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Abstract

Fixed-priority scheduling with deferred preemption (FPDS) has been proposed in
the literature as a viable alternative to fixed-priority preemptive scheduling (FPPS),
that both reduces the cost of arbitrary preemptions and removes the need for non-
trivial resource access protocols.

The goal of this Masters project is the extension of the real-time operating sys-
tem RTAI/Linux with a stable, efficient, extendable, maintainable, compatible and
freely available implementation of FPDS, as well as a discussion of design decisions
and tradeoffs. The project is carried out in the context of the ITEA2/CANTATA
project, at the System Architecting & Networking group of the University of Tech-
nology, Eindhoven.

We discuss some related work concerning earlier cooperative scheduling tech-
niques and applications, and provide a summary of the theory and notations used
in fixed-priority scheduling, and FPDS in particular. The architecture of the
RTAI/Linux is described along with some implementation details relevant to our
work. We lay out our design assumptions and list the key performance indica-
tors that we use to check our results. In a discussion of possible alternatives to
map an FPDS task set onto a real-time operating system, we choose to implement
FPDS using non-preemptive tasks split up into subtasks using a kernel API prim-
itive. In the following chapters, we follow an incremental approach in designing
and implementing both FPNS and FPDS in RTAI. Tests indicate that the result-
ing implementation correctly implements FPDS scheduling, and through a series of
measurements we verify that the overhead introduced into the system is low.

After some investigation we identify the use of system calls as the biggest source
of overhead in our FPDS design, and follow up with a newer and more efficient
FPDS implementation with optional preemption points that avoids this overhead.
Comparative measurements of both FPDS implementations show a significant im-
provement, with the overhead of the new implementation being almost as low as
the original FPPS scheduler in RTAI.

As part of future work, we investigate an extension of FPDS, utilising knowledge
of the subtask structure of tasks: the monitoring and enforcement of FPDS jobs.
We describe how FPDS tasks and the RTAI kernel can cooperate to detect and act
against tasks that will overrun their stated computation times and cause interference
with other tasks.

Finally, we conclude that our chosen approach and design resulted in an FPDS
extension that meets the stated requirements, and that the use of FPDS in a real-
world system is feasible with low overhead.

Part of this work resulted in a paper that was published in the proceedings of
the OSPERT 2009 workshop held in conjunction with the Euromicro Conference
on Real-Time Systems (ECRTS) conference in Dublin [3].
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Chapter 1

Introduction

With software systems increasing in complexity seemingly without bounds, the
amount of possible scenarios and states a system can reach is quickly outgrowing
the capacity of their human developers to fully grasp. The number of bugs and
occurrences of unexpected behaviour is therefore increasing as well, and the ongoing
immersion of society in technology means that the consequences can become quite
disastrous.

The field of Real-Time Systems attempts to improve on part of this problem,
by focusing on the predictability of systems in the aspect of timeliness. In many
real-world situations, the result of an action arriving on time is as important as its
correctness.

While generally the solution direction appears to be increased (time) control
and enforcement of behaviour of components from above, for instance in the area of
scheduling with full priority based preemption and reservations of resources, recently
there has been some renewed research interest in more cooperative schemes as well.
It is this domain, cooperative scheduling, that provides the context for the work
described in this thesis.

1.1 Problem statement and motivation

The goal of this Masters project is to extend RTAI/Linux [1] with support for
Fixed-Priority Scheduling with Deferred Preemption (FPDS). The design and im-
plementation should be stable, efficient, extendable, maintainable, compatible, and
be freely available to everyone for future research experiments. Discussion of archi-
tectural tradeoffs and design decisions is an important element of the assignment.

FPDS [6, 8, 9, 11, 14] has been proposed in the literature as an alternative to
Fixed-Priority Nonpreemptive Scheduling (FPNS) and Fixed-Priority Preemptive
Scheduling (FPPS) [20]. FPDS is a generalisation of both: it splits up a task in
arbitrarily many nonpreemptive subtasks with preemption points between them.
Preemption is the temporary suspension of an executing task in favour of one or
more newly arrived, higher priority tasks. Preemption points are locations inside a
non-preemptive task that explicitly allow preemption, and thereby allow the gran-
ularity of preemptions to be selected by the programmer or compiler, finding a bal-
ance between the context switching overhead of FPPS and the coarse-grainedness
of FPNS. Preemption points can be placed at positions which are deemed optimal,
for efficiency reasons, and for access control of shared resources without the need for
complex resource access protocols. The fact that subjobs are small leads to FPDS
having a better response time for higher priority tasks than with FPNS.

RTAI is a free software community project that extends the Linux kernel with
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Figure 1.1: Tasks in the surveillance system

hard real-time functionality. It provides an Application Programming Interface
(API) for programs that need hard timing constraints, and includes an FPPS sched-
uler for periodic and aperiodic tasks. The version of RTAI to be extended with
FPDS is version 3.6-cv.

1.2 Context & background

The Systems Architecting and Networking (SAN) group at the Computer Science
department of the University of Technology is taking part in the ITEA2/CANTATA
project. CANTATA (Content Aware Networked Systems Towards Advanced and
Tailored Assistance) has a main goal of researching and developing a platform that
is fully content aware and has understanding of the content that it is processing.1

The SAN group is interested in the real-time aspects of this work, to gain insight in
the requirements of a real-world system, and to validate the results of our research
in a practical setting.

In particular, we are researching the following topics in the context of this project
[16–18]:

• FPDS to reduce (context-switching) system overhead, and make use of its
advantages in the area of exclusive resource access and implementation of
mode changes;

• Reservations in the form of periodic, deferrable and sporadic servers in com-
bination with FPDS, to guarantee resource availability;

• Mode changes to reallocate (memory) resources between scalable components
in real-time systems.

FPDS was selected as a desirable scheduling mechanism for a surveillance sys-
tem for monitoring a bank office, designed by an industrial partner. A camera
monitoring the scene is equipped with an embedded processing platform running
two tasks: a video task processing the raw video frames from the camera, and a
network task transmitting the encoded frames over the network (See Figure 1.2).
The video task encodes the raw frames and analyses the content with the aim of
detecting a robbery. When a robbery is detected the network task transmits the
encoded frames over the network (e.g. to the PDA of a police officer).

The advantages of FPDS for this system and industrial real-time systems in
general are described in [16], which aims at combining FPDS with reservations to
exploit the network bandwidth in a multimedia processing system from the surveil-
lance domain, in spite of fluctuating network availability. In data intensive appli-
cations, such as video processing, a context switch can be expensive: e.g. an inter-
rupted data transfer may need to retransmit the data when the transfer is resumed.
Currently, in order to avoid the switching overhead due to arbitrary preemption,

1More details about CANTATA can be found at http://www.win.tue.nl/san/projects/cantata/
and http://www.hitech-projects.com/euprojects/cantata/
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the video task is non-preemptive. Consequently, the network task is activated only
after a complete frame was processed. The network task cannot transmit packets at
an arbitrary moment in time (e.g. due to network congestion). Employing FPDS
and inserting preemption points in the video task at convenient places will activate
the network task more frequently than is the case with FPNS, thus limiting the
switching overhead compared to FPPS and still allowing exploitation of the avail-
able network bandwidth. With response times found to be too long under FPNS,
FPDS was considered to have the same benefits of lower context switch overhead
compared to FPPS with its arbitrary preemptions.

1.3 Related work

In this section we will discuss some existing research and results that are related to
our work: the area of cooperative scheduling in real-time systems.

1.3.1 Cooperative scheduling

FPDS is one form of a technique called cooperative multitasking, or cooperative time-
sharing [11]. The general idea of this technique is that the time-sharing of a single
resource (usually the CPU) is not fully regulated by a single arbitrator (e.g. the
scheduler in the kernel), but programs or tasks work together on sharing the resource
in a fair way, such that every contender can make progress. In the most common
implementation of this technique, processes execute without interruption until they
voluntarily cede time to other processes by offering a “de-scheduling” request to the
kernel. The latter will then select a new process for execution according to some
set policy, which will then run until it gives up its control of the resource as well.
In this model the responsibility of scheduling is shared by the processes and the
kernel, but other models where process selection is fully determined by programs
themselves are also common.

Cooperative scheduling was one of the first techniques to be used to achieve
multitasking, e.g. on interactive systems, before preemptive scheduling became
the predominant mechanism. It has been used by many mainstream operating
systems for personal computers, such as Microsoft Windows prior to Windows 95,
and Mac OS, as well as operating systems targeted at server usage, such as Novell
NetWare [23].

A description of non-preemptive scheduling in real-time systems, as well as an
introduction to scheduling with deferred preemption along with corresponding re-
sponse time analysis of tasks can be found in [11].

1.3.2 Earlier deferred preemption techniques

In [14], a rate-monotonic with delayed preemption (RMDP) scheduling scheme is
presented by Gopalakrishnan and Parulkar. Compared to traditional rate-monotonic
scheduling, RMDP reduces the number of context switches (due to strict preemp-
tion) and system calls (for locking shared data). One of the two preemption policies
proposed for RMDP is delayed preemption, in which the computation time Ci for
a task is divided into fixed size quanta ci, with preemption of the running task de-
layed until the end of its current quanta. [14] provide the accompanying utilization
based analysis and simulation results, and show an increased utilization of up to 8%
compared to traditional rate-monotonic scheduling with context switch overheads.

Unlike [14], which introduces preemption points at fixed intervals corresponding
to the quanta ci, our approach allows to insert preemption points at arbitrary
intervals convenient for the tasks. These locations can be selected based for example
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on resource access control (surrounding critical sections), or minimal overhead of
context switches due to memory cache misses.

In [22], Simonson and Patel investigate the optimal placement of preemption
points with respect to memory cache behaviour. Through analysis of the usage of
variables in memory by tasks, and the resulting cache behaviour in terms of cache
hits and misses, they estimate the cost of context switches by preemptions when
located throughout the task code. By optimizing a selection of preemption point
locations they were able to get up to a 10% performance improvement by reduced
context switch overhead in simulations, compared to traditional cache management
techniques.

Zhou and Petrov [27] also investigate the cost of preemption points based on a
compile-time analysis of the usage of processor registers, the register liveness. They
introduced hardware support for preemption points, where the instruction locations
of the selected preemption point locations are loaded in a hardware comparison
register. The CPU then compares the loaded value with the instruction pointer for
every executed instruction, automatically generating a trap to the preemption point
handler at a preemption point location. This hardware based solution removes the
need for additional code in program code along with associated overhead.

In [5], an implementation of delayed preemption in the LitmusRT research kernel
is described, using a technique similar to the one we will describe in Chapter 7.
Through the use of a shared flag between kernel and user space there is no need
for expensive system calls between non-preemptive sections to check whether a
preemption is required.

1.3.3 Swift mode changes

In [17, 18], M. Holenderski, R.J. Bril and J.J. Lukkien describe the advantages
of the combination of mode changes and FPDS. In a resource constrained system
composed of several scalable components, every component (e.g. a video encoder)
is able to operate in one of multiple modes where each mode defines a quality level
of the results it provides. Not all components can run in their highest quality modes
at the same time, for example due to memory or CPU usage constraints. During
runtime the system may decide to reallocate the resources between components,
such that some components need to transition to a lower quality mode to free up
resources for other components transitioning to a higher quality mode. It is shown
how FPDS improves on the latency of a mode change, caused by mode change
overhead, compared to a system scheduled by FPPS, because no resource access
control is required (See Section 2.2.3).

1.3.4 FPDS worst-case response time analysis

R.J. Bril, J.J. Lukkien and W.F.J. Verhaegh [6, 7] correct the existing worst-case
response time analysis for FPDS in [8, 12], under arbitrary phasing and deadlines
smaller or equal to periods. They observe that the critical instance is not limited
to the first job, but that the worst case response time of task τi may occur for an
arbitrary job within an i-level active period. They provide an exact analysis, which
is not uniform (i.e. the analysis for the lowest priority task differs from the analysis
for other tasks) and a pessimistic analysis, which is uniform.

1.4 Approach

In our research, design and implementation leading up to, and achieving the goals
of this Master thesis project, we followed an incremental approach. Early on in
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the project, the lack of in-depth, up to date and accurate documentation of the
design and implementation of RTAI was identified as a risk. While investigating the
RTAI code base and surrounding information, we found that the (sparse) existing
documentation on the design was often no longer reflecting the current versions of
RTAI, and in many cases contradictory to other documentation and the source code
itself. Because the implementation of FPDS was one of the main deliverables of the
project, and a solid overview of the existing design was not available, we decided
to design and implement FPDS in several iterations. The problem was divided into
sub problems which were tackled one by one.

First, we investigated and described some FPDS task model alternatives, and
how they could be mapped into an existing real-time operating system (RTAI/Linux)
with support for periodic tasks. Because FPDS is a generalisation of FPNS, non-
preemptive task support was then added to RTAI as a first step, and tested. This
design and implementation was refined and extended, resulting in a basic FPDS im-
plementation which was subsequently tested and benchmarked. This was followed
by a more efficient implementation of FPDS, on which we conducted comparative
measurements. Finally, we investigated some applications and extensions of FPDS
as future work.

1.5 Contributions

The contributions of this project are:

• A discussion of the design alternatives of an FPDS extension in RTAI/Linux;

• A functional, extendable, maintainable and efficient implementation of FPDS
in RTAI, with support for optional preemption points and a support library for
real-time FPDS programs, which is freely available at http://wiki.wikked.net/wiki/FPDS;

• An evaluation of the implementation in terms of overhead and other key per-
formance indicators (see Section 6.5);

• A discussion of how to do monitoring and enforcement of task budgets in an
FPDS system.

