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Abstract

This document concerns an exploratory research towards the application of collaborative Markov
chains as a forecasting model within the field of healthcare insurance. The model proposed is
based on both predicting care demand and associated institutional pathway traversal.

A system of collaborative Markov chains allows the user to jointly model several probabilistic
elements that share dependencies. It describes a collection of Markov chains in which the state
of a certain chain within the collection influences transition probabilities in other chains within
the collection. It allows the use of different types of techniques to estimate forecasting parameters
as an input within one model. It entails a modular structure which allows the user to perform
case-based analyses.

Simulation of simplified proof-of-concept cases has shown accurate predictive behaviour. Due to
the fact that Markov chains and consequently systems of collaborative Markov chains are prob-
abilistic in nature, simulation of a sufficient number of sampling replication yields results that
tend to follow a Normal distribution. The statistical nature of the simulation results lends itself
perfectly for consecutive statistical post-processing.

Systems of collaborative Markov chains provide in modelling complex probabilistic systems in
which several dependencies might exist. Current challenges within the application of systems of
collaborative Markov chains involve the complexity in terms of the number of parameters to es-
timate and associated running times. Additionally the existence of potential “inactive elements”
with respect to the field of healthcare insurance introduces additional challenges in parameter
estimation of the model.
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Chapter 1

Introduction

1.1 Motivation

During the past decades healthcare costs have been growing rapidly [5, 6, 7, 8]. The growth is
identifiable both on a national (i.e. the Netherlands) as an international scale. Literature suggests
different causes and possible solutions to the rise in healthcare costs. The Dutch government
however, has not yet been able to effectively reduce healthcare costs one way or another.

In a strive to control and potentially reduce the costs within the healthcare system, the Dutch
Government recently proposed several regulatory modifications. Up to 70% of the total amount
of care products has been assigned a negotiable price between healthcare providers and healthcare
insurance companies [9]. As such, the healthcare market is being structured towards managed
competition [10] [11].

Within the newly created market, healthcare insurance companies have been assigned to take a
leading role in generating a competitive market environment. They are ought to do so by ne-
gotiating prices of care products which in turn should lead to competition amongst healthcare
providers. The competition should focus on a quality versus costs dimension in which the aim is
to “acquire the best care for the best price”.

Healthcare insurance companies have not yet been able to succeed in their supposed role of compet-
itive catalyst. Contract negotiations are primarily based on individual institutional performance.
A patient however usually visits more than one care provider when being cured for a certain dis-
ease. One might for example first visit a general practitioner, secondly a hospital and finally a
physiotherapist. Within contracting, the performance of such institutional care pathways is cur-
rently being neglected.

In [12] the applicability of KPI-based quantification, measurement and comparison of integrated
care pathways is researched. In essence integrated care pathways and institutional care pathways
are very related though differ in general aim of use. We will elaborate on this specific difference in
a later stage of the research. In this research we strive to define a financial forecasting model for
healthcare insurance companies building on top of the concept of institutional care pathways.
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1.2 Background

1.2.1 Healthcare system reform in the Netherlands

In this section we present the most recent healthcare system reform incentives as proposed by
the Dutch government, some of which to reduce the costs of healthcare. For a more detailed and
elaborate description of the healthcare system in the Netherlands we refer to appendix A.

DTC’s and the HIA

The most recent fundamentals of the desired form of the healthcare system have been shaped in
2005 and 2006 with the introduction of the diagnose treatment combination (DTC, DBC in Dutch)
and the healthcare insurance act (HIA). A DTC represents a “treatment product”. Rather than
posting declarations for single treatments, hospitals should post DTC-based declarations to health-
care insurance companies. The HIA states that every natural person living in the Netherlands
should have a basic healthcare insurance.

Managed competition

The strategical core of the restructuring incentives is called “managed competition” [13]. Though
already recommended by the Dekker Committee in 1986, the restructuring towards such system
is currently taking place at full pace. In theory, managed competition is defined as a purchas-
ing strategy to obtain maximum value for both employers and customers. Rules for competition
are used which are derived from microeconomic principles in which the goal is to reward those
health plans that do the best job of performance on several dimensions (such as quality, costs etc.).

A fundamental difference between regular competition in contrast to managed competition is the
existence of “sponsors”. In managed competition a sponsor is defined as an entity which represents
a group of customers which form the actual demand side. Within the fundamentals of “managed
competition” - which is largely based on the healthcare system in the USA - sponsors are intended
to overcome the attempts of insurers to avoid price competition [13].

Managed competition in the Netherlands

The system introduced in the Netherlands consists of the basic principles of managed competition
[11, 14, 9]. The system is highly regulated by the government which is represented by the “Neder-
landse zorg authoriteit’ (NZA). In future years the governmental influence should be reduced. In
the Netherlands the functioning of the insurance companies could be described as “sponsors” within
the market. This sounds contradictory as the main concept of sponsors was introduced against
the main functioning of insurers within the U.S. healthcare market. Dutch and U.S.-based health-
care providers however differ significantly and have very different interests. U.S.-based healthcare
insurers are often involved in funding medical and pharmaceutical activities, which conflicts with
bringing the total costs for care down. In the Netherlands this is not the case.

The overall goal of all actors is to contribute to a system in which high quality care is key and costs
are limited to a manageable level. The specific role in this structuring for healthcare insurance
companies is defined as [9]: “To try to pursue efficient and appropriate care for their insured,
which are translatable to manageable cost development as much as possible.” Though this role is
discussed upon and criticized [10], healthcare insurance companies are ought to buy adequate and
cost manageable by means of contracting among healthcare providers.
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1.2.2 The changed role of healthcare insurance companies

The changing healthcare system poses new behavioural requirements to healthcare insurance com-
panies. They should contract healthcare providers to cover expenses made by their insured. As
a consequence a patient’s treatment will only be covered if he or she visits a healthcare provider
which is contracted by their corresponding healthcare insurer.

Within contracting, healthcare providers need some means of performance measurement to take
into account when negotiating contracts. Although DTC’s provide basic guidance towards suitable
pricing, the associated costs are not fixed for a large amount of treatments. Additionally, DTC’s
are only defined for hospital-based care. Healthcare insurance companies however also cover costs
declared by other healthcare providers such as general practitioners, physiotherapists and others.

In general, individual institutional performance measurements are taken into account within con-
tracting negotiations between healthcare insurance companies on the one hand and healthcare
providers on the other hand. These performance measures can be any measure the healthcare
insurance company deems appropriate such as quality, throughput time etcetera.

Healthcare insurance companies have net been able to actively instigate competition among health-
care providers. The goal of this research is to provide a new type of financial forecasting model
that might enable healthcare providers within their contracting endeavours by explicitly taking
institutional care pathway performance into account.

1.3 Problem description

The rising costs in healthcare have caused new regulations within the healthcare system in order
to bring the overall costs down. These regulations pose new challenges to several actors within
the system.

Within the newly created managed competition based system, healthcare insurance companies are
assigned to the role of “sponsors”. They are ought to contract healthcare providers and strive to
purchase the best quality for the best price. A new type of performance analysis within healthcare
is performance quantification based upon chains of institutes associated with treatments instead
of individual institute performance.

The problem at hand is the need for a financial forecast model which:

• Incorporates care demand

• Allows to incorporate associated institutional care pathway traversal and corresponding costs

• Is modular in design such that it allows for multiple case-based forecast computations

Within this definition we identify a financial forecast1 model as a model that enables us to compute
future costs, in this case based on the combination of care demand prediction and associated
institutional care pathway traversal. The set of basic requirements allows healthcare insurance
companies to compute future costs in several situations. Additionally, the outcomes of these
computations might be used in contract negotiations with healthcare providers. This could lead
to a better fulfilment of healthcare insurance companies in their role of competitive catalyst in the
healthcare market.

1Within this research we identify the concept of forecast and prediction to be equal. Throughout this document
the two concepts can be regarded as interchangeable.
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1.4 Research questions

According to the main problem definition we have categorized and defined the following research
questions:

1. How do we define and forecast care demand from a healthcare insurance company perspective?
A first step towards a prediction concerning future pathway traversal is knowledge of the
amount of patients to expect. As traversal of an institutional care pathway is a consequence
of being ill, we first need to define how to predict future need for care, which is also called
care demand.

2. How do we define and incorporate institutional pathways within the care demand prediction
model?
If we have defined a model which is able to produce an estimate of care demand, the next
step is to integrate the associated pathway traversal. In this way we can determine, given
the expected care demand what the expected future institutional care pathway traversal will
be.

3. How do we combine financial pathway performance as a price component with the care
demand prediction model?
If we have found some means to provide an estimation of future institutional care pathway
traversal, a final aspect to look at is how to combine the financial performance of these
pathways with the predicted traversal-amount.

1.5 Methodology

To solve the problem and research questions defined we have applied the following methodology:

Figure 1.1: Graphical representation of the global methodology used in the research.

Literature review

In this phase we have tried to position the problem in a research-based context. We have investi-
gated what research has been done either on specific topics or related topics with respect to the
research questions. The literature is used to provide an overview of what techniques are currently
applied and as a basis for model design and development.
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Analysis

In this phase we will analyse the problem in an abstract manner by presenting preliminaries with
respect to the model design which will be conducted in the next phase. We have defined an
abstract mathematical model which helped in structuring the problem as a whole and reduced
overall problem complexity.

Design

In the design phase we have tailored the intended model building upon the preliminaries and
definitions as presented in the analysis phase. We have presented both the model terminology in
general as a problem-specific design using the model terminology.

Implementation

Within this phase we have assessed possible implementation of the proposed model. We have
specifically analysed challenges in model implementation which are either solved or yet to be
solved.

Evaluation

Within the evaluation we have assessed whether the model proposed is able to accommodate its
main goal; a financial forecasting model for healthcare insurance companies. Additionally we have
collected lessons learned throughout the research and mapped these onto several dimensions such
as managerial implications, future research etcetera.

Proof of concept

During the course of the design, implementation and evaluation phase we have executed a “proof
of concept”. The proof of concept is two-fold as it consists of a data-analysis part and a simulation
part. The data-analysis is mainly intended to assess whether assumptions made in model definition
actually hold given real-healthcare data. The simulation part focusses more on the usability, nature
of results and so on with respect to the model defined.

1.6 Outline

The remainder of this thesis is structured using the methodology as described in the previous
section.

Chapter 2 describes the literature review. Within this part we assess the current state of care
demand prediction on several dimensions and we take a look at the terminology of integrated care
pathways within healthcare.

Chapter 3 describes the analysis phase. We will present mathematical preliminaries which will
be used in the consecutive chapters on terminology of care demand and institutional care pathways.

Chapter 4 describes of the design phase. The definitions and terminology as presented in chapter
3 will be materialized and a suitable basic model will be presented which conforms to the research
problem.
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Chapter 5 describes the implementation phase. In this chapter we discuss how we should actually
implement the model proposed and what the associated challenges will be.

Chapter 6 briefly explains the set-up of the two-fold proof of concept.

Chapter 7 describes the results of the proof of concept. Additionally it will discuss managerial
implications and will discuss the general application of the model.

Chapter 8 summarizes the research as a whole and discusses some limitations with respect to the
proposed solution and future research possibilities.
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Chapter 2

Related research

In this chapter we have assessed related topics with respect to the research. We first consider
related research with respect to care demand prediction after which we will assess related research
with respect to integrated care pathways.

The specific reason why we assess integrated care pathways in literature and not institutional care
pathways will briefly be mentioned in section 2.2. A more elaborate motivation can be found in
chapter 3, section 3.3, subsection 3.3.4 as section 3.3 provides a definition of institutional care
pathways within the context of this research.

2.1 The field of care demand prediction

Within literature several models have been proposed on the topic of care demand prediction.
The general aim of these models is to assess the effect of environmental changes, which are usu-
ally a result of various triggers. As an example consider the assessment of several technological
developments on public health [15].

Care demand prediction in general is just any statement concerning the future and can thus be
seen as a forecasting method. Before we specifically delve into care demand prediction we first
consider the bare basic fundamentals of forecasting in general [16]:

1. The goal of forecasting is to generate “on the average” good forecasts and minimize forecast
errors.

2. In general it is easier to obtain forecasts with high accuracy on groups of items rather
than individual items. Group data can produce stable characteristics although it contains
individual items consisting of a high degree of randomness.

3. In general, short-term forecast have a better accuracy when compared to long-term forecasts.

As with forecasting in general, care demand prediction models vary on several dimensions (i.e.
forecasting length, goal,...). To provide structure we identify three hierarchical categories within
analysing the current state of care demand prediction, being:

• Care demand prediction frameworks
Assessing usable steps to follow in order to construct a suitable care demand prediction
method or healthcare forecast.
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• Care demand prediction classification
Assessing how to classify several interrelated care demand prediction models or healthcare
forecast.

• Care demand prediction models and techniques
Assessing what types of models are most often used for what type of care demand prediction
or healthcare forecast.

2.1.1 Care demand prediction frameworks

Figure 2.1: A schematic approach
to healthcare forecasting as pro-
posed in Soyiri et al. 2013, [1]

Within literature, little research is done towards care demand
prediction frameworks or healthcare forecasting frameworks
in general. Often articles present a model producing a fore-
cast and discuss steps such as data collection, model design,
validation and forecast results. These steps largely correspond
to the phases roughly defined in [16]:

1. Model building

2. Forecasting Stage

3. Measuring Forecast Accuracy (continuous assessment)

Though the lack of a standardized methodology might
be somewhat trivial as we could apply any general
forecasting methodology, the absence of domain spe-
cific methodology is specifically pointed out in [1].
The authors give an overview of the current state of
healthcare forecasting, consisting of a set of princi-
ples, a schematic approach for healthcare forecasting and
some additional common data patterns and methodolo-
gies.

The principles presented are very similar to the general fore-
casting principles:

1. Uncertainty and error of health forecasting

2. The focus of health forecasting

3. Data aggregation and accuracy of health forecasting

The schematic approach to health forecasting as proposed is
presented in figure 2.1. We can again identify similarities
between the proposed framework and the steps defined within
general forecasting theory (i.e. Model building, Forecasting
Stage, Accuracy). We can also identify a vast overlap with
the general methodology used in this research. Occasionally,
authors define a domain specific healthcare forecasting framework. In [17] a framework is proposed
for “Assessing and Forecasting Population Health”. The authors propose a threefold framework
consisting of:

1. Core population model

2. Risk factor/disease modules
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3. Forecasting

When inspecting the the steps in the framework provided, we are able to place all three steps in the
model building/forecasting algorithm development phase. The framework in this case describes
a micro-simulation type model. We will discuss the work proposed by Meijgaard et al. ([17]) in
more detail in section 2.1.3.

2.1.2 Care demand prediction classification

Likewise to care demand prediction frameworks, classification terminology for healthcare forecast-
ing is rather scarce. For classification terminologies, the same rationale goes as for frameworks
as the terminologies are rather context independent [18]. In [19] a so called “methodology tree”
is proposed, which is used to discuss several forecasting methods and can be used as a guide in
forecast model selection. The most recent version of the methodology tree provided by Armstrong
([2]) dates to 2010 and is depicted in 2.2.

Figure 2.2: Armstrong’s methodology tree for forecasting method selection, 2010 [2]

The methodology three (in two older forms (1986 & 2001)) has been analysed, criticized and used
by [3]. Apart from those two interrelated methodology tree definitions, three more forecasting
classifications (Cetron and Ralph; 1971, Martino; 1972, Bright; 1978) were analysed on three
properties:

• Conciseness
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• Exclusiveness

• Exhaustiveness

The authors conclude that none of the models possess all three properties. The authors combine
the lessons learned from the five models analyzed into their “Forecasting Classification Grid”,
depicted in figure 2.3.

Figure 2.3: The Forecasting Classification Grid as proposed by Gentry et al., 2006 [3]

Although, the authors state that the model supports all three properties stated earlier, the model
contains some gray area’s itself as pointed out in [18]. One could question whether the existence
of such “grey area’s” is fully avoidable. Logically we identify some basal similarities between the
decision points in the decision tree and the quartiles in the classification grid.

