
 Eindhoven University of Technology

MASTER

An architecture for data synchronization in a mobile environment

Bouwmans, P.F.M.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/aefb6964-65a1-47ac-99b5-b3f5537bb1e5

An architecture for data synchronization in a

mobile environment

P.F.M. Bouwmans

August 2009

Abstract

This thesis describes an architecture for data synchronization in a mobile environ-
ment, optimizing the cost for communication, processing time and consistency.
The research is based on problems encountered in the Connect-It application:
several handheld computers communicate via a wireless GPRS connection with
a central server. Limited bandwidth, limited connectivity and expensive data
transport are the major problems the application has to cope with. The solution
presented in this thesis provides an architecture that guarantees consistency and
reduces the bandwidth usage and processing time at the client side.

i

Acknowledgements

There are several people I’d like to thank for their help and support. Without
them, I couldn’t have written this thesis.

• J.J. Lukkien, supervisor at the Technische Univerisiteit Eindhoven. His
knowledge and feedback has been invaluable.

• A. Kuindersma, supervisor at ViaData Heerenveen. His in-depth knowledge
of Connect-It has helped me a lot.

• J. van der Woude, mentor at the Technische Universiteit Eindhoven, for
believing in me.

• My parents, brother, girlfriend and other family, for unconditional love and
support during my whole life.

• My friends, for being there when I need them.

• TOPIC Embedded Systems, for financial support and patience while I was
working on this thesis.

• Océ Technologies R&D, for a challenging and motivating work environment.

iii

Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1
1.1 Background . 1
1.2 Architecture . 2
1.3 Model . 5
1.4 Problem statement . 9
1.5 Summary . 9

2 Analysis 11
2.1 Related work . 11

2.1.1 Caching on a failed hit . 11
2.1.2 Invalidation . 12
2.1.3 Replication . 13
2.1.4 Consistency techniques in a replication system 14
2.1.5 Shared Data Spaces . 14

2.2 Challenges . 14
2.2.1 Heterogeneity . 15
2.2.2 Openness . 15
2.2.3 Security . 16
2.2.4 Scalability . 17
2.2.5 Failure handling . 18
2.2.6 Concurrency . 18
2.2.7 Transparency . 19
2.2.8 Summary . 20

2.3 Architectural analysis . 21

v

vi CONTENTS

2.3.1 Logical view . 21
2.3.2 Process view . 28
2.3.3 Development view . 29
2.3.4 Physical view . 33
2.3.5 Scenarios . 33

2.4 Cost functions . 36
2.4.1 Parameters . 36
2.4.2 Communication . 38
2.4.3 Client processing time . 40
2.4.4 Consistency . 41
2.4.5 Trade off . 42
2.4.6 Total cost . 43

2.5 Comparison . 44
2.5.1 Communication . 45
2.5.2 Client processing time . 46
2.5.3 Consistency . 47

2.6 Summary . 47

3 Design 49
3.1 Architecture . 49

3.1.1 Logical view . 49
3.1.2 Process view . 59
3.1.3 Development view . 59
3.1.4 Physical view . 61
3.1.5 Scenarios . 62

3.2 Data filters . 62
3.2.1 Introduction . 62
3.2.2 Syntax . 63
3.2.3 Algorithms . 65

3.3 Implementation . 68
3.3.1 Generics and reflection . 68
3.3.2 Code generator . 70

3.4 Summary . 75

4 Results 77
4.1 Measurements . 77

4.1.1 Communication . 77
4.1.2 Client processing time . 82
4.1.3 Consistency . 85

4.2 Evaluation . 85
4.2.1 Requirements . 85
4.2.2 Challenges . 87

CONTENTS vii

4.3 Summary . 88

5 Conclusion 89
5.1 Conclusion . 89
5.2 Future Work . 89

Bibliography 91

List of Figures 93

List of Tables 95

Chapter 1

Introduction

This thesis is structured as follows. In this chapter the problem is introduced. In
chapter 2 the problem is analyzed and compared to existing problems and solu-
tions. In chapter 3 the new architecture and algorithms are presented. Chapter
4 analyzes the results. It ends with a conclusion and remarks about future work
in chapter 5.

Section 1.1 introduces the application on which the research in this thesis is
based. The current architecture is briefly described in section 1.2 (section 2.3
goes into detail about the current architecture). Section 1.3 defines a model of
the application and subsequently in section 1.4 the problem is stated. Finally, in
section 1.5 a summary of this chapter is given.

1.1 Background

Figure 1.1: Overview of the system

1

2 CHAPTER 1. INTRODUCTION

The research in this thesis was the result of a problem in the application Connect-
It. Connect-It is developed by ViaData in Heerenveen. It is a software solution
that uses different network infrastructures (see figure 1.1) and allows digital work
orders to be imported from an enterprise resource planning (ERP) system, inte-
grate them in a schedule and finish them on a PDA. When they are finished they
can be exported again to an ERP system.

Mechanics and service engineers travel to customers to repair machinery and
other equipment or to conduct periodic maintenance on them. They receive their
schedule with customers and work orders on a PDA. They often have to fill out
forms, which they also do on the PDA. A portable bluetooth printer allows them
to print the form while the PDA sends them back to the back office. On their
PDA they can also bring up the history of the serviceable objects to see what
repairs have been done in the past. At the end of the day, they can return home
without going to the office first.

Connect-It is implemented as follows: several back office computers are con-
nected via a local area network (LAN) to a central server. Employees can import
data from the ERP into the Connect-It back office application, view and edit the
planning of the work orders, etc. Customers can log in to a web site at the server
to view the progress of their orders. The PDAs use a wireless GPRS internet
connection to communicate with the same server. The GPRS connection might
not be always available, network coverage is not guaranteed. This results in each
PDA having a local data storage, which consists of a small part of the total data
available. This local data storage ensures the employee has all required data
available to him even when there is no connection to the server readily available.
Once every while this local data storage is updated to keep it consistent with
the data at the server. When there are changes made at the PDA, the data is
transferred back to the server as soon as possible.

1.2 Architecture

Most existing software applications that distribute data between a server and
several clients don’t work on the PDA platform. Therefore, ViaData designed
and implemented their own software to do this. It is currently implemented in
Microsoft C# .NET 1.1, but a transition to Microsoft C# .NET 2.0 will be made
in the near future. All software implementations that are the result of this thesis
will therefore be made in C# .NET 2.0. As a side effect, experiments can only
be tested in a controlled environment instead of a real world environment. While
testing in a controlled environment is a good thing, real world data would also
be valuable.

1.2. ARCHITECTURE 3

The software architecture of the Connect-It system consists of a server appli-
cation and multiple client applications. The clients communicate with the server
via a web service interface [6]. The reason behind this, is that the server is prob-
ably located behind several routers and firewalls. The client application can also
be behind a firewall. As clients are allowed to access websites by default and the
web server uses the standard port 80, no additional configuration or maintenance
of routers or firewalls is necessary. Most customers who buy the Connect-It ap-
plication don’t have a big IT department, if they have one at all, so this is mainly
commercially motivated. For the developers it is also easy to implement: the web
service is generated by the services provided by the application logic, allowing the
clients to call the methods provided by the server application logic without any
difficulty. Although the W3C web service definition encompasses many different
systems, in this case the most common usage is meant: communication over the
HTTP protocol using XML messages that follow the SOAP [4] standard.

DataTransferObject

DataAccessObjectBusinessObject DataSource

obtains/modifies

uses encapsulates

creates/uses

Figure 1.2: DAO pattern class diagram

The data layer is implemented using the Data Access Object (DAO) design pat-
tern [2], it provides an object oriented interface to work with the data. It also
separates the higher level functions like saving the data from the specific type of
data storage used. This way, it is possible to change data stores without influ-
encing the application logic itself. Possible data storages are a SQL server or a
comparable database, a set of XML, text or binary files (in any format), or even
a shared data space. Note that for each type of data storage, a separate data
layer (using the DAO pattern) needs to be developed.

4 CHAPTER 1. INTRODUCTION

BusinessObject Datasource

DAO

DTO

create1:

get data2:

set property7:

set property9:

set data11:

return data4:

17:

get data3:

create5:

return DTO6:

get property12:

get property14:

set data16:

18:

8:

10:

return data13:

return data15:

Figure 1.3: DAO pattern sequence diagram

Figures 1.2 and 1.3 show the DAO design pattern. The different participants
and their responsibilities are:

• BusinessObject
The BusinessObject represents the client that requires access to the data
source to obtain and store data.

• DataAccessObject

1.3. MODEL 5

The DataAccessObject (DAO) abstracts the data source and its access im-
plementation for the BusinessObject to enable transparent access to the
data source.

• DataTransferObject
The DataTransferObject (DTO) is used as a data carrier. It is used to com-
municate the data between the BusinessObject and the DataAccessObject.

• DataSource The DataSource can be anything from a SQL database to a
set of text files.

The client application also uses a DAO Layer to be able to work with the data as
objects, while keeping the details of a specific data storage hidden. The applica-
tion logic communicates with the server to send and receive changes in the data.
Every once in a while, between 5 minutes and 4 weeks depending on which data
type is being updated, the client deletes all local data of that type and requests
the new data from the server.

In section 2.3 a more detailed analysis of the architecture is shown.

1.3 Model

To be able to define a (mathematical) problem or requirement within Connect-It,
a mathematical representation of the Connect-It system is necessary. Designing
the following model of the new system behavior was also a part of the assignment
(see requirement 1 from section 1.4). No previous models exist and the current
system behavior is unclear and not transparent at all.

N is a set of names, V is a set of values. A state in the system is a function
f : N → V × Z+ and can be written as f(n) = 〈v, t〉 where n ∈ N , v ∈ V and
t ∈ Z+. Here, t represents a timestamp and can be an integral version counter or
a real time. For the rest of this model it is assumed that t is an integral version
number.

The state of the server is s and the state of client i is ci. The invariant of
the system is [dom(ci) ⊆ dom(s) ∧ ∀n ∈ dom(ci) : ci(n) = s(n)].

Each client i has a buffer state bi. Note that bi has no direct relation to s

or ci: it can contain different names, and values of existing names don’t have to
be equal. The buffer state represents data that a client wants to transmit to the
server.

The behavior of the system is:

6 CHAPTER 1. INTRODUCTION

(((Change)∗;Change;Commit)∗;Refresh)∗

The next part will clarify on this. Note that I use the following syntax:

• f(n)← 〈v, t〉 indicates that the mapping of n in f changes to 〈v, t〉.

• f(n).v returns the value v where f(n) = 〈v, t〉.

• f(n).t returns the timestamp t where f(n) = 〈v, t〉.

• dom(f) ← D, where D ⊆ N indicates that the domain of f changes: new
mappings are created or existing ones are removed.

• time() returns a new unique timestamp which is larger than all previously
created timestamps.

Change Client i can change the value of one of its names, or add a new name.
These modifications are done on a the buffer state bi. Because ci and s don’t
change, this operation has no influence on the invariant.

Change(ci, bi, n, v)
if n /∈ dom(bi) then
{There is no mapping of n, add n to dom(bi)}
dom(bi)← dom(bi) ∪ {n}

end if
if n /∈ dom(ci) then
{The name n is a new name, created by client i}
bi(n)← 〈v, 0〉

else
{The name n already exists, use the existing timestamp}
bi(n)← 〈v, ci(n).t〉

end if

Commit This operation is always preceded by a change. Commit takes a buffer
state bi and applies the changes in it to the server state s. Commit should
guarantee that all changes are applied in one atomic operation that either
fails or succeeds.

Commit(s, bi)
for all n ∈ dom(bi) do

if n /∈ dom(s) then
{There is no mapping of n, add n to dom(s)}
dom(s)← dom(s) ∪ {n}
{Update the value of s(n) and create a new timestamp}

1.3. MODEL 7

s(n)← 〈bi(n).v, time()〉
else
{There is already a mapping of n, check if there is a conflict}
if s(n).t 6= bi(n).t then
{The timestamps don’t match, there is a conflict}
ResolveConflict(n, s, bi)
{The conflict has been resolved}

else
{There is no conflict, update the value}
s(n)← 〈bi(n).v, time()〉

end if
end if

end for
{Everything succeeded, clear bi}
dom(bi)← ∅
codom(bi)← ∅

When there is a conflict, there are two options to resolve it:

• Overwrite the existing value on s

• Discard the value from bi

ViaData wants this conflict to be resolved by human intervention. There
are only a few possibilities for the reason of this conflict:

• Multiple employees are working on the same order data

• A PDA was shut down before the data was submitted to the server
and work has begun on a new PDA

The first possibility will never happen, if there are multiple employees work-
ing on the same order, they only use one PDA. The second possibility will
probably only occur when a PDA has crashed, or ran out of battery power.
The data that hasn’t been submitted yet could contain the correct value
for a certain name, or it could contain an outdated value. Which one is the
correct case is not detectable by the software, therefore human interaction
is required. This can be done by a back office employee, the employee that
controls the PDA, a system administrator, or another person with enough
knowledge and access to the data.

This analysis shows a possible consistency error: if other data relies on
the value that was discarded, the system might loose consistency. For ex-
ample: if the total price of an order is stored somewhere, and the order

8 CHAPTER 1. INTRODUCTION

data might change afterwards, the total price that is stored might not be
the correct price. When manually resolving a conflict, these factors have
to be taken into account. To find a solution for this problem is outside the
scope of this thesis.

Because Commit changes the server state and not the client states, the
invariant doesn’t hold anymore. A Refresh is necessary to make the in-
variant hold again. Because the client doesn’t know when other clients
perform a Commit, each client will periodically perform a Refresh. The
result will be that the system as a whole will adhere to the invariant.

Refresh This operation is always preceded by a Commit if there were changes
done to make sure the buffer state bi is empty and all changes have been sub-
mitted to the server. The operation Refresh checks for inconsistencies be-
tween ci and s, and updates ci accordingly.

Refresh(s, ci)
for all n ∈ dom(ci) do
{No names can be removed from dom(s), the name n exists in s if it
exists in ci}
if s(n).t 6= ci(n).t then
{There is a newer value of name n on the server, update ci}
ci(n)← s(n)

end if
end for

Because bi is empty, no conflicts can occur during Refresh. When Refresh
is finished, the invariant holds.

To summarize, these assumptions were made:

• There is no parallelization on the server, all client requests are handled one
by one.

• After every Refresh for client i, the invariant holds for that client.

• All changes made by a client (changing an existing value, or adding a new
name) are done on bi.

• New names are unique systemwide.

• During Refresh for client i, bi is empty.

1.4. PROBLEM STATEMENT 9

1.4 Problem statement

The model described in 1.3 is the required model, the current architecture and
algorithms do not fulfill this model. Connections to the server are made at many
places in the PDA application and it is not clear how the system as a whole
operates. In addition to this, there are suspicions that the synchronization of the
clients with the server uses much more bandwidth than necessary. To address all
problems, several requirements can be defined:

1. Design a model of the new behavior of the Connect-it system (see section
1.3).

2. Change the architecture in such a way that all communication is being done
in separate components.

3. Change the architecture in such a way that changes in the application logic
don’t require changes in the new communication components.

4. Change the architecture in such a way that changes in the type of data
storage used or changes in what data is stored don’t require changes in the
new communication components.

5. Minimize the bandwidth usage for synchronizing the clients with the server:
(bu(Commit) + bu(Refresh)) where bu is a function that determines the
bandwidth usage of a certain operation.

6. Impact on battery usage should be minimal: minimize the client process-
ing time for synchronizing the clients with the server: (pt(Change) +
pt(Commit) + pt(Refresh)), where pt is a function that determines the
processing time of a certain operation.

7. The number of clients can change over time.

1.5 Summary

In this chapter the Connect-It application has been introduced. As Connect-It
started small and has grown over the years, it’s original architecture is not suffi-
cient anymore. The exact behavior of the system is also unclear.

Chapter 2 will analyze Connect-It as it is. Chapter 3 will provide a new ar-
chitecture that will satisfy the model described in section 1.3. Chapter 4 will
analyze the results and a final conclusion is given in chapter 5.

Chapter 2

Analysis

In this chapter the problem introduced in chapter 1 will be analyzed in more
detail. First, in section 2.1 an overview is given of related work in the field
of distributed systems. In section 2.2, the challenges of designing a distributed
system are explored and how they apply to Connect-It. A detailed analysis of
the current architecture is given in section 2.3. Section 2.4 provides a method
to compare different distribution protocols and the relation between the different
parameters is studied. A brief comparison between several existing distribution
methods is given in section 2.5. Finally, section 2.6 gives a summary and some
thoughts about how to proceed.

2.1 Related work

The research field of distributed systems includes many different topics. In the
following subsections, a brief overview is given of those research topics and their
relation to Connect-It.

2.1.1 Caching on a failed hit

One method to locally store information, is to cache on a failed hit. The applica-
tion requests a certain piece of data, if it is not locally available, it is requested
from the server and stored locally. A second request can be served from the local
cache. The caching of web pages is commonly done using this method, but it is
not restricted for use with web pages. In [9] a framework is described for cache
management for mobile databases, based on this caching scheme.

The major drawback is that it only caches items once there has been a request for
it. If there is no connection possible at that time, the request simply fails. In the

11

12 CHAPTER 2. ANALYSIS

case of Connect-It, the data should be available when the application requests
for it and thus it needs be distributed before the first request.

2.1.2 Invalidation

At some point parts of the data aren’t up to date anymore. There are several
methods to ensure the data is up to date (combinations are also possible [22]):

• If Modified Since (IMS): when the application requests a data item, the
client checks at the server if the item has been changed since last time he
checked for it. If this is the case, the server sends the new item to the client.
Otherwise, the client can use the locally stored item. Proxy servers often
utilize this strategy.

• Time To Live (TTL): the client request data from the server. After it
received the data, it assumes the data doesn’t change during a window w.
After that it simply deletes the data.

• Invalidation Reports (IRs): the server broadcasts IRs to the client, which
contain the identifiers of the data that isn’t up to date anymore. It is up to
the client to request a new copy from the server when it wants an updated
version. This does require a lot of administration at the server if not all
clients have the same dataset, in that case the server has to keep track of
which client has what data stored.