Part of this work, i.e. the design and implementation of the basic FPDS ex-
tension in RTAI, resulted in a paper that was published in the proceedings of the
OSPERT 2009 workshop held in conjunction with the Euromicro Conference on
Real-Time Systems (ECRTS) conference in Dublin [3].

1.6 Overview

In Chapter 2 we recapitulate the theory of fixed-priority scheduling, and introduce
the terms and notation we will use in the remainder of the document. Chapter 3
introduces RTAI/Linux and describes its architecture and some relevant implemen-
tation details. The rest of the structure of this document largely follows the ap-
proach we described in Section 1.4. First, some design considerations for our FPDS
extension, including our assumptions, important design aspects and a discussion of
the alternatives in mapping an FPDS task model onto a real-time operating sys-
tem are discussed in Chapter 4. The design and implementation of our first step -
non-preemptive task support - towards realising FPDS is described in Chapter 5,
followed by the design, implementation and evaluation of basic FPDS in Chapter 6.
Chapter 7 compares these results with a more efficient FPDS implementation. Some
thoughts about extensions and applications of FPDS as future work are outlined in
Chapter 8, followed by the conclusions of this project.
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The work described in Chapters 2-6 is also described in our paper that was
published in the proceedings of OSPERT 2009 [3].
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Chapter 2

Fixed priority real-time
scheduling

In this chapter we will lay out the foundation for the project, by providing a short
summary of the existing basic theoretic concepts and corresponding definitions of
real-time scheduling that are used in the rest of this thesis.

2.1 Basic theoretic task model

A periodic task performs a recurring job, which is released (i.e. made available)
with a fixed period. Each job is an instance of a periodic task and has a deadline at
which point in time the job must have completed execution. Often, but not always,
this deadline is set to equal the release time of the next task instance, such that the
job has completed before the subsequent job of the same task is released. In this
thesis, a task with priority i will be referred to as τi, and the jth instance of task τi
is written as ιi,j . Periodic task τi has period Ti, and phasing Φi, which is equal to
the release time of the first job, ri,0. The deadline of task τi relative to each job’s
release time is denoted as Di, and the corresponding absolute deadline of job ιi,j is
di,j = ri,j +Di.

At some point in time after the release of a job ιi,j , the system’s scheduler will
assign the CPU resource to the task: it is activated1. The absolute time of the
first activation of a job is denoted as si,j , which will occur after the job’s release
time: ri,j ≤ si,j . The goal of a real-time scheduler is to ensure that the job will
finish at a time fi,j which is at most equal to the job’s deadline: fi,j ≤ di,j . The
difference between the finishing time and the release time is called the response time
Ri,j = fi,j−ri,j . If the computation time of a task is known, it is represented by Cτi
for a single job. Sometimes the computation time of a task varies or is only known
to be bounded by an interval, in which case best-case and worst-case computation
times of tasks are denoted by BCτi and WCτi .

The timing properties of a task τi are thus defined by the tuple [13]:

τi = (Ti, Cτi , Di,Φi) (2.1)

An aperiodic task has similar properties as a periodic task, but it is not reoccur-
ring with a known period. Sporadic tasks are special cases of periodic tasks, which
have a guaranteed minimal inter-arrival time Ti.

1In this thesis we distinguish between arrival time or release time (the time when a job becomes
available) and start time (the time when a job starts execution).
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Task Prio T Φ Cτ

τ1 1 9 8 2
τ2 2 14 1 5

Table 2.1: Example task set of Figure 2.1

When multiple tasks are present in a system, they may want to make use of the
same resources simultaneously, i.e. share them. If this is the case, and additionally
tasks have timeliness constraints, for instance in a real-time environment, there
needs to be a mechanism for resource sharing in place in order to ensure that all
tasks can meet their constraints. One such shared resource is the CPU, and it is
the primary contended resource in this thesis, which focuses on shared resource
arbitration by scheduling.

2.2 Scheduling

Scheduling is the process of deciding how to commit resources between a variety
of possible tasks by time sharing. In particular, a CPU scheduler determines at a
given time which of the available tasks will be executing on a shared CPU. Many
different strategies can be used to schedule tasks on shared processors, and they
can be classified in several ways. Some possible classifications are:

• static scheduling based on fixed parameters versus dynamic scheduling based
on parameters changing during runtime

• offline scheduling, i.e. a schedule that can be calculated on the entire task
set before actual task activation, versus online scheduling where decisions are
taken upon job releases and completions

• preemptive scheduling where jobs can be interrupted by higher priority jobs,
versus non-preemptive scheduling where a job can run until completion or
voluntary yielding

This thesis focuses on static (fixed-priority) scheduling only [13]. Fixed-priority
scheduling is the most common scheduling algorithm in real-time systems, because
it is simple to implement and its behaviour is well understood and backed by theory.
Each task has an associated, fixed priority that is predetermined during develop-
ment of the system and in principle does not change. A total order between priorities
of tasks exists. In fixed-priority scheduling, as opposed to dynamic scheduling algo-
rithms, the scheduler does not itself try to determine an optimal order of scheduling
of tasks such that they (ideally) all meet their deadlines. Instead it simply tries to
make sure that of all tasks that are ready to run, the task with the highest (fixed)
priority has control of the CPU.

A system in which a task can be interrupted during its execution to assign a
shared resource to a task having a higher priority, is called a preemptive system, and
the action of interrupting a lower priority task for a higher priority one is called
preemption. In a non-preemptive system this is not possible, and higher priority
tasks being released have to wait until a lower priority task finishes or suspends
execution, at which point the highest priority waiting task will receive control of
the CPU.

Figure 2.1 shows a scheduled example task set of two tasks, with the task param-
eters shown in Table 2.2. In this scheduling example, low priority job ι2,1 is released
first at time t = 1. Due to the period of the timer, interrupting the system every 2
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Figure 2.1: Example of a schedule with two tasks, and corresponding properties

time units, the job is activated one time unit later, when the timer interrupt fires
and wakes up the new job at time t = 2. ι2,1 runs to completion without interfer-
ence in 5 time units. At time t = 8, the first job of task τ1 is released. Because this
coincides with a timer interrupt, job ι1,1 is activated immediately and completes in
2 time units. At time t = 15, the period of task τ2 has expired since its previous
release, and job ι2,2 is released. One time unit later it is activated from the timer
interrupt, and runs for 2 time units. In the mean time however, higher priority job
ι1,2 has been released and gets activated at time t = 18, thereby preempting job
ι2,2 in the process for Cτ1 = 2 time units.

2.2.1 Fixed-Priority Preemptive Scheduling (FPPS)

Fixed-Priority Preemptive Scheduling, here after abbreviated as FPPS, ensures that
at any moment in time, the highest priority task which is ready for execution is
active, i.e. is given processor time. When during the execution of a task another,
higher priority task is released, the executing task will immediately be preempted
in favor of the higher priority task.

Figure 2.1 shows an example of fixed-priority scheduling with preemption, but
also the notion of activation jitter, i.e. the delayed activation of tasks. Due to the
design decision in most implementations of waking up task only during a (periodic)
timer interrupt, tasks are often not activated immediately, but only when the next
timer interrupt fires.

2.2.2 Fixed-Priority Non-preemptive Scheduling (FPNS)

A system implementing fixed-priority non-preemptive scheduling, or FPNS, never
preempts tasks for higher priority tasks. Once a certain job is activated it will run
until completion, unless it voluntarily gives up control of the CPU, or needs to wait
on a blocking operation, e.g. a semaphore.

2.2.3 Fixed-Priority Scheduling with Deferred Preemption
(FPDS)

A generalisation of FPNS is fixed-priority scheduling with deferred preemption. In-
stead of one uninterruptible job which can not be preempted, a job is divided into

11



Figure 2.2: FPPS and FPDS scheduling compared

subjobs. Between subsequent subjobs there are preemption points where the job can
optionally be preempted in favour of a higher priority task when necessary. FPNS
is an instance of FPDS in which a job consists of only one subjob. Similarly, FPPS
is in instance of FPDS with arbitrarily small subjobs. Like FPNS, FPDS is a form
of cooperative scheduling [2].

The advantages of FPDS compared to FPPS are:

• Reduced system overhead due to less context switches

• Preemptions happen only at predefined preemption points, which can be
placed at locations convenient or efficient for the task

• When preemption points are placed around critical sections, no resource access
protocol for access to shared resources is necessary, as only one (sub)task will
be executing a “critical section” at any given time.

Due to the finer granularity of (sub)tasks in FPDS, better response times and
schedulability for higher priority tasks are achieved compared to FPNS.

Figure 2.2 shows an example of a task set scheduled by both FPPS (a) and
FPDS (b). With FPPS, the highest priority task τ1 immediately preempts task τ2
on arrival. After its completion, task τ3 resumes execution, only to be preempted
again during the arrival of τ2. When scheduled with FPDS (b) and after the addition
of a preemption point in task τ3, task τ1 can only preempt when the first subtask
of τ3 has completed execution and is willing to be preempted. The amount of
preemptions and context switches are reduced by one.

When preemption points are appropriately placed, e.g. at the end of a snippet
of code that modifies a specific set of data, the overhead of context switches can be
smaller than under FPPS with context switches happening at arbitrary locations.

Multiple relations between subjobs of a job can exist; in the simplest case their
relationship is sequential and they are all executed completely in succession, without
exceptions. However in support of more realistic code paths, subjobs can also form
an acyclic directed graph corresponding to branches in code.

In some situations, the use of FPDS can also remove the need for a shared re-
source access protocol. FPPS has arbitrary interleaving of tasks, such that multiple
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Figure 2.3: FPDS task with a DAG structure

tasks that access a certain resource may need to coordinate their access to maintain
integrity of the resource and tasks accessing it. This is typically implemented using
explicit critical sections that ensure that only one piece of code that shares a certain
resource can be executing at any time. Under FPDS, at most one subtask is exe-
cuting at any moment, so it may be possible to place preemption points such that
code accessing a shared resource is fully contained within a single subtask. If FPDS
is used like this on a platform with a single CPU, as is the assumption throughout
this thesis, then there is no need to additionally guard the “critical section” with
other resource access control primitives like mutexes or semaphores.

In [16], the notion of optional preemption points is introduced, allowing a task
to check if a higher priority task is waiting, which will preempt the current task
upon the next preemption point. For example, if a higher priority task is already
pending, then the running (sub)job may decide to finish its work but adapt its
execution path, and e.g. refrain from initiating a data transfer on an exclusive
resource that is expensive to interrupt or restart. Optional preemption points rely
on being able to check for pending tasks with low overhead, e.g. without invoking
the scheduler.

Task model extensions for FPDS

For FPDS, we need to refine the basic model of Section 2.1.
A job of task τi has computation time Cτi , and since under FPDS a job ιi,j is

subdivided into Ki subjobs ιi,j,0, ιi,j,1, . . . , ιi,j,Ki−1, the computation time of a sub-
task k is defined as Cτi,k. In a sequential relation between subjobs, the computation
time of the task simply equals the sum of all subjobs:

Cτi =
∑

0≤k<Ki

Cτi,k (2.2)

Later in this thesis we will refer to the measured computation time of a job and
subjob as Cιi,j and Cιi,j,k respectively.

When the structure of τi is not sequential but has the form of a DAG with
branches (see Figure 2.3), then Cτi is dependent on the path used through the
graph, during execution. The worst-case computation time of Cτi is the sum of the
longest path in the graph, when Cτi,k is used as the cost factor.

We define WCτi,k and BCτi,k as the worst-case and best-case computation times
of subtask τi,k of task τi, respectively. Then, the following should hold:
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BCτi,k ≤ Cιi,j,k ≤WCτi,k (2.3)

where Cιi,j,k is the actual execution time of subjob ιi,j,k. We distinguish this value
with Cτi,k because the latter is theoretical for a given subtask, whereas Cιi,j,k can be
a value measured for a given subjob in a running system.

For the general case of a task τi having a subtask structure in the form of a
DAG, we define BCRτi,k as the best-case computation time of the remainder of
task τi, for all valid paths in the DAG succeeding subtask τi,k, but not including it.

Throughout this thesis, the term subtask will be used to denote a part of a task,
and like a job is an instance of a task, a subjob is an instance of a subtask. Any
job consists of a sequence of subjobs which are executed in succession. Subtasks
are part of a task, however any given execution instance of a task (i.e. a job) may
not necessarily execute all subtasks, if the subtasks have a non-sequential relation
due to branching. Likewise, subjobs unlike jobs do not get released ; the code of the
job itself decides at every preemption point which next subjob will be executed.

A detailed analysis of the response time of tasks scheduled by FPDS can be
found in [6, 7].
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Chapter 3

RTAI & Linux

The real-time operating system to be extended with FPDS is RTAI : Real-Time
Application Interface. RTAI is an extension to the Linux kernel, which enhances
it with hard real-time scheduling capabilities and primitives for applications to use
this. In this chapter we will provide a brief introduction to the architecture and
relevant implementation details of both RTAI and the interface with Linux.

3.1 Description

RTAI’s goal is to extend Linux with real-time primitives and a scheduler for hard
real-time behaviour, which functions as a separate layer next to the standard Linux
environment, such that Linux programs can voluntarily choose whether to use RTAI
functionality. One of the largest applications of RTAI is machine control, where
deterministic timing behaviour is very important. The design of RTAI, being a
hypervisor [24], is explicitly chosen to avoid intrusive changes to the entire Linux
kernel code base, in the interest of maintaining compatibility with Linux which is
following a very rapid development cycle.

