
 Eindhoven University of Technology

MASTER

On developing a multi-model repository

Ammerlaan, B.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3235e446-161d-487e-9741-c5267ab61b82

On developing a
multi-model repository

Boris Ammerlaan

Supervisor TU/e
Marc Voorhoeve

Supervisors GloMidCo
Marcel Grauwen

Harco Smit

Committee members
Tom Verhoeff
Ruurd Kuiper

August 18, 2009

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computer Science

Abstract

In February 2007 I came into contact with Global Middleware Consultancy. They
wanted to develop a tool for the integration of the models that are used by middle-
ware implementations such as Tibco Rendez-vous or SonicMQ. Some previous work
in this direction had been done by a a student resulting in a general framework,
and they needed another student to perform one of several possible next steps.

The proposed framework mainly concerned the technical infrastructure. In this
thesis, its functionality is designed as a repository allowing the storage and main-
tenance of a large variety of models and views, allowing for arbitrary consistency
checks. The designed repository tool allows the addition of new types of models
and consistency rules with little effort.

1

Acknowledgments

It has taken a lot of research, hard work and perseverance to get to this point, but
I am pleased with the result. Of course, I could never have done all of it alone and
I would like to thank the following people:

My friends, who always made it worth it. They should know who they are, but
I would particularly like to mention Ad, Angelo, Hennes, Jan Willem, Johan and
Stefan. Dean and Marcel have also been invaluable.

Marcel Grauwen (GloMidCo) and Marc Voorhoeve (Eindhoven University of
Technology) for their assistance in this research.

Harco Smit and Dick van den Broek (GloMidCo) for assisting in the evaluation
of the previous research.

Evert, Kirsten, Lonneke, Renée, Ties and all the others for keeping me going
even when I didn’t want to.

Andre, Bill, Kenneth, Laila, Michael, Natasja, Patrick, Paul A., Paul D., Re-
becca and Surani for helping and inspiring me all these years.

Anyone else who has helped me over the years. Even though your name was not
included, your help was still appreciated.

Boris Ammerlaan, August 2009

2

Contents

1 Introduction 6
1.1 Background . 6

1.1.1 An example . 6
1.2 Motivation . 8
1.3 Goal . 9

2 Initial Research 10
2.1 Modelling . 10

2.1.1 IEEE1471 reference model . 10
2.1.2 Metamodel construction . 11

2.2 Middleware . 12
2.2.1 Service-Oriented Architecture, Enterprise Service Bus, etc. . 13
2.2.2 Message-Oriented Middleware 13

2.3 Conceptual framework & metamodels 14
2.4 Eclipse . 16

3 System requirements 17
3.1 Approach . 17
3.2 Scenario . 18
3.3 Usage . 19

3.3.1 Modelling . 19
3.3.2 Meta-modelling and rule maintenance 19

4 Models and consistency examples 22
4.1 UML Class Diagram . 22

4.1.1 Abstract definition . 22
4.1.2 Example . 24
4.1.3 Informal description of visual elements 25

4.2 UML State Machine Diagram . 27
4.2.1 Abstract definition . 27
4.2.2 Example . 28

4.3 UML Activity Diagram . 28
4.3.1 Abstract definition . 28
4.3.2 Informal description of visual elements 30

4.4 UML Sequence Diagram . 31
4.4.1 Abstract definition . 32
4.4.2 Example . 32
4.4.3 Informal description of visual elements 33

3

CONTENTS 4

5 Examples of inter-model consistency 34
5.1 USD / UCD . 34

5.1.1 Example . 34
5.1.2 In General . 34
5.1.3 Formal rules . 35

5.2 USD / USMD . 35
5.2.1 Example . 35

6 Conclusions 37
6.1 Summary . 37
6.2 Recommendations . 38

A List of References 39

B List of Definitions 41

List of Figures

1.1 Employment lifecycle in the HR department 7
1.2 Employment lifecycle in the IT department 7
1.3 Enterprise communication involving multiple buses 8

2.1 The IEEE1471 reference model . 11
2.2 OSI and TCP/IP layers . 12
2.3 Conceptual framework . 14
2.4 MOM message flow metamodel . 15
2.5 Tool environment . 15

3.1 Navigation between models . 18
3.2 Typical usage by a modeller . 19
3.3 Typical system maintenance . 20

4.1 Example UML Class Diagram . 24
4.2 Example UML State Diagram . 29
4.3 Example UML Activity Diagram . 29
4.4 Example UML Sequence Diagram . 31

5.1 Example USD/UCD . 34
5.2 Example USD/USMD: USD . 35
5.3 Example USD/USMD: USMD . 36

5

Chapter 1

Introduction

1.1 Background

Enterprises (and organisations in general) in present-day society are supporting a
large number of processes in order to fulfill their goals. These processes have a
tendency to become evermore complex and interconnected. Existing processes are
becoming components of new, integrated processes. Integrating these components
requires a good understanding of their purpose, design and implementation, de-
scribed by means of several models. A wide range of modelling techniques makes
this integration quite a challenge, since it is nearly impossible for any one mod-
eller to fully understand all these techniques. This necessitates the development
of new tools for the comparison and integration of models. A necessary first step
is developing a model repository that allows the integration of a consistent set of
models.

1.1.1 An example

Figures 1.1 and 1.2 show a model that describes the stages an employee goes
through.

Figure 1.1 shows a Petri net describing an employee’s life cycle within the Hu-
man Resources department. Initially, a new employee is hired and the relevant
data is registered, such as his name, social security number, and the temporary or
permanent nature of the employment. During the employment, changes can occur.
Examples of changes are extending the period of employment, making the employ-
ment permanent, or even something else. At some point, the employment ends, e.g.
because the contract period has expired. The salary payment is stopped and the
end of the employment is registered.

Figure 1.2 shows another Petri net that describes the process for the IT de-
partment. In this scenario, the focus is towards the employee’s computer account.
At some point, the IT department is informed about a new employee needing an
account. Depending on the employment’s temporary or permanent nature, the ac-
count created is temporary or permanent as well. A temporary account will be
extended (and remain temporary), automatically expire, or be made permanent.
If it expires it will first be disabled and eventually deleted. Permanent accounts
must be dismissed explicitly. Temporary accounts may be extended or moved to a
permanent one.

As Figures 1.1, 1.2 and 1.3 show, the HR department and the IT department
do not interact. The various processes used at the HR department and the IT
department are supported by separate ”software buses”. The software components
used by financial officers, operators, etc. are connected to a bus which handles

6

CHAPTER 1. INTRODUCTION 7

Figure 1.1: Employment lifecycle in the HR department

Figure 1.2: Employment lifecycle in the IT department

CHAPTER 1. INTRODUCTION 8

Figure 1.3: Enterprise communication involving multiple buses

communication with other components. Both buses can read data from the HRM
database, but there is no direct communication between the departments.

The employee’s boss needs to initiate both processes and to effect non-automatic
actions. (I.e., ”update” in Figure 1.1 and ”Extend term” and ”Make permanent” in
Figure 1.2.) If he does not ensure that both processes are properly synchronised, the
employee may end up without an account or with one, but without employment.
Only when these processes are fully integrated can synchronisation be enforced.
This integration could be done by identifying which elements are common to both
diagrams and which are not. Common elements can be identified either by matching
names (e.g. ”new Employee” in both diagrams) or manually linking them (”End of
employment” in 1.1 and ”Term expired”/”Dismissal” in 1.2).