In [16] a brief passage of forecasting classification is presented which has the following structure:

• Quantiative forecasting methods

– Time series models
– Causal models

• Qualitative forecasting methods

– Exploratory
– Normative

In this case we even see more direct overlap between the classification models proposed. The
classification especially shares great commonality with [3].

2.1.3 Care demand prediction models & techniques

Within health forecasting literature several different types of models are used, which heavily
depend on a combination of the data structure and the purposes of the forecast. We will assess
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several models which either have been used or developed in the context of healthcare forecasting.
We will first present the basic rationale and definitions behind a specific type of model and then
assess its use and usability in healthcare forecasting.

Time series models

A commonly used model or approach in forecasting is the use of time series models (a mathe-
matical definition can be found in appendix B, section B.1.). In particular ARIMA models are
used very often, initially introduced by Box and Jenkins in 1970. As a basis, such models assume
autocorrelation within the data. With respect to the forecasting classification theory discussed in
the previous section we can easily place these type of models in the “Quantitative - Time series
models” class or the corresponding “Correlations” quadrant of the classification grid.

Several authors have proposed time-series based models with varying forecast goals. In [20], the
authors describe a time-series model used to predict ED patient crowding, a goal which is used
more often in healthcare forecasting literature. A multivariate VAR method is used with seasonal
Holt-Winters exponential smoothing as a benchmark method. The paper does not present the
model in detail as the paper’s focus leans more towards the crowding problem, though the results
indicate the potential usefulness of such model. The authors do state however that “forecasts of the
demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting”.
Additionally we note that in this particular case, absolute figures are used for model verification
without reference domains for verifying these figures.

In [21] a total of three models are compared in terms of accuracy. Again the focus of this study
concerned ED patient crowding, though the authors specifically assess multiple models. The au-
thors compare hourly historical average to a seasonal ARIMA model and a sinusoidal model with
an AR-structured error term. The authors conclude, similarly to [20] that the time series based
prediction models function reasonably well for the short term emergency department crowding
problem. Additionally the authors show that the two time-series based models, (i.e. seasonal
ARIMA and sinusoidal model) outperform the historical average model.

In [22] clinic visits of the King Faisal University are predicted over a period of two years. Addition-
ally the authors compare the performance of an ARIMA model with simple trend extrapolation.
In the particular case the simple trend extrapolation even outperforms the ARIMA model in terms
of accuracy. This gives additional raise to the fact that one should assess whether autocorrelation
is sufficiently present in the data before using time series models, based on autocorrelation.
The data source used by the authors contains a clear trend though in a specific year, the number
of visits drops extremely after which the trend returns in the data the next year. The authors
explain the sudden drop due to the second gulf war. The authors choose to replace the irregularity
by averaging of the previous and consecutive year.

In [23] a similar problem is stumbled upon when a prediction is made of rate of births for women
in the cohorts 20-24 and 25-29 as part of a case study. The second world war seems to negatively
impact the upward trend of the pre-war years. The authors propose additional measures to cope
with such problems. Either by starting the analysis after world war II (which is chosen due to the
fact that it was proven that the trend after WOII was significantly different when compared to
the pre-war years) or introduce regression terms in the model involving indicator variables for the
affected years.

In [24] traffic accidents are predicted over a forecasting range of two years. The main goals of
the paper are two-fold. On the one hand policy regulations regarding the limitation of traffic
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accidents are assessed. On the other hand the authors assess whether aggregated or disaggregated
data performs best as a basis for prediction. The authors state that the use of disaggregated data
is beneficial for overall forecast accuracy. This conclusion partly conflicts with the second basic
fundamental property of general forecasting as introduced in the introductory part of this chapter.

Micro-simulation models

Micro-simulation in general Different types of simulation models have been used within
healthcare forecasting. The structures of these are not as fixed as the basic ARIMA-models. An
simulation technique which is often used within healthcare forecasting is “micro-simulation”. Based
on [25] we present an informal description of micro-simulation:

Often, micro-simulation models are used to predict several policy effects. The structure of a micro-
simulation model mainly determined by relations expressed in mathematically logical relations.
Micro-simulation models differ from aggregated macro models on the level of aggregation. Where
macro models concern the relationships between national economic sectors and aggregated variables,
micro-simulation concern individuals directly, so called “micro-units” (such as persons, households
etc.).

As stated the models are most often used to test policy effects and therefore often a basic (forecast)
simulation concerning the as-is situation is performed. Such simulation is called a “baseline”
simulation. As within micro-simulation, micro-units are simulated over time a micro-simulation
usually consists of some “ageing procedure” which simulates ageing of the units throughout time.
Within micro-simulation we identify two types of ageing procedures: static and dynamic. In
static ageing, the relations among the variables of each micro-unit are to be generally maintained.
Whenever an overall structure change appears, this is expressed by changing the weight of each
micro-unit. In dynamic ageing on the other hand each micro-unit is aged individually by an
empirically based survivor probability.

Micro-simulation in healthcare forecasting literature In [15] micro-simulation is used to
assess the impact of health trends and medical innovation for the future elderly. The authors
develop a demographic and economic model which helps to predict the costs and health status
for the elderly. The model defined is called the “Fututre Elderly Model” (FEM) in short and is
of a micro-simulation type. The model tracks elderly throughout the future and each persons’
probability of dying, getting a new disease or entering a new functional state is computed using
Monte Carlo techniques. After constructing the basic model, several health trends and medical key
technologies were assessed and the effects of these phenomena on the “baseline” were simulated.
Interesting to note is that for identification and estimation of key medical technologies, literature
studies and qualitative research has been conducted. Thus, although the actual methodology used
is micro-simulation, the computational basis is found in conduction of qualitative analysis.

In [17], van Meijgaard et al. propose a micro-simulation framework specifically assigned for pop-
ulation health prediction. As a basis the model uses an extended form of the FEM, as proposed
by [15]. The model is extended on three aspects:

1. Extended age range, modelling persons from birth which provides a full life-course model.

2. Incorporation of additional aspects of the dynamics of population demographics (explicit
account for changes due to migration)

3. Incorporation of time-varying health risk factors such as obesity.
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Apart from extending the FEM model, the authors propose to split up the forecast into three
“building blocks”:

1. Core population module

2. Risk factor/disease module

3. Forecasting module

In fact this is a more explicit formalization of the usage of FEM in [15]. An important aspect to
note here is the difference between using the first two modules or using all three modules. The
difference in between these modules is to be found in the projected time frame and effects on
specific risk factors and such and not in the forecasting methodology used. When the “forecasting
module” is used, the authors basically perform several micro-simulations and project these into
the future. Thus the only function of the forecasting module is quantifying the impacts of certain
risk factors onto the simulation model in the future.

In [26] a multistate life table model is proposed as well as an associated theoretical framework for
building such model. In its basics a multistate life table is defined by a multidimensional matrix
which consists of transition probability records. Such probability record is defined as m(i)

x,t, being
the specific type i ∈ {tr, g} ∈ I transition rate for an x-year-old individual at time t ∈ {1, 2, .., T}
with gender g ∈ {male, female} and tr ∈ {nd, d, inc}. m(i)

x,t can either represent the mortality rate
of the nondisabled (nd), the mortality rate of the disabled (d), and the incidence rate (inc). Thus
a person can be in three states, either nondisabled, disabled or dead. Accordingly the three state
transitions are nondisabled → disabled, nondisabled → dead and disabled → dead. The authors
use the Lee-Carter model for computing the transition rates, which is of the following form:

ln m
(i)
x,t = α(i)

x + β(i)
x κ

(i)
t + ε

(i)
x,t

In this model, α represents an age-specific constant parameter. κ indicates the time-dependent
latent process that quantifies the transition rates over time. β incorporates the effect of age in
terms of κ. ε functions as a disturbance factor. It is interesting to note that Lee and Carter
proposed a random walk ARIMA model to actually compute κ.

Discrete event simulation in healthcare forecasting literature

In a discrete event simulation one tries to simulate a system which consists of discrete events. In
the end, a sequence of such events over time is constructed. Each step in time poses a change to
the overall system state. With discrete event simulation we assume that between two consecutive
events no event can occur, which essentially marks the difference between discrete and continuous
simulation.

In [27] a discrete event simulation model is defined consisting of six random processes. The random
processes define different elements within patient flow through ED’s. For example, patient arrival
is modeled as a Poisson process and decisions of patients to leave the ED as a bernoulli trial.
Based on patient flows estimated using historical data, the process is simulated for 2, 4, 6 and
8 hours in advance. The overall performance of the simulations shows that the use of a discrete
event is suitable for this type of prediction.

2.2 The field of integrated care pathways

Within this research we will base the model defined on chains of institutional visits, indicated by
the noun “institutional care pathways”. These chains share a great deal of conceptual overlap with
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so called “integrated care pathways” a topic subject to a vast amount of research.

In this section we give an overview of research that has been conducted on the topic of “integrated
care pathways”. Within chapter 3 we will build a specific definition of “institutional care path-
ways” building on top of the terminology as presented in this chapter and present similarities and
differences of the two concepts.

2.2.1 General overview

A vast amount of research has been conducted towards the concept of “integrated care pathways”.
In general, different definitions of the concept exist which do share some overlap. To provide
insight in the main concept we first present an overview of different terminologies used throughout
literature and conclude with a more generalized definition proposed to standardize the concept.
As the definition of integrated care pathways has developed over time we will present the overview
of the concept-development in a chronological fashion.

Clinical-practice based plans

In [28], Kitchiner and Bundred propose a medical action-based definition of integrated care path-
ways. The authors state about integrated care pathways:

“They use multidisciplinary guidelines to develop and implement clinical plans which represents
current, local best practice for specific conditions”

Kitchiner and Bundred, 1996 [28]

The authors suggest that by analysing clinical best-practices and incorporating these practices
into pathways generates benefits to both patients and healthcare professionals. The authors state
that the usage of integrated care pathways poses benefits for patient-centric care in the form of
reducing errors and improving clinical outcomes.

Completion and comprehensiveness of care delivery

In [29] Kodner and Spreeuwenberg identify some ambiguity in general concerning the exact defi-
nition of integrated care pathways. They identify the usage of it mostly related to “managed care”
in the US, “shared care” in the UK and transmural care in the Netherlands. By performing an
extended literature review and discussion the authors pose the following interpretation:

“Integration may be seen as a step in the process of health systems and health care delivery becoming
more complete and comprehensive”

Kodner and Spreeuwenberg, 2002 [29]

As one can see the authors abstract from the medical point of view used in [28] which places em-
phasis on clinical best practices. The authors account for any type of development that enhances
complete and comprehensive care. Note that in [28] these broader forces are acknowledged as well
though not explicitly focused upon. More formally, Kodner and Spreeuwenberg define:

“Integration is a coherent set of methods and models on the funding, administrative, organizational,
service delivery and clinical levels designed to create connectivity, alignment and collaboration
within and between the cure and care sectors”

Kodner and Spreewuenberg, 2002 [29]
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Influence on inter-professional collaboration

A more substantive analysis towards the effects of integrated care pathways is presented in [30].
The authors state that integrated care pathways have several synonyms which are used throughout
general practice and literature.

These are:

• Critical paths

• Care maps

• Collaborative plan of care

• Multidisciplinary action plans

• Care paths

• Anticipated recovery paths

The authors use the following definition for integrated care pathways:

“Care pathways have been widely promoted as a managed care paradigm. The aim of managed
care is to standardize the delivery of health care, the length of stay in the hospital and the clinical
management of the patient”

Atwal and Caldwell, 2002 [30]

Formalizing known patterns of care processes

In [31], Zander investigates eleven international trends within integrated care pathways. The
trends analysed are of a clinical fashion though the main aim of the trends discussed concerns
potential benefits for healthcare when using integrated care pathways. Zander positions inte-
grated care pathways under an umbrella of a larger set of tools which is known as “structured care
methodologies”. Zander therefore identifies integrated care pathways, like all other structured
management care methodologies as follows:

“known patterns of care processes, thus adding predictability and providing the transfer of knowl-
edge”.

Zander, 2002 [31]

Again we can identify terms related to standardization of processes that might potentially increase
the value of healthcare provision.

2.2.2 A standardized definition

In order to standardize the definition of integrated care pathways, Vanhaecht conducted a PhD
research in the related field [32]. The resulting definition is also adopted by the EPA and is defined
as follows:

A care pathway is a complex intervention for the mutual decision making and organisation of care
processes for a well-defined group of patients during a well-defined period. Defining characteristics
of care pathways include:

1. An explicit statement of the goals and key elements of care based on evidence, best practice,
and patients expectations and their characteristics;
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2. the facilitation of the communication among the team members and with patients and fami-
lies;

3. the coordination of the care process by coordinating the roles and sequencing the activities of
the multidisciplinary care team, patients and their relatives;

4. the documentation, monitoring, and evaluation of variances and outcomes; and

5. the identification of the appropriate resources. The aim of a care pathway is to enhance the
quality of care across the continuum by improving risk-adjusted patient outcomes, promoting
patient safety, increasing patient satisfaction, and optimizing the use of resources.

Vanhaeacht, 2007 [32]

We can clearly identify the definition embodying the several definitions proposed in the previous
section. Additionally it is defined in such way that it allows for multiple types of methodologies
that help to reach the main goal (i.e. by means of the use of “complex interventions”).

In [4] the concept of integrated care pathways in conceptualized in a graphical fashion depicted in
figure 2.4.

Figure 2.4: Care pathways as a concept, model, process and product as proposed by Panella and
Vanhaecht, 2010 [4].
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Chapter 3

Analysis

3.1 Preliminaries

Before we strive towards a full fledged model definition we define basic preliminary concepts which
form a basis for construction of a financial forecasting model based on institutional care pathways.
The mathematical notation used throughout the remainder of the report can be found in appendix
B, section B.2.

Insurance companies

We define the set of all possible insurance companies on the Dutch market as Z:

Z = {z| z is a Dutch insurance company}

We specifically define Z as being time-independent. Thus, Z describes any possible insurance
company z, in which z is either currently active, not active yet or not active any more.

The timed insurance company function is defined as πz:

πz : Z→ P(Z)

πz(t) , Zt

Thus Z denotes all possible healthcare insurance companies whereas Zt denotes all active health-
care insurance companies at time t.

We will introduce definitions for the healthcare market population, diseases, healthcare providers
and institutional pathways in the same fashion.

Healthcare market population

We define the set of all possible insurable persons on the Dutch market as P:

P = {p| p is an insurable person on the Dutch market}

The timed healthcare market population function is defined as πp:

πp : Z→ P(P)
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πp(t) , Pt

In addition to πp, we define a function π†p:

π†p : Z→ P(P)

π†p(t) , P†t

The set P†t represents all people which decease at time t and thus:

∀t(t ∈ Z : P†t ∩Pt = ∅)

p ∈ P†t =⇒ p /∈
∞⋃
i=t

Pi

Diseases

We define the set of all possible diseases as D:

D = {d| d is any disease}

The timed diseases function is defined as πd:

πd : Z→ P(D)

πd(t) , Dt

Healthcare providers

We define the set of all possible healthcare providers as H:

H = {h| h is any healhtcare provider}

The timed healthcare provider function is defined as πh:

πh : Z→ P(H)

πh(t) , Ht

Institutional pathways

We define the set of all possible institutional pathways as I

I = {pi| pi is any institutional pathway}

The timed institutional care pathway function is defined as πi

πi : Z→ P(I)

πi(t) = It

Within this context a pi ∈ It is any path that is likely to be traversed by a patient at time t.
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Insurance company membership-set

The previous definitions materialize different elements of the healthcare system in a mathematical
fashion. The elements are defined on a global scale. On construction of a financial forecast model
for a specific healthcare insurance company we are merely interested in “insurer-specific” elements.
Let us construct the relation between the insurer’s assets and the global population.