A rough representation of the architecture of RTAI/Linux is shown in Figure 3.1.
At the bottom, right on top of the hardware, a Hardware Abstraction Layer (HAL)
is installed by RTAI, which prepares the Linux source code for running under a
hypervisor (see the next section). On top of this, RTAI and Linux sideways of
each other. All RTAI specific modules are shown as green in the diagram. Making
use of the HAL are the modules in RTAI that take care of interrupt handling
(the Interrupt Service Routines), scheduling, task creation etc., as well as Inter-
Process Communication (IPC) and resource access control. This infrastructure can
be accessed by real-time (kernel) tasks via the API on top, providing a well-defined
interface.

All RTAI modules just describe run in kernel mode (see Section 3.4), where they
can only be accessed by code running in kernel mode as well, including real-time
programs. Because RTAI also supports hard real-time scheduling for programs
running in user mode, an additional layer is needed that provides a user-mode
gateway to the RTAI kernel API: the LXRT API.

The top layer (in red) represents all programs running in the system, both
normal non-real-time tasks running under Linux, as well as (hard) real-time tasks
scheduled by RTAI.

Although RTAI does not strictly adhere to this architecture, the diagram presents
a non-transitive top-to-bottom uses relation, where high level modules make use of
modules (immediately) below them, and not vice versa. Modules on the same level
cooperate with each other where necessary. RTAI maintains most of its state in
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Figure 3.1: Architectural diagram of RTAI/Linux

global data structures such as linked lists of structs, that can be accessed from
anywhere in the code running in kernel mode. (This is not shown in Figure 3.1.)

3.1.1 Hypervisor

RTAI provides hard real-time guarantees alongside the standard Linux operating
system by taking full control of external events generated by the hardware. It acts as
a hypervisor between the hardware and Linux. When RTAI modules are loaded, the
HAL inserts itself between the hardware interrupts (including the timers) and the
normal Linux interrupt handlers, in order to gain full control of interrupt processing.
It also intercepts certain function calls made by Linux kernel code to disable and re-
enable hardware interrupts (cli and sti), such that it can alter its state accordingly.

Since RTAI then receives all external events from the hardware, it can directly
control how the software reacts to these interrupts, including if and when the rest
of the Linux kernel receives them for processing. Using the signals from the timers
RTAI does its own scheduling of real-time tasks and is able to provide hard timeli-
ness guarantees.

After RTAI modules are unloaded again, full interrupt control is handed back
to the Linux kernel such that interrupts are directly handled by Linux interrupt
handlers, as in a normal, unpatched situation.

Although RTAI has support for multiple CPUs, we choose to ignore this capabil-
ity in the remainder of this document, and assume that our FPDS implementation
is running on single-CPU platforms. Systems with multiple CPUs are not yet com-
mon in the field of real-time systems, partly because of the complicated analysis
of task sets in a multi-CPU platform, for which research results are not as mature
yet as for single-CPU systems. Additionally, the advantage of using FPDS as a
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resource access control method disappears when multiple subjobs can be running
simultaneously, as is the case in a multiple CPU system.

3.1.2 The scheduler

RTAI Linux system follows a co-scheduling model: hard real-time tasks are sched-
uled by the RTAI scheduler, and the remaining idle time is assigned to the normal
Linux scheduler for running all other Linux tasks, i.e. Linux is treated as a back-
ground job. The RTAI scheduler also supports the standard Linux schedulables such
as (user) process threads and kernel threads, and can additionally schedule RTAI
kernel threads. These have low overhead but they cannot use regular OS functions.

The scheduler implementation supports preemption, and ensures that always
the highest priority runnable real-time task is executing.

Primitives offered by the RTAI scheduler API include periodic and non-periodic
task support, multiplexing of the hardware timer over tasks, suspension of tasks
and timed sleeps. Multiple tasks with equal priority are supported but need to use
cooperative scheduling techniques (such as the yield() function that gives control
back to the scheduler) to ensure fair scheduling.

3.1.3 Timers

For multiplexing of tasks RTAI offers a choice between two different timer modes:
periodic and oneshot. In periodic mode the timer is programmed once with a certain
frequency, and will generate an interrupt at that rate, activating the scheduler and
possibly performing a context switch to another task. This mode has a very low
setup overhead as the timer only needs to be programmed once, but task activations
are only possible at multiples of the timer period. The alternative mode is to
program the timer once for every iteration, with the timer generating only a single
interrupt when the time expires (one shot). This allows arbitrary timings, but
comes with an additional overhead cost of reprogramming the timer after every
timer interrupt. Depending on the specifics of the task set, the programmer can
select the more optimal mode to use, trading programming overhead of one-shot
timers against activation jitter and interrupt overhead of periodic timers.

3.2 Implementation of the basic theoretic model

Since we are interested in implementing FPDS either inside or on top of RTAI, this
section gives a comparison of the basic theoretic model and how it can be applied
to the actual existing RTAI implementation.

RTAI directly supports the notion of tasks (τi) along with associated priorities.
Tasks are instantiated by creating a schedulable (typically a thread) using the reg-
ular Linux API, which can then initialize itself as an RTAI task using the RTAI
specific API. Priorities are integers, 0 ≤ i < 65536, where 0 is the highest priority.
Multiple tasks sharing the same priority are supported by RTAI as well.

As discussed in the previous section, RTAI allows tasks to be scheduled peri-
odically and aperiodically. The start time, and thereby also the phasing Φi of a
task can be set as an absolute value, or relative to the current time. Through the
use of the oneshot timer, RTAI allows arbitrary phasings to be used, although for
performance reasons it may be beneficial to use the periodic timer.

17



Figure 3.2: RTAI task states and flags

3.3 Tasks in RTAI

Although the terminology of jobs is not used in RTAI, all necessary primitives
to support periodic tasks with deadlines less than or equal to periods are avail-
able. Repetitive tasks are typically represented by a thread executing a repetition,
each iteration representing a job. An invocation of the rt_task_wait_period()
scheduling primitive separates successive jobs. Through a special return value of
this function, a task will be informed if it has already missed the time of activation
of the next job, i.e. the deadline equal to the period.

In each task control block (TCB) various properties and state variables are
maintained, including a 16 bit integer variable representing the running state of the
task. Three of these bits are used to represent mutually exclusive running states
(ready, running, blocked). The remaining bits are used as boolean flags that are not
necessarily mutually exclusive, such as the flag delayed (waiting for the next task
period), which can be set at the same time as ready in the RTAI implementation.
This implies that testing the ready state is not sufficient for determining the readi-
ness of a task. See Figure 3.2 for a (simplified) overview of the task states relevant
for our work.

3.3.1 Implementation of periodic tasks

A common method to implement periodic tasks in RTAI makes use of the rt_wait_period()
primitive which suspends the calling task until the end of its period. The imple-
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mentation of a periodic task typically reflects the following pseudocode:

function task_thread() {
# task initialization
rt_init_task()
rt_make_periodic(period, phase)
rt_make_hard_realtime()

# task / jobs loop
j = 0
while (true) {

# Invoke job instance j
task_job(j)
# Wait until the next periodic task activation
rt_wait_period()
j++

}
}

function task_job(instance) {
# Perform job

}

3.4 Privilege separation and system calls

Like many operating systems, Linux makes use of the privilege ring features of
modern CPUs, where the kernel runs in the most privileged ring 0 and has full
access to all hardware, whereas the applications run in a less privileged ring with
restricted access to hardware. These are commonly called kernel mode and user
mode, respectively [26]. RTAI, inserting itself between the Linux kernel and the
hardware, also runs in ring 0 (kernel mode) and thus has full control of the hardware.

The kernel also reserves part of the physical memory for itself, which is protected
from access by user mode programs. This memory space is called kernel space,
and in Linux is always present in physical memory. In contrast, the (remaining)
memory used by normal programs is user space, and can be paged out to (slow)
external storage when available physical memory is low. Each Linux process runs
in its own address space and accesses its memory using virtual addresses which have
an indirect mapping to real, physical memory. This provides protection between
processes, because they can’t access each other’s memory.

When a user mode program wants to invoke a kernel routine or needs access to
data in kernel memory, it cannot call or access it directly, but needs to perform a
system call (or syscall). On behalf of the calling process, the system will change
mode from user mode to kernel mode, execute the requested kernel routine, and
return to user mode. The kernel will copy any required data in memory from user
space to kernel space or vice versa, if required. The extra time this process costs is
considerable overhead.

3.4.1 Implementation details

RTAI’s implementation of system calls from user mode programs to its in-kernel
API routines is based on the system call implementation of the Linux kernel. In
this section we will describe what happens when a user mode real-time task ex-
ecutes an RTAI syscall, as this process and its overhead is relevant in the FPDS
implementation that will be described in the upcoming chapters.
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Real-time programs that run in user mode link to a dynamic library called
liblxrt to access RTAI functionality. For every RTAI API primitive that resides
in kernel mode, a corresponding wrapper function with the same semantics exists in
the liblxrt library. Every one of these functions does essentially the same thing: it
packs all function arguments into a single struct, and passes it along with the total
byte length of all parameters and a numeric identifier of the desired (in-kernel) API
primitive to the rtai_lxrt() function, which will invoke the system call. After this
function finishes, the return value of the system call will be unpacked and passed
back to the real-time program.

Function rtai_lxrt() on its turn encodes its passed arguments (i.e. the RTAI
API call number and the byte size of its arguments) into a single 32 bit inte-
ger. It then calls the Linux function syscall() with Linux system call number
RTAI_SYSCALL_NR. All RTAI API calls are thus executed by wrapping them in a
single Linux system call invocation, which executes a kernel mode routine installed
by RTAI.

The implementation of the Linux syscall() function differs per CPU architec-
ture and CPU model. On the i386 architecture that we used for this project, the
actual switch from user mode into kernel mode is generally implemented using a
software interrupt, int 80h. When this instruction is executed, the CPU acts as if
a normal hardware interrupt arrived with hexadecimal number 80, and internally
changes the privilege mode from ring 3 to ring 0. It then invokes the Interrupt Ser-
vice Routine (named system_call() in Linux) for interrupt 80h that was installed
by the operating system.

Before executing the software interrupt, the arguments of the system call, in-
cluding the requested system call number, are placed in the processor registers. The
first action of the ISR is therefore to store this information on the kernel stack. It
then stores the contents of all other CPU registers, for later restoration after the
system call finishes. After some validity checks on e.g. the the system call number
argument, the appropriate system call kernel function is invoked, which normally
executes the system call. The RTAI LXRT specific system call function acts as an
additional layer of dispatching: it decodes the first argument passed which includes
the RTAI API call number, and calls the desired in-kernel RTAI API routine. The
requested RTAI API action is then executed in kernel mode.

After the routine finishes, the same path is followed in reverse order, back from
kernel to user mode. Return values are passed on between functions, and put in
the CPU registers for the privilege mode switch, until it is eventually passed as the
return value of the original liblxrt function back to the real-time application.

The majority of the overhead incurred in this process is present inside the actual
mode switch inside the software interrupt, executed inside the CPU itself. This can
last over 1µs, depending on the CPU model. The rest of the overhead is caused
by the various iterations of copying and encoding arguments between functions and
the mode switch, which are relatively slow memory operations.

A more detailed description of the implementation of system calls in Linux can
be found in [4].

3.5 Scheduler implementation

In order to provide some context for the design decisions and implementation con-
siderations that will follow, we briefly describe the implementation of the existing
RTAI scheduler.

RTAI maintains a ready queue per CPU, as a priority queue of tasks that are
ready to run (i.e., released), sorted by task priority. A task remains on the ready
queue when it is executing. Periodic tasks are maintained with release times of their
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next job in a separate data structure, the so-called timed tasks. This data structure
can be an ordered linked list or a red-black tree. If at any moment the current time
passes the release time of the head element of the timed tasks list, the scheduler
migrates this task to the ready queue of the current CPU. In practice this does not
happen instantly but only upon the first subsequent invocation of the scheduler,
e.g. through the timer interrupt, and therefore having a maximum latency equal to
the period of the timer. The scheduler then selects the head element from the ready
priority queue for execution, which is the highest priority task ready to run. The
currently running task will be preempted by the newly selected task if it is different.
The scheduler ensures that at any given time, the processor executes the highest
priority task of all those tasks that are currently ready to execute, and therefore it
is a FPPS scheduler.

When a job finishes and invokes the rt_wait_period() primitive, the task
is migrated back from the ready queue to the timed tasks list, waiting for the
expiration of the period.

The implementation of the scheduler is split over two main scheduler functions,
which are invoked from different contexts, but follow a more or less similar structure.
It remains somewhat unclear why the functionality common to both functions is
not factored out. The function rt_timer_handler() is called from within the
timer interrupt service routine, and is therefore time-triggered. The other function,
rt_schedule() is event-triggered, and performs scheduling when this is requested
from within a system call. Each of the scheduler functions performs the following
main steps:

1. Determination of the current time

2. Migration of runnable tasks from the timed tasks queue to the ready queue

3. Selection of the highest priority task from the ready queue

4. Context switch to the newly selected task if it is different from the currently
running task

After a new task is selected, the scheduler decides on a context switch function
to use, depending on the type of tasks (kernel or user space) being switched in and
out. The context switch is then performed immediately by a call to this function.