There is a need for the integration of different models and for the generation
of different views on the system. A view is a subset of a model that takes certain
concerns into account. The visual presentation of that subset is a diagram. If a
formal method is applied to construct a diagram, that method uses an appropriate
diagram definition.

The component models in Figures 1.1 and 1.2 were described by the same mod-
elling technique (Petri nets). This allows us to interpret and analyse the integrated
model as a Petri net as well, insofar as integrating them is at all possible. If different
modelling techniques had been used, integrating the models and interpreting the
integrated model would have been much harder.

Integrating processes is usually done using middleware, a software component
which enables the decoupling of information providers and information consumers.
Middleware often uses a so-called Enterprise Service Bus, which not only loosely
connects providers and consumers, but may also perform other tasks like data trans-
formation.

Traditional modelling techniques do not provide for this integration. Dick van
den Broek has done research for Global Middleware Consultancy into the integration
of different models which was recorded in [BRO07]. This thesis is a continuation of
that research.

1.2 Motivation

In an enterprise environment, communication is often performed through a com-
munication bus. This is illustrated by the clients connected to the different buses

CHAPTER 1. INTRODUCTION 9

in Figure 1.3. More than one bus may have been used because each bus was better
suited for a specific task, but far more likely they were previously deployed sepa-
rately from each other and later needed to be integrated into a coherent whole. A
bus may be connected to another bus as a client or through the use of a bridge,
which functionally merges them into one bus.

A client that needs information (a consumer) can request it from the bus, and
a client producing information (a producer) can provide it to the bus. No client
needs to know about any others, as all routing of information and scheduling of
processes is done by the bus. In some cases, an adapter connecting the client to the
bus performs the necessary data transformation between the client’s data format
and one of the data formats supported by the bus.

Several implementations of enterprise buses exist. Each one has its own mod-
elling tools, and in most cases the models are tightly coupled with the implemen-
tation of the process; when a model of a bus is changed, the behaviour of that bus
is altered as well.

A bus is optimised for a specific task. The integration of buses interconnecting
their tasks is rather complex, since it often requires profound knowledge of their
proprietary modelling techniques. A necessary first step towards such an integra-
tion is the combination of the relevant models into a single repository, allowing
consistency checks.

1.3 Goal

In order to solve some of the problems mentioned in the previous paragraphs, an
open source modelling tool needs to be developed that offers features as described
in [BRO07]:

• Storage of all models in a common repository;

• Navigation between different models using common elements. An example of
such a common element would be HRM in Figure 1.3. Given a separate model
for each bus (with its attached clients), an architect viewing the model for HR
Bus could select HRM and discover it is also part of the model for IT Bus,
which he might then open as well;

• If an element is common to more than one model, any changes to it in one
model are immediately visible in all the other models;

• Different aspects of the same model can be shown according to the wishes of
the modeller; and

• Connecting model elements and their middleware implementation.

Such a tool, rather than a collection of different proprietary tools, would set a
standard for interoperability. The integration of different models ensures a better
overview of the entire system. Eliminating data duplication, but still being able
to look at the same models in different ways, will enable anyone to keep using the
techniques he is most comfortable with.

Chapter 2

Initial Research

[BRO07] contains extensive research into the field of message-oriented middleware
(MOM, see subsection 2.2.2). It presents a general framework (described in section
2.3) to model situations common to MOM, as well as some specific examples of
models for some of those situations. Since this framework and the examples had
to be evaluated, there was a need to do some research into middleware and related
subjects.

In order to enable understanding of the framework from [BRO07], a few concepts
are treated first. Section 2.1 explains two subjects: the [IEEE1471] reference model
(which [BRO07] refers to for the use of the concepts View, Viewpoint, Library View-
point and Model) and the [MOF] meta-model construction method (which [BRO07]
refers to in the design of the (meta-)modelling tools). Section 2.2 explains several
terms related to the concept of middleware, since the framework is intended to sup-
port modelling in a middleware environment. Section 2.3 summarises the framework
and section 2.4 explains why Eclipse should be used for the implementation.

2.1 Modelling

2.1.1 IEEE1471 reference model

[IEEE1471] describes twelve terms related to an architectural description. They
can be roughly divided into two categories: terms representing the system (Mis-
sion, Environment, System, Architecture, Stakeholder and Concern) and terms used
to document the architecture of the system (Stakeholder, Concern, Architectural
Description, Rationale, Viewpoint, Library Viewpoint, View and Model).

An Architecture is the fundamental organisation of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.

A Stakeholder is any person or user with an interest in the modelled System.
Examples: a manager, a systems architect, a database designer, etcetera. Usu-
ally, these interests are represented by Concerns. (I.e., interests pertaining to the
system.)

At the centre of any description of a modelled system is the Architectural De-
scription (AD). It is the collection of documents describing the system’s that are
used to document the architecture.

An AD contains a large number of Models, describing certain aspects accord-
ing to a predefined graphical syntax. Apart from models, it may contain other
documents that are less formal.

The AD should address the concerns of its stakeholders. A Viewpoint is a
function that projects an AD, highlighting a few concerns for a few stakeholders.

10

CHAPTER 2. INITIAL RESEARCH 11

Figure 2.1: The IEEE1471 reference model

Viewpoints can be dedicated to the current AD or predefined (Library Viewpoints).
The result obtained by applying a viewpoint onto the AD is called View. A view is
related to part of the AD’s models.

As an example, take the description of the employee lifecycle in chapter 1 as pre-
sented in Figures 1.1 and 1.2 and the accompanying text. Both diagrams together
can be considered the AD. Separately, they are models. Figure 1.2 is intended
for stakeholders like a system operator, a servicedesk employee or an IT manager.
Their main concern is the continued and correct operation of the computer systems.
A servicedesk employee may also be concerned about explaining any procedures to
the end user. The previous explanation of the stakeholders, their concerns and why
which part of the AD was chosen together form the viewpoint. This specific col-
lection of models, views, concerns, viewpoints and stakeholders describe (an aspect
of) the AD together with the Rationale. The AD describes how a new employee is
treated (the Architecture) in a certain company (the System) by the different depart-
ments. What sector the company operates in (the Environment) and its purpose
(or Mission) are not important at the moment.

2.1.2 Metamodel construction

The concept of meta-modeling is well-known and applied both within middleware
and in our research. A meta-model is a model to describe other models. In [MOF00],
it is stated that four levels of data are conventionally described as follows:

The user object layer is comprised of the information that we wish
to describe. This information is typically referred to as ”data.”

The model layer is comprised of the meta-data that describes infor-
mation. Meta-data is informally aggregated as models.

The meta-model layer is comprised of the descriptions (i.e., meta-
meta-data) that define the structure and semantics of meta-data. Meta-
meta-data is informally aggregated as meta-models. A meta-model can
also be thought of as a ”language” for describing different kinds of data.

The meta-meta-model layer is comprised of the description of the
structure and semantics of meta-meta-data. In other words, it is the
”language” for defining different kinds of meta-data.

CHAPTER 2. INITIAL RESEARCH 12

Figure 2.2: OSI and TCP/IP layers

These layers are often referred to as M0 - M3. It is possible to define more
”meta” layers in an application; however in most cases these four are sufficient, as
any extra layer would be a special application of layer M3. As an example these
layers are applied to the messages in Message-Oriented Middleware. This results in
the following layers, starting from the bottom:

At the user object layer (M0) there are the actual messages that move through
the enterprise system. A message, for example, can contain a specific order: ”John,
1, chips, 07/18/06”.