• Lease: the client registers a lease on data item x. During the lease time,
it receives invalidation reports from the server. At the start of a lease the
client either receives the item from the server, or the client can use a local
copy in combination with an IMS request.

These methods are not very useful for Connect-It, as they require either a con-
stant connection to a server (IRs and Lease) or a connection at the time the data
is requested from the server (IMS and TTL). Missing an IR can be crucial and
not knowing whether the data is up to date isn’t good either.

There are a number of algorithms available that use adapted versions of these
methods. The most popular are IRs. In [15] a mobility aware dynamic database
caching scheme for mobile computing is presented. Other algorithms using IRs
are described in [7], [8] and [13]. Although they use adapted versions for use
in mobile environments, they still have drawbacks. To compensate for the dis-
connections, the server stores the IRs until the client is connected again after
which he sends the IRs. This requires even more administration at the server.
Furthermore, when a mechanic wants to review some details of a customer, it is
very inconvenient if that information is ”not available”. If, for example, only a

2.1. RELATED WORK 13

fax number of that customer has changed, the address should still be available
to the mechanic. If the data item of this customer is marked ”invalid”, it won’t
be accessible at all. In this case, it is better to use the old data and when there
is a change, send the new data item to the clients in stead of only a report that
the old version is not valid anymore.

2.1.3 Replication

Replication is a method that distributes (parts of) a database (or other data stor-
age) to other clients. Replication is usually done at table level, although models
exist that use object-based replication. Clients can subscribe to a table and when
there are changes in a table, they are sent to the client. This does require a con-
stant connection to the server. When the connection is lost, the whole contents
of the replicated database needs to be checked to ensure consistency. It is obvious
this isn’t an option for Connect-It.

The Bengal Database Replication System [11] is a database system designed
for mobile environments. It was designed for traveling people who need to ex-
change their work with each other. There is no central server and updates are
spread among the clients. It does allow different topologies, like a ring, tree or
star topology. The latter is effectively a client-server architecture. However, the
Bengal Database Replication System is an addition to existing databases and
only works on a limited set of data storage mechanisms.

Roam [17], also a replication system for a mobile environment, uses the same
principles and the updates are distributed between the clients. Although it is
not database-specific, it only supports client-client communication without the
addition of different topologies that mimic a client-server architecture.

The advantage of a client-client architecture is the lack of a central server. When
a client can’t reach one client, but can still contact another one, the updates can
still take place. In the case of Connect-It: if a client can’t reach the central server,
it probably can’t reach any other client because of the lack of network coverage.

For Connect-It, it is not preferable to replicate every table in the database or
only a selection of tables as this could be more data than a single PDA could
store. Some filter mechanism is required that distributes only a subset of the data
in one or more tables and all changes done on that subset. Existing replication
mechanisms don’t support this.

14 CHAPTER 2. ANALYSIS

2.1.4 Consistency techniques in a replication system

In a replication system, there are two methods of ensuring consistency between
all clients [11]: Conservative (or Pessimistic) replication and Optimistic replica-
tion. Conservative replication uses locking or restricting to limit the operations
on the data. This can have a tremendous negative effect on the other processes
if a lock or restriction is not released. It also requires that all clients receive the
lock before a certain operation can take place [12].

Optimistic replication allows all changes to be made locally and during an up-
date consistency is checked and conflicts are resolved. The lack of client to client
communication is now a big advantage in the client-server architecture [16]: all
updates will pass through the server and all consistency checks can be done at
the server. CVS [1] and Subversion [5], both document version control systems,
work in a similar way. In general: the data has a record (timestamp) when it was
last modified. When a client sends an update to the server and both timestamps
match, then no conflict exists and the update can continue. If the timestamps
do not match, there is a conflict that needs to be resolved.

2.1.5 Shared Data Spaces

In a shared data space system, the data is distributed over several clients, while no
single client needs to contain all available data. An example is GSpace [18]. To the
rest of the application, GSpace is a single data storage, although it is distributed
over several clients. It is obvious this isn’t what Connect-It needs. However,
in [19] a mechanism is presented to dynamically change the data distribution
policies within the GSpace system. The mechanism can be adapted to work with
Connect-It in stead of with GSpace, to allow Connect-It to adapt to a changing
environment.

2.2 Challenges

Before the architecture is analyzed in more detail (section 2.3), this section will
look into the challenges of designing a distributed system and how they apply to
Connect-It. According to [10], there are 7 challenges to deal with:

1. Heterogeneity

2. Openness

3. Security

4. Scalability

5. Failure handling

2.2. CHALLENGES 15

6. Concurrency

7. Transparency

Each of these challenges will be addressed in the following subsections and their
applicability in Connect-It is discussed.

2.2.1 Heterogeneity

Different components in a distributed system can run on different types of com-
puter hardware, use different network protocols, have different operating systems,
and even the representation of the data can be different. An integer data type
can be signed or unsigned and 16, 32 or 64 bits long. When designing a dis-
tributed system, one has to keep these differences in mind. One way to do this
is to explicitly define the interfaces between each component and not to make
any assumptions as a developer. The use of middleware is a common solution
in distributed systems [10] [20]. Middleware is a term that indicates a software
layer that abstracts from the underlying hardware, network and operating system.

To some extent, Connect-It uses middleware. The Microsoft .NET Framework
and the Microsoft .NET Compact Framework abstract the developer from the un-
derlying hardware and network protocols. The .NET Framework even abstracts
from the details of the operating system, but one can assume it will be a Microsoft
operating system in the case of Connect-It. In theory, other operating systems
could be supported, but no full .NET Framework implementation exists for any
non-Microsoft operating system. The Data Access Objects can also be seen as
middleware, they are an abstraction of the data storage.

What Connect-It doesn’t have, is middleware that abstracts the application logic
from the distribution protocols. The application logic directly connects to the
server, in stead of using a separate software layer for this task. If another proto-
col needs to be implemented in the future, it will be a very difficult and complex
task to do if it is scattered across the entire application. One of the goals of this
thesis is to design this separate layer (see section 1.4).

2.2.2 Openness

The openness of a computer system is the characteristic that determines whether
the system can be extended and re-implemented in various ways [10]. An open
distributed system is a system that offers services according to standard rules
that describe the syntax and semantics of those services [20]. The syntax and
semantics are often called the interface of a service.

When looking at Connect-It, several interfaces can be seen:

16 CHAPTER 2. ANALYSIS

• The web service interface to the server.

• The DAO interface to the data storage.

• The .NET interface to different hardware and network systems.

However, some limitations can also be identified:

• There is no interface to the data distribution algorithms: changes in the
web service result in changes needed in the PDA application logic.

• Changes in database design result in changes in the DAO interface.

The result is a system that is partially open: new application logic can be cre-
ated that use the services of the lower software layers. However, changes in the
lower software layers have a negative impact, as the upper layers also need to
be adjusted. In an ideal environment, an interface is independent of specific
implementation details and should remain the same. According to the problem
statement in section 1.4, this is also a design goal.

2.2.3 Security

There are three security measurements possible [10] in distributed systems:

• Confidentiality (protection against disclosure to unauthorized individuals)

• Integrity (protection against alteration or corruption)

• Availability (protection against interference with the means to access the
resources)

Confidentiality and integrity are very important within Connect-It. Since the
shared data consists of orders and other financial data, it is important that only
authorized individuals can access and change the data. At application level this
is done by requiring a valid user name and password to log in to the application.
During communication with the server, Secure Socket Layer (SSL) encryption is
used to ensure safe data transport. Furthermore, each PDA is given a unique ID
and activity using that ID is logged at the server. Requests that use an unknown
ID are blocked at the server to prevent unauthorized access.

The availability aspect is tricky. Some preventive measures to for example a
Denial Of Service (DOS) attack can be taken, but it requires actions from the
network administrator instead of the application itself. The good news is that
Connect-It is designed to work in an environment where availability isn’t guar-
anteed, so this aspect is of a less concern to the design and no further effort is
necessary to address this aspect.

2.2. CHALLENGES 17

To summarize, the security in Connect-It is already sufficient, no additional steps
need to be taken here as long as the security doesn’t degrade.

2.2.4 Scalability

A system can be scalable in three areas [20]:

• Size

• Geography

• Administration

Size

Scalable in size means more users or more resources. If a client-server architecture
is being used, more clients usually means more work for the server, while client-
client architectures often scale better in that respect. However, when confidential
data is used, one secure server is usually preferred over many clients that also act
as servers [20]. If needed, the data storage used at the server can be distributed
across several other servers, but for the outside world, it looks like one server.
When looking at an average working day for an average customer of Connect-It,
there are 240 changes in 8 hours, or 1

120 changes per second. Reading data from
the data storage can be done in parallel, while writing requires a lock. This
means that for those 1

120 changes per second, a lock is needed. The time it takes
to write 1 change to the data storage is τ , where τ is much lower than 1 (in
seconds). This results in 1

120τ being the non-parallelizable part in Amdahl’s law
about the speedup of parallel computing. The resulting speedup for using N

servers (ignoring overhead) is:

S(N) =
1

1
120τ + (1− 1

120
τ)

N

(2.1)

With a theoretical maximum (N is infinite) of 120
τ , which is a very good speedup.

Geography

Distributed systems designed for a local area network often don’t work when used
in a wide area network like the internet [20], as the performance of the internet is
usually much less than the performance of a local network. Connect-It is already
designed for use with network types that have a low performance. It evens keeps
functioning when a network connection isn’t available for hours, so it can be said
that it is scalable enough with respect to the geography.

18 CHAPTER 2. ANALYSIS

Administration

The third scalability aspect is administration. Does a distributed system keep
functioning when it is used at a larger scale and expands to include different
enterprises? Connect-It already deals with this aspect by allowing the admini-
strators to define multiple administrations within Connect-It, each having their
own set of users and data. As each administration is independent of other ad-
ministrations, each administration could have its own separate server and data
storage, achieving linear speedup: S(N) = N . So Connect-It is also very scalable
with respect to Administration.

To summarize, Connect-It is a very scalable system that can be used both in
a small and a large scale environment, using whatever network connections are
available. As long as the architecture doesn’t degrade the scalability, no addi-
tional steps need to be taken here as long as the scalability doesn’t degrade.

2.2.5 Failure handling

Sometimes computer systems fail. Whether it is a software error or a hardware
error that caused the failure, the failure needs to be handled in a correct way. In
a distributed system, the failure of one component should not result in failures
of other components. In Connect-It, the number of devices can also change over
time (see section 1.4): the number of employees change, or PDAs are simply
turned off or run out of battery. In that case, the loss of data should of course
be minimized. Important data shouldn’t be stored in memory alone, but also on
a disk or other persistent storage device.

Currently, the failure of one client won’t result in any other failures in the sys-
tem. When the server is down, the client will keep functioning just as if there
was no network connection available. However, the changes a client made locally
and are waiting to be sent to the server only exist in memory. If a local failure
occurs, these changes will never be sent to the server (omission failure). The new
software architecture should ensure that changes in the data that are waiting to
be transferred to the server will still exists after a local failure occurs.

2.2.6 Concurrency

A server provides resources that can be shared by several clients, so there is a
possibility that several clients will attempt to access a shared resource at the
same time. For an object to be safe in a concurrent environment, its operations
must be synchronized in such a way that its data remains consistent [10].

At the moment, not much can be said about consistency within Connect-It.

2.2. CHALLENGES 19

When the server receives data from a client, it stores that data without checking
for any conflicts. As the communication with the server is initiated at many dif-
ferent places in the application logic of the client, there is no easy way to address
this problem. However, when using a new software layer for the distribution of
the data, the problem becomes much less complex.

Conflicts can be detected during a Commit by comparing the timestamp of each
data item received from the client with the timestamp of the corresponding data
item at the server (see section 1.3). If a conflict occurs, it needs to be resolved
before the Commit can successfully complete. If it can’t be resolved, a rollback
mechanism is required as Commit should guarantee that all changes are applied
in one atomic operation.

Because a client might be disconnected from the server for an undetermined
amount of time, the best consistency model that describes Connect-It is Even-
tual Consistency: when no updates occur for a long period of time, eventually all
updates will propagate through the system and all the replicas will be consistent.

The new architecture should provide means to detect and resolve conflicts to
guarantee consistency within Connect-It. As most conflicts will probably occur
in order data or other financially sensitive data, ViaData prefers human interac-
tion. This is also easy to implement, alert a user (whether it is at the client side,
the server side or at the back office) that there is a conflict and provide an option
to select either one version or a merged version. The application logic to send
messages to a certain user or a certain user group (for example the administrator
group) already exists. It is only a small addition to extend this existing system
to include messages about conflicts.

2.2.7 Transparency

Transparency is defined as the concealment from the user and the application
programmer of the separation of components in a distributed system, so that the
system is perceived as a whole rather than as a collection of independent compo-
nents [10].

Connect-It consists of many different components that work together to give
a user the illusion that it is one system it is interacting with. Furthermore, the
use of the Data Access Object design pattern allows the application developers
to access the data without worrying about the specific details that play a role in
storing or retrieving data. The DAO layer hides those aspects and can be seen
as a single component.

20 CHAPTER 2. ANALYSIS

The distribution of the data is still not transparent to the application devel-
opers. One of the goals (see section 1.4) is to design a new software layer that
hides all the details that play a role in the distribution of the data.

One might ask if 100% transparency is a good thing, as there are several ex-
amples where hiding all details is not a good idea [20]. For example: in the case
of Connect-It, when a PDA can’t contact the server for several days, that infor-
mation is relevant to the user. Furthermore, it is currently possible for a user to
manually trigger the synchronization process for a client. A user might want to
do that if he is at the office and has his PDA in a cradle. In most cases, a high
degree of transparency is preferable, but hiding everything is often not the best
solution.

2.2.8 Summary

In table 2.1 an overview is given of the different challenges and how they apply
to Connect-It. For each challenge there are two possible scores:

• When the challenge has been dealt with in an adequate manner, the score
is a +

• When the challenge hasn’t been dealt with or improvement is necessary,
the score is a -

Challenge Score Improvement

Heterogeneity - Use middleware to abstract the
distribution of the data.

Openness - Use interfaces that are independent
of implementation changes.

Security + No improvement necessary.
Scalability + No improvement necessary.
Failure handling - Persistently store the changes of a client.
Concurrency - Add conflict detection.
Transparency - Make the distribution of the data transparent

to the application logic.
Table 2.1: Challenges within Connect-It

As can be seen, Connect-It can and should be improved for 5 of the 7 challenges
and should not degrade for the 2 challenges that already have been dealt with in
an adequate manner.

2.3. ARCHITECTURAL ANALYSIS 21

2.3 Architectural analysis

Using the 4+1 views of Kruchten [14] I will describe the current architecture.
First, the logical view is shown in section 2.3.1. Section 2.3.2 describes the pro-
cess view, followed by the development view in section 2.3.3. After that, in section
2.3.4, the physical view of the architecture is shown. The fifth view deals with
several use cases in section 2.3.5.

Note that there was no complete or extended architectural documentation avail-
able, I performed this analysis by reverse engineering the system as it is.

2.3.1 Logical view

The logical view shows the object model of the design. First the class diagram
will be discussed, after that the interaction between the different classes is shown
in sequence diagrams.

Class diagram

The class diagram in figure 2.1 only goes into detail about the part of the appli-
cation that is relevant for the distribution of the data. The following list shows
all classes and their purposes.

• PdaApplication
This package represents the rest of the PDA application. It uses the Connec-
tionManager, the SyncManager and the PDAWebService to communicate
with the server.

• DTO
DataTransferObject. This abstract class is the base for all data classes,
such as Order and Customer. Each record in the database is represented
by a DTO object.

• Order
This class represents order data, it inherits from DTO.

• Customer
This class represents customer data, it inherits from DTO.

• ...
Represents other classes that inherit from DTO, just like Order and Cus-
tomer.

• ConnectionManager
This class can open a new connection to the server.

22 CHAPTER 2. ANALYSIS

+
S

av
eC

us
to

m
er

(
ca

sc
ad

e
: b

oo
le

an
, d

at
a

: C
us

to
m

er
 [0

..*
])

 :
vo

id
+

Lo
ad

C
us

to
m

er
(

id
 :

in
t)

 :
C

us
to

m
er

+
Lo

ad
C

us
to

m
er

(
id

s
: i

nt
 [0

..*
])

 :
C

us
to

m
er

 [0
..*

]
+

Lo
ad

C
us

to
m

er
()

 :
C

us
to

m
er

 [0
..*

]
+

D
el

et
eC

us
to

m
er

(
ca

sc
ad

e
: b

oo
le

an
, i

ds
 :

in
t [

0.
.*

])
 :

vo
id

+
D

el
et

eC
us

to
m

er
(

ca
sc

ad
e

: b
oo

le
an

, t
oD

el
et

e
: C

us
to

m
er

 [0
..*

])
 :

vo
id

A
C

u
st

o
m

er
D

A
O

+
S

av
eO

rd
er

(
ca

sc
ad

e
: b

oo
le

an
, d

at
a

: O
rd

er
 [0

..*
])

 :
vo

id
+

Lo
ad

O
rd

er
(

id
 :

in
t)

 :
O

rd
er

+
Lo

ad
O

rd
er

(
id

s
: i

nt
 [0

..*
])

 :
O

rd
er

 [0
..*

]
+

Lo
ad

O
rd

er
()

 :
O

rd
er

 [0
..*

]
+

D
el

et
eO

rd
er

(
ca

sc
ad

e
: b

oo
le

an
, i

ds
 :

in
t [

0.
.*

])
 :

vo
id

+
D

el
et

eO
rd

er
(

ca
sc

ad
e

: b
oo

le
an

, t
oD

el
et

e
: O

rd
er

 [0
..*

])
 :

vo
id

A
O

rd
er

D
A

O

+
S

av
e.

..(
 c

as
ca

de
 :

bo
ol

ea
n,

 d
at

a
: .

..
[0

..*
])

 :
vo

id
+

Lo
ad

...
(

id
 :

in
t)

 :
...

+
Lo

ad
...

(
id

s
: i

nt
 [0

..*
])

 :
...