These steps are shown as a flow diagram in Figure 3.5.
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Figure 3.3: Flow diagram of the standard RTAI FPPS scheduler logic
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Chapter 4

Design considerations

In this chapter we will discuss our design considerations leading up to our imple-
mentation of FPDS in RTAI. First, we list a number of assumptions we’ve made
in our design, followed by a discussion of the possible task models for FPDS. We
conclude with a number of design aspects that we consider important and that will
be used later to check our implementation.

4.1 Assumptions

We will base our design of the implementation of FPDS in RTAI/Linux on a number
of assumptions. In situations where these assumptions do not hold, our design and
implementation of FPDS may not be optimal.

First, we assume that real-time applications that want to use FPDS in RTAI/Linux,
will run in user mode. Although RTAI is also able to schedule tasks in kernel mode,
we think that the functionality provided by the Linux kernel to normal user mode
processes, as well as the isolation between user mode processes in different address
spaces are strong advantages of this RTOS platform over others, despite the over-
head introduced by these features. When using tasks scheduled in kernel mode,
many of these advantages are not available, and then smaller and simpler real-time
operating systems could be used instead, which do not use privilege separation.
Therefore we will focus on real-time applications running in user mode in this the-
sis, although kernel tasks will be supported by our implementation as well.

Secondly, we assume that the overhead of context switches of FPPS, when com-
pared to FPDS, is caused primarily by the preemption by other tasks, and not by
interrupts. Although the execution of an interrupt service routine constitutes a con-
text switch as well, it is minimal when compared to a process switch. An Interrupt
Service Routine (ISR) is explicitly written to be small, efficient and non-intrusive:
it does not require a memory address space switch. It operates on small amounts of
memory only and executes its work as quickly as possible to not interfere with the
rest of the system. Therefore there can be less overhead caused by memory cache
misses and Translation Lookaside Buffer (TLB) flushes compared to regular tasks.
For an overview of system overheads in context switches, see [15].

Because of the need of the system to keep wall clock time, we assume that in
typical cases, we cannot disable the timer interrupt during the execution of non-
preemptive (sub)tasks. In RTAI/Linux and most other operating systems, wall
clock time is maintained using a periodic timer that fires at a steady rate.
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4.2 Task model selection

Before discussing any implementation details of FPDS in RTAI, decisions have to
be made about the task model to be implemented. A variety of options exist, the
advantages and disadvantages of which will be discussed here.

4.2.1 Subtasks as normal system tasks

Since FPDS is a generalisation of both FPPS and FPNS by dividing a job into
arbitrary length subjobs, one possibility for implementing FPDS is to follow the
same train of thought: instead of creating a single task in the system, a task can
be created for every subjob, or subtask, which should then be grouped in some way
to maintain the notion of a single task with corresponding scheduling behaviour.
The advantages of this approach lie in the fact that the system and its scheduler
have full information about the existence of all subtasks, along with their (worst
case) computation times and other parameters, and by the simplicity by which this
method can be implemented in the case of subtasks with sequential order.

After the completion of a subjob, control is returned to the system scheduler,
which can then schedule the next subjob. If the subtasks are in a sequential relation
to each other, the scheduler can follow a simple ordering of system tasks, for instance
using a fixed linked list, or by using synchronisation primitives such as semaphores
in which case no source modifications to the scheduler are needed.

There are many disadvantages to this approach however. Because essentially
every subtask becomes a separate task as it is in a regular FPNS system, subtasks
are very isolated from each other, disrupting the normal code flow and context of
a task. Subtasks will probably have to be separate functions, and run in different
execution contexts (i.e. separate threads or processes), making it hard to access
shared data in a convenient way. Although it may not be impossible to largely hide
it from the programmer, the isolation between subtasks and the additional burden
induced by it is likely to reduce the incentive to create preemption points within a
task.

Another important observation to make is that a strong precedence relation ex-
ists between all subtasks of a task. Generally, ignoring timing constraints, regular
tasks can be scheduled in any order, i.e. with arbitrary interleavings. This is some-
times restricted by shared access to resources or data where one task is blocked
while another task is using a shared resource in a critical section, or when a task is
waiting for the results from another task before it can start execution. The remain-
ing freedom of possible interleavings of tasks is utilized by a (real-time) scheduler
to ensure that certain criteria (such as meeting deadlines) are met. However this
freedom does not exist for subtasks of a task: the order of execution of subtasks
is fixed, and the scheduler is, with respect to subtasks, essentially little more than
a dispatcher. This is a result from the fact that there is no additional scheduling
freedom in the task set with subtasks compared to the original FPNS task set.

In the simple case where all subtasks of a task have a strict sequential order,
the interleaving of subtasks within a certain task is fixed when ignoring other tasks.
This is no longer necessarily the case with a task where subtasks have dependencies
defined by a directed acyclic subgraph, where the order (and selection) of subjobs
may be different for every job run. But again, it is not the scheduler which de-
termines this; the order of FPDS subjobs is determined by the program flow, i.e.
decisions made within the code of the task. Therefore, in order for the system
scheduler to be able to activate the correct subtask, the result of this decision needs
to be transfered from the task to the system scheduler, when it becomes available.
Depending on the specific implementation, this could incur a large amount of extra
overhead, if for instance a system call is required to pass this information.
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At the end of a subjob, control is always returned to the system scheduler which
then dispatches the next subjob. Consequently, at every preemption point a context
switch occurs without exception. This implies that efficient optional preemption
points, as we will implement in Chapter 7, are not possible in this model. This
defeats a large part of the advantage of FPDS: the reduced overhead of preemptions.

4.2.2 Subtasks divided by yield points

Many real-time and non-real-time operating systems already implement a primitive
that can be used almost directly for FPDS: a yield() function. When a currently
running task τi calls yield(), it signals the kernel that it voluntarily releases con-
trol of the CPU, such that the scheduler can choose to activate other tasks before
it decides to return control to the original task, according to the scheduler algo-
rithm. When used in a non-preemptive (FPNS) system, a yield() function thus
implements a preemption point in the definition of FPDS: because the scheduler is
invoked, higher priority tasks τ0..i−1 that have become available since the previous
preemption will be activated by the scheduler before the original task is reactivated.
If no higher priority tasks are available the scheduler will immediately pass back
control to original task τi. If other tasks with equal priority are ready, they are
given precedence.

This approach has some advantages when compared to the intrusiveness of the
method in Section 4.2.1, and has the potential for lower overhead. With preemption
yield points a task does not need to be split up in multiple subtasks with separate
functions and separate threads. The design and structure of a task are not as heavily
influenced by the needs of the FPDS implementation; preemption points can easily
be added and removed by placing a single function call at appropriate locations.
This causes a lower burden on the programmer, and is therefore more likely to be
used effectively in practice. Additionally, automated tools can generate preemption
points transparently to the programmer in the background if desired, guided by
other primitives and cues in the source code such as critical sections.

Some of the added overhead of the subtasks scheduling of Section 4.2.1 can also
be avoided. There is no need for the system scheduler to do scheduling of subtasks
within a task, as the execution will simply follow the code flow of the task over
subtask boundaries, the preemption points. The transfer of branching information
to the system scheduler to select the next subtask is also unnecessary. Furthermore,
the system does not need to store the potentially large amount of information that
is normally maintained for each schedulable. If there are many subtasks this can
imply a large memory saving.

This model does not necessitate a context switch at the end of each subtask,
and thereby opens the opportunity for optional preemption points, where the task is
only preempted if other, higher priority tasks are ready for execution. If the imple-
mentation of the real-time operating system is such that it is possible to determine
this from the execution context of the running task in user space, then optional
preemption points can be implemented efficiently.

The biggest drawback to implementing FPDS using yield functions is however
that the system has no knowledge of subtasks and their properties, and therefore
cannot do any analysis on them to make improved scheduling decisions compared
to FPNS. It is consequently also not possible in this model to support a mixture of
FPNS and FPNS subtasks within a task.

Although this model supports substantial efficiency gains over the one of Sec-
tion 4.2.1, a potentially larger improvement can be made with optional preemption
points, as the substantial cost of context switches at every subtask boundary can
be avoided in many cases.
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4.2.3 Preemption yield points with subtask properties

The two solutions presented above are rather different to one another, and comple-
ment each other in their advantages and disadvantages. The model with full system
tasks of Section 4.2.1 trades efficiency and implementation flexibility for more in-
formation at the system level, whereas the model of Section 4.2.2 does the opposite.
It is possible to alter and improve on these models to reduce or eliminate some of
their disadvantages, essentially bringing both models closer to each other. For ex-
ample, it could be advantageous to make the system subtasks of section 4.2.1 more
lightweight, by creating special purpose subtasks in the system, only keeping the
essential data required for scheduling subtasks, as well as more lightweight context
switches and scheduling routines. However because we feel that the other proposed
model in its purity more closely fits the needs and intentions of FPDS, we will work
from that direction.

The primary drawback of the method using yield points is the lack of any infor-
mation about the structure and properties of all subtasks available to the system
scheduler, and/or other components in the system. The goal is thus to build upon
a plain yield function implementation to make this information available in an ef-
ficient manner without the unnecessary overhead that creating system (sub)tasks
entails.

When looking at the structure of a task and the relation between its subtasks,
we see that the order relation of these subtasks does not change over the course of
the lifetime of the task, whether they follow a sequential order or a directed acyclic
graph. An example of such a directed acyclic graph is shown in Figure 2.3. At task
creation this graph1 can be supplied and stored as a property of the task, in the
task’s own memory address space for processing at preemption points, or even in
the Task Control Block (TCB) if access to it is required by the kernel. Each node
in the graph represents a subtask, and each edge is a possible transition to another
subtask. For every node, at least the following attributes should be present:

• The subtask identifier (e.g. τi,j , or simply j)

• The subtask computation time Ci,j

In addition to this some analysis on the task can be done offline to facilitate
an efficient implementation of the scheduler in an FPDS system. For example, the
worst case computation time of the graph WCτi can be computed and stored for
later use. Because every subtask node is the root of a subgraph, the worst case
response time WCτi,k of the remainder of the task at that subgraph can be stored as
an attribute of the subtask node. This can be done offline or at task creation time
before the task’s deadlines can be missed due to scheduler/preemption overhead.

4.3 Design aspects

While designing the implementation of our chosen FPDS task model, we have a
number of aspects that lead our design choices. First of all, we want our imple-
mentation to remain compatible; our extensions should be conservative and have no
effect on the existing functionality. Any FPDS tasks will need to explicitly indi-
cate desired FPDS scheduling behaviour. Efficiency is important because overhead
should be kept minimal in order to maximize the schedulability of task sets. There-
fore we aim for an FPDS design which introduces as little run-time and memory
overhead as possible. Due to the need of keeping time, we do not disable interrupts

1As a sequential ordering is a special case of a directed acyclic graph and we intend to support
both forms in this implementation, we will only mention the generic form from now on.
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during FPDS tasks, so the overhead of interrupt handling should be considered
carefully as well. Because we want to be able to integrate our extensions with fu-
ture versions of the platform, our extensions should be maintainable, and written
in an extendable way, with flexibility for future extensions in mind.
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Chapter 5

FPNS

The process of implementing FPDS in RTAI/Linux was done in several stages.
Because the existing scheduler in RTAI is an FPPS implementation with no direct
support for non-preemptive tasks, the first stage consisted of a proof of concept
attempt at implementing FPNS in RTAI. The following stages then built upon this
result to achieve FPDS scheduling in RTAI in accordance with the task model and
important design aspects described above.

The existing scheduler implementation in RTAI is FPPS: it makes sure that at
every moment in time, the highest priority task that is in ready or running state
has control of the CPU. In contrast, FPNS only ensures that the highest priority
ready task is started upon a job finishing, or upon the arrival of a task whenever the
CPU is idle. For extending the FPPS scheduler in RTAI with support for FPNS,
the following extensions need to be made:

• Tasks, or individual jobs, need a method to indicate to the scheduler that
they need to be run non-preemptively, as opposed to other tasks which may
want to maintain the default behaviour.

• The scheduler needs to be modified such that any scheduling and context
switch activity is deferred until a running non-preemptive job finishes.

Alternatively, arrangements can be made such that at no moment in time a ready
task exists that can preempt the currently running FPNS task, resulting in a sched-
ule that displays FPNS behaviour, despite the scheduler being an FPPS implemen-
tation. Both strategies will be explored.

Our FPNS implementation is non-preemptive only with respect to other tasks;
i.e. a task will not be preempted by another task, but can be interrupted by an
interrupt handler such as the timer ISR.

5.1 Implementation using existing primitives

Usage of the existing RTAI primitives for influencing scheduling behaviour to achieve
FPNS would naturally be beneficial for maintainability of our implementation.
When only supported API interfaces are used with the desired result, there is no
need for modifications to the RTAI core source. This would reduce the probability
of problems with future incompatibilities and merge conflicts with the associated
maintenance overhead: as long as the API of RTAI primitives to programs utilizing
them stays backwards compatible, the implementation will remain in working state.
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Modifying the ready state of non-preemptible tasks

When investigating the RTAI scheduler primitives that are explicitly exported to
user programs and documented for such use [21], we find several different methods
to effectively achieve FPNS behaviour in our system. One feasible method involves
making sure that all other tasks are taken out of the ready state while a desig-
nated FPNS task is running. Using RTAI primitives, this could for example be
done by suspending all higher priority tasks during the execution of a job, using
rt_suspend() and rt_resume(), or by using mutual exclusion primitives such as
semaphores [21]. This is clearly not a very practical approach however: each task
requires knowledge of the existence of every other higher priority task in the sys-
tem to be able to suspend and resume it. Furthermore, since only one task can
be suspended or resumed at a time, this method has a large amount of overhead
of at least 2N system calls per FPNS task τt, where N = #τi(i < t), the number
of higher priority tasks in the system. The modifications to the schedulability of a
task and changes to the ready queue also imply that the system scheduler is rerun
at every invocation of these primitives, further increasing the overhead, and making
this method very unattractive. Finally, a mechanism needs to be put in place en-
suring that newly arriving tasks that are higher priority than any currently running
FPNS task cannot cause interference, as they have not been suspended prior to the
execution of this task.