In the model layer (M1) the order message is described. The order message
”John, 1, chips, 07/18/06” can be described by name, quantity, product and date
of the order. In this layer the message containing an order is described in an abstract
form. Models are common practice in the design, development and management of
IT systems. The problem is that there is not one single description for the same
message. There are many techniques to describe the same message. This can lead
to confusion about the message, especially if different methods are used to describe
the descriptions of messages.

The next layer (M2) describes the description of the message.
The last layer (M3) describes the meta-model.
These abstract layers can be applied in different situations and from different

angles. In the above example, it is applied to messages, but it could also be applied
to middleware process engines.

2.2 Middleware

In [LIN04, page 116], middleware is described as ”any type of software that fa-
cilitates communication between two or more software systems.”. Other authors
use similarly broad definitions, mostly to accommodate all the different types of
middleware. (E.g. Remote Procedure Call (RPC), Transaction-Oriented, Message-
Oriented, etc.) The implied assumptions are that the software’s primary goal was
to make communication easier and that it is reusable. Although ad-hoc communi-
cation protocols are covered by the first assumption, they fall short of the second
assumption.

According to [BRO07, page 12], ”Middleware is implemented as a separate layer
between the application and the network interface, thus providing a new platform
that facilitates the interaction between applications.” In [KRA04, see Figure 2.2] a
similar definition is used, placing the middleware framework between applications
and the network protocol. Considering the OSI reference model, one could consider
middleware as an implementation of the Transport and Session layers, with some
added functionality in the Presentation layer.

CHAPTER 2. INITIAL RESEARCH 13

2.2.1 Service-Oriented Architecture, Enterprise Service Bus,
etc.

In [CHA04, page 57], a Service Oriented Architecture (SOA) is described as ”a
software architecture that is based on the key concepts of an application frontend,
service, service repository, and service bus. A service consists of a contract, one or
more interfaces, and an implementation.”.

Even these days, much communication in distributed computing is done by use
of ad-hoc or proprietary (usually point-to-point) protocols. Two objects might
communicate using some protocol, but if an extra object is added to the mix, there
is a need to duplicate functionality from the first two and possibly modify their
communication functions to make them aware of the new object. However, none
of these objects might actually need to know about the others. Mostly, all that
is needed is that some relevant data is sent and that possibly some other data is
received. An Enterprise Service Bus (ESB) solves this dilemma by decoupling the
communication channel and the communication of several objects over that channel.

2.2.2 Message-Oriented Middleware

Our research was aimed specifically at MOM. The communication provided by
MOM is asynchronous and decoupled, providing independence among the interact-
ing applications. An application can send a message without waiting for a direct
response or confirmation. Thus it can move on; this is also known as non-blocking
communication. In contrast, RPC middleware resembles a function call in a pro-
gram, but realised by another function that is expected to execute on another
computer node. The advantage of RPC is that it fits in with a procedural program-
ming paradigm. The calling program, however, has to wait until the called function
returns. This possibly takes a long time, considering the extra work needed to
complete the request across the network.

The transport system is at the core of a MOM implementation. The transport
is provided through the concept of message channels. The applications use a pro-
gramming interface or an adapter to utilize the middleware channels. Applications
send a message to a channel and applications listen to a channel. The channels are
also referred to as topics or subjects. The sending applications are referred to as
publishers and receiving applications as subscribers or consumers. The terminology
may differ for each product implemented by the middleware suppliers.

The messaging system holds a message if it is not possible to deliver the mes-
sage. This situation occurs, for example, if the network is temporarily down or the
consumer is overloaded. Depending on the implementation, the messaging system
offers different levels of reliability for each channel. (The highest level of reliability
is the transactional message channel.)

A channel can be used for different forms of communication, depending on the
number of publishers and consumers connected to the channel, or the type of mes-
sages on the channel. It is not necessary for the consumers on a channel to imme-
diately consume a message.

”The primary advantage of a message-based communications protocol lies in its
ability to store, route or transform messages in the process of delivery.” [URL01]
This enables publish-subscribe communication. Strictly speaking, it also enables
one-to-one communication, but this offers fewer advantages over point-to-point com-
munication. Additionally, communicating processes need not use the same data
format because the middleware adapter offers the possibility to transform data.

CHAPTER 2. INITIAL RESEARCH 14

Figure 2.3: Conceptual framework

2.3 Conceptual framework & metamodels

Figure 2.3 illustrates the conceptual framework and metamodels from [BRO07]. An
adjusted version of it was used early in the research when the main goal was still on
producing a program. In determining the technical requirements it was decided to
focus on determining validity of models, so it is only used to illustrate the long-term
goal.

A Model, a View, and a Viewpoint are all the definitions from [IEEE1471] (see
subsection 2.1.1 that were used in the design of the conceptual framework. This
would seem to exclude Library viewpoints, but when considering the rest of [BRO07],
it seems that all Viewpoints are predefined and therefore should be called Library
viewpoints. Also – since a viewpoint (as described by [IEEE1471]) defines the trans-
lation from a model of a system to a view, the design needs to be adjusted slightly.
This translation uses knowledge about the system, the model and the diagram type,
so the Architectural Description should also be included. But since the AD is con-
nected to all models and model elements, it is less useful to include in the framework
as a separate entity. Strictly speaking, both Concerns and Stakeholders should also
be considered. For the moment, we will consider only one Stakeholder and can
therefore (momentarily) disregard others.

One of the diagram metamodels that is defined in [BRO07] is shown in Figure 2.4.
It could be used for modelling middleware but there is no guarantee that any model
that uses it would actually be correct. A Message Exchange will rarely take place
between two Adapters since an Adapter offers connectivity between, for example,
an Application and a Channel. Two Databases will also rarely communicate (but
two database management systems might). Further refinement is necessary into a
metamodel that allows for different types of Message Exchanges.

The model in Figure 2.5 was presented for the tool in [BRO07]. However, it is
neither sufficient nor entirely correct:

• It illustrates which components are to be used, but not why or how.

• GMF is not a framework on top of EMF and GEF, but a framework to make
the transition from an EMF model to a GEF-based diagram environment

CHAPTER 2. INITIAL RESEARCH 15

Figure 2.4: MOM message flow metamodel

Figure 2.5: Tool environment

CHAPTER 2. INITIAL RESEARCH 16

easier by using predefined figures.

• There should be at least two separate tools – one to add/modify/delete mod-
els using views, which will be used by the system architect, and one to
add/modify/delete viewpoints, which will be used by the tool architect.

The design of the tool presented in Figure 2.5 is one from a technological view-
point. It mentions several frameworks, but offers very little information about what
the ”Tool” part of the design is supposed to do.

In order to specify requirements for the tool presented in Figure 2.5, several
assumptions were made:

• It should offer the ability to get an ”overview” of the entire (modelled) system;

• It should offer the ability to navigate between different views of the same
model.

In order to be able to do this, more research was required into what a model
is, and how to determine whether two views overlap. This will be discussed in the
following chapters.

2.4 Eclipse

[BRO07] recommends using Eclipse for the development of the tool. The advantages
of using Eclipse as the platform to implement the framework in are:

• Eclipse was developed using Java, so it is largely platform independent.

• The ”Eclipse Public License” is an open source license.

• Several plugins are available for Eclipse that make making graphical editors
for models less complicated.

• Most major middleware vendors’ offerings are implemented in Eclipse, or will
be in the near future. Some of them have even formed alliances to make the
modeling of their offerings more uniform. One example is the SCA specifica-
tion by OASIS [SCA].

However, there is also a disadvantage:

• Because Eclipse is implemented in Java, the system requirements are relatively
high.