We define a function πm representing the timed insurer’s membership-set:

πm : Z× Z→ P(P)

πm(z, t) ,M(z,t)

Thus M(z,t) depicts the set of persons which are insured by insurance company z at time t. Note
that as a result of the mandatory “basic healthcare insurance”, in the Netherlands the following
constraint holds: ⋃

z

M(z,t) = Pt (3.1)

It is possible that one person p has two different healthcare insurance companies covering different
healthcare costs, therefore

⋂
zM(z,t) is therefore not necessarily empty.

Within the research, we abstract from insurance types. We are only interested in the fact whether
a person is insured or not.

3.2 Care demand

We have analysed the healthcare system as a whole and its impact on care demand, given the
viewpoint of a healthcare insurance company. We have presented the general findings and defini-
tions in this section.

If we decompose (future) care demand, this decomposition leads to knowledge of two basic pa-
rameters:

1. Knowledge of what (type of) persons will be a member M(z,t) for (future) values of t.

2. Knowledge of the subset of persons in the (future) M(z,t) groups that will incur a certain
disease.

3.2.1 Mutation of M(z,t)

When observing a group of natural persons over time, the group will be subject to “mutation”. As
a group of natural persons is likely to mutate over time this is likely to impact the occurrence of
several types diseases and thus care demand as a whole. In this studies, we will divide mutation
of the membership-set of a healthcare insurance company into two types: internal mutation and
external mutation.

Internal mutation of M(z,t)

We define internal mutation as a mutation force that is taking place caused by population internal
factors. If M(z,t) would be to stay the same in terms of its members it will still “change” over
time with respect to care demand. We identify the following mutation factors that are likely to
influence care demand over time:
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• Ageing
Ageing is of specific interest as we already pointed out that age acts as a determining factor
in terms of probability of illness. The latter implies that age might be a determining factor
in terms of care demand. Note that the impact caused by ageing is likely to be more visible
if the forecasting window is rather large, i.e. in the order of years.

• Socio-economic status
Socio-economic status is defined as a measure to express an individual’s economic and social
position relative to others. To express status we can use several indicators, for example
financial or educational status. Roughly two different mechanisms are identified [33]:

1. Selection mechanism
People residing in poor health are unable to grow in terms of their socioeconomic status.

2. Causa selection mechanism
People residing with low socioeconomic status will have poor health, (indirectly) caused
by their socioeconomic status.

Particularly the second mechanism, i.e. the causa selection mechanism is of influence and
potential interest with respect to internal mutation. A mutation of socio-economic status
might potentially influence a change in the demand for care.

External mutation of M(z,t)

Opposed to internal mutation we define external mutation as a mutation force that is taking place
caused by external factors. Typically these factors concern immigration- and emigration-typed
interactions with respect to M(z,t) over time. Before we present definitions concerning external
mutation we will first introduce some basic regulatory elements of the Dutch healthcare system
that influence external mutation.

Basic insurance Every person living in the Netherlands is required to have a “basic insurance”.
The minimal healthcare coverage of such insurance is fixed and determined by the Dutch govern-
ment. Within the Netherlands, a healthcare insurance company is required to accept any person
applying for a basic insurance.

Supplementary insurance Apart from basic insurance, healthcare providers can offer supple-
mentary insurance constructs. A supplementary insurance logically supports costs which are not
covered by the basic insurance. A healthcare insurance company is allowed to reject persons apply-
ing for a supplementary insurance. A person may have a different healthcare insurance company
providing his/her supplementary insurance with respect to his/her basic insurance.

Switching We can find the relation between the insurance types in the Netherlands and external
population mutation in the “switching point” of clients. As the healthcare market is a (regulated)
market environment, people are allowed to switch between different healthcare insurance compa-
nies. In general the following rules hold:

• Basic healthcare insurance & switching
In terms of basic healthcare insurance there is one switching point per year, being January
1st. There are however some exceptions possible in which mutation of M(z,t) can occur at
any point in time throughout the year:

– Birth

– Adulthood
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– Starting/quitting a (new) job

– Immigration

– End of military employment

– Divorce

– Intermediate permutation of healthcare insurance policy conditions

• Supplementary healthcare insurance & switching
For supplementary switching there is no fixed point in time defined.

The relevance of the insurance types with respect to the research is two-fold. On the one hand
the type of insurance largely determines the switching point in time of customers and thus the
volumes of external mutation. The types however also influence pathway specific costs. Care
provided by a physiotherapist is typically not included in a basic insurance, but might be part of
several institutional care pathways. As mentioned, a person is not required to have a basic and
supplementary insurance at the same insurance company. Therefore it is possible for a healthcare
insurance company to only partly fund an institutional care pathway.

As stated in the previous section we abstract from the concept of insurance types within this
research. We identify a person either to be a member or not. We did however present some
terminology concerning the topic as it has some interesting impacts with respect to care demand
and specifically membership mutation.

Membership inflow The set of people entering the insurance company’s membership-set at
a certain point in time is defined as the healthcare insurance membership-set inflow. We define
membership inflow as:

π←m : (Z× Z)→ P(P)

π←m (z, t) ,M←(z,t)

M←(z,t) represents the set of natural persons that become a member of healthcare insurance company
z at time t. Additionally we define two constraints on the inflow, relating it to M(z,t):

∀z,t(z ∈ Z, t ∈ Z : M←(z,t) ⊆M(z,t)), (3.2a)

∀z,t(z ∈ Z, t ∈ Z+ : M←(z,t) ∩M(z,t−1) = ∅) (3.2b)

Membership outflow The set of people leaving the insurance company’s membership-set at a
certain point in time is defined as the healthcare insurance membership-set outflow.
We define membership outflow as:

π→m : (Z× Z)→ P(P)

π→m (z, t) ,M→(z,t)

Additionally we define two constraint on the outflow, relating it to M(z,t):

∀z,t(z ∈ Z, t ∈ Z : M→(z,t) ∩M(z,t) = ∅), (3.3a)

∀z,t(z ∈ Z, t ∈ Z+ : M→(z,t) ⊆M(z,t−1)) (3.3b)
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3.2.2 Diseases

Prevalence

The next step in the care demand model is to define the volume of disease occurrence in terms of
M(z,t). We define the πdz function, relating a healthcare insurance company’s membership set to
a certain disease:

πdz : (Z×D× Z)→ P(P)

πdz (z, d, t) , D(z,d,t)

D(z,d,t) represents the demand for care of a certain insurance company z ∈ Z given a certain point
t in time and a certain disease d. Therefore the following constraint should hold:

∀z,d,t(z ∈ Z, d ∈ D, t ∈ Z : D(z,d,t) ⊆M(z,t)) (3.4)

D(z,d,t) expresses a group of people being ill at a specific point in time. Prevalence is defined as
“the number of people per unit measure (i.e. thousand people / ten thousand ...) being ill at a
specific point in time”. We will therefore refer to D(z,d,t) as the absolute prevalence set.

Incidence

We define a function π←dz representing the incidence at a certain point in time:

π←dz : (Z×D× Z)→ P(P)

π←dz , D←(z,d,t)

We pose the following constraints on the incidence set:

∀z,d,t(z ∈ Z, d ∈ D, t ∈ Z : D←(z,d,t) ⊆ D(z,d,t)), (3.5a)

∀z,d,t(z ∈ Z, d ∈ D, t ∈ Z+ : D←(z,d,t) ∩D(z,d,t−1) = ∅) (3.5b)

There are two possible causes for a person p to be in D←(z,d,t):

1. The person was already member of healthcare insurance company z and got ill, i.e. p ∈
M(z,t−1)

2. The person was not yet a member of healthcare insurance company z but was already ill i.e.
p ∈M←(z,t).

Disease resignation set

We define a function π→dz representing the number of people leaving D(z,d,t) at a certain point in
time:

π→dz : (Z×D× Z)→ P(P)

π→dz , D→(z,d,t)

We pose the following constraints on the recovery set:

∀z,d,t(z ∈ Z, d ∈ D, t ∈ Z : D→(z,d,t) ∩D(z,d,t) = ∅), (3.6a)

∀z,d,t(z ∈ Z, d ∈ D, t ∈ Z+ : D→(z,d,t) ⊆ D(z,d,t−1)) (3.6b)

There are three possible causes for a person p to be in D→(z,d,t).
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1. The person recovered from disease d, i.e. p ∈M(z,t)

2. The person deceased (possibly from disease d), i.e. p ∈ P†t

3. The person left the healthcare insurance company whilst being inD(z,d,t), i.e. p ∈M→(z,t)∧p ∈
Pt

3.3 Institutional care pathways

We have defined the concept of institutional care pathways in both a natural language and a more
mathematical-typed fashion. We present both definitions here as well as a discussion concerning
the level of aggregation when defining institutional care pathways and the relation to integrated
care pathways.

3.3.1 A natural language definition

For convenience we present a graphical overview of the idea of institutional care pathways in figure
3.3.1.

Definition

“An institutional care pathway is the sequence of healthcare providers a person p visits for treat-
ment of a certain disease d. The first visit will be based upon incidence of d (p ∈ D←(z,d,t)). The
last element of the sequence will be based upon leaving the absolute prevalence set (p ∈ D→(z,d,t′)).
A visit in this context is a declared treatment submitted by a healthcare provider to the healthcare
company.”
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3.3.2 Mathematical definition

Institutional care pathways

We define an institutional pathway as an sequence σicp over H:

σicp : Z→ H

Thus if we would - in natural language - state that person p first visited general practitioner a,
then got a treatment at hospital b and finally for a recovery analysis went to physiotherapist c the
institutional pathway in mathematical form would look like:

σicp1 = a, σicp2 = b, σicp3 = c

Care provider visits

We define a person’s visits as a function υh:

υh : P×D× Z→ P(H× Z)

υh(p, d, z) , V(p,d,z)

As an example for a certain person p′, insured at healthcare insurance company z′, which has
some declarations for disease d′ we have the following visit function co-domain:

V(p′,d′,z′) = {(h1, t1), (h2, t2), (h3, t3)}

In this case, we know that for person p′ concerning his/her disease d′, there have been three
declarations at z′, which in this case are of healthcare providers h1, h2 and h3 at times t1, t2
and t3 respectively (these are treatment-times). The healthcare providers should be active at the
treatment-time declared, in other words:

(hi, ti) ∈ V(p,d,z) =⇒ hi ∈ Hti

We at least assume that there is a partial order on the Z component of the co-domain.

Note that using υh does not allow us to make a distinction between being inflicted by a certain
disease d multiple times with times of recovery in between. As this is an exploratory study we
assume that a person will only get inflicted once with a certain disease.

Using care provider visits as a basis for pathway reconstruction

The function definition of an institutional care pathway is not yet defined for persons. We assumed
the co-domain of υh to be partially ordered on its Z component. It is straightforward to build a
corresponding institutional care pathway given a patient’s visit-set. Assume again for person p′
with disease d′ and healthcare insurance company z′ the following visit set:

V(p′,d′,z′) = {(h1, t1), (h2, t2), (h3, t3)}

Additionally we assume the following partial order:

t1 ≤ t2 ≤ t3

We can now deduce person p′’s specific institutional care path for disease d′ at healthcare insurance
company z′:

σicp1 = h1, σ
icp
2 = h2, σ

icp
3 = h3
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Mapping pathways to membership

We define a function πiz depicting the set of people insured at company z, suffering from disease
d and as a consequence traversing pathway pi at time t as:

πiz : (Z×D× I× Z)→ P(P)

πiz (z, d, pi, t) , I(z,d,pi,t)

We pose the following constraint on I(z,d,pi,t):

∀z,d,pi,t(z ∈ Z, d ∈ D, pi ∈ I, t ∈ Z : Iz,d,pi,t ⊆ D(z,d,t))⋂
pi∈I

I(z,d,pi,t) = ∅

3.3.3 Levels of aggregation

There is one more conceptual element that needs motivation with respect to the definition of
institutional care pathways, being the level of aggregation. We identify two types:

• Class-based institutional care pathways
In a class-based institutional care pathway setting, pathways are actually defined in terms
of an institution’s class. We do not differ between the actual institution that has performed
the medical action. In case of figure 3.3.1 there would be two pathways identifiable:
path 1: σicp1 = General Practitioner, σicp2 = Hospital, σicp3 = Psychotherapist
path 2: σicp1 = Hospital, σicp2 = Psychotherapist

• Institution-based institutional care pathways
Institution-based institutional care pathways are of a lower level of aggregation compared to
the class-based typed pathways. We do differ between the actual institution that has per-
formed the medical action. In case of figure 3.3.1 there would be three pathways identifiable:
path1: σicp1 = dr. Jones, σicp2 = VUMC, σicp3 = dr. Davis
path2: σicp1 = dr. Brown, σicp2 = St. Lucas, σicp3 = dr. Millar
path 3: σicp1 = BovenIJ, σicp2 = dr. Taylor

What aggregation level and corresponding type of pathway to use greatly depends on data avail-
ability. Note that a hybrid form might be an option as well. If data is sparse, class-based
institutional care pathways might be used to “mine” institutional-based pathways out of the given
data.

3.3.4 Identifying the difference between “integrated”- and “institutional
care pathways”

In this section we will briefly focus on the major difference in terms of terminology concerning
“integrated” and “institutional” pathways. We do so by investigating the overall aim of integrated
care pathways.

As one should have noted, the definitions of integrated care pathways in literature tend to vary.
The common divisor of all these definitions is to provide means which should lead to optimal care
performance. The actual dimension of the optimality strive is not uniformly defined as there is
strictly no need for this. Whether inter-organizational care process optimization or quality of care

25 Defining a financial forecasting model for healthcare insurance companies / Version 1.0



Technische Universiteit Eindhoven University of Technology

is the dimension of optimization, both dimensions contribute to an overall rise in quality of care.
The definitions differ however on terms of the actual means used to reach the potential optimiza-
tion though they are all based on a form of pathway based methodology.

The difference between conventional integrated care pathways and the institutional care pathways
as we will use in this research can be found in their general aim. The main use of an institutional
pathways is merely of an analytical form. It is ought to act as a basis for performance specification.
In this research financial performance is assessed though any performance dimension can be used
in general.

In integrated care pathway methodology the focus is largely on the integration aspect, which in-
volves cross organizational/care-department cooperation. The given institutional care pathway
definitions do not involve any form of cooperation. Whenever two organizations work together
within an optimal performing institutional care pathway this might be a strong motivational pur-
pose for other organizations to do so as well.

Institutional care pathways are purely a specification of how patients traversed or will traverse
through the healthcare system. They can be used as a basis for care process optimization which
is on itself more aligned with integrated care pathways.
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Chapter 4

Design

We have assessed the applicability of probabilistic models to act as a model for membership-set
mutation as presented in section 4.1. We have specifically assessed the applicability of Markov
chains (section 4.2) as a representation for both membership-set mutation and other care-demand
associated personal attributes (sections 4.3 and 4.4).

The collection of Markov chains tend to share some dependencies, which lead to the assessment of
collaborative Markov chains as a financial forecasting prediction model for healthcare insurance
companies. The topic of collaborative Markov chains is presented in section 4.5. We concluded
the design phase with an assessment of the incorporation of age into the proposed system of
collaborative Markov chains, which we have documented in section 4.6.

4.1 Healthcare insurance membership as a probabilistic model

4.1.1 Customer base classification

A first step is to identify what the membership-set means to an insurance company. In essence
we can regard M(z,t) as being an healthcare insurance company’s customer-base. In [34], Fader
and Hardie assess different types of probability models for customer-base analysis. Though this
field of research mainly concerns prediction of churn-rates and customer lifetime values, the paper
provides some clear and useful terminology on customer-base classification, as presented in figure
4.1.

Figure 4.1: The customer-base classification quadrant as proposed by Fader and Hardie.
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As we can see in the quadrant, insurance-typed customer-bases are of a “Discrete Contractual”
fashion. This is in line with the annual switching-point defined for individuals in terms of health-
care insurance. As we have noted there are several cases in which customer-base transactions are
of a continuous fashion within the healthcare insurance market. Therefore Dutch healthcare in-
surance companies form a special type of company as they belong to the discrete as the continuous
relationship group.