Task priority changes

A better option is offered by the ability of RTAI tasks to change their base priority.
At the start of a job the priority can be raised to a value which is equal to the
maximum priority supported by the system, or higher than any current or future
tasks: the maximum of all task priorities, plus one. This ensures that the current
FPNS task will not be preempted by a higher priority task as by definition, a higher
priority task does not exist for the duration of the executing job. After the job
finishes, the base priority should be lowered again to its original value. In terms of
overhead the advantages of this method over suspension of higher priority tasks are
clear: for each FPNS job only a single pair of priority increase and decrease system
calls is required, which is constant O(1) overhead. There are however drawbacks
to this approach as well. The modification of base priorities of tasks during job
execution conflicts with the theory of Fixed Priority Preemptive Scheduling and may
cause problems with priority based protocols, particularly in the area of resource
access control protocols which deal with priority inversion [25].

Locking the scheduler

Although it is not found in any public documentation, it turns out that RTAI also
has the primitives rt_sched_lock() and rt_sched_unlock() available to user pro-
grams, which could be used in a similar way to the temporary priority changes
described above, but without the corresponding drawbacks that priority modifica-
tions present. When the scheduler is locked during the execution of a FPNS job, no
rescheduling will occur and consequently no preemption will take place. However,
with the lack of documentation of these primitives, future support and backwards
compatibility of this solution is not guaranteed [21].

5.2 RTAI kernel modifications

Concluding the previous section, existing scheduler primitives in RTAI can be used
to implement FPNS with varying levels of overhead and tradeoffs in practicality
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and interference with other scheduling protocols. As an alternative, the notion of a
non-preemptible task can be moved into the RTAI kernel proper, allowing for mod-
ified scheduling behaviour according to FPNS, without introducing extra overhead
during the running of a task as induced by the API primitives mentioned. Looking
ahead to our goal of implementing FPDS, this also allows more fine grained modifi-
cations to the scheduler itself, such that optional preemption points become possible
in an efficient manner: rather than trying to disable the scheduler during an FPNS
job, or influencing its decisions by modifying essential task parameters such as prior-
ities, the scheduler would become aware of non-preemptible or deferred preemptible
tasks and support such a schedule with intelligent decisions and primitives. It does
however come at the cost of implementation and maintenance complexity. Without
availability of documentation of the design and implementation of the RTAI sched-
uler, creating these extensions is more difficult and time consuming than using the
well documented API. And because the RTAI scheduler design and implementation
is not stable, as opposed to the API, continuous effort will need to be spent on
maintaining these extensions with updated RTAI source code, unless these exten-
sions can be integrated into the RTAI distribution. Therefore we aim for a patch
with a small number of changes to few places in the existing source code.

An important observation is that with respect to FPPS, scheduling decisions are
only made differently during the execution of a non-preemptive task. Preemption
of any task must be initiated by one of the scheduling functions, which means that
one possible implementation of FPNS would be to alter the decisions made by the
scheduler if and only if a FPNS task is currently executing. This implies that our
modifications will be conservative if they change scheduling behaviour during the
execution of non-preemptive tasks only.

API changes for non-preemptible tasks

We extended the API with a new primitive named rt_set_preemptible() that
accepts a boolean parameter indicating whether the calling task should be pre-
emptible, or not. This value will then be saved inside the task’s control block (TCB)
where it can be referenced by the scheduler when making scheduling decisions. This
preemptible flag inside the TCB only needs to be set once, e.g. during the creation
of the task and not at every job execution, such that there is no additional overhead
introduced by this solution.

Deferral of scheduling during non-preemptible task execution

During the execution of a (FPNS) task, interference from other, higher priority
tasks is only possible if the scheduler is invoked through one of the following ways:

• From within the timer ISR

• From, or as a result of a system call by the current task

The first case is mainly used for the release of jobs - after the timer expires, either
periodically or one-shot, the scheduler should check whether any (periodic) tasks
should be set ready, and then select the highest priority one for execution. The sec-
ond case applies when a task does a system call which alters the state of the system
in such a way that the schedule may be affected, and thus the scheduler should
be called to determine this. With pure FPNS and unlike FPDS, all scheduling
work can be deferred until the currently running task finishes execution. Lacking
any preemption points, under no circumstances should the current FPNS task be
preempted. Therefore, the condition of a currently running FPNS task should be
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Task Prio T Φ Cτ

τ1 1 100 0 0
τ2 2 1000 0 500

Table 5.1: Task set used for testing FPNS scheduling behaviour

detected as early on in the scheduler as possible, such that the remaining schedul-
ing work can be deferred until later, and the task can resume execution as soon as
possible, keeping the overhead of the execution interruption small.

Execution of the scheduler should be skipped at the beginning, if the following
conditions hold for the currently running task:

• The preemptible boolean variable is unset, indicating that this is a non-
preemptive task

• The delayed task state flag not set, indicating that the job has not finished

• The ready task state flag is set, indicating that the job is ready to execute

We have added tests for this condition to the beginning of both scheduler functions
rt_schedule() and rt_timer_handler(), which resulted in the desired FPNS
scheduling for non-preemptible tasks. For preemptive tasks, which have the de-
fault value of true in the preemptible variable of the TCB, the scheduling behaviour
is not modified, such that the existing FPPS functionality remains unaffected.

5.3 Verification

For testing the results of our implementation in the previous section, we developed
a testing scheme that verifies whether the interleaving of tasks scheduled by our
implementation indeed follows a FPNS schedule.

We defined the task set described in Table 5.3. A low priority task τ2 with a low
period T2 and relatively high computation time Cτ2 is set up to receive interference
from a high priority task τ1, which has a ten times higher period T1 and essentially
zero computation time Cτ1 . The sole purpose of the higher priority task is to inter-
rupt the jobs of the lower priority task in order to verify whether the lower priority
task will be preempted.

Preemption of tasks is normally transparent to the tasks themselves. However,
RTAI has support for signaling tasks when they are about to be switched in. Tasks
can install a signal handler, which is invoked from the context of the task, but
with interrupts disabled. For each task we created signal handlers which append
a combination of their task identifier (the task’s priority) and the job number to a
globally allocated integer array on every context switch:

IL(ιi,j) = i× 10000 + j (5.1)

Using the contents of this array, we can determine the interleaving of jobs over
context switches during the test run. In a FPPS schedule, a single low priority
job ι2,j should be preempted by high priority jobs ι1,j , ι1,j+1, . . . multiple times,
and therefore be appended to the integer array multiple times, surrounding the
preempting jobs of task τ1. In contrast, in a FPNS scheduled system a job ι1,j
should appear exactly once, as a running job should never be preempted.

As a baseline test, we first ran the test under both the original, unmodified
kernel, and under the modified kernel but with non-preemptiveness disabled. Both
tests should result in a FPPS schedule, and indeed we found identical results for
both tests:
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Interleaving was as follows:
0 0 0 0 0 0 0 0 10001 20000 10002 20000 10003 20000 10004 20000 10005
20000 10006 20000 10007 20000 10008 10009 10010 20001 10011 20001
10012 20001 10013 20001 10014 20001 10015 20001 10016 20001 10017
20001 10018 10019 10020 20002 10021 20002 10022 20002 10023 20002
10024 20002 10025 20002 10026 20002 10027 20002 10028 10029 10030
20003 10031 20003 10032 20003 10033 20003 10034 20003 10035 20003
10036 20003 10037 20003 10038 10039 10040 20004 ...

This interleaving follows our expectations: the low priority task τ2 is preempted
several times by high priority jobs within the same low priority job execution.

With preemption disabled for the low priority task in our FPNS system, after
our modifications, we should not be seeing the same low priority job being context
switched in more than once:

Interleaving was as follows:
0 0 0 0 0 0 0 0 10003 10006 10007 10008 10009 10010 10011 10012 20001
10013 10015 10016 10017 10018 10019 10020 10021 10022 20002 10023
10025 10026 10027 10028 10029 10030 10031 10032 20003 10033 10036
10037 10038 10039 10040 10041 10042 20004 10043 10046 10047 10048
10049 10050 10051 10052 20005 10053 10055 10056 10057 10058 10059
10060 10061 10062 20006 10063 10065 10066 10067 ...

In this result we find that indeed the low priority task is not preempted and
each job is running to completion - each low priority job appears exactly once.
High priority jobs that are arriving during the execution of the non-preemptible low
priority task are queued up and are scheduled immediately after the low priority
job finishes. This implies that the high priority jobs miss their deadlines due to
their relatively high period, but this does not matter for the purpose of this test.

In the output, some instances of the high priority task are missing, e.g. 10004
and 10005, i.e. jobs ι1,4 and ι1,5. The explanation for this is that jobs ι1,3 and ι1,4
missed their deadline, which caused function rt_task_wait_period() to return
immediately, without resulting in any context switch.

The context switches to task 0 at the beginning are the result of the (lowest
priority) initializing task being context switched in before the test starts; it is not
part of the test itself. The first job of every task is also missing in the interleaving,
because according to the RTAI API documentation, the first context switch into a
task is not signaled by RTAI. The reason for this is unknown.

32



Chapter 6

FPDS

Following the description of FPNS in the previous section, we move forward to the
realisation of a FPDS scheduler, by building upon this design and implementation.
An FPDS implementation as outlined in section 4.2.1, where subtasks are mod-
eled as non-preemptive tasks with preemption points in between, has the following
important differences compared to FPNS:

• A job is not entirely non-preemptive anymore; it may be preempted at pre-
defined preemption points, for which a scheduler primitive needs to exist.

• The scheduling of newly arrived jobs can no longer be postponed until the end
of a non-preemptive job execution, as during a (optional) preemption point
information is required about the availability of higher priority ready jobs.

Figure 6 shows a time diagram of the FPDS design that will be described in
this chapter. Low priority FPDS task τ2 is executing when at time t = 2 a higher
priority job of task τ1 arrives. This job is “woken up” by the scheduler executing
inside the periodic timer Interrupt Service Routine (ISR). The scheduler detects
that a lower priority but non-preemptive FPDS subjob is executing, and is not at
a preemption point. It will notify the lower priority task that a higher priority
task is waiting to preempt it. τ2 resumes execution after the ISR finishes, until it
reaches its next preemption point at time t = 7. There, it receives the notification
by the scheduler of a higher priority waiting task, and decides to yield to the higher
priority task, by executing a corresponding API primitive. The kernel invokes the
scheduler again, but detects that the executing task is at a preemption point, and
this time allows preemption by the higher priority task τ1. After this job finishes,
τ2 can start with its next subjob at time t = 11.

6.1 Scheduler modifications

There are several ways to approach handling interrupts which occur during the
execution of nonpreemptive subjob. First, the interrupt may be recorded with
all scheduling postponed until the scheduler invocation from yield() at the next
preemption point.

Alternatively, all tasks which have arrived can be moved from the pending queue
to the ready queue directly (as is the case under FPPS), with only the context switch
postponed until the next preemption point. This has the advantage that there is
opportunity for optional preemption points to be implemented, if the information
about the availability of a higher priority, waiting task can be communicated in an
efficient manner to the currently running FPDS task for use at the next optional
preemption point. These two alternatives can be described as pull versus push
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Figure 6.1: Time schedule of preemption in our FPDS design

models respectively. They represent a tradeoff, and the most efficient model will
most likely depend on both the task sets used, and the period of the timer.

On our platform we could not measure the difference between these two alterna-
tives; any difference in efficiency between the two approaches was lost in the noise
of our experiment. Therefore we opted to go with the last alternative, as this would
not require extensive rewriting of the existing scheduler logic in RTAI, and thereby
fit our requirements of maintainability and our extensions being conservative. The
efficiency differences between these approaches may however be relevant on other
platforms, as described in [16], based on [10].

Working from the FPNS implementation of section 5, the needed modifications
to the scheduling functions rt_schedule() and rt_timer_handler() for FPDS
behaviour are small. Unlike the FPNS case, the execution of the scheduler can
not be deferred until the completion of a FPDS (sub)task if we want to use the
push mechanisms just described, as the scheduler needs to finish its run to acquire
this information. Instead of avoiding the execution of the scheduler completely, for
FPDS we defer the invocation of a context switch to a new task if the currently
running task is not at a preemption point, and notify the running task of a waiting
higher priority job.

The existing test clause for preemptibility of the currently task that we intro-
duced at the start of the scheduler functions for FPNS is therefore moved to a
section in the scheduler code between parts 3 and 4 as described in Section 3.5, see
Figure 6.1. There, the scheduler has decided that a new task should be running,
but has not started the context switch yet. At this point we set a newly introduced
TCB integer variable should_yield to true, indicating that the current task should
allow itself to be preempted at the next preemption point. This variable is reset to
false whenever the task is next context switched back in.