Since we have total control over what we will implement and use, version conflicts
will not occur. The system requirements are high, but not compared to those of
the systems being modelled. Because no major disadvantages exist and some major
advantages do exist, Eclipse is a reasonable choice, albeit a premature one.

The only aspects from the Eclipse platform that were considered are:

• its use as a Java Development IDE

• EMF, the Eclipse Modeling Framework (of which Ecore is a part)

• GEF, the Graphical Editing Framework

• GMF, the Graphical Modeling Framework

Chapter 3

System requirements

As outlined in the previous chapters, the tool should enable a consultant to not
only add models, but new model types as well. A new model type should always
be accompanied by an appropriate parser. Using XML as the data and meta-model
format ensures that there are sufficient basic tools to manipulate and compare the
models.

Another requirement is navigability. If you are viewing (or editing) a diagram,
it should be possible to view overlapping models as well.

3.1 Approach

In [BRO07] a general framework for modelling middleware is presented, with some
possible applications. To evaluate the framework, it is necessary to study the under-
lying concepts of modelling and middleware. Many tools already exist for modelling
and middleware, and they needed to be evaluated as well. This evaluation consists
of:

• Determining what the existing tools are able to model and whether the tool
supports the requirements of the framework;

• Determining the differences, but especially the similarities, between the tools;
and

• Determining which data formats are used and which is best suited for our
purpose.

I have examined several tools and and their file formats. All of them are able
to model basic UML models, but some of them disagree on the interpretation of
specific model types. According to one tool’s interpretation of Sequence Diagrams,
no two messages can be sent or received at the same time; according to another’s
they can. Both also offer their own extensions that are not covered explicitly by
the UML standard.

Most tools persist their models in some XML format. They store the logical
elements of the models and the graphical presentation of those elements separately;
it should be possible to compare parts of the logical structures automatically. An
open format like [XMI] will ensure independence from all existing and future tools.

A first step toward the goals from section 1.3 is to determine what exactly
constitutes a model.

It is also important to determine what is required to compare a model to another
model, because navigation between models – i.e., the transition from one model to

17

CHAPTER 3. SYSTEM REQUIREMENTS 18

Figure 3.1: Navigation between models

another using a formal procedure – cannot be done without having some way to
compare them.

As shown in figure 3.1, one way to navigate between models is to select an
element in one model, request a list of all models this element appears in, and
choosing another model from that list, which is then opened. The original element
may (if possible) even be selected in the ”new” model.

Finally, definitions for models and consistency are formulated, as are abstract
definitions of specific model types and examples of (in)consistency between them.

3.2 Scenario

A typical example of a modeller using the tool will look like the following.
He starts his client for the system and he logs in. Logging in is necessary if there

is a need to grant access to some models, but not to others and in order to track
operations to users.

He selects the model from Figure 1.2, opens it using an external editor (like
the UMLet editor or Gentleware’s Poseidon) and deletes the step ”new Account
(unlimited)”. He saves the change (thereby de-selecting it) and tells the system to
check for inconsistencies.
It discovers that the modified diagram is inconsistent with the one from Figure
1.1, since the second place assumes a coloured token that can indicate a permanent
contract. (As after the step ”new Employee” in 1.1, a new employee has been
registered for either a limited or an unlimited term. After the corresponding step in
1.2, a new employee could only have been registered for a limited term.) It reports
this.
He opens that diagram and explicitly adds branches for both options. He creates
a new diagram to model the employee’s department and adds relationships from
steps in the first two diagrams to steps in the new diagram.

He continues doing this until there are no inconsistencies left, or until he decides
not to fix those that are left. At that time, he logs off.

CHAPTER 3. SYSTEM REQUIREMENTS 19

Figure 3.2: Typical usage by a modeller

3.3 Usage

3.3.1 Modelling

As Figure 3.2 shows, the tool should allow the adding, editing and deleting of
models. Models can be related to each other. The tool can be exited at any time,
even if any model or group of models is inconsistent. This is omitted from the
Figure for simplicity. A group of related models can be automatically checked for
consistencies - either internal to one model or between two or more models. When
the system discovers inconsistencies in the models, it notifies the modeller. He can
then decide to ignore them, let the system fix them (if at all possible), or fix them
himself (possibly assisted by the system).

3.3.2 Meta-modelling and rule maintenance

Adding new model types should be possible as well, but this is done by the tool
architect and not by the modeller. It consists of both defining a meta-model for the
new type and creating a parser for that meta-model.

A tool can only decide whether models are demonstrably inconsistent by deter-
mining if certain formal rules apply. Therefore, there is a need to maintain these
rules (as shown in Figure 3.3). A rule is a predicate on a set of models. This set
can contain any number of models and the rule can be either formal (e.g., ”All class
names start with ’cls ’”) or informal. Formal rules can be checked by the system,
informal rules cannot.

Some example rules are:

• ”In a class diagram, all class names must be unique.”

• ”In a state machine diagram, the end state should be reachable from any
state.”

CHAPTER 3. SYSTEM REQUIREMENTS 20

Figure 3.3: Typical system maintenance

CHAPTER 3. SYSTEM REQUIREMENTS 21

• ”In any model, company naming rules apply.”

• ”Given a USD and USMD pair, all messages in the USD will be sent and
all states in the USMD can be reached, even when taking the other model’s
ordering into account.”
For example: if a USD contains the partial trace
(newemployee(temp), createaccount, deleteaccount), a related USMD will not
contain the partial trace (accountdeleted, newaccount, newuser).

Chapter 4

Models and consistency
examples

The specified repository must be able to contain models of various types and allow
the definition of rules for maintaining their consistency. In this chapter some ex-
amples of models (based on UML) and rules for ”internal” consistency are given.
The UML standard defines a cognitive semantics of models. In order to be able to
define consistency rules, we provide objectivist semantics (which is less informal) of
the treated models. One must bear in mind that these are example rules that do
not pretend to be complete.

In the next chapter, examples of inter-model consistency rules will be given.

4.1 UML Class Diagram

A UML Class Diagram (UCD) is a tuple (C, A), where C is a set of classes, connected
by associations A. In a set of instances (O, R) conforming to a UCD, objects
correspond to classes and links correspond to associations.

An alternative formal semantics, including n-ary associations, is given in [SZL06].
Readers who are unfamiliar with UCDs, should read ”Informal description of

visual elements” first.

4.1.1 Abstract definition

Syntax

UCD = {(C, A)}

where

1. C is a finite set of classes.

2. A is a finite set of associations.

3. A Class is a triple (l: label, P, M) where

(a) P is a set of attributes, and

(b) M is a set of operations.

4. An attribute is a 4-tuple (l:label, t:type, i:initial value, vt:visibility type)
where

22

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 23

(a) t may be undefined, and

(b) i may be undefined.

5. An operation is a 4-tuple (l:label, V, r:return type, vt:visibility type) where

(a) V is a (possibly empty) list of arguments. An argument is a pair (l:label,
t:type), and

(b) r is optional and may be undefined.

6. An Association is a tuple (l:label, at, From, To, ac:class) where

(a) at ∈ {basic, aggregation, composition, generalization},

(b) To and From are 4-tuples (c:class, min:minimum, max:maximum, role:label
), with 0 ≤ min and either max = ∗ or min ≤ max, and

(c) ac (which is optional) is a class with the properties of the association.

Semantics

An UCD defines a set of states corresponding to the model. Each state corresponds
to a set of objects and links that are connected through a set of predicates. An UCD
M = (C, A) corresponds to a set S of possible states, consisting of a set O of objects
and a set R of relations:

S = {(O, R) : R ⊆ O × O ∧ PRED(C, A, O, R)}

The predicate PRED(C,A,O,R) is the conjunction of the following requirements:
(Only the first two requirements are formal.)

