
 Eindhoven University of Technology

MASTER

Transformations of a SIP Service Model

Bruggeman, W.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c5c42767-a59f-4b6f-86fb-d3d281ba42fb

TU/e, Eindhoven University of Technology

Mathematics and Computer Science department

Software Engineering and Technology group

master thesis

Transformations of a SIP Service Model

by W. Bruggeman

graduation tutor: dr.ir. T. Verhoeff, TU/e
graduation supervisor: prof.dr. M.G.J. van den Brand, TU/e
supervisor: ir. M. Huijsmans, Ericsson Telecommunicatie BV

Eindhoven, June 2008

2 (130)

Abstract

Does capturing more of the semantics of an IMS Service in the early phases
in a model and using this model in later phases of the service lifecycle result
in more flexibility and faster TTM without loss of quality?

This master thesis analyzes the above question through an investigation of an
IMS Metamodel defined by the Ericsson Service Composition Environment,
an environment for composition of IMS Services. In addition, transformations
from IMS Services modeled as UML State Charts into both SCE
implementations and SIP Applications are investigated. This includes an
analysis of the transformation design processes as well as techniques to add
SIP Semantic information to a State Chart metamodel.

While a transformation from a SIP Model into a SIP Application was
successfully performed, it was found that the transformation as such should
be seen as part of a larger design process to be able to answer the question.
These gaps have been identified and topics for further research are included.

3 (130)

Acknowledgments

The author would like to thank the following persons: Martien Huijsmans for
being my tutor at Ericsson. Tom Verhoeff and Mark van den Brand for their
support as graduation tutor and graduation supervisor at the Eindhoven
University of Technology. The SCE design team at ETM for their amazement
when asked yet another silly question on SCE. All the colleagues at the
System Management and CA MMS departments. Arie Catsman, and all other
proof readers.

4 (130)

Contents
1 Introduction ..6
2 Assignment...7

2.1 Introduction...7
2.2 System Management ...7
2.3 Background ..8
2.4 Context / Scope..9
2.5 Problem Description ...12
2.6 Initial Assignment ...12
2.7 Engineering Assignment ..18

3 IMS...20
3.1 Introduction...20
3.2 IP Multimedia Subsystem (IMS) ...20
3.3 Architecture ..20
3.4 Protocols ..24
3.5 SIP AS..26
3.6 Examples..27
3.7 SIP Container ...29

4 SCE..35
4.1 Introduction...35
4.2 Service Composition Environment ...35
4.3 Terminology..35
4.4 Syntax ..36
4.5 Semantics...45
4.6 Examples..51

5 CFB Service ..56
5.1 Introduction...56
5.2 Call Forwarding on Busy Analysis..56
5.3 Call Forwarding on Busy as SIP Proxy57

6 SCE State Machine Transformation Specification63
6.1 Introduction...63
6.2 XSLT ..63
6.3 UML State Chart...63
6.4 SCE Composition Template ...65
6.5 Two Step Transformation ...65

7 SCE State Machine Transformation Overview74
7.1 Introduction...74
7.2 Initial Observation...74
7.3 Approach, Input, Output and Tools ..74
7.4 Observations ..78
7.5 Conclusion and Remarks ...80

8 Repleo State Machine Transformation Specification81
8.1 Introduction...81
8.2 Repleo ..81
8.3 Java State Machine..82
8.4 UML State Chart...83
8.5 Three Step Transformation ..84
8.6 Step 1: XMI to Intermediate XML Transformation84
8.7 Step 2: XML to ATerm transformation......................................84
8.8 Step 3: Repleo Generation...85

5 (130)

9 Repleo State Machine Transformation Overview..............................90
9.1 Introduction ..90
9.2 Initial Observation ..90
9.3 Approach, Input, Output and Tools ..90
9.4 Observations ..93
9.5 Quality ..102
9.6 Conclusion and Remarks ...102

10 SIP Semantics ..104
10.1 Introduction ..104
10.2 Background ..104
10.3 Layered SIP Interface ..105
10.4 Enhanced State Chart Model ...105
10.5 State Chart Model Design ..109
10.6 Java State Machine Structure and Generation110
10.7 Conclusion and Remarks ...111

11 Design Process ..112
11.1 Introduction ..112
11.2 SCE Design Process..112
11.3 Repleo Design Process..115

12 Conclusion and Remarks ..119
12.1 Introduction ..119
12.2 Conclusions..119
12.3 Remarks...120
12.4 Future Work ...120

13 Glossary..123
14 References..125
Appendix A Overview of Documents and Source Code127

6 (130)

1 Introduction

This document is the result of the master thesis project carried out at the
System Management department at Ericsson Telecommunicatie BV, the
Netherlands.

This master thesis is also the last part of the Master of Science degree at
Eindhoven University of Technology.

Within Ericsson there is an interest in Model Driver Engineering. These
developments at modeling level are seen as a means to improve
maintainability and flexibility.

As part of a research project at Ericsson Research Germany, the Service
Composition Environment was developed. This modeling environment uses
an IMS Service Metamodel

The System Management combined both facts and provided a master thesis
opportunity which ultimately resulted in this Master Thesis document.

This document can be split in two parts:

• The first part describes the assignment (chapter 2), provides an
introduction on IMS (chapter 3), an introduction on SCE (chapter 4) and
finally describes an IMS Service (chapter 5).

• The second part describes the investigation on the SCE State Machine
Transformation (chapters 6 and 7), the investigation on the Repleo State
Machine (chapter 8 and 9), an investigation on SIP Semantics (chapter
10), and finally an overview of the design processes used for the
transformations (chapter 11).

The conclusions can be found at the end of chapters 7, 9 and 10. Chapter 12
contains the overall conclusion and includes recommendations for further
research.

7 (130)

2 Assignment

2.1 Introduction

The objective of this chapter is to provide a background and to describe in
more detail the context and scope of the graduation project.

The graduation project is based on the initial assignment described in the
“Student Assignment” [1], and the engineering assignment described in the
"Detailed Student Assignment" [2].

The initial assignment of System Management describes an investigation into
an IMS Service Model defined by the Ericsson Service Composition
Environment and includes sub investigations into component frameworks and
the service life-cycle.

Approximate halfway the project it was observed by the graduation tutor and
graduation supervisor that the engineering aspects of the initial assignment
would be difficult to measure. Together with System Management we
introduced the engineering assignment to address these concerns.

The engineering assignment requests an investigation of automatic
transformations of an IMS Service Model into a Service Composition
Template implementation. There were no difficulties shifting the investigation.

Based on feedback from the graduation supervisor, the engineering
assignment was extended with an investigation of automatic transformations
of an IMS Service Model into a Java SIP Application based on the syntax safe
generation system Repleo.

The main focus of this thesis is the engineering assignment. As a result some
of the research questions of the initial assignment were removed from the
scope of this work.

2.2 System Management

The graduation project was performed for Ericsson Telecommunication B.V.
at Rijen, The Netherlands. The stake holder is the PDU VAS System
Management department.

Ericsson is a world-leading provider of telecommunications equipment and
related services to mobile and fixed network operators globally.

The (simplified) operational organization is based on business units and
market units. Business Units create offerings and Market Units sell offerings.
A Business Unit consists of Development Units and a Development Unit
consists of Product Development Units.

• The Business Unit Multimedia (BMUM) has the overall responsibility of the
multimedia solutions portfolio.

• The Development Unit Multimedia Products (DMMP) provides multimedia
products.

8 (130)

• The Product Development Unit Value Added Services (PDU VAS),
located in Rijen, The Netherlands, provides products within the scope of
value added services.

The System Management at the PDU VAS is responsible for the system
definition, general design and documentation for development of products.

As the System Management at the PDU VAS is part of a larger System
Management organization, whenever System Management is mentioned in
this document, this should be seen in the context of the PDU VAS.

2.3 Background

This chapter provides a background for the assignment. The points
mentioned address the "why" and "why now" of the assignment.

2.3.1 White Box

System Management sees a tendency towards white box systems.

A Black Box is a system of which only the interfaces and behavior are known.
The content of the box is not known and cannot be changed. The Black Box
has a known functionality which cannot be changed.

The White Box is a system from which the interfaces and behavior are known,
as well as the components inside the box. The components inside the box
could be white or black boxes. The components inside the box can be
replaced or reordered, which results in a different behavior. A White Box
allows flexibility at the cost of control as a specific behavior can no longer be
guaranteed.

A telecom service can be represented as a black box system. A telecom
service has a known functionality and cannot be changed. By modeling a
telecom service as a white box flexibility is added. Components inside the box
become known and can be replaced or reordered. This allows matching
specific requirements of a customer and allows adapting to changing
requirements over time.

2.3.2 IP Multimedia Subsystem (IMS)

Currently there is an evolution of the telecommunication network in which the
core network is changing from switched based telecommunication networks to
IP based telecommunication networks. These IP based telecommunication
networks are referred to as Next Generation Network, or, more specific, as
the IP Multimedia Subsystem (IMS) telecommunication network.

The purpose of IMS is to provide a framework in which multimedia sessions
can be established and value added services can be deployed.

Ericsson has an IMS product that includes core network layer components, as
well as service layer components. A service development solution is available
for creation of telecommunication services.

While for the current generation of telecommunication networks the design
processes and frameworks are mature and fixed, for IMS these processes
and frameworks are still being defined and new design methodologies and
architecture frameworks are being introduced.

9 (130)

The assignment should be seen in the context of IMS. To reflect this, the term
“IMS Service” is used, instead of, for example, “telecommunication service”.

2.3.3 Product Life Cycle Management

Within Ericsson the Product Life Cycle Management (PLCM) describes the
process to create a product or solution. This includes a life cycle process
ranging from the definition of a market opportunity to the phasing out of a
product. Part of the PLCM is the discipline Network System Modeling (NSM).
The objective of NSM is to specify the architecture of a solution. The output
from Network System Modeling will be input for development projects.

Currently, the output from the Network System Modeling specifies a system
(service), but the (detailed) modeling of the service design and
implementation is not performed until the next phase in the PLCM process
(the Design & Test Product phase).

System Management believes that modeling in an earlier phase (that is,
during NSM) may improve management of complexity and add to the
flexibility of changes later in the life cycle.

As an example in a broader scope: The PDU provides standard products and
solutions. The Market Unit takes a selection of these standard products and
solutions, adds customization to comply with specific customer requirements
and delivers a complete solution to the customer. Being able to customize a
product with minimal redesign improves the flexibility. Having influence on the
modeling improves the manageability and supports the flexibility of the
product.

2.3.4 Model Driven Engineering

System Management sees developments at the modeling level. For example
Model Driven Architecture and Model Driven Design. Capturing (more)
information in a model and using this model as a means for the system and
software architect is seen as an enabling element towards the Market Unit.

An interest in Model Driven Engineering can also be seen at other levels. For
example, DMMP sees developments at the modeling level as a means to
improve the manageability of the product portfolio and underlying system
components. A research project is started in this area, but no results are
available yet.

2.4 Context / Scope

2.4.1 IMS

The scope of the assignment is based on the Service Composition
Environment (SCE) prototype. SCE is discussed in paragraph 2.4.2. The
relevant technologies and implementations for SCE are indicated below.

• The scope of the service is a session oriented telecommunication service
in the IMS architecture. (Also referred to as an IMS Service.) The IMS
framework [3] defines a functional component called SIP Application
server on which IMS Services can be deployed and executed. SIP is the
signaling protocol used in IMS. Note that the IMS specification does not
describe the implementation or technology choices within the SIP-AS.

10 (130)

• The scope of the implementation and technology for the SIP Application
Server is related to the SCE prototype. This defines a Java EE application
server and the JSR-116 or JSR-289 Sip Container. The logical
components are shown in Figure 1. Although not part of the IMS
architecture, the figure also shows the Composition Design Environment
that is used to compose IMS Services.

SIP Servlet Container

Java EE Application Server

Composition Engine Service
DB

UE

Access Network

IMS

SIP Application Server

Composition Design Environment

Figure 1, SIP-AS Logical Components

• The SIP Container will be JSR-116 [12] or JSR-289 [13] (pending
availability of a finalized specification and implementation). In particular
the Sailfin [15] implementation of the SIP Container. Note that the JSR-
289 specification is not yet finalized nor is an implementation available.
The Sailfin implementation is also not yet finalized. The current
implementation of the SCE prototype uses the JSR-116 container.

• The Service Composition Environment (SCE) is defined by the Multi
Service Architecture documentation (see chapter 2.4.2) and the SCE
prototype, documentation and sources.

2.4.2 MSA

As part of the Multi Service Architecture (MSA) research and in co-operation
with the University of Bremen, Ericsson Research Germany (EDD department
in Aachen) has developed a Service Composition Engine (SCE) environment.

The SCE allows composition and execution of IMS Services.

Composition of IMS Services is based on:

• Constituent Services. These are atomic service components that
represent a single task within a service. Multiple Constituent Services can
be grouped together (in a skeleton) and accessed as a Constituent
Service.

• Composition Templates. These represent complete IMS Services or
specific tasks and consist of Constituent Services and Composition
Templates.

IMS Service Execution is based on:

• The service flow specified in a Composition Template.

11 (130)

• Based on the referenced Constituent Services a service implementation is
selected and used to execute a Composition Template step.

The SCE components of the current prototype are listed below:

• SCE Composition Engine

• Service Database

• SCE Composition Design Environment

These SCE components are shown in Figure 2.

The SCE Composition Engine is a J2EE / SIP Container based Execution
Engine to execute IMS Services.

The SCE Composition Design Environment is an IMS Service development
environment. The created IMS Services are stored in the Service Database.

As a result of the MSA research, prototypes are available of the Composition
Engine, Composition Design Environment and Service Database.

The SCE includes a service model that is input for the investigation.

JSR-289
Application

Router

deployed
service

component

SIP Servlet

deployed
service

component

Servlet

deployed
service

component

EJB /
Webservices

Composition
Engine

Composition Engine

J2EE AS / SIP Servlet Container

Service
Database

CSCF

Composition Design Environment

Service Development Studio

Figure 2, Service Composition Environment

The Constituent Services as used by the SCE provide a description (a service
description and constraints) and are neither executable nor deployed
components.

The deployed service components (for example deployed SIP Applications or
Web Services) are identified through a set of properties.

The binding between constituent services and the deployed service
components is based on these constraints and properties. A set of constraints
that describe the constituent service is specified during service composition.
During execution, the Composition Engine finds a deployed service
component whose properties match with the constraints and invokes this
deployed service component.

12 (130)

The branding of an IMS Service is inflexible as it is typically done through
configuration and not during service composition. Using the constraint
mechanism of SCE, choosing specific branded deployed service components
can be done during service composition.

An example would be to use a property named "provider". By changing the
value of this property during the composition it is trivial to switch between
different sets of branded service implementations.

2.4.3 Services

The IMS Services used in this project are based on the TISPAN Multimedia
Telephony Services specification [3]. Simplification and/or implementation of
these IMS Services are performed as part of the project.

2.4.4 Ericsson Tools and Processes

Within Ericsson there is a strong focus on the Eclipse IDE. Further, UML
based tools are used.

In this project we use the Ericsson SCE prototype and the Ericsson Service
Development Studio 4.0 [18].

2.5 Problem Description

Does capturing more of the semantics of an IMS Service in the early phases
in a model and using this model in later phases of the service lifecycle result
in more flexibility and faster TTM without loss of quality?

The SCE prototype provides a framework to compose and execute services
allowing composition in an earlier phase. What kind of service model does
SCE use and how does SCE compare to alternative frameworks?

In the current implementation of services, state machines play an important
role. Can support for state machines be provided in SCE?

2.6 Initial Assignment

This chapter provides a more detailed description of the initial assignment as
described by the "Student Assignment" [1].

The assignment questions listed below are further discussed in the following
paragraphs.

1 Investigate the IMS Service Model defined by SCE.

2 Investigate the pro's and con's of component frameworks.

3 Describe the life-cycle of a service.

As an indication, question 1 is expected to take 70%, question 2 is expected
to take 20% and question 3 is expected to take 10% of the assignment effort,
within the scope of these three questions.

2.6.1 Service Model

Investigate the IMS Service Model defined by SCE.

13 (130)

• Analyze and extend the IMS Service Model defined by SCE.

• How does the IMS Service Model defined by SCE compare with
alternative service models?

2.6.1.1 Initial Assessment

SCE provides a framework and a prototype of a Composition Design
Environment and Composition Engine. SCE contains a service model that
allows modeling, storage and deployment of IMS Services. The service model
is based on Composition Templates (service flow descriptions), Constituent
Services (service elements) and control (flow) elements.

A prototype of SCE is available. This includes source code and some
documentation. The available documentation appears to be limited and the
Java source code appears to contain only limited comments. The designers
involved with the creation of SCE (and thus the service model) may be
available to answer questions.

The purpose of the service model is to represent IMS Services. The suitability
of the IMS Service Model defined in SCE to represent IMS Services can be
measured in two ways:

• By identifying the properties of an IMS Service and verifying if these
properties can be represented in an IMS Service Model.

• By composing existing IMS Services (use cases) using the IMS Service
Model.

IMS Services have certain properties which can be found by studying the IMS
specifications and the J2EE / JSR-289 framework. Such properties are for
example the a-synchronous behavior, the forking of sessions and the
forwarding of SIP requests. Next, it can be investigated if these properties can
be represented by the service model.

A set of IMS Service specifications/descriptions is available. These are taken
from the TISPAN Multimedia Telephony standard [3] and use cases from
System Management such as the Managed Telephony IMS Service. Using
these use cases it can be investigated if these services can be composed
using the SCE service model.

Composing IMS Services using the service model is done by analyzing use
cases, identifying the constituent services and modeling these components in
skeletons. This should not only result in identifying any discrepancies
between the required components and what is allowed in the service model,
but should also result in a set of common constituent services and an
understanding of best practices for service composition.

If shortcomings are found in the SCE service model, these should be
documented and a solution to the service model investigated. Depending on
the expected effort the implementation of the SCE service model should be
updated in the prototype.

14 (130)

The question "how does the service model compare with alternative models"
may be difficult to answer. Preliminary investigation indicates there are
several service composition models. Among others: WS-BPEL, WS-SDL,
XPDL or BPML. These models are typically based on web services. While
IMS Services are similar to web services there are differences due to the IMS
domain. To compare the SCE model with alternative models, a (small)
selection of alternative models should be decided on. Further, these
alternative models may need to be extended to allow IMS properties to be
represented. Finally, the question arises on what properties the SCE model
should be compared.

2.6.1.2 Approach

• Study the SCE prototype (source code and documentation) to extract the
IMS Service Model. Preliminary investigation indicates the documentation
is limited. The implemented service model may be based on an existing
standard. As this investigation is based on an implementation and not on
a specification it may be difficult to extract a (complete) service model as
the implementation is probably a subset of a specific service model. The
SCE designers may provide input on the SCE service model.

• Study the IMS specification, as well as the SIP protocol and JSR-
116/JSR-289 documentation to extract IMS Service specific properties.
Preliminary investigation suggests these properties are mostly related to
the SIP protocol and JSR-116/JSR-289 containers. Examples of such
properties are the a-synchronous nature of the session, the ability to fork
a session and the ability to include SIP Servlets, HTTP Servlets and EJB
components in a service.

• Analyze if these properties can be represented using the SCE service
model.

• Study the TISPAN Multimedia Telephony specification and decide on
which services to use. Make a list of typical service scenarios such as
identification, diversion, waiting, barring and conference calls. The
selection of services should represent these scenarios. Additional use
cases available from System Management projects can be added.

• Compose the use cases using the SCE prototype. This involves an
analysis of the use cases to identify common components to represent as
a constituent service. Some functionality could be identified to be
implemented outside of the SCE service model scope. For example,
certain functionality of a service it could be handled in the CSCF node or
through the JSR-289 Application Router in a different (non SCE) SIP
Application.

• The actual composing of the use cases is done using the SCE prototype.
Besides a proof of concept showing that IMS Services can be composed
using the SCE service model this task also provides a basic set of
constituent services and skeletons as well as an insight in composing IMS
Services using the SCE prototype.

• Limitations in the SCE service model may be found. It should be
investigated how to remove these limitations and, if feasible, the service
model description and prototype should be updated to reflect these
changes.

15 (130)

2.6.1.3 Expected Result

• A description (specification) of the service model used in SCE.

• The result of the analysis whether IMS Services can be modeled using the
SCE service model.

• A set of constituent services, skeletons and an overview of the
experiences and best practices for service composition.

• If limitations are found in the SCE service model, an updated service
model and, if feasible, an updated SCE prototype.

2.6.1.4 Risks

Based on the preliminary research the service model used is not documented
and may need to be extracted from SCE documentation and the SCE
prototype. This may prove difficult.

If limitations are found in the SCE service model, and the SCE prototype
needs to be updated, this may be time consuming.

2.6.2 Component Frameworks

Investigate the SCE component framework.

• How does the SCE component framework compare with alternative
component frameworks?

• Are there gaps in the (specification of the) SCE component framework?

It is expected the assignment will focus on a single bulleted question.

2.6.2.1 Initial Assessment

Preliminary investigation indicates there are gaps in the process from
development to deployment of Constituent Services. For example, the SCE
framework and prototype do not discuss how the Constituent Services should
be implemented, nor how these should be deployed or how the descriptions
and properties are stored in the database. Further, the SCE prototype is
currently based on JSR-116. In JSR-289 an Application Router component is
specified. It is unclear how the Application Router component and the
Composition Engine should interact.

During the investigation of the IMS Service Model more limitations may be
identified.

Depending on the result of the investigation of the IMS Service Model (see
paragraph 2.6.1) it will be decided to focus on a comparison with alternative
framework or to investigate the limitations of the SCE component framework.

Next to the investigation of the SCE Service Model, this is a minor
investigation.

Preliminary investigation indicates two possible directions for alternative
frameworks.

16 (130)

The first direction could be based on the BPEL work flow language. This
could involve three steps. In the first step an IMS Service modeled in UML is
translated to BPEL. In the second step the IMS Service represented in BPEL
can be composed (changed). In the third step the IMS Service can be
deployed using BPEL execution engines. This would provide an alternative to
the SCE framework.

The second direction could be based on the idea of composing using
Composition Templates (that could be represented using SIP Applications)
and Constituent Services (a certain binding of the Service Elements) using an
execution engine. This SCE framework could be compared with a Model-
View-Controller framework such as the Spring framework.

Preliminary investigation of the SCE framework (and processes) indicates a
gap concerning component development and service deployment.

Not only is a technical point of view important. Also a process point of view
should be taken into account. This might also include packaging and version
management.

2.6.2.2 Approach

First, the existing SCE framework should be investigated. What does the
component architecture look like? How are components developed? How are
Composition Templates composed? And how are services deployed? This
investigation is based on the SCE documentation and SCE prototype.

Depending on the direction the investigation will have a different focus.
Possible areas of investigation are:

Investigate what the requirements are for deployment. Not only technical
aspects should be taken into account, but also process and life-cycle aspects
are relevant. "Who" performs "what" task, and how does this impact the
deployment process. This overlaps with the question referenced to in
paragraph 2.6.3.

Define the properties that a component framework should support. These
properties are expected to be mainly based on the IMS Service Model. How
do the constituent components, Composition Templates and their bindings
impact a component framework? Does a component framework impact the
service model? On what level should the interface layer be defined? (E.g. is
this on JSR-289 level or on SIP-AS level?)

Identify possible alternative component frameworks and decide which one to
investigate further

Investigate the deployment using the alternate component framework.

2.6.2.3 Expected Result

The expected result depends on the direction of the investigation.

• A description of the SCE component framework.

• The result of the analysis of an alternative component framework.

• The result of the analysis of a limitation in the SCE framework.

17 (130)

2.6.3 Service Life-Cycle

Describe the life-cycle of a service.

• What process phases are there?

• What stakeholders are there?

• What impact has the SCE framework on service design?

2.6.3.1 Initial Assessment

In the life-cycle of an IMS Service different process phases and stakeholders
can be identified. An example of the life cycle and stakeholders of an IMS
Service is given in Table 1.

Life-cycle step Stakeholder Purpose
component design PDU architect Specifying the (interface) of

service components
service composition PDU architect Composing a service from

service components
component
implementation

PDU designer Implementing a service
component. This view could
represent code generation.

service integrator MU integrator Deploying the services and
service components on an
execution environment. This may
be a view of an assembled
service, as well as a view
represented by deployment
configuration file generation.

customer service
composition

Customer architect The customer may want to
perform service composition. This
view may be a limited or
restricted view compared to the
architect view.

Table 1, Example of life cycle and actors

The overview of the life-cycle and stakeholders could be further extended.

From a life-cycle step and stakeholder point of view, how is the relation and
interaction with the SCE framework.

What views and tools are needed to fulfill the stakeholders and process
needs? Do these views impact the SCE framework and service model?

Next to the investigation of the SCE service model, this is a minor
investigation.

2.6.3.2 Approach

• Investigate and describe the life-cycle steps and stakeholders. Correct or
extend the list given in Table 1. This will probably involve study of the
current service design process documentation and interviews of System
Management designers and experts.