With these modifications, during a timer interrupt or explicit scheduler invoca-
tion amidst a running FPDS task, the scheduler will be executed and wake up any
timed tasks. If a higher priority task is waiting at the head of the ready queue,
a corresponding notification will be delivered and the scheduler function will exit
without performing a context switch.
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Figure 6.2: Flow diagram of the FPDS scheduler logic

This is still not sufficient for achieving FPDS behaviour however, as the scheduler
will not allow preemptions even during a preemption point. To achieve correct
preemption behaviour in this situation, we extended the if clause with a test for
the RT_FPDS_YIELDING task state flag that was introduced. During the execution
of the scheduler at a preemption point it is set to true, causing the scheduler to
execute as in a FPPS system, and perform a context switch to the new, higher
priority task as desired.

These modifications to the scheduler are described in the form of a flow diagram
in Figure 6.1. The blue figures and arrows represent changes compared to the
original scheduler implementation, which was described by Figure 3.5.

Kernel implementation of preemption points

It would appear that using a standard yield() type function, as present within
RTAI and many other operating systems, would suffice for implementing a pre-
emption point. Upon investigation of RTAI’s yield function (rt_task_yield()) it
turned out however that it could not be used for this purpose unmodified. This
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Figure 6.3: RTAI tasks state extended with RT FPDS YIELDING bit flag

function is only intended for use with round-robin scheduling between tasks having
equal priority, because under the default FPPS scheduler of RTAI there is no reason
why a higher priority, ready task would not already have preempted the current,
lower priority task. However with the non-preemptive tasks in FPDS, a higher pri-
ority job may have arrived but not been context switched in, so checking the ready
queue for equal priority processes is not sufficient. An unconditional call to sched-
uler function rt_schedule() should have the desired effect, as it can move newly
arrived tasks to the ready queue, and invoke a preemption if necessary. However,
the modified scheduler will evaluate the currently running task as non-preemptive,
and avoid a context switch. To indicate that the scheduler is being called from a
preemption point and a higher priority task is allowed to preempt, we introduce a
new bit flag RT_FPDS_YIELDING to the task state variable in the TCB, that is set
before the invocation of the scheduler to inform it about this condition. The flag is
then reset again after the scheduler execution finishes.

Due to the different aim of our FPDS yield function in comparison to the original
yield function in RTAI we decided not to modify the existing function, but create
a new one specific for FPDS use instead: rt_fpds_yield(). The FPDS yield
function is simpler and more efficient than the regular yield function, consisting
of just an invocation of the scheduler function wrapped between the modification
of task state flags. This also removed the need to modify the existing code which
could introduce unexpected regressions with existing programs, and have a bigger
dependency on the existing code base, implying greater overhead in maintaining
these modifications in the future.

The following abstract code describes the implementation of the newly intro-
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duced rt_fpds_yield() API primitive:

function task_thread() {
# Indicate to the scheduler that we are executing a preemption point
current_task.state.FPDS_YIELDING = true
# Invoke the scheduler
rt_schedule()
# Reset the yielding flag
current_task.state.FPDS_YIELDING = false

}

6.2 Notification of waiting higher priority tasks

With FPDS, part of the scheduling decisions is moved from the central scheduler at
system level to the user application level. Although the system scheduler remains
responsible for the administration of task arrival and scheduling of the order of tasks,
the decision of when to activate a task now lies partially within an application, in
the case of a required preemption. In order to be able to make this decision in an
efficient way, the currently running FPDS application should either be informed by
the scheduler when a higher priority job has arrived and is waiting for preemption,
or be able to use an efficient primitive to ask the kernel to make this decision upon
invocation. These solutions follow push and pull models, respectively.

The latter alternative, pulling (or polling), is effectively already implemented by
the rt_fdps_yield() function introduced in the previous section. By invocation of
this primitive the scheduler is called with the RT_FPDS_YIELDING task state flag set,
allowing the scheduler to wake up timed tasks and move them to the ready queue,
and then context switch to a higher priority task if one is available (see Section 3.5).
In case there is no higher priority task waiting, the scheduler will return without
action to the calling task. This is indeed our desired FPDS behaviour, but it comes
at a cost of a system call including a full scheduler invocation at every preemption
point.

Because we want tasks to be able to learn about the presence of waiting higher
priority tasks without necessarily causing a preemption, we implemented a simple
method of reading the status of the should yield flag that is stored in the TCB
and written to by the timer interrupt handler. Because the TCB is stored in
kernel-memory, inaccessible by normal user-land tasks, we introduced a new sys-
tem call rt_should_yield(), which returns a boolean with the value of the TCB
should yield variable. This represents a first step towards support for optional pre-
emption points, although this implementation is not the most efficient one: for
every inspection of the presence of waiting tasks, a system call is necessary. A more
efficient implementation that avoids this problem will be introduced in the next
chapter.

6.3 User-land support

To aid the use of FPDS by real-time programs, a small FPDS specific library has
been written that abstracts the use of the API primitives offered by RTAI, and can
make commonly used functions available that are helpful to FPDS applications.
Initially, this library merely consists of functions for FPDS task initialization and
an implementation of optional preemption points. The expectation is that it will be
extended when FPDS is employed along with support for task deadline monitoring
and/or enforcement, or in the context of mode changes [17], where a task will have
a non-sequential subtask structure to support different modes.
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The new library was named libfpds and was written in C as a shared library,
with a dependency on the RTAI liblxrt library for access to the RTAI API.

6.3.1 FPDS task initialization

A task wishing to be scheduled using FPDS can make use of the fpds_task_init()
function. It expects one argument: a pointer to a struct of type fpds_context,
which is used for keeping state information local to the thread/task. Since the
library must be able to support multiple threads/tasks within a single program to
which it is linked, it cannot keep its state in its own static memory on the heap, as it
would be shared by all threads using it. We decided to solve this problem by having
each task manage its own FPDS context instance, by allocating and deallocating
it itself, and passing it onto libfpds functions that require access to it. Function
fpds_task_init() takes care of initialisation of the FPDS context instance, which
is opaque to the task itself.

The initialising task is also set to be non-preemptible, using the API primi-
tive rt_set_preemptible() that was introduced in Section 5.2. From thereon,
the task will either need to move out of ready state (e.g. using the primitive
rt_wait_period), or execute a preemption point to give control to other tasks.

6.3.2 Preemption point

In Section 6.1 all necessary kernel infrastructure to support preemption points has
been established, but what remains is a preemption point primitive that is simple
to use by programs utilising FPDS. A preemption point should not need to consist
of more than one line of code at most, e.g. a function call, for it not to be too
intrusive to existing task code. We introduce a new function fpds_pp() for this
purpose.

A preemption point serves two purposes:

• Detection whether there are any waiting higher priority tasks

• Yielding to higher priority tasks (to allow preemption)

Likely these two purposes will be combined in most cases, i.e. a yield to higher
priority tasks will be done if higher priority waiting tasks are detected, but this
may not always be the case. It can be useful for tasks to learn about the presence
of higher priority tasks without immediately transferring control to them. For this
reason we introduce a boolean argument allow_yield to function fpds_pp() that
indicates the wanted behaviour, i.e. whether the preemption point is allowed to
immediately yield before returning if suggested by the kernel, or not. Furthermore,
the function will return a boolean that represents the presence of waiting higher
priority tasks, i.e. the value of the rt_should_yield() system call. The task can
use this return value, if interested, to determine if a preemption had occurred during
the preemption point (if allow_yield is true), or if preemption will occur next time
it will yield (if allow_yield is false).

A corresponding flow diagram of the user-land implementation of a preemption
point is shown in Figure 6.3.2.

6.4 Verification

We would like to verify the correctness of our FPDS implementation in a similar
way as we verified FPNS scheduling in Section 5.3. Our earlier method of recording
the interleaving of jobs throughout context switches is no longer sufficient however,
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Figure 6.4: Flow diagram of a preemption point

as unlike an FPNS job, a FPDS job can be preempted. The resulting interleaving
would therefore be difficult or impossible to distinguish from an FPPS schedule.

The difference between FPPS and FPDS is that under FPPS preemptions are
allowed at arbitrary moments, whereas a FPDS job should only be preempted while
it is executing a preemption point. In our testing, we attempt to find occurrences
of preemptions where this is violated.

The test methodology of Section 5.3 was modified for use of FPDS scheduling.
The low priority task τ2 was changed into an FPDS task, by splitting it into K = 500
equally sized subtasks, τ2,0, τ2,1, . . . , τ2,K−1 with Cτ2,k = Cτ2 /K. Between every pair
of subtasks a preemption point was placed.

Because the high priority task τ1 will be attempting to preempt the low priority
FPDS task, we modified it to test whether τ2 was executing a preemption point
while τ1 is assigned the CPU. For the purpose of testing, we introduced a global
integer variable at_pp, which is maintained at 1 when τ2 is allowed to be preempted
(i.e., at a preemption point, and before the first and after the last instruction of
the task), and at 0 everywhere else. Task τ1 was changed to assert whether at_pp
equals 1 during its execution, displaying an error message and terminating the test
program if this is not the case.

Interleaving was as follows:
0 0 0 0 0 0 0 0 10000 20000 10001 20000 10002 20000 10003 20000 10004
20000 10005 20000 10006 10007 10008 10009 10010 20001 10011 20001
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10012 20001 10013 20001 10014 20001 10015 20001 10016 10017 10018
10019 10020 20002 10021 20002 10022 20002 10023 20002 10024 20002
10025 20002 10026 10027 10028 10029 10030 20003 10031 20003 10032
20003 10033 20003 10034 20003 10035 20003 10036 10037 10038 10039
10040 20004 10041 20004 10042 20004 10043 20004 ...

In this test, clearly the low priority task τ2 was preempted by higher priority
task τ1, and no jobs missed their deadlines. The high priority task did not detect
any preemptions of τ2 outside a preemption point, i.e. at_pp was 1 consistently
throughout the test. This result thus provides a strong indication that this task set
was scheduled correctly using a FPDS scheduling scheme.

6.5 Key performance indicators

Our implementation should be checked for the following elements, which relate to
the design aspects mentioned in Section 4.3:

• The interrupt latency for FPDS. This is intrinsic to FPDS, i.e. there is ad-
ditional blocking due to lower priority tasks. It has been dealt with in the
analysis in [6, 7];

• The additional run-time overhead due to additional code to be executed. This
will be measured in Section 6.6;

• The additional space requirements due to additional data structures and flags.
Our current implementation introduces only two integer variables to the TCB,
so the space overhead is minimal;

• The number of added, changed, and deleted lines of code (excluding comments)
compared to the original RTAI version. Our extension adds only 106 lines and
modifies 3 lines of code, with no lines being removed;

• The compatibility of our implementation. Because our extensions are conserva-
tive, i.e. they don’t change any behaviour when there are no non-preemptive
tasks present, compatibility is preserved. This will also be verified by our
measurements in Section 6.6.1.

6.6 Measurements

We performed a number of experiments to measure the additional overhead of our
extensions compared to the existing FPPS scheduler implementation. The hardware
used for these tests was an Intel Pentium 4 PC, with 3 Ghz CPU, running Linux
2.6.24 with (modified) RTAI 3.6-cv.

To avoid factoring in the overhead of the actual measurement process in the
results, we have taken the commonly used approach of measuring a varying amount
of iterations of the subject over a timed interval, and averaging the results.

6.6.1 Scheduling overhead

The goal of our first experiment is to measure the overhead of our implementation
extensions for existing real-time task sets, which are scheduled by the standard RTAI
scheduler, i.e. following FPPS. For non-FPDS task sets, scheduling behaviour has
not been changed by our conservative implementation, but our modifications may
have introduced additional execution overhead.
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As our example task set we created a program with one non-periodic, low pri-
ority, long running FPPS task τl, and one high priority periodic FPPS task τh.
τl consists of a for loop with a parameterized number of iterations m, to emu-
late a task with computation time Cτl . The computation time of the high priority
task, Cτh , was 0; the only purpose of this empty task is to allow for measurement
of overhead of scheduling by presenting an alternative, higher priority task to the
scheduler. Th was kept equal to the period of the timer, such that a new high
priority job is released at every scheduler invocation from the timer event handler.
The following pseudocode represents the definition of both tasks:

function high_job(instance) {
loop_task(0)

}

function low_job(instance) {
loop_task(50000000)

}

function loop_task(n) {
for (i = 0; i < n; i++)

# noop
}

Since, from the perspective of an FPPS task, the only modified code that is
executed is in the scheduler functions, we measured the response time of task τl
under both the original and the modified FPDS real-time RTAI kernel. We varied
the period of the timer interrupt, and thereby the frequency of scheduler invocations
encapsulated by the timer event handler. The results are shown in Figure 6.5.

As expected, there is no visible difference in the overhead of the scheduler in
the modified code compared to the original, unmodified RTAI kernel. For an FPPS
task set the added overhead is restricted to a single if statement in the scheduler,
which references 3 variables and evaluates to false. This overhead is unsubstantial
and lost in the noise of our measurements. We conclude that there is no significant
overhead for FPPS task sets introduced by our FPDS extensions.

6.6.2 Preemption point overhead

With an important aspect of FPDS being the placement of preemption points in
task code between subtasks, the overhead introduced by these preemption points
is potentially significant. Depending on the frequency of preemption points, this
could add a substantial amount of additional computation time to the FPDS task.