1. O is a set of objects (id : uniqueidentifier, l′, P ′, M ′); each object belongs to
a class in C.
〈∀o ∈ O : 〈∃c ∈ C : o[ofclass]c〉〉
The predicate o[ofclass]c, with c = (l, P, M), holds iff o = (id, l, P’, M’),
where P’ is a set of pairs (lab, val) (i.e., variables) satisfying
〈∀p ∈ P : 〈∃q ∈ P ′ : πl(p) = πlab(q) ∧ Πval(q) ∈ Πt(p)〉〉

2. R is a set of object pairs; each pair belongs to an association in A.
〈∀(o, q) ∈ R : 〈∃a ∈ A : (o, q)[isin]a〉〉
The predicate (o,q)[isin]a, with a = (l, at, From, To), holds iff
o[ofclass]ΠFrom(a) ∧ q[ofclass]ΠTo(a)

3. Instances of aggregation and composition associations connect exactly one
”source”.

4. The number of links conforms to the bounds as defined in the model. In other
words: if classes A and B are connected by an x:y association, any particular
instance of A will be connected by links to y instances of B (and any instance
of B to x instances of A).

5. All class names must to be unique within the model.

6. All attribute names must be unique within the class or object.

7. All operation signatures (i.e. operation name plus typed arguments) must be
unique in the class or object.

8. Aggregation (and composition) associations cannot be cyclic. (In other words,
the transitive closure of the union of aggregation and composition is not re-
flexive.)

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 24

Figure 4.1: Example UML Class Diagram

9. An instance of a child class in a generalization association is also considered
an instance of the parent class.

10. An object can be the ”destination” of at most one composition association.

4.1.2 Example

The diagram in Figure 4.1 has the following properties:

• All class names are unique.

• All attribute names in a class are unique.

• Generalization/specialization: A Car is also a Vehicle and a Ford Prefect is
also a Car, so a Ford Prefect is also a Vehicle. Any statement that holds for
a Vehicle also holds true for a Car, and any statement that holds for a Car
also holds true for a Ford Prefect.

• A Car has an attribute called brand of type String. A Ford Prefect Car’s brand
attribute has the value Ford.

• Associations and roles: Persons can ride in a Vehicle. This association is
called ride. Persons can inspect this association by accessing its role vehi-
cle. Likewise, a Vehicle can determine its passengers by inspecting that role;
because of specialization, the same holds true for a Car.

• Aggregation and multiplicity: A Person can have any number of Licenses,
and a License will belong to one Person.

• Composition: A Car has exactly 4 Wheels, which exist only as long as the
Car which they are a part of does.

• Association class: The way Ownership is shown suggests that a Person
owns a Car only between a startDate and an endDate.

• Visibility: A Wheel can, by using the association has part through the role
container, access the attribute brand and see what its value is.

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 25

4.1.3 Informal description of visual elements

Classes

Each class has one name and may have any number of attributes and operations.
Both attributes and operations have one of four different visibility types. In the
diagram, a class is represented by a rectangle that may be divided vertically into
three sections. The class name is always displayed in the top section. The second
section may contain the attributes (if any) and the third section may contain the
operations (if any).

If in a diagram no attributes or operations are shown, this does not mean that
they have not been defined in the model. Although you could view this as two
separate models, there are programs that do not. Both Omondo’s UML editor and
Gentleware’s Poseidon editor offer the option to temporarily hide attributes and
operations. In UMLet, on the other hand, what is displayed and what is in the
model are tightly coupled.

Attributes

Attributes are properties of the class. Each attribute has a name, an optional
type and an optional initial value. In a diagram, an attribute may only be displayed
in the second section of its class. Usually, each attribute is displayed on a separate
line. The absence in the diagram of either a type or an initial value (or both) should
not be used to infer that the model does not contain them. A line containing an
attribute has the following form:
”name” [: ”attribute type”] [= ”initial value”]

Operations

Operations indicate methods or procedures that can be performed on (or by)
an object. (An object is an instance of a class.) Each operation has a name, an
optional list of parameters, an optional return type and optional contents. When
displayed, it has the following form:
”name”([”parameter list”]) [: ”return type”] [”contents”]

Visibility types

Each attribute and each operation has a visibility type. In a diagram, they may
be indicated by a mark before the name. The visibility types are: ”public” (+),
”protected” (#), ”private” (-) and ”package” (). When an attribute or operation
does not have a mark in the diagram this does not indicate any particular visibility.

Associations

Classes in a model can be connected to one or more other classes. This can be done
by using the following association types.

• (basic) Association
An association connects two classes. It may have a name, a direction, multi-
plicity and other properties.
In a diagram, it is represented by a solid line between (the edge of) the classes.
Its name (if any) is displayed close to the middle of the line and at its ends
there may be indicators for the multiplicity and other attributes.

• Aggregation
An aggregation is an association that indicates a ”has a” or ”part of” rela-
tionship. When the containing class is destroyed, its parts need not be. A
part may participate in multiple aggregation associations. Booch, Rumbaugh

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 26

and Grady[BOO05, page 143] state simple aggregation is mostly conceptual.
(They still see this type of relationship as useful, if only to distinguish a
”whole” from a ”part”.) However, an important (semantic) difference be-
tween aggregation and basic associations is that aggregation should not be
cyclic.
In a diagram, it is indicated by a clear diamond shape at the end of the
containing class.

• Composition
A composition is similar to an aggregation. When the containing class is
destroyed, its parts are destroyed as well. A part may participate in only one
composition.
In a diagram, it is represented by a solid diamond shape.

• Generalization
This is an association relation between two classes. A subclass (sometimes
also called a subtype, child, derived class, derived type, inheriting class or
inheriting type) is considered to be a specialized form of the other. A superclass
(sometimes also called a supertype, parent, base class or base type) is considered
to be a generalization of a subclass.
In a diagram, it is represented by a clear triangle at the end of the line that
is connected to the superclass.

If an association itself has properties, this is indicated by attaching a class with
those properties to the association with a dashed line. The association together
with this attached class is called an association class.

Two objects that are related to each other can access the other object by ac-
cessing their appropriate role, which is displayed near the association end at the
corresponding class.

Multiplicity

In most relationships, an object of type class A may be related to more (or less)
than one object of type class B, and vice-versa. This is called multiplicity. If an
object of type class A is connected to b objects of type B and an object of type class
B is connected to a objects of type class A, we call the relationship between A and
B an ”a:b” association. For example, if each object of type class A is connected to
3 objects of type class B and each object of type class B is connected to 5 objects
of type class A, this is a ”5:3” association.

In a diagram, this may be indicated by displaying ”a” near the end of the line
connecting the classes that is closest to class A and by displaying ”b” near class B.
This may be done in several ways:

Multiplicity Indicator in diagram
≥m and ≤n m..n
n n or n..n
≥m m..* or m*
≥0 0..* or 0* or *

Beyond the basics

Although the elements described in the previous pages are sufficient for most pur-
poses, UML offers even more. A conscious decision was made not to include them
for the consistency requirements, but they are mentioned here for completeness.

• Dependency association
Class A is dependent on class B if a change in (the definition of) class B would

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 27

result in a change to class A.
In a diagram, it is indicated by a dashed arrow from the dependent class to
the independent class.