 [0
..*

]
+

Lo
ad

...
()

 :
...

 [0
..*

]
+

D
el

et
e.

..(
 c

as
ca

de
 :

bo
ol

ea
n,

 id
s

: i
nt

 [0
..*

])
 :

vo
id

+
D

el
et

e.
..(

 c
as

ca
de

 :
bo

ol
ea

n,
 to

D
el

et
e

: .
..

[0
..*

])
 :

vo
id

A
...

D
A

O

+
S

av
e(

 c
as

ca
de

 :
bo

ol
ea

n,
 d

at
a

: D
T

O
 [0

..*
])

 :
vo

id
+

Lo
ad

(
id

 :
in

t)
 :

D
T

O
+

Lo
ad

()
 :

D
T

O
 [0

..*
]

+
Lo

ad
(

id
s

: i
nt

 [0
..*

])
 :

D
T

O
 [0

..*
]

+
D

el
et

e(
 c

as
ca

de
 :

bo
ol

ea
n,

 id
s

: i
nt

 [0
..*

])
 :

vo
id

+
D

el
et

e(
 c

as
ca

de
 :

bo
ol

ea
n,

 to
D

el
et

e
: D

T
O

 [0
..*

])
 :

vo
id

ID
A

O

+
S

av
eO

rd
er

s(
 it

em
s

: O
rd

er
 [0

..*
])

 :
vo

id
+

Lo
ad

A
llO

rd
er

s(
)

: O
rd

er
 [0

..*
]

+
Lo

ad
O

rd
er

s(
 id

s
: i

nt
 [0

..*
])

 :
O

rd
er

 [0
..*

]
+

D
el

et
eO

rd
er

s(
 id

s
: i

nt
 [0

..*
])

 :
vo

id
+

S
av

eC
us

to
m

er
s(

 it
em

s
: C

us
to

m
er

 [0
..*

])
 :

vo
id

+
Lo

ad
A

llC
us

to
m

er
s(

)
: C

us
to

m
er

 [0
..*

]
+

Lo
ad

C
us

to
m

er
s(

 id
s

: i
nt

 [0
..*

])
 :

C
us

to
m

er
 [0

..*
]

+
D

el
et

eC
us

to
m

er
s(

 id
s

: i
nt

 [0
..*

])
 :

vo
id

+
S

av
e.

..s
(

ite
m

s
: .

..
[0

..*
])

 :
vo

id
+

Lo
ad

A
ll.

..s
()

 :
...

 [0
..*

]
+

Lo
ad

...
s(

 id
s

: i
nt

 [0
..*

])
 :

...
 [0

..*
]

+
D

el
et

e.
..s

(
id

s
: i

nt
 [0

..*
])

 :
vo

id

P
D

A
W

eb
S

er
vi

ce

−
O

rd
er

U
pd

at
eF

re
qu

en
cy

 :
in

t
−

C
us

to
m

er
U

pd
at

eF
re

qu
en

cy
 :

in
t

−
...

U
pd

at
eF

re
qu

en
cy

 :
in

t

+
U

pd
at

eN
ow

()
 :

vo
id

+
S

av
eO

rd
er

s(
 it

em
s

: O
rd

er
 [0

..*
])

 :
vo

id
+

S
av

eC
us

to
m

er
s(

 it
em

s
: C

us
to

m
er

 [0
..*

])
 :

vo
id

+
S

av
e.

..s
(

ite
m

s
: .

..
[0

..*
])

 :
vo

id

S
yn

cM
an

ag
er

B
ac

ko
ff

ic
eW

eb
se

rv
ic

e

+
Is

C
on

ne
ct

ed
 :

bo
ol

ea
n

+
C

on
ne

ct
()

 :
vo

id

C
o

n
n

ec
ti

o
n

M
an

ag
er

C
u

st
o

m
er

D
A

O
_S

Q
L

P
d

aA
p

p
lic

at
io

n

C
u

st
o

m
er

D
A

O
_B

IN
O

rd
er

D
A

O
_S

Q
L

O
rd

er
D

A
O

_B
IN

C
u

st
o

m
er

...
D

A
O

_S
Q

L

In
he

rit
s

In
he

rit
s

Im
pl

em
en

ts

In
he

rit
s

...
D

A
O

_B
IN

+
Id

 :
in

t

D
T

O

O
rd

er
...

U
se

s
U

se
s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s

U
se

s
U

se
s

U
se

s

U
se

s

Figure 2.1: Class diagram (analysis)

2.3. ARCHITECTURAL ANALYSIS 23

• SyncManager
This class can periodically download all data for a single type (Order, Cus-
tomer, ...). It will delete all data of that type that is currently stored in
the data storage.

• PDAWebService
This is the PDA webservice running at the server, all PDAs will use this
webservice to communicate with the server. It has specific load, save and
delete methods for each data type (Order, Customer, ...). It uses the DAO
interface to store and retrieve data from the data storage.

• BackofficeWebservice
This is the backoffice webservice running at the server, all backoffice clients
will use this webservice to communicate with the server. It has many dif-
ferent methods compared to the PDA webservice which are not relevant for
PDA clients.

• IDAO
This is the DAO (Data Access Object) interface. It provides general load,
save and delete functions to the data storage used. Note that all methods
use the abstract DTO type, it depends on the implementation of a specific
DAO what the return values are.

• AOrderDAO
This abstract class represents a DAO for accessing order data. It offers type
safe variants of the methods supplied by the DAO interface.

• ACustomerDAO
This abstract class represents a DAO for accessing customer data. It offers
type safe variants of the methods supplied by the DAO interface.

• A...DAO
Represents other abstract DAO classes, just like AOrderDAO and ACus-
tomerDAO.

• OrderDAO BIN
This is the DAO for accessing order data using binary files (in a custom
designed format).

• CustomerDAO BIN
This is the DAO for accessing customer data using binary files (in a custom
designed format).

• ...DAO BIN
Represents other DAOs using binary files (in a custom designed format).

24 CHAPTER 2. ANALYSIS

• OrderDAO SQL
This is the DAO for accessing order data using a SQL database.

• CustomerDAO SQL
This is the DAO for accessing customer data using a SQL database.

• ...DAO SQL
Represents other DAOs using a SQL database.

When looking at the class diagram, three aspects can be observed that need to
change:

1. Transparency. The PdaApplication uses two ways to communicate with the
server, either by using the PDAWebService directly and via the SyncMan-
ager. There is no guideline or documentation when each method is used.
It would be better if the connection with the server was transparent to the
PdaApplication, so it will be clear when and how the connections are used.

2. Openness. There are a lot of dependencies to the derived DTO classes
like Order and Customer, even when it is not relevant what type of data
is being transferred. Now, most classes have multiple methods for each
derived DTO class. Using generic programming techniques, these classes
would only have a dependency to the abstract DTO class and in stead of
writing each method separately for each derived class, only one method will
suffice. When a new data type is introduced, there is no change necessary
in the distribution classes.

3. Openness. Every DAO class has a specific implementation for each derived
DTO class. Again, using generic programming techniques, one class per
DAO type (Binary text files, SQL database, ...) would suffice. When a new
data type is introduced, no new DAO implementations have to be made.

Sequence diagrams

The sequence diagrams show the interaction between the different classes. Figure
2.2 shows a thread of the PDA application that interacts with the underlying DAO
and how data items are sent to the Buffer. The Buffer runs a second thread that
interacts with the server, this can be seen in figure 2.3. Finally, figure 2.4 shows
the sequence of updating the local data storage.

2.3. ARCHITECTURAL ANALYSIS 25

PdaApplication OrderDAO_BIN SyncManager Buffer

Order

[Sending
the data is
optional]

[Receiving buffer objects]

[Sending buffer objects]

par

Buffer Sequence Diagram

ref

alt

[For each
data field]

loop

[For each
data field]

loop

LoadOrder(id)1:

Change order values7:

SaveOrder(order)8:

SaveOrders(order)13:

Create2:

Read data from disk3:

Set value4:

return order6:

Get value9:

Write data to disk11:

return12:

return17:

Add(order)14:

return16:

Add to queue15:

return5:

return value10:

Figure 2.2: Application sequence diagram (analysis)

26 CHAPTER 2. ANALYSIS

ConnectionManager PDAWebService OrderDAO_SQLBuffer Order

[Queue is
not empty]

[Queue is
empty]

opt

[While not
shutting down]

[There is an
order in the
queue]

alt

[Not
connected]

opt

[For each
data field]

loop

loop

Note that the buffer is only made
persistent during shutdown, an
uncontrolled shutdown (crash) looses
all buffer data

return true/false2:

return4:

SaveOrders(order)6:

return11:

Get value7:

Store data in
database

9:

return10:

IsConnected1:

Connect3:

SaveOrders(order)5:

Store buffer
data to disk

13:

Wait for timeout12:

return value8:

Figure 2.3: Buffer sequence diagram (analysis)

2.3. ARCHITECTURAL ANALYSIS 27

Update data type

Load...

ConnectionManager PDAWebServicePdaApplication SyncManager ...DAO_SQL...DAO_BIN ...

[For each
data item]

[For each
data field]

loop

loop

[Manual
update
triggered
by the
user]

[For each
data type]

loop

(Update data type)

ref

[Timed
update]

(Update data type)

ref

Note: each data type
has its own timer

[Manual
connection
programmed
somewhere
in the code]

(Load...)

ref

alt

[Update user
specific data
(like orders)]

(Load...)

ref

[Update regular
data]

(Load...)

ref

alt

[For each
data item]

[For each
data field]

loop

loop

[Not connected]

opt

Note that each
data type has its
own load and
save functions

return true/false7:

return9:

return ...5:

return ...11:

return ...13:

Load...22:

UpdateNow1:

Load...4:

return2:

Timer fired for
data type

3:

IsConnected6:

Connect8:

Load...(for current user)10:

LoadAll...12:

Delete...(all)14:

Save...17:

Query database23:

Create24:

Set value25:

return ...27:

Delete all15:

return16:

Get value18:

Write data
to disk

20:

return21:

return value19:

return26:

Figure 2.4: Update sequence diagram (analysis)

28 CHAPTER 2. ANALYSIS

Each diagram shows aspects that can (or should) be improved:

• Application sequence
The first half of the diagram in figure 2.2 shows the DAO pattern, how
data is retrieved and stored again. The second half is optional and this is a
big flaw: every change in the data should be transferred to the server (see
section 1.3). In most cases the application logic will do this, but sometimes
this is forgotten. If the connection with the server was transparent and
transfers were done automatically, this problem would be solved.

• Buffer sequence
The buffer component (when used) receives DTO objects on a separate
thread (see the application sequence). Another thread is looping and when
there is an item that needs to be transfered, it tries to connect to the
server. If the connection fails during the SaveOrders call, the call returns
and the objects are considered to be transferred successfully, there is no
error detection. Furthermore, all buffered data exists in memory alone:
only during a controlled shutdown is the data persistently stored to disk.
These are two flaws that need to be resolved.

• Update sequence
The biggest performance bottleneck in the update sequence is that all DTO
objects are transferred every time a Refresh takes place. The advantage
is that the local data storage really is up to date, but that can be achieved
in many other ways. The model in section 1.3 gives a solution: apply all
local changes to a buffer and don’t let the client change anything in its local
storage. When updating, only transfer the changes in the data. This can be
compared with the IMS messages from section 2.1.2. The key is to design
a efficient method of querying for changes in the whole local data set.

2.3.2 Process view

The process view shows the different processes and threads mapped to hardware
components. In this case, the PDA consists of one process: Connect-It SE.exe.
The server runs the webserver that executes the pda.asmx webservice. Figure
2.5 illustrates this. Note that the backoffice webservice is not shown here, as the
focus of this thesis is the part of the architecture that deals with the PDA clients.
What activities take place in each thread can be seen in the sequence diagrams
from section 2.3.1.

Looking at the different threads, a problem can be identified. Some PdaAp-
plication threads directly connect to the server to send and receive data. This
has the effect that when a thread at the server blocks (for example, because ac-
cess to the server data storage is synchronized), the PdaApplication thread will

2.3. ARCHITECTURAL ANALYSIS 29

PDA

Connect−It SE.exe

Several
application

threads

Updater thread

Buffer threadBuffer

Server

pda.asmx (runs in webserver)

PdaWebservice

Creates one thread for
each incoming client

request

Note, this is an instance of an object, shared by the
application threads and the buffer thread.

Save data
Request data

Save data

Request data

Empty buffer

Load data
Save data

Fill buffer

Save data

Load data
Save data

Figure 2.5: Processes and threads (analysis)

block. This could reduce responsiveness at user level. When all server interaction
would be done using separate threads, this problem would be solved.

2.3.3 Development view

The development view shows a decomposition of the system in several software
components and their relation. Figure 2.6 shows this decomposition for Connect-
It in three layers: an application specific layer on top, a middleware layer and
a general components layer on the bottom. The lines show the dependencies of
the different software components. Note that for each component the classes it
contains is shown, see the logical view in section 2.3.1 for more information on
each class. Below, the functionality of each component is explained.

• Connect-It SE.exe
The main executable of the PDA, it initializes the program and shows the
logon screen as the application starting point for a user. Depends on:

– Globals.dll

– PDAGlobals.dll

– DataObjects.dll

– Managers.dll

– FlowManager.dll

– Schermen.dll

– pda.asmx

30 CHAPTER 2. ANALYSIS

General components

Middleware

Application specific

+Order
+Customer
+AOrderDAO : abstract
+ACustomerDAO : abstract

<<component>>

DataObjects.dll

+OrderDAO_SQL
+CustomerDAO_SQL

<<component>>

SQL_DAO_Impl.dll

<<component>>

Connect−It SE.exe

+ConnectionManager
+SyncManager

<<component>>

Managers.dll

+OrderDAO_BIN
+CustomerDAO_BIN

<<component>>

BIN_DAO_Impl.dll

<<component>>

FlowManager.dll

<<component>>

PDAGlobals.dll

+PDAWebService

<<component>>

pda.asmx

<<component>>

Schermen.dll

+DTO : abstract
+IDAO : interface

<<component>>

Globals.dll

Figure 2.6: Component dependencies (analysis)

2.3. ARCHITECTURAL ANALYSIS 31

• Schermen.dll
All user interface screens are located in this component. At startup, all
screens are registered at the FlowManager. When a screen is closed, the
FlowManager determines what screen is shown next, depending on the re-
turn value of the closing screen. This enabled different actions based on the
condition when the screen is closed (i.e. what button was pressed). This
component is the largest component, as it holds most of the application
logic. Depends on:

– Globals.dll

– PDAGlobals.dll

– DataObjects.dll

– Managers.dll

– FlowManager.dll

• Managers.dll
This components holds functionality that doesn’t belong to a single screen.
It also keeps track of data between several screens, for example the current
user that is logged in and the current order that the user is working on. One
of the managers in this component serves as access point for the application
logic in the screens to connect to the server. Depends on:

– Globals.dll

– PDAGlobals.dll

– DataObjects.dll

– FlowManager.dll

– pda.asmx

– Any DAO layer (implementation uses BIN DAO Impl.dll)

• FlowManager.dll
This components determines the flow of the application: what screen is
shown next. A script file is read that enables the application to show several
screens in a different order. This enables the software to be customized to
the working methods preferred by a customer. Depends on:

– Globals.dll

– PDAGlobals.dll

• pda.asmx
This is the web service definition, it receives calls from the clients and can
access the server database. Depends on:

32 CHAPTER 2. ANALYSIS

– Globals.dll

– DataObjects.dll

– Any DAO layer (implementation uses SQL DAO Impl.dll)

• BIN DAO Impl.dll
This component implements the data layer for binary text files using the
Data Access Object design pattern [2]. Depends on:

– Globals.dll

– PDAGlobals.dll

– DataObjects.dll

• SQL DAO Impl.dll
This component implements the data layer for a SQL database using the
Data Access Object design pattern [2]. Depends on:

– Globals.dll

– DataObjects.dll

• DataObjects.dll
This component holds all data objects like ”Customer” and ”Order”. Note
that this component is application specific, even though it is located in the
general components layer. Depends on:

– Globals.dll

• PDAGlobals.dll
This component holds global information that is relevant for the PDA ap-
plication, for example the ip-address of the server. Depends on:

– Globals.dll

• Globals.dll
This component holds global information that is relevant for both the
PDA application and the server application, for example the abstract type
”DTO” (see section 2.3.1). Depends on nothing.

Note that these components are spread over the clients and the server. See sec-
tion 2.3.4 for more details on the deployment.

Two observations can be made:

2.3. ARCHITECTURAL ANALYSIS 33

1. There is no middleware that abstracts the distribution of the data, the
application logic directly connects to the pda webservice pda.asmx. If there
is a change in the web service or a whole new connection type is used,
the application specific components need to be changed as well in several
locations. Better would be to use an interface that is implementation and
connection type independent.

2. The second observation is that the application specific component DataOb-
jects.dll is located in the general components layer. Note that I placed it
there based on the dependencies in the middleware layer. One could argue
that it could be located in the middleware layer as well. However, it is still
application specific and should therefore be located in the application spe-
cific layer. The middleware layer should have no dependencies whatsoever
to this DataObjects.dll component. The advantage will be that changes in
what data is stored and transferred (for example, adding a new data type)
does not result in any change necessary in the middleware layer.

2.3.4 Physical view

The physical view describes the different hardware components and what software
they deploy. Figure 2.7 shows the server and a PDA and how the components
from section 2.3.3 are deployed on them. Note that Globals.dll and DataOb-
jects.dll are deployed by both the server and the PDAs.

From this point of view, the DataObjects.dll should move to the Application
Layer. Furthermore, separate components for distributing the data should be
added to the Middleware Layer.

2.3.5 Scenarios

The use case diagram (figure 2.8) shows the mechanics as actors and the backoffice
as an actor. Basically, from a user point of view, all actors want to be able to
view and make changes to the data. It is the task of the system to make sure that
all relevant data gets transferred between the server and the clients. Currently,
there is no conflict detection.