• Correlate the identified life-cycle steps and stakeholders with the SCE
framework and service model. Identify what "views" are needed.

18 (130)

• Investigate whether the views impact the SCE framework or service
model. Visa versa, how does the SCE framework impact the service
design process?

• What kind of techniques and tools are available to generate the views?

2.6.3.3 Expected Result

• A description of the life-cycle and stakeholders of an (SCE) IMS Service.

• A description of the views needed by the various stakeholders.

• An overview of the impact between the SCE framework and the views.

2.6.4 Result

• The Master Thesis

Describing the results of the investigation.

• A Prototype

A set of Composition Templates that represent the composed set of
selected use cases.

This includes a set of implemented and deployed Constituent Services,
although no full functionality is required.

An updated SCE prototype with an enhanced service model.

2.7 Engineering Assignment

This chapter provides a more detailed description of the engineering
assignment as described in "Detailed Student Assignment" [2].

2.7.1 Introduction

There is an existing Service Composition Environment (SCE) available. This
has been studied and a model has been created.

There is a service consisting of Personal Greeting Service (PGS) and Call
Forwarding On Busy (CFB). These are implemented as regular SIP Servlet
(Java) and in C++. Descriptions exist of both services, but for the study a
simplified version will be used.

2.7.2 Study

Design and implement the above service using the existing Service
Composition Environment (SCE).

• Define the components (called Constituent Service in the current Model).
What is the interface that these components expose to the Service
Composition Actor?

19 (130)

• One or more of the components will be a SIP Application that consists of
B2BUA and Forking SIP Servlets. Does this impact the service
composition or is it hidden for the Service Composition Actor?
If exposed and undesirable, in what way can SCE be enhanced.

• Investigate how parallelism and the event driven properties of the
components can be supported in SCE.

• In the current implementation state machines play an important role.
Investigate if and how support for state machines can be provided in SCE.

• Error handling plays an important role to provide robust services.
Investigate if the current error handling capabilities meet the needs of the
identified components.

Investigation includes: problem definition, analysis, design and
implementation.

2.7.3 Model Transformation

The engineering assignment settled on the investigation whether a UML
Model representing a telecommunication service can be automatically
transformed into an implementation of said service.

This investigation was performed for two distinct areas.

1 A transformation from a UML State Chart Model into a State Machine
implementation for the Service Composition Environment.

2 A transformation from a UML State Chart Model into a State Machine
implementation for a Java JSR-116 based application server utilizing
Repleo for source code generation.

An overview of the initial observations and approach for the SCE State
Machine Transformation investigation and the Repleo State Machine
Transformation investigation can be found in chapter 7 8 and chapter 8.

2.7.4 Result

• The Master Thesis

Describing the results of the SCE State Machine Transformation and the
Repleo State Machine Transformation.

• Transformation Artifacts

Including:

- Reference Implementations (SCE Templates, Java Source Code)

- All input artifacts (Stored UML Models, XMI Documents)

- Transformation Specifications (XSLT Documents, Repleo Templates)

- Generated Source Code

- Auxiliary Documents (XML Schema Documents, Testing scripts)

20 (130)

3 IMS

3.1 Introduction

This chapter provides an introduction to IMS with a strong focus on IMS
applications in which the SIP Application Server is part of the IMS session.

3.2 IP Multimedia Subsystem (IMS)

IP Multimedia Subsystem (IMS) is a framework standardized by the 3rd
Generation Partnership Project (3GPP) in collaboration with the Internet
Engineering Taskforce (IETF). The purpose of IMS is to provide an open
architecture and platforms for multimedia services. [10]

IMS provides support for:

• IMS Sessions and IMS Services

• Roaming

• Quality of Service

• Access (Network) Independence

• Operator Policy Control of IMS (Services)

IMS provides a framework that allows rapid service creation and deployment.
IMS Services itself are not standardized by 3GPP to allow compatibility with
commercially available IMS Services. IMS Services can be deployed in a
vendor independent manner.

Roaming allows subscribers to use IMS Services when roaming outside of the
Home Network.

IMS allows negotiating of the Quality of Service by the user and operator
during the session as well as during the session establishment.

IMS supports access independence. The IMS Services should be available
regardless of the access of subscribers.

3.3 Architecture

The 3GPP standards are a specification of functions and interfaces between
these functions. The functions and not actual nodes are specified.
Telecommunication companies can combine (or split) functions between
nodes.

3.3.1 3GPP Logical Architecture

The 3GPP logical architecture can be seen from a telecommunication
perspective based on a split between an Access Network and a Core
Network.

21 (130)

A Public Land Mobile Network (PLMN) is a telecommunication network
deployed by an operator. Such a network can contain a circuit switched
domain, a packet switched domain and an IMS domain.

3GPP logically divides a PLMN in an Access Network (AN) and a Core
Network (CN) infrastructure.

The Access Network provides access for a subscriber to the core network and
consists of physical entities that are in contact with the user equipment.

The Core Network provides support for telecommunication services such as
user location management, network control switching and transmission
mechanisms. The Core Network consists of a Circuit Switched, a Packet
Switched and an IMS domain. See Figure 3. An overlap between domains is
possible.

Figure 3, 3GPP Logical Architecture

3.3.2 IMS Logical Architecture

The IMS logical architecture can be divided in a Services Level, a Session
Control Level and a Bearer Level and is represented in Figure 4. These levels
are also referred to as Access Network, Core Network and Service Layer.

Figure 4, IMS Logical Architecture

3.3.3 IMS Functional Components

An overview of IMS functional components with a focus on services is shown
in Figure 5. Functions such as the Breakout Gateway Control Function
(BGCF) and Media Resource Function (MRF) are partly shown. Other
functions such as the Interrogating Call/Session Control Function (I-CSCF) or
the Subscriber Location Functions (SLF) are not shown.

The signaling plane and media plane are separated in the IMS architecture.
The functional components shown in Figure 5 only carry signaling data.

22 (130)

Figure 5, IMS Functional Components

The functional components are described below.

3.3.3.1 P-CSCF

The Proxy-Call/Session Control Function is the first contact point within IMS
and behaves like a proxy. That is, it accepts requests and processes the
requests or forwards the requests. The P-CSCF does not change the
requests. The P-CSCF can forward requests towards the S-CSCF or the UE
(user equipment). Typically, the request is forwarded to the S-CSCF of the
subscriber.

3.3.3.2 S-CSCF

The Serving-Call/Session Control Function performs the session control for
the UE (user equipment). A subscriber is linked to a specific S-CSCF. The
functions of the S-CSCF are:

• accepts registration requests

• provides session control

• filter (intercept) requests and forward to services platform

• interact with the services platform (Application Server)

• receive and forward requests

• retrieve the service profile for a subscriber from the HSS

3.3.3.3 I-CSCF

The Interrogating-Call/Session Control Function is located on the border of an
operators IMS network. The functions of the I-CSCF are:

• assign a S-CSCF to a user performing SIP registration

• route SIP requests towards the S-CSCF

• perform lookups in the HSS

23 (130)

3.3.3.4 BGCF

The Breakout Gateway Control Function allows interaction with a Public
Switched Telephony Network (PSTN). The PSTN represents the "regular"
fixed telecommunication network.

3.3.3.5 HSS

The Home Subscriber Server is a database that contains subscription related
information for subscribers. The HSS contains data on:

• subscriber identification data (numbering and addressing information)

• subscriber security information (authentication and authorization for
network access)

• subscriber profile information

3.3.3.6 Access Network

IMS is independent from the (IP Packet Switched) access network. It is
possible to use the IMS Services from different connections such as LAN,
GPRS or UMTS as well as different devices.

3.3.3.7 AS

The IMS architecture describes multiple application servers:

• OSA-SCS

• IM-SSF

• SIP-AS

All application servers are interfaced towards the S-CSCF using the SIP
protocol.

The Open Service Access-Service Capability Server (OSA-SCS) provides an
interface for the OSA / Parlay specification.

The IMS-Service Switching Function (IM-SSF) provides an interface for the
Customized Applications for Mobile network Enhanced Logic (CAMEL)
specification.

Both OSA / Parlay and CAMEL are existing telecommunication service
specifications.

The Session Initiation Protocol-Application Server (SIP-AS) is an application
server that allows to deploy IMS Services.

The OSA-SCS and IM-SSF provide an interface towards existing service
platforms. It is expected new services are developed for the SIP-AS. The
specification of the SIP-AS function and interfaces does not describe the
actual implementation or technology of the SIP-AS.

24 (130)

3.4 Protocols

3.4.1 Signaling Layer

The Session Initiation Protocol (SIP) [11] is used to perform session control in
the signaling plane. When used as part of the IMS framework, additional
options and extensions are needed. For example, the IMS domain includes
wireless access networks and presence features that put strict requirements
on the session control protocol.

SIP allows setup, management and termination of multimedia communication
sessions between devices. SIP is based on HTTP.

Figure 6, SIP Setup (Sequence Diagram)

The logical architecture of SIP is based on User Agents, Proxy Servers and
Registrars. A User Agent Client (UAC) is a logical entity that can create and
send a request. A User Agent Server (UAS) is a logical entity that can receive
a request and generate a response. A User Agent can act both as a UAC and
UAS. A Proxy Server is an intermediary entity that can both as a server and a
client. The primary function of a Proxy is routing requests. A Registrar is a
server that accepts and processes REGISTER Requests, and keeps track of
the contact address of subscribers.

SIP allows user agent registering. During registration the public URI of the
user is bind to a URI that represents the user equipment on which the user is
logged on. Registration is mandatory for IMS. In addition of binding the public
URI, registration also allows for authentication and authorization.

A SIP Dialog is the relationship between user agents and the messages send.

An example of a SIP Setup sequence in which the logical components can be
seen is shown in Figure 6. This SIP Setup example can be compared to the
example in Figure 8 which shows basically the same use case, but placed in
the IMS framework.

3.4.2 Media Layer

The SIP protocol is used for session control. To describe and agree on the
multimedia channel as well as to actually setup the multimedia channel other
protocols are used.

• Service Description Protocol (SDP)

• Real-time Transport Protocol (RTP)

25 (130)

• Real-time Transport Streaming Protocol (RTSP)

The Service Description Protocol is used within SIP messages to describe the
media session and is used, for example, during the session setup phase. The
SIP and SDP protocols are part of the signaling plane.

The Real-time Transport Protocol and the Real-time Transport Streaming
Protocol are used for transporting real-time data and for controlling the
delivery of streaming media. The RTP and RTSP protocols are part of the
media-plane.

3.4.3 The SIP Chain

During the session setup procedure a path between the originating and
terminating user equipment is setup. This chain of (functional) nodes in a SIP
Dialog or IMS Session is the SIP Chain.

3.4.4 User Identity

A subscriber has to register on the IMS network. During registration the
authority and authentication of the subscriber is verified. The subscriber also
binds his public user identity to a contact address (a SIP URI) that identifies
the client on which the subscriber is logged on.

An IMS subscriber is internally identified by a Private User Identity. This
Private User Identity is used for authentication, administration and accounting
purposes. It is not used for routing. Multiple Public User Identities can be
linked to a Private User Identity. The Private User Identity is not shown to the
subscriber.

Figure 7, Relationship of User Identities

The Public User Identity (PUI) represents the subscriber from a routing
perspective. This is the address that is used in address books or on business
cards. The PUI in itself does not indicate where the subscriber can be
reached. During registration the client on which the subscriber is logged on
becomes bound to the PUI. The registration information if stored in the HSS.
A PUI can be used to register multiple destinations. This allows session
request to be forked to multiple clients. For example, an incoming voice
session is routed both to a fixed client (phone) at home and to a mobile client.
A Public User Identity can be compared to an e-mail address or a phone
number (MSISDN) of a subscriber.

The relationship between User Identities is shown in Figure 7.

The Public User Identity is represented in the SIP URI or TEL-URI format.
The TEL-URI format allows addressing using a phone number (MSISDN).
Examples of Public User Identities are:

• sip:firstname.lastname@operator.com

• tel:+31-6-12345678

26 (130)

A TEL-URI allows interaction with PSTN networks in which the clients are
identified by a MSISDN. PSTN clients can also only use digits when dialing so
it is important for an IMS Subscriber to (also) have a Public User Identity in
the TEL-URI form.

The Service Profile is a collection of service and subscriber related data that
can be used by Application Servers to allow more dynamic service logic. The
Service Profile is stored on the HSS. An Application Server within the IMS
network can (optional) access the HSS to retrieve this data. The Service
Profile consists of Public Identification data, Authorization Data and Initial
Filter Criteria.

3.4.5 Service Identity

A Service is identified by a Public Service Identity (PSI). The Public Service
Identity is represented in the SIP URI or TEL-URI format. The PSIs of the
services are stored in the HSS. A Service has also a Private Service Identity
defined which is present for compatibility with the HSS interface.

3.4.6 Initial Filter Criteria

Each Public User Identity has a Service Profile. The Service Profile contains
information on the Services that the subscriber is subscribed to. The list is of
subscribed services is called the Initial Filter Criteria (IFC). Each IFC contains
a reference to the Application Server and zero or more Service Trigger Points.
The Service Trigger Points allows placing filters before a service is triggered.
Supported filters are:

• Request-URI

• SIP Method

• SIP Header

• Session Case

• Session Description

If a service is triggered, the service is identified by its Public Service Identifier.

3.5 SIP AS

The SIP-AS is an IMS function accessible though the SIP interface that allows
deployment of IMS Services. The IMS specification does not describe the
actual implementation of a SIP-AS.

The SIP-AS can reside inside the operator's IMS network or outside the
operator's IMS network. When the SIP-AS is located inside the IMS network
the application server, an (optional) interface towards the HSS is defined
using the Diameter protocol.

A SIP AS can operate (from a SIP perspective) as:

• Originating SIP User Agent, or User Agent Client (UAC)
The SIP AS can create SIP requests.

• Terminating SIP User Agent, or User Agent Server (UAS)
The SIP AS can receive and process SIP requests.

27 (130)

• SIP Proxy Server
The stateless SIP AS routes SIP Message towards the destination.

• SIP Redirect Server
The SIP AS

• SIP Back-to-Back User Agent (B2BUA)
A statefull combined UAC and UAS that can apply application-specific
logic.

The mode of operation of a SIP AS can change depending on the service
being provided.

3.6 Examples

This chapter describes a number of use cases related to registration, setup
and termination of a multimedia session and a simple IMS Service.

The examples describe sessions between SIP clients located in the users
Home Network. That is, the user is not roaming in a Visitors Network.

3.6.1 Multimedia Session

3.6.1.1 Session Setup Example

The Session Setup use case describes the signaling during an IMS Session
setup. The sequence is shown in Figure 8. The client is referred to as User
Equipment (UE).

Figure 8, Session Setup (Sequence Diagram)

28 (130)

Basically, an INVITE request is send towards the UE #2. IMS subscriber 2 is
alerted of the incoming session request. A preliminary response (180 Ringing)
is returned. When IMS Subscriber 2 accepts the invitation a 200 OK response
is returned (and acknowledged).

The S-CSCF #1 matches the INVITE request with the Initial Filter Criteria
retrieved in the Session Profile of Subscriber 1 from the HSS. (In this use
case there is no match.)

The INVITE is forwarded through the I-CSCF #2 towards the S-CSCF #2
where IMS Subscriber 2 is served. The S-CSCF #2 matches the INVITE
request with the Initial Filter Criteria retrieved in the Session Profile of IMS
Subscriber 2 from the HSS. (In this case there is no match.)

After the INVITE request is acknowledged, the Multimedia part of the IMS
Session is setup.

3.6.2 Back To Back User Agent Service Example

The Back to Back User Agent Service example is similar to the Session Setup
example with the exception that the INVITE A request now matches an Initial
Filter Criteria. This is shown in Figure 9. Not all messages such as the 183
Ringing are shown.

Figure 9, B2BUA Service Example (Sequence Diagram)

The S-CSCF #1 receives the INVITE A request of IMS Subscriber 1. This
request is matched against the Initial Filter Criteria of Subscriber 1 and a
match is found.

For example, an Initial Filter Criteria could contain a Trigger Point on all
Originating SIP Messages with SIP Method INVITE. This would match all
outgoing INVITE requests and not match all incoming INVITE requests.

29 (130)

Because of the match the INVITE A is routed towards the SIP-AS instead of
the I-CSCF of IMS Subscriber 2. The SIP Application Server receives the
request and can depending on the service act as a Proxy, Referrer, User
Agent Server or Back to Back User Agent server. In the example the SIP-AS
operates as a Back to back User Agent and creates the INVITE B request
which is send to the S-CSCF #1. This INVITE B request does not match an
Initial Filter Criteria and is routed towards the destination.

The 200 OK is routed back to the SIP-AS. The SIP-AS then creates a 200 OK
which is routed towards the UE #1.

3.6.3 Multiple SIP AS Example

Multiple IMS Services can be configured and matched in an IMS Subscriber
Service Profile. The services become part of the SIP Chain. An example with
two SIP Application Servers is shown in Figure 10.

Figure 10, Session Utilizing Multiple SIP Application Servers

In this example the INVITE A is received by the S-CSCF and matches both
the Initial Filter Criteria for AS 1 and AS 2. The Initial Filter Criteria for AS 1
has a higher priority and the INVITE A is routed towards AS 1. AS 1 sends
request INVITE B towards the S-CSCF. The S-CSCF processes the next
Initial Filter Criteria based on the priority and INVITE B is routed towards AS
2. AS 2 sends request INVITE C towards the S-CSCF. This INVITE C does
not match an Initial Filter Criteria and the INVITE C is routed towards the
destination.

3.7 SIP Container

A SIP Application Server can be implemented using a Sun Java Enterprise
Edition Application Server with a SIP Container that provides a SIP stack and
a framework to develop and deploy SIP Servlets.

The Java Community Process program provides two Java Specification
Requests (JSR) that specify such an interface.

3.7.1 JSR-116

The Java Specification Request 116 (JSR-116) specifies the SIP Servlet
Specification v1.0 [12]. JSR-116 provides a SIP stack and provides a
framework to develop and deploy SIP Servlet based services. JSR-116 was
released on March 7, 2003.

A SIP Servlet is an extension of a regular HTTP Servlet. The differences
between a web service and a SIP service are listed below.

30 (130)

• A web service is always an origin server (which always generates the final
response in a session). A SIP service does not always generate the final
response in a session. A SIP service can also operate as a proxy server.

• A SIP service operates in a peer-to-peer session.

• A SIP service can originate requests

• A SIP service is asynchronous. It can return control to the container and
initiate a (new) response request at a later time.

• The HTTP Servlet API selects a single HTTP Servlet. The SIP Servlet API
can select multiple services in a SIP chain.

The JSR-116 SIP Container allows for converged applications in which both
HTTP Servlet and SIP Servlet are supported.

The Sip Container provides:

• Servlet functionality (extends HTTP Servlet API)

• manage the life cycle of a session

• decide which Servlet to invoke and in which order

• a SIP stack for SIP traffic

• handling of timers, listener and event support

• handling of headers and routing

A service consists of one or more Servlets. Each service is described in the
SIP deployment descriptor. This description includes a trigger which consists
of (simple) rules. A trigger must match before a service is executed. Multiple
services can match and are executed in the order in which they are listed in
the SIP deployment descriptor.

The JSR-116 architecture is shown in Figure 11. Shown are the SIP
Container that provides listen points towards the C-CSCF and three services.
Service 1 and Service 2 are based on a SIP Servlet interface. Service 3 has
an HTTP Servlet interface and illustrates the convergence between SIP and
web services. A single Service can be accessed by multiple Servlets (not
shown).

Figure 11, JS-116 Architecture

31 (130)

An example session is shown in Figure 12. This session describes an
outgoing SIP dialog in which the INVITE has triggered a service on the S-
CSCF. This service consists of Service A followed by Service B on the SIP
Application Server.

Figure 12, JSR-116 Session

The session is described below. The bold text refers to nodes or messages
that are shown in the figure.

1 The IMS subscriber requests a multimedia session (e.g. places a call)
using an IMS phone (UE 1). The UE 1 creates a SIP INVITE request
(1.INVITE) which is delivered to the S-CSCF (2. INVITE).

2 The S-CSCF retrieves the session profile of the subscriber (not shown)
and parses the Initial Filter Criteria (IFC). The IFC contains a matching
Service Trigger Point. The 2. INVITE request is send towards the
application server indicated by the SIP URI present in the matching
Service Trigger Point (3. INVITE).

3 The SIP Container receives the 3. INVITE request and parses the
services listed in the SIP deployment descriptor. The 3. INVITE request
matches two services: Service A and Service B. Service A is listed first
in the SIP deployment descriptor and is executed first (4. doInvite()).

4 Service A is executed. In this example Service A operates as a proxy
and does not create a new SIP request in the response (5. response).

5 The SIP Container receives the 5. response and executes the second
matching service listed in the SIP deployment descriptor (6. doInvite()).

6 Service B is executed. In this example Service B operates as a proxy
and does not create a new SIP request in the response (7. response).

7 The SIP Container receives the 7. response and returns the request
towards the S-CSCF (8. INVITE) as there are no more matching services.

8 The S-CSCF receives the 8. INVITE and forwards the request towards its
destination (9. INVITE) as there are no more matching services in the
Initial Filter Criteria.

32 (130)

In this example an initial request was configured in the subscriber's service
profile and in the SIP deployment descriptor. This resulted in the Service A
and Service B being added to the SIP chain. This chain remains and
subsequent signaling messages will be routed through Service A and Service
B.

3.7.2 JSR-289

The Java Specification Request 289 (JSR-289) [13] specifies the SIP Servlet
Specification v1.1 and is an enhancement of JSR-116 (SIP Servlet
Specification v1.0). JSR-289 is not yet released. An early draft was released
on January 30, 2007.

JSR-289 adds the following enhancements:

• The logical entity Application Router

• Convergence with J2EE

• other enhancements

The JSR-289 architecture is shown in Figure 13. Shown are the SIP
Container that provides listen points towards the C-CSCF and three services.
Service 1 is based on a SIP Servlet interface. Service 2 is based on an HTTP
Servlet interface. Service 3 illustrates the convergence with J2EE (through
EJB and Web Services). The Application Router is a new logical entity.

Figure 13, JS-289 Architecture

The Application Router decides what services to invoke and in which order
through the Application Selection Process. The Application Router is only
involved for the initial request. Subsequent requests are routed along the path
created during the initial request.

The function of the Application Router is to provide service selection and
should not contain application logic. To perform its role, the Application
Router could access (private) data stores and could contain selection logic. A
minimal implementation of the Application Router could be based on parsing
a configuration file. The Application Router replaces the simple filter rules in
the SIP deployment descriptor.

An example session is shown in Figure 14. This session describes an
outgoing SIP dialog in which the INVITE has triggered a service on the S-
CSCF. This service consists of Service A on the SIP Application Server.

33 (130)

Figure 14, JSR-289 Session

The session is described below. The bold text refers to nodes or messages
that are shown in the figure.

1 The IMS subscriber requests a multimedia session (e.g. places a call)
using an IMS phone (UE 1). The UE 1 creates a SIP INVITE request
(1.INVITE) which is delivered to the S-CSCF (2. INVITE).

2 The S-CSCF retrieves the session profile of the subscriber (not shown)
and parses the Initial Filter Criteria (IFC). The IFC contains a matching
Service Trigger Point. The 2. INVITE request is send towards the
application server indicated by the SIP URI present in the matching
Service Trigger Point (3. INVITE).

3 The SIP Container receives the 3. INVITE requests and queries the
Application Router for the Service to execute (4. getNextApplication()).

4 The Application Router indicates Service A is the next service to execute.
(5. "Service A").

5 Service A is executed (6. doInvite()). In this example Service A operates
as a proxy and does not create a new SIP request in the response (7.
response).

6 The SIP Container receives the 7. response and queries the Application
Router for the Service to execute (8. getNextApplication).

7 The Application Router indicates there is no next service to execute (9.
null)

8 The SIP Container returns the request towards the S-CSCF (10. INVITE)
as there are no more services to execute.

9 The S-CSCF receives the 10. INVITE and forwards the request towards
its destination (11. INVITE) as there are no more matching services in the
Initial Filter Criteria.

The Application Router is only invoked for initial requests. For subsequent
request routing is based on the created SIP chain.

34 (130)

3.7.3 Project GlassFish and Project SailFin

GlassFish [14] is a free, open source Application Server implementing the
SUN Java EE 5 standard.

SailFin [14] provides a JSR-289 compliant SIP Container to the GlassFish
Application Server. Ericsson has contributed parts of its IMS server
development to this project.

35 (130)

4 SCE

4.1 Introduction

At the start of the analysis of the SCE Service Model there was a lack of
documentation on the SCE. This was remedied by creating a detailed
description of the SCE Domain Specific Language used in the Composition
Templates. This description provided a baseline for further analysis.

In addition, the XML Schema for the SCE Composition Template was not
available and had to be reverse engineered.