• Realization association
This is an association between two classes indicating that one class (the client)
implements the behaviour that the other class (the supplier) specifies.
In a diagram, it is indicated by a dashed line with an clear triangle from the
client to the supplier.

• Comments
Comments are pieces of text that can be placed anywhere on the corresponding
diagram. Other than basic character spacing and line breaks, no formatting
is applied. To indicate that they apply to a specific element, a dashed line is
often drawn from the edge of the text to the element (usually either a class
or an association). They are usually short, but this is common practice, not
a rule.

• Typed classes
If a class has a type, this means it has a specialization relation with the class
representing its type.
In a diagram this is indicated by adding ” : class type” after the name.

• Extra association adornments
Examples of this are qualifications.

Diagram best practices

1. All multiplicities should be displayed the same way. (i.e. ”0..*”, ”0*” and ”*”
should not appear in the same diagram.)

2. If visibility is indicated on any attribute or operation, it should be indicated
on all (displayed) attributes and operations.

3. If the type of any attribute in a class is displayed, the (known) types of all
(displayed) attributes in that class should be displayed.

4. If the return type of any operation in a class is displayed, the (known) types
of all (displayed) operations in that class should be displayed.

5. The argument list of all displayed operations should be displayed.

6. Any rectangle and any other element should not overlap.

4.2 UML State Machine Diagram

4.2.1 Abstract definition

Syntax

A UML state machine diagram (USMD) is a triple (S, E, T), where S is a set of
states, connected by directed edges T that are labelled with events from E. The
set S is the disjoint union of the sets SS, CS, ES and XS, respectively the simple,
composite, entry, and exit states. The formal definition is as follows.

USMD = {(S, E, T) | T ⊆ S × E × S}

Entry (exit) states possess no incoming (outgoing) arcs:

〈∀(s, e, s′) ∈ T : (s /∈ XS ∧ s′ /∈ ES)〉

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 28

Semantics

A USMD M shows a state machine, emphasizing the flow of control from state to
state. A composite state h in M corresponds to another USMD Mh with entry
(exit) states and events from Mh corresponding to all states immediately preceding
(following) s. The formal definition is as follows.

Each USMD M = (S, E, T) and each composite state h ∈ CS should correspond
to a subordinate USMD Mh = (Sh, Eh, T h) such that S ∩ Sh = ∅. An edge
(s, e, s′) ∈ T h satisfying s ∈ ESh should correspond to one or more edges (r, e, h) ∈
T . Vice versa, to each edge (r, e, h) ∈ T should correspond an edge (s, e, s′) ∈ T h.
Edges (s, e, s′) ∈ T satisfying s′ ∈ XSh should correspond in the same way to
edges (h, e, r) ∈ T . Edges (h, e, h) ∈ T should correspond to one or more edges
(s, e, s′) ∈ T h with s, s 6∈ ESh ∪ XSh. There may exist edges (s, e, s′) ∈ T h with
s, s′ 6∈ ESh ∪ XSh that do not correspond to an edge (h, e, h) ∈ T .

It is possible to expand the composite state h in M , resulting in an expanded
USMD M [h] = (S′, E′, T ′) satisfying

• S′ = (S \ {h}) ∪ SSh ∪ CSh, E′ = E ∪ Eh,

• T ′ = T1 ∪ T2 ∪ T3 ∪ T4,

• T1 = {(s, e, s′) ∈ T : s <> h ∧ s′ <> h},

• T2 = {(r, e, s′) : (r, e, h) ∈ T ∧ (∃s′ ∈ ESh : (s, e, s′) ∈ T h)},

• T3 = {(s, e, r) : (h, e, r) ∈ T ∧ (∃s′ ∈ XSh : (s, e, s′) ∈ T h)}, and

• T4 = {(s, e, s′) : (s, e, s′) ∈ T h ∧ (s, s′ 6∈ ESh ∪ XSh)} .

A USMD (S, E, T) is internally consistent if every state in S is reachable from a
state in ES. Let → be the relation over S defined by s → s′ ≡ 〈∃e ∈ E : (s, e, s′) ∈
T 〉 and →∗ its transitive closure. Then for every s ∈ S there must exist an i ∈ ES
such that i →∗ s.

Let U be a set of USMDs such that each composite state h in any USMD M ∈ U
corresponds to a subordinate USMD Mh ∈ U An USMD M ∈ U is consistent within
U if it is internally consistent and either does not contain composite states or can
be expanded to an USMD consistent within U .

4.2.2 Example

In Figure 4.2, an USMD M is depicted with a composite state H , its subordinate
MH and its expansion M ′ = M [H].

4.3 UML Activity Diagram

An UML Activity Diagram (UAD; see Figure 4.3) is used mostly to model workflows.
It consists of a set of nodes which are connected to each other by control structures
in a directed graph. I use a somewhat simplified version; for a more in-depth
examination of the semantics of UADs, see [ESH01].

4.3.1 Abstract definition

Syntax

UAD = {(N, S, C)}

where

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 29

Figure 4.2: Example UML State Diagram

Figure 4.3: Example UML Activity Diagram

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 30

1. N is a set of nodes; a node is a pair (l:label, t), where t ∈ {start, activity, end, abort}.

2. S is a set of control structures; a control structure is an element of the set
{decision, fork, join, merge}.

3. C is a set of connections; a connection is a triple (o1:from, o2:to, l:label)
where o1, o2 ∈ N ∪ S.

Semantics

The (informal) definition of the semantics of a UAD is as follows:
An UAD defines a set of possible workflow executions. In other words, the

semantics of a UAD is defined by the set of (valid) finite lists of nodes.
In all these lists, the first node is the Start control structure and the last node

is either an End or an Abort node. The semantics at a Decision control structure is
the union of the semantics at all outgoing edges, each preceded by the semantics at
the incoming edge. The semantics of a Merge control structure is the union of the
semantics at all incoming edges, each followed by the semantics at the outgoing edge.
The semantics of a Join control structure is the union of all possible interleavings of
the semantics at all incoming edges (originating from the last common Split), each
followed by the semantics at the outgoing edge. The semantics of a Split control
structure is the semantics at the incoming edge followed by the union of all possible
interleavings of the semantics at all the outgoing edges.

Some extra requirements that are made of an UAD are:

1. There is no node before Start.

2. There is no node after End or Abort.

3. All Forks and Decisions have at least two outgoing edges and exactly one
incoming edge.

4. All Joins and Merges have at least two incoming edges and exactly one out-
going edge.

4.3.2 Informal description of visual elements

The nodes are:

1. A start node;

2. An activity node;

3. A end node, indicating successful termination; and

4. A final (also called ”abort”) node, indicating unsuccessful termination.

Processing is the execution of a workflow starting at the start node and contin-
uing with activities as determined by the control structures. Processing ends when
processing of all threads has ended in either an end or a final node.

The set of control structures is:

1. Decision, indicating a choice between two or more alternatives;

2. Fork, for starting parallel threads;

3. Join, for joining parallel threads into one; processing will not continue until
all threads have finished; and

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 31

Figure 4.4: Example UML Sequence Diagram

4. Merge, for joining alternatives; no condition is necessary.

In a diagram, a start node is represented by a solid circle, an end node by a clear
circle containing a solid, smaller circle and a final node by a clear circle filled with a
cross. An activity node is represented by a labelled rectangle with rounded corners.

A Decision is represented by an unlabelled diamond shape with one incoming
edge and several outgoing edges. Options are indicated between ”[” and ”]” at
outgoing edges. A Fork is represented by a black bar with one incoming edge and
at least two outgoing edges. A Join is represented by a black bar with one outgoing
edge and at least two incoming edges. A Merge is represented by a diamond shape
with several incoming edges and one outgoing edge.