34 CHAPTER 2. ANALYSIS

Application

Hardware

Middleware

OS +
Networking

Server deploymentPDA deployment

.NET 2.0 Framework.NET 2.0 Compact Framework

Windows Mobile 6 Windows Server / 2000 / XP

<<component>>

SQL_DAO_Impl.dll

<<component>>

Connect−It SE.exe

<<component>>

BIN_DAO_Impl.dll

<<component>>

FlowManager.dll

<<component>>

DataObjects.dll

<<component>>

PDAGlobals.dll
<<component>>

pda.asmx
<<component>>

Globals.dll

<<component>>

Schermen.dll

<<component>>

Managers.dll

PDA Server

Figure 2.7: Deployment (analysis)

2.3. ARCHITECTURAL ANALYSIS 35

Keep mobile clients
 consistent

Save Customer

Load Customer

Save Order

Load Order

Save ...

Load data

Load ...

Save data

BackOffice

System

Mechanic

Mechanic

Change data

View data

View data

Change data

<<extend>>

<<extend>><<extend>><<extend>>

<<extend>> <<extend>><<extend>>

Transfer data between
clients and server

Change data

View data

Figure 2.8: Use case diagram (analysis)

36 CHAPTER 2. ANALYSIS

2.4 Cost functions

The use of cost functions allows us to quantify certain aspects, such as communi-
cation, processing time and consistency. With the costs quantified it is possible
to compare different distribution protocols. The protocol with the lowest cost
would be the best protocol. When only one protocol will be implemented, the
optimal protocol given the requirements can be determined. When an adapta-
tion mechanism is built, the parameters can be calculated while the program is
running and with the use of the cost functions the optimal protocol given the re-
quirements and given the current environment can be determined. If the current
protocol isn’t optimal, the system can switch to another protocol. The adapta-
tion mechanism that is required for this behavior is described in [19].

In subsection 2.4.1 the parameters that play a role in the cost functions are dis-
cussed. The subsections 2.4.2, 2.4.3, 2.4.4 respectively introduce the cost function
for communication, client processing time and consistency. In subsection 2.4.5 a
trade off can be seen between the different parameters and finally in subsection
2.4.6 the three cost functions are combined.

2.4.1 Parameters

There are several parameters that influence the quality (cost) of a protocol. These
parameters can be split into two groups: environmental parameters and protocol
parameters.

Environmental parameters

Environmental parameters are parameters that are not affected by the protocol
choice. For example: how often does the data change and what is the average
size of a change that needs to be transferred?

The changes in the data will probably not occur in a uniform distribution dur-
ing the day. When an employee changes one thing, it is likely that some other
changes will follow very soon after the first change. This behavior of bursts of
changes can be modeled with a compound Poisson distribution. To do this, two
assumptions need to be made:

1. The amount of changes in each burst is not of any influence on the number
of bursts that take place.

2. The expected number of changes in a burst is the same for every burst.

These assumptions can be justified by looking at how the changes are entered
into the system. In the case of Connect-It, this can be done manually or by

2.4. COST FUNCTIONS 37

using a connection to an ERP system. In both cases, these changes can include
a new order, a change in an existing order, changed customer data, a change in
the inventory of a mechanic, etc. These are all bursts (events) coming from the
environment, so the specific amount of changes for the system in one of these
bursts is not of any influence to the number of bursts (events) that take place,
justifying the first assumption. Most bursts include a very limited number of
changes and the expected number of changes in each burst is the same, justifying
the second assumption.

To summarize: a burst is an event that generates a number of changes in the
data. The number of bursts that will happen during a certain interval ∆t is X∆t

and has a Poisson distribution with an expected value λ∆t:

P (X∆t = k) =
e−(λ∆t)(λ∆t)k

k!
(2.2)

The expected value scales linearly with ∆t: there will probably be twice as many
changes if the interval is twice as long. The number of unique changes within
burst x is a random value Yx. The sum of all changes within interval ∆t, say
N∆t, has a compound Poisson distribution:

N∆t =
X∆t∑
x=1

Yx (2.3)

Changes in different bursts don’t have to be unique, multiple changes can occur
in one data item. For example, if a new order is submitted and there was a typing
error, correcting the error is a second change on the same data item (in a new
burst). If both changes occur within interval ∆t, N∆t will contain more changes
than there are data items that need to be distributed. However, this fact does
not change the theoretical worst case scenario where all changes are unique. In
most cases, most changes in interval ∆t will be unique, so the worst case scenario
is the best scenario to work with.

According to the compound Poisson distribution, the expected value of N∆t is:

E(N∆t) = E(X∆t)E(Y) = λ∆tE(Y) = γ ×∆t (2.4)

Here, γ is the interesting part: the expected number of changes per second. Note
that the distribution of Y is not important, only its expected value, which is the
expected number of changes in a burst as mentioned in the second assumption
earlier in this section. The distribution of X∆t is a Poisson distribution, which is
ideal for expressing the probability of a number of events in a fixed time interval if
these events occur with a known average rate. The interval ∆t is not necessarily
the same as the interval between two successive checks, but can be linearly scaled

38 CHAPTER 2. ANALYSIS

with respect to E(N∆t). When the application is running and an adaptation
mechanism is used, this mechanism can calculate the number of changes during
a certain interval to get realistic estimates for the parameter γ.

Another environmental parameter is the average size of each data item (in bytes).
In Connect-It, most data items are records in a database. As mentioned before,
there is a chance that not all changes in one interval are changes on unique data
items, but most changes will affect unique data items. The shorter the interval
∆t, the likelier the changes will affect unique data items.

Protocol parameters

Protocol parameters are parameters that are affected by the protocol choice.
This can be the frequency of checks for changes, the amount of communication
overhead needed when checking for changes (in bytes) and the amount of com-
munication needed to keep the data up to date (in bytes). The last one might be
trivial: equal to the size of the changes, but not all protocols transfer only the
changed items, so this is a protocol parameter and should not be ignored.

2.4.2 Communication

It is possible to define the communication needed per client (in bytes per second):

CFComm(Fc, Co, Sd) = Fc × Co + γ × Sd (2.5)

Where Fc is the frequency of the checks, Co is the communication overhead
needed when checking for updates, Sd is the average size of the data that is being
transferred for each change and γ is the expected number of changes per second
(system wide).

An observation can be made from this formula: every change has to be transmit-
ted to the clients. It will probably be the case that not all data items are needed
by all clients, so the formula is based on the worst case scenario that all data
items are needed by every client.

An average working day for an average customer who uses Connect-It will con-
sist of around 240 changes per 8 hours. As seen in section 2.4.1, the average
size of a single data item will be 100 bytes. The behavior of CFComm can plot-
ted to study its characteristics using these averages. In all figures γ is set to

1
120 changes per second, this equals 240 changes per 8 hours. Changing γ is the
same as changing Sd, they are both a linear factor. In figure 2.9, Sd is set to
100 bytes. The result is a quadratic behavior between Fc and Co. In figure
2.10 Co is set to 150 bytes. Here it shows that Sd is only a linear factor. Figure

2.4. COST FUNCTIONS 39

0.000

0.002

0.004

Fc

0

100

200

300

Co

0.8

1.0

1.2

1.4

CFComm

Figure 2.9: Communication cost using Fc and Co. γ = 1
120 , Sd = 100.

0.00

0.02

0.04

Fc

0

200

400

600

Sd

0

5

10

CFcomm

Figure 2.10: Communication cost using Fc and Sd. γ = 1
120 , Co = 150.

2.11 show the relation between Co and Sd with Fc set to 1
300 . Again, this is linear.

Another interesting aspect is not the frequency of the checks, but the time be-
tween two successive checks: 1

Fc
. Figure 2.12 is the result, where Sd is again set

to 100 bytes. The result is an asymptotic curve for 1
Fc

. To be complete 1
Fc

is
plotted against Sd in figure 2.13, while keeping Co at 150 bytes. The result is
very different in top-down view. In figure 2.12 this is a straight line, the result
from the quadratic relation between Fc and Co, while in figure 2.13 this is another
asymptotic curve, emphasizing the linear relation of Sd to Fc.

40 CHAPTER 2. ANALYSIS

0

100

200

300

400

Co

0

200

400

600

800

Sd

0

2

4

6

8

CFcomm

Figure 2.11: Communication cost using Co and Sd. γ = 1
120 , Fc = 1

300 .

0

200

400

1

Fc

0

100

200

300

400

Co

1.0

1.5

2.0

CFComm

Figure 2.12: Communication cost using 1
Fc

and Co. γ = 1
120 , Sd = 100.

2.4.3 Client processing time

The total processing time at the client (in operations per second) can be defined
as:

CFProc(Sd) = γ ×W (Sd) (2.6)

Where Sd is the average size of the data that is being transferred for each change,
γ is the expected number of changes per second and W (x) is a function that de-
termines the amount of processing a client needs to store (write) the amount
of data x. Every time data is being transferred, it needs to be stored. W is
monotonic, in other words: W has the property that if and only if a ≤ b then
W (a) ≤W (b).

Note that Fc is not relevant here. This is based on the worst case scenario
that all changes are unique. In reality, the higher the time between two checks,
the higher the chance that two changes are affecting the same data item, reducing

2.4. COST FUNCTIONS 41

0

200

400

1

Fc

0

200

400

600

800

Sd

0

2

4

6

CFcomm

Figure 2.13: Communication cost using 1
Fc

and Sd. γ = 1
120 , Co = 150.

the processing cost. In my opinion it is best to work with the worst case scenario,
especially for realistic values of Fc instead of theoretical values such as one check
every year.

2.4.4 Consistency

Consistency cost can be represented by the percentage of the time that the client
state is not consistent with the server state. According to [21] the inconsistency
ratio of a system I∗ is defined by the average inconsistency ratio of all possible
traces Z that can happen in a system:

I∗ =
∑

P (Z)× I(Z) (2.7)

Where P (Z) is the probability that trace Z occurs and I(Z) is the inconsistency
ratio of that trace and is defined by:

I(Z) =
1

D(Z)
×

∫ D(Z)

0
ic(xZ(τ))dτ (2.8)

Where D(Z) is the duration of trace Z, where xZ(τ) defines a client state ci at
time τ given a trace Z and where ic(ci) defines whether state ci is consistent:

ic(ci) =

{
0 if ∀n ∈ dom(ci) : ci(n) = s(n)
1 if ∃n ∈ dom(ci) : ci(n) 6= s(n)

(2.9)

To approximate I∗, one can find a large enough D(Z) and assume that the re-
sulting I(Z) is close enough to I∗ [21].

To approximate I(Z) where D(Z) → ∞, one can look at the ratio between
the expected number of changes per second γ and the frequency of the checks Fc,
this can be used as a cost function for consistency:

CFCon(Fc) =
γ

Fc + γ
(2.10)

42 CHAPTER 2. ANALYSIS

It is obvious that the higher the frequency of the checks is, the higher the consis-
tency and the lower the consistency cost. This is shown in figure 2.14. Another
interesting aspect is the time between two successive checks: 1

Fc
, shown in figure

2.15. Both figures have γ = 1
120 .

0.00 0.01 0.02 0.03 0.04 0.05
Fc

0.2

0.4

0.6

0.8

1.0

CFCon

Figure 2.14: Consistency cost using Fc. γ = 1
120 .

0 100 200 300 400 500

1

Fc

0.2

0.4

0.6

0.8

1.0

CFCon

Figure 2.15: Consistency cost using 1
Fc

. γ = 1
120 .

2.4.5 Trade off

Looking at the cost functions, a trade off can be made: trade communication
costs against consistency. Checking more often for changes (a higher Fc) results
in a better consistency at the cost of more communication needed. It is also
possible to use different frequencies on PDAs who use different subsets of the
data items, based on the expected number of changes that will occur on that
subset. However, this is not possible in the worst case scenario that all clients
need all changes in the data.

2.4. COST FUNCTIONS 43

2.4.6 Total cost

When all cost functions are known, a total cost function can also be defined:

CFTot(Fc, Co, Sd) = w1 × CFComm(Fc, Co, Sd)
+ w2 × CFProc(Sd)
+ w3 × CFCon(Fc)

(2.11)

It is not easy to do a minimization of this function to get the lowest cost, as there
is a lot of uncertainty about all variables. Still, it might be interesting to see
some results when default values are chosen (table 2.2).

Parameter: Default value: Description:

γ 1
120 changes/second The expected frequency

at which changes occur in the data.
Sd 100 bytes The average size of a single data item.
Fc

1
300 checks/second The frequency at which a

client checks for changes in the data.
Co 150 bytes The communication overhead used when

checking for changes.
Table 2.2: Parameters and their default values

Note that in the next figures, 1
Fc

(the time between two checks) is plotted in-
stead of Fc. The function W (x) (see equation 2.6) simply returns x, Co = 150,
Sd = 100, γ = 1

120 and all weights w1, w2 and w3 are set to 1. The result is figure
2.16.

0 100 200 300 400 500

1

Fc

2

4

6

8

10

12

14

CFTot

Figure 2.16: Total cost using 1
Fc

. γ = 1
120 , Co = 150, Sd = 100, W (x) = x,

w1 = 1, w2 = 1, w3 = 1.

However, the weights are not very realistic, as the minimum of CFTot with these
values is reached when 1

Fc
→∞. If we emphasize on consistency and set w3 = 10,

44 CHAPTER 2. ANALYSIS

0 100 200 300 400 500

1

Fc

2

4

6

8

10

12

14

CFTot

Figure 2.17: Total cost using 1
Fc

. γ = 1
120 , Co = 150, Sd = 100, W (x) = x,

w1 = 1, w2 = 1, w3 = 10.

the result is figure 2.17 with a minimum cost at 1
Fc
≈ 66.

It would be interesting to see the relation between the three weights. If all
other variables had their default values (including W (x) = x), the cost function
would become:

CFTot(w1, w2, w3) =
4
3
w1 +

5
6
w2 +

5
7
w3 (2.12)

Finally, the relation between 1
Fc

and w3 is plotted in figure 2.18, where w1 = 1
and w2 = 1. The corresponding cost function is:

CFTot(Fc, w3) =
5
3

+ 150Fc +
w3

1 + 120Fc
(2.13)

To find the most realistic values for w1, w2 and w3 is outside the scope of this
thesis, but I would recommend a high w3 compared to w1 and w2.

2.5 Comparison

The various methods to ensure consistency (IMS, TTL, IRs and Lease, see section
2.1.2) are hard to compare using a cost function. It is dependent on the way they
are implemented. Often other protocols use the features of one or more of these
protocols. They also have a poor consistency in the Connect-It environment.
This combination makes it uninteresting to look further into them.

The regular replication protocols also can’t guarantee consistency in a mobile en-
vironment, or require much more communication to do this. The Bengal database
replication system doesn’t fulfill the requirement that it is data storage indepen-
dent. They also will not be looked into any further. A shared data space system
is also not an option as clients need to be able to access the information when
they need to and not only when both clients are connected to the internet.

2.5. COMPARISON 45

0

200

400
1

Fc

0

20

40

w3

0

5

10

15

20

CFTot

Figure 2.18: Total cost using 1
Fc

and w3. γ = 1
120 , Co = 150, Sd = 100, W (x) = x,

w1 = 1, w2 = 1.

What remains is the currently implemented protocol and the Roam replication
system. The subsections 2.5.1, 2.5.2 and 2.5.3 will respectively compare the
communication cost, the client processing time and the consistency between the
currently implemented protocol and Roam.

2.5.1 Communication

The protocol that is currently implemented transfers everything every time it
checks for updates. The time between two checks is very high, ranging between 5
minutes and 4 weeks. On average, this will be 1 day. Note that the frequency is
fixed per datatype, but different data types can have different frequencies. The
communication overhead is very low, no communication except the transfer of the
data is needed, say 10 megabytes. However, as the protocol doesn’t transfer any
data per change, all transfers can be seen as overhead while no data is transfered
per change. This results in:

CFComm(
1

86400
, 10485760, 0) =

16384
135

≈ 121, 36 (2.14)

Note that this is highly dependent on the total size of the data on the pda, but
even if it was only 1 megabyte, it would still result in a much higher cost than
when an optimal protocol would be used.

The Roam replication system uses client-client communication. This can be

46 CHAPTER 2. ANALYSIS

translated as a double amount of communication needed when compared to an
optimal protocol in a client-server architecture:

CFComm(Fc, 2Co, 2Sd) = 2(Fc × Co + γ × Sd) (2.15)

It is obvious that the cost for this is twice the amount of an optimal protocol in
a client-server architecture. However, it still is much better than the currently
implemented protocol. Let’s assume that the time between two checks is 5 min-
utes, the communication overhead is 150 bytes, there are 240 changes in 8 hours
and the average size of 1 data piece is 100 bytes. For Roam this results in:

CFComm(
1

300
, 300, 200) =

11
3
≈ 3, 67 (2.16)

These values are realistic, but even if they are 10 times bigger and the total data
on a pda would be only 1 megabyte, it would still result in a major cost reduction
compared to the currently implemented protocol. However, it still is double the
cost of what could be possible.

2.5.2 Client processing time

For the currently implemented protocol we have to rewrite equation 2.6, as it
is independent of the number of changes but on the frequency of the checks (it
transfers everything every time, even when nothing has changed):

CFProc(Fc, Sd) = Fc ×W (Sd) (2.17)

The total amount of processing at the client using this protocol:

CFProc(
1

86400
, 10485760) =

W (10485760)
86400

(2.18)

But what is the value for W? It is only known that it is monotonic, but an
assumption can be made that it is a linear function: writing twice the amount of
data will probably result in roughly twice the amount of processing needed:

W (x) = ax+ b (2.19)

To make it easy, say a is 1 and b is 0. If we apply this to all calculations, the costs
can be compared relative to each other. For the currently implemented protocol:

W (10485760)
86400

=
16384
135

≈ 121, 36 (2.20)

For Roam, equation 2.6 can be used, where γ is set to 1
120 changes per second,

and Sd to 100 bytes. Roam uses twice the amount of data and this results in:

CFProc(2Sd) = CFProc(200) =
5
3
≈ 1, 67 (2.21)

2.6. SUMMARY 47

Again, twice the cost of what could be possible, but still a major performance
gain compared to the currently implemented protocol. Note that the same W is
used for both protocols. In reality, Roam will use more client processing power
as it uses a more complicated method of distributing the data. The clients also
have to determine whether there are changes etcetera. But again, even if the cost
would be ten times bigger, it would still be a big improvement.