As indicated in [34] probabilistic models are often used in the field of customer-base analysis within
marketing. Fader and Hardy pose the following motivational description:

“A probability modeler approaches the modeling problem with the mindset that observed behavior
is the outcome of an underlying stochastic process. That is, we only have a “foggy window” as
we attempt to see our customers’ true tendencies, and therefore the past is not a perfect mirror
for the future. For instance, if a customer made two purchases last year, is he necessarily a “two
per year” buyer, or is there some chance that he might make three or four or perhaps even zero
purchases next year? With this kind of uncertainty in mind, we wish to focus more on the latent
process that drives these observable numbers, rather than the observables themselves.”

Fader and Hardy, 2009 [34]

In addition to the motivation provided by Fader and Hardy, probabilistic models often entail
mathematical benefits. Often the result of a probabilistic model or stochastic process is based
on some probability distribution. The existence of underlying probability distributions introduces
several statistical properties and analytical possibilities with respect to the results produced by
the model.

4.1.2 The predictive components of M(z,t) for future values of t

In terms of care demand, a first goal is to determineM(z,t) as accurate as possible for future values
of t. Assume we have knowledge of the actual membership-set up to a certain point in time tmax
and we want to estimate M̂(z,te) for some te > tmax (as te is a future value we use θ̂-notation). If
we are able to estimate M̂→(z,t′) and M̂←(z,t′) for all tmax < t′ ≤ te, we ware able to express M̂(z,te)

as:

M̂(z,te) = (M(z,tmax) ∪
te⋃

i=t+1

M̂←(z,i))\
te⋃

j=t+1

M̂→(z,j) (4.1)

What equation 4.1 actually expresses is the fact that future membership sets are completely ex-
pressible in terms of its mutational components, being the in- and outflow of members. If we
actually are able to accurately estimate the mutational components of the membership base we
can implicitly compute the future membership base.

In June 2012, an analysis of the healthcare market was reported by the NZA [35]. It contains var-
ious interesting topics of which one is the activity of people in terms of changing their healthcare
insurance company. The corresponding data is shown in figure 4.2.

What we can learn from figure 4.2 is the growing presence of “switchers” on the market. Both
individual as collective-typed switches are present and have been rising up to the year 2012. This
fact does not only show that mutation of membership-bases is at least influenced by “switchers”
but it is also a strongly growing component. Therefore, in designing the model we will explicitly
take “switching” into account.
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Figure 4.2: An overview of the relative “insurance changing behaviour” within the healthcare
system

4.1.3 Membership dynamics probability rules

As we have seen in section 4.1.1 the membership-set falls into a customer-base transaction typed
customer relationship. It specifically covers the contractual setting both on a discrete and a
continuous transaction-rate. In [34], Fader and Hardy note that Markov chains have been used
in customer-base probabilistic modelling, however this has only been done in the non-contractual
case. If we now look to a person p’s membership to a certain healthcare insurance company z, we
can express the following probabilities:

1. The probability that p “still” is a member of z at time t+ 1:
P (p ∈M(z,t+1)|p ∈M(z,t))

2. The probability that p is “still” not a member of z at time t+ 1:
P (p /∈M(z,t+1)|p /∈M(z,t))

3. The probability that p leaves z at time t+ 1:
P (p /∈M(z,t+1)|p ∈M(z,t)) (by definition equivalent to P (p ∈M→(z,t+1)))

4. The probability that p enters z at time t+ 1:
P (p ∈M(z,t+1)|p /∈M(z,t)) (by definition equivalent to P (p ∈M←(z,t+1)))

In the given enumeration, the first and the the third probability share a special relation as do the
second and the fourth. If a person is “still” a member at time t+ 1, he/she was also a member at
time t. If a person leaves at time t+ 1, he/she was by definition a member at time t. As a result,
in case one and three at time t the person is in the same state. At time t+ 1 they enter a different
state. Logically the same rationale holds for two and four, though the other way around. In terms
of probability we can express these relations as follows:

P (p ∈M(z,t+1)|p ∈M(z,t)) + P (p /∈M(z,t+1)|p ∈M(z,t)) = 1 (4.2)

P (p /∈M(z,t+1)|p /∈M(z,t)) + P (p ∈M(z,t+1)|p /∈M(z,t)) = 1 (4.3)

4.2 Markov chains

It is interesting to note that if we consider the problem at hand as a probabilistic model, we come
up with statements of the form:
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“The probability of person p being in state s′ at time t+1 given that person p is at state s at time t”

This kind of formulation is very similar to the definition of Markov models.

4.2.1 Markov processes

We let S denote the state space of a system. Let (Ω, F, P ) be the probability space. We define a
random variable X which represents the system’s state at the nth transition:

X : Ω→ S

A timed process described by X is a Markov process if the following proposition holds:

P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, ..., X1 = x1) = P (Xt+1 = xt+1|Xt = xt) (4.4)

Equation 4.4 states that the probability of entering the next state only depends on the current
state. If S is a discrete state space, the Makrov process is also called a Markov chain.

A Markov chain basically has two probability types, the initial probabilities pi and transition
probabilities p. We define the initial probability as a function:

pi : S → R[0,1]

Note that the following equality should always hold:

Σs∈S p
i(s) = 1

The transition probability of state i to state j at time t is defined as a function p:

p : S × S × Z→ R[0,1]

p(i, j, t) , pi,j(t) , P (Xt+1 = j|Xt = i)

Note that equation 4.5 should always hold:

0 ≤ pi,j(t) ≤ 1
∑
i

pi,j(t) = 1, ∀i (4.5)

In a “homogeneous” setting, the chain’s transition probabilities are time-independent and one can
omit the t argument of the probability function.

4.2.2 Initial state vectors and transition matrices

We can represent the given initial state- and transition probability values as an initial state vector
and transition matrix respectively. Given S = {s1, s2, ..., sN}, we can define the initial state vector
Vi:

Vi =


pi(s1)
pi(s2)

...
pi(sN )
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For transition the transition matrix we define Mt, in the homogeneous case:

Mt =


ps1,s1 ps1,s2 . . . ps1,sN
ps2,s1 ps2,s2 . . . ps2,sN

...
...

...
...

psN ,s1 psN ,s2 . . . psN ,sN


In the non-homogeneous form, we need a matrix for each point in time as the probabilities are
time dependent:

Mt(t) =


ps1,s1(t) ps1,s2(t) . . . ps1,sN (t)
ps2,s1(t) ps2,s2(t) . . . ps2,sN (t)

...
...

...
...

psN ,s1(t) psN ,s2(t) . . . psN ,sN (t)


Transition matrices are particularly useful as in fact the probability of reaching a state sj , given a
state si in n steps can be easily found by usingMn

t (si, sj). This type of calculations are particularly
useful for determining a steady-state distribution of the given system.

4.2.3 Example; Flipping a coin

The most basic example using Markov chains is the stochastic process of flipping a coin multiple
times. The corresponding state-space consists of two states, heads and tails, represented by H
and T :

S = {H,T}

Vi =

(
1
2
1
2

)
Mt =

(
1
2

1
2

1
2

1
2

)
We have depicted a graphical representation of the Markov chain in figure 4.3.

Figure 4.3: Graphical representation of a Markov model for flipping a coin

4.2.4 Semi-Markov chains

We will now consider discrete time semi-Markov chains building on the previous definitions pre-
sented concerning Markov chains. Additionally to X, we define a random variable T representing
the time of entering the state represented by Xn:

T : Ω→ Z

We define the inter-arrival time τn as:

τn = Tn − Tn−1
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A sequence described by (Xn, Tn) is called a Markov-renewal process if equation 4.6 holds:

P (τt+1 ≤ t,Xn+1 = xn+1|Xt = nt, Xn−1 = xn−1, ..., X1 = x1;Tn = tn, Tt−1 = tn−1, ..., T1 = t1) =

P (τt+1 ≤ t,Xn+1 = xn+1|Xn = xn;Tn = tn)

(4.6)

Equation 4.6 states that the probability that the system will enter state xn+1 within t units of
time. A semi-Markov model is defined by a new stochastic process (random variable) Y :

Yt := Xn for t ∈ [Tn, Tn+1)

We can immediately identify the various new possibilities provided by the introduction of Yt. In
general if we define $n as the corresponding holding time distribution for Yt we can express the
relation with the basic Markov process (or chain) as follows:

P (τt+1 ≤ t,Xn+1 = xn+1|Xt = nt, Xn−1 = xn−1, ..., X1 = x1;Tn = tn, Tt−1 = tn−1, ..., T1 = t1) =

P (τt+1 ≤ t,Xn+1 = xn+1|Xn = xn;Tn = tn) =

P (Xn+1 = xn+1|Xn = xn)$n(t)

(4.7)

If we let each $n to be exponentially distributed this equation becomes:

P (Xn+1 = xn+1|Xn = xn)(1− e−λxn t)

The latter describes a continuous Markov process as the holding time distribution is a continuous
probability function.

4.3 Modelling healthcare insurance membership as a Markov
chain

One should be able to identify the similarities between the proposed membership dynamics prob-
ability rules in subsection 4.1.3 and the basic property in Markov theory as presented in section
4.2. In this section have defined three Markov models that can be used to represent membership
dynamics.

4.3.1 Two state model

The first model only represents membership and non-membership of a certain person p, in which
we define the state-space SM1

as follows:

SM1
= {Mz,¬Mz}

We can clearly identify the relationship between the Markov model and the membership dynamics
probability rules, i.e.:

P (Xt+1 = Mz|Xt = Mz) ≡ P (p ∈M(z,t+1)|p ∈M(z,t))

P (Xt+1 = ¬Mz|Xt = ¬Mz) ≡ P (p /∈M(z,t+1)|p /∈M(z,t))

P (Xt+1 = ¬Mz|Xt = Mz) ≡ P (p /∈M(z,t+1)|p ∈M(z,t))

P (Xt+1 = Mz|Xt = ¬Mz) ≡ P (p ∈M(z,t+1)|p /∈M(z,t))
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Figure 4.4: A basic two state Markov chain model for a person p’s healthcare insurance membership
behaviour

4.3.2 Three state model

If we look at a person within the healthcare system, we notice that in the two-state model we
allow people who are part of M→(z,t) because of death to re-enter the membership set. If we want
to model decease as well, we can extend the two state model with an additional “sink” state (†)
depicting that a person deceased.

SM2
= {Mz,¬Mz, †}

The corresponding graphical representation of the Markov chain is presented in figure 4.5.

Figure 4.5: A basic three state Markov chain model for a person p’s healthcare insurance mem-
bership behaviour

In this case we have three additional transitions:

P (Xt+1 = †|Xt = Mz) ≡ P (p /∈M(z,t+1)|p ∈M(z,t))

P (Xt+1 = †|Xt = ¬Mz) ≡ P (p /∈M(z,t+1)|p /∈M(z,t))

P (Xt+1 = †|Xt = ¬M†z ) ≡ P (p /∈M(z,t+1)|p /∈M(z,t))

Note that if one of the three newly added transitions occurs, the random variable will no longer
be able to be either of value ¬Mz or Mz. The transition ¬Mz → † is indicated as a dashed arrow
in the graphical representation. We have used a dashed-line visualization here to indicate that the
corresponding statistical parameter cannot be estimated by solely using a healthcare insurance
company’s data-base. In order to estimate this type of mutation, other sources should be used.
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Four state model

As a third and final possible model we introduce a four-state based model which also distinguishes
between regular or irregular timed membership mutations. We define the state space S as follows:

SM3
= {Mz,¬MR

z ,¬M I
z , †}

Figure 4.6: A basic four state Markov chain model for a person p’s healthcare insurance member-
ship behaviour

The graphical representation of the four-state model is presented in figure 4.6. Again we have
indicated interactions within the model that we can not estimate by solely using a healthcare
insurance company’s data. When using a distinction between regular and irregular mutation, one
does not necessarily need to implement time-dependent probabilities. The potential difference
in volumes with respect to regular and irregular mutation can in this case be modelled using
semi-Markov processes.

4.3.3 Markov chains as a representation for membership dynamics in
conclusion

The “memoryless” property

Let us recall the basic assumption of a Markov process:

P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, ..., X1 = x1) = P (Xt+1 = xt+1|Xt = xt)

If we translate this property into natural language it reads as follows:
“The probability of reaching the next state xt+1 is only depending on the current state xt. Thus,
the path leading to xt does not influence the probability of reaching xt+1.”

One can question whether this assumption does hold with regard to leaving or entering a health-
care insurance company, i.e.:
“Is a person likely to re-enter a healthcare insurance company when he/she has just left?”
“Is a person likely to leave a healthcare insurance company when he/she just became a member?”

For now we assume that the history of a patient does not influence its current decision. We do
note that in reality this assumption might likely be incorrect. The problem with the memoryless
property can however be solved by using nth-order Markov chains. In a nth-order Markov chain
the memory property becomes (for t > n):

P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, ..., X1 = x1) =
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P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, ..., Xt−n = xt−n+1)

Using the terminology presented for nth-order Markov chains we can additionally deduct that
regular chains are of 1st order.

What model to choose from?

So far we have introduced three types of Markov chains that represent a client’s behaviour through
the system, given the viewpoint of a healthcare insurance company. Each model adds a layer of
complexity and/or removes a limitation. We will briefly discuss semantic aspects of the models
presented which might have an influence with respect to choosing a specific model design.

• Two state model (figure 4.4)
The two state model does not consist of a sink-state that can act as a representation for a
person that will never enter the membership set in the future (most likely because of decease
cases). If one would like to implement this behaviour in the two state model, one should apply
an additional administration of the fact whether or not the person is deceased. Additionally
the model does not distinguish between any switching point in time. There are several ways
to incorporate this behaviour. Like the decease case we could add administration of what
type a person’s switching behaviour is, we could again update the probabilities accordingly.
We could also neglect the type of a person though still update probabilities of switching
at the turn of a year, compared to in-year time steps. Additionally we could use constant
probabilities though implicitly tune the parameters to incorporate regular and irregular
switching as well.

• Three state model (figure 4.5)
The three state model does provide a representation for decease cases by means of a sink-
state. Though this resolves a form of limitation it adds a form of complexity. As noted
one has to estimate the probability of the transition ¬Mz → †, which can not be performed
solely using a healthcare insurance company’s data. The three state model, like the two
state model does not distinguish between the regular and irregular switching points.

• Four state model (figure 4.6)
The four state model adds a distinction with respect to regular and irregular switching. In
the case of the four state model, one can apply semi-Markov theory to model the desired
behaviour. Note that the model though eliminating some more limitations, it actually in-
troduces additional complexity. When applying the model one has to be able to distinguish
between regular and irregular switchers. It is very questionable whether this is actually
possible. In this case decease rates for both ¬MR

z → † and ¬M I
z → † have to be determined.

Adding additional healthcare insurance companies

A final remark concerns the states that represent “not being insured at company z”, being ¬Mz,
¬MR

z and ¬M I
z . We could choose to extend the models with states that represent membership

to a different firm. If we know that apart from our own company z, there are n other insurance
companies, Z1, Z2, ..., Zn, the state spaces of the models would become:

SM1
= {Mz,MZ1

,MZ2
, ...,MZn}

SM2
= {Mz,MZ1

,MZ2
, ....,MZn , †}

SM3
= {Mz,M

R
Z1
,MR

Z2
, ...,MR

Z2
,M I

Z1
,M I

Z2
, ...,M I

Z2
, †}
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4.4 Diseases and institutional care pathways as Markov chains

So far we have looked at modelling future membership of a person to a healthcare insurance as a
probabilistic model. Specifically we have chosen to use Markov models to act as our probabilistic
model of choice. A Markov model representing personal membership behaviour can produce a
statistic concerning values of M̂(z,t). In terms of care demand, this is only half the goal as we
still need to produce a statistic that indicates the share of people getting ill. In this section we
will inspect whether we can express probability rules for “having a disease” and “traversing an
institutional pathway”

4.4.1 Disease

Probability rules

Like membership, for being ill we have defined some terminology in the analysis part which we
will use as a basis to construct a probabilistic model. Let us start by investigating some possible
interactions of a person with D(z,d,t):

1. Probability of “still” not being inflicted with disease d at time t+ 1:
P (p /∈ D(z,d,t+1)|p /∈ D(z,d,t))

2. Probability of incidence given disease d at time t+ 1:
P (p ∈ D(z,d,t+1)|p /∈ D(z,d,t)) (by definition equivalent to P (p ∈ D←(z,d,t+1)))

3. Probability of prevalence given disease d at time t+ 1:
P (p ∈ D(z,d,t+1)|p ∈ D(z,d,t))

4. Probability of resignation from disease d at time t+ 1:
P (p /∈ D(z,d,t+1)|p ∈ D(z,d,t)) (by definition equivalent to P (p ∈ D→(z,d,t+1)))

Now let us define a Markov chain, that expresses whether a person is subject to a given disease d:

Sd = {Dd,¬Dd, †}

Within Sd, Dd indicates a person suffering from disease d, ¬Dd means a person is not suffering
from disease d and † again acts as the model’s sink. A graphical representation is presented in
figure 4.7.