Edges are represented by arrows.

Beyond the basics

An extension is the possibility to divide all the activities into so-called ”swim lanes”
where a certain person, role or department is responsible for executing all the ac-
tivities in his lane. Although this might be useful in some cases, we feel most of
those cases will be better served by using a sequence diagram.

Diagram best practices

1. Each non-trivial option is shown near the start of the corresponding arrow.

2. Each condition is shown near the start of the outgoing arrow.

Model requirements

The model must meet the following requirements:

1. A Decision has a defined option for each outgoing edge. ”Obvious” options
that some modellers leave out are still considered defined options.

4.4 UML Sequence Diagram

A UML Sequence Diagram (USD) is used to clarify the process flow. Similar to
a collaboration diagram, it shows the order of messages between objects. A more
complete semantics is given in [LI04] and [MEN08].

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 32

4.4.1 Abstract definition

A (simplified) USD consists of a set A of actors, a set M of messages and an ordering
function O describing the ordering of events (sending and receiving messages) per
actor. (m! denotes the sending of message m and m? denotes the receiving of
message m.) The lists O(a) and M together define a transitively closed ordering
relation ”<” between events, that should be irreflexive for the USD to be consistent.
It should also not occur that two messages are sent in a certain order and received
in the opposite order.

Note that an actor can send messages to itself. We can add a labelling function
to messages, so that different messages may have the same label.

Also note that this description deviates slightly from the one given in [LI04].
Using our syntax, multiple messages can be sent at the same time because the
order of messages is particular to a specific lifeline, not the whole system. It also
omits the concept of ”initial locations” from [MEN08].

Syntax

USD = (A, M, O)

where

1. A, M sets

2. O : A → L(E)

3. E = {m! : m ∈ M} ∪ {m? : m ∈ M} (with m! denoting a sent message and
m? denoting a received message)

4. L(E) is the set of E-lists.

Semantics

An USD defines a set of possible message sequences. In other words, the semantics
of a USD is defined by the set of (valid) finite lists of messages.

Consistency requirements:

1. Each event is unique: if a, b ∈ A; e ∈ E; u, v, w, z ∈ L(E) such that O(a) =
uev ∧ O(b) = wez, then a = b ∧ u = w ∧ v = z.

2. Let ”<” be the smallest transitively closed relation on E that satisfies e < f if
〈∃a, u, v, w : a ∈ A∧u, v, w ∈ L(E) : O(a) = uevfw〉∨〈∃m ∈ M : e = m!∧f =
m?〉. Then 〈∀e ∈ E : ¬(e < e)〉 and 〈∀m, n ∈ M : ¬(m! < n! ∧ n? < m?)〉.

3. The lists O(a) contain no duplicates and the sets E(a) are disjoint.

4. The global partial order contains no cycles.

4.4.2 Example

As an example, we take the USD as defined in Figure 4.4. In that diagram,
A = {α, β, γ},
M = {m, n, o, p, q, r},
O(α) = [m!r?q?],
O(β) = [m?n!r!p?q!] and

CHAPTER 4. MODELS AND CONSISTENCY EXAMPLES 33

O(γ) = [n?o!o?p!].
This diagram is consistent; it would have been inconsistent if e.g. O(γ) = [n?o?o!p!].

A completed trace is an E-list containing every E-element once. A completed
trace t accords to the order ”<” if 〈∀e < f ∈ E : 〈∃u, v, w ∈ L(E) : t = uevfw〉〉.

The semantics of an USD is the set of completed traces. A completed trace of
Figure 4.4 is e.g. [m!m?n!n?o!r!o?p!p?q!r?q?].

4.4.3 Informal description of visual elements

An object that can send or receive messages is called a lifeline. In a diagram, it is
represented by a rectangle with the object’s name in the middle and a dashed line
at the bottom indicating that it can send or receive messages. The way to read a
USD is vertically, with the presumption that higher arrows indicate messages that
have been sent earlier.

A message is represented by an arrow from the dashed line of one lifeline to
the dashed line of another lifeline. An object can also send a message to itself; the
arrowhead usually ends slightly below the starting point of the arrow. Any message
must be labelled. A label contains the message name and possibly other parts, like
a condition (”[a > 0]”), an iteration marker (”*[for all database entries]”) or an
assignment (”[a:=-1]”).

Diagram requirements

1. Message signatures (name and sending/receiving lifeline) should be clearly
indicated. (This is especially important when a message with the same name
is sent between different objects.)

Chapter 5

Examples of inter-model
consistency

The previous chapter describes the requirements that models of four specific types
(UCDs, USMDs, USDs and UADs) must meet in order to be considered internally
consistent. This chapter contains examples of consistency rules across models of the
above mentioned types. The considered models should all refer to the same system;
moreover, some naming convention should allow the identification of elements of
either model. This makes it possible to determine the overlap between the given
models.

5.1 USD / UCD

5.1.1 Example

The USD in Figure 5.1 contains lifelines (actors) that are reflected as classes in
the UCD. The possible occurrence of messages in the USD is reflected as a relation
between the classes. Finally, the A-to-B message labelled x in the USD corresponds
to an operation x of class B (and likewise for the y-labelled message).

5.1.2 In General

To every USD should correspond a UCD containing classes that correspond to its
lifelines. So there exists an injection I from the set L of lifelines in the USD to
classes in the UCD. The classes in I(L) should satisfy:

1. If there exists a message (in either direction) between A, B in L, then there
exists a relation between I(A) and I(B).

2. A message labelled x from A to B should correspond to an operation labelled
x in I(A).

Figure 5.1: Example USD/UCD

34

CHAPTER 5. EXAMPLES OF INTER-MODEL CONSISTENCY 35

Figure 5.2: Example USD/USMD: USD

It should be noted that in the case of message-orientation, operations should not
have a return value. Operations x that do have a return value should correspond to
a pair of messages (e.g. x, xr) in the USD. In the following, we assume operations
without return values.

5.1.3 Formal rules

Let (A, M, O) be the USD and (C, A′) be the corresponding UCD. Then there
should exist an injection I from A to C satisfying:

1. If 〈∃X, Y ∈ A; m ∈ M : {m?, m!} ∩ O(X) 6= ∅ ∧ {m?, m!} ∩ O(Y) 6= ∅〉, then
〈∃(l, at, F rom, To, ac) ∈ A′ : {From, To} = {I(X), I(Y)}〉.

2. If 〈∃X ∈ A; m ∈ M : m? ∈ O(X) with I(X) = (l, P, M ′)〉, then 〈∃y ∈ M ′ :
y.l = m〉.

5.2 USD / USMD

5.2.1 Example

There are no elements in both diagrams that are equivalent by name and it is
the responsibility of the modeller to add the necessary connections. The USMD in
Figure 5.3 has been indicated as an elaboration of the ”IT department” lifeline from
the USD in Figure 5.2. The event new employee (temp.)? in the USD corresponds
to the initial event leading to the state new employee form received in the USMD.
Likewise, the events time elapsed? and request extension? in the USD corresponds
to the respective events timeout and extension in the USMD.

Regarding consistency rules, the partial orders in both diagrams should not be
conflicting. The depicted diagrams clearly exhibit a conflict, since the occurrence
of time elapsed? followed by request extension? in the USD cannot be matched in
the USMD.