2.5.3 Consistency

As mentioned in section 2.5.1 the currently implemented protocol uses an average
frequency of one check each day. Again, γ is set to 1

120 changes per second.

CFCon(
1

86400
) =

720
721

(2.22)

This represents a very inconsistent system, where ci * s holds almost all the
time, but is it fair to use the 24 hour delay in consistency when most changes
will probably occur only during the 8 hours of a working day? Also, most data
items that change regularly have a higher frequency, only the data items that
change infrequently have frequencies of one check every few days or weeks. So
the real or average consistency will be better than is shown above, but in the
worst case scenario, there are data items that are indeed inconsistent for days
or weeks. Still, it might be interesting to see if there was an average check for
everything each hour, this would result in:

CFCon(
1

3600
) =

30
31

(2.23)

For Roam, which would be checking for changes about every 5 minutes, we get:

CFCon(
1

300
) =

5
7

(2.24)

Again we see a big improvement over the currently implemented protocol, but
there is still room for improvement. If we check every minute (the optimum in
figure 2.17), the cost would be:

CFCon(
1
60

) =
1
3

(2.25)

2.6 Summary

This chapter has analyzed the problem from chapter 1. It is clear that the cur-
rently implemented architecture does not fulfill the model described in section 1.3
and that the distribution protocol is not the optimal protocol. The best protocol
is a replication method that replicates objects, not tables of a database. However,
no such replication method exists that is suitable for a mobile environment like

48 CHAPTER 2. ANALYSIS

Connect-It while fulfilling all requirements of section 1.4, although I think it is
possible.

There are replication methods that work efficiently in a client-server architec-
ture and in a mobile environment. There are replication methods that are data
storage independent. There are data distribution methods that use very limited
client processing time: only to store the data and no big overhead. Combine the
best of these methods and the protocol for Connect-It is the result.

In chapter 3 I will present a design of a new architecture for Connect-It that
deals with the challenges from section 2.2, fulfills the model from section 1.3 and
has the lowest cost on the cost functions from section 2.4. Chapter 4 will analyze
the results and check if the new architecture really is a solution for Connect-It.

Chapter 3

Design

In this chapter the design and implementation of the new architecture is de-
scribed in detail. First, in section 3.1, the new architecture is described and the
differences with the old architecture from section 2.3 are discussed. After that,
section 3.2 goes into detail about the data filter mechanism. Section 3.3 gives
some insight on the implementation details of the new architecture. Section 3.4
gives a summary of this chapter.

Note that everything in this chapter is my own work, including the new ar-
chitectural design and the data filter mechanism. Where needed, I implemented
everything myself.

3.1 Architecture

The new architecture will be shown using the 4+1 views of Kruchten [14]. For
each view, the differences with the old architecture (see section 2.3) will be dis-
cussed.

3.1.1 Logical view

First the class diagram will be discussed, the sequence diagrams follow after that.

Class diagram: problem

The analysis in section 2.3.1 showed that three aspects needed to change:

1. The connection with the server and how the data is transmitted should be
transparent to the PdaApplication.

49

50 CHAPTER 3. DESIGN

+
S

av
e(

 it
em

 :
D

is
tr

ib
ut

io
nO

bj
ec

t)
 :

vo
id

+
G

et
A

ll(
 fi

lte
rs

 :
D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

])
 :

D
is

tr
ib

ut
io

nR
et

ur
nO

bj
ec

t
+

G
et

C
ha

ng
es

(
la

st
U

pd
at

e
: d

at
e,

 fi
lte

rs
 :

D
is

tr
ib

ut
io

nF
ilt

er
 [0

..*
])

 :
D

is
tr

ib
ut

io
nR

et
ur

nO
bj

ec
t

+
C

ha
ng

eF
ilt

er
s(

 la
st

U
pd

at
e

: d
at

e,
 o

ld
F

ilt
er

s
: D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

],
ne

w
F

ilt
er

s
: D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

])
 :

D
is

tr
ib

ut
io

nI
nf

o
...

P
D

A
W

eb
S

er
vi

ce

+
G

et
A

ll(
 fi

lte
rs

 :
D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

])
 :

D
is

tr
ib

ut
io

nI
nf

o
+

G
et

C
ha

ng
es

(
la

st
U

pd
at

e
: d

at
e,

 fi
lte

rs
 :

D
is

tr
ib

ut
io

nF
ilt

er
 [0

..*
])

 :
D

is
tr

ib
ut

io
nI

nf
o

+
C

ha
ng

eF
ilt

er
s(

 la
st

U
pd

at
e

: d
at

e,
 o

ld
F

ilt
er

s
: D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

],
ne

w
F

ilt
er

s
: D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

])
 :

D
is

tr
ib

ut
io

nI
nf

o

S
er

ve
rD

is
tr

ib
u

ti
o

n
D

A
O

+
T

ry
T

oC
on

ne
ct

()
 :

bo
ol

ea
n

+
T

ry
T

oS
en

d(
 it

em
 :

D
T

O
)

 :
bo

ol
ea

n
+

G
et

A
ll(

 fi
lte

rs
 :

D
is

tr
ib

ut
io

nF
ilt

er
 [0

..*
])

 :
D

is
tr

ib
ut

io
nI

nf
o

+
G

et
C

ha
ng

es
(

la
st

U
pd

at
e

: d
at

e,
 fi

lte
rs

 :
D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

])
 :

D
is

tr
ib

ut
io

nI
nf

o
+

C
ha

ng
eF

ilt
er

s(
 la

st
U

pd
at

e
: d

at
e,

 o
ld

F
ilt

er
s

: D
is

tr
ib

ut
io

nF
ilt

er
 [0

..*
],

ne
w

F
ilt

er
s

: D
is

tr
ib

ut
io

nF
ilt

er
 [0

..*
])

 :
D

is
tr

ib
ut

io
nI

nf
o

C
o

n
n

ec
ti

o
n

M
an

ag
er

+
D

at
aN

am
e

: S
tr

in
g

+
F

ilt
er

 :
S

tr
in

g
+

M
ax

R
ec

ur
si

on
D

ep
th

 :
in

t

+
Lo

ad
C

ha
ng

es
(

la
st

U
pd

at
e

: d
at

e,
 to

A
dd

 :
D

ic
tio

na
ry

 <
T

: D
T

O
, T

 [0
..*

]>
, t

oD
el

et
e

: D
ic

tio
na

ry
 <

T
: D

T
O

, i
nt

 [0
..*

]>
)

 :
vo

id

D
is

tr
ib

u
ti

o
n

F
ilt

er

+
<

T
 >

 D
T

O
>

S
en

d(
 c

as
ca

de
 :

bo
ol

ea
n,

 d
at

a
: T

 [0
..*

])
 :

vo
id

B
u

ff
er

+
<

T
 >

 D
T

O
>

S
av

e(
 c

as
ca

de
 :

bo
ol

ea
n,

 d
at

a
: T

 [0
..*

])
 :

vo
id

+
<

T
 >

 D
T

O
>

Lo
ad

(
id

 :
in

t)
 :

T
+

<
T

 >
 D

T
O

>
Lo

ad
()

 :
T

 [0
..*

]
+

<
T

 >
 D

T
O

>
Lo

ad
(

id
s

: i
nt

 [0
..*

])
 :

T
 [0

..*
]

+
<

T
 >

 D
T

O
>

D
el

et
e(

 c
as

ca
de

 :
bo

ol
ea

n,
 id

s
: i

nt
 [0

..*
])

 :
vo

id
+

<
T

 >
 D

T
O

>
D

el
et

e(
 c

as
ca

de
 :

bo
ol

ea
n,

 to
D

el
et

e
: T

 [0
..*

])
 :

vo
id

ID
A

O

+
U

pd
at

eN
ow

()
 :

bo
ol

ea
n

+
C

ha
ng

eF
ilt

er
s(

 fi
lte

rs
 :

D
is

tr
ib

ut
io

nF
ilt

er
 [0

..*
])

 :
bo

ol
ea

n
+

G
et

C
ur

re
nt

F
ilt

er
s(

)
: D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

]
+

G
et

La
st

U
pd

at
e(

)
: d

at
e

−
P

ro
ce

ss
C

ha
ng

es
(

ch
an

ge
s

: D
is

tr
ib

ut
io

nI
nf

o
)

: b
oo

le
an

−
<

T
 >

 D
T

O
>

S
av

eI
te

m
s(

 it
em

s
: T

 [0
..*

])
 :

vo
id

−
<

T
 >

 D
T

O
>

D
el

et
eI

te
m

s(
 id

s
: i

nt
 [0

..*
])

 :
vo

id

U
p

d
at

er

+
C

ha
ng

eF
ilt

er
s(

 fi
lte

rs
 :

D
is

tr
ib

ut
io

nF
ilt

er
 [0

..*
])

 :
bo

ol
ea

n
+

G
et

C
ur

re
nt

F
ilt

er
s(

)
: D

is
tr

ib
ut

io
nF

ilt
er

 [0
..*

]
+

G
et

La
st

U
pd

at
e(

)
: d

at
e

+
U

pd
at

eN
ow

()
 :

bo
ol

ea
n

P
D

A
D

is
tr

ib
u

ti
o

n
D

A
O

+
T

oA
dd

 :
D

ic
tio

na
ry

 <
T

: D
T

O
, T

 [0
..*

]>
+

T
oD

el
et

e
: i

nt
 [0

..*
]

D
is

tr
ib

u
ti

o
n

In
fo

−
D

at
a

: D
is

tr
ib

ut
io

nO
bj

ec
t [

0.
.*

]

+
S

er
ia

liz
e(

 d
at

a
: D

is
tr

ib
ut

io
nI

nf
o

)
: v

oi
d

+
D

es
er

ia
liz

e(
)

: D
is

tr
ib

ut
io

nI
nf

o

D
is

tr
ib

u
ti

o
n

R
et

u
rn

O
b

je
ct

+
Id

 :
in

t
#D

ao
 :

ID
A

O

+
S

av
e(

 c
as

ca
de

 :
bo

ol
ea

n
)

: v
oi

d
+

D
el

et
e(

 c
as

ca
de

 :
bo

ol
ea

n
)

: v
oi

d
+

S
et

D
ao

(
da

o
: I

D
A

O
)

 :
vo

id

D
T

O

−
D

at
a

: b
yt

e
[0

..*
]

+
S

er
ia

liz
e(

 d
at

a
: o

bj
ec

t)
 :

vo
id

+
D

es
er

ia
liz

e(
)

: o
bj

ec
t

D
is

tr
ib

u
ti

o
n

O
b

je
ct

#D
ao

 :
ID

A
O

+
S

et
D

ao
(

da
o

: I
D

A
O

)
 :

vo
id

U
se

sD
A

O

B
ac

ko
ff

ic
eW

eb
se

rv
ic

e
P

d
aA

p
p

lic
at

io
n

In
he

rit
s

In
he

rit
s

C
u

st
o

m
er

S
Q

L
D

ao
B

in
D

A
O

D
is

kI
O

O
rd

er
...

B
yp

as
se

s
th

e
D

A
O

 fo
r

di
re

ct
 d

is
k

ac
ce

ss
 fo

r
pe

rs
is

te
nt

st

or
ag

e
of

 B
uf

fe
r

da
ta

 a
nd

fil

te
rs

.

Im
pl

em
en

ts

S
av

e
da

ta
Lo

ad
 d

at
a

U
se

s

U
se

s

U
se

s

U
se

s

Im
pl

em
en

ts

S
av

e
da

ta
Lo

ad
 d

at
a

U
se

s

U
se

s

U
se

s

F
or

w
ar

d
ca

lls
 (

w
ith

 d
es

er
ia

liz
ed

 d
at

a)

C
re

at
es

C
re

at
es

F
or

w
ar

d
ca

lls
 to

 s
er

ve
r

(w
ith

 s
er

ia
liz

ed
 d

at
a)

U
se

s

S
en

d
da

ta

S
av

e
da

ta
Lo

ad
 d

at
a

Im
pl

em
en

ts
Im

pl
em

en
ts

C
ha

ng
e

fil
te

rs
M

an
ua

l U
pd

at
eN

ow

R
ec

ei
ve

s

U
se

s

U
se

s

S
er

ia
liz

e
D

es
er

ia
liz

e

S
er

ia
liz

e

S
to

re
 fi

lte
rs

D
es

er
ia

liz
e

U
se

s
S

av
e

da
ta

G
et

 c
ha

ng
es

C
ha

ng
e

fil
te

rs

S
er

ia
liz

e
D

es
er

ia
liz

e

M
an

ag
es

U
se

s

C
ha

ng
e

fil
te

rs
M

an
ua

l U
pd

at
eN

ow
S

en
d

da
ta

S
to

re
 d

at
a

Figure 3.1: Class diagram (design)

3.1. ARCHITECTURE 51

2. There should be no dependencies to the derived DTO classes (like Order
and Customer).

3. There should be only one DAO implementation per type (binary text files,
SQL database, ...).

Class diagram: solution

Figure 3.1 shows the new class diagram. Note that only the relevant classes
within Connect-It are shown. These are the major changes that have been made
to address the above aspects:

• A new DAO has been introduced: PDADistributionDAO. It follows the
same DAO interface as the other DAOs, but behaves a little bit different.
Instead of storing the data in a datasource, it forwards all calls to another
DAO. A call to Save will not only be forwarded, but also triggers a transfer
to the server.

A big advantage of using the same DAO interface is the ease of integra-
tion. The code only has to be rewritten in the previous parts that dealt
with the distribution of the data, the rest stays the same.

• Using generic programming techniques, it was possible to remove all depen-
dencies to the derived DTO classes. Note that for programmers, everything
is still typesafe. When needed, the abstract DTO objects are inspected at
runtime to determine what data they contain. Sections 3.3.1 will go more
into detail about this.

• Using the same generic programming techniques, it was possible to rewrite
the existing DAOs to a single class per type, without changing their behav-
ior.

Below, each class is addressed to discuss its purpose and if applicable, the changes
that have been made to it:

• PdaApplication
This package represents the rest of the PDA application. It no longer di-
rectly communicates with the server, instead, data is automatically sched-
uled to be sent when saved to disk using the regular DAO interface calls.
The PDA application is able to set certain filters for the DistributionDAO
and all data that passes the filter will automatically be synchronized to the
PDA data storage.

• IDAO
This is the DAO (Data Access Object) interface. It provides generic load,

52 CHAPTER 3. DESIGN

save and delete functions to the data storage used. Note that the generic
methods provide typesafety while they are not dependent on the specific
data types.

• BinDAO
This is the DAO for accessing data using binary files. Because of the generic
implementation, it is no longer necessary to implement this DAO for each
data type.

• SQLDAO
This is the DAO for accessing data using a SQL database. Because of the
generic implementation, it is no longer necessary to implement this DAO
for each data type.

• DTO
DataTransferObject. This abstract class is the base for all data classes such
as Order and Customer. Each record in the database is represented by a
DTO object. There is a static DAO that all child classes will use.

• Order
This class represents order data, it inherits from DTO.

• Customer
This class represents order data, it inherits from DTO.

• ...
Represents other classes that inherit from DTO, just like Order and Cus-
tomer.

• UsesDAO
This abstract class is the base for four other classes: PDADistribution-
DAO, Updater, DistributionFilter and ServerDistributionDAO. It has a
static DAO that all child classes will use. Note that the ServerDistribu-
tionDAO is located at the server and can therefore have a different DAO.
The DistributionFilter will only use its DAO at the server.

• PDADistributionDAO
This is the DAO that the PdaApplication will use to load, save and delete
data. When saving data, that data is also passed to the Buffer for transfer
to the server. All DAO calls are simply forwarded to the next DAO.

• DistributionFilter
This class represents a filter and is used in the update process. It can check
for changes in the data that passes the filter since the last update. See
section 3.2 for more details on this.

3.1. ARCHITECTURE 53

• Buffer
The buffer receives data that must be send to the server. It will persistently
store that data on disk using DiskIO, and tries to send the data as soon as
possible to the server.

• Updater
The updater periodically checks for changes at the server, given the filters
which are stored on disk.

• DiskIO
Provides persistent storage for the Buffer and the Updater. This class
directly writes to disk and doesn’t use any other DAO.

• ConnectionManager
Manages the connection to the server. Because a webservice can’t use
generics, all data is serialized into DistributionObjects and the return values
are deserialized from DistributionReturnObjects.

• DistributionInfo
This class holds the changes that need to be applied to the PDA data
storage. It contains new data and information about what data to delete.

• DistributionObject
Generic objects that are sent from the PDA to the server are serialized into
an array of bytes by this class.

• DistributionReturnObject
DistributionInfo objects that are sent from the server to the PDA are seri-
alized into an array of DistributionObjects.

• PDAWebService
This is the PDA webservice running at the server, all PDA’s will use this
webservice to communicate with the server. This webservice no longer
supports the DAO calls, but acts as a connector between the Connection-
Manager and the ServerDistributionDAO.

• ServerDistributionDAO
This class runs at the server and can use the DistributionFilters from a PDA
to get information about what that PDA needs to do to be synchronized
again.

• BackofficeWebservice
This is the backoffice webservice running at the server, all backoffice clients
will use this webservice to communicate with the server. It has not been
changed in the new architecture.

54 CHAPTER 3. DESIGN

Sequence diagrams: problem

The analysis of the class interactions in section 2.3.1 showed four necessary
changes:

1. Sending data to the server is optional. This presents a big risk: some
changes might never reach the server while other changes might be depen-
dent on them.

2. Connection failures during a transfer are not handled properly.

3. All knowledge about what data to transfer to the server exists in mem-
ory alone. This should be persistently stored on disk, so an uncontrolled
shutdown does not result in data loss.

4. For performance reasons, only the changes in the data should be transferred.
It is not necessary to transfer data that has not been changed and already
exists in the clients local storage.

Sequence diagrams: solution

The use of the DistributionDAO changes the way the processes behave. The PDA
application doesn’t need to send the files explicitly, each call to the Save function
will have that as a result (see figure 3.2). Notice that when a data item arrives
at the Buffer, the Buffer will also persistently store the data item so changes are
never lost.