The remainder of this chapter contains the description of the SCE Domain
Specific Language.

4.2 Service Composition Environment

The Service Composition Environment (SCE) is an environment that enables
design and execution of Telecommunication Services.

The SCE consists of an editor and an engine. The editor is used to design
Composition Templates (the top level design artifact) and the engine is used
to execute Composition Templates.

A Composition Template is created using a domain specific language
visualized in the editor.

A Telecommunication Service consists of constituent services and the
description of control and data flow between them. A constituent service is a
runtime object that is executed by the engine during interpretation of the
Composition Template.

The Composition Template indicates, through a number of constraints, which
constituent service is required. Based on these constraints the engine decides
during runtime which deployed executable object best matches these
constraints.

The Service Composition Environment Domain Specific Language as
described in this document is close to the actual implementation.

4.3 Terminology

Service Composition Environment (SCE)
The Service Composition Environment consists of the
Composition Engine and the Composition Design
Environment.

Composition Engine
The Composition Engine is the execution engine that
interprets a Composition Template.

Composition Design Environment
The Composition Design Environment is the design
environment to create and edit Composition
Templates.

36 (130)

Composition Template
A Composition Template is the top level design artifact
that represents a Telecommunication Service. A
Composition Template can be visualized using the
Composition Design Environment and it can be
interpreted by the Composition Engine.

Telecommunication Service
A Telecommunication Service (in the context of SCE)
is a set of Constituent Services and a description of
the control and data flow between them and could also
be called a Composite Service. A Composite Service
allows creating more complex services from less
complex building blocks. This process is called
Service Composition.

Constituent Service
A Constituent Service is a runtime executable object
and is used as building blocks in a Composition
Template. This could be a SIP Application or a Web
Service.

4.4 Syntax

The SCE Domain Specific Language (DSL) is a visual representation of a
Composite Template used in the Composition Design Environment.

4.4.1 Structure

The top level design artifact is a Composition Template. A Composition
Template consists of Composition Template Elements (nodes) and
Connections (edges). Composition Template Elements represent an action
such as data control, flow control, or executing constituent services.

The following Composition Template Elements are supported:

• Start Element

• End Element

• Conditional Element

• Goto Element

• Service Element

• Composition Session Command Element

The Leave Container Service Element is a specialized form of a Service
Element and is in this description considered as a distinct Composition
Template Element.

Although not explicitly visualized, Composition Template Elements are
considered to have Entry and Exit Points. The Entry and Exit Points are used
to provide constraints on the number and direction of Connections.

37 (130)

Attribute can be “set” or “not set”. If an attribute is “set” this means the
attribute has a value not equal to the empty string. If an attribute is “not set”
this means the attribute has a value equal to the empty string.

The Composition Design Environment allows creation of Composition
Templates for which the constraints are not met. These Composition
Templates are considered to be invalid.

Connections and Composition Template Elements have attributes. Not all
attributes may be visible on the Composition Template view in the
Composition Design Environment. A separate Properties view is provided to
inspect and change these attributes.

4.4.2 Connections

4.4.2.1 Description

A Connection represents a connection between two Composition Template
Elements.

4.4.2.2 Syntax

A Connection is shown as an arrow between the Exit Point and Entry Point of
two Composition Template Elements.

4.4.2.3 Attributes

• (String) Case

4.4.2.4 Constraints

• A Connection starts at a Composition Template Element Exit Point and
ends at a Composition Template Element Entry Point.

• The Entry Point and Exit Point of a single Connection must not be on the
same Composition Template Element.

• The Connection Case attribute must not be set for Connections starting
not starting at a Conditional Element Exit Point.

• The Connection Case attribute may be set for Connections starting at a
Conditional Element Exit Point. See description of the Conditional
Element in chapter 4.4.6.

• All Composition Template Elements must be reachable (“connected”) from
the Start Element. (Connections may not form loops.)

• All Entry and Exit Points must be connected.

4.4.3 Composition Template

4.4.3.1 Description

A Composition Template is the top level design artifact and represents a
Telecommunication Service.

38 (130)

4.4.3.2 Syntax

A Composition Template consists of Composition Template Elements and
Connections.

4.4.3.3 Attributes

• (String) Author

• (String) Composition Template constraints

• (String) Description

• (String) ID

• (Integer) Priority

• (String) Version

4.4.3.4 Constraints

• A Composition Template must have one and only one Start Element.

• A Composition Template must have at least one End Element.

4.4.4 Start Element

4.4.4.1 Description

The Start Element is a Composition Template Element.

4.4.4.2 Syntax

The Start Element is represented as a rectangle with a blue background.

The text inside the rectangle describes:

• The value of the ID attribute (in bold).

• The label “Composition Template:” and the value of the Composition
Template ID attribute.

• The label “Priority:” and the value of the Composition Template Priority
attribute.

• The label “Constraint:” and the value of the Composition Template
Composition Template Constraints attribute.

• The label “Desc:” and the value of the Composition Template Description
attribute.

An example of the Start Element is shown in Figure 15.

39 (130)

Figure 15, Start Element

4.4.4.3 Attributes

• (String) Description

• (String) ID

• (String) Type, has a fixed value “START_ELEMENT”.

The attributes of the Composition Template are linked to the Start Element.

4.4.4.4 Constraints

The Start Element has 0 Entry Points.

The Start Element has 1 Exit Point.

The Start Element Type attribute must be set.

The Start Element ID attribute must be set. (This must be a unique ID within
the Composition Template.)

The Composition Template ID attribute must be set.

The Composition Template Priority attribute must be set.

4.4.5 End Element

4.4.5.1 Description

The End Element is a Composition Template Element.

4.4.5.2 Syntax

The End Element is represented as a rectangle with a red background.

The text inside the rectangle describes:

• The value of the ID attribute (in bold).

An example of the End Element is shown in Figure 16.

Figure 16, End Element

4.4.5.3 Attributes

• (String) Description

• (String) ID

40 (130)

• (String) Type, has a fixed value “END_ELEMENT”.

4.4.5.4 Constraints

The End Element has 1 Entry Point.

The End Element has 0 Exit Points.

The End Element ID attribute must be set. (This must be a unique ID within
the Composition Template.)

4.4.6 Condition Element

4.4.6.1 Description

The Condition Element is a Composition Template Element.

4.4.6.2 Syntax

The Conditional Element is represented as a rectangle with a green
background.

The text inside the rectangle describes:

• The value of the ID attribute (in bold).

• The value of the Condition attribute.

An example of the Condition Element, including three connections, is shown
in Figure 17.

Figure 17, Condition Element

4.4.6.3 Attributes

• (String) Description

• (String) ID

• (String) Type, has a fixed value “CONDITION_ELEMENT”.

• (String) Condition

4.4.6.4 Constraints

• The Condition Element has 1 Entry Point.

• The Condition Element has 1 or more Exit Points.

• The Condition Element ID attribute must be set. (This must be a unique ID
within the Composition Template.)

41 (130)

• The Connections connected to the Exit Points must have the Connection
Case attribute set.

• Except for at most 1 connection that may have the Connection Case
attribute not set.

4.4.7 Goto Element

4.4.7.1 Description

A Goto Element is a Composition Template Element.

4.4.7.2 Syntax

The Goto Element is represented as a rectangle with a yellow background.

The text inside the rectangle describes:

• The value of the ID attribute (in bold).

• The value of the Goto References attribute.

An example of the Goto Element is shown in Figure 18.

Figure 18, Goto Element

4.4.7.3 Attributes

• (String) Description

• (String) ID

• (String) Type, has a fixed value “CALL_ELEMENT”.

• (List of Goto References) Goto References

The type Goto References consists of:

• (String) Element ID

• (String) Composition Template ID

4.4.7.4 Constraints

• The Goto Element has 1 Entry Point

• The Goto Element has 1 Exit Point.

• The Goto Element ID attribute must be set. (This must be a unique ID
within the Composition Template.)

• The Goto Element Goto Reference attribute must contain at least 1 Goto
Reference.

42 (130)

4.4.8 Composition Session Command Element

4.4.8.1 Description

The Composition Session Command Element is Composition Template
Element.

4.4.8.2 Syntax

The Composition Session Command Element is represented as a rectangle
with a Grey background.

The text inside the rectangle describes:

• The value of the ID attribute (in bold).

• The label “Timeout:” and the value of the Timeout attribute.

An example of the Composition Session Command Element is shown in
Figure 19.

Figure 19, Composition Session Command Element

4.4.8.3 Attributes

• (String) Description

• (String) ID

• (String) Type, has a fixed value “SSM_COMMAND_ELEMENT”.

• (Command) Command

• (Command Parameter) Command Parameter

• (Integer) Timeout

The type Command is an enumerated type with values:

• (String) “undefined”

• (String) “setVariable”

• (String) “removeVariable”

The type Command Parameter consists of:

• (String) Variable ID

• (String) Expression

4.4.8.4 Constraints

• The Composition Session Command Element has 1 Entry Point.

43 (130)

• The Composition Session Command Element has 1 Exit Point.

• The Composition Session Command Element ID attribute must be set.
(This must be a unique ID within the Composition Template.)

• The Composition Session Command Element Command attribute must be
set to “setVariable” or “removeVariable”.

• The field Variable ID of the Composition Session Command Element
Command Parameter attribute must be set.

• The field Expression of the Composition Session Command Element
Command Parameter attribute must be set if the Command attribute is set
to “setVariable” and must not be set if the Command attribute is set to
“removeVariable”.

4.4.9 Service Element

4.4.9.1 Description

A Service Element is a Composition Template Element.

4.4.9.2 Syntax

The Service Element is represented as a rectangle with a turquoise
background.

The text inside the rectangle describes:

• The value of the ID attribute (in bold).

• The label “Constraints” (in cursive).

• The value of the Constraints attribute.

• The label “Parameters” (in cursive).

• The value of the Parameters attribute.

An example of the Service Element is shown in Figure 20.

Figure 20, Service Element

4.4.9.3 Attributes

• (String) Description

• (String) ID

• (String) Type, has a fixed value “SERVICE_TEMPLATE_ELEMENT”.

• (Boolean) Asynchronous

44 (130)

• (List of Call Parameter) Call Parameters

• (List of Constraints) Constraints

• (String) Result Variable

The type Call Parameter consists of:

• (String) ID

• (String) condition

The type Constraint consists of:

• (String) Constraint

4.4.9.4 Constraints

• The Service Element has 1 Entry Point

• The Service Element has 1 Exit Point

• The Service Element ID attribute must be set. (This must be a unique ID
within the Composition Template.)

• The Service Element Constraints attribute must contain at least 1
Constraint.

• The Constraints attribute must not contain the string “LeaveContainer” nor
the string “dummy”.

4.4.10 Leave Container Service Element

4.4.10.1 Description

A Leave Container Service Element is a special configuration of a Service
Element.

4.4.10.2 Syntax

The Leave Container Service Element is represented as a rectangle with a
turquoise background.

The text inside the rectangle describes:

• The value of the ID attribute (in bold).

• The label “Constraints” (in cursive).

• The value of the Constraints attribute.

An example of the Leave Container Service Element is shown in Figure 20.

Figure 21, Service Element

45 (130)

4.4.10.3 Attributes

• (String) Description

• (String) ID

• (String) Type, has a fixed value “SERVICE_TEMPLATE_ELEMENT”.

• (Boolean) Asynchronous

• (List of Call Parameter) Call Parameters

• (List of Constraints) Constraints

• (String) Result Variable

The type Call Parameter consists of:

• (String) ID

• (String) condition

The type Constraint consists of:

• (String) Constraint

4.4.10.4 Constraints

• The Leave Container Service Element has 1 Entry Point

• The Leave Container Service Element has 1 Exit Point

• The Leave Container Service Element ID attribute must be set. (This must
be a unique ID within the Composition Template.)

• The Leave Container Service Element Constraints must contain 1
Constraint.

• The Constraint must contain either the string “LeaveContainer” or the
string “dummy”.

• The Leave Container Service Element Call Parameters attribute is not
used and should not be set.

4.5 Semantics

4.5.1 Introduction

A Composition Template resembles a flow chart and consists of Composition
Template Elements and connections between these elements. The execution
follows a flow starting from the Start Element and, following the connections,
ends at an End Element.

Certain Composition Template Elements may have as effect that the flow of
the Composition Template is interrupted and an (external) constituent service
is executed. The flow is resumed after the Composition Template is triggered
by an event. This event is usually the result or response of the executed
constituent service.

46 (130)

A constituent service is a building block of the Composition Template.
Currently the following constituent services are supported:

• SIP Application

• Web Service

The constituent service is dynamically chosen during runtime by the
Composition Engine based on the Constraints specified in the Composition
Template Service Element.

A specialized form of the Service Element is the Leave Container Service
Element. Execution of this element does not execute a constituent service.
Instead the SIP message that initially triggered the Composition Engine is
allowed to leave the SIP stack. This message is then routed by the network to
its destination.

The Leave Container Service Element will interrupt execution of a
Composition Template. Subsequent events such as SIP Responses will
trigger the Composition Engine and execution of the Composition Template is
then continued.

Execution of a Composition Template is started after the Composition
Template is triggered by an Initial INVITE SIP Request event. Through a
service selection process (not discussed in this document) a Composition
Template is selected and execution starts at the Start Element.

The Composition Engine can handle multiple concurrent sessions.

This chapter provides an introduction on the SIP Chain, Event Types and
Session. Next the semantics of the SCE DSL are discussed.

4.5.2 SIP Chain

The SIP Chain is an effect of the SIP protocol in which SIP Proxies and SIP
Applications that are executed become part of the SIP Chain between the
caller and callee.

The SIP Chain is build during routing of the SIP Initial INVITE Request. SIP
Responses and subsequent SIP Requests will follow this chain. That is, the
SIP Proxies and SIP Applications on the SIP Chain are notified of, and can
act upon, these messages.

Any constituent services of type SIP Application that are executed by the
Composition Engine will become part of the SIP Chain.

An example Composition Template that executes the constituent services A
and B, both of type SIP Application, will result in a SIP chain that is shown in
Figure 22.

47 (130)

SIP Chain

CalleeCaller

Comp.
Engine

SIP
Applic.

A

Comp.
Engine

SIP
Applic.

B Comp.
Engine

Figure 22, Example of SIP Chain

Constituent services of type Web Service are not related to SIP and do not
become part of the SIP Chain.

Interesting consequences:

• All SIP Applications become part of the SIP Chain and will receive all
subsequent SIP Messages independent of the Composition Engine.

• A single SIP Response or subsequent SIP Request will trigger the
Composition Engine multiple times.

4.5.3 Events

The execution of a Composition Template is event driven.

SIP based events:

• SIP Initial INVITE Request

• Other SIP Requests

• SIP Provisional Responses

• SIP Final Responses

Web Service based events:

• Web Service Request

• Web Service Response

After receiving an event, the Composition Template Elements can access the
event type and event properties through the Session.

The event that initially selects and starts a Composition Template is a SIP
Initial INVITE Request.

4.5.3.1 SIP Based Events

Of the different SIP Request types only the initial INVITE SIP Request is
currently supported by the Composition Engine. All other SIP Requests do not
trigger the Composition Template and are processed using the default
functionality of the SIP Container.

48 (130)

SIP Responses can be either Provisional responses or Final responses. SIP
Responses are send in response to SIP Requests. Until a Final response is
received, zero, one or more Provisional responses can be received. An
example of a Provisional response is “180 Ringing”. An example of a Final
response is “200 OK” or “486 Busy”.

Currently, neither Final nor Provisional SIP Responses trigger the
Composition Template and all responses are processed using the default
functionality of the SIP Container.

4.5.3.2 Web Service Based Events

The event Web Service Request is currently not supported by the
Composition Engine.

The event Web Service Response is currently supported. After executing a
Web Service, the Composition Engine will block until a Web Service
Response is received.

4.5.4 Session

The Composition Engine keeps the state for existing sessions. This Session
contains a parameter map consisting of:

• Session information (e.g. Composition Template information)

• Type and content of last received event

• Any stored variables

Variables can be stored in the Session using the Composition Session
Command Element and can be retrieved using special keywords. For
example: $(sip_response.status_code) for the Status Code if the last received
event was a SIP Response.

4.5.5 Composition Template

The Composition Template Author attribute may contain a reference to the
author of the Composition Template. This attribute has no effect on the
execution of the Composition Template.

(String) Composition Template constraints

The Composition Template Description attribute may contain a descriptive
text. This attribute has no effect on the execution of the Composition
Template.

The Composition Template ID attribute must contain a unique (within SCE)
identifier for the Composition Template. It can be used as a target
Composition Template set in a Goto Element, but has no effect on the
execution of the Composition Template otherwise.

The Composition Template Priority attribute is used during service selection.
This attribute has no effect on the execution of the Composition Template.

49 (130)

4.5.6 Composition Template Elements

4.5.6.1 General

The Description attribute may contain a descriptive text. This attribute has no
effect on the execution of the Composition Template Element.

The ID attribute must contain a unique (within the current Composition
Template) identifier for the Composition Template Element. It can be used as
a target Composition Template Element set in a Goto Element but has no
effect on the execution of the Composition Template Element otherwise.

The Type attribute contains a value that specifies the type of the Composition
Template Element. This attribute is automatically set and cannot be changed.

The directional Connection indicates the order in which the Composition
Template Elements are executed. If a Connection is connected to the Exit
Point of element A and the Entry Point of element B, then element B is
executed after element A is executed.

4.5.6.2 Start Element

The Start Element represents the entry point of the Composition Template.

The Start Element performs no action. The flow continues with the execution
of the Composition Template Element connected to the Exit Point.

The Start Element Priority attribute is used for Composition Template
selection and does not influence the Composition Template execution.

The Start Element Constraint attribute is used to set global constraints used
for constituent service selection.

4.5.6.3 End Element

The End Element represents the end of the Composition Template.

If the Goto Stack is not empty the Goto Element is popped from the Goto
Stack and the Composition Template Element connected through to this Goto
Element is executed next.

If the Goto Stack is empty the “leave container” action is returned. Any
subsequent requests to the Composition Template are responded to with the
“leave container” action.

4.5.6.4 Condition Element

The Condition Element decides, during runtime, through which of its Exit
Points the flow will continue.

The Exit Point is selected using the following process:

1 Evaluate the expression given in the Condition Element Condition
attribute.

2 Compare the evaluation result with the Case attribute of the Connections
connected to the Exit Points of the Condition Element.

50 (130)

3 The first matching Exit Point is selected and the selection process ends.

4 If no Exit Points match and a default Connection is present, the Exit Point
with the default Connection is selected. A default Connection is a
Connection with an unset Case attribute.

The flow does not leave the container.

The Composition Template Element connected through the selected
Connection is executed next.

4.5.6.5 Goto Element

The Goto Element continues the flow by executing a selected Composition
Template Element than connected to the Exit Point of the Goto Element.

When the diverted flow executes an End Element, the flow continues with the
execution of the Composition Template Element connected to the Exit Point
of the Goto Element.

The Goto Element is pushed on a Goto Stack.

The selected Composition Template Element is configured by the Goto
Element Goto References attribute.

4.5.6.6 Composition Session Command Element

The Composition Session Command Element allows to set a parameter in the
Session or to clear a parameter in the Session.

If the Command attribute is set to “setVariable” the Expression field of the
Command Parameter attribute is evaluated. The result is stored in the
Session as the variable indicated by the Variable ID field of the Command
Parameter attribute. Any existing variable in the Session is overwritten.

If the Command attribute is set to “removeVariable” the variable indicated by
the Variable ID field of the Command Parameter attribute is cleared from the
Session.

The flow continues with the execution of the Composition Template Element
connected to the Exit Point of the Composition Session Command Element.

The Timeout attribute is not used.

4.5.6.7 Service Element

The Service Element allows execution of a constituent service. This
constituent service is either a SIP Application or a Web Service and is
decided during runtime by the Composition Engine based on the constraints
set in the Service Element Constraints attribute and the constraints set in the
Service Template Constraints attribute.

Parameters for the constituent service can be set using the Service Element
Parameters attribute.

Execution of a constituent service will stop the flow of the Composition
Template.

51 (130)

After an event is received, the flow will continue with the execution of the
Composition Template Element connected to the Exit Point.

4.5.6.8 Leave Container Service Element

The Leave Container Service Element is a special type of Service Element.
The Leave Container Service Element has no Parameters attribute set and
the Constraints attribute must contain the value “LeaveContainer” or
“dummy”.

The Composition Engine takes no action. That is, any SIP Message that
triggered the Composition Template is returned to the container.

This will stop the flow of the Composition Template.

After an event is received, the flow will continue with the execution of the
Composition Template Element connected to the Exit Point.

4.6 Examples

4.6.1 Example 1

The first example shows a Composition Template that executes two
constituent services. The Start Element Constraint attribute and the two
Service Element Constraints attributes are chosen in such a way that a SIP
Application is executed during runtime.

The Composition Template for Example 1 is shown in Figure 23.

This Composition Template will form a SIP Chain as indicated in Figure 22.

Figure 23, Composition Template Example 1

The execution of the Composition Template is discussed below:

1 Caller setups a call towards Callee. This creates an Initial INVITE SIP
Request that is routed towards the network.

2 The Initial INVITE SIP Request is intercepted by the network and is
forwarded towards the Composition Engine.

52 (130)

3 In the Composition Engine the Initial INVITE SIP Request triggers
execution of the “Example 1” Composition Template.

4 The Start Element is executed. No action is associated with a Start
Element and the flow continues with the Composition Template Element
connected to the Exit Point of the Start Element.

5 The “SIP Application A” Service Element is executed. Based on the
Constraints attribute a decision is taken during runtime which constituent
service is executed. In this example “SIP Application A” is executed.

6 The Initial INVITE SIP Request is redirected towards “SIP Application A”
and execution of the Composition Template is interrupted.

7 “SIP Application A” receives the Initial INVITE SIP Request and performs
some action. After “SIP Application A” is finished the Initial INVITE SIP
Request is send back towards the Composition Engine.

8 An Initial INVITE SIP Request is received and the Session is retrieved.
The Composition Template is triggered and the flow continues with the
Composition Template Element connected to the Exit Point of the “SIP
Application A” Service Element.

9 Steps 5 through 8 are repeated but for “SIP Application B”.

10 The End Element is executed. A “Leave Container” action is associated
with this Composition Template Element. The Initial INVITE SIP Request
is returned to the network and is forwarded towards the Callee.

4.6.2 Example 2

The second example shows a Composition Template that provides a Call
Forwarding on Busy service.

If caller calls callee and callee is busy, the Call Forwarding on Busy service
automatically forwards the call towards a forwarded user.

53 (130)

Figure 24, Composition Template Example 2 - Call Forwarding On Busy

The execution of the Composition Template is discussed below:

1 Caller setups a call towards Callee. This creates an Initial INVITE SIP
Request that is routed towards the network.

2 The Initial INVITE SIP Request is intercepted by the network and is
forwarded towards the Composition Engine.

3 In the Composition Engine the Initial INVITE SIP Request triggers
execution of the “Example 1” Composition Template.

4 The Start Element is executed. No action is associated with a Start
Element and the flow continues with the Composition Template Element
connected to the Exit Point of the Start Element.

5 The “Leave Container” Service Element is executed. The Initial INVITE
SIP Request is returned to the network and is forwarded to Callee.
Execution of the Composition Template is interrupted.

6 If Callee answers the call a “200 OK” SIP Response is send back over the
SIP Chain. If Callee is busy, a “486 Busy” SIP Response is send back.

7 The SIP Response is received by the Composition Engine and the
Session is retrieved. The Composition Template is triggered and the flow
continues with the Composition Template Element connected to the Exit
Point of the “Leave Container” Service Element.

54 (130)

8 The Condition Element is executed. The expression in the Condition
attribute is parsed. This returns the status code of the SIP Response. The
Condition Element has two Exit Points. The first Connection has the Case
attribute set to “486”, the second Connection has the Case attribute not
set.

9 If the Callee answered the call a “200 OK” Sip Response was send back.
The Status Code (the string “200”) does not match any Connections and
the default Connection is followed. This would result in the execution of
the End Element, which would end the Composition Template and the call
would continue to be setup between the Caller and Callee.

10 If the Callee answered with busy a “486 Busy” SIP Response was send
back. The Status Code (the string “486”) matches one of the Connections.
This would result in the execution of the “Service Template WS” Service
Template.

11 The “Service Template WS” represents a constituent service of type Web
Service. A subscriber and service parameter are included. The Web
Service returns the address used to forward the call. Executing the Web
Service will interrupt execution of the Composition Template.

12 The Web Service is executed and a Web Service Response is received
by the Composition Engine and the Session is retrieved. The Composition
Template is triggered and the flow continues.

13 The Composition Session Command Element stores the Web Service
result in the Session.

14 The “Service Template SIP” represents a constituent service of type SIP
Application. A destination parameter is included. The SIP Application
redirects the call towards the address retrieved by the Web Service.
Executing the SIP Application will interrupt execution of the Composition
Template.