Figure 4.7: Graphical representation of parametrized equivalent of the disease Markov chain

By definition the given probability rules entail some hidden complexity that is not expressible
by solely using the Markov model defined. This is mainly due to the relations defined between
M(z,t) and D(z,d,t). Strictly speaking the first probability rule can also indicate that a person was
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never a member of the firm at time t and t + 1. To be able to infer the relations between the
Markov model proposed and the probability rules we additionally need to assume that there is an
additional random variable Yt that indicates a person’s membership with respect to a healthcare
insurance company z. Yt = Mz indicates that p is a member of z at time t, Yt = ¬Mz indicates
that a person is not a member at time t. Additionally assume that Xt = ∗ is used if any s ∈ Sd\{†}
is deemed appropriate.

P (Xt+1 = ∗|Xt = ∗, Yt = ¬Mz, Yt+1 = ¬Mz) ≡ P (p /∈ D(z,d,t+1)|p /∈ D(z,d,t))
1

P (Xt+1 = ¬Dd|Xt = ∗, Yt = ¬Mz, Yt+1 = Mz) ≡ P (p /∈ D(z,d,t+1)|p /∈ D(z,d,t))

P (Xt+1 = ¬Dd|Xt = ¬Dd, Yt = Mz, Yt+1 = Mz) ≡ P (p /∈ D(z,d,t+1)|p /∈ D(z,d,t))

P (Xt+1 = Dd|Xt = ∗, Yt = ¬Mz, Yt+1 = Mz) ≡ P (p ∈ D(z,d,t+1)|p /∈ D(z,d,t))

P (Xt+1 = Dd|Xt = ¬Dd, Yt = Mz, Yt+1 = Mz) ≡ P (p ∈ D(z,d,t+1)|p /∈ D(z,d,t))

P (Xt+1 = Dd|Xt = Dd, Yt = Mz, Yt+1 = Mz) ≡ P (p ∈ D(z,d,t+1)|p ∈ D(z,d,t))

P (Xt+1 = ¬Dd|Xt = Dd, Yt = Mz, Yt+1 = Mz) ≡ P (p /∈ Dz,d,t+1|p ∈ D(z,d,t))

P (Xt+1 = Dd|Xt = Dd, Yt = Mz, Yt+1 = ¬Mz) ≡ P (p /∈ Dz,d,t+1|p ∈ D(z,d,t))

P (Xt+1 = †|Xt = Dd, Yt = Mz, Yt+1 = ¬Mz) ≡ P (p /∈ Dz,d,t+1|p ∈ D(z,d,t))

Within the model defined there is also a transition from being healthy to the sink, i.e.:

P (Xt+1 = †|Xt = ¬Dd)

The given interaction states that a person can also decease without actually being ill (for disease
d). This is a valid situation though not expressible in terms of D(z,d,t) interaction. Note that the
given Markov chain represents one specific disease d. If we would assume there are T types of
disease d1, d2,..., dT we could reformulate the state space to:

Sd = {¬Dd, Dd1 , Dd2 , ..., DdT , †}

4.4.2 Institutional care pathways

As the focus of this research is not concerning pathway recognition we assume that for a certain
disease a set of pathways exists. Modelling institutional pathway traversal comes in two flavours
equivalent to the levels of aggregation presented in chapter 3, pathway based and institution based.

Pathway-based traversal

In pathway-based traversal, we assume a person will traverse a “point-to-point” pathway in which
the elements are fixed.

Probability rules In the pathway-based traversal case we can define the following probability
rules, again given that a person is member of the healthcare insurance company, p ∈M(z,t) for t,
t+ 1, t+ 2, ...:

1. Probability of person p “still” not traversing any path at time t+ 1:
P (p /∈ IP(z,d,t+1)|p /∈ I

P
(z,d,t))

2. Probability of person p “starting” to traverse path pi ∈ It+1 at time t+ 1:
P (p ∈ I(z,d,pi,t+1)|p /∈ IP(z,d,t))

1In this case Xt = † and Xt+1 = † is deemded acceptible as well
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3. Probability of person p “keeps” traversing path pi ∈ It ∪ It+1 at time t+ 1:
P (p ∈ I(pi,t+1)|p ∈ I(z,d,pi,t))

4. Probability of person p to “stop” traversing a path pi ∈ It at time t+ 1:
P (p /∈ IPz,d,t+1|p ∈ I(z,d,pi,t))

In pathway-based traversal, each element in the Markov chain state-space is a pathway itself:

Spp = {¬p, p1, p2, ..., pn}

A graphical representation is presented in figure 4.8.

Figure 4.8: Graphical representation of the pathway-based pathway Markov chain

We can infer relationships between the probability rules and the Markov chain as defined, again
using an additional random variable Yt denoting membership. Additionally we use random variable
Zt to denote the fact that a person is ill i.e. Zt = Dd and Zt = ¬Dd. Note that in this case
there is again a vast amount of hidden complexity caused by the definitions of I(z,d,pi,t), D(z,d,t)

and M(z,t). In this case we only show three equivalence relations (of the many) to again show the
general idea:

P (Xt+1 = ¬p|Xt = ¬p, Yt = Mz, Yt+1 = Mz) ≡ P (p /∈ IP(z,d,t+1)|p /∈ I
P
(z,d,t))

P (Xt+1 = pi|Xt = ¬p, Yt = Mz, Yt+1 = Mz, Zt+1 = Dd) ≡ P (p ∈ I(z,d,pi,t+1)|p /∈ IP(z,d,t))

P (Xt+1 = pi|Xt = pi, Yt = Mz, Yt+1 = Mz, Zt = Dd, Zt+1 = Dd) ≡ P (p ∈ I(pi,t+1)|p ∈ I(z,d,pi,t))

Institution-based traversal

In institution-based traversal each healthcare provider acts as a state in the state-space. In this
case we define the state-space of the corresponding Markov chain as Spi

Spi = {¬p, h1, h2, ..., hn}

Because this strategy has a less fixed structure compared to the models presented so far, we present
it by means of an example.
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Consider the following example in which we have found the following sequences of institutions,
given some disease d:

p1 =< h1, h2 >

p2 =< h1, h2, h4 >

p3 =< h1, h3, h4 >

p4 =< h5, h2 >

p5 =< h5, h2, h4 >

p6 =< h5, h3, h4 >

Thus we have found six pathways in total, which would lead to a pathway-based state space Spp :

Spp = {¬p, p1, p2, p3, p4, p5, p6}

The corresponding institution-based pathway Markov chain state-space would become:

Spi = {¬p, h1, h2, h3, h4, h5}

A graphical representation of the corresponding Markov chain is depicted in figure 4.9.

Figure 4.9: Graphical representation of the institution-based pathway Markov chain

There are two important notes with respect to the model in figure 4.9. First, we assume that there
are no cycles possible, though logically in real cases this could in fact be possible. Secondly each
node representing a healthcare provider has no self-loop. The self loops are omitted as in no trace
< ...hi, hi, ... > occurs. We advocate modelling self-loops only when these self-loops are indeed
part of the pathways identified within the data.

If we would just use conventional Markov chains, a pathway would either take 2 or 3 time-steps
(equal to the number of elements in the chain). If we would like to extend the duration of a
specific visit we should incorporate additional functionality. For example the use of a Markov
renewal process would be a solution.

When comparing the institution based approach to the pathway approach, parameter estimation
is harder as one has to assess each combination that can occur. On the other hand one can
assess the traversal in a more detailed fashion and also investigate single-point optimization within
pathways.
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4.5 Collaborative Markov chains

4.5.1 Relations amongst the models presented

In the previous sections we have defined three models which present different interesting properties
of a person with respect to care demand and institutional care pathway traversal, i.e.:

1. A model representing whether a person is member to a healthcare insurance company

2. A model representing whether a person is ill or not

3. A model representing what corresponding institutional care pathway the person is traversing

As we have indicated in the third note traversing a care pathway is defined for a corresponding
disease. If a person is not ill, the probability that he or she will traverse an institutional pathway
is zero. However if a person becomes ill the probability that he or she will not enter a pathway
is likely to be zero or very small. Thus, the probability of a person traversing a pathway strictly
depends on the fact whether a person is ill.

We need to be able to express both the probability rules as defined earlier as well as the general
system’s behaviour. We need a system M of three Markov chains representing the behaviour
of persons with respect to healthcare insurance membership, disease and institutional pathway
traversal.

M = {CM , CD, CP }
WithinM, CM represents the membership Markov chain, CD represents the disease Markov chain
and CP represents the institutional pathway traversal Markov chain. Additionally the probabili-
ties in CP strictly depend on the state of system CD.

This type of systems are also known as “collaborative Markov chains”.

4.5.2 Defining collaborative Markov chains

Before we introduce basic terminology we present an analogy based on mutual exclusion in a
resource sharing setting as the idea of collaborative Markov chains originates from the field of
(system) networking theory.

Let us consider a set of processes, that share a set of resources. Whenever a certain process P1

is in state sP1,r1
it needs to use resource r1. In this case (i.e. P1 = sP1,r1

) any other process PX
can not enter state sPX,r1 if r1 is needed by PX in order to be in state sPX,r1 . In other words, the
current state of P1 influences the transition probability of PX in terms of entering state sPX,r1 .

In [36] these types of problems are described and generalized in terms of Markov theory. A defi-
nition is given for Markov chain competition and collaboration:

“The competition and the collaboration between chains simply assumes that when a resource is
owned by a component (or when a component is in a specific subset of states) it affects the tran-
sition probabilities of the other components of the chain.”

Fourneau, 2010 [36]

Though the goal of [36] is merely to provide theoretical proof and mathematical properties con-
cerning the tensor and product form of the composite multi-dimensional transition Matrix of
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collaborative Markov chains, the main idea behind the models is very applicable in terms of this
research. We have used the definitions provided by Forneau as a basis to further specify our model.

LetM be a set of N (discrete time) Markov chains:

M = {C1, C2, ..., CN}

We define a function d which represents a dependency from a chain to some other chains:

d :M→ P(M)

d(Cx) = {Cy, Cz} , Cx → {Cy, Cz}

Cx → {Cy, Cz} in this case means that Cx is depending on both Cyand Cz. If Cx has no depen-
dencies at all we will just denote this as Cx → ∅.

We let DM be the set of all dependencies within M. We can now define a dependency graph
G(DM) as a graphical representation of DM.

Note that G(DM) can come in two flavors:

• G(DM) is a directed a-cyclic graph (DAG)

Example:
M = {C1, C2, C3}
DM = {C1 → {C2, C3}, C2 → {C3}, C3 → ∅}
G(DM) =

• G(DM) is a directed cyclic graph (DCG)

Example:
M = {C1, C2, C3}
DM = {C1 → {C2, C3}, C2 → {C1}, C3 → {C2}}
G(DM) =
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Whether or not G(DM) is cyclic or not has impact on both mathematical as implementational
challenges. In [36] several mathematical (in particular linear algebraic) properties are defined for
collaborative discrete-time Markov chains with dependencies. More specifically it is shown that
for collaborative discrete-time Markov chains with an a-cyclic dependency graph a steady-state
distribution in product-form exists. Consequently it is shown that for Markov chains with cyclic
dependency graphs, steady-state distributions in product-form do not exist.

4.6 Incorporating age within the proposed system

4.6.1 The impact of age on in- and outflow

Let us explore M←(z,t) and M
→
(z,t) in more detail, that is let us explore an influential factor in terms

of quantifying these components. Within [35] the results of a study performed by BS Health
consultancy are presented, which we have depicted in figure 4.10.

Figure 4.10: Relative mobility within the healthcare system by age cohort.

The study as performed by BS Health consultancy shows us that age is an influential factor in
terms of switching activity. As we can see, it states that the [18,45] cohort is the most active
cohort. Specifically the elderly seem to be less active.

The reason why switching behaviour is actually depending on age is deemed to be specifically
depending on a person’s healthcare insurance requirements. Younger persons tend to be more
price-oriented whereas elderly people seem to be more quality-oriented. Additionally the existence
of “internet-based” healthcare plans seems to be substantially picked up by younger people.

4.6.2 Incorporating age within the proposed collaborative Markov chain
system

So far we have posed a system of collaborative Markov chains, in which a Markov chain depicts a
personal attribute some of which might influence each-other’s transition probabilities. Addition-
ally we have identified that age acts as a determining factor with respect to the probability of
“switching behaviour”.

We can choose to let age be an input parameter for determining probabilities within the system as
a whole, likewise the way we would treat time in case of use of non-homogeneous Markov chains.
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However we pose to exploit the concept behind collaborative Markov chains and model age pa-
rameters within a new Markov chain, which we will call the age/vitality model.

Age itself is of course very deterministic as it is just an administrative agreement, i.e. every time
a year goes by we update a counter. For convenience we present a special case Markov chain (a
τ -step Markov chain) which depicts age-development over time. Given that we use a minimum
age A1 and a maximum age An:

Sa = {Ω, A1, A2, ..., An, †}

A graphical representation is presented in figure 4.11.

Figure 4.11: Graphical representation of the age/vitality Markov chain

In the given model Ω represents the “source”, the state for an unborn person. Given a certain
probability a person can get born. He/She will then be in the first age-state (which technically
might also represent an age-group). The † state represents the “sink”, i.e. the state that indicates
that the given person has deceased.

Within the model a person can reach a new age-state by means of a “τ -step”. Now what does a
τ -step mean in the given context?

A τ -step represents a deterministic state-transition within the state-space that “does not take any
time”. Additionally the τ -step can happen at any point in time, corresponding to the global time
within the model. In fact the model represents a person’s vitality where a corresponding age
parameter is modelled as a sate within the model itself.

Assume we have a “vitality” Markov chain which looks like this:

S′ = {Ω,∆, †}

In S′, Ω represents the “source”, ∆ represents a person being “vital” and † represents the “sink”.
A graphical representation of S′ is depicted in figure 4.12.

Additionally assume that for the S′-model we have some time dependent parameter that indicates
a person’s age at time t, d′A(t). Whenever a person is unborn, we assume d′A(t) = −∞ whenever a
person deceased we assume d′A(t) =∞. We define the relationship amongst the τ -step based model
(S) and the vitality model (S′) as follows (Where Xt represents the random variable corresponding
to S and X ′t to S′):

P (Xt+1 = Ω|Xt = Ω) ≡ P (X ′t+1 = Ω, d′A(t+ 1) = −∞|X ′t = Ω, d′A(t) = −∞)
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Figure 4.12: Graphical of parametrized equivalent of the age Markov chain

P (Xt+1 = A1|Xt = Ω) ≡ P (X ′t+1 = ∆, d′A(t+ 1) = A1|X ′t = Ω, d′A(t) = −∞)

P (Xt+1 = Ai|Xt = Ai) ≡ P (X ′t+1 = ∆, d′A(t+ 1) = Ai|X ′t = ∆, d′A(t) = Ai)

P (Xt+1 = Ai+1|Xt = Ai) ≡ P (X ′t+1 = ∆, d′A(t+ 1) = Ai+1|X ′t = ∆, d′A(t) = Ai)

P (Xt+1 = †|Xt = Ai) ≡ P (X ′t+1 = †, d′A(t+ 1) =∞|X ′t = ∆, d′A(t) = Ai)

P (Xt+1 = †|Xt = †) ≡ P (X ′t+1 = †, d′A(t+ 1) =∞|X ′t = †, d′A(t) =∞)

4.7 Final model proposition

Combining the terminology presented in the previous section we come up with the following final
model proposition with respect to the problem at hand.