The Buffer sequence diagram (figure 3.3) shows how the generic data items are
serialized and deserialized during transfer. It also shows the conflict detection
when there is a conflict. The actual resolve algorithm will trigger a conflict event
and a subscriber to that event can store both conflicting items in a separate place
while sending a message to a specific user or user group.

The Update sequence has also been drastically changed (figures 3.4 and 3.5).
It is no longer possible for a programmer to manually connect to the server to
request data. Furthermore, instead of deleting all data and downloading it again,
only the changes are transferred now. The result will be less data transfer and
all data is kept up to date with the same high check frequency, improving consis-
tency. The datafilters play a big role in this, see section 3.2 for more information.

3.1. ARCHITECTURE 55

Saving data

PDADistributionDAOPdaApplication BinDAO DiskIOBuffer

Order

[Receiving
buffer data]

[Sending
buffer data]

Buffer Sequence Diagram

ref

par

[Save via
DAO]

(Saving data)

ref

[Save via
DTO object]

(Saving data)

ref

alt

[For each
data field]

loop

[For each
data field]

loop

Instantiated during system startup

Note: generic type
is derived from the
 argument
provided and can
be omitted

Load<Order>(id)2:

return order8:

return11:

return14:

Save<T>(data)16:

Send<T>(data)21:

Load<Order>(id)1:

Change order values9:

Save(order)10:

Save12:

Create3:

Read data4:

Set value5:

return order7:

Get value17:

Write data to disk19:

return20:

return23:

return25:

Persistent
store to disk

22:

Add data to queue24:

return6:

Save(this)13:

return15:

return value18:

Figure 3.2: Application sequence diagram (design)

56 CHAPTER 3. DESIGN

ServerDistributionDAOConnectionManager

DistributionObject

PDAWebService SQLDaoDiskIOBuffer Order

[Queue is
not empty]

[Queue is empty]

opt

[Connection
successful]

[Connection
failed]

opt

[While not
shutting down]

[No conflicts]

[A conflict exists]

alt

[Data represents
an order]

alt

[Data represents
an order]

alt

[Transfer
successful]

[Transfer
failed]

alt

loop

Save<T>(data)18:

return25:

return true/false2:

Create5:

Serialize(data)6:

Save(distributionobject)11:

return true/false27:

return10:

Convert data
into byte array

9:

Get values7:

Create13:

Set values14:

return data16:

Deserialize12:

Save<T>(data)17:

return26:

Check for conflicts21:

Read values19:

Write data to
database

22:

Resolve conflict23:

return24:

return29:

TryToConnect1:

Wait for timeout3:

TryToSend(data)4:

Remove data
from persistent
storage

28:

Wait for timeout30:

Wait for timeout31:

return values8:

return15:

return values20:

Figure 3.3: Buffer sequence diagram (design)

3.1. ARCHITECTURE 57

SaveChanges

PdaApplication Updater BinDAO DiskIODTO

[Transfer
successful]

[For each
data type]

loop

[For each
data item]

opt

[For each id]

loop

Time of last update is
determined at the server

opt

[Manual update
triggered by
the user]

Update (2) Sequence Diagram

ref

(SaveChanges)

ref

[Timed update]

Update (2) Sequence Diagram

ref

(SaveChanges)

ref

alt UpdateNow1:

return2:

Timer fired3:

Save<T>(toAdd)4:

Delete<T>(toDelete)9:

SaveLastUpdateTime(datetime)12:

Get values5:

Write data to disk7:

return8:

Delete item
with id

10:

return11:

return13:

return values6:

Figure 3.4: Update (1) sequence diagram (design)

58 CHAPTER 3. DESIGN

DistributionReturnObject

ServerDistributionDAOConnectionManager

DistributionObject

DistributionFilterPDAWebService

DistributionInfo

Updater SQLDao

DTO

[Connection
successful]

[For each filter]

loop

[For each
data item]

loop

[For each
data item]

loop

This will cause all changes in
all child elements to be taken
into account

opt

Note that this abstract type
represents any non abstract
implementation

Create25:

Serialize(data)26:

return30:

Create33:

Deserialize34:

ToAdd / ToDelete39:

return distributioninfo41:

Create6:

LoadChanges
(distributioninfo)

7:

return
distributioninfo

22:

GetChanges
(filters, datetime)

4:

return true/false2:

Deserialize32:

return
distributioninfo

42:

Get values27:

return29:

Create35:

Set values36:

return data38:

Load<T>(datetime)8:

ProcessChanges(distributioninfo)14:

return21:

GetChanges
(filters, datetime)

5:

Create23:

Serialize(distributioninfo)24:

return
distributionreturnobject

31:

return16:

return40:

TryToConnect1:

GetChanges
(filters, datetime)

3:

Create9:

Read data
from database

10:

Set values11:

return data13:

return data18:

return12:

ToAdd /
ToDelete

15:

Load<childtype>17:

ProcessChanges
(distributioninfo)

19:

return20:

return values28:

return37:

Figure 3.5: Update (2) sequence diagram (design)

3.1. ARCHITECTURE 59

3.1.2 Process view

PDA

Connect−It SE.exe

Several
application

threads

Updater thread

Buffer threadBuffer

Server

pda.asmx (runs in webserver)

PdaWebservice

Creates one thread for
each incoming client

request

Note, this is an instance of an object, shared by the
application threads and the buffer thread.

Save data

Request data

Empty buffer

Load data
Save data

Save data

Fill buffer

Load data
Save data

Figure 3.6: Processes and threads (design)

The analysis in section 2.3.2 showed a potential problem where responsiveness
might be reduced at the user level because application threads could block when
a server thread would block. The new architecture solves this because direct
connections to the server are not allowed or possible anymore. Figure 3.6 shows
the new threads and their interaction.

3.1.3 Development view

Problem

The analysis in section 2.3.3 showed two aspects that needed to change:

1. Use middleware to abstract the distribution of the data.

2. The component DataObjects.dll is application specific, but there are many
(unnecessary) dependencies to it from the middleware layer.

60 CHAPTER 3. DESIGN

General components

Middleware

Application specific

+UsesDAO : abstract
+DistributionInfo
+DistributionObject
+DistributionReturnObject
+DistributionFilter

<<component>>

Distribution_Shared_DAO_Impl.dll

+ServerDistributionDAO

<<component>>

Distribution_Server_DAO_Impl.dll

+PDADistributionDAO
+Buffer
+Updater
+DiskIO
+ConnectionManager

<<component>>

Distribution_PDA_DAO_Impl.dll

+SQLDao

<<component>>

SQL_DAO_Impl.dll

<<component>>

Connect−It SE.exe

<<component>>

Managers.dll

+BinDao

<<component>>

BIN_DAO_Impl.dll

<<component>>

FlowManager.dll+Order
+Customer

<<component>>

DataObjects.dll

<<component>>

PDAGlobals.dll

+DTO : abstract
+IDAO : interface

<<component>>

Globals.dll

+PDAWebService

<<component>>

pda.asmx

<<component>>

Schermen.dll

Figure 3.7: Component dependencies (design)

3.1. ARCHITECTURE 61

Solution

Figure 3.7 shows the components and their relation in the new architecture. In the
middleware layer, there are three new components: Distribution PDA DAO Impl
.dll, Distribution Server DAO Impl.dll and Distribution Shared DAO Impl.dll.
These components implement the behavior as described in section 1.3. All com-
munication between a PDA and the server is done using these components (re-
quirement 2 from section 1.4). Because these components are in the middle-
ware layer, they are application independent (requirement 3 from section 1.4).
Furthermore, the component DataObjects.dll has been moved from the general
components layer to the application specific layer. There are no more depen-
dencies from other layers to DataObjects.dll. The result is that DataObjects.dll
can be changed, without affecting the other layers (requirement 4 from section
1.4). This has been accomplished by using generic programming techniques, see
section 3.3.1 for more information.

3.1.4 Physical view

Middleware

Hardware

OS +
Networking

Application

PDA deployment Server deployment

.NET 2.0 Compact Framework .NET 2.0 Framework

Windows Server / 2000 / XPWindows Mobile 6

<<component>>

Distribution_Server
_DAO_Impl.dll

<<component>>

Distribution_Shared
_DAO_Impl.dll

<<component>>

SQL_DAO_Impl.dll

<<component>>

Distribution_PDA
_DAO_Impl.dll

<<component>>

Connect−It SE.exe

<<component>>

BIN_DAO_Impl.dll

<<component>>

FlowManager.dll
<<component>>

DataObjects.dll

<<component>>

PDAGlobals.dll

<<component>>

Schermen.dll

<<component>>

Managers.dll

<<component>>

Globals.dll

PDA Server

<<component>>

pda.asmx

Figure 3.8: Deployment (design)

62 CHAPTER 3. DESIGN

Figure 3.8 shows the new deployment diagram. The component Distribution
PDA DAO Impl.dll will be deployed on the PDAs, the server will deploy Distribu-
tion Server DAO Impl.dll and they both deploy Distribution Shared DAO Impl.dll.

3.1.5 Scenarios

Keep mobile clients
 consistent

Resolve conflicts

Save Customer

Load Customer

Save Order Save ...

Load ...Load Order

Save data

Load data

Any user or
user group

BackOffice

Mechanic

System

Mechanic

<<extend>>

<<extend>>

Change data

View data

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Change data

<<extend>>

View data

<<extend>>

Transfer data between
clients and server

View data

respond to conflict

Change data

Figure 3.9: Use case diagram (design)

From a use case point of view, no changes were done to the system as a whole,
except that it is now possible to respond to a conflict. This is illustrated in figure
3.9.

3.2 Data filters

3.2.1 Introduction

The problem I encountered during the design of the architecture in section 3.1
was that it was required (for performance reasons) to only transfer changes in the
data during the Refresh operation (see section 1.3). However, the server does

3.2. DATA FILTERS 63

not contain the knowledge of what data each client has stored in its local storage.
One could argue that the server might keep track of this, but a quick analysis
showed that it would generate too much overhead at the server side, reducing
scalability.

What I came up with was a filter mechanism where each client could define
a set of filters by which the server could identify what the changes in the data
are (both new or changed data, as well as deleted data).

Data filters make sure only the minimum set of data - given the filters - is trans-
ferred to the clients. They prevent whole database tables to be distributed and
allow clients to specify what data is relevant for them, using a flexible query lan-
guage.

What these data filters accomplish is basically a mix of object replication (see
section 2.1.3) and IMS (see section 2.1.2). The difference with regular object
replication is that the filters don’t work on a fixed set of objects, as a client
doesn’t need to have knowledge of the existence of certain objects. Furthermore,
it is possible to define filters based on relationships between objects, creating a
very flexible system.

I explicitly chose not to use SQL as a query language for two reasons. First,
the language should be implementation independent, not based on the know-
ledge that the server currently uses a SQL database. The fact that the server
uses a SQL database is abstracted by the use of the DAO layer, therefore the
query mechanism should be abstracted to work with any DAO implementation.
Secondly, I wanted to keep the query language as simple as possible for the clients
and at the same time allow much more expressiveness in a single query. One sim-
ple query in this language can represent a very complex SQL query because all
related data is also queried; see the examples below for more information.

Note that a single query could result in a large amount of data: the query
”Administration,true” will return all data in all administrations. This is the
mechanism that ViaData prefers over a regular query language where only the
explicit data that is queried for is returned.

3.2.2 Syntax

The syntax of a data filter is as follows (in Backus-Naur Form):

64 CHAPTER 3. DESIGN

<filter> ::= <datatype> ”, ” <condition>
<datatype> ::= <text>

<condition> ::= ”true” | ”child(” <filter> ”)” | <expression>
| ”exclude(” <filter> ”), ” <condition>

<expression> ::= <and> | <or> | <value>
<and> ::= ”and(” <expression> ”, ” <expression> ”)”
<or> ::= ”or(” <expression> ”, ” <expression> ”)”
<value> ::= ”value(” <property> ”, ” <operator> ”, ” <text> ”)”
<property> ::= <text>

<operator> ::= ”==” | ”! =” | ”<” | ”<=” | ”>” | ”>=”

Some remarks:

• <text> represents a text string without white spaces.

• The data type text must be the name of an existing data type, such as
”Order” or ”Customer”.

• The condition ”true” means that all data of that data type will pass the
filter.

• The child filter must apply to a data type that is a child of the parent data
type, like Order is a child for Customer.

• When an exclude filter is specified, no data that passes the exclude filter
(no related child recursion) will pass the original filter.

• The property text must be the name of a property of the data type to which
the condition applies, such as ”Name” for Customer.

• The value text must be of a proper format for the property it applies to,
like a formatted date string for OrderDate.

• When an object passes a filter, all children (and their children) of that
object automatically pass that filter as well. So when a customer passes
a filter, all orders of that customer pass that filter. This works for all 1-
many relations in the data. To stop recursing over children, use the exclude
filter or specify a max recursion depth (property of the DistributionFilter
object).

• The filters can be generated at runtime, depending on which employee is
using the PDA and what orders he is working on.

Some examples of filters:

3.2. DATA FILTERS 65

• Filter: Employee,true
Description: Passes all employees, and all data related to those employees
(such as assigned orders, all data related to those orders, etc).

• Filter: Order,value(EmployeeId,==,4)
Description: Passes all orders assigned to employee with id 4, and all
related data to those orders.

• Filter: Customer,exclude(Order,value(OrderDate,<,”1-1-2000”)),true
Description: Passes all customers, and all data related to those customers,
except orders with an OrderDate before 1-1-2000.

• Filter: Customer,child(Order,and(value(State,==,”open”),value(
EmployeeId,==,-1)))
Description: Passes all customers that have open orders that are not yet
assigned to an employee, and all data related to those customers.

3.2.3 Algorithms

Initial request

Initially, the client storage is empty and all data needs to be requested. The
Updater calls the method GetAll on the ConnectionManager together with
one or more filters as argument. If there is a connection possible, the call is
then forwarded via the PdaWebService to the ServerDistributionDAO. The
ServerDistributionDAO will trigger each DistributionF ilter to load all data
that passes the filter. When all filters are done, the server will return the resulting
data set to the Updater who stores it in the local storage.

Requesting changes

Every ∆t the Updater wants to receive changes in the data. The Updater calls
the method GetChanges on the ConnectionManager together with one or more
DistributionFilters and a date/time the last update took place as arguments. If
there is a connection possible, the call is then forwarded via the PdaWebService

to the ServerDistributionDAO. The ServerDistributionDAO will trigger each
DistributionFilter to load all changes in the data that passes the filter (based
on the provided time stamp). These changes can be newer versions of the data or
a message that certain data should be deleted (compare it with an invalidation
report in caching schemes [22, 8]). The changes are then returned to the Updater
who stores them in the local storage. The sequence diagrams are shown in figures
3.4 and 3.5.

66 CHAPTER 3. DESIGN

Changing filters

Once every while the PDA application needs to change his filters, for example
when a new employee logs in. The local storage then needs be updated with the
data that passes the new filters. The Updater calls the method ChangeF ilters

on the ConnectionManager together with one or more new filters, the old filters
and a date/time the last update took place. If there is a connection possible, the
call is then forwarded via the PdaWebService to the ServerDistributionDAO.
Now the ServerDistributionDAO has to compute the difference between the
filters.

C

A B

Figure 3.10: ChangeF ilters: situation at the server

Figure 3.10 illustrates the situation at the server, where A represents the data
currently at the client, B represents the changes since the last update (this can
be changes in existing data, deletion of existing data or addition of new data)
and C represents the data that passes the new filters and this is what the client
is interested in.

C

A B

Figure 3.11: ChangeF ilters: data that needs to be transferred ”ToAdd”

3.2. DATA FILTERS 67

Because one of the main goals is to minimize the communication overhead, we
don’t want to delete everything at the client and send all new data again, because
much can overlap. What we do want to transfer, is everything that is new, or
existing data that will still be used but has changed since the last update, as
shown in figure 3.11.

In a more formal way, the data the client has to add to its storage is:

toAdd = C\(A\B) (3.1)

But the server doesn’t know what data the client currently has (A), it only knows
what data should be on the client now using the old filters, and it knows what
changes have taken place since the last update. This is not a big problem, because
what the server knows (using the old filters) is A ∪B, and there is no difference
in A\B and (A ∪B)\B.

C

A B

Figure 3.12: ChangeF ilters: data that needs to be deleted ”ToDelete”

The data that needs to be deleted is everything that is in the client storage
what has become obsolete. The problem is that the client doesn’t know what is
obsolete or not, so the server has to specify this: delete A\C. Here we see the
same problem again: A is unknown. So the message will become:

toDelete = (A ∪B)\C (3.2)

Figure 3.12 illustrates this. The resulting toAdd and toDelete are returned to
the Updater who can store everything in the local data storage.

68 CHAPTER 3. DESIGN

3.3 Implementation

3.3.1 Generics and reflection

The implementation was done using Microsoft Visual Studio 2005 in C# .NET
2.0. One of the big advantages of C# .NET 2.0 (over C# .NET 1.1) is the use
of generics and reflection. This allows code to be written that uses parameters
or return values of generic types in stead of explicit types. The difference with
C++ templates, is that the generics from C# are more flexible and readable.
Furthermore, while the application is running, these objects of generic types can
be observed using the reflection techniques to gather information about them and
call methods that were dynamically found. For example, the save function in the
DAO Layer might look as follows:

public void Save<T>(bool cascade, params T[] data) where T : DTO, new()

{

SaveItems<T>(cascade, data);

}

Here T is a generic type, with the requirements that it inherits from the ab-
stract DTO type (Data Transfer Object, see [2]) and it has an empty default
constructor: it can be instantiated using

T obj = new T();

This prevents abstract types to be passed as a type parameter to this method.
A possible call to this save method can be:

Order o = ... ;

Save<Order>(true, o);

Note that these methods are all typesafe; a Save call with type parameter Order
only accepts orders as a parameter. A Load call with type parameter Customer
will only return a customer object (or null). A compiler error will occur if a
programmer tries otherwise. Because all methods require a type parameter, it
is no longer necessary to write a DAO for each datatype, now there is only one
DAO per data storage. Currently there is a BIN DAO for binary files and a SQL
DAO for a SQL database. Creating a new DAO, for example for XML files or
another database type, should be fairly easy.