15 On any event received (but this would typically be a SIP Response from
the Forwarded Address) the Composition Template continues with the
End Element, which will return the event to the network and end the
execution of the Composition Template.

Note: The current implementation of the Composition Engine has several
limitations:

• SIP Responses are not handled

• Parameters are not supported for Web Services

• Parameters in the format used in the example are not supported by SIP
Applications.

The Composition Template Example 2 is therefore given as an example only.
It can currently not be executed.

55 (130)

4.6.3 Serializable Format

4.6.3.1 Introduction

The SCE DSL can be visualized using the Composition Design Environment.
The Composition Design Environment also allows exporting and importing a
Composition Template to and from the file system.

4.6.3.2 XML Schema

The file format used is based on XML and is described by an XML Schema
(see Appendix A).

56 (130)

5 CFB Service

5.1 Introduction

A simple communication service was chosen to use as an example
throughout the investigation of a service model.

This Call Forwarding on Busy (CFB) service is a small and simple service that
still contains a number of interesting features.

The Call Forwarding on Busy is part of a collection of Communication
Diversion (CDIV) services [4]. The set of CDIV services itself is part of the
Multimedia Telephony (MTEL) set of services [3] for IMS that simulate "circuit
switched" services.

This chapter describes the CFB service as used throughout the investigation.
A reference implementation and several models of the CFB service are given.

5.2 Call Forwarding on Busy Analysis

5.2.1 Service Behavior

The behavior of the CFB service is described below.

Figure 25, Call Forwarding on Busy Service

Alice calls Bob. If Bob has the CFB service enabled and Bob responds with
BUSY, Alice receives a notification that the call is being forwarded, and the
call is forwarded to Zidane. The service remains idle if Bob answers with
anything else then BUSY.

The session flow of the Call Forwarding on Busy Service is shown in Figure
25.

The name "Zidane" is given as an example. Bob would be able to specify the
transfer target in his user profile. Bob would also be able to active or de-
activate the CFB service. Such a user profile and the interface towards it are
outside the scope of the CFB service. In the example implementations a hard
coded reference to "Zidane" is used.

57 (130)

The Call Forwarding on Busy service as used as an example service during
the investigation is a simplified version of the service described in the CDIV
specification. For example, the CDIV describes the use of additional SIP
Message header fields to keep a history of forwards performed earlier during
the setup of the SIP session. These fields prevent looping when, for example,
Zidane is busy and forwards the call to Bob. Setting and checking of these
fields is not included in the example implementations of the CFB service.

5.2.2 Service Specification and Implementation Choices

The TISPAN CDIV specification describes the behavior of the Call Forwarding
on Busy service, but does not describe the implementation for this service. It
was found the CFB service could be implemented in a several ways.

• Using a "302 Call is Being Redirected" SIP Response send by the
transferor. Note that this actually bypasses the SIP Application Server.

• Using a "302 Call is Being Redirected" SIP Response send by the SIP
Application Server. The CFB Service operates as a SIP Proxy.

• By operating as a SIP Proxy and intercepting the SIP Messages on the
SIP dialog between the parties.

• By operating as a SIP B2BUA and intercepting the SIP Messages on the
SIP dialog between the parties.

The third and fourth options most closely match an informative example given
in [4]. Because a Proxy implementation is less intrusive than a B2BUA
implementation, the design of the reference CFB service implementation was
based on the third option.

5.3 Call Forwarding on Busy as SIP Proxy

The Call Forwarding on Busy service implemented as a SIP Proxy was further
analyzed. This resulted in the following artifacts.

• A Sequence Diagram

• A reference implementation based on JSR-116

• A reference implementation based on SCE

• A State Chart Diagram

The purpose of these implementation and modeling exercises was to gain an
understanding of the service and to create a baseline for further analysis.

5.3.1 Sequence Diagram

A set of sequence diagrams was constructed to describe the exact behavior
of the Call Forwarding on Busy service. These sequence diagrams were
constructed based on the IMS and MTEL / CDIV specifications.

58 (130)

Alice Bob's S-CSCF Bob Zidane

INVITE (Bob)

INVITE (Zidane)

486 Busy Here

181 Call Is Being Forwarded

200 OK

Session Established

ACK

BYE

200 OK

200 OK

SIP Servlet Container

INVITE (Bob)
IFC triggered

INVITE (Bob)

INVITE (Bob)

486 Busy Here

CFB logic
is executed

181 Call Is Being Forwarded

INVITE (Zidane)

200 OK

200 OK

BYE

BYE

BYE

200 OK

200 OK

CFB Servlet

service description triggered

Proxy To Request URI

INVITE (Bob)

Bob responds with BUSY

SIP-AS

486 Busy Here

Send 181 Response

Retrieve Service Data

Proxy To Forward URI

200 OK

200 OK

ACK

BYE

200 OK

// do nothing

// do nothing

// do nothing

Zidane accepts the invite.

Figure 26, Overview Sequence Diagram "SIP-AS as PROXY"

The sequence diagram shown in Figure 26 provides a (simplified) overview of
the CFG service. The following remarks are clearly visible in the diagram.

• The SIP Application (both the SIP Container and the CFB Servlet)
become part of the SIP session. This can be seen by following the
INVITE (Bob) messages.

• The CFB Servlet remains on the SIP session (and SIP Chain) through the
Proxy To Request URI action.

• The busy response is received by the CFB Servlet and the CFB logic is
executed. This involves:

59 (130)

- dropping the busy response,

- responding with a 181 Call is Being Forwarded response
towards Alice,

- sending an invite towards Zidane.

• A "do nothing" action is often used by a SIP Application. This action is
also used several times by the CFB service.

5.3.2 SIP Application

A reference implementation based on the JSR-116 SIP Container was
implemented as a proof of concept and as a baseline for further
developments. The SDS design environment was used. This design
environment includes simulations of IMS nodes including a JSR-116
compliant SIP Application Server.

Fragments of the reference implementation are shown in Figure 27. The CFB
logic is contained in just a few lines of code, shown as bold.

/**
 * doInvite method called when SIP INVITE Request is received.
 */
protected void doInvite(SipServletRequest sipServletRequest)
throws ServletException, IOException
{
 // Proxy to request URI
 Proxy proxy = sipServletRequest.getProxy();
 proxy.proxyTo(sipServletRequest.getRequestURI());
}

/**
 * doErrorResponse method called when 4xx SIP Response is received.
 */
protected void doErrorResponse(SipServletResponse resp)
throws ServletException, IOException
{
 // CFB is only for BUSY
 if (resp.getStatus() == SipServletResponse.SC_BUSY_HERE)
 {
 // Retrieve Service Data (hardcoded in this example)
 SipURI forwardUri = sipFactory.createSipURI("zidane", "ericsson.com");

 // Send 181 Call Being Forwarded provisional response
 SipServletRequest sipServletRequest = resp.getRequest();
 SipServletResponse provisionalResponse =
 sipServletRequest.createResponse(SipServletResponse.SC_CALL_BEING_FORWARDED);
 provisionalResponse.send();

 // Proxy to forwarded URI
 Proxy proxy = resp.getProxy();
 proxy.proxyTo(forwardUri);

 return;
 }

 // default behaviour
 super.doErrorResponse(resp);
}
Figure 27, CFB SIP Application

The purpose of this implementation is to:

• Serve as a proof of concept. The CFB service can be implemented as a
SIP Application.

• Act as a reference implementation for future Composition Template or
State Machine based implementations.

60 (130)

• Learn how to implement a (simple) SIP Application. SIP Development
differs from Circuit Switched Telecommunication Service frameworks or
HTTP Servlet based services.

Approach:

• Study the CFB specification. Study the SIP Container documentation.

• Using the Ericsson SDS design environment, develop the CFB service.

• Using the Ericsson SDS design environment, test the CFB
implementation.

Observations:

• The process to design, implement and test the CFB SIP Application took
considerable time.

• No reference implementations were readily available. Out of several
design directions the best reference implementation needed to be chosen.
The given reference CFB SIP Application is chosen for its simplicity. An
alternative (and more powerful) implementation could be based on
B2BUA instead of the (simple) Proxy based implementation.

• Although specifically mentioned in the JSR-116 specification, the
generation of a provisional 181 Call Being Forwarded response generated
a runtime error. This was initially believed to be caused by a development
error in the CFB implementation. Later it was found to be caused by the
used implementation of the JSR 116 SIP Container. After switching from
the SDS Sip Container to a BEA Weblogic SIP Container the problems
were solved. It appears that this feature is not correctly implemented in
various JSR-116 libraries.

• The SIP Chain model and the supporting SIP Container are rather
powerful. A simple CFB service is implemented using a relative small
amount of code.

The SDS design environment includes IMS simulators as well as testing tools.
These tools were used to perform end to end testing of the CFG service
through the use of "Alice", "Bob" and "Zidane" simulated clients.

5.3.3 State Chart Diagram

In addition to the Sequence diagrams, a number of State Chart diagrams
were created to represent the behavior of the Call Forwarding on Busy
service.

The first effort, shown in Figure 28, was closely based on the states defined
by the SIP protocol: Setup, Early, Confirmed and Terminated.

61 (130)

entry/proxyTo(RequestURI)

1. Proxy Initial Dialog Setup
Request [initial INVITE]

3. Initial Dialog Confirmed

2. Initial Dialog Early 4. Initial Dialog Terminated

Response [2xx]

Response [3xx~6xx except 486]

Response [3xx~6xx except 486]

Response [2xx]

entry/CreateAction2,Send 181 Response

7. Proxy Forward Dialog Setup 9. Forward Dialog Confirmed

8. Initial Forward Early 10. Initial Forward Terminated

Response [2xx]

Response [3xx~6xx]

Response [3xx~6xx]

Response [2xx]

entry/Retrieve Service Data

5. Retrieve Service Data

entry/Send 500 Response

6. Errorresult [failed]

Response [486]

Response [486]

Response [1xx]

Response [1xx]

result [success]

Response [1xx]

Response [1xx]

Figure 28, State Chart CFB

The mapping onto the SIP states was found not to add any value to the
model. In contrast, the model was too large.

An updated version of the State Chart diagram was designed with the
purpose to create a concise model in which the CFB service was clearly
visible. This alternate model is shown in Figure 29. The number of states is
reduced to five (the Initial and Final states are counted as well). While the
mappings to the SIP states are dropped, the model still represents a valid SIP
service.

Corresponding State Tables for the diagrams were also created, but these
were never used.

62 (130)

1. Setup initial call
SIP Request [initial INVITE] / proxyTo(RequestURI)

SIP Response [2xx~6xx except 486]

2. Retrieve Service Data
WS Result [failed]

SIP Response [486] / Retrieve Service Data

SIP Response [1xx]

WS Result [success] / Send 181 Response,proxyTo(ForwardURI)

3. Setup forwarded call
SIP Response [2xx~6xx]

SIP Response [1xx]
Figure 29, State Chart CFB (alternative)

The representation of actions in the transitions is chosen as the actions are
closely related to the events. When the actions are specified as pre and post
actions in the states itself, this relations is not clear. Only including actions in
transitions also allows specifying a “no action” event such as a Provisional
SIP Response.

SIP Requests, except for the initial INVITE, are not handled in the State
Chart. An example would be the CANCEL SIP Request. Note that the SIP
Container has a default handling of certain SIP Messages such as ACK,
CANCEL. In addition, only events that are expected are present. E.g. If a SIP
Response is expected, no WS Result is indicated and visa versa.

There is a difference in concept regarding the final state. From a model
perspective, the final state is final. No further transitions are possible. From
the SIP service perspective, the "END" state implies the service remains idle.
That is, the service can still receive triggers, but will perform the "do nothing"
action. Termination of the service is up to the SIP Container.

State A State B

EndState

Figure 30, Final State vs. Simple State

It could be argued that the correct representation would be to replace the final
state in the model with a simple state that contains a transition looping back to
the simple state. This is demonstrated in Figure 30. For simplicity reasons,
the use of a final state was retained.

63 (130)

6 SCE State Machine Transformation Specification

6.1 Introduction

This chapter provides a description of the transformation from a UML State
Chart to a Composition Template using the XSLT language.

An overview of the observations and design choices made is provided in
chapter 7.

6.2 XSLT

XSLT stands for XSL Transformations and is a language for transformation of
XML documents. XSL (eXtensible Stylesheet Language) is a collection of
transformation languages.

XSLT is a W3C Recommendation [5].

The transformation is based on XSLT Version 1.0.

6.3 UML State Chart

A UML State Chart is the source of the transformation. It is assumed this UML
State Chart represents a valid Telecommunication Service and conforms to
the Design Guidelines (see chapter 6.3.1). These guidelines define the
structure of the State Chart as used by the transformation.

Unified Modeling Language (UML) [7] is an object modeling language
specified by the Object Management Group (OMG).

The OMG XML Metadata Interchange (XMI) [8] standard is used for
serializing the UML State Chart.

The transformation is based on UML Version 1.4 and XMI Version 1.2.

The terms transition, state, event, trigger, guard, effect and action are used as
defined in the UML specification.

6.3.1 State Chart Model Design Guidelines

The Design Guidelines are listed below. Basically, they define a Mealy State
Machine with actions only defined for transitions.

• The State Chart Model only supports a single top Complex State that
represents the State Chart. No further Complex States are allowed.

• The Model must define one Pseudo State of kind initial. No (deep) history,
join, choice, etc are supported.

• The Model must define zero or more Simple States.

• The Model must define one or more Final States.

64 (130)

• The initial vertex (e.g. the start element) has 1 outgoing transition with a
trigger of type SIP_Request and a guard with value INVITE. Zero, one or
more effects may be specified.

• The state name values must be unique and not empty.

• All states must be reachable. A final state should be reachable from each
simple state.

• Each transition must have a trigger and guard set.

• States may not have a trigger, guard or action set.

• A state is identified by its name property. This value must be a valid SCE
element name.

• A trigger indicates an event. An event is always of type CallEvent and is
identified by its name property. This value must be either the keyword
WS_RESPONSE, SIP_REQUEST or SIP_RESPONSE.

• A guard is set through its expression property. The value should conform
to the SCE syntax in which the keyword status can be used. Example:
(100 <= status) && (status < 200)

• For a given state and trigger type, the guards may not overlap.

• For a given state and trigger type, the guards must cover the complete
domain. E.g. all valid status values between 100 and 699.

• An action is either a single CallAction or an ActionSequence that contains
CallActions. A CallAction is set through its name property.

• An action that represents a SIP constituent service must be part of an
ActionSequence in which the last action represents the Leave Container
SIP constituent service.

• The modeled service must be based on SIP. E.g. the state transitions
must match the transitions that are allowed and possible in SIP. Also,
actions (concerning session routing/SIP) must represent valid SIP actions
such as proxy, send provisional response, or cancel.

• The actions used in the state chart are eventually mapped to service
template elements of a composition template. The description of actions
should be chosen in such a way that this mapping is possible.

A hierarchical structure of a state chart is depicted in Figure 31.

• state chart
o name
o states

 name
 type (e.g. start / final / simple)

o transitions
 event

• trigger (either SIP REQUEST or SIP RESPONSE)
• guard
• action(s)

Figure 31, Overview Generic State Chart Structure

65 (130)

6.4 SCE Composition Template

The Service Composition Environment (SCE) is an environment that enables
design and execution of Telecommunication Services. A Telecommunication
Service is represented by a Composition Template (the top level design
artifact).

The Service Composition Environment and Composition Templates are
described in chapter 4.

A Composition Template can be exported and imported as a XML Document
which is described by a XML Schema document.

The SCE DSL contains the following features that are at the basis of a State
Machine implementation:

• a session (to store the current state)

• a conditional element (to evaluate the current state, trigger, or guard and
branch depending on the result)

• a service element (to execute effects)

• a goto element (to handle the next event)

6.5 Two Step Transformation

We selected a two step approach for the transformation.

The first step transforms the UML State Chart document into an Intermediate
XML document using a concise format. This removes complex XSLT
constructions and XPath expressions from the actual XSLT description.

The second step in the end to end transformation performs the actual
transformation into a Composition Template document.

Each transformation is specified by a XSLT document.

UML State Chart
(XMI)

Composition Template
(XML)

Transformation 1

XSLT

Intermediate
(XML)

Transformation 2

XSLT

Figure 32, Two Step Transformation

The remainder of this chapter describes the second transformation; the
transformation from the Intermediate document into a Composition Template
document.

6.5.1 State Machine Basic Structure

The State Machine implementation as a Composition Template is based on
the following general flow:

1 Evaluate the state parameter stored in the session. Continue the
execution flow with the branch matching the value of the state parameter.

66 (130)

2 Evaluate the trigger of the event. Continue the execution flow with the
branch matching the trigger.

3 Evaluate the guard of the event. Continue the execution flow with the
branch matching the guard.

4 Execute the effects of the event (if any).

5 Update the state parameter stored in the session based on the transition
caused by the event.

6 Continue execution with step 1.

The State Machine implementation contains an initialization.

• An initializing part that stores a reference to the initial state in the state
parameter. This part is executed during startup of the Composition
Template and is performed only once.

Final states are processed differently.

• One or more End elements that represent Final State(s). An End Element
could be reached as a result of Step 1. In this case, steps 2 through 6 are
not executed.

The basic structure of the State Machine is shown in Figure 33.

Start

Evaluate
State

Evaluate
Trigger

Evaluate
Trigger End

Evaluate
Guard

Evaluate
Guard

Effect 1

Effect 2

Effect 3

Update State

Effect 1

Update StateUpdate State

Effect 2

Effect 3

Effect 1

Effect 2

Effect 3

...

...

Initialize initialize

evaluate state

evaluate trigger /
end state

evaluate guard

update state

execute effects

Figure 33, Flow Diagram of State Machine implementation

6.5.2 XSLT Basic Structure

See Appendix A for a reference of the XSLT documents described in this
chapter.

67 (130)

6.5.2.1 Declarative

XSLT is a declarative language. This means the language describes the
target document and not the process to create the target document.

6.5.2.2 Template Rules and Named Templates

The XSLT transformation is based on a Template Rule and a number of
Named Templates.

A Template Rule consists of a pattern and a template. The pattern is an
XPath expression that is executed on the current node of the source
document. In the transformation the Template Rule is used to select the root
element of the source document. Matching the root element is the first step of
XSLT processing. This adds the template (the contents of the <template>
element) to the target document. The template may contain instructions that
are processed further. The transformation uses the <call-template>
instruction, which references Named Templates.

Named Templates consist of a name and a template. Named Templates are
processed when invoked (by name) by the <call-template> instruction.

The transformation is based on a Template Rule that matches on the root.
Processing this Template Rule adds the content for an empty Composition
Template to the target document. Named Templates are then used
hierarchically to add the Composition Template Elements and Connections to
the target document.

Table 2 describes the Named Templates and provides a description of their
function.

Named Template Description

process Processes the process_generic Named Template. Parses
through all states and processes the
process_startstate_element,
process_endstate_element or
process_simplestate_elements Named Templates based on
the state type.

process_generic Adds the Composition Template Elements (and Connections) that
are not dependent on a state. For example, these are the Start
Element, and the Conditional Element that evaluates the state.

process_startstate_element Adds the Composition Session Command Element that stores the
initial state.

Processes the process_simplestate_elements Named
Template for the given state.

process_endstate_elements Adds an End Element (and Connection) for the given end state.

process_simplestate_elements Adds, depending on the trigger type, the Conditional Elements and
Connections as part of the evaluate trigger step.

Adds a Connection to the created Conditional Element as part of
the evaluate state step.

Processes, depending on the trigger type, the

68 (130)

process_single_vertex_transitions or
process_multi_vertex_transitions Named Template.

process_single_vertex_transitions Adds, depending on the guard type, Conditional Elements and
Connections as part of the evaluate guard step.

Adds a Connection to the created Conditional Element as part of
the evaluate trigger step.

Processes, the process_effects Named Template.

process_multi_vertex_transitions The process_multi_vertex_transitions Named Template
is an alternative of the
process_single_vertext_transitions and uses a different
construction of the Conditional Elements that perform the evaluate
guard step.

process_effects Adds, if effects are available, the Service Elements (and
Connections) that represent the effects.

Adds the Composition Session Command Element (and
Connections) that updates the state in the session.

Adds the Goto Element (and Connections) that redirect the flow to
the evaluate state step of the Composition Template.

Connection Adds a Connection.

StartElement Adds a <SkeletonStartElement> element.

ConditionalElement Adds a <SkeletonConditionElement> element.

CompositionSessionCommandElement Adds a <SkeletonSSMElement> element.

GotoElement Adds a <SkeletonGotoElement> element.

EndElement Adds a <SkeletonEndElement> element.

ServiceElement Adds a <SkeletonServiceTemplateElement> element.

ServiceConstraints Adds the content for a <ServiceConstraints> element. Current
implementation supports single constraints only.

CallParameters Adds the content for a <CallParameter> element. Not
implemented. Added as interface for future enhancements.

Table 2, Overview Named Templates

When a Named Template is processed through the <call-template>
instruction, parameters can be set. This is typically used to indicate whether a
Named Template should process Composition Template Elements or
Connections.

6.5.2.3 Composition Template Elements, Connections and Unique IDs

The Composition Template document contains Composition Template
Elements (vertices) and Connections (edges). Composition Template
Elements are identified by a unique ID. Connections describe a relation
between a source Composition Template Element and a target Composition
Template Element using this unique ID.

69 (130)

The unique ID for the Composition Template Elements is created through the
use of a concatenation of one or more elements of the following list:

• the state name

• the trigger name

• the position of the current node in relation to its siblings
(e.g. first child, second child, ...)

• a fixed string set in the XSLT transformation

XSLT is a declarative language. Global variables that can change value are
not supported. (The variables and parameters used in the transformation are
in effect constants that have a fixed value in the context in which they are
specified.) The Composition Template document contains a number of
Composition Template Elements and Connections. These are related through
the unique IDs that identify a Composition Template Element.

Because the Composition Template Elements and the Connections are set in
separate parts of the target document it is not possible to describe both a
Composition Template Element and a Connection at the same time. As a
result, the Composition Template Elements and the Connections are
described in different parts of the XSLT transformation. However, the unique
IDs used must still match.

To simplify design it was decided to use, to a large extend, the same Named
Templates for both Composition Template Elements as Connections. Through
the use of a parameter (with name type) a Named Template toggles
between describing vertices or edges. Strictly taken, this is not necessary to
enforce correct unique IDs, as these are generated based on the source
document, but a single code base reduces the complexity and improves
maintainability of the transformation.

6.5.3 Step 1, Evaluate State

The evaluate state step is performed by a Conditional Element with the fixed
ID sm_main and condition $(sm_state). The condition evaluates to the
value of the stored state. The Conditional Element has outgoing Connections
for each of the states in the state chart. The Case's of the outgoing
Connections are the name of the states.

6.5.4 Step 2, Evaluate Trigger

Three types of triggers are supported.

• SIP Request (only Initial INVITE SIP Requests are supported)

• SIP Response

• WS Response

70 (130)

The evaluate trigger step is performed by two Conditional Elements. The first
Conditional Element with ID <STATE>_CheckEventType and condition
$(request_type) evaluates the request type which is a system parameter.
The result is either WS (for Web Service) or SIP (for a SIP Request or SIP
Response). For SIP Messages, the second Conditional Element with ID
<STATE>_IsSipResponse and condition =*$(sip_response) evaluates
the type of the SIP message. The condition evaluates to TRUE if a SIP
Response is available and FALSE otherwise.

An End Element with ID <STATE>_<TRIGGER>_ILLEGAL_STATE is added
for those trigger types that are not specified for the current state. This End
Element is a placeholder for a more sophisticated error handling.

6.5.5 Step 3, Evaluate Guard

The evaluate guard step is performed by a Conditional Element with the fixed
ID <STATE>_<TRIGGER>, condition $(sip_request_method) for triggers
of type SIP Request and condition $(ws_result) for triggers of type WS
Result. The condition evaluates to the value of the guard for the current state
and current trigger. The Conditional Element has outgoing Connections for
each of the guards of the current state and trigger in the state chart. The
Case's of the outgoing Connections are the value of the guards.

There is a potential risk as the transformation does not automatically add a
default branch to the Conditional Element. If the event has a SIP Request
method or Web Service result that is not specified in the State Chart, then the
execution flow of the Composition Template will remain at the Conditional
Element. Any further behavior of the Composition Template would not be
conform a state machine. It could be argued this is a problem with the state
chart. If the state chart does not specify all possible guards, the state chart is
invalid. The transformation could be hardened to check for this situation and
add a default branch to an End Element or some error handling. For simplicity
reasons this is not implemented.

The evaluate guard step is different for triggers of type SIP Response. The
Conditional Element evaluates a condition, and matches the result with the
values of the Case attribute of the outgoing Connections. The guards for a
SIP Response trigger are typically ranges. For example all SIP Response
status codes between 100 and 700. Although creating 700 outgoing
Connections (one for each possible SIP Response status code) would
generate a valid Composition Template, this could be considered inefficient.
This is illustrated in Figure 34 (not all possible SIP Response status codes
shown).