CHAPTER 5. EXAMPLES OF INTER-MODEL CONSISTENCY 36

Figure 5.3: Example USD/USMD: USMD

Chapter 6

Conclusions

6.1 Summary

In order to stay competitive, organisations need to integrate their processes. This
thesis is part of a project to support system integration through (message-oriented)
middleware. The functionality of the systems to be integrated, as well as the con-
taining integrating system, is for a large part determined by models. (See chapter
1.)

In this thesis, we adhere to the IEEE1471 standard towards modelling, with
notions such as Model, Viewpoint, Library Viewpoint, View, Concern, Stakeholder
and Architectural Description. (See chapter 2, subsection 2.1.1.)

The models that determine a system’s functionality are built from various views,
represented as diagrams. A major challenge in integration is the fact that models
and diagrams have often been developed independently, resulting in incompatibili-
ties when combining them.

A predecessor thesis [BRO07] recommends a framework supporting consultants
in storing, maintaining and comparing the various models (and the underlying di-
agrams) of the systems to be integrated. (See chapter 2, section 2.3.) The thesis is
primarily focused towards the necessary infrastructure.

This thesis complements its predecessor by discussing the needed functionality.
In essence, the framework should contain the meta-models for the models needing
integration, so that all the models can be stored in a common repository. To this
repository, conditions can be added checking for consistency, within the same model
or between models. The conditions describe the requirements that a consistent set
of models should meet. (See chapter 3.)

We describe the syntax of four types of models, and give examples of consistency
rules together indicating how they could be verified. (See chapters 4 and 5.) These
rules are given in the required context of the semantics. (See PRED(C, A, O, R)
from section 4.1 for an example.)

Finally, we recorded some additional requirements for the framework. These
include:

• Differentiating between the different user roles;

• System maintenance:

– Adding new meta-models;

– Adding and editing rules defining what is required for one or more models
to be consistent;

• Modelling:

37

CHAPTER 6. CONCLUSIONS 38

– Adding, editing and deleting models;

– Indicating that models are related (and how);

– Checking for consistency

• Open source, to prevent being dependent on a specific vendor;

• Storing models in an open, interoperable data format.

6.2 Recommendations

In this thesis, we examined several meta-models and consistency rules. We also
formulated a set of system requirements. All of these need to be studied in depth.

Quite a bit of work can still be done on the meta-modelling aspect of this project.
MOF can be used to describe not only those meta-models covered by UML, but
others as well. MOF is an open industry standard, which makes development of
the tool easier to do when the software is also open source.

The semantics of the four meta-models presented in chapter 4 can be explored in
more depth. More meta-models may be added and the current meta-models may be
expended with more details. For UML, [FOW97, BOO05] contain much information
that is useful. This task should not be given priority because the meta-models from
this thesis are sufficient for the development of a tool. For those interested, the UML
2 Semantics Project ([UML2S]) has made significant progress in this direction.

At several points, we indicate that parts of models can be related by a modeller,
without offering too much detail on what a relationship looks like. It may only
indicate that the parts are related, but not how. This kind of relationship is useless
for consistency checking, so the modeller should fill in the details after more is
known about the models. Exactly which models and model elements can be related
and how, as well as which consistency rules may be applied needs to be defined;
possible examples of this are relating elements from different models by name, or
the injection I from subsection 5.1.2. In order to be able to design a first version
of the tool, a few simple relationships should suffice.

After defining relationships, consistency rules on those relationships can be de-
fined. These must necessarily include consistency rules for single models (which
may not be covered by the meta-model) but more importantly rules for two or
more related models.

Chapter 3 gives a few system requirements for the tool. These have to be written
down in a user requirements document, a system requirements document and an
architectural design document, according to common software development meth-
ods. The different stakeholders (modeller, meta-modeller and system maintainer)
that will be working with the system have to be taken into account.

Early on in the research, a need was expressed for the tool to be developed as
an open source tool independent of any particular vendor. [BRO07] recommends
using Eclipse, EMF and GEF, assisted by GMF because more than one vendor is
adopting the Eclipse platform. The status of these developments can be examined.

It is prudent, before developing the entire tool, to determine whether the meth-
ods described in [BRO07] are flexible enough to make adding new meta-models
more or less easy. In particular, whether GEF is suitable for dynamically adding
new modelling types with new visual elements, or whether it can only be used at
development time to create a new editor. [BRO07] offers some suggestions on the
construction of views and the storage of models in a database, but the details still
need to be worked out.

Appendix A

List of References

BOO05 Grady Booch, James Rumbaugh, Ivar Jacobson
The Unified Modeling Language User Guide
Addison Wesley, Second Edition, 2005

BRO07 Dick van den Broek
Abstracting from Message-Oriented Middleware implementations
Master thesis
University of Twente, 2007

CHA04 David A. Chappell
Enterprise Service Bus
O’Reilly Media, 2004

ESH01 Rik Eshuis, Roel Wieringa
A Formal Semantics for UML Activity Diagrams
- Formalising Workflow Models
University of Twente, 2001

FOW97 Martin Fowler, Kendall Scott
UML Distilled - Applying the standard Object Modeling Language
Addison Wesley, 1998

IEEE1471 Software Engineering Standards Committee
IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems
IEEE Computer Society, 2000

KRA04 Dirk Krafzig, Karl Banke, Dirk Slama
Enterprise SOA, Service-Oriented Architecture Best Practices
Prentice Hall, 2004

LI04 Xiaoshan Li, Zhiming Liu, He Jifeng
A Formal Semantics of UML Sequence Diagram
Proceedings ASWEC’04, pages 168-177
IEEE Computer Society, 2004

LIN04 David S. Linthicum
Next Generation Application Integration
Pearson Education, 2004

MEN08 Sun Meng, Lúıs S. Barbosa
A Coalgebraic Semantic Framework for Reasoning about

39

APPENDIX A. LIST OF REFERENCES 40

UML Sequence Diagrams
Proceedings QSIC’08, pages 17-26
IEEE Computer Society, 2008

MOF Object Management Group
Meta Object Facility
http://www.omg.org/technology/documents/formal/mof.htm

MOF00 Object Management Group
Meta Object Facility (MOF) Specification
version 1.3, March 2000

SCA SCA Working Group
Service Component Architecture Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

SZL06 Marcin Szlenk
Formal Semantics and Reasoning about UML Class Diagram
Proceedings DEPCOS-RELCOMEX’06, pages 51-59
IEEE Computer Society, 2006

UML2S UML2 Semantics Project
http://research.cs.queensu.ca/ stl/internal/uml2/index.html

URL01 Message-oriented middleware
http://en.wikipedia.org/wiki/Message oriented middleware

XMI Object Management Group
XML Metadata Interchange
http://www.omg.org/technology/documents/formal/xmi.htm

Appendix B

List of Definitions

AD Architectural Description
EMF Eclipse Modeling Framework
ESB Enterprise Service Bus
GEF Graphical Editing Framework
GMF Graphical Modeling Framework
MOF Meta Object Facility
MOM Message-Oriented Middleware
MVC Model - View - Controller
RPC Remote Procedure Call
SOA Service Oriented Architectures
UML Unified Modelling Language
UAD UML Activity Diagram
UCD UML Class Diagram
USD UML Sequence Diagram
USMD UML State Machine Diagram

πx(y) or y.x The value of attribute x from tuple y
Πx(Y) {πx(y) : y ∈ Y }

41

	Abstract
	Acknowledgments
	Contents
	List of Figures
	1. Introduction
	2. Initial Research
	3. System requirements
	4. Models and consistencyexamples
	5. Examples of inter-modelconsistency
	6. Conclusions
	Appendix A
	Appendix B