To predict the expected care demand for some disease d and some insurance company z, we pose
the usage of a system of collaborative Markov chainsM:

M = {CM , CA, CD, CP }

WithinM, the Markov chains are defined as follows:

• CM represents a Markov chain describing personal membership
We have assessed and motivated three different basic types of models applicable here, partly
depending on data-availability and preference with respect to the use of a Markov renewal
process. Additionally we have indicated the potential use of a model consisting of rival
insurance companies as states as well.

• CA represents a Markov chain describing age development
We have posed the use of a τ -step Markov chain to model age as a Markov chain. In terms
of age, one can either chose to use individual age or age-groups.

• CD represents a Markov chain describing incidence and prevalence
We have posed one type of model concerning incidence and prevalence. Additionally we
noted the potential addition of disease types to the general disease model design. The value
of the state of this chain directly influences the fact whether a person traverses a pathway
or not.

• CP represents a Markov chain describing institutional care pathway traversal
We have posed two types of models concerning institutional care pathway traversal. The
types identified are pathway-based and institution-based traversal.
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We additionally pose the following dependency-set DM:

DM = {CM → {CA}, CA → {CD}, CD → {CA}, CP → {CD}}

Note that within the given definition of DM we have incorporated the following dependencies:

• CM → {CA}
The probability of a person leaving or entering the membership set is depending on age.

• CA → {CD}
Vitality and thus the age development of a person depends on the fact whether a person is
healthy or not.

• CD → {CA}
The probability of getting a certain disease might be depending on age.

• CP → {CD}
The probability of a person traversing a pathway is depending on the fact whether a person
is ill or not.

Note that additional dependencies might exist as well. Typically healthcare insurance compnaies
assume that people who are ill, i.e. p ∈ D(z,d,t), will not switch any more. If this where to be
the case, CM would depend on CD as well. This specific example is one of the many additional
dependencies which can exist in the system.

We have chosen to present a final model which has a loose structure and provides a range of
design decisions still to be made. The reason for this is that it is hard to come up with a unified
model in the given context. The current system proposed might be suitable for a prediction of
prostate-cancer related pathway traversal. If we would on the other hand want to predict care
pathway traversal associated with lung-cancer we might add a chain depicting whether a person
is a smoker or not. In that case the combination of this fact and age might influence the incidence
probability of a given person within the system. If we would look at breast cancer, gender has
great influence on incidence. In such case we could for example add a chain depicting the gender
of a person.
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Chapter 5

Implementation

5.1 Monte Carlo techniques

As we have seen, a system is proposed that:

• Consists of several Markov chains.

• Consists of dependencies amongst those Markov chains.

• Might, in the context of the problem, consist cyclic dependencies.

As stated, the potential cyclic form of the dependency graph for the system at hand does not
allow us to compute a product-form steady state distribution. We could however use Monte Carlo
techniques to compute future care demand and associated pathway traversal.

In general MC techniques entail a broad range of computational algorithms in which random
sampling is used in order to gain results. Often sampling is used as the given distribution is not
easy to capture in some closed-form expression, which is actually the case within this research
model proposition. In general these “results” can be classified in two categories [37]:

1. Generate samples {x(r)}Rr=1, given a probability distribution P (x)

2. Estimate expectations of functions under a given distribution

As mentioned in [37]:

“The probability distribution P (x), which we will call the target density, might be a distribution
from statistical physics or a conditional distribution arising in data modelling.”

Mackay, 1998 [? ]

This statement is very interesting with respect to the research as it is in line with the system of
conditional probabilities represented by the use of collaborative Markov chains.

When taking a look at MC methods, a lot of techniques are concerned with finding a sample
which respects the target density. Specifically techniques like importance sampling and rejec-
tion sampling are based on using a non-normalized distribution P ∗(x) (with P (x) = P ∗(x)/Zp
where Zp is some normalizing constant) with the possible addition of a sample density Q∗(x)
(with Q(x) = Q∗(x)/ZQ). Usually there is some additional scoring-function that rate a sampled
data value. Summarizing these types of methods use approximate distributions (i.e. sample dis-
tributions) out of which data values are generated which then are evaluated using some scoring
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methodology with respect to the original distribution P (x).

Another class of MC methods are related to the Metropolis Hastings algorithm. The basic differ-
ence with respect to importance and rejection sampling is the fact that within MH the sampling
distribution Q(x) is actually depending on the current state of the system, which is is denoted as
x(t). Again some measure will be used in order to determine whether the newly created value is
actually feasible.

The Gibbs sampler is a special case of the MH algorithm for multivariate systems. In the case of
a system of K variables sampling is performed in the following manner [37]:

x
(t+1)
1 ∼ P (x1|x(t)

2 , x
(t)
3 , ..., x

(t)
K )

x
(t+1)
2 ∼ P (x2|x(t+1)

1 , x
(t)
3 , ..., x

(t)
K )

...

x
(t+1)
K ∼ P (xK |x(t+1)

1 , x
(t+1)
2 , x

(t+1)
K−1 )

Thus, each next value of a variable is computed using a probability distribution which conditional
values are the most up-to-date value of each other variable in the system.

5.2 Using simulation for collaborative Markov chain-based
sampling

5.2.1 Sampling within this research

Within this research, the goal is to produce a statement concerning future institutional care
pathway traversal. If we revise the basic overview of MC, producing some statement of future
institutional care pathway traversal using collaborative Markov chains falls into the first MC clas-
sification, i.e.:

Generate samples {x(r)}Rr=1, given a probability distribution P (x)

In our case P (x) is defined by the system of collaborative Markov chains. The actual structure of
the samples to be generated mainly depends on the forecasting window and aim, though in general
would be some statistic indicating an amount associated with pathway traversal.

In order to compute {x(r)}Rr=1 we will need some means of computational algorithm in order to
sample values which originate from the given system of Collaborative Markov chains. We do not
need to accept nor reject any outcome. Within this research we can just perform simulation in
a “random walk fashion”. We have two basic operations which we should repeat throughout the
sampling process:

1. For each Markov Chain compute the next state.

2. Using some dependency update strategy, infer new probabilities within the Markov chains
in the system.

Thus using the state of the overall system, for each chain we determine the next state. Depending
on what type of dependency propagation used throughout the system, this type of random walk
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(as we are randomly selecting a new state that also acts as a new data point) is very similar to
Gibbs sampling as we will discuss in more detail in the next section.

With respect to timing within the intend simulation we choose to use a discrete time-base. As
“becoming ill” and “recovery of a disease” are typically of a continuous fashion, the actual knowledge
of such events are of a discrete fashion with respect to a healthcare insurance company. Typically
the level of aggregation of declarations is in days as well. Membership mutation is also an aspect
which is administered on a daily basis. Therefore the lowest discrete-time event level should be
in the order of days. Note that depending on the length of the simulation we can also choose to
scale up this level of aggregation towards months or even years.

5.2.2 Sampling of collaborative Markov chains and forecasting termi-
nology

Within the literature review we have assessed three main topics concerning care demand prediction
and forecasting in general being frameworks, classification and techniques. In this subsection we
will briefly assess where to position the current proposition of simulation/sampling of collaborative
Markov chains within classification and techniques.

Classification

Although we have seen several classification schemes, the common divisor was the difference be-
tween qualitative and quantitative methods (also called opinion versus empirical and judgemental
versus statistical). Without further ado we can easily classify the proposed sampling model to be
of quantitative class.

A unified sub-classification within quantitative forecasting models is somewhat harder to draw up
though in essence we can make a distinction between naive and causal methods (or univariate
versus multivariate). In this specific case we identify the model to exploit several potential causal
relations and thus falling within the causal class.

In terms of Gentry’s classifcation grid [3], we define our proposed sampling-based model to fall
in the category of models, i.e. a quantitative causal method. In terms of Armstrong’s classifica-
tion tree [2] the proposed sampling-based model falls in the branch of quantitative multivariate
methods.

Techniques

As we will be performing simulation to implement sampling on a personal level we will actually be
applying micro simulation. As indicated in the literature review, this is more frequently performed
within care demand prediction.

The model proposed shares some similarity to the “future elderly model” used in both [15] and
[17]. Within the given model Monte Carlo techniques where also used in order to compute new
functional states. Also note that the age/vitality based Markov chain proposed shares some simi-
larities with the multi-state life table model as proposed in [26].

In general we define the technique used within this research as being a discrete-event based micro-
simulation technique.
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5.3 Dependency propagation

Let us turn our focus towards the possible cyclic dependency graph of the system proposed and
its implications. We do so by investigating possible execution order strategies given the nature of
the dependency graph. We will reuse the examples introduced in chapter 4, section 4.5.

5.3.1 G(DM) is a directed a-cyclic graph (DAG)

M = {C1, C2, C3}
DM = {C1 → {C2, C3}, C2 → {C3}, C3 → ∅}

G(DM) =

If we look at the given dependency graph and we want to propagate each chain’s state as fast as
possible, we can easily come up with a suitable order of execution. In this case we can just “follow
the dependencies”: C2 and C3 must precede C1, C3 must precede C2, there is no chain that must
precede C3, resulting in:

C3 → C2 → C1

In terms of conditional probability rules this results in:

P (C
(t+1)
1 = c1|C(t+1)

2 = c2, C
(t+1)
3 = c3)

P (C
(t+1)
2 = c2|C(t)

1 = c1, C
(t+1)
3 = c3)

P (C
(t+1)
3 = c3|C(t)

1 = c1, C
(t)
2 = c2)

We can clearly identify the similarities between the given probability rules and the general struc-
ture of Gibbs sampling. In fact using such update strategy yields a form of Gibbs sampling.

Thus, for direct a-cyclic graphs apart from any product-form solution we can also explicitly infer
an execution order. Of course this is not always trivial and there is not always one unique solution.
For example, if we would propose:

DM = {C1 → {C3}, C2 → {C3}, C3 → ∅}

We have two possible execution strategies:

C3 → C2 → C1

C3 → C1 → C2

Note that for more complex or different systems different strategies exist and should already be
present within literature, though we do not go into this much detail here as it is not within our
research focus.
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5.3.2 G(DM) is a directed cyclic graph (DCG)

M = {C1, C2, C3}

DM = {C1 → {C2, C3}, C2 → {C1}, C3 → {C2}}

G(DM) =

If we would in this case “follow the dependencies”, we would end up with an unsatisfactory result:
C2 and C3 must precede C1, C1 must precede C2, C2 must precede C3. Clearly there are several
options here as well, which we deem as interesting topics for further research, i.e. what is the
impact of random selection ordering versus prioritized ordering etcetera.

As solving this problem is currently out of scope we relax the “most up-to-date” property that is
both usable in the DAG-case and used by Gibbs:

P (C
(t+1)
1 = c1|C(t)

2 = c2, C
(t)
3 = c3)

P (C
(t+1)
2 = c2|C(t)

1 = c1, C
(t)
3 = c3)

P (C
(t+1)
3 = c3|C(t)

1 = c1, C
(t)
2 = c2)

5.4 Simulation framework

Within the research we have implemented a simulation framework which allows us to generate
samples from any arbitrary system of collaborative Markov chains. The framework is based on
the procedures as described in the previous sections. A more detailed description of the framework
can be found in appendix D. In this section we will briefly describe the simulation framework’s
basic properties and assess its potential impacts on the resulting samples.

5.4.1 Basic description

The simulation framework is developed in the Matlab environment.1. It allows the user to define
systems that consist of Markov chains. A Markov chain consists of states and transitions between
those states. Each transition has an associated probability which is (re)settable. Each chain addi-
tionally consists of an initial state vector.

Apart from conventional Markov chain elements as described above, the system allows the user
to specify dependencies and τ -functionality. The user simply specifies a chain’s dependencies and
associated probability values. The system entity will make sure that corresponding probabilities

1Each italic element in the basic description has an associated class in the simulation framework. See appendix
D for a more detailed description of these classes.
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will be updated accordingly. To implement a Markov chain that has τ functionality, the system
must be made aware of the fact that the given chain may consist of τ -transitions. Additionally
the system administers a data-element for the given chain, an auxiliary data-element initialization
function and an auxiliary reference function (which determines whether a τ transition should ac-
tually happen). A chain itself is not “aware” of the fact that it consists of possible τ steps. The
system entity will update the “current state” of a chain according to τ -functionality.

We have applied hierarchical context-unawareness throughout the entire simulation framework. A
probability is not aware of its surrounding transition, which in turn is not aware of its surrounding
chain. This logically also holds for the states contained by a chain. A transition does however
administer some reference to its from- and to-state.

Additionally the system entity is able to execute a “MC random walk” given a number of time-
steps. The MC functionality just repeatedly determines a new state for each chain in the system.
Dependency analysis is performed as described in the previous section (i.e. the update strategy
posed for cyclic dependency graphs is always used, also in case of acyclic dependency graphs).

As a simulation is intended to be executed multiple times an additional simulator entity is part
of the simulation framework. In the simulator entity we specify the simulation length, number of
elements in one run and the number of replications.

The simulator entity additionally allows us to keep track of the system’s statistics, as we are
specifically interested in the number of people that are a member, become ill and traverse some
institutional pathway. This kind of functionality is implemented by means of “monitors” which
allow us to perform transient analysis on the simulation results.

5.4.2 Monitors

As stated the simulator entity allows us to specify monitors which allow us to perform transient
analysis of the given system. Monitors come in two flavours:

• Single monitors
A single monitor is defined for one single chain. If we are interested in the amount of people
that are a member to our firm, we can define a single monitor for the corresponding state in
the corresponding chain. After simulation, the monitor will output the number of elements
that where in the given state for each simulation time-point.

• Combined monitors
Combined monitors are defined for two or more chains. They allow us to analyse more
specific cases compared to single monitors. We might be interested in monitoring all people
that are a member to our firm and that are ill at the same time. Consequently we might also
be interested in what pathway these people traverse. In such case we will define a monitor
on those people that are a member to our firm, that are ill and what pathway they traverse
as a consequence of their illness. A combined monitor will output the number of people that
are in all monitored states at a certain point in time.

By defining monitors we are actually able to post-process the results that are generated by the
simulation framework.
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5.4.3 Dependency propagation lag within the current simulation imple-
mentation

The notion of dependency propagation lag

The relaxation of the “most up-to-date” property poses the potential existence of a phenomenon
that we will define as “dependency propagation lag”. We will illustrate propagation lag using an
example. Assume the case where a person will get ill at time t an will get healthy at time t + 3.
Thus we normally we expect the person to be in a pathway at time t, t+ 1 and t+ 2.

What will actually happen within simulation? At time t, the disease model will reach some state
depicting the fact that person p is ill. The institutional care pathway model however will look back
one time-step (i.e. t − 1), in which the person was still healthy. At time t + 1, the institutional
care pathway model identifies that the person was ill at time t and will assign some pathway to
the person. Repeating this process, the institutional care pathway model will identify the person
being healthy again at time t + 4. Thus the disease model tells us that a person is ill at time t,
t+ 1 and t+ 2 whereas the institutional care pathway model will actually tell us this same person
was traversing a pathway at time t+ 1, t+ 2 and t+ 3. The actual length of pathway traversal is
in accordance with the length of illness with respect to time. The exact points in time do however
suffer from propagation lag.

Dependency propagation lag and cyclic dependency graphs

Now let us assess propagation lag with respect to cyclic dependency graphs. Assume that the
person’s institutional pathway will influence the probability of reviving. Logically traversing a
pathway depends on the fact that a person is ill or not, so we end up with a cyclic dependency.

Let D denote the random variable depicting whether a person is ill or not (¬d = healthy, d =
ill). Let random variable P denote what pathway the person traverses (¬p = no pathway, px =
traversing pathway x). Additionally assume that for the combination of being ill and traversing
no pathway we cannot quantify the probability of reviving thus we assume a person to stay ill in
such case.