We measured the overhead of preemption points by creating a long-running, non-
periodic task τl with fixed computation time Cτl implemented by a for loop with
m = 100M iterations, and scheduled it under both FPPS and FPDS. The division
into subtasks of task τl has been implemented by invoking a preemption point every
n iterations, which is varied during the course of this experiment, resulting in dm/ne
preemption point invocations.
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Figure 6.5: Overhead of the modified kernel for FPPS task sets

The following abstract code describes the definition of τl:

function low_job(instance, pp_sample) {
for (i = 0; i < 1000000000; i++) {

if (mod(i, pp_sample) == 0) {
yield_count += fpds_pp(1) # Preemption point

}
}

}

For the FPPS test the same task was used, except that every n iteration interval
only a counter variable was increased, instead of the invocation of a preemption
point. This was done to emulate the same low priority task as closely as possible
in the context of FPPS:

function low_job(instance, pp_sample) {
for (i = 0; i < 1000000000; i++) {

if (mod(i, pp_sample) == 0) {
yield_count += 1

}
}

}

The response time Rl was measured under varying intervals of n for both FPPS
and FPDS task sets. The results are plotted in Figure 6.6.

Clearly the preemption points introduced in the lower priority task introduce
overhead which does not exist in a FPPS system. The extra overhead amounts
to about 440 µs per preemption point invocation, which corresponds well with a
measured value of 434 µs per general RTAI system call overhead which we ob-
tained in separate testing. This suggests that the overhead of a preemption point
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Figure 6.6: Overhead of preemption points

is primary induced by the rt_should_yield() system call in the preemption point
implementation, which is invoked unconditionally.

We see one anomaly in the test, around n = 6000 in the graph, where the
response time of FPPS is significantly higher than expected. The exact reason for
this unfortunately remains unclear.

6.6.3 An example FPDS task set

Whereas the previous experiments focussed on measuring the overhead of the indi-
vidual extensions and primitives added for our FPDS implementation, we performed
an experiment to compare the worst case response time of a task set under FPPS
and FPDS as well. The task set of the previous experiment was extended with a
high priority task τh with a non-zero computation time Cτh (see the pseudocode
below). For this experiment we varied the period of the high priority task. To keep
the workload of the low priority task constant, we fixed the interval n of preemp-
tion points to a value (5000) frequent enough to allow preemption by τh without
it missing any deadlines under all values of Th ≥ 1.2ms under test. The response
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Figure 6.7: A task set scheduled by FPPS and FPDS

time of the low priority task (Rl) is plotted in Figure 6.7.

function high_job(instance) {
loop_task(100000) # ca. 1.2 ms on the test machine

}

function low_job(instance) {
for (i = 0; i < 1000000000; i++) {

if (mod(i, 5000) == 0) {
yield_count += fpds_pp(1) # Preemption point

}
}

}

The relative overhead appears to depend on the frequency of high priority task
releases and the resulting preemptions in preemption points, as the number of pre-
emption points invoked in the duration of the test is constant. The results show an
increase in the response time of τl for FPDS of at most 17% with a mean around 3%.
The large discrepancy of the results can probably be attributed to the unpredictable
interference from interrupts and the resulting invalidation of caches. Considering
the relatively low mean overhead of FPDS, we would like to identify the factors
which contribute to the high variation of the task response time, and investigate
how these factors can be eliminated (see Chapter 9).
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Chapter 7

Optional preemption points

The implementation of FPDS that we arrived on in the previous chapter was func-
tional, but not really optimized for efficiency. Especially the implementation of
preemption points is wasting resources by unconditionally executing a system call
which, for the real-time Linux tasks in user mode, requires two privilege mode
changes (from user into kernel mode, and back). We may be able to avoid this.
When preemption points cause significant slowdowns of the execution of tasks, and
decrease the utilisation of the system, this may cause programmers to reduce their
usage and make the division of FPDS tasks into subtasks less fine grained, which
again reduces the schedulability of task sets and the utilisation of a system. It is
therefore in our interest to make sure that preemption points are implemented in
an efficient and nonintrusive way.

In this chapter we will investigate the different alternatives to implement op-
tional preemption points, and show how our newly chosen alternative implementa-
tion performs better than the one of the previous chapter.

7.1 Push notification of waiting higher priority tasks

If the presence of waiting higher priority tasks, as detected from the interrupting
timer handler, can be pushed down to the running task, then the largest source of
preemption point overhead can be removed. Timer events are executed even during
the execution of an FPNS/FPDS task, because (sub)tasks are non-preemptive only
with respect to other tasks, not interruption by interrupt handlers.

For the implementation of notification from the scheduler inside the timer inter-
rupt handler, we recognized the following options:

• RTAI’s signal handling system

• A settable flag in the TCB, which can be polled during a preemption point
using a system call

• A settable flag which can be examined by the task from user space without a
system call, utilising a memory page shared by the currently running process
and the kernel

The solution using RTAI’s signal handling system was quickly rejected upon
examination; although tasks’ own signal handlers are executed within the process
space of the installing task, they run in a different execution context which implies
that two context switches are required for the delivery of a new task’s arrival.
Because one of the stated advantages of FPDS is reduction of the overhead of context
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switches [11,16], this solution with two extra context switches per task arrival event
appears counter-productive in reducing the overhead compared to FPPS.

The second option is effectively the one that was implemented in the previous
chapter. It involves the modification of a boolean should yield that is added to
the TCB. When during the execution of the scheduler it is determined that the
currently running FPDS task should (but cannot) be preempted, this variable in
the task’s TCB will be set to true. When the task later reaches a preemption point,
it can read this value through a system call without having to invoke the scheduler,
and decide whether to perform a yield based on this information. The scheduler
makes sure the flag is reset upon a context switch to the current task. Although
this approach is quite elegant in terms of simplicity, it is not very efficient due to
the implied system call overhead.

Alternatively this should yield flag could be placed in special reserved memory
page that is mapped inside FPDS tasks’ process space as a read-only page, but
writeable by the kernel. This recent approach, with the common name virtual
system call (vsyscall) is now used by several mainstream operating systems to allow
for information transfer from kernel to user space without incurring system call
overhead. A typical example is the vsyscall version of the often called Unix system
call gettimeofday(). Every timer interrupt the kernel updates the current time in
this read-only memory page that is mapped to every process’ address space, where
it can directly be read without a system call by a userspace function also placed in
this memory page. This same approach could be used for the should yield variable,
which would mean that the need for a system call at every preemption point is
removed. This method is favourable in terms of run-time overhead compared to the
other two methods; however it is also the method with the highest implementation
complexity, as well as the greatest dependency on the existing code base. This is
due to the procedures required to set up a shared, read-only memory page mapped
into every process with dynamic shared objects (library code) inside.

While investigating this option we found that recent Linux kernels have some
infrastructure to support this scheme, however these implementations were archi-
tecture specific, and not universally supported. We found several different imple-
mentations between both architectures and recent kernel versions, suggesting that
a more final and stable cross platform implementation is still being worked on.
Moreover, this infrastructure is handled within the Linux kernel proper, and not by
RTAI. Using this infrastructure from RTAI would increase the cross dependencies
between the Linux source code base and the RTAI patches, further complicating the
maintainability of our extensions. For these reasons we decided that this method
was not very attractive.

7.1.1 Alternative design

There are two specific properties of our real-time environment which we can make
use of to arrive at a simpler implementation that has the same performance benefits
as the one described above, but without the maintainability and complexity draw-
backs. Instead of setting up a special memory page to be written to by the kernel,
and mapped into the address space of interested processes, the regular, allocated
memory of a process could be used as well. The kernel, which the RTAI hypervisor
is part of, has full (write) access to all memory, and would therefore be able to
update a variable in user process memory space as well. In general this is however
not unproblematic:

• A different process’ memory address space may be loaded when the kernel
needs to update a process’ variable.
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• The relevant memory page may be paged out into swap space, and therefore
not present in physical memory.

• Care needs to be taken that no access control measures are circumvented.

In our case, the first does not apply. Whenever the kernel wants to update the
should_yield variable to true, indicating that a higher task is waiting to preempt
a lower priority FPDS task, this is during the (interruption of the) actual execution
of the task of which the should_yield variable should be set. This implies that the
memory address space of this process is guaranteed to be loaded at that point. The
setting of the should_yield flag is done either by the execution of the scheduler
from the timer interrupt handler, or from a system call that (indirectly) invokes
rt_schedule(). Neither of these cases is problematic.

The kernel also needs to reset the flag again after a context switch has occurred,
before the task resumes execution again and a new high priority task can introduce
interference. The location of this assignment can conveniently be chosen at a mo-
ment when the process’s address space is loaded. In our implementation we chose to
reset the flag in the scheduler directly after the context switch back has completed,
i.e. when the original task is context switched back in after preemption by one or
more tasks, but before it resumes its actual execution.

The condition of an attempted write by the kernel to a process’s memory page
that is paged out (a page fault) is also not as likely to occur, since real-time
tasks need to lock their memory pages into physical memory to maintain real-
time behaviour. In RTAI/Linux, real-time programs are recommended to use the
mlockall() system call to achieve this, in which case a page fault can no longer
occur. Even if this is unwanted for some reason, it is sufficient to lock the memory
page containing the should_yield variable into physical memory, before registering
it with the RTAI kernel.

Finally, the use of the in-kernel macro put_user(), which checks whether the
given address is within the user space boundary of the memory address space shared
by the kernel and the process, takes care of the problem of access control. Because
this macro enforces the registered address of the should_yield variable to be con-
fined to the process’s address space, there is no risk of violating either the memory
of the kernel, or any other process.

Implementation

We implemented this solution by introducing two new RTAI system calls, rt_assign_var()
and rt_release_var(). These allow an RTAI task to register certain predefined
variables on a given process memory address for access by the kernel, until they
are released again. rt_assign_var() expects three arguments: an identifier for the
variable that will be registered with the kernel (currently, only RT_VAR_SHOULD_YIELD
is supported), a pointer to the variable in the process’s address space, and the size
of the variable, in bytes. System call rt_release_var() only expects the variable
identifier and will unregister it if it was previously set. Extra variables that need
to be shared between the RTAI kernel and the task can be introduced in a similar
way by using different variable identifier values, without having to introduce new
RTAI system calls.

Comparing this solution to the vsyscall system described in Section 7.1, we find
that it is simpler to implement, and has better maintainability properties because
the interface with the Linux kernel is minimized. Our implementation has no need
for a special memory page that is mapped into every (real-time) process, because
already existing heap memory inside processes’s address space can be used, such
that the extra memory usage is restricted to a single integer pointer. But most
importantly, in our implementation we can also support data transfer from user
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space to kernel space, unlike the vsyscall solution in Linux, where processes can
only read data previously stored by the kernel in the read-only mapped memory
page. We will make use of this advantage in Chapter 8.

7.2 User-land support

The support library libfpds that was introduced in Section 6.3 has been extended
to support the new style optional preemption points as well. One of both mech-
anisms can be selected at compile time by defining FPDS FAST SHOULD YIELD pre-
processor variable (which is the default). If defined, the new mechanism that is
described here will be compiled in, otherwise the old style is selected.

The new optional preemption points make use of a should_yield variable in the
address space of the real-time process, but we would like to abstract from this, and
hide these details from the programmer. Since the should yield flag is task/thread
specific, it is added to the fpds context struct, and initialized to false in function
fpds task init(). To register this variable with the kernel, we introduce two thin
wrappers around the RTAI API functions rt assign var() and rt release var()
functions: fpds assign should yield() and fpds release should yield(). The
former takes an integer pointer argument that will be passed to the kernel; the latter
releases any previously registered variable.

Function fpds task init() is extended to include a call to fpds assign should yield()
as well, using the should yield integer variable from the supplied fpds context
instance. Additionally, it performs a mlock() on the memory page containing the
variable should yield, for the reasons described in Section 7.1.1. Cleanup of this
variable registration is automatic upon task destruction, but can be done manually
by the task using the fpds release should yield() function.

Because the should_yield variable needs to be inspected during a preemption
point, the function fpds pp now needs access to the fpds_context instance. The
prototype of this function is therefore extended to require this instance to be passed
as a const pointer. In fpds pp(), the unconditional system call to should yield()
is now replaced by a very fast memory read of the fpds context->should yield
variable, and a system call (to rt fpds yield()) is only required when the task
indeed needs to yield for higher priority jobs.

7.3 Comparative measurements

Through some new measurements we compared the performance of the new imple-
mentation of optional preemption points to the previous, system call based imple-
mentation.

The performance improvement is expected to result from the replacement of
system call based polling by a direct memory read. In Section 6.6.2, the overhead
of executing preemption points over varying granularity was measured. We repeated
this test to compare the response time of a task scheduled under FPPS, and the
two FPDS implementations. The results are shown in Figure 7.1.

From the differences in response time shown in this graph we can conclude
that our new FPDS preemption point implementation has a significant performance
advantage compared to the previous FPDS implementation. The response times are
similar to the FPPS scheduled task set, which does not have preemption points but
executes a counter increment instead.

For the strange anomaly in the results, where the response time of the test pro-
gram is significantly better than the mean we do not have a conclusive explanation;
our best guess is that in the particular test instance the wall clock time was not
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Figure 7.1: Comparison of preemption point implementation overhead

properly updated by the periodic timer handler due to e.g. a delayed interrupt,
which affected the measurements.
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Chapter 8

Future work

In the previous chapters, we have arrived at a functional and efficient implemen-
tation of FPDS. We will now have a look at how the structure of an FPDS task
can be made explicit, and an example of how this can be exploited: we explore a
possible design for support of monitoring and enforcement of task budgets.