Figure 34, Basic Conditional Structure

71 (130)

The transformation uses a more efficient procedure to evaluate the guards for
a trigger of type SIP Response though multiple Conditional Elements. Each
guard creates a Conditional Element with the fixed ID
<STATE>_<TRIGGER>_<GUARDPOSITION> and as condition the value of the
guard. The condition evaluates to TRUE or FALSE. The TRUE branch
connects to the effects for the given state, trigger and guard. The FALSE
branch evaluates the next guard for the given state and trigger, or evaluates
to an End Element with ID <STATE>_<TRIGGER>_ILLEGAL_STATE if no
more guards are available. This is illustrated in Figure 35.

Figure 35, Hierarchical Conditional Structure

6.5.6 Step 4, Execute Effects

The execute effects step is performed by adding a Service Element (and
Connections) for each effect. The ID of the Service Element is
<STATE>_<TRIGGER>_<GUARDPOSITION>_<EFFECTPOSITION>_EFFECT
and the constraint of the service element is given the value of the effect. No
Service Elements are added if no effects are specified.

A Composition Template allows multiple constraints to be set in a Service
Element. The transformation only uses a single constraint.

The SCE DSL does not include a "wait for next event" feature. Unless the
execution flow of a Composition Template blocks until the next event is
received, there is a risk of looping. That is, an already processed event is
processed again. This result in undefined behavior of the state machine and
may cause an infinite loop.

72 (130)

A "wait for next event" feature, or more precise a feature that blocks execution
of the Composition Template until the next event is received, can be
implemented through the use of special effects. Such an effect is the "Leave
Container" effect which causes the SIP Message (either SIP Request or SIP
Response message) to leave the SCE Engine. The execution flow of the
Composition Template will block until the next event is received. Depending
on the type of trigger, different mechanisms are needed.

For the effects of a trigger of type SIP Request, it is the responsibility of the
State Chart specification to include the "Leave Container" effect. The "Leave
Container" effect is closely related to the SIP functionality to setup a call and
is therefore an integral part of the Telecommunication Service specified by the
State Chart.

The effects of a trigger of type SIP Response are similar to the effects of a
SIP Request and for the same reasoning it is up to the State Chart to include
the "Leave Container" effect.

For the effects of a trigger of type WS Response no "Leave Container" effect
is required. The execution of a Web Service is synchronous and the execution
flow of the Composition Template blocks until the Web Service returns. An
event with trigger WS Response is created when the Web Service returns.

An exception is a trigger for which a guard has no effects. For example, a
provisional SIP Response would typically "do nothing". Having to add "Leave
Container" effect would be counter intuitive. Therefore adding the "Leave
Container" effect for this situation is a responsibility of the transformation. For
triggers and guards that have no effects specified, the transformation will add
a Service Element with ID
<STATE>_<TRIGGER>_<GUARDPOSITION>_EFFECT and a constraint with
value "LeaveContainer".

Adding a "Leave Container" effect for triggers and guards with no effects
causes a problem. If the next state is a Final state, this state will only be
reached if a subsequent event is received. A more advanced mechanism
would be to: Add a "Leave Container" effect for triggers and guards with no
effects and for which the next state is not a Final state. For simplicity reasons,
the more advanced mechanism is not implemented in the transformation.

6.5.7 Step 5, Update State

The update state step is performed by adding a Composition Session
Command Element with ID
<STATE>_<TRIGGER>_<GUARDPOSITION>_UPDATE_STATE. This element
stores the next state in the session.

A Goto Element is also added to continue the execution flow with the check
state step, that is, the Conditional Element with ID sm_main.

6.5.8 Call Forwarding On Busy Service

As an example the Call Forwarding on Busy Service is designed as a UML
State Chart Model. The State Chart diagram is shown in Figure 36. Note that
not all effects or state names are visible.

73 (130)

Figure 36, State Chart Diagram CFB Service

After transformation, the Composition Template document can be imported in
the SCE Design Environment. A visual representation of the Composition
Template representing the Call Forwarding on Busy Service is shown in
Figure 37. The structure is basically the same as the flow diagram shown in
Figure 33.

Figure 37, Visual Representation Composition Template CFB Service as generated through XSLT

74 (130)

7 SCE State Machine Transformation Overview

7.1 Introduction

This chapter describes the approach, design choices and observations made
during the analysis and design of the transformation of a UML State Chart into
a Composition Template implementation.

First the initial observations and approach are discussed, followed by more
detailed observations made during the analysis and design.

A description of the SCE Transformation itself is provided in chapter 6.

7.2 Initial Observation

A state chart or state machine is based on states, transitions, triggers, guards
and effects. The SCE DSL supports a session (to store the current state), a
Conditional element (to choose a different branch depending on the state or
transition), a Service Template element (to obtain an effect) and a Goto
element (to continue processing at the beginning of the state machine
implementation).

With these components it was expected a state machine framework can be
implemented as a Composition Template.

7.3 Approach, Input, Output and Tools

This chapter describes the approach, general design choices and the
environment through which the SIP Service is transformed.

7.3.1 Approach

The example Call Forwarding on Busy service was already examined (see
chapter 5). To confirm that this service could actually be implemented as a
Composition Template, a reference implementation was developed.

The model was based on the standard UML State Chart model combined with
insights gained during development of the reference implementation. This
resulted in a number of model design guidelines.

Two efforts were made for the transformation of the model into a Composition
Template. The first transformation was based on a Java application. The
second transformation was based on XSLT.

The following steps were identified to investigate the SCE transformation.

1 Create a reference Composition Template implementation.

2 Create a state chart to be used as input of the transformation.

3 Create java transformation implementation (imperative).

4 Create a more formal XSLT specification (declarative).

5 Analyze and test of the generated Composition Template.

75 (130)

These steps are further discussed below.

7.3.1.1 Create a reference Composition Template implementation.

The purpose of a reference implementation is twofold. First, it confirms the
(example) Call Forwarding on Busy service can be implemented using SCE.
Secondly, it forms a baseline for the development of the transformation. The
insights gained during development of the reference implementation also
assisted in design of the State Chart Model.

Two reference implementations were designed. The first implementation used
a simple structure and was intended to confirm the service could be
implemented as a Composition Template. The second implementation had
the same behavior, but was structured as a State Machine. This design was
used as a basis for the transformation.

A Composition Template contains Service Elements that reference
Constituent Services. These runtime executable objects perform the actual
actions of the model. A set of Constituent Services that performed basic SIP
functions such as "proxy", "send response" or "forward" were created and
used both by the reference and the transformed Composition Templates.

One of the main questions is how to implement a State Machine as a
Composition Template. Several alternatives are available. It could be
implemented using existing Composition Template features. The State
Machine could be implemented as a separate SIP Application that is included
in a Composition Template using a regular Service Template Element. Or
anything in between, for example a hybrid between a specialized SIP
Application or new Composition Template feature and regular Composition
Template features.

From a practical point of view it was decided to use atomic Constituent
Services that perform a single task. The logic of the service is fully contained
in the Composition Template.

Another design issue was the choice between a single Composition Template
and multiple Composition Templates. As the Call Forwarding on Busy service
is part of the set of Call Diversion services it was considered to use multiple
Composition Templates. A "master" template would decide which service
should be executed and in which order depending on some kind of subscriber
profile. Sub templates would then be used to perform the various services.

In the end it was decided to design a single Composition Template that
operates as a stand alone CFB service as the purpose was to create a
service implementation as a proof of concept and a full blown composition
framework would not serve that purpose.

7.3.1.2 Create a state chart to be used as input for the transformation

The OMG UML specification was used as format for the state chart and the
OMG XMI specification was used as format to store the state chart. A UML
State Chart supports all the required functionality of state charts. UML also
matches standards used in the customer environment.

A number of variations are possible for representing the Call Forwarding on
Busy service as a state chart. A compact form was chosen to base the
transformation on. This state chart was updated several times due to new
insights during analysis and creation of the transformation.

76 (130)

7.3.1.3 Create java transformation implementation (imperative)

The transformation takes the state chart represented in a XML file as input
and transforms this into an output XML file that represents a Composition
Template. The input file conforms to the XMI specification and the output file
conforms to the XML Schema file for SCE Composition Templates.

A Composition Template that represents a state machine was created
manually using the SCE design environment. These first versions focused on
the general flow and were not fully functional. Even small state charts with just
states already lead to Composition Templates with numerous elements. It is
not feasible to create these Composition Templates manually.

A Java application was created to automate this process and, basically, this
was the first functional transformation tool. In its first draft a basic "proof of
concept" transformation that focused on the general flow was supported. In
later drafts of the Java application, more enhanced features were added as a
work-around for certain problems.

7.3.1.4 Create a more formal XSLT specification (declarative)

The correctness of the transformation is not proven. It is corroborated by
testing and by providing the specification of the transformation.

Due to the structure of the Java application, the source code is not
appropriate as a specification of the transformation. The focus while creating
the Java application was on a functional tool and not on creating a descriptive
structure.

Several techniques exist to specify the transformation. Besides an imperative
specification (e.g. the source code of the Java application), a declarative
specification was considered to be more useful. This could be a mathematical
description, for example a formal language, with rules describing the
transformation. Some analysis was done using the program transformation
features of the CWI Meta Environment. Eventually, the XSLT standard for
XML transformations was chosen to describe the transformation in. The XSLT
allows for a clear declarative description of the transformation, XSLT
specifically aims for transformation from and to XML files and XSLT is a well
supported standard, for which implementations are available.

7.3.1.5 Analyze and Test

The generated XML file which represents a Composition Template must be
well formed and its behavior during execution must match the behavior of the
IMS Service represented by the model.

The generated XML file is well formed as it conforms to the XML Schema file
and can be successfully parsed by the SCE.

The dynamic mapping of constraints still need to be set manually in the SCE
design environment before the Composition Template is ready for execution,
but this is by design.

The SCE design environment contains a debug mode that can be used to test
a Composition Template. This debug mode allows specifying and simulating
SIP Requests that are then executed by the Composition Template. Tests
were started on the generated Composition Templates using this debug mode
but could not be completed due to a SCE limitation (see chapter 7.3.2).

77 (130)

7.3.2 SCE Limitations

We found that in the SCE implementation the handling of SIP Responses is
not operational. Implementation of this feature in the SCE was not expected
within the timeframe of the assignment. Lack of this feature is blocking for
testing of the "Call Forwarding on Busy" Composition Template as this service
depends on the "busy" SIP Response.

Basically, the created state machine cannot be tested. A number of
assumptions were made concerning, for example, the synchronous nature of
service elements. These assumptions cannot be verified (or discarded).

In addition, the current SCE implementation does not support SIP Request
events, except for the initial INVITE SIP Request. In particular, the BYE and
CANCEL SIP Request methods are not supported.

The SIP protocol is based on a-synchronous messages. In addition, events
such as time-outs may occur. As a state machine implementation is based on
event handling, it is critical some kind of event handling mechanism is
available.

The current implementation of SCE does not seem to support any event
handling mechanism. A state machine implementation of a Composition
Template, or any Composition Template for that matter, cannot handle
subsequent events while still processing the first event. This cannot be solved
on Composition Template level and is a limitation of the SCE itself.

7.3.3 Input

The following documents and references were used during the investigation.

• Detailed Student Assignment PA7 [2]

• ETSI / 3GPP / IETF specifications of IMS and SIP [10]

• ETSI / 3GPP / IETF specification of Multimedia Telephony Services. E.g.
Call Forwarding on Busy service [3]

• W3C specifications. E.g. XML, XSLT, XPath [5] [6] [9]

• OMG specifications. E.g. UML, XMI [7] [8]

• Java Specification Requests JSR-116 and JSR-289. Sip Servlet API
specification [12] [13]

• Documentation of the Service Composition Environment

• Input from discussions with Ericsson Supervisor, University Supervisor,
Ericsson SCE team and colleagues.

7.3.4 Output

The following documents were created during the investigation or generated
as a result of the transformation.

An overview of the artifacts created as part of the investigation is provided in
Appendix A.

78 (130)

• [uml] Design of CFB service. (state charts, sequence diagrams, serialized
as XMI document)

• [code] Implementation of CFB service. (SIP Application, Composition
Template)

• [code] Implementation of CFB service as State Machine (Composition
Template)

• [code] Composition Template XML Schema document

• [code] XSLT transformation documents

7.3.5 Tools

The following tools were used for the SCE transformation.

• The SCE Engine and Design Environment, drop CEE 001

• ArgoUML v 0.24, UML editor

• Orangevolt XSLT plug-in for Eclipse, XSLT editor and engine

• Eclipse, integrated design environment

• Sun Java 5.0

• Ericsson SDS 4.0, SIP Service design environment including IMS
emulation and testing framework.

• BEA Weblogic 9, JSR-116 compliant application server

7.4 Observations

7.4.1 On the State Chart Model

For the input model the UML State Chart diagram is used. Only a subset of
the UML feature set is used. Besides the structure of the State Chart itself,
only some properties such as a state name, trigger type or action are set.
More advanced use of the State Chart is not necessary to (ultimately)
generate a Composition Template implementation.

Through the use of design guidelines (see chapter 6.3.1), a specific design of
the state chart model is enforced. This simplifies the transformation and
structure of the Composition Template state machine implementation. These
design guidelines may have been chosen a bit too strict. Design of more
complex State Chart models was limited by the inability to construct
transitions without a trigger. A production level metamodel may benefit from a
broad support of the UML State Chart features.

The reason to define the design guidelines (or constraints on the metamodel)
is to reduce the complexity of the transformation. Two categories of
constraints can be identified:

• Constraints that reduce the complexity of the model.

79 (130)

Only a subset the UML State Chart metamodel is allowed. This reduces
the complexity of the model and subsequently reduces the complexity of
the transformation that uses this model as input. For example, actions are
only allowed for transitions and not for states.

• Constraints that reduce the complexity of the transformation.

The guard property of the IMS Model is defined in the syntax of the target
language. This removes the need for a transformation from an
implementation neutral pseudo language into the target language and
reduces the complexity of the transformation.

7.4.2 On the XSLT Transformation

The transformation from the UML State Chart Model to a XML Composition
Template document is based on XSLT.

The UML State Chart is serialized as a XMI document. Although XMI
documents may depend on the UML editor from which the document was
exported, this was not a problem for the analysis as only a single editor was
used. However, it should be taken into account that switching UML editor or
UML version may require an update of the XSLT transformation.

The XMI document was found to be complex due to the need to correlate data
elements in separate trees inside the document. The XPath query language is
powerful enough to extract the required data. However, due to the number of
XSLT elements needed and the length of the XPath queries, the resulting
XSLT document becomes complex and difficult to maintain.

It was decided to split the transformation into two steps.

The first step transforms the XMI document into an Intermediate XML
document. This Intermediate XML document contains only the required model
information in a simple hierarchical structure. The XSLT transformation is
limited to querying the required data from the XMI document.

The second step transforms the Intermediate XML document into the XML
Composition Template document. The XSLT transformation is limited to
constructing the XML Composition Template. Due to the simple structure of
the Intermediate XML document, the XPath queries do not add to the
complexity of the XSLT document.

7.4.3 On the Service Composition Environment

7.4.3.1 SCE Engine

While the Composition Templates seems simple with just a few different
elements combined in a flow diagram, and, indeed, the visual language
described in chapter 4 is structured and concise, the exact behavior of the
Composition Template is dependent on the implementation of the SCE
Engine and a list of exceptions and special keywords. The exact behavior of
SCE is unclear for certain use cases.

80 (130)

7.4.3.2 "Leave Container" Service Element

The flow of the Composition Template state machine structure depends on
the ability to "wait" for a next event. Such a function was assumed to be
available through the use of a Service Element with a special keyword:
"Leave Container". It was found that, depending on the last performed action,
different constructions are needed to implement a "wait" for next event
function.

• If the last action was a Web Service Request, no "Leave Container"
Service Element is needed. The Web Service Request itself is blocking.

• If no action is performed, the "Leave Container" Service Element is
required to interrupt the Composition Template flow.

• If a SIP action was performed, no "Leave Container" Service Element is
needed as the SIP action already implies an interruption of the
Composition Template flow.

The input model does not need to include "Leave Container" Service
Elements. If required, this element is automatically added during the
transformation.

Note: It is assumed the "Leave Container" feature can be used to "wait" for a
next event as this could not be tested.

7.4.3.3 Final State

If the state machine has reached the final state, this does not mean the call
session is closed. The final state indicates the Composition Template does
not perform any action. Due to the nature of the SIP Chain, the call session
continues until the session is closed. From a state machine perspective, the
"end" state is not a UML final state, but a simple state that has only one
outgoing transition that loops back to itself.

7.5 Conclusion and Remarks

We have constructed an IMS metamodel based on the UML State Chart
metamodel simplified through the use of constraints that we call Design
Guidelines. These Design Guidelines are a design choice with the aim to
reduce the complexity of the model and subsequently reduce the complexity
of the transformation that uses the model as input.

The transformation is split in two steps to separate data retrieval and state
machine construction. This modularization of the transformation also limits the
impact of changed format of input documents or changes to the target
language.

We have created a transformation which generates a Composition Template
that corresponds with the reference Composition Template. The correct
behavior of both the reference Composition Template and the generated
Composition Template could not be verified through testing.

The Service Composition Environment is still in development and as such not
all features are implemented. In addition, a number of features required to
execute a state machine based Composition Template in a production
environment is missing. In particular asynchronous event handling and
exception handling are missing.

81 (130)

8 Repleo State Machine Transformation Specification

8.1 Introduction

This chapter provides a description of the transformation from a UML State
Chart to a Java state machine implementation using Repleo generation.

An overview of the observations and design choices made is provided in
chapter 7 9.

The transformation is similar to the SCE State Machine transformation as
described in chapter 6. The main differences are listed below:

• The transformation is based on a Repleo engine instead of XSLT.

• The transformation results in Java source code instead of a SCE
Composition Template.

• Some minor changes were made to the UML State Chart model.

This chapter starts with an introduction of the new technologies involved,
continues with a discussion on the changes to the UML state chart, and
finishes with a detailed description of the transformation from model to source
code.

The term Repleo Transformation is used to describe the transformation from
UML State Chart (represented as a serialized XMI document) into generated
Java source code. The term Repleo Generation is used to describe the
generation of Java Source Code by the Repleo engine based on an ATerms
input data file. The Repleo Generation is a (single) step of the Repleo
Transformation.

8.2 Repleo

Repleo is a syntax safe template based generation system [22]. The
generation of source code is based on a template with placeholders that
references elements from a model. The implementation consists of a parser
that derives a syntax tree from a combination of an object language grammar
(such as the Java grammar) and a meta language, and an evaluator for
processing the placeholders.

We use Repleo as a technology and tool to generate Java source code based
on a UML Model and a set of templates. As such, we consider Repleo as a
black box. An overview of the Repleo environment from a designer's point of
view is given in Figure 38.

82 (130)

queried by
Repleo Engine

generates

used by

ATerms Input Data

Repleo IDE
designed by

Java Source Code

Java Templates

Features:
- Syntax Highlighting
- Error/Fault feedback

Features:
- Repleo Instructions
- Query Language
- Manipulation Instructions

Figure 38, Overview Repleo Environment

The interfaces of Repleo, again from a designer's point of view, are listed
below.

• The Repleo IDE

The Repleo IDE is used to create template files through a design
environment providing feedback such as syntax highlighting and
visualization of (syntax) errors.

• The Repleo Engine.

The Repleo Engine is used to generate source code based on templates
and a model represented by the ATerms Input Data.

The template artifact consists of a mix of object language fragments and
Repleo Meta Language placeholders. The Repleo Meta Language consists
of:

• Repleo Instructions, e.g. Substitution, Conditional Selection, and Iteration

• Repleo Query Language, e.g. APath

• Repleo Manipulation Functions, e.g. _cc()

The Repleo Engine generates source code based on the templates and
model. The model is represented as a data input file in the ATerms format
 [23]. ATerms is a hierarchical data structure for optimized data exchange
between applications. Repleo uses a stricter variant of ATerms that consists
of either lists or typed leaves.

8.3 Java State Machine

The target format of the transformation is Java source code which, after
compilation, implements a state machine. The state machine is based on the
State Pattern [16] from which the structure diagram is reproduced in Figure
39.

+Request()

Context

+Handle()

«interface»
State

-state

+Handle()

ConcreteStateA

+Handle()

ConcreteStateBstate->handle()

Figure 39, State Pattern Structure

83 (130)

While the standard State Pattern describes a possible structure that can be
used in a stand alone application, some adaptations are needed for the
pattern to be used in a SIP Service context.

Each state of the state machine is implemented as a separate class named
ConcreteStateA, ConcreteStateB, and so on, in Figure 39. The concrete
states implement a State interface. The Context class provides an external
interface to the state machine and stores an instance of the current state. The
Context class implementation does not know any behavior of the SIP Service,
but serves as a facade to the Concrete State representing the current state.

The state machine implements a SIP Service and is developed as a SIP
Application. A SIP Application is a Java Servlet that conforms to the SIP
Container interface JSR-116 [12]. The Context class must conform to the
interface provided by the JSR-116 specification. As the Context class is not a
stand alone Java application but is deployed as a Servlet on a Java
application server, it has to store the instance of the current state in a session
provided by the SIP Container.

During a SIP session, events may be received (near) simultaneously. The
State Pattern in itself does not provide synchronization and unless the SIP
Application is specially designed to handle simultaneous events the behavior
will become undefined.

The design of the SUN Java state machine implementation does not take
synchronization issues into account. The purpose is to provide a concise
prototype and not to design a production level application. By controlling the
(test) environment in which the SIP Application is installed and tested it is
guaranteed no synchronization problems occur.

8.4 UML State Chart

Similar to the SCE State Machine transformation, a UML state chart is the
input for the Repleo transformation. The model is strongly based on the same
metamodel used for the SCE transformation but with the following differences:

• Web Service events are not supported. While SCE provided explicit
support for Web Service events, this is not available in the SIP
Application. Web Services can still be used through the implementation of
an action.

• The syntax of the guard for an event of type SIP Response has been
changed to Java syntax in which the keyword status can be used.

• Guards are now optional.

• For a given state and trigger type, the guards no longer must cover the
complete domain.

Except for the above differences, the same model design guidelines as for the
SCE State Machine transformation apply (see chapter 6.3.1).

The UML State Chart is serialized as a XMI document which forms the input
for the Repleo transformation.

84 (130)

8.5 Three Step Transformation

The transformation from UML State Chart model to Java source code is a
three step transformation. The UML State Chart model is represented as a
XMI document.

• The first step transforms the XMI document into a concise Intermediate
XML document.

• The second step transforms the Intermediate XML document into an
ATerms document.

• The third step is the transformation from the ATerms document into Java
source code.

The transformation is visualized in Figure 40.

UML State Chart
(XMI)

Intermediate
(ATerms)

Transformation 1

XSLT

Intermediate
(XML)

Transformation 2

Java
Utility

Java Source Code

Templ
ates

Repleo Generation

Figure 40, Three Step Transformation

Note that the Java source code generated in step three is not ready for
deployment. The generated Java source code is syntactically correct and
implements all states, transitions and checks for events. However, the
generated Java source code does not implement the actions defined in the
model.

8.6 Step 1: XMI to Intermediate XML Transformation

As mentioned in the description of the SCE transformation, this XMI
document is complex. Only a subset of the available data is required, and
related information is located in different parts of the document.

The query features of Repleo do not fully support queries and conditions on
multiple branches of the input data. A transformation into a concise XML
Intermediate document is a required step in the Repleo Transformation.

The transformation from the XMI document into an Intermediate XML
document uses XSLT and is similar to the first step of the SCE
Transformation. Both the XSLT document and the Intermediate XML format
can be reused with little adaptation.

8.7 Step 2: XML to ATerm transformation

Repleo uses the ATerms format for the data input document. The tree
structure of the input document uses nested lists and typed leaves. An
example is given in Example 1. This example describes a list named
alfabet. This list contains two leaves named letter of type String and
with values a and b.

alfabet([
 letter(str("a")),
 letter(str("b"))
])
Example 1

85 (130)

The transformation between a XML document and the Repleo ATerms format
is performed using a Java application. This application supports both a
(simple) transformation from an XML document to a generic ATerms
document, as well as a transformation to a Repleo ATerms document. The
Repleo ATerms document has the additional constraints of nested lists and
typed leaves.

The XML to ATerms transformation supports XML elements, XML attributes
and XML chardata. For the Repleo ATerms format, all data is considered to
be of type string. Some XML constructions cannot be transformed into a
Repleo ATerms document. For example, mixing chardata (leave) with
elements (lists) is not possible in the Repleo ATerms format. It was confirmed
the transformed Intermediate XML document conforms to these restrictions.

Table 3 provides an overview of the transformation of various XML
constructions.

XML ATerms ATerms (Repleo Format)
<a/> a([]) a([])
<a> a([]) a([])
<a>abc a(["abc"]) a(str("abc"))
<a>
 abc
 def
 ghi

a([
 "abc",
 b(["def"]),
 "ghi"
])

N.A.