Consider (hypothetically) that a disease d is very easily treated when in path x and it only takes
1 time step. Normally we would have the following situation:
t , <D, P>
1. < ¬d,¬p >
2. < d, px >
3. < ¬d,¬p >

If we would have no cyclic dependency, so D does not depend on P , we would have the following
simulation result:
t , <D, P>
1. < ¬d,¬p >
2. < d,¬p >
3. < ¬d, px >
4. < ¬d,¬p >

The following trace would be the result of dependency propagation lag in simulation, given that
the cyclic dependency does exist:
t , <D, P>
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1. < ¬d,¬p >
2. < d,¬p >
3. < d, px >
4. < ¬d, px >
5. < ¬d,¬p >

The implications of dependency lag actually differ given the nature of the dependency graph. In
the acyclic case (the second trace), the number of individual occurrences of px is correct. The
time points at which they occur however is not correct. This means that if we would put a single
monitor on P , we would actually get correct results in terms of amounts of pathway traversal.
We could additionally need some post-processing to fix the time-lag. Note that this also holds if
the time of disease would take longer (i.e. an arbitrary number of < d, px > instances in-between
< d,¬p > and < ¬d, px >).

In the cyclic case, the number of individual occurrences of both px and d is incorrect, though the
number of combined occurrences is correct. Again the occurrence is lagged and the system as a
whole suffers from an additional time-step of lag.

Note that if a given disease has a typical long time span and associated pathway traversal, the
impact of propagation lag is neglect-able. It does however pose more serious issues for more
dynamic systems.

5.4.4 The simulation framework in conclusion

Within this research we have build a simulation framework that:

• Allows a user to define systems of collaborative Markov chains, using tables to input both
chain and dependency definitions.

• Allows to simulate the system multiple times given some number of elements, simulation
time span and number of replications.

• Always implements the dependency updating strategy as defined for cyclic dependency
graphs, i.e.:

P (C
(t+1)
1 = c1|C(t)

2 = c2, C
(t)
3 = c3, . . . C

(t)
N = cn)

P (C
(t+1)
2 = c2|C(t)

1 = c1, C
(t)
3 = c3, . . . C

(t)
N = cn)

...

P (C
(t+1)
3 = c3|C(t)

1 = c1, C
(t)
2 = c2, . . . C

(t)
N−1 = cn−1)

• Does not include any form of dependency based initialization.
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Chapter 6

Experimental design

6.1 Overview

Within this experimentation is two-fold:

• Real healthcare data analysis
We have analysed real healthcare data to assess feasibility of the model proposed. We
specifically assessed data properties with respect to the mathematical models presented
throughout the previous chapters.

• Simplified case-based simulation
We have constructed some simplified cases, related to the actual problem at hand to assess
the model proposed in general. The cases are defined on top of each other and are designed in
an incremental fashion. The systems of collaborative Markov chains used within case-based
simulation are very similar to the final model proposition.

Within experimentation we tried to assess whether the assumptions made and definitions proposed
are viable. We have also assess viability of the model in terms of simulation and associated results.
Lessons learned from data analysis and performing simulation will eventually be combined into a
set of managerial implications and recommendations as well as a vivid discussion.

6.2 Data Analysis

Whave been able to use data supporting the research made available by Dutch healthcare insurance
company X 1 Two datasets were made available of which we specifically the first one has been
analysed intensively:

• Population data
A membership-subscription based data-set which can potentially be used as a basic real-life
for M(z,t) in which z = “X” and 01− 01− 2006 ≤ t ≤ 31− 12− 20102

• Declaration data
A declaration based data-set which can potentially be used as a basis for V(p,d,z) (and thus
potentially σicp) in which z = “X”, p is variable though at least p ∈Mz,t and d is variable

1The identity of the healthcare provider has been excluded from this report
2Note that with respect to the observed increase in “switching behaviour” on the Dutch healthcare insurance

market, the data is somewhat outdated.
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A more detailed description of the datasets can be found in appendix C, section C.1.

We have assessed the data on the following dimensions:

• Membership volume

• In- and outflow quantification

• Gender distribution

• Impact of age on “switching activity”

• Expected reconstruct-ability of care institutional pathways

To be able to effectively analyse the data it has been manipulated using a manipulation script
written in python. A description of the data manipulation script can be found in Appendix C,
sectionC.2.

6.3 Cases

In this section we present the description of the proof-of-concept cases. We will present input
data and discuss potential limitations with respect to simulation results. For example the lack of
dependency based initialization within the simulation framework might lead to expected values
that differ from the corresponding case result specification.

The tables used as an input for simulation of the cases within the simulation framework as well
as the associated simulation framework input code can be found in appendix E.

6.3.1 Case I - Single Markov chain representing membership dynamics

The first case is just a single Markov chain representing membership dynamics. The case imple-
ments a modified version of the four-state model as we have omitted the sink. Additionally we
omit any form of irregular membership mutation. The mathematical model used in this case is:

SM = {Mz,¬M I
z ,¬MR

z }

M = {SM}

D(M) = {SM → ∅}

The data depicted in table 6.1 is used as an input.

Year: 2006 2007 2008 2009
Month: 1 → 12 1 → 12 1 → 12 1 → 12
State:
Mz 100 96 92 88
¬M I

z 100 100 100 100
¬MR

z 150 154 158 162

Table 6.1: Case I - Input data

The goal is to use the data of 2006 and 2007 to predict membership values for 2008 and 2009. In
this case this is just a yearly regular outflow of four people.
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6.3.2 Case II - Adding irregular membership mutation

Compared to case I, case II only adds irregular mutation with respect to the membership-set. The
case builds on top of case I, thus the regular outflow rates remain equal. As the model is equal
to case I we have omitted the mathematical model definition here. The input data is presented in
table 6.2.

Year: 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State:
Mz 100 101 101 101 102 102 102 103 103 103 104 104
¬M I

z 100 99 99 99 98 98 98 97 97 97 96 96
¬MR

z 150 150 150 150 150 150 150 150 150 150 150 150

Year: 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State:
Mz 100 101 101 101 102 102 102 103 103 103 104 104
¬M I

z 96 95 95 95 94 94 94 93 93 93 92 92
¬MR

z 154 154 154 154 154 154 154 154 154 154 154 154

Year: 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State:
Mz 100 101 101 101 102 102 102 103 103 103 104 104
¬M I

z 92 91 91 91 90 90 90 89 89 89 88 88
¬MR

z 158 158 158 158 158 158 158 158 158 158 158 158

Year: 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State:
Mz 100 101 101 101 102 102 102 103 103 103 104 104
¬M I

z 88 87 87 87 86 86 86 85 85 85 84 84
¬MR

z 162 162 162 162 162 162 162 162 162 162 162 162

Table 6.2: Case II - Input data

As we can see, we have defined the irregular mutation to be somewhat ’regular’ as exactly one
person flows from ¬M I

z to ¬MR
z every 2nd, 5th, 8th and 11th month of a year.

6.3.3 Case III - Adding age-based membership mutation

Case III builds on top of case II and is the first case that incorporates the main idea of “collabora-
tive Markov chains”. The idea within this case is to introduce an abstract version of an age/vitality
model. It consists of three age groups, A1, A2 and A3. In terms of membership mutation we keep
the same rates as we used in case II. The only difference is the fact that we have made membership
mutation age dependent.

We let members of age group A2 be responsible for the irregular mutation and we let members of
age group A3 be responsible for the regular mutation. For convenience, the input data for case
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III is shown in tables 6.3, 6.4, 6.5 and 6.6 Note that the sum of each age-based membership-group
sums up to the equivalent membership-set in case II. Thus |A1,Mz| + |A2,Mz| + |A3,Mz| = 100
for year 2006, month 1, which equals Mz in case II for that point in time. Additionally note that
we do not define any form of ageing within the proof of concept case and thus there is no need for
τ -step Markov chains in the actual model.

Within this case we use the following mathematical model:

CM = {Mz,¬M I
z ,¬MR

z }

CA = {A1, A2, A3}

M = {CM , CA}

D(M) = {CM → {CA}, CA → ∅}

Note that due to the lack of dependency based initialization, the expected results of case III will
differ from the values for 2008 and 2009 as presented here. This will remain a problem for the
remainder of the cases. This is the case as we either need age-based membership initialization
or membership-based age initialization which is not possible within the simulation framework.
We therefore used the basic age division as presented for January 2006, which is always 1

4 of a
membership group is in A1, 1

2 in A2 and 1
4 in A3.

Thus from case III and on it makes less sense to compare the model output to the presented
output. In the result chapter we will specifically indicate the expected values according to the
simulation framework shortcomings.

Year: 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State space:
A1,Mz 25 25 25 25 25 25 25 25 25 25 25 25
A2,Mz 50 51 51 51 52 52 52 53 53 53 54 54
A3,Mz 25 25 25 25 25 25 25 25 25 25 25 25
A1,¬M I

z 25 25 25 25 25 25 25 25 25 25 25 25
A2,¬M I

z 50 49 49 49 48 48 48 47 47 47 46 46
A3,¬M I

z 25 25 25 25 25 25 25 25 25 25 25 25
A1,¬MR

z 38 38 38 38 38 38 38 38 38 38 38 38
A2,¬MR

z 75 75 75 75 75 75 75 75 75 75 75 75
A3,¬MR

z 37 37 37 37 37 37 37 37 37 37 37 37

Table 6.3: Case III - Input data 2006
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Year: 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State space:
A1,Mz 25 25 25 25 25 25 25 25 25 25 25 25
A2,Mz 54 55 55 55 56 56 56 57 57 57 58 58
A3,Mz 21 21 21 21 21 21 21 21 21 21 21 21
A1,¬M I

z 25 25 25 25 25 25 25 25 25 25 25 25
A2,¬M I

z 46 45 45 45 44 44 44 43 43 43 42 42
A3,¬M I

z 25 25 25 25 25 25 25 25 25 25 25 25
A1,¬MR

z 38 38 38 38 38 38 38 38 38 38 38 38
A2,¬MR

z 75 75 75 75 75 75 75 75 75 75 75 75
A3,¬MR

z 41 41 41 41 41 41 41 41 41 41 41 41

Table 6.4: Case III - Input data 2007

Year: 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State space:
A1,Mz 25 25 25 25 25 25 25 25 25 25 25 25
A2,Mz 58 59 59 59 60 60 60 61 61 61 62 62
A3,Mz 17 17 17 17 17 17 17 17 17 17 17 17
A1,¬M I

z 25 25 25 25 25 25 25 25 25 25 25 25
A2,¬M I

z 42 41 41 41 40 40 40 39 39 39 38 38
A3,¬M I

z 25 25 25 25 25 25 25 25 25 25 25 25
A1,¬MR

z 38 38 38 38 38 38 38 38 38 38 38 38
A2,¬MR

z 75 75 75 75 75 75 75 75 75 75 75 75
A3,¬MR

z 45 45 45 45 45 45 45 45 45 45 45 45

Table 6.5: Case III - Input data 2008

Year: 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State space:
A1,Mz 25 25 25 25 25 25 25 25 25 25 25 25
A2,Mz 62 63 63 63 64 64 64 65 65 65 66 66
A3,Mz 13 13 13 13 13 13 13 13 13 13 13 13
A1,¬M I

z 25 25 25 25 25 25 25 25 25 25 25 25
A2,¬M I

z 38 37 37 37 36 36 36 35 35 35 34 34
A3,¬M I

z 25 25 25 25 25 25 25 25 25 25 25 25
A1,¬MR

z 38 38 38 38 38 38 38 38 38 38 38 38
A2,¬MR

z 75 75 75 75 75 75 75 75 75 75 75 75
A3,¬MR

z 49 49 49 49 49 49 49 49 49 49 49 49

Table 6.6: Case III - Input data 2009

6.3.4 Case IV - Adding a disease module

The fourth case is building right on top of the third case. It incorporates an additional chain that
indicates whether a person is healthy or not. The basic input with respect to population mutation
and age division is again equal to the previous case.

In case IV we have only defined incidence parameters for persons both residing in age bin A1 and
in Mz. Consequently we will only show the additional input for people who reside in both states
as depicted in table 6.7 (again note that due to the lack of dependency based initialization the
actual expected values will differ from the result specification as depicted here).
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In this case we have used the following mathematical model:

CM = {Mz,¬M I
z ,¬MR

z }

CA = {A1, A2, A3}
CD = {¬Dd, Dd}
M = {CM , CA, CD}

D(M) = {CM → {CA}, CA → ∅, CD → {CA}}

Year: 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State space:
Mz, A1, ¬Dd 23 23 23 23 24 24 24 24 24 23 23 23
Mz, A1, Dd 2 2 2 2 1 1 1 1 1 2 2 2
Year: 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State space:
Mz, A1, ¬Dd 23 23 23 22 22 22 22 22 23 23 23 23
Mz, A1, Dd 2 2 2 3 3 3 3 3 2 2 2 2
Year: 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State space:
Mz, A1, ¬Dd 23 22 22 22 22 22 22 21 21 21 21 21
Mz, A1, Dd 2 3 3 3 3 3 3 4 4 4 4 4
Year: 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009
Month: 1 2 3 4 5 6 7 8 9 10 11 12
State space:
Mz, A1, ¬Dd 21 21 21 21 22 22 22 22 22 22 22 22
Mz, A1, Dd 4 4 4 4 3 3 3 3 3 3 3 3

Table 6.7: Case IV - Input Data

6.3.5 Case V - Adding integrated care pathways

In case V we again build on top of the previous cases. In this case we have added an additional
model which represents two point-to-point institutional pathways, PA and PB . Whenever a person
of age A1 gets sick, he/she will traverse one of both pathways with a probability of 1

2 . We will
therefore not present the input data as it is just the input of case IV where the sick people are
divided over the two pathways as “equal” as possible.

Due to the lack of dependency-based initialization we have initialized pathway traversal with a
probability of 0. At the first time point we expect no one to be traversing any pathway. Due to
propagation lag predicted pathway traversal will always have a lag of one time-step in this case.

The mathematical model used in this case is:

CM = {Mz,¬M I
z ,¬MR

z }

CA = {A1, A2, A3}
CD = {¬Dd, Dd}
DP = {¬P, PA, PB}
M = {CM , CA, CD, CP }

D(M) = {CM → {CA}, CA → ∅, CD → {CA}, CP → {CD}}
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6.3.6 Case VI - Adding a circular dependency between disease and in-
stitutional pathways

In the final sixth proof of concept case we have introduced a circular dependency. Additionally
we have changed the probability of a person getting ill with respect to case IV and V.

A person of age A1 and member of Mz has a probability of 1
2 of becoming ill, the initialization

has not changed however. The probability of remaining in an ill state will be 4
5 if a person is in

path A whereas it is 1
5 if a person is in path B. Thus people that get in pathway B are more likely

revive quicker.

With respect to the mathematical model used in case V, case VI adds an additional dependency
resulting in:

CM = {Mz,¬M I
z ,¬MR

z }

CA = {A1, A2, A3}

CD = {¬Dd, Dd}

DP = {¬P, PA, PB}

M = {CM , CA, CD, CP }

D(M) = {CM → {CA}, CA → ∅, CD → {CA, CP }, CP → {CD}}

6.3.7 General overlap in terms of case simulation

Though the case differ in terms of input, some elements have been equal throughout the course of
simulation:

• Each simulation concerns 350 elements.

• Each simulation will concern the years 2008 and 2009, given a step-size of months.

• The number of replications is 50.
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Chapter 7

Results

7.1 Data analysis

7.1.1 Membership volume

We have visualized the development of the membership volume in the data which can be found
in figure 7.1. The total number of people in the data-set is 125,675. An overall impression of
the graph shows that the overall level of membership volume seems to be showing some minor
fluctuations throughout the year. At the turning of the year the membership volume seems
to fluctuate somewhat more intensively. To investigate these fluctuations, some basic statistics
concerning yearly membership volume development are depicted in table 7.1.

