponent
	10.2.10 Component
	10.2.11 SizeData
	10.2.12 IssueData
	10.2.13 ChangeData
	10.2.14 RiskData
	10.2.15 Task
	10.2.16 RequirementsData
	10.2.17 Review
	10.2.18 Test
	10.2.19 Defect
	10.2.20 CaseData

	11 Tests results
	11.1.1 Change duration
	11.1.2 Compliance
	11.1.3 Defect Severity
	11.1.4 Effort Distribution
	11.1.5 Review Coverage
	11.1.6 Actual Cost of the Work Performed

	12 Appendix E: Work Methodology Process Model
	References