<a>
 abc
 def

a([
 b(["abc"]),
 b(["def"])
])

a([
 b(str("abc")),
 b(str("def"))
])

<a a1="abc" a2="def" /> a([
 a1("abc"),
 a2("def")
])

a([
 a1(str("abc")),
 a2(str("def"))
])

<a a1="abc">
 def

a([
 a1("abc"),
 "def"
)]

N.A.

Table 3, XML To ATerms Transformation

8.8 Step 3: Repleo Generation

8.8.1 Introduction

The Repleo Generation takes as input a data file and one or more templates.
The input data file is dynamic as it depends on the model. The templates that
describe the structure of the generated source code are static. They are
constructed for a specific usage. In this case the generation of source code
that implements a state machine in a SIP Service context.

Because the templates depend on the structure of the implementation to be
generated, this structure of the state machine implementation is described
first. Next, the templates used for the Repleo generation are discussed.

86 (130)

8.8.2 State Machine Structure

The structure of state machine closely follows the State Pattern as described
in chapter 8.3. The structure of the generated SIP State Machine is shown in
Figure 41. The Context class (as seen in Figure 39) is implemented by the
SipStateMachine class. As the SIP State Machine is a SIP Application
deployed on a SIP Container, the SipStateMachine class extends the
SipServlet class which is provided by the SIP Container.

+doRequest()
+doResponse()

«interface»
State

+doRequest()
+doResponse()

-state : State
SipStateMachine

+doRequest()
+doResponse()

XxxState

+doRequest()
+doResponse()

YyyState

+doRequest()
+doResponse()

ZzzState

1

-state

*

+doRequest()
+doResponse()

SipServlet

doRequest() -> state.doRequest()
doResponse() -> state.doResponse()

Figure 41, Generated SIP State Machine Class Diagram

The SIP Container, through the SipServlet class, provides an interface for the
SIP events. The SipStateMachine class implements two of the provided
methods: doRequest and doResponse. These methods cover the range of
all possible SIP Request and SIP Response events. The implementation of
these methods is a simple call to the corresponding method on the
implementation of the current state.

As a design choice, the State interface defines similar methods: doRequest
and doResponse. The semantics of these methods correspond with those
provided by the SipServlet class.

For each state in the State Diagram a concrete state class is designed. These
concrete state classes contain the behavioral implementation of their
corresponding state in the model. These classes implement the doRequest
and doResponse methods to handle SIP Request and SIP Response events.

The state chart may contain multiple transitions with the same trigger type for
a single state. A one on one mapping of a transition with (for example) trigger
type SIP_RESPONSE to a doResponse method is not possible. Instead the
implementation of the method contains multiple code blocks. The correct
execution flow is ensured through the use of conditional selection statements
that check on the trigger guard. The design guide lines for the UML State
Chart model prevent overlapping conditions.

The actions described in the model are in a free text format and cannot be
transformed automatically into source code. Instead, the actions are added, in
logical places, as comments.

For example, the following Intermediate XML fragment that describes a
transition for a SIP_RESPONSE trigger for a "busy" status (status code
equals the value 486):

87 (130)

<transition>
 <effects>
 <effect>Send "181 Call Being Forwarded" SIP Response upstream.</effect>
 <effect>Retrieve Forward URI and forward session.</effect>
 </effects>
 <trigger>SIP_RESPONSE</trigger>
 <guard>status == 486</guard>
 <target>FORWARDCALL</target>
</transition>
Example 2

will result in the following Java source code fragment:

if (status == 486)
{
 // ACTIONS

 // TODO: implement action
 // Send "181 Call Being Forwarded" SIP Response upstream.

 // TODO: implement action
 // Retrieve Forward URI and forward session.

 // UPDATE STATE
 sipStateMachine.setState(
 sipServletResponse, sipStateMachine.getFORWARDCALLState);
 return;
}
Example 3

A designer has to manually edit the generated Java source code and replace
the markers with an actual implementation of the described action before the
SIP Service implementation can be deployed.

8.8.3 Repleo Template Structure

The Repleo Generation results in Java source code that corresponds to the
design described in the State Machine Structure chapter.

The Repleo Generation is based on three template files. These files and their
purpose are described in Table 4.

Template Purpose
State_template.java Generates the State interface.
SipStateMachine_template.java Generates the SipStateMachine class.
ConcreteState_template.java Generates multiple <statename>State concrete classes.
Table 4, Overview Repleo Template Files

The SipStateMachine template only contains a minimum of generated logic.
The class mostly keeps a list of instantiated concrete states and this list is
created through Repleo generation. A simple foreach statement inserts the
correct state names and the corresponding getter methods. The
SipStateMachine template initializes the state variable to an initial state. The
conditional foreach statement is used to query the input file for the correct
state name.

88 (130)

The following example demonstrates the use of a foreach statement to
initialize the concrete state variables. Note the use of the lower case string
manipulation function to comply with Java naming guidelines. The replace
statement is used both for a variable name as a class reference.

/*
 * initialize all states
 */
<%foreach data/states/state do%>
 <% _lc(name) || "State" %> = new <% name || "State" %>(this);
<%od%>
Example 4

The following example demonstrates the use of a conditional foreach
statement to select the initial state from the data input file.

/*
 * Initialize state to start state.
 */
<% foreach data/states/state when type == "start" do %>
 state = <% _lc(name) || "State" %>;
<% od %>
Example 5

A template does not need to contain Repleo statements. The State template
is almost Repleo statement free. Only a replace statement is used in the class
javadoc section to insert the model name.

The Concrete State template allows generation of multiple files. A top level
Repleo statement as well as statements in the filename section of the
template file is possible. The following example is taken from the Concrete
State template and causes Repleo to parse the template once for each state
in the input data file. The state name is used to construct unique class names.

<% foreach data/states/state do %>
 com/ericsson/sipstatemachine/<% name || "State.java" %>
 ,
 ...
 Java source code / Repleo statements here.
 ...
<% od %>
Example 6

The Concrete State template generates the actual implementation of the
service described through the state chart. All other classes are only
implementing the State Pattern framework.

The model of the SIP Service, especially when seen in the simplified
Intermediate XML document, is strongly hierarchical. This tree structure also
forms the base of the Concrete State template. On the top level, iteration over
the states creates multiple class files. Going down there are two iterations
over the transitions. One for transitions of type SIP_REQUEST, the other for
type SIP_RESPONSE. These implement the doRequest and doResponse
methods. For a given transition, the generation finally iterates over the effects
to generate the source code for all actions. Conditional Selection instructions
are used to fine tune the generation.

89 (130)

Next to the static source code needed to implement the State Pattern, the
Concrete State template also provides source code to create and initialize
parameters that are used in the generated code blocks. For example the
parameters which are checked against when evaluation the guard of a
transition.

Based on the data input file and the (Java based) templates, the Repleo
generation creates a number of Java source files which is at least the number
of template files.

90 (130)

9 Repleo State Machine Transformation Overview

9.1 Introduction

This chapter describes the approach, design choices and observations made
during the analysis and design of the transformation of a UML State Chart into
a Java implementation.

First the initial observations and approach are discussed, followed by more
detailed observations made during the analysis and design.

A description of the Repleo Transformation itself is provided in chapter 8.

9.2 Initial Observation

While the transformation into a Java implementation seems similar to the
transformation into a Service Template, there is a major difference in the
abstraction level on which the SIP Service is implemented, as is explained in
the next paragraphs.

The Service Configuration Environment is a framework on top of the JSR-116
SIP Container. The framework defines its own DSL and provides an IDE to
design Service Templates. A special SCE Engine is required to execute these
Service Templates. The framework adds an abstraction layer on top of the
container that simplifies service design, at the cost of hiding the low-level
functionality of the JSR-116 SIP Container.

The Repleo transformation creates Java source code that is intended to be
deployed as s SIP Application directly on the JSR-116 SIP Container. The
SIP Container itself is deployed on a Java Enterprise Edition application
server. Designing the service as a SIP Application allows use of the features
of the SIP Container, but at the cost of the specialized features of the Service
Configuration Environment.

The questions whether the design of such a SIP Application would be sound
and concise, and whether the Java source code for said application can be
generated through use of Repleo were still open at the start of the
investigation.

9.3 Approach, Input, Output and Tools

This chapter describes the approach, general design choices and the
environment through which the SIP Service is transformed.

9.3.1 Approach

The following steps were identified to investigate the Repleo transformation:

1 Investigate whether the state chart, used as input for the transformation,
needs to be changed.

2 Create a Java reference SIP Application.

3 Create Repleo templates to perform the transformation.

91 (130)

4 Analyze and test.

9.3.1.1 Investigate the State Chart

The SCE contains features to handle Web Services requests and responses.
While Web Services are supported by the SIP Container it was decided to
limit the scope of the SIP Service implementation by not including Web
Services support. The example state chart as used for the SCE
transformation was updated by removing the state and transitions related to
Web Services.

Further, the target language is Java. To simplify generation of Java source
code it was decided to describe the guard for transitions of type
SIP_RESPONSE using Java syntax. The guard can then be taken "as is" and
placed in a placeholder without any additional processing. The guard could
have been described using an implementation neutral syntax at the cost of
added complexity to the transformation.

Concerning the actions specified for a transition, the SCE transformation
contained actions described in a free text format. A designer needed to import
the generated Service Template into the SCE design environment and set the
correct constraints for the generated Service Elements.

A similar approach is used for the Repleo transformation. It is assumed the
model describes actions in a free text format. This free text description is
placed as comments in the generated source code. A designer has to
manually edit the generated source code and replace the comments with an
actual implementation for the specified action.

9.3.1.2 Create a Java Reference SIP Application

A reference implementation of an example SIP Service was designed in Java
using a state machine design.

The purpose of this reference implementation is:

• to confirm a SIP Service can be implemented as a Java SIP Application
using a state machine design

• to have a reference implementation as a basis for the Repleo templates

While (commercial) JSR-116 state machine based frameworks are available
(for example ECharts for SIP Servlets [17]) it was decided to use the standard
State Pattern [16] as a simple and transparent design structure.

9.3.1.3 Create Repleo Templates

The Repleo Templates are created based on Java reference source code.
While this was not a conscious design choice, the Repleo environment was
not available until work on the reference implementation was finished. In
retrospect, adapting a reference implementation into templates seems to be
the most logical approach when given a choice.

While investigating and designing the Repleo templates, it was found the
query abilities of Repleo were unable to extract the required information from
the UML State Chart (serialized as an XMI document).

92 (130)

In addition, Repleo was found to be unable to parse XML document as it
requires input data to be in the ATerms format.

Two pre-processing steps were introduces to overcome these limitations:

• A transformation of the XMI document into a concise (and simpler) XML
Intermediate document.

• A transformation of a XML document into an ATerms document.

The transformation from a complex XMI document into a simpler XML
document is similar to the first XSLT transformation steps as discussed in the
SCE transformation. Note that while the simplification was not strictly needed
for the SCE transformation, the simplification is required for the Repleo
transformation.

A Java stand alone application was developed to transform a XML document
into an ATerms document. Only the syntax of the document is changed and
no information is added or removed.

9.3.1.4 Analyze and Test

Testing of the generated source code is performed through the:

• Repleo engine errors during Repleo generation

• compilation of the generated Java source code

• deploying and testing the generated SIP Service

Repleo is assumed to be stable and correct (which it appears to be). Errors
during Repleo generation do happen, but are indications of problems in the
template files and data input file. Once the data input and template design is
stable, there should be no Repleo errors.

By compiling the generated Java source code any syntactical errors are
found. Environmental errors, such as an external library not found are not
considered here. Note that using Repleo for code generation implies that
syntactical errors should not occur.

The generated Java source code can be deployed as a SIP Service on a
JSR-116 compliant application server. For generated code "as is" the
deployment itself should succeed. For generated source code, for which the
actions have been implemented by a designer, an end-to-end test case is
performed. The reference to the test case is available in Appendix A.

9.3.2 Input

The Repleo transformation continues from the SCE transformation
investigation. For input documents, see also chapter 7.3.3. In addition:

• Repleo documentation [22]

• State Design Pattern [16]

• SDS 4.0 Documentation [18]

93 (130)

9.3.3 Output

The following documents were created during the investigation or generated
as a result of the transformation.

A detailed overview of the artifacts created as part of the investigation is
provided in Appendix A.

• [uml] Design of CFB service (UML State Chart, serialized as a XMI
document)

• [code] XSLT document describing the transformation from a XMI
document into an Intermediate XML document

• [code] Java source code that implements a stand alone application to
transform a XML document into an ATerms document.

• [code] Repleo templates used by the Repleo engine as a placeholder
document to generate Java source code

• [code] An XML document that contains test cases used in the SDS 4.0
IDE.

• [generated] The Intermediate XML document

• [generated] The Intermediate ATerms document

• [generated] The (generated) Java source code

9.3.4 Tools

The following tools were used for the Repleo transformation.

• ArgoUML v 0.24, UML editor

• Orangevolt XSLT plug-in for Eclipse, XSLT editor and engine

• Eclipse, integrated design environment

• Sun Java 5.0

• Ericsson SDS 4.0, SIP Service design environment including IMS
emulation and testing framework.

• BEA Weblogic 9, JSR-116 compliant application server

• Repleo 0.2.3

9.4 Observations

9.4.1 On the Model

The SCE State Chart model is reused for the Repleo Transformation. Some
changes were introduced due to the difference in the target language or the
description of UML actions. This in relation to the implementation choices
made in the model as discussed in chapter 7.4.1.

94 (130)

As with the SCE Transformation, the model design guidelines result in a
simple structured model. The model ensures no overlapping transitions are
possible. E.g. either the guard is empty or the guards for a specific trigger do
not overlap. This results in a relatively simple template structure for code
generation.

9.4.2 On the XML to ATerms Transformation

The Repleo generation produces source code based on templates and a
model. For this model, or data input file, the ATerms format is supported. To
setup an end-to-end transformation it is necessary to include a transformation
from XML format to ATerms format as the input data is only available as XML
document.

This XML to ATerms transformation was not expected to cause any
difficulties. Both formats use a similar hierarchical structure and it was
somewhat expected a conversion tool would already be available. However, a
search through the ASF SDF [20] and Stratego [24] technologies did not
provide useable results [26].

An effort was made to construct a transformation through ASF+SDF term
rewriting. This effort was abandoned due to difficulty with an overlap between
ATerms grammar and the ASF syntax.

A Java application was constructed instead to transform a XML document into
an ATerms document. The design of the Java application was based on the
ATerms Java library and the Java API for XML Parsing (JAXP) [25].

The Java application supports both a generic ATerms output format as the
stricter Repleo ATerms format that is based on typed fields and lists only.
Table 3 illustrates some of the differences.

Some restrictions apply.

• As a design choice, all fields are considered to be typed as String.

• An empty field is not possible in Repleo. This can only be constructed as
an empty list.

• It is not possible to mix fields and lists in Repleo, while mixing chardata
(e.g. text) and elements is allowed within elements in a XML document.

These restrictions must be taken into account when designing the input data
format.

9.4.3 On the Java State Machine Implementation Design

As the State Machine implementation design serves as a proof of concept,
the standard State Design Pattern as described by the Gang of Four was
preferred over other more specialized designs [17].

A reference Java implementation was developed as a baseline for comparing
future generated implementations. The reference implementation was also
used as a basis for template construction.

95 (130)

The State interface, as shown in Figure 39, is based on the top level methods
to handle SIP Requests and SIP Response events. The Context class is a
simple wrapper between the doRequest and doResponse methods of the
SIP Container interface and the corresponding methods of the State interface.
All conditional checking of the guards and implementation of the actions are
implemented in the Concrete States.

The State Machine implementation is not a stand alone application but is
deployed on a Java Application Server on which a JSR-116 compliant SIP
Container is available. This deployment on an Application Server impacts the
State Design Pattern.

• The Context class, which will be deployed as a Servlet on a Java
Application Server, cannot store instance variables. Instead, the current
state must be stored in a session provided by the Application Server. This
is a technical detail and does not impact the concept of the State pattern.

• The Context class is deployed as a Servlet on the Java Application
Server. For a SIP Application, the Context class must extend the
SipServlet class. This SipServlet class provides its own interface of
methods. Conceptual, there are now two "interfaces" in the State Pattern.
The State interface and the interface provided through the SipServlet
class. While it would be conceptually nice to only have a single "interface",
it was decided, for simplicity reasons, to retain the State interface.

Even though there are some remarks on the State Machine implementation, it
does serve its purpose as a proof of concept implementation. The design of
the State Machine is simple and structured.

A production level implementation would require a design in which issues
such as thread safety, synchronization and efficiency must be considered.

9.4.4 On Repleo

9.4.4.1 Introduction

The observations and experiences of the Repleo investigations are grouped
according to the following topics:

• The Repleo IDE

• The Templates and Template Design

• The APath Query Language

• The Repleo Engine

• The generated Source Code

The investigation of the Repleo transformation was performed on version
0.2.3 of Repleo. It should be noted that Repleo is being developed and
observations made related to this specific version may not be valid for newer
releases of Repleo.

96 (130)

9.4.4.2 The Repleo IDE

Modern development environments such as Eclipse [19] provide syntax
checking and other visual feedback on typed in source code. A developer
takes this as granted and the syntax checking provided by the Repleo IDE
may, at first glance, not be considered to be anything special. And for a
developer this is exactly what is required, a simple and (mostly) intuitive
development environment.

The Repleo IDE is an extension of the ASF+SDF Meta Environment [20]. The
Meta Environment is intended for language development, source code
analysis and source code transformation. The main artifacts are the syntax
definition (module) and term files on a module that can be reduced ("parsed").
The Meta Environment contains useful features for module development and
term file reduction such as a visual syntax tree representation.

Repleo provides a complete module that provides a specialized Java syntax
module that allows the use of the Repleo instructions. Modules for a number
of other languages are included in the Repleo delivery as well. The Repleo
IDE is typically used to create (or edit) term files. These are named template
files in the Repleo context. While the Meta Environment supports creating and
editing term files, there is not much support or automation for the designer,
except for the inherent syntax checking. Especially when compared to a Java
(or other language) based IDE such as Eclipse that provides features such as
code completion and checking.

We recommend creating a reference implementation using a specialized
target language based IDE, and use these source code files as input for
template design.

An example of the Repleo IDE is shown in Figure 42.

The panels on the left side are related to the Repleo module that provides the
specialized Java syntax and are not used during template design. The panel
on the upper right side of the screen shows the template and provides editing
functionality. Java keywords, Repleo keywords and errors are highlighted.
The panel on the lower right, and in particular the Issues tab, shows any
syntax errors in the active template. In the example a syntax error is triggered
by a missing)-character. The description of the "parse error" contains
detailed information such as the line and column of the error.

97 (130)

Figure 42, Repleo IDE (ASF SDF Meta Environment)

The Repleo IDE provides a functional, though plain, environment to edit
template files. Syntax errors are immediately and clearly shown.

There are some usability remarks on the Repleo IDE.

• To design a template, the Repleo IDE / Meta Environment is started. Next
a specific Repleo module must be loaded, and from this module the actual
template files can be opened. From a Meta Environment perspective a
logical approach, but otherwise somewhat less intuitive.

• The syntax highlighting could be improved. Currently the Java and Repleo
instruction keywords are highlighted using the same color scheme. It
would be useful if the Repleo instructions are clearly distinct from the rest
of the source code.

• A number of warnings are shown in the Issues tab. Also, ambiguity errors
are reported, and the corresponding source code in the term file is shown
with a red font as text highlighting.

Most of these remarks are caused by the integration of Repleo on top of the
Meta Environment. The purpose of the Meta Environment is to create
modules (e.g. half of the visible panels in the environment are module
specific), while the purpose of Repleo is to create templates. The use of
Repleo instructions in the template files often causes ambiguities that are
solved inside the black box that is Repleo, but the Meta Environment is still
reporting these errors.

Solving these issues probably requires further customization of the Meta
Environment, which may not be a priority.

9.4.4.3 The Templates and Template Design

The usefulness of syntax checking during template design is illustrated by the
following experience.

98 (130)

As a preparation, a template file was created using a regular editor. Later,
when the Repleo environment became available, this template file was loaded
into the Repleo IDE and immediately a number of syntax errors were shown.
This caused some surprise as the template files were carefully prepared and
believed to be correct. After further inspection the indicated errors were found
to be caused by some missing semi-colons. Repleo discovered and
pinpointed an error during template design which otherwise would probably
only have been found through some less specific errors during compilation,
that is, during one of the last steps of the transformation process.

The design of the templates to generate the Java state machine
implementation for a SIP Service was based on a reference implementation
created outside of Repleo using the Eclipse based SDS 4.0 [18] [19]
development tool. SDS 4.0 contains the Eclipse set of Java Language
development features as well as IMS and SIP Service specific development,
packaging and test features.

The reference source code was developed not only to provide a base to start
template design on, but also to provide a baseline to compare the generated
implementation with.

The structure of the Repleo generation is hierarchical or list based, in which a
list could be seen as a shallow but broad tree, due to the format of the data
input file. The structure of the reference implementation is by its state
machine based nature hierarchical. During design of the reference
implementation no changes were needed to the standard State Pattern
design. The only real effort required to simplify the transition from the
reference implementation to a template was not to optimize the source code
as this would break the hierarchical structure.

Repleo drop 0.2.3 provides a small but sufficient instruction set that allows
substitution, conditional selection, and iteration. In addition, there are some
string manipulation functions.

The design methodology used to create the template files (from a reference
implementation) is represented by the following steps:

1 Locate structural identical files and combine these in a single template file.

The concrete states are a good example of structural identical files that
can (and must!) be implemented as a single template file.

2 Within a template file, locate structural identical code blocks and replace
these with a foreach instruction.

Examples of structural identical code blocks that were replaced by a
foreach instruction are the getter methods and state variables in the
context class.

3 Locate the dynamic expressions and declarations and replace these with
a substitution instruction.

The substitution instructions were used in combination with a manipulation
function to comply with the Java design rules in regard to the case of the
first character of a class name or parameter name.

Creating the templates from the Java state machine reference implementation
posed little difficulty. This was mainly due to the similar hierarchical structures
of the state machine implementation and the model.

99 (130)

Repleo operates through the use of placeholders (e.g. Repleo instructions)
and placement of these instructions defines the structure of the generated
source code. The structure of the input data file must be fixed. For example
Repleo cannot handle a dynamic depth of the input data

The template file with all Repleo instructions must be syntactical correct, even
if the template would always generate correct Java source code. The
fragment in Example 7 would cause an error. A similar construction

<% if guard == "" then %>
 if (true)
 {
<% else %>
 if (<% guard %>)
 {
<% fi %>
 // do something
 }
Example 7

The fragment could be rewritten as shown in Example 8 to be syntactical
correct.

if (<% if guard == "" then %>true<% else %><% guard %><% fi %>)
 {
 // do something
 }
Example 8

The following list contains observations on Repleo instructions that were
made during the Repleo investigation.

• Often, only a subset of items in a list was needed. This was implemented
by using a foreach instruction followed by a condition selection instruction.
A specialized foreach-when instruction was added by the Repleo
designer to simplify this.

• The <% else %> part of the condition selection instruction was
sometimes recognized by Repleo as the substitution instruction (<%
Expression %>). It was recommended to change the syntax of the
substitution instruction to, for example, <% subst Expression %>. A
different solution was implemented by the Repleo designer. A list of
keywords that cannot be used as a query was defined. It was observed
that this could limit the input data file design as these keywords can no
longer be used as elements.

• Two specialized statements were introduced (by the Repleo designer) to
check on the existence of input data elements: the exists(Query)
statement and the isEmpty(Query when Expression) statement.
Parsing the input data file is further discussed in chapter 9.4.4.4.

• When using the foreach instruction, the place of the current element may
be of importance. For example, the first element may need to generate an
if statement, while the following elements should generate else if
statements. Two new conditional selection instructions could be added.
The first, for example isFirst(), would evaluate to true if the current
element is the first element of the list, and the second, for example

100 (130)

isLast(), would evaluate to true if the current element is the last
element of the list.

• It was found that during template design some source code fragments are
used multiple times within a template. It could be useful to import
fragments or to refer to a fragment inside a template.

• Some template files could be complicated. The use of Repleo comments
could simplify the design. A comment instruction could be added, for
example <%% comment here %>, that does not generate source code.

Due to technical restrictions, the Repleo designer was unable to add
comments as a Repleo feature. As a work-around, regular Java
comments prefixed with the text REPLEO COMMENT are used instead in
the example templates referenced in Appendix A. See also the comment
in Example 9.

// REPLEO COMMENT: This is a Repleo comment.
Example 9

9.4.4.4 The APath Query Language

The APath Query Language (part of Repleo) is used from within Repleo
instructions to navigate and query the input data file. The query language was
found to be somewhat similar to a (simple version of) the XPath query
language [6].

The input data file is a hierarchical structure of lists and typed leaves. For the
Repleo transformation, and in particular as a result of the XML to ATerms
transformation, the leaves are always of type string.