8.1 Implementing subtask structure awareness

In our discussion about the task model in Section 4.2.3, we have seen that the
structure of an FPDS task can be regarded as a directed acyclic graph of subtasks,
and mentioned the possibility of making this structure apparent to the system. In
this section we will discuss some of the potential applications of this idea.

In Section 4.2.3 we proposed a task model for FPDS that preserves the use of a
single task in the system to model a FPDS task consisting of individual subtasks, but
introduces a data structure describing the properties of, and relationship between
these subtasks. In this section we will briefly describe some aspects that should be
considered when designing and implementing this in RTAI.

It is expected that tasks initialize their structure of subtasks at task creation
time. Each node in the DAG represents a subtask, which can be linked to one or
more neighbors. When an FPDS task is initializing, it should supply the required
information about the structure of the graph, and for each node any properties of
subtasks that are considered useful. These subtask properties could include, for
example:

• The worst-case computation time

• The best-case computation time

• The preemptibility, to mix preemptive and non-preemptive subtasks

• The mode to which the subtask belongs, in a system supporting “mode changes”
(see Section 1.3.3)

Additionally, the nodes in the graph could be used to store the results of analysis
on the task structure, such as the worst-case computation time of all paths in the
subgraph for a given node. If this information does not change during the execution
of jobs, it can reduce the overhead at preemption points and during scheduling by
the kernel.

The DAG will be inspected throughout the execution of tasks, so it is recom-
mended to select a graph data structure implementation that avoids fragmentation
of individual nodes over multiple memory pages. A compact memory representation
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would avoid memory cache misses and cache line trashing while other task data is
being accessed between preemption points.

At least the following primitives should be created to operate on the task struc-
ture information:

• Primitives to initialize the properties of a single node (subtask)

• Primitives to form the graph structure of the task

• Primitives to iterate over the graph, e.g. during task execution at preemption
points

• Primitives for cleanup of the data structure

8.2 Monitoring and enforcement

The introduction of non-preemptiveness into a real-world system poses a risk to the
reliability of the entire system because non-preemptive tasks that get corrupted or
are faulty can prevent even higher priority tasks from receiving sufficient proces-
sor time. A single task that slips into an endless loop can cause starvation of the
entire system, for example. For this reason the monitoring of execution times of
(sub)tasks, and the corresponding enforcement of the designed worst-case computa-
tion times is of increased importance in an FPDS scheduled system. Because a task
is divided into non-preemptive subtasks of which we can keep individual properties
and statistics, we have the opportunity to keep tighter control compared to a FPNS
system where only information about entire tasks is available.

An FPDS task that violates its stated worst-case computation times causes
interference to other tasks. With FPDS, higher priority tasks can preempt an
FPDS task, only at a preemption point. Lower priority tasks need to wait until the
complete FPDS task finishes.

Let τi be an FPDS task, consisting of Ki subtasks, τi,0, τi,1, . . . , τi,Ki−1, forming
a DAG. Assume that a schedule is known to be feasible when all FPDS subjobs
execute within their stated maximum computation times:

∀i,j,k
(
Cιi,j,k ≤WCτi,k

)
(8.1)

We will analyse the cases for interference with higher and lower priority tasks
individually.

For lower priority tasks, a job ιi,j can only cause additional interference if its
total execution time Cιi,j exceeds the worst-case computation time of the task:

Cιi,j > WCτi (8.2)

This does not differ from the situation with FPPS or FPNS tasks; however it
can be detected earlier if minimum computation times BCτi,k are available for all
subtasks. When the minimum remaining computation time of a task in addition
to the past execution time of the running job at the moment a subjob exceeds its
worst-case computation time is larger than the worst-case execution time of the
entire task, it will cause problems. Let ιi,j,k be a subjob that exceeds its maximum
computation time WCτi,k. If it holds that:

k∑
k′=0

Cιi,j,k′ +BCRτi,k > WCτi (8.3)
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Then, the minimum computation times of the remaining subjobs guarantee that
the job cannot “catch up” using any gain time of subjobs executing in less than
their maximum computation times.

Higher priority tasks can preempt between every subjob. From [7] we know that
the maximum blocking factor Bτh of a task τh is:

Bτh =

{
maxj>h max0≤k<KjWCτj,k for h < n

0 for h = n
(8.4)

where τn is the lowest priority task.
If, with a running job ιi,j we don’t want to increase the blocking factor of a

higher priority task, we need to make sure that:

Cιi,j,k ≤ minh<iBτh (8.5)

Seeing as ∀h<i (Bτh ≥ Bτi ), we can rewrite Equation 8.5 as:

Cιi,j,k ≤ Bτi−1 (8.6)

which, according to (8.4) equals:

Cιi,j,k ≤ maxl≥i max0≤k<Kl
WCτl,k (8.7)

In words, the execution time of any subjob of task τi should not exceed the
worst-case computation time of any subtask of τi, or any lower priority subtasks.

Obviously, these thresholds are very pessimistic. They only detect whether the
original fixed-priority schedule, which is assumed to be calculated “offline” as being
feasible, will be violated, regardless of whether all tasks in the system might still
be able to meet their deadlines despite a task overrunning.

8.2.1 Design considerations

RTAI is designed as a thin layer providing fixed-priority scheduling, and does not do
any online analysis of schedule feasibility. Our goal is thus to design an extension
of RTAI with minimal, efficient support for monitoring and enforcement in the
context of FPDS scheduling, that only attempts to interfere when the original offline
schedule is not met.

The purpose of enforcement is protection against corrupt or faulty tasks, which
implies that enforcement cannot be done by tasks themselves: in a situation where
enforcement is necessary, the relevant enforcement routines might never get exe-
cuted. A possible location to do enforcement checking would be inside the timer
interrupt handler. This code is guaranteed to be executed despite aberrant be-
haviour of normal tasks, and additionally this means that enforcement can coincide
with the release of new tasks.

The fact that enforcement will be done from inside an ISR does however mean
that its code needs to be as short and predictable as possible. It should not have to
do extensive calculations or analysis, and should avoid touching memory as much
as possible to prevent memory cache trashing.

While enforcement needs to be done by the RTAI kernel, monitoring, and any
computation time analysis to be used by the kernel can partially be supported by
the task itself - for example, abstracted away inside a preemption point, with all
information about the subtask structure available.
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Monitoring interference with other tasks

As discussed, an FPDS task can only cause additional interference with the schedul-
ing of lower priority tasks if the execution time of the job exceeds the worst-case
computation time of the entire task, as with FPPS and FPNS (see Equation 8.2).
For the monitoring and enforcement of worst-case computation times against in-
terference with lower priority tasks, the kernel needs the following data about the
executing job (see Equations 8.2 and 8.3):

• The execution time since the start of the job

• WCτi

• Optionally, BCRτi,k

WCτi can be calculated by the task from the individual values WCτi,j of all
subtasks, by calculating the maximum sum of all WCτi,j that form a valid execution
path in the subtask DAG. Ideally this is calculated either offline or during task
initialisation, and this value can be published to the kernel at the start of the (first)
job.

The current execution time of the running job can easily be maintained by the
kernel, by storing a timestamp in the task’s TCB upon a context-switch to the
task, and comparing it with the current time during the enforcement check, or
when preempting the task. Alternatively, the execution time can be monitored by
the task itself inside the preemption points in a similar way, upon the start of a
subjob and at the end of a subjob, before the task yields to higher priority tasks.
To implement this efficiently in RTAI, avoiding system calls at every preemption
point, for example on Intel CPUs, the rdtsc instruction could be used to get the
processor cycle count, converted to nanoseconds, without the need to perform a
system call.

If minimum computation times are available per subtask (BCτi,k), then the future
overrun of an FPDS job could be predicted earlier, at the expense of some additional
processing overhead (See Equation 8.3). If the kernel has access to a computed lower
bound of computation time of the remainder of the job (BCRτi,k), it can determine
that it is impossible for the job to meet its stated worst-case computation time,
and terminate it early if a lower priority task is already waiting. This value can be
calculated at each preemption point, and published to the kernel in a similar way
as described in the previous sections.

Note that both the worst-case computation time WCτi and the minimum compu-
tation time BCτi can become pessimistic during the execution of an FPDS task, due
to the selection of branches in the DAG describing the structure of the task, if the
job departs from the critical path. Using the infrastructure described in Chapter 7,
less pessimistic predictions can be maintained in variables that are published to the
kernel, with rt_assign_var(). This way, they can be updated inside a branching
preemption point and inspected by the kernel without requiring expensive system
calls.

Monitoring interference with higher priority tasks is more difficult. The kernel
is not necessarily invoked at preemption points between subjobs, and is therefore
not by itself able to closely monitor the behaviour of every subjob, such as the exact
time it starts. Therefore we have a tradeoff between implementation efficiency, and
features such as monitoring and enforcement.

Measurement of the execution time of individual subjobs could in principal be
done by the task itself at preemption points, for example using the rdtsc instruction
to get a timestamp of the start of the subjob, as discussed above. This information
can be efficiently communicated to the kernel during preemption points as well
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where it can be used for enforcement by the kernel, which will be discussed in the
next section.

Enforcement

Enforcement is a difficult problem to solve, as we cannot rely on any code execution
within the task itself for it. A single subjob could overrun, and cause interference
with both higher and lower priority processes before the kernel is able to detect
this, for example in the ISR of a periodic timer. When the periodic timer fires, the
offending task may have been exceeding its budget for longer than the schedule can
allow.

It might be possible to solve this problem if a low overhead oneshot timer is
available that can be programmed using absolute times, for example Intel’s HPET
[19] in the PC platform. During the arrival of other tasks in the timer interrupt
handler, the oneshot timer could be programmed to fire when the currently running
job is about to exceed its execution time allowance. Using Equations 8.2 and 8.7,
we derive that the timer should fire at the minimum of the absolute times where
the task will interfere with lower and higher priority tasks, respectively:

f = min

{
sιi,j +WCτi
sιi,j,k + maxl≥i max0≤k<Kl

WCτl,k
(8.8)

f is the absolute time when the timer should fire, and sιi,j and sιi,j,k are the
absolute start times of the currently running job and subjob.

The value of maxl≥i max0≤k<Kl
WCτl,k can be computed and updated upon

initialization of every new task. The task itself can publish the value of sιi,j,k to
the kernel from within a preemption point without much overhead, and sιi,j can be
determined by the kernel itself at context switches.

If the subjob finishes in time, it will yield for preemption by the higher priority
task(s), at which point the kernel is able to cancel the previously programmed timer
and avoid the unnecessary overhead of handling the interrupt, but at the cost of
overhead of reprogramming the timer.

The method used for the actual enforcement of task budgets is implementation
and policy dependent, and outside the scope of this thesis. The kernel could decide
to e.g. kill a misbehaving job, suspend it, or make it non-preemptive with a lower
priority than any of the tasks it interferes with. Many alternatives are feasible and
the optimal strategy depends heavily on the specifics of the real-time application.
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Chapter 9

Conclusion

During this Masters project, we successfully designed and implemented a fully func-
tional FPDS scheduler in an existing operating system that is used in production.
We considered a few different task models for FPDS with possible mappings to
implementations inside real-time operating systems, keeping specifically the archi-
tecture of RTAI in mind. The chosen design, using minimal modifications to the
scheduler in the kernel with a support library in user space worked out well: we ar-
rived at an implementation that met all important design aspects that we mentioned
in Section 4.3. We have shown that it is feasible to implement FPDS efficiently and
with low overhead, and verified this through a series of measurements. Following
our initial realisation of FPDS and our first measurements, we identified the un-
conditional execution of system calls in preemption points as the biggest source of
overhead and eliminated it through the implementation of preemption points us-
ing shared memory. This optimization work also provided some opportunities for
extensions and applications of FPDS, where knowledge of the subtask structure
of tasks can be exploited without incurring too much extra overhead. We briefly
touched upon this in Chapter 8, where we looked at possibilities for monitoring and
enforcement of task budgets.

Unfortunately, unlike our expectations at the start of this project, the surveil-
lance platform for which FPDS was identified as a potential solution did not become
available, partly due to the selection of a different real-time platform than RTAI. It
would have been interesting to use the platform as a real-world test case of FPDS, to
verify whether the alleged problems of context switch overhead and resource access
control could indeed be solved by it.

For future work, we expect that the overhead of FPDS can be decreased further
by the reduction of interference by interrupt handlers. Although less expensive than
a full process switch, the execution of an ISR does constitute a context switch which
does interrupt a non-preemptive task. Using one-shot timers it may be possible to
reduce or eliminate this interference, because timer interrupts can be restricted to
moments of actual task arrivals.

The process of understanding the architecture, design and implementation of
RTAI, having relatively little documentation, took longer than was expected at the
start of the project. The lack of abstraction, refactoring and consistency inside the
RTAI source code compared to e.g. the Linux kernel itself gives the open source
project a high barrier for entry by external programmers. We were also surprised
to find a lot of unpredictable behaviour while running RTAI, its test suite and our
own measurement applications on different PC systems. We suspect that this was
caused by some design aspects of the modern PC platform which is targeted more at
general performance rather than predictability, as well as some interference between
timer handling in recent Linux kernel versions and RTAI, which has not been fully
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adapted yet.
Some other lessons learned:

• No availability of documentation of unfamiliar systems is sometimes better
than having incorrect documentation.

• Performing measurements and experiments is prone to take longer than ex-
pected due to unexpected practical complications, and should be scheduled
early.

• The PC platform is optimized for efficiency, not predictability, and is not
necessarily the best choice for real-time systems.
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