Because an object can be saved using different public method calls, the actual
save implementation is done in a private method called SaveItems. There T is
analyzed to discover which fields and properties it contains that need to be saved.
A simple version of the actual implementation (using C# reflection techniques)
is:

3.3. IMPLEMENTATION 69

foreach (T element in data)

{

foreach (string field in element.GetDBFields())

{

object value = typeof(T).GetProperty(field).GetValue(element, null);

switch (element.GetSqlType(field))

{ . . . save value . . . }

}

}

The only thing known is that an object of type T has a method calledGetDBFields
which returns a list of field names that need to be saved and a method called
GetSqlType that returns the SQL type of the specified field name. Even in a
non SQL environment, this SQL type information can be useful, for example to
determine the maximum allowed length of a string. In a SQL environment this
information can be used to dynamically build the necessary queries.

Generics combined with reflection is a very powerful programming method; the
example above is just the beginning. A Customer object has a property called
Child Orders which contains zero or more orders belonging to this customer.
A cascaded save of a customer will also save these orders (and their children).
Determining if an object of type T contains such properties, saving them and
saving every child is done dynamically, without any knowledge of what types
of objects are being processed. At compile time, it is not known in the DAO
that Customer has a property called Child Orders. In the same way, methods
belonging to an object of type T can be found and called. The only requirement
is that the data objects follow certain rules, see section 3.3.2. These rules are
enforced in the abstract DTO type which is located in the Globals.dll component.

Implementing the Distribution Layer with the use of generics and reflection al-
lows the programmers of Connect-It to change the database without changing
anything to the Distribution Layer or the DAO Layer. In the previous version of
Connect-It the DAO Layers and the PDA WebService had to be rewritten after
every change in the database, as each type had its own DAO methods.

The fixed interface of the DAO Layer enables the use of different DAO Lay-
ers depending on the data storage used. Switching from a set of XML files to
a SQL database is nothing more than instantiating another DAO Layer in the
program start-up routine, as long as the DAO Layer for that data storage exists
of course. Writing a new DAO Layer using generics has become much less work,
as there is only one method for each possible call (save/load/delete/etc).

70 CHAPTER 3. DESIGN

3.3.2 Code generator

First an introduction to the code generator will be given, after that the syntax is
explained.

Introduction

Because of the generic implementation, the Distribution layer and DAO layers
don’t have to be adjusted anymore if there is a change in the database design.
The data types like Customer still require that the changes are also applied
to them, or errors will occur in the DAO layer. To make things easier a code
generator has been developed. This code generator generates the C# .NET 2.0
implementation code for each database table. Every table becomes an object
type, like Customer and Order (see the class diagram in figure 3.1).

Some notes about the code generator:

• Use case: The database has changed: tables have been added, removed or
changed.

• Input: A SQL database and a file containing a code template.

• Activity: Parse the template and apply it to every table in the database.
Displays a warning if database design errors could result in runtime errors
in the DAO layer.

• Output: The code for all data objects in the DataObjects.dll component.

• Openness: Changing all classes in the DataObjects.dll component is now
a matter of changing one template, the generator will do the rest.

• Security: Improves data integrity: database design errors are detected
during the generation of the code.

• Scalability: Improves the scalability of Connect-It: code will be generated
instead of manually written every time the database design changes.

• Transparency: Once the template is written, the programmer who uses
the generator doesn’t need to know all specifics, extending theDataObjects.dll
component with new classes has become transparent.

Besides the obvious advantage of reducing the work for the programmers, the
code generator has another big advantage. In the database, an order table for
example, has a foreign key to a customer record. The naming of these keys follows
certain rules required by the DAO layer. To ensure all of these rules, the code
generator generates the implementation code, including all cross references to its
parents and children. This way, programmers can use:

3.3. IMPLEMENTATION 71

Customer c = ... ;

Orders[] o = c.GetChildOrders();

This is a very easy way of loading all orders that belong to a certain customer.
All database relations are translated this way, making it very easy to work with
the data as objects.

If something is encountered after a change in the database that might result
in errors in the DAO layer, the code generator displays a warning and the pro-
grammers can correct the error in the database design. An example: some fields
in the database might need the requirement that they cannot be null as the cor-
responding types in C# are not allowed to be null. The code generator can give
a warning to notify the programmers that an error might occur if the database
tables are used like this. It is unlikely that an error will occur, as no null values
can be written by the DAO layer if C# doesn’t allow them for that type, but
somebody might manually edit the database and forget about this detail.

The code generator follows a template that it applies to every table it encoun-
ters. The template uses tags that can’t exist in the programming code. The code
generator replaces the tags with the corresponding information. These tags can
be anything from class information to specific field information. For example:

public partial class <$classname> : DTO

{ ... }

Besides simple tags, advanced scripting can be done, such as a foreach statement:

public override string[] GetDBFields()

{

string[] fields = new string[<$nrofmembers>];

<$foreach#member>fields[<$counter>] = "<$membername>";

<$end_foreach>return fields;

}

Or If statements:

<$foreach#member>

<$if#is_not#membername#Id>

<$if#is#membertype#int>

. . .

<$else>

. . .

<$end_if>

<$end_if>

<$end_foreach>

72 CHAPTER 3. DESIGN

This allows every possible construction of the class data as required. The code
generator parses the template and executes the corresponding scripts and replaces
the data tags with the correct information. Writing the template is basically writ-
ing a generic class, with options for every possible type. Once the template is
finished, it doesn’t need to change often, only when a new DAO layer requires
new functionality that doesn’t fit in the abstract DTO type.

Type specific information, such as a method that can calculate the order to-
tal given its items and values, can be done in separate partial classes, also a new
feature of C# .NET 2.0. A partial class allows the code of one class to be split
among several files. As seen above, every class generated is a partial class. All
generated code can be put in one file as nobody should need it. If a custom
method needs to be added to a type, a separate file just for that type can be
written and it only needs to declare the extra methods that are needed. When
a change in the database is made, the code generator can overwrite the previ-
ously generated code without overwriting the custom designed methods. This
gives the programmers a lot of flexibility to work with, and they can focus on the
important work in stead of the trivial work.

Syntax

The syntax used for a template for the code generator is as follows (in Backus-
Naur Form):
<template> ::= <text> <template> | <tag> <template> | ””
<tag> ::= ”<$” <tagname> <tagoption> ”>”
<tagname> ::= <text>

<tagoption> ::= ”#” <tagoptionname> <tagoption> | ””
<tagoptionname> ::= <text>

Below is a list of valid tag names and their options:

• classname
Prints the name of this class. Options: none.

• foreach
Start a ”for each” loop: repeats everything between this tag and the end foreach
tag for each item specified. Requires one option:

– member

– parent

– child

Note that for each loops can’t be nested.

3.3. IMPLEMENTATION 73

• end foreach
Indicates the end of a ”for each” loop. Options: none.

• if
Starts a conditional statement which will be executed if the operator returns
true. Requires two or three options. The first option is an equality operator:

– is
Returns true if the evaluation returns true, returns false otherwise.

– is not
Returns false if the evaluation returns true, returns true otherwise.

The second option can be an unary evaluation, or a binary evaluation.
Possible unary evaluations:

– classhaschildren
Returns true if the current class has any children.

– memberisfk
Returns true if the current member (in a foreach member loop) is a
foreign key to another table.

– parentallowfknull
Returns true if the current parent (in a foreach parent loop) allows
null values for this child foreign key.

– first
Returns true if this is the first loop of a foreach loop.

– last
Returns true if this is the last loop of a foreach loop.

Binary evaluations perform an operation based on the third option. Possible
binary evaluations:

– membername
Returns true if the member name of the current member (in a foreach
member loop) matches the specified value.

– membernamestartswith
Returns true if the member name of the current member (in a foreach
member loop) starts with the specified value.

– membernameendswidth
Returns true if the member name of the current member (in a foreach
member loop) ends with the specified value.

– membertype
Returns true if the member type of the current member (in a foreach
member loop) matches the specified value.

74 CHAPTER 3. DESIGN

– memberSQLtype
Returns true if the member SQL type of the current member (in a
foreach member loop) matches the specified value.

Note that it is possible to nest several if statements.

• else
Must be placed between an if tag and end if tag. Starts a conditional
statement which will be executed if the original if equality operator returns
false. Options: none. Note that each if tag has at most one else tag. In
the case of nested if blocks, the else tag always belongs to the last opened
if tag.

• end if
Indicates the end of an if tag. Options: none.

• counter
Prints a counter for the current foreach loop, starting at 0 for the first loop.
Options: none.

• membername
Prints the current member name (in a foreach member loop). Options:
none.

• membertype
Prints the current member type (in a foreach member loop). Options: none.

• memberSQLtype
Prints the current member SQL type (in a foreach member loop). Options:
none.

• memberSQLlength
Prints the size of the current member SQL type (in a foreach member loop).
Options: none.

• nrofmembers
Prints the number of members for the current class. Options: none.

• membercanbefknull
Prints ”true” if the current member (in a foreach member loop) can be a
null value. Prints ”false” otherwise. Options: none.

• parentname
Prints the name of the current parent (in a foreach parent loop). Options:
none.

3.4. SUMMARY 75

• parentnameinchild
Prints the name of the current parent (in a foreach parent loop) as it is
known from the childs point of view. Options: none.

• parentfkname
Prints the name of the foreign key of the current parent (in a foreach parent
loop). Options: none.

• childname
Prints the name of the current child (in a foreach child loop). Options:
none.

• childtype
Prints the type of the current child (in a foreach child loop). Options: none.

• childfkparentname
Prints the parent foreign key name to the current child (in a foreach child
loop). Options: none.

3.4 Summary

In this chapter a design has been made (section 3.1) for a new architecture for
the problem described in chapter 1 which was analyzed in chapter 2. The data
filter mechanism has been discussed (section 3.2) which allows Connect-It to use
a replication method based on (properties of) objects and the relation of different
objects in the database instead of the more common replication techniques that
replicate on whole database tables. Some remarks addressing the implementation
details were done in section 3.3.

Chapter 4 will analyze the results from this chapter to check if all requirements
from section 1.4 are met.

Chapter 4

Results

In this chapter the results are analyzed. First, in section 4.1 several measurements
are done. After that the new architecture is evaluated in section 4.2. Section 4.3
will give a summary of the results.

4.1 Measurements

In this section the real communication cost and client processing time are mea-
sured.

4.1.1 Communication

Overhead

When using a web service to transfer data, everything is turned into XML mes-
sages. This means that there is an XML header and everything gets an opening
and closing tag. At first this might not seem relevant, but when you look at a
data field called NumberOfItemsSold that normally consists of 4 bytes of data
(one 32 bits integer), it will become very inefficient to use a web service. In XML,
this data field would translate to:

<NumberOfItemsSold>123</NumberOfItemsSold>

So to transfer the number 123, one would be transferring 42 bytes: one byte per
character. This is where the DistributionObject (see section 3.1) has a double
function. The first one is to be able to make use of a web service when us-
ing generic objects, the second one is to reduce the amount of communication
needed. When serializing the data into a byte array, only the real data is used,
not the meta data such as field names. This greatly reduces the overhead when
transferring data.

77

78 CHAPTER 4. RESULTS

Setup

All measurements were performed using a HTC Touch Dual smartphone as a
client, which has a 400MHz Qualcomm MSM7200 processor, 128MB RAM and
Windows Mobile 6 Professional as operating system. It can connect to the inter-
net using a HDSPA connection. The server was a PC consisting of an Intel Core
2 Duo E6600 2.4 GHz, 6GB RAM and Windows Vista Ultimate 64 as operating
system and a glass fiber 100Mbit internet connection.

The client requests data from the server and at the server it is measured how
much data is transferred over the internet connection using NetLimiter [3]. This
tool allows the monitoring of the network usage of specific software applications.
At the server side, specific scenarios were programmed so the measurements could
be taken multiple times with the same data being transferred.

To measure the communication needed per data object, four scenarios are de-
fined:

• A small data object with a minimal amount of data in it.

• A small data object with a maximal amount of data in it.

• A large data object with a minimal amount of data in it.

• A large data object with a maximal amount of data in it.

The minimum amount of data is where all string values are empty and all number
values are 0. The maximum amount of data is the opposite: all string values are
filled to their maximum and all number values contain the largest possible value.
Table 4.1 illustrates this. The first data type represents an object which contains
5 data fields which can contain only fixed length numbers. The second data type
represents an object which contains 40 data fields with a mix of numbers and
strings. The minimum and maximum size of the data object is also shown. Note
that most data objects with strings will probably never be the maximum size
when they are commonly used as most string values will be much shorter than
their maximum length.

Data type Nr of fields Min size (bytes) Max size (bytes)

1 5 36 36
2 40 90 3590

Table 4.1: Data types used in the communication

4.1. MEASUREMENTS 79

Results

The first thing that is measured is the amount of bytes received at the client when
checking for updates (figures 4.1 and 4.2). The second figure is the same as the
first except the high values of data type 2 are not shown. This gives a better view
of the other values. Each update contains 5 changes that are transferred to the
client. Note that these changes are not unique, updates 4, 9, 15 and 16 contain
an item that was changed twice, this explains the dips in the figures: there was
20% less data to transfer.

15000

20000

25000

ve
d

Communication for receiving updates

0

5000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

By
te
s
re
ce
iv

Update number

Data type 1 low values

Data type 1 high values

Data type 2 low values

Data type 2 high values

Figure 4.1: Communication for receiving data

1400

1500

1600

1700

ve
d

Communication for receiving updates without data type 2 high values

1000

1100

1200

1300

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

By
te
s
re
ce
iv

Update number

Data type 1 low values

Data type 1 high values

Data type 2 low values

Figure 4.2: Enlargement of figure 4.1 (without datatype 2 high values)

80 CHAPTER 4. RESULTS

870

880

890

900

er
re
d

Communication when there are no changes

810

820

830

840

850

860

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

By
te
s
tr
an

sf
e

Update number

Overhead for receiving data

Overhead for sending data

Figure 4.3: Communication overhead

Next, the communication overhead is measured in figure 4.3. Here, the client
checks for updates while there are no changes to send back. The figure shows
both the outgoing communication for the client to ask if there are changes and
the incoming changes when there are no changes. Together, the 844 bytes it
receives when there are no changes and the 888 bytes for checking if there are
updates, are the overhead.

Scenario 1 2 3 4 5 6 7 8

Data type 1 1 2 2 1 1 2 2
Changes (λ) 5 5 5 5 4 4 4 4
Size (bytes) (D) 36 36 90 3590 36 36 90 3590
Fields (F) 5 5 40 40 5 5 40 40
Communication 1310 1311 1607 20507 1217 1217 1455 16574

Table 4.2: Communication measurements

The results can be seen in table 4.2. The last four scenario’s are the same as the
first four, except the number of changed data items is four in stead of five. As
their might be some overhead per data field and per byte of data, we can adapt
the cost function to:

CFComm = x1Fc + λ(x2 + x3F + x4D) (4.1)

Table 4.2 has the result of (the average of 20 measurements of) one update per
scenario, so Fc can be replaced by 1. If all overhead is renamed to xi, the formula
becomes:

CFComm = x1 + λ(x2 + x3F + x4D)
= x1 + λx2 + λFx3 + λDx4

= ax1 + bx2 + cx3 + dx4

(4.2)

4.1. MEASUREMENTS 81

Now we have a linear equation that we can solve using the least squares fitting
method. Note that x1 should be between 844 and 845: the measured amount of
incoming communication when there were no changed data items. This results in
the following linear problem (using non rounded values at the right hand side):

x1 + 5x2 + 25x3 + 180x4 = 1310, 44
x1 + 5x2 + 25x3 + 180x4 = 1310, 69
x1 + 5x2 + 200x3 + 450x4 = 1607, 38
x1 + 5x2 + 200x3 + 17950x4 = 20506, 94
x1 + 4x2 + 20x3 + 144x4 = 1217, 00
x1 + 4x2 + 20x3 + 144x4 = 1217, 25
x1 + 4x2 + 160x3 + 360x4 = 1454, 75
x1 + 4x2 + 160x3 + 14360x4 = 16574, 25

(4.3)

With the constraints:
844 ≤ x1 ≤ 845

0 ≤ x2

0 ≤ x3

0 ≤ x4

(4.4)

Least squares fitting method:

8∑
i=1

(fi(x1, x2, x3, x4)− vi)2 (4.5)

Where fi is ax1 + bx2 + cx3 + dx4 from equation 4.3 and vi is the corresponding
right hand side value. The results (in bytes, rounded):

x1 = 844
x2 = 54, 3
x3 = 0, 03
x4 = 1, 08

(4.6)

In stead of looking at the error in bytes, one can look at the error as a percentage
of the corresponding value. The function we need to minimize is:

8∑
i=1

(
100(fi(x1, x2, x3, x4)− vi)

vi
)2 (4.7)

The results are the same when rounded:

x1 = 844
x2 = 54, 3
x3 = 0, 03
x4 = 1, 08

(4.8)

82 CHAPTER 4. RESULTS

What does this mean? The general overhead (x1) is 844 bytes, every time the
client checks for changes this is the minimum he receives. For each data item
there is an additional 54,3 bytes overhead (x2), which is the result of serializing
the DistributionObjects to XML. The value of x3 is so low we can ignore it.
Finally, x4 is the amount of data transferred for each byte of data: 1,08 bytes,
which results in 8% overhead per byte of data. That 8% is most likely the over-
head for using xml to transfer integer numbers over a webservice, as the number
123456 requires more characters to transfer it than the number 123. Strings with
a length of 50 simply require 50 bytes. To verify this, let’s look at the percentage
of numbers in the data. For the 4 scenarios, there is in total 252 bytes of number
data and 3752 bytes of total data, which leads to 6,7% numbers in the data. If
the above assumption is correct, that would mean that each byte of number data
requires over 2 bytes to transfer. For a 32 bit integer number consisting of 4
bytes, the maximum value is 4294967295, in other words: 10 characters (bytes)
to transfer.