A query consists of an optional root indicator and one or more location steps.
A location step is an ATerm list or leaf. Two specialized location steps
indicate the current location, or the parent location. The query is parsed from
the root list of the input data file if the root indicator is present, or from the
current location otherwise. A query can indicate an ATerm list, leaf or is
invalid.

For the Repleo transformation, the data input file resembles the hierarchical
structure of a state chart model. Parsing was performed through nested
foreach instructions. On the top level a foreach instruction looped through all
states in the model. For a specific state, a foreach instruction looped through
all transitions. For a specific transition, a foreach instruction looped through all
actions.

The foreach instruction limits the scope to the current sub tree. Subsequent
foreach instructions must be nested. Due to this constraint, it is not possible to
parse the structure of XMI documents. In a XMI document, information must
be retrieved by correlating elements from multiple (non-nested) sub trees.

The APath Query Language is used as an expression in the Repleo
instructions. The instructions are typically used for two purposes:

1 To replace a placeholder with an element from the input data.

The substitution instruction is used for this purpose.

101 (130)

2 To include or exclude blocks of source code in the template.

This is typically a combination of the foreach instructions to navigate to a
certain location in the input data file, followed by one or more conditional
selection instructions to decide on what code blocks should be included or
excluded.

A SIP Service may react on triggers from the network such as SIP Requests
or SIP Responses, but often the service performs does nothing, and just
returns the trigger to the SIP Container which then performs a default action.

This translates in template design to a default code block that should be
included if no actions are specified in the model.

The exists statement was added by the Repleo designer to check if input
date (e.g. actions) exists. Later, a more specialized exists statement was
added. The isEmpty statement operates over a list and allows an optional
conditional expression.

<%% loop over all states %>
<% foreach states/state do %>

 <%% enable code block for transitions with a specialized trigger %>
 <% foreach transitions/transition do %>
 <% if trigger == "doErrorResponse" then %>
 // some java code block handling the specific error response
 <% fi %>
 <% od %>

 <%% enable code block for transitions with a generic trigger %>
 <% foreach transitions/transition do %>
 <% if trigger == "doResponse" then %>
 // some java code block handling the generic response
 <% fi %>
 <% od %>

 <%% make sure a default code block is enabled if no generic triggers %>
 <%% are available in the model %>
 <% if isEmpty(transitions/transition when trigger == "doResponse") then %>
 // a default java code block handling the generic response
 <% fi %>

<% od %>
Example 10

The isEmpty statement was requested for the following (simplified) use
case. For a given state, a number of transitions are specified. Each transition
has a trigger. This trigger can be a specialized trigger such as an error
response, or a more general trigger such as "any" response. The generated
source code must always include a code block to handle a general trigger.
This use case is shown in Example 10.

9.4.4.5 The generated Source Code

The generation of source code is performed by the Repleo Engine. The
Repleo IDE and Repleo Engine are separate entities. The Repleo Engine is
accessed as a command line application.

The command line application (one for each language) accepts parameters to
specify the input and output locations, and set various options.

102 (130)

Errors during generation (for example due to an incompatible data input file)
are reported on the console. It was found that for some error conditions, the
generated source code still contained Repleo instructions. For a production
environment, the generated source code must be "correct", or errors must be
generated.

From a process or automatic generation street perspective, it would be nice if
key/value pairs could be set as command line parameters that can be
accessed from the substitution instruction inside templates. This feature could
be used to insert fields such as generation date/time, name of engineer, name
of the project for which the source code is generated, etc.

Generation of the source code is very fast. The SIP Service source code was
generated within 0.2 seconds on an AMD Athlon 2400+ based personal
computer.

9.5 Quality

The quality of the generated source code was measured during the project by
means of testing. Using the Automatic Testing Framework provided by the
Service Design Studio (SDS) 4.0 a testing script was created and executed
both on the reference implementation and the generated source code. Both
the reference implementation and the generated source code were first
manually packaged and deployed on the simulated IMS environment provided
by SDS.

All test cases were passed for both the reference implementation and the
generated source code. It was concluded that the behavior is in line with the
expectations.

9.6 Conclusion and Remarks

It was found to be relative easy to create a transformation based on Repleo.
The core functionality of Repleo, a syntax safe template engine, works
correctly and creating templates is intuitive.

Repleo should be seen as part of a larger process that also involves pre and
post-processing.

Pre-processing is required due to limitations of the meta language, and in
particular the inability to execute complex queries. This is a design choice of
Repleo to reduce the complexity of templates.

Post-processing is required due to limitations of the model. Post-processing
involves completing those parts of the generated source code that could not
be generated automatically.

The design of the generated source code is based on the classic State
pattern. This is sufficient as a testable proof of concept. A production level
implementation would require a more advanced design and thus more
complex templates. No obvious obstacles were identified in regard to the
Repleo instruction set or template construction that would prevent such a
design.

103 (130)

Template design was performed using a complete reference implementation
as base. The Repleo IDE is constructed on top of the ASF+SDF environment
and as such is not primarily intended as a language IDE. Syntax errors were
clearly shown. The limited set of Repleo instructions was sufficient to
construct reasonably complex templates. Initially, some limitations were found
in regard to conditional checking for non existing fields. This feature was
included in newer Repleo releases.

The Repleo Generation suffers, seen from a developer's perspective, from a
number of limitations. Java comments are lost and the generated Java source
code misses whitespace information. While the missing whitespace
information could be resolved by including a Java pretty printer as a post
process, the dropping of Java comments is more critical. Java comments may
contain important (post processing) instructions or could contain copyright
information that must be present for legal reasons.

Testing for syntax errors was not performed exhaustively. Testing for typing
errors was limited as the input data file was considered to only contain fields
typed as String. It is assumed all syntax errors made during template design
were identified by the Repleo IDE as "error free" templates consistently
generated source code that compiled without errors when using a correct data
input file.

104 (130)

10 SIP Semantics

10.1 Introduction

The purpose of the IMS Service Model is to describe an IMS Service. While
this IMS Service is based on SIP, we observed that the amount of SIP related
semantic information in the model is limited.

This was most obvious for the specification of the action (the effect), event
(the trigger) and the guard for a transition between states. (These terms are
defined by the UML State Machine formalism [7].)

For example, SIP related actions cannot be specified in a structured way in
the model. And events are only identified through the use of arbitrary
keywords.

This chapter investigates if and how SIP semantic information can be added
to the model.

10.2 Background

The State Chart model as used to describe SIP services is designed to use
keywords to indicate the event. While these keywords are clearly specified in
the design guidelines as stated in chapter 6.3, they are introduced as an
arbitrary choice. An action is described as a descriptive text, which may make
sense for a human designer but is useless for any automated task.

It was believed that by adding SIP Semantics to the model, a number of
improvements could be realized:

• The instance of the State Chart model as designed by the architect would
be more in line with the SIP context.

• The design of the templates used for generation could become more
structured and more advanced.

• The behavior of the service described in the model can be validated
against the SIP specification.

Note that validation is outside the context of this thesis and is not further
analyzed.

Two areas were identified to add additional semantic information to the
model.

• By extending the base classes for actions and events with a number of
stereotypes (see [7]).

• By adding an interface corresponding with SIP events and SIP actions.
Actions and events can then map their operations to these interfaces.

The model was extended with both the stereotypes and an interface, although
only for the events and for a reduced scope, as the purpose was for analysis
and not to generate a complete production quality model.

105 (130)

Using this updated metamodel, the complete Repleo transformation was
redesigned to analyze the impact of the added SIP semantics.

This chapter starts with a description of the SIP protocol and discusses the
layered interface of SIP messages. Next, the updated State Chart model, and
the impact for the architect is described. Finally, the impact on the state
machine implementation structure and the Repleo templates is discussed.

10.3 Layered SIP Interface

The SIP protocol is based around SIP Messages. Other events are also part
of SIP, such as time events or WEB Services, but these are not considered
part of the scope of the analysis. SIP Messages fall in two categories: SIP
Request Messages and SIP Response Messages. Both categories are further
defined by properties such as the type of message and an initial or
subsequent flag. Each received event is fully specified. For example an Initial
SIP Request with method INVITE or a SIP Response with status BUSY. The
SIP specification [11] defines a number of terms such as Final Responses
that describe a group of SIP Messages.

The JSR-116 SIP Container [12] provides an interface towards SIP
Applications. This interface, for SIP Responses, is shown in Table 5. A SIP
Application may implement all, some or none of these methods. The SIP
Container will trigger the most specific method first and continues with more
generic methods until an implemented method is encountered. If no methods
are implemented a default implementation is executed.

JSR-116 Interface Method Description
doProvisionalResponse For handling of 1xx SIP Response messages.
doSuccessResponse For handling of 2xx SIP Response messages.
doRedirectResponse For handling of 3xx SIP Response messages.
doErrorResponse For handling of 4xx, 5xx and 6xx SIP Response messages.
doResponse For handling of SIP Response messages.
service For handling of SIP Response and SIP Request messages.
Table 5, JSR-116 Interface for SIP Responses (partial)

Both the SIP protocol as the SIP Container use a layered interface with a fall-
through mechanism in which more specific methods are triggered first. In
addition, the SIP Application does not have to provide any implementation for
events. If no event is implemented a default implementation is executed.

10.4 Enhanced State Chart Model

For the SCE Transformation and the Repleo Transformation, the metamodel
uses a rudimentary set of SIP Semantic information. SIP Requests and SIP
Responses are recognized through the use of keywords (see Table 6).
Further specification of the type of SIP Message is handled through the use of
guards. These guards are defined by using some pseudo language or Java
language which is easy to use in transformations, but does not really have
any semantic value.

Keyword SIP Semantic
SIP_REQUEST The event is a SIP Request message.
SIP_RESPONSE The event is a SIP Response message.
Table 6, SCE and Repleo Transformation - Keywords

106 (130)

The metamodel was enriched through the use of Stereo Types and
introduction of an interface.

10.4.1 Stereotypes

Based on the SIP specification a number of stereotypes can be defined for
the CallAction and CallEvent objects. The stereotypes indicate the type of
Message (request or response), the type or a SIP Request and the status of a
SIP Response. Further, stereotypes exist to indicate initial and subsequent
messages.

Stereotypes can stack. For example, the stereotypes <<SIP Request
INVITE>> and <<SIP Initial Message>> could be applied to a
CallEvent to indicate an initial SIP Request message with method INVITE
event occurred.

The list of stereotypes includes generalized events. Examples are the
stereotypes <<SIP Request>> and <<SIP Response>>. The idea behind
generalized stereotypes is mainly usability. To indicate a specific event is
triggered by "any" received SIP Request, a single <<SIP Request>> could
be applied, instead of having to apply all specialized stereotypes.

Stereotype with CallEvent as base class are listed in Table 7.

Stereotype SIP Semantic
<<SIP Request>> The event is a SIP Request message.
<<SIP Request INVITE>> The event is a SIP INVITE Request message.
<<SIP Request REGISTER>> The event is a SIP REGISTER Request message.
<<SIP Request ACK>> The event is a SIP ACK Request message.
<<SIP Request CANCEL>> The event is a SIP CANCEL Request message.
<<SIP Request BYE>> The event is a SIP BYE Request message.
<<SIP Request OPTIONS>> The event is a SIP OPTIONS Request message.
<<SIP Request PRACK>> The event is a SIP PRACK Request message.
<<SIP Request SUBSCRIBE>> The event is a SIP SUBSCRIBE Request message.
<<SIP Request NOTIFY>> The event is a SIP NOTIFY Request message.
<<SIP Request MESSAGE>> The event is a SIP MESSAGE Request message.
<<SIP Request INFO>> The event is a SIP INFO Request message.
<<SIP Response>> The event is a SIP Response message.
<<SIP Response Provisional>> The event is a SIP Provisional Response message.
<<SIP Response Successful>> The event is a SIP Successful Response message.
<<SIP Response Redirection>> The event is a SIP Redirection Response message.
<<SIP Response Request Failure>> The event is a SIP Request Failure Response message.
<<SIP Response Server Failure>> The event is a SIP Server Failure Response message.
<<SIP Response Global Failure>> The event is a SIP Global Failure Response message.
<<SIP Response Final>> The event is a SIP Final Response message.
<<SIP Response Error>> The event is a SIP Error Response message.
<<SIP Initial Message>> The event is a SIP Initial message.
<<SIP Subsequent Message>> The event is a SIP Subsequent message.
<<Timer Timeout>> The event is a SIP Timeout message.
Table 7, Stereotypes for CallEvent

The stereotype <<Timer Timeout>> is included to demonstrate that
stereotypes are not limited to message events but can be used for the full
range of SIP events.

107 (130)

Stereotypes with CallAction as base class are listed in Table 8. These
stereotypes represent the type of actions that can be taken on the SIP chain.
These actions are similar to the events listed in Table 7, with the addition of
Proxy actions and an indication whether an action involves the upstream or
downstream call leg.

Stereotype SIP Semantic
<<Send SIP Request>> A SIP Request message is send.
<<Send SIP Request INVITE>> A SIP INVITE Request message is send
<<Send SIP Request REGISTER>> A SIP REGISTER Request message is send
<<Send SIP Request ACK>> A SIP Request ACK message is send
<<Send SIP Request CANCEL>> A SIP CANCEL Request message is send
<<Send SIP Request BYE>> A SIP BYE Request message is send
<<Send SIP Request OPTIONS>> A SIP OPTIOS Request message is send
<<Send SIP Request PRACK>> A SIP PRACK Request message is send
<<Send SIP Request SUBSCRIBE>> A SIP SUBSCRIBE Request message is send
<<Send SIP Request NOTIFY>> A SIP NOTIFY Request message is send
<<Send SIP Request MESSAGE>> A SIP MESSAGE Request message is send
<<Send SIP Request INFO>> A SIP INFO Request message is send
<<Send SIP Response>> A SIP Request message is send.
<<Send SIP Response Provisional>> A SIP Request message is send.
<<Send SIP Response Successful>> A SIP Request message is send.
<<Send SIP Response Redirection>> A SIP Request message is send.
<<Send SIP Response Request Failure>> A SIP Request message is send.
<<Send SIP Response Server Failure>> A SIP Request message is send.
<<Send SIP Response Global Failure>> A SIP Request message is send.
<<Send SIP Response Final>> A SIP Request message is send.
<<Send SIP Response Error>> A SIP Request message is send.
<<Send Upstream>> The SIP Message is send upstream.
<<Send Downstream>> The SIP Message is send downstream.
<<Proxy Proxy>> A SIP message is proxied on the proxy.
<<Proxy Forward>> A SIP message is forwarded on the proxy.
<<Proxy Cancel>> The sessions associated with a proxy are cancelled.
<<Timer Set Timer>> A SIP Timer is set.
<<SIP Do Nothing>> The action is of type "Do Nothing".
<<SIP Not Implemented>> The action is of type "Not Implemented".
<<Non SIP>> The action does not involve SIP.
Table 8, Stereotypes for CallAction

It was observed that the use of Stereotypes allows describing the type of SIP
events in more detail. Using Stereotypes has no effect on the structure of the
model.

10.4.2 State Interface

A Class Diagram is added to the UML Model representing the SIP Service.
This Class Diagram contains a specification of an <<interface>>
SipStateMachine class (and supporting classes). While "SipStateMachine" is
just an arbitrary name, the methods defined in the interface are carefully
chosen to represent a range of SIP events. The Class Diagram is shown in
Figure 43.

108 (130)

Figure 43, Class Diagram

The SIP semantics linked to the methods of the interface are shown in Table
9. By mapping each trigger used in the State Chart model to a method
defined on the SipStateMachine interface the SIP semantic are added to the
State Chart model.

<<interface>> SipStateMachine SIP Semantic
void doRequest(SipServletRequest req) The event is a SIP Request message.
void doInitialRequest(SipServletRequest req) The event is an Initial SIP Request

message.
void doSubsequentRequest(SipServletRequest req) The event is a Subsequent SIP

Request message.
void doResponse(SipServletResponse resp) The event is a SIP Response

message.
void doProvisionalResponse(SipServletResponse resp) The event is a SIP Provisional

Response message.
void doSuccessResponse(SipServletResponse resp) The event is a SIP Successful

Response message.
void doRedirectResponse(SipServletResponse resp) The event is a SIP Redirection

Response message.
void doErrorResponse(SipServletResponse resp) The event is a SIP Error Response

message.
void doFinalResponse(SipServletResponse resp) The event is a SIP Final Response

message.
void timeout(ServletTimer timer) The event is a SIP Timeout message.
Table 9, SIP Semantics for <<interface>> SipStateMachine

The interface described in Table 9 does not provide methods for the most
specific types of SIP Messages as specified in the SIP [11] and related
specifications [21]. Ideally, all possible SIP Messages should be defined by
this interface. This would fully define the type of event without having to parse
additional properties such as a guard. It was decided to leave some level of
abstraction as a complete interface would become too large and complex,
and would have to be updated each time new SIP events are defined.

The interface is shown in Java syntax and is similar to the interface provided
by the JSR-116 SIP Container. This should not be a surprise as both
interfaces are designed to represent SIP functionality.

Although not shown in the SipStateMachine interface, the use of a "do
nothing" action is also introduced. This is from an interface perspective
defined by not implementing any method. From a State Chart model
perspective this is defined by not drawing a transition in the model. The
behavior of a "do nothing" actions is exactly as the name suggests. No action
is performed and the control of the SIP dialog is returned to the SIP Container
which will perform a default action.

109 (130)

It was observed that the use of an interface also allows describing the type of
SIP events in more detail as this is inferred from the well defined interface. In
addition, the structure of the model is impacted.

10.5 State Chart Model Design

The SIP Semantics are reflected through the use of transitions. All transitions
defined in the model are now mapped to the interface. Seen from the UML
formalism this means that the operation of a callevent of a transition is
mapped to a method of the SipStateMachine interface.

The generic transitions of type SIP Request or SIP Response are still
supported, but the use of specific methods is advised. In the end, it is the
choice of the architect how to design the service in the model.

The use of an overlapping interface is reflected in the use of overlapping
transitions. The design guideline from 6.3 disallowing overlapping transitions
is dropped. The choice between overlapping transitions is now decided
through priorities. Transitions with the same SIP Response type and
overlapping guards are still disallowed as these cannot be prioritized.

SIP Response Status Code SIP Response Type
1xx 2xx 3xx 4xx 5xx 6xx

Priority

Provisional Response 1
Successful Response 1
Redirection Response 1
Error Response 2
Final Response 3
SIP Response 4
Table 10, Mapping SIP Response Types and Status Codes

The State Diagram model may define overlapping transitions mapped to the
various SIP Response methods. As a rule more specialized SIP Response
methods have priority over more generalized methods. This is visualized by
the Priority column in Table 10.

In addition to the mapping to the model interface, a transition can still define a
guard. The guard, for SIP Response events, is validated against the SIP
Response status code. As a rule, a SIP Response event for a certain SIP
Response Type with a guard specified has priority over an event with the
same type but with no guard set.

Use of these new design guidelines not only defines detailed SIP information
in the model, but also provides a richer tool set for the architect. The State
Chart fragments shown in Figure 44 and Figure 45 are identical in behavior
but differ in description.

110 (130)

STATE A

SIPRESPONSE [100 <= status && status < 200] / "do nothing"

STATE B

SIPRESPONSE [200 < status && status == 486] / Another Action

SIPRESPONSE [200 < status && status != 486] / Some Action

STATE C

Figure 44, State Chart Fragment 1

Fragment 1 contains three transitions on SIP Response level in which the
guards are carefully constructed to prevent overlap. Even though the
transition going back to STATE A does nothing, it is still present in the model
to prevent a gap of the covered SIP Response domain.

STATE A

STATE B

doErrorResponse [status == 486] / Another Action

doFinalResponse / Some Action

STATE C

Figure 45, State Chart Fragment 2

Fragment 2 describes the same behavior with a reduced number of
transitions. The transition from STATE A to STATE B has no guard set
because the transition from STATE A to STATE C is more specific and has a
higher priority. The "do nothing" transition is implied by not specifying a
transition for the Provisional SIP Response domain. It could be a design
choice to disallow implied transitions. In this case a transition mapped to the
generic doResponse method and no guard could be added as a loopback to
STATE A.

10.6 Java State Machine Structure and Generation

The use of an interface with prioritized methods impacts the design of the
State Machine implementation. Two directions were identified to correct this.

• Updating the State Machine structure as described in chapter 8.8.2.

This involves changing the State interface to conform to the
SipStateMachine interface as used in the model, as well as adding logic to
the SipStateMachine context class to map incoming events to the correct
interface methods.

• Updating the concrete state implementations as described in chapter
 8.8.2.

This involves adding logic to all concrete state implementations to handle
the various methods as defined by the SipStateMachine interface.

111 (130)

The logical choice from a technical point of view would be the first option. This
centralizes the logic to handle incoming events in a single class. In addition,
the state machine will still be based on a single interface, instead of some mix
of two interfaces.

It was decided however to change the structure of the concrete states to
handle the updated model. The purpose of this choice was to test whether the
more complex concrete state could still be generated through Repleo.

This resulted in Repleo Templates that were heavy on iteration and
conditional selection instructions. This resulted in some observations of the
Repleo instruction set. The template files become complex, so some kind of
Repleo comments would be useful. To insert a default code block the
conditional selection instruction must check on the non existence of some
data element. These instructions were initially not available and where
requested to be added to the Repleo instruction set.

In the end it posed little difficulty to create a template file for the more complex
concrete state. While the template file looks complex due to the large number
of Repleo instructions, the design remains structured.

We were able to generate the Java boilerplate source code (see chapter 11)
without any problems or errors. After manually implementing the action
placeholders, the end to end test case was successfully executed

10.7 Conclusion and Remarks

The purpose of this analysis was to add additional SIP Semantics to the
model. This information was expected to be useful for model design and
template design for generation.

Two technologies were identified (Stereotypes and an Interface) and both can
be used to add SIP Semantic information to the model. Stereotypes only add
a description to the model while an interface impacts the structure. As the
change to the structure of the model was seen as positive (see chapter 10.5)
further analysis of SIP semantics was based on adding an interface.

A SIP Interface was introduced and used to map SIP events. Ideally, the SIP
Interface used in the model should match the interface provided by the
implementation structure. This reduces the complexity of the transformation
as only a mapping between both interfaces should be generated.

As a design choice we used the SIP Interface in the model and added logic to
the transformation to generate an implementation based on the regular SIP
Container SIP Interface. We were able to perform this more complex
transformation using Repleo. The resulting implementation passed the test
cases.

It may be possible to introduce an external library of SIP actions accessible
through an interface. This external library should contain implementations for
the common SIP actions such as proxy, respond, or forward. This would allow
automatic generation of implementations for actions, instead of placing
descriptions in comments. This external library could be extended to include
additional functionality.

In addition to an external library for SIP actions, libraries and corresponding
interfaces could be used to include behavior outside of the standard SIP
context.

112 (130)

11 Design Process

11.1 Introduction

The generation of source code based on some model is a single step in a
larger process. This chapter describes the end to end design process for the
SCE and Repleo based transformations. The scope of the process is limited
to the actual actors, artifacts and transformation steps needed for the
transformations.

This chapter uses the term boilerplate implementation to indicate an
implementation (e.g. source code) which may be syntactical correct but is
incomplete in the sense that it may cause errors or incorrect behavior when
being deployed and executed. A further processing step is required to
generate a deployable implementation which is a complete and deployable
implementation.

The incomplete implementation is a result of limitations of the model. In
particular, the information contained in the description of actions related to
transitions is insufficient for automatic generation of source code
implementing said action.

The total of the steps performed for the generation of source code could be
referred to as an automatic street or transformation street.

11.2 SCE Design Process

The design process to create or generate a deployable implementation of a
service specified as a list of requirements using SCE transformation involves
three steps.

1 Create a State Chart model that complies with the service requirements.

2 Generate a boilerplate implementation from the model.

3 Generate a deployable implementation by completing the boilerplate
implementation.

These steps are discussed in the following chapters.

113 (130)

Requirements

State Chart Model

Service Template

Repository

SCE context

XSLT transformation

store /
retrieve

create

add constraints

deploy

Application Server
(SCE Engine)

update

XSLT

Figure 46, SCE Design Process

The model in Figure 46 describes the end to end design process for the SCE
transformation. This figure shows the artifacts, nodes such as an Application
Server or a Repository and tasks represented by arrows. An arrow with a
dotted line indicates a task performed by a (human) actor. An arrow with a
regular line indicates a task that is automated.

11.2.1 Create State Chart Model

The Requirements document represents the description of a service and is
created outside of the described design process. The format is typical a
textual description.

An architect creates the State Chart model based on the requirements
document. The State Chart represents the service modeled as a state chart
diagram. It is assumed the State Chart is created and updated using a
specialized tool (e.g. a UML editor) that can export the state chart diagram in
a well defined electronic format such as XMI.

The State Chart model is considered to be leading in design. It is the artifact
that is considered to be up to date and which is stored in a repository. The
generation is based on this artifact.