Note that network latency has no influence on the amount of communication
that takes place. The measurements were the same using the wireless internet
connection on the client, as using a dongle for a direct connection with the server.

4.1.2 Client processing time

Setup

The hardware used in these measurements is the same as for the Communication
in section 4.1.1. Furthemore, the same four scenarios were used to measure the
time it takes a client to process a change:

• A small data object with a minimal amount of data in it.

• A small data object with a maximal amount of data in it.

• A large data object with a minimal amount of data in it.

• A large data object with a maximal amount of data in it.

The measurements were taken at the client side, the time the data is received is
recorded as well as the time the data was processed. The results are the difference
between these two times.

Results

First I measured the time it took when the client received new data it had to add
to its local storage (figure 4.4). The client received five new data items each time
it checked for updates. Several observations can me made from these results.

4.1. MEASUREMENTS 83

300

350

400

450

)

Client processing time for adding new data

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m
e
(m

s)

Update number

Data type 1 low values

Data type 1 high values

Data type 2 low values

Data type 2 high values

Figure 4.4: Client processing time for adding new data

First of all, it doesn’t really matter if a data object has the maximum or mini-
mum size: in both cases the times are in the same order of magnitude. However,
it does matter how many data fields it contains: a large data object with many
data fields takes significantly more time to process than a small data object with
only a few data fields.

Furthermore, the graph shows a climbing trend when the update number rises.
The data is saved in binary files, sorted by their Id field. A new data item usu-
ally has the highest Id and can therefore be stored at the end of the file. As the
position is searched using a binary search, it will not take long to find the correct
position. However, every time one or more data items are saved, a check is done
to ensure the data file is still consistent (free of errors). The larger the file, the
more time this check will take. This explains the climbing trend. Note that the
cause is in the used DAO layer, not in any part of the distribution layer. One
could simply remove the extra consistency check, but ViaData prefers it because
of the sensitivity of the data. Personally, I would recommend to skip this integrity
check or switch to a format that doesn’t need these checks.

The last thing we can observe from this figure is the initial spike in the first
update. This is probably due to the initialization of the data file and some inter-
nal objects that are created when using a certain data type for the first time.

The second measuring was the time it took for the client to process changes in
data that already existed in its local storage (figure 4.5). The local storage con-

84 CHAPTER 4. RESULTS

500

600

700

800

)

Client processing time for changes in the data

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m
e
(m

s)

Update number

Data type 1 low values

Data type 1 high values

Data type 2 low values

Data type 2 high values

Figure 4.5: Client processing time for changes in the data

sisted of 50 data items. Each time the client checked for updates, he received five
random changes (the same as used in figure 4.1). The first question that arises, is
why it took the client so much longer to process these changes than when adding
new data? As the data is spread randomly across the data storage, the client
needs to perform five binary searches (one for each change) to locate the exact
position in the file instead of searching for the end and then appending the data.
Again we see that the size of an individual data item is not very important, but
the number of data fields it contains. Note that there is no climbing trend as the
number of items stored didn’t change.

The time it took a client to process the changes when there were no changes at
all is shown in figure 4.6. As expected, it doesn’t matter what data type it was
asking for, each time the client came to the conclusion that it didn’t receive any
changes in about 17,4 ms.

As a final note I want to point out that these measurements are very depen-
dent on the type of data storage used. In these measurements the data storage
consists of a set of binary files. When using a set of XML files or a SQL database
for a mobile device, the results will probably be different. Because Connect-It
currently uses binary files as a data storage on a PDA, only those measurements
were done.

4.2. EVALUATION 85

12

14

16

18

20

)

Client processing time with no changes in the data

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m
e
(m

s)

Update number

Data type 1

Data type 2

Figure 4.6: Client processing time when there are no changes in the data

4.1.3 Consistency

There were no consistency measurements done, as all parameters are controlled
in this simulated environment. The ratio between Fc and γ is known and there
are no unknown variables to be measured.

4.2 Evaluation

In chapter 3 an architecture was described to distribute data from a server to
several mobile clients. First the requirements from the problem statement (sec-
tion 1.4) are reviewed in section 4.2.1. After that, section 4.2.2 will review the
challenges of section 2.2 to see how the new architecture holds up.

4.2.1 Requirements

Below are the requirements from section 1.4 and for each requirement a discussion
why it is met.

1. Design a new model of the Connect-it system.

No model previously existed, the new model is shown in section 1.3.

2. Change the architecture in such a way that all communication is
being done in separate components.

The Distribution PDA DAO Impl.dll, Distribution Server DAO Impl.dll and
Distribution Shared DAO Impl.dll (see section 3.1) are responsible for all

86 CHAPTER 4. RESULTS

communication that takes place. The PDA web service (pda.asmx) is a
connector between these two components.

3. Change the architecture in such a way that changes in the ap-
plication logic don’t require changes in the new communication
components.

Because the communication components are independent on any applica-
tion specific components (see the dependencies in figure 3.7), all changes in
the application specific parts have no influence on these components.

4. Change the architecture in such a way that changes in the type of
data storage used or changes in what data is stored don’t require
changes in the new communication components.

The communication components make use of the IDAO interface (see figure
3.1), no hardcoded dependencies exist between the communication compo-
nents and a specific data storage. Furthermore, the component DataOb-
jects.dll has been moved to the application specific components and all
lower layer components no longer have a dependency to that component.
The result is that there is no knowledge about what the data represents and
the middleware components can be reused in other applications as well.

5. Minimize the bandwidth usage for synchronizing the clients with
the server: (bu(Commit) + bu(Refresh)) where bu is a function that
determines the bandwidth usage of a certain operation.

When looking at the communication cost comparison (section 2.5.1), the
new architecture has half the cost of the Roam replication system [17] as the
new architecture uses a client-server topology. Note that this figure does
not include the fact that Roam (as most other replication methods) repli-
cate database tables and not data that passes a filter (see the DataFilter
in section 3.2). This means that the new architecture is even more efficient
with respect to communication.

Compared to the old architecture there is a major reduction in commu-
nication that takes place (up to 98,5%, see section 2.4.2). This is possible
because: (i) only the changes are transferred when checking for updates
and (ii) the DistributionObject serializes only the data and not the meta
data (see section 4.1.1). Note that a lower cost would be possible if no web
service is used, but a direct connection. Currently this is not an option as
the use of a web service is required from a commercial point of view (see
section 1.2).

4.2. EVALUATION 87

6. Impact on battery usage should be minimal: minimize the client
processing time for synchronizing the clients with the server:
(pt(Change)+pt(Commit)+pt(Refresh)), where pt is a function that
determines the processing time of a certain operation.

As with the communication cost, the use of a client-server topology halves
the cost compared to Roam. Compared to the old architecture we also see
a major cost reduction (up to 98,5%, see section 2.5.2) because only the
changes are transferred.

7. The number of clients can change over time.

In the old architecture this requirement was met and there were no changes
in this respect.

4.2.2 Challenges

Below are the challenges from section 2.2 and for each challenge a discussion why
the new architecture has overcome that challenge.

1. Heterogeneity

The new architecture now uses middleware for abstracting the distribution
of the data. When Connect-It needs to use a different method to commu-
nicate between the clients and the server, for example a direct connection
instead of a web service, there are no changes required at application level.

2. Openness

Because all interfaces to the communication components and the data stor-
ages are implemented using generic types, these components no longer need
to be changed when the database itself changes. Adding new data types or
changing existing ones has no longer any influence on these generic compo-
nents.

3. Security

Connect-It had already overcome the security challenge, but the new ar-
chitecture is even more secure. When transferring a data item, that data
item was directly serialized into a XML message which is readable for the
human eye because all meta data such as data field names is included in
it. The new architecture uses a DistributionObject that contains one byte
array with all the data of a data item. There is no meta data and it is
harder to decipher the meaning of those numbers being transferred.

4. Scalability

Connect-It was already very scalable and nothing has changed in this re-
spect.

88 CHAPTER 4. RESULTS

5. Failure handling

When a client wanted to send data to the server, that data was kept in
a buffer in memory alone. A crash resulted in those changes never being
transmitted. The new architecture persistently stores every item in the
buffer the moment it is added to the buffer, so a crash no longer has the
result that data is lost.

6. Concurrency

At the server side there is conflict detection that alerts a user (for example,
the administrator) or a user group (for example, the administrator group)
that there is a conflict. The user to resolve the conflict can choose to
keep one of both versions or merge them manually. Furthermore, the client
checks for changes in the data much more often which results in much less
conflicts (see section 2.5.3).

7. Transparency

Connect-It already had a good amount of transparency and from a user
point of view, nothing has changed in this respect.

4.3 Summary

In this chapter the design from chapter 3 has been compared to the requirements
from chapter 1 and analysis from chapter 2. In all aspects the new architecture is
a big improvement over the old architecture. In the next chapter a final conclusion
is given and some thoughts about what can be done in the future.

Chapter 5

Conclusion

In this chapter a final conclusion is given in section 5.1. Section 5.2 gives some
thoughts about what can be done in the future.

5.1 Conclusion

As predicted in section 2.6, it was possible to design a new architecture that
fulfilled all requirements from section 1.4 while overcoming all challenges from
section 2.2. The new architecture reduces both the amount of communication
needed and processing time at the client by up to 98,5% (see section 4.2). Fur-
thermore, the work for the programmers has been simplified because there is
no longer a direct dependency between application specific components and the
middleware: changes in the application have no influence on the distribution or
storage of the data and vise versa. The result is a more heterogeneous, open,
secure and concurrent architecture.

5.2 Future Work

When I started to work on this thesis, Connect-It was still using the Microsoft
.NET 1.1 framework. The roadmap predicted that by the time this thesis was
finished, Connect-It would be using the .NET 2.0 framework. Therefore, the
implementation of the architecture was done using the .NET 2.0 framework.
However, changes in the roadmap have postponed the migration of Connect-It to
.NET 2.0, therefore no real world testing and measurement could be done. As a
result, the conclusions in this thesis are based on estimates. In the future, real
world data can be used to evaluate the architecture.

Something that has been left out of the architecture is the automatic adjust-

89

90 CHAPTER 5. CONCLUSION

ment to the measurements of the environmental parameters of the cost functions
(see section 2.4.1). In [19] a method is introduced to dynamically adapt some
parameters to a changing environment. Given the new architecture it is very easy
to implement this mechanism to keep the cost functions at a minimum. For now,
ViaData didn’t see the use of this mechanism but this could change in the future
if the performance results in a real world environment are known.

Another aspect that was out of the scope of this thesis was automatic conflict
resolution. A lot of research has already been done in this field and there are a
lot of good solutions. Which solution is the best is very dependent on the details
of the application. In the current architecture, conflicts can begin to queue up
if they are not resolved quickly, which reduces the scalability of the system. It
might be interesting to look into an algorithm that can deal with the conflicts
within Connect-It.

When looking at the cost function in section 2.4.2 it might be interesting to
think about the relation between γ and Sd. Using larger units of data, the ex-
pected number of unique changes might become smaller which could result in
less communication needed. In the case of Connect-It, the size of the data items
is fixed, but the data items might be bundled into larger data units. The op-
posite can also be possible: using smaller units of data, the expected number of
unique changes might increase, but because only very small data units are used,
for example only one database field in stead of a complete record, the overall
communication needed might be lowered even more.

Bibliography

[1] Concurrent versions system. http: // www. nongnu. org/ cvs/ . [cited at p. 14]

[2] Data access object (dao) design pattern. http: // java. sun. com/ blueprints/

corej2eepatterns/ Patterns/ DataAccessObject. html . [cited at p. 3, 32, 68]

[3] Netlimiter. http: // www. netlimiter. com . [cited at p. 78]

[4] Simple object access protocol (soap). http: // www. w3. org/ TR/ soap/ .
[cited at p. 3]

[5] Subversion. http: // subversion. tigris. org/ . [cited at p. 14]

[6] Web services. http: // www. w3. org/ 2002/ ws/ . [cited at p. 3]

[7] Jun Cai, Kian Tan, and Lee. Energy-efficient selective cache invalidation. Wireless
Networks, 5:489–502, 1999. [cited at p. 12]

[8] Guohong Cao. On improving the performance of cache invalidation in mobile envi-
ronments. Mobile Networks and Applications, 7:291–303, 2002. [cited at p. 12, 65]

[9] Boris Y. Chan, Antonio Si, and Hong V. Leong. A framework for cache management
for mobile databases: Design and evaluation. Distributed and Parallel Databases,
10:23–57, 2001. [cited at p. 11]

[10] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems, concepts and
design. Addison-Wesley, fourth edition, 2005. [cited at p. 14, 15, 16, 18, 19]

[11] Todd Ekenstam, Charles Matheny, Peter Reiher, and Gerald J. Popek. The bengal
database replication system. Distributed and Parallel Databases, 9:187–210, 2001.
[cited at p. 13, 14]

[12] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi. Disconnection modes
for mobile databases. Wireless Networks, 8:391–402, 2002. [cited at p. 14]

[13] Qinglong Hu and Dik Lun Lee. Cache algorithms based on adaptive invalidation
reports for mobile environments. Cluster Computing, 1:39–50, 1998. [cited at p. 12]

[14] Phillipe Kruchten. Architectural blueprints – the ”4+1” view model of software
architecture. IEEE Software, 12(6):42–50, november 1995. [cited at p. 21, 49]

91

http://www.nongnu.org/cvs/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://www.netlimiter.com
http://www.w3.org/TR/soap/
http://subversion.tigris.org/
http://www.w3.org/2002/ws/

92 BIBLIOGRAPHY

[15] George Liu and Jr Maguire. A mobility-aware dynamic database caching scheme for
wireless mobile computing and communications. Distributed and Parallel Databases,
4:271–288, 1996. [cited at p. 12]

[16] Esther Pacitti, Pascale Minet, and Eric Simon. Replica consistency in lazy mas-
ter replicated databases. Distributed and Parallel Databases, 9:237–267, 2001.
[cited at p. 14]

[17] David Ratner, Peter Reiher, and Gerald J. Popek. Roam : A scalable replication sys-
tem for mobility. Mobile Networks and Applications, 9:537–544, 2004. [cited at p. 13,

86]

[18] G. Russello, M. Chaudron, and M. van Steen. Customizable data distribution for
shared data spaces. Proceedings of International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, 26 June 2003. [cited at p. 14]

[19] G. Russello, M. Chaudron, and M. van Steen. Dynamic adaptation of data dis-
tribution policies in a shared data space system. Proc. Int’l Symp. On Distributed
Objects and Applications (DOA), 25 October 2004. [cited at p. 14, 36, 90]

[20] A.S. Tanenbaum and M. van Steen. Distributed systems, principles and paradigms.
Pearson Prentice Hall, second edition, 2007. [cited at p. 15, 17, 20]

[21] Melissa Tjiong and Johan Lukkien. On the consistency of soft-state based service
registration. Proceedings of GLOBECOM Workshops, 2008. [cited at p. 41]

[22] Haobo Yu, Lee Breslau, and Scott Shenker. A scalable web cache consistency ar-
chitecture. Computer communication review : a quarterly publication of the Special
Interest Group on Data Communication, 29:163–174, 1999. [cited at p. 12, 65]

List of Figures

1.1 Overview of the system . 1
1.2 DAO pattern class diagram . 3
1.3 DAO pattern sequence diagram . 4

2.1 Class diagram (analysis) . 22
2.2 Application sequence diagram (analysis) 25
2.3 Buffer sequence diagram (analysis) . 26
2.4 Update sequence diagram (analysis) 27
2.5 Processes and threads (analysis) . 29
2.6 Component dependencies (analysis) 30
2.7 Deployment (analysis) . 34
2.8 Use case diagram (analysis) . 35
2.9 Communication cost using Fc and Co. γ = 1

120 , Sd = 100. 39
2.10 Communication cost using Fc and Sd. γ = 1

120 , Co = 150. 39
2.11 Communication cost using Co and Sd. γ = 1

120 , Fc = 1
300 40

2.12 Communication cost using 1
Fc

and Co. γ = 1
120 , Sd = 100. 40

2.13 Communication cost using 1
Fc

and Sd. γ = 1
120 , Co = 150. 41

2.14 Consistency cost using Fc. γ = 1
120 . 42

2.15 Consistency cost using 1
Fc

. γ = 1
120 . 42

2.16 Total cost using 1
Fc

. γ = 1
120 , Co = 150, Sd = 100, W (x) = x, w1 = 1,

w2 = 1, w3 = 1. 43
2.17 Total cost using 1

Fc
. γ = 1

120 , Co = 150, Sd = 100, W (x) = x, w1 = 1,
w2 = 1, w3 = 10. 44

2.18 Total cost using 1
Fc

and w3. γ = 1
120 , Co = 150, Sd = 100, W (x) = x,

w1 = 1, w2 = 1. 45

3.1 Class diagram (design) . 50
3.2 Application sequence diagram (design) 55
3.3 Buffer sequence diagram (design) . 56
3.4 Update (1) sequence diagram (design) 57

93

94 LIST OF FIGURES

3.5 Update (2) sequence diagram (design) 58
3.6 Processes and threads (design) . 59
3.7 Component dependencies (design) . 60
3.8 Deployment (design) . 61
3.9 Use case diagram (design) . 62
3.10 ChangeF ilters: situation at the server 66
3.11 ChangeF ilters: data that needs to be transferred ”ToAdd” 66
3.12 ChangeF ilters: data that needs to be deleted ”ToDelete” 67

4.1 Communication for receiving data . 79
4.2 Enlargement of figure 4.1 (without datatype 2 high values) 79
4.3 Communication overhead . 80
4.4 Client processing time for adding new data 83
4.5 Client processing time for changes in the data 84
4.6 Client processing time when there are no changes in the data 85

List of Tables

2.1 Challenges within Connect-It . 20
2.2 Parameters and their default values 43

4.1 Data types used in the communication 78
4.2 Communication measurements . 80

95

	Abstract
	Acknowledgements
	Contents
	1. Introduction
	2. Analysis
	3. Design
	4. Results
	5. Conclusion
	Bibliography
	List of Figures
	List of Tables