The state chart does not contain SCE specific bindings. That is, the binding of
service constraints on Service Element and Composition Template level
cannot be added during creation of the State Chart in the context of a UML
editor as the required information for these bindings is only available in the
SCE context. While the model may not contain the SCE specific binding for
the actions, the semantics are still included through the use of a textual
description (e.g. some kind of pseudo code).

A compliant XMI document does not contain tool specific information such as
the location of diagrams. The document in which the State Chart is stored in
the repository is typically a tool specific format. This introduces limitations
when transforming back from a SCE Service Template into a XMI document.

114 (130)

11.2.2 Generate Boilerplate Implementation

The SCE Transformation transform a State Chart model represented as a
XMI document into boilerplate source code. The source code is in a XML
based format supported by the SCE IDE.

The transformation is an automated process. The transformation is based on
an XSLT document. These XSLT documents are static and highly specific for
this particular transformation.

Developing these transformation specifications introduces a new actor (e.g. a
tool engineer) that combines aspects from an architect as well as a designer.

While the generated SCE Template describes the same service as specified
in the State Chart model it is assumed a transformation back from the XML
document into a XMI document will not be possible. For one, the SCE
Template structure may be difficult to parse. Also, the original XMI document
contains quite a bit of overhead that is lost during the transformation.

While the generated XML document that represents a syntactical valid
Service Template which could be deployed on the SCE Engine, it misses the
SCE specific binding.

11.2.3 Generate Deployable Implementation

The generation of a deployable SCE Template is a manual task performed by
a designer using the SCE IDE. The task involves replacing the service
descriptions that are generated as a descriptive text with actual service
constraints. These SCE specific binding depends on the configuration of the
SCE IDE and Engine. The SCE IDE provides features to view and select
available constraints.

From a technical point of view, the constraints as such could be added to the
State Chart model, and with this information available, the transformation
could immediately generate a deployable SCE Template. However, the UML
editor has no knowledge of the exact syntax of constraints, nor of the
available constraints. Adding SCE specific binding immediately from the UML
editor would require some kind of mechanism to lookup available constraints
from the SCE context.

The boilerplate SCE Template represents a state machine implementation.
While the structure is strongly hierarchical and not very complex, the size of a
generated SCE Template, especially for larger State Charts, can become very
large. The SCE IDE is based on a visual representation of the SCE Template
and larger models are not completely visible. This not only introduces a
usability penalty, but also increases the risk for errors due to the reduced
overview.

The deployment, performed by the deployer, of Service Templates is not
further discussed in this thesis.

11.2.4 SCE Design Process Limitations

The SCE Transformation design process as discussed in the previous
chapters has a number of limitations.

• The State Chart model does not contain SCE specific bindings. The
service constraints are only known from within the SCE context.

115 (130)

• Adding these service constraints using the SCE IDE is not intuitive. The
generated boilerplate SCE Template is too large and complex.

• Information regarding the added service constraints is not stored in the
repository.

Two directions were identified to reduce these limitations.

First, the UML editor could be customized to allow access to the SCE context.
For example, a plug-in could be created that can access the SCE database
and provides view and select functionality similar to the SCE IDE. This solves
all three limitations but requires adaptation of the UML editor.

Secondly, the SCE IDE could be enhanced by adding some UML editing
functionality. The UML State Chart could be loaded into the SCE IDE and
represented as a State Chart Diagram or State Chart Table. The service
constraints are then added to the model as the SCE specific binding is
available from within the SCE context. A Service Template is then generated
from the updated model. This solves problem 1 and 2.

11.3 Repleo Design Process

The design process to create or generate a deployable implementation of a
service as specified as a list of requirements using Repleo generation is
similar to the SCE transformation design process in that it involves three
similar steps.

1 Create a State Chart model that complies with the service requirements.

2 Generate a boilerplate implementation from the model.

3 Generate a deployable implementation by completing the boilerplate
implementation.

Besides the different scope (the Repleo transformation generates Java
source code instead of a SCE Template) there are also differences in the
reason to (also) first generate a boilerplate implementation or in the tasks
assigned to the actors.

The steps are discussed in the following chapters.

XML

Requirements Intermediate XML
Document

Repository

Repleo context

XSLT Transformation

store /
retrieve

create

update

XML to ATerms
transformation

XSLT Repleo
Templates

ATerms

Intermediate Aterms
Document

Repleo Generation
Java

Source
Code

Boilerplate Java
Source Code

design

Java
Source
Code

Deployable Java
Source Code

deploy

SIP Application
Server

State Chart Model

Figure 47, Repleo Design Process

116 (130)

The model in Figure 47 describes the end to end design process for the
Repleo transformation. The rectangle indicating the Repleo Context is shown
for the Repleo Generation transformation step. The pre-processing steps
(XSLT Transformation and XML 2 ATerms transformation) could be
considered to be part of the Repleo Context as well.

11.3.1 Create State Chart Model

As with the SCE Transformation the State Chart model is created by the
architect based on the requirements and is considered to be the leading
design document. The generation is based on this model.

The inability to include SCE specific bindings introduced an extra
transformation step from a boilerplate implementation to a deployable
implementation. As the target implementation is Java source code the service
constraints are not in the scope. However, there is still a problem describing
the service behavior in the model.

For the SCE transformation, the service constraints operated as an interface
to a (not further described) library. The task of the designer was only to
provide a mapping from a descriptive text to a constraint (e.g. a library
reference) already available in the SCE context.

Such a library is not (readily) available for a Java implementation. As such the
State Chart model does not contain (textual descriptions of) service
constraints, but rather a textual description of the required action itself (or a
reference for this action to some companion design document) to be used by
the designer later in the process.

11.3.2 Generate Boilerplate Implementation

Due to the expected input data format of Repleo, some pre-processing steps
are required. From a design process view these pre-processing steps and the
Repleo generation step can be seen as a single transformation step.

The Repleo Transformation transforms a State Chart model represented as a
XMI document into boilerplate source code. The source code is valid Java
language source code.

As with the SCE design process, the transformation is an automated process.
The XSLT and Repleo Template documents that specify the transformation
are static and highly specific for this particular transformation. Again, a
dedicated actor is assumed for development of these documents.

The generated Java source code is syntactical correct and could even
successfully be deployed on an Application Server. But as it lacks the
implementation of the actions the behavior would not be in line with the
requirements.

11.3.3 Generate Deployable Implementation

The generated boilerplate Java implementation is incomplete. The
implementations of the actions are missing. Based on the description in the
State Chart model, the generation does include comments, at the correct
places in the generated source code, describing the action to be performed.

117 (130)

For the SCE transformation, the developer only had to include a mapping
using the SCE IDE, for the Repleo transformation, the actual implementation
has to be developed. This would typical require a full Java based IDE such as
the SDS platform [18].

In contrast with the SCE transformation in which (the structure of) the
generated boilerplate implementation is hardly changed, it is expected the
generated Java source code is primarily used by the designer as a template
to base the deployment implementation on.

Figure 48, SDS 4.0 Environment with Generated Source Code

The image in Figure 48 shows a screenshot of the SDS 4.0 design
environment with a fragment of generated source code visible. The comments
with a description of the action are clearly visible. A designer needs to replace
these comments with an actual implementation

The deployment, performed by the deployer is not further discussed in this
thesis.

11.3.4 Repleo Design Process Limitations

The Repleo Transformation design process as discussed in the previous
chapters has a number of limitations.

• An additional development step is needed due to limitations in the model.

• Development on the boilerplate implementation is not stored in the
repository.

Different approaches are possible to tackle these problems.

118 (130)

• A secondary repository could be used to store the deployable
implementation together with a framework to combine newer boilerplate
implementations with stored deployable implementations.

• Similar to the SCE transformation the implementation of the actions could
be abstracted as a library with an interface that can be included in the
State Chart model. (See also chapter 10.)

• Enhance the State Chart model through the use of pseudo code from
which Java source code can be generated, or directly use Java source
code in the model. This would require a specialized combined Model and
Source Code design environment.

It is fairly easy to setup a transformation from a State Chart model into a
boilerplate Java implementation that can be used as a template by a
designer. However, using the model as the main design artifact poses both
technical as process difficulties.

119 (130)

12 Conclusion and Remarks

12.1 Introduction

This chapter provides conclusions on the investigation in general and should
be seen in addition to the SCE Transformation, Repleo Transformation and
SIP Semantics specific conclusions in chapter 7.5, chapter 9.6 and chapter
 10.7.

12.2 Conclusions

The question whether support for state machines can be provided in SCE, as
stated in the problem description in chapter 2.5 is partially answered.

We demonstrated a Composition Template design that utilizes a state
machine structure. Although the behavior of the Composition Template could
not be verified, we believe a state machine structure can be designed using
the SCE DSL.

However, the Composition Template cannot be executed due to not
implemented features in the SCE Engine. We note that the implementation of
these missing features may be technically challenging. In addition, the lack of
event handling in SCE would prevent deployment of such a Composition
Template in a production environment.

As an alternative, support for state machines was investigated for JSR-116
based SIP Applications.

In this investigation we demonstrated, with the Repleo State Machine
Transformation, an end to end transformation from a UML State Chart
Diagram into deployable Java source code that had the same behavior as the
reference Java source code implementation.

However, a number of limitations were identified in the transformation and are
listed below.

• The behavior of the IMS Service is not fully represented in the IMS Model.
The actions that are part of the IMS Service are difficult to describe, with
regard to automatic generation. A manual design step was required to
generate Deployable Java Source Code.

• Theoretical, the model should be implementation independent. However,
this adds to the complexity of the transformation as additional
transformation steps from a neutral pseudo language into the
implementation language are needed.

• The transformation process itself is inflexible. Any change to the structure
of the generated source code requires rework on the transformation
process.

• The model does not reflect any adaptation made to the generated source
code after the transformation. In effect, these adaptations are lost during
following transformations.

• The design of the Java State Machine implementation is based on the
standard State Pattern. This design is insufficient for a production level

120 (130)

implementation. The State Pattern structure is not optimal for an
Application Server environment, and features such as synchronization or
exception handling are missing. We estimate that the development of
such a reference production level implementation itself is a major
undertaking.

To address these issues, a number of future research topics are
recommended in chapter 12.4.

Due to the introduction of the Engineering Assignment, the questions on the
SCE service model and Component Frameworks, as stated in the Problem
Description, are only partially answered. The SCE Service Model is described
in chapter 4. Component Frameworks as such are not investigated. The use
of an external library referenced through an interface from within the model,
as discussed in chapter 10.7, could be considered to be an alternative
component framework.

12.3 Remarks

A transformation from a model into an implementation is in itself insufficient to
reach the goal of more flexibility and faster Time To Market as stated in the
problem description in chapter 2.5.

• In addition to a (technical) transformation extensive work is needed on the
specification of an IMS metamodel, choice and customization of tooling
and process.

• While transformation adds flexibility as it allows changes in the IMS Model
to automatically propagate into the implementation, it also reduces
flexibility as the structure of the implementation becomes static. The
transformation street itself is inflexible.

Due to the overhead to setup a transformation street, it only makes sense for
generation of a larger number of similar IMS Services.

Adaptation of a full Model Driven Engineering process for software
development has a large impact on an existing design process. Tooling,
processes, repositories, documentation, roles are all affected.

We see a practical use for transformations though. Boilerplate source code
generation itself, without the goal of incorporating frequently changing models
may already be valuable for development.

12.4 Future Work

12.4.1 Investigate an IMS Metamodel

The behavior of the IMS Service is not fully represented in the IMS Model. In
particular, the actions that are part of the IMS Service are difficult to describe.

Chapter 10 describes the use of an Interface to represent SIP events. Such
an Interface could also be used to reference actions that are provided in an
external library.

• Can a library and interface be created that implement a set of standard
SIP actions such as proxy, send reply, invite, or to operate as a B2BUA?

121 (130)

• What kind of non SIP actions can be identified? Relevant areas could be
accessing subscriber data, interfacing with customer backend systems, or
utilizing web services.

• What kind of framework should be used for these libraries? Consider
design, process, tooling, deployment, and maintenance issues.

12.4.2 Investigate a SIP State Machine Framework

The Java State Machine implementation used in this thesis is based on the
standard State Pattern. This design is insufficient for a production level
implementation.

• Investigate a SIP State Machine Framework. What are the requirements
for such a framework? What are the non functional requirements for such
a framework such as performance, stability, or testability?

• Should such a framework be designed in house or are third party products
available?

• Is the structure usable as a generation target?

12.4.3 Investigate the Setup of a Transformation Street

The transformation street for the Repleo State Machine Transformation, as
described in chapter 11, includes several transformation steps and
technologies.

• Investigate the setup of a transformation street for a professional design
environment in which IMS Services are developed.

• Identify the requirements for such an environment. Consider both
technical and process related requirements.

• What kinds of tools are needed? Are these available from third party
vendors? Is a customization needed?

• Implement a prototype of said transformation street.

• Does the existing design process need to be changed? Are roles of
stakeholders changed or are new roles required?

• How flexible is the transformation street? What tools or processes are
available to assist with design of the transformation street?

12.4.4 Validation

In this thesis an IMS Model was transformed into an executable
implementation. The model could also be used for validation of the IMS
Service.

• Investigate what kind of validation can be performed based on a model of
an IMS Service?

• Does the IMS Model need to be extended to perform validation?

Preliminary investigation suggests validation could be performed on the
model itself.

122 (130)

• Properties of fields such as the SIP Request Method type could be
validated.

• The behavior the IMS (State Chart) Model could be compared to the State
Machine behavior implied by the SIP specification.

In addition, System Management sees possibilities for validation of the
runtime behavior of the IMS Service. The IMS Service is considered to be a
black box. Incoming and outgoing events are intercepted and validated
against the behavior described in the IMS Model.

123 (130)

13 Glossary

3GPP 3rd Generation Partnership Project

AN Access Network

AS Application Server

ASF Algebraic Specification Formalism

ATF Automatic Testing Framework

B2BUA Back-to-Back User Agent

BMUM Business Unit Multimedia

CAMEL Customized Applications for Mobile network Enhanced
Logic

CDIV Communication Diversion

CFB Call Forwarding on Busy

CN Core Network

CS Circuit Switched

DMMP Development Unit Multimedia Products

DSL Domain Specific Language

HTTP Hypertext Transfer Protocol

IDE Integrated Design Environment

IETF Internet Engineering Task Force

IFC Initial Filter Criteria

IMS IP Multimedia Subsystem

ISDN Integrated Service Data Network

J2EE Sun Java Enterprise Edition

Java EE Java Platform, Enterprise Edition

JCP Java Community Process

JSR Java Specification Request

MSA Multi Service Architecture

MSISDN Mobile Station Integrated Services Digital Network

MTEL Multimedia Telephony

MU Market Unit

124 (130)

NSM Network System Modeling

OMG Object Management Group

OSA Open Service Access

PDU Product Development Unit

PLCM Product Life Cycle Management

PLMN Public Land Mobile network

PSTN Public Switched Telephony Network

PUI Public User Identity

PSI Public Service Identity

QOS Quality of Service

PSTN Public Switched Telephony Network

RTP Real-Time Protocol

RTSP Real-Time Streaming Protocol

SAR Servlet Archives

SCE Service Composition Environment

SCS Service Capability Server

SDF Syntax Definition Formalism

SDP Service Description Protocol

SIP Session Initiation Protocol

TTM Time To Market

UAC User Agent Client

UAS User Agent Server

UE User Equipment

UML Unified Modeling Language

URI Uniform Resource Identifier

VAS Value Added Services

XMI XML Metadata Interchange

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

125 (130)

14 References
[1] Student Assignment, ETM/R/E-05:0059 Uen_PA7,

[2] Detailed Student Assignment, ETMWOBR, Uen_PA7

[3] TISPAN; Multimedia Telephony with PSTN/ISDN simulation services,
ETSI TS 181 002 V1.1.1

[4] TISPAN; PSTN/ISDN simulation devices: Communication Diversion
(CDIV); Protocol specification,
ETSI TS 183 004 v 1.2.1

[5] XSL Transformations (XSLT), Version 1.0,
W3C Recommendation 16 November 1999,
World Wide Web Consortium,
http://www.w3.org/TR/xslts

[6] XML Path Language (XPath), Version 1.0,
W3C Recommendation 16 November 1999,
World Wide Web Consortium,
http://www.w3.org/TR/xpath

[7] OMG Unified Modeling Language, Specification,
Version 1.4, September 2001,
Object Management Group,
http://www.omg.org/spec/UML/1.4/

[8] OMG XML Metadata Interchange (XMI), Version 1.2,
Object Management Group,
http://www.omg.org/spec/XMI/

[9] Extensible Markup Language (XML) 1.0 (Fourth Edition),
W3C Recommendation 16 August 2006,
World Wide Web Consortium,
http://www.w3.org/TR/xml/

[10] Technical Specification Group Services and System Aspects; IP
Multimedia Subsystem (IMS); Stage 2
3GPP TS 23.228 R6

[11] SIP: Session Initiation Protocol
RFC3261, Internet Engineering Task Force, Network Working Group,
June 2002

[12] The Java Community Process, JSR-116: SIP Servlet API,
http://jcp.org/en/jsr/detail?id=116

[13] The Java Community Process, JSR-289: SIP Servlet v1.1,
http://jcp.org/en/jsr/detail?id=289

[14] Project GlassFish,
https://glassfish.dev.java.net/

[15] Project SailFin,
https://sailfin.dev.java.net/

[16] Design Patterns: elements of reusable object-oriented software / Erich
Gamma .. [et al.], Addison-Wesley, ISBN 0-201-63361-2

126 (130)

[17] ECharts for SIP Servlets,
http://echarts.org

[18] IMS application development tool - SDS 4.0
Ericsson Mobility World, Developer Program
http://www.ericsson.com/mobilityworld

[19] Eclipse, an open development platform,
Eclipse Foundation
http://www.eclipse.org/

[20] The ASF+SDF Meta Environment,
Centrum voor Wiskunde en Informatica (CWI)
http://www.asfsdf.org

[21] Change Process for the Session Initiation Protocol (SIP),
RFC 3427, Internet Engineering Task Force, Network Working Group,
December 2002

[22] Jeroen Arnoldus and Jeanot Bijpost and Mark van den Brand,
Repleo: a syntax-safe template engine,
In GPCE '07: Proceedings of the 6th international conference on
Generative programming and component engineering, pages 25--32,
2007. ACM.

[23] Brand, M.G.J. van den and P. Klint (2007),
"ATerms for manipulation and exchange of structured data: It's all
about sharing.",
Information and Software Technology 49:55--64.

[24] Stratego, Specification of Program Transformation Systems,
http://www.cse.ogi.edu/pacsoft/projects/Stratego/

[25] Java API for XML Parsing (JAXP),
https://jaxp.dev.java.net/

[26] http://www.program-transformation.org/Tools/ATermToXML

127 (130)

Appendix A Overview of Documents and Source Code
This appendix contains an overview of the documents and source code
created during the investigation. These documents are available on the
Thesis Companion CDROM, or by contacting the author through e-mail.

• mailto: thesis@meneerbruggeman.nl

Java Reference Implementation

This is the Java JSR-116 reference implementation of the Call Forwarding on
Busy service.

Requirements

create Java
Source
Code

Reference
Implementation

JSR-116 SIP
Application

Server

deploy

testing

ATF
Testing
Script

• /JSR116_Reference/

- The Java source code for the regular design

- The compiled and packaged sar container

• /JSR116_Reference_StateMachine/

- The Java source code for the state machine design

- The compiled and packaged sar container

• /ATF/

- SDS 4.0 ATF Testing Script for Call Forwarding on Busy

SCE Reference Implementation

This is the SCE Composition Template reference implementation of the Call
Forwarding on Busy service.

Requirements

create Compositi
on

Template

Reference
Implementation SCE Engine

deploy deploy

Constituent
Services

Java
SIP

Applicatio
ns

• /SCE_Reference/

- The Composition Template for the regular design (as XML document)

• /SCE_Reference_StateMachine/

128 (130)

- The Composition Template for the state machine design (as XML
document)

• /SCE_Constituent_Service/

- The Constituent Services used by the Composition Templates

SCE Transformation

This is the SCE Transformation from a UML State Chart Model into a
Composition Template, including supporting Constituent Services. A Java
based transformation and a XSLT based transformation is available.

UML / XMI
model

Requirements

State Chart Model Composition
Template

SCE context

XMI to Composition Template
transformationcreate

add constraints

deploy

SCE Engine

update

Java
Source
Code

deploy

Constituent
Services

Java
SIP

Applicatio
ns

Java
Transformation

SCE DSL
Specification

UML / XMI
model

Requirements

State Chart Model Composition
Template

SCE context

XSLT transformationcreate

add constraints

deploy

SCE Engine

update

XSLT

deploy

Constituent
Services

Java
SIP

Applicatio
ns

“Step 1”
Transformation

XML

Intermediate XML
Document

XSLT

“Step 2”
Transformation

XSLT transformation

SCE DSL
Specification

Composition
Template XML

Schema

• /SCE_Transformation_JAVA/

- The Java SCE Transformation source code

• /SCE_Transformation_Model/

- The CFB State Chart Model as UML Model

- The CFB State Chart Model as XMI Document

• /SCE_Transformation_XSLT

- The "step 1" XSLT specification from XMI Document to Intermediate
XML Document

- The "step 2" XSLT specification from Intermediate XML Document to
XML Composition Template Document

129 (130)

- Example of the generated Intermediate XML Document

- Example of the generated Composition Template

• /SCE_Constituent_Service/

- The Constituent Services used by the Composition Templates

• /SCE

- The Composition Template XML Schema

Repleo Transformation

This is the Repleo Transformation from a UML State Chart Model into
Deployable Java Source Code. The generated SIP Application can be
packaged and tested using the SDS Automatic Testing Framework.

Repleo context

Repleo
Templates

ATerms

Intermediate Aterms
Document

Repleo Generation
Java

Source
Code

Boilerplate Java
Source Code

design

Java
Source
Code

Deployable
Java

Source Code

deploy

UML / XMI
model

Requirements

State Chart Model

XSLT transformationcreate

update

XSLT

XSLT
Transformation

XML

Intermediate XML
Document

Java
Source
code

Java
Implementation

XML to Aterms
transformation

Templates

JSR-116 SIP
Application

Server

testing

ATF
Testing
Script

• /Repleo_Transformation_Model

- The CFB State Chart Model as UML Model

- The CFB State Chart Model as XMI Document

• /Repleo_Transformation_XSLT

- The XSLT specification from XMI Document to Intermediate XML
Document

- Example of the generated Intermediate XML Document

• /Repleo_Transformation_Java

- The Java source code for the transformation from a XML Document
into an ATerms Document

- Example of the generated ATerms Document

• /Repleo_Transformation_Templates

- The Repleo Templates for the generation of Boilerplate Java Source
Code

- Example of the generated Boilerplate Java Source Code

- Example of the Deployable Java Source Code

- The compiled and packaged sar container

• /ATF/

130 (130)

- SDS 4.0 ATF Testing Script for Call Forwarding on Busy

SIP Semantics and Update Repleo Transformation

This is the updated Repleo Transformation from the enhanced UML State
Chart Model into Deployable Java Source Code. The generated SIP
Application can be packaged and tested using the SDS Automatic Testing
Framework.

Repleo context

Repleo
Templates

ATerms

Intermediate Aterms
Document

Repleo Generation
Java

Source
Code

Boilerplate Java
Source Code

design

Java
Source
Code

Deployable
Java

Source Code

deploy

UML / XMI
model

Requirements

State Chart Model

XSLT transformationcreate

update

XSLT

XSLT
Transformation

XML

Intermediate XML
Document

Java
Source
code

Java
Implementation

XML to Aterms
transformation

Templates

JSR-116 SIP
Application

Server

testing

ATF
Testing
Script

• /Repleo_Transformation2_Model

- The enhanced CFB State Chart Model as UML Model

- The enhanced CFB State Chart Model as XMI Document

• /Repleo_Transformation2_XSLT

- The XSLT specification from XMI Document to Intermediate XML
Document

- Example of the generated Intermediate XML Document

• /Repleo_Transformation2_Java

- The Java source code for the transformation from a XML Document
into an ATerms Document

- Example of the generated ATerms Document

• /Repleo_Transformation2_Templates

- The Repleo Templates for the generation of Boilerplate Java Source
Code

- Example of the generated Boilerplate Java Source Code

- Example of the Deployable Java Source Code

- The compiled and packaged sar container

• /ATF/

- SDS 4.0 ATF Testing Script for Call Forwarding on Busy

	Abstract
	Acknowledgments
	Contents
	Introduction
	2. Assignment
	3. IMS
	4. SCE
	5. CFB Service
	6. SCE State Machine Transformation Specification
	7. SCE State Machine Transformation Overview
	8. Repleo State Machine Transformation Specification
	9. Repleo State Machine Transformation Overview
	10. SIP Semantics
	11. Design Process
	12. Conclusion and Remarks
	13. Glossary
	14. References
	Appendix A

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