Figure 7.1: Total membership volume development visualized using the full time window (i.e.
01-’06...12-’10)

Year 2006 2007 2008 2009 2010
Minimum 105,372 103,247 102,348 103,823 102,857
Maximum 105,515 103,386 102,521 104,381 103,839
Mean 105,449.5 103,314 102,436.25 103,984,92 103,021.25
Standard deviation 42.52 45.88 62.5 148.07 266.44
Median 105,450.5 103,304 102,455.5 103,954.5 102,951.5

Table 7.1: Basic statistic properties of membership volume over the period 2006-2010.
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We observe the following six interesting points in the data series:

1. In the transition 2006 → 2007 we observe a drop in membership volume. The absolute drop
is 1,986 people, which is a drop of 1.88% (Jan 2007 vs. Dec 2006).

2. In the transition 2007 → 2008 we again observe a drop in membership volume. Compared
to irregular fluctuations the drop is still fairly large i.e. 833 people, which is a drop of just
0.81% (Jan 2008 versus Dec 2007).

3. Opposed to the previous year transitions, the transition 2008 → 2009 shows an increase of
the membership volume. We observe an increase of 1,916 people, which is an increase of
1.87%. (January 2009 versus December 2008)
This phenomenon has been discussed with company X. The rise in insured membership vol-
ume is caused by the acquisition of another healthcare insurance company Y.

4. From January 2008 to February 2008 the membership volume seems to reduce with a relative
large amount compared to other irregular fluctuations. The drop towards February 2009
concerns 0.41% of the membership volume of January 2009.

5. The transition of 2009 → 2010 is relatively equal to the drop of 2007 → 2008. We observe
a drop of 805 persons which is a drop of 0.78% (January 2010 versus December 2009).

6. The last interesting point in the data is a peek in July 2010 in the membership volume.
Compared to June 2010 we identify an increase of 982 persons, which is an increase of
0.95%. The increase is followed by an immediate drop of 887 people which is a percentage
of 0.85%.

7.1.2 In- and Outflow quantification

As we have seen the membership volume fluctuates over time, we will now present the correspond-
ing in- and outflow figures. A graphical representation is depicted in figure 7.2 which depicts
quantities relative to the membership-set volume at the given point in time (i.e. the inflow at
June 2006 is relative to the total membership-volume at June 2006).

Figure 7.2: In and outflow quantification, relative to the total membership volume in the given
month.

The yearly in- and outflow peaks explain the shifts in membership volume at the year turnings.
We also identify the outflow being “higher” than normal in January 2009, which explains the ad-
ditional decline in February 2009. We also observe both the in- and outflow to be extremely high
in July 2010. This explains the peak in the corresponding volume as the outflow of July will be
propagated to the membership volume in August 2010.
Overall we observe that irregular in- and outflow does not influence the membership volume in a
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significant manner.

In table 7.2, the mean and standard deviation of the relative indirect in and outflow are presented.
We omitted the yearly in- and outflow and the extraordinary in- and outflow of July 2010. We
can verify that over the years, the indirect in- and outflow has rather been constant for the total
membership.

Type Inflow Outflow
Mean 0.002572 (0.2572%) 0.002654 (0.2654%)
Standard deviation 0.0004245 (0.04245%) 0.000468 (0.0468%)

Table 7.2: Basic statistic properties of relative indirect in/outflow volumes over the period 2006-
2010.

7.1.3 Gender distribution

Now we have looked at membership volume as a whole, it makes sense to look at the impact of
in- and outflow on the gender-distribution. The membership volumes of both women and men is
depicted in figure 7.3.

Figure 7.3: Total membership volume development visualized using the full time window, men
and women distinct.

We observe that both the male and female volume develop almost equally. The male and female
membership are roughly equal and we observe the division to stay rather constant. If we compare
the number of female and male persons each month, it turns out to be roughly the same division
throughout the given four years as is presented in table 7.3.

Type Male share Female share
Mean 0.488346333 0.511653667
Standard deviation 0.000755843 0.000755843

Table 7.3: Male and female share average and associated standard deviation

7.1.4 Age based healthcare insurance market activity

Let us consider whether the division as proposed by BS Health consultancy also holds for the data
provided. It is important to note that we are actually looking to see similar behavioural properties
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in the data.

Figure 7.4: Average regular inflow [2007,2010] and regular outflow [2006,2009] of the healthcare
data.

We have presented two graphical representations of the regular in- and outflow in figure 7.4. There
are however some important aspects of these visualisations which should be taken into account:

• The first graph represents the average regular inflow mobility. That is, the averages of the
data points January 2007, January 2008, January 2009 and January 2010. Note that for the
inflow, the 0-year old are omitted as these concern birth-rates. Also note that the data is
based upon all membership-entrances in January. Thus, depending on the administration of
company X there might be some irregular inflow part of the data as well.

• The second graph represents the average regular outflow mobility. That is, the averages of
the data points December 2006, December 2007, December 2008 and December 2009. Note
that we do not possess the knowledge of reason for leaving. Thus we can not distinguish
between outflow caused by switching or caused by death.

When taking a look at the graphs in figure 7.4 we notice a structure which is somewhat similar to
the proposed mobility by BS Health consultancy. We notice however that the share in mobility is
somewhat lower though this could be the case because the data is possibly from an earlier time
frame (this seems to be the case as the BS Healthcare Consultancy research is also conducted in
2012).

For the outflow graph, we see the shares rising as from about 75 years and older. As indicated,
we could not filter out outflow caused by death. It is very likely that the high amount of outflow
in the older regions is caused by decease cases.
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7.1.5 Assessing the reconstruct-ability of pathways

As indicated the focus of the research is not on pathway reconstruct-ability. We do however
provide a brief overview of the current data to assess whether the assumption that pathways are
constructable actually holds given the data. We will present our assessment in an informal fashion.

• The data does not contain any referral information. Whether this information is partly
available within a healthcare insurance company database is not specifically known. The
absence of any referral information might be a bottleneck in the quality of potential pathways
constructed using the given data.

• 312,556 (100%) out of the total of 312,556 declaration data-rules consist of a patient identifier.

• 312,556 (100%) out of the total of 312,556 declaration data-rules consist of a treatment date.

• 312,556 (100%) out of the total of 312,556 declaration data-rules consist of a declaration
date.

• 48,720 (15.6%) out of the total of 312,556 declaration data-rule are missing an identification
parameter of the corresponding healthcare provider.

• 312,556 (100%) out of the total of 312,556 declaration data-rules consist of a treatment
category.

• 304,720 (97.5%) out of the total of 312,556 declaration rules are missing a treatment descrip-
tion.

• 200,594 (64.2%) out of the total of 312,556 declaration rules are missing a treatment category.

Given the fact that each entry has a 100% score on both treatment and declaration date we should
technically be able to construct sequences of institute visits. The real problem is however in show-
ing that visits within a sequence are actually related. The lack of knowledge of any form of referral
does however pose the problem that we have no guarantee that the visits within the sequences
found are actually related. The 100% availability of treatment categories is sadly not particularly
helpful as several types of declarations belong to the same category (i.e. as an example category 9
has both very unrelated dentist and hospital declarations). This is probably due to the fact that
there are only 13 categories defined. The vast amount of missing values with respect to treatment
descriptions and categories are not helpful either.

It remains questionable whether the data concerning declaration rules is representative for the
actual data that is available for a healthcare insurance company. Given the dataset reconstruction
of institutional pathways would be a very error prone task.

7.1.6 Data analysis in conclusion

We have briefly summarized the general lessons learned throughout the data analysis phase with
respect to the problem at hand:

• The data is rather dated with respect to some of the assumptions made in model definition.
Because of this fact we can not measure the impact of the increased switching behaviour
(i.e. in 2011, 2012) with respect to membership volume.

• The volume seems to remain roughly constant throughout a year. This might lead to a
potential simplified version of the proposed membership model as we would be able to
neglect irregular mutation.
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• The gender distribution seems to remain roughly equal throughout the course of the data.
Even the regular switching points seem not to influence the distribution. It seems that
activity on the healthcare insurance switching market does not depend on gender.

• The data lacks information on the actual reason of a person leaving the data set (i.e. decease
cases versus actual switching). It also lacks the reason of entering, birth is however a more
easily inferable element. We therefore have omitted age distribution development (as we
actually did look in to this) as we can not pinpoint the different causes of the changing
distributions in age, which might lead to false conclusions. We do note that in general the
share of “younger” people increases throughout the course of a year whereas the share of
“elderly” decreases.

• The age-dependent switching behaviour as proposed within literature seems to be present in
the data as well.

• The declaration data seems to lend itself for reconstruction of sequences of treatments. It
does seem however to be missing accurate information to determine the interrelatedness of
the elements within a sequence constructed.

7.2 Case evaluation

Within this section we have documented the results of simulation of the proof of concept cases. For
each of the cases we have performed Normal-distribution fitting, all corresponding visualisations
can be found in appendix F. For some cases, the distributions are of equal quality in which we
will only show one figurative visualization or no visualisation at all. In cases where the quality of
the fits seems to vary we will present more examples with corresponding motivation.

For each case we have provided expected values (E(θ)) the actual computations of these values
are omitted. Often these computations concern simple trend extrapolation though in case VI this
is a more complex calculation.

On average the simulation averages show good approximate behaviour with respect to the ex-
pected values. Because they are a result of a probabilistic model there will be some error. Gener-
ally though fluctuation with respect to this error is rather small, which indicates that the system
actually follows the predicted behaviour. Whenever we present error measures these are always of
the form ε|E(θ)−x̄θ|. Thus if E(θ) = 1.0 and x̄θ = 1.5, then ε = 0.5 and if E(θ) = 1.0 and x̄θ =
0.5, then ε = 0.5.

We have not assessed any measures with respect to prediction errors made by the system. We just
identify the absolute error values and are merely interested in the behaviour of the system and
the nature of the results. The prediction errors do not seem to be extremely off with respect to
the expected values.

Due to the large amount of variables predicted we have randomly tested some of the proposed
normal distributions using a χ2-test by means of the chi2gof function of MATLAB. All proposed
distribution averages and standard deviations passed these χ2-tests. As we have not tested all
data points we have decided not to report these facts within case result descriptions.
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7.2.1 Case I

The results of the simulation are depicted in table 7.4. The simulation has respected the “regular”

Year: 2008 2009
Month: 1 → 12 1 → 12
Statistic:
E(|Mz|) 92 88.32
x̄|Mz| 92.54 88.14
s|Mz| 8.35247 8.32751
ε 0.54 0.18
E(|¬MR

z |) 158 161.68
x̄¬MR

z
158.2 162.6

s¬MR
z

8.41524 8.5117
ε 0.2 0.92
E(|¬M I

z |) 100 100
x̄¬MI

z
99.26 99.26

s¬MI
z

7.96884 7.96884
ε 0.74 0.74

Table 7.4: Results of 2-year simulation of case I

mutation property. i.e. the membership numbers did not change throughout a projected year.
Thus for January, February,..., December 2009, x̄|Mz| equals 92.54.

The predicted values for each data point show a good fit with respect to a normal distribution. As
an example we have visualised the normal distribution for x̄¬MR

z
of both 2008 and 2009 combined

in figure 7.5. The additional distribution fits are presented in appendix F.

Figure 7.5: Normal distribution fit to x̄¬MR
z

for both 2008 and 2009; Case I

The results are even very close to the actual results in the generated data. This should come as
no surprise. As we have actually defined P (Xt+1 = ¬MR

z |Xt = Mz) = 4
100 (for t mod 12 = 0),
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we expect the value of ¬MR
z being 92− (92 ∗ 4

100 ) = 88.32.

7.2.2 Case II

Case II has returned more differing data-points compared to the first case as we have introduced
irregular mutation of the membership set in this case. The average results and standard deviations
are shown in tables 7.5, 7.6 and 7.71.

As we have introduced the notion of “irregular” switching behaviour, we expect every predicted
average value for both |Mz| and |M I

z | to have slightly different values.
We expect |Mz| to increase to 103.32 in the first year of simulation after which we will expect it
to decline to 99.48 again on January 2009.

As we can identify in the output, the simulation initially predicts too many people to be a mem-
ber of Mz (exactly one person). It predicts 1.7 people too less in ¬M I

z and as a consequence it
predicted 0.7 person more than expected in ¬MR

z , not shown in table.

We additionally identify that the simulation shows behaviour as we expect. The prediction error
fluctuates though the fluctuation stays within some acceptable boundaries:

0.70 ≤ εE(|Mz|)−x̄|Mz|
≤ 1.12

1.37 ≤ εE(|¬MI
z |)−x̄|¬MIz |

≤ 1.82

0.67 ≤ εE(|¬MI
z |)−x̄|¬MIz |

≤ 0.7

The simulation of case II shows us that the number of replications might need to be increased in
order to get more accurate results. It does however also show that the simulation results in the
same behaviour as expected.

Year: 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
|Mz| 100 101 101 101 102 102 102 103 103 103 104 104
E(|Mz|) 100 100.31 100.61 100.92 101.22 101.52 101.82 102.13 102.42 102.72 103.02 103.32
x̄|Mz| 101 101.3 101.66 102.04 102.26 102.54 102.76 102.98 103.34 103.64 103.82 104.1
s|Mz| 8.26 8.24 8.32 8.49 8.54 8.50 8.46 8.34 8.45 8.50 8.56 8.46
ε 1.00 0.99 1.05 1.12 1.04 1.02 0.94 0.85 0.92 0.92 -0.80 -0.78
|¬M I

z | 92 91 91 91 90 90 90 89 89 89 88 88
E(|¬M I

z |) 92 91.69 91.39 91.08 90.78 90.48 90.18 89.87 89.58 89.28 88.98 88.68
x̄|¬MI

z | 90.3 90 89.64 89.26 89.04 88.76 88.54 88.32 87.96 87.66 87.48 87.2
s|¬MI

z | 7.58 7.58 7.67 7.69 7.77 7.63 7.54 7.53 7.65 7.67 7.69 7.67
ε 1.70 1.69 1.75 1.82 1.74 1.72 1.64 1.55 1.62 1.62 1.50 1.48

Table 7.5: Results of 2-year simulation for Mz,|¬M I
z | in 2008; Case II

In terms of Normal-distribution fitting in case II we again observe acceptable results. An interest-
ing normal distribution fit is a fit fitting ¬M I

z at January, June and December of 2009, depicted
in figure 7.6. It is interesting to note the decrease in average volume and the decrease in terms of
standard deviation.

1Note that there is a minor differences between standard deviations calculated in python versus MATLAB. Both
languages have been used in result analysis.
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Year: 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
|Mz| 100 101 101 101 102 102 102 103 103 103 104 104
E(|Mz|) 99.48 99.78 100.07 100.36 100.65 100.94 101.23 101.52 101.81 102.10 102.38 102.67
x̄|Mz| 100.26 100.48 100.94 101.2 101.56 101.8 102.08 102.4 102.7 102.9 103.3 103.56
s|Mz| 7.88 7.91 8.01 7.96 7.94 8.07 8.10 8.03 8.07 8.13 8.21 8.16
εE(|Mz|)−x̄|Mz|

-0.78 -0.70 -0.87 -0.84 -0.91 -0.86 -0.85 -0.88 -0.89 -0.80 -0.92 -0.89
|¬M I

z | 88 87 87 87 86 86 86 85 85 85 84 84
E(|¬M I

z |) 88.39 88.09 87.80 87.51 87.21 86.92 86.63 86.34 86.06 85.77 85.48 85.20
x̄|¬MI

z | 86.94 86.72 86.26 86 85.64 85.4 85.12 84.8 84.5 84.3 83.9 83.64
s|¬MI

z | 7.67 7.71 7.69 7.56 7.54 7.54 7.61 7.61 7.55 7.57 7.50 7.49
ε 1.45 1.37 1.54 1.51 1.57 1.527 1.51 1.54 1.56 1.47 1.58 1.56

Table 7.6: Results of 2-year simulation for Mz,|¬M I
z | in 2009; Case II

Year: 2008 2009
Month: 1→12 1→12
Statistic:
|¬MR

z | 158 162
E(|¬MR

z |) 158 162.13
x̄|¬MR

z | 158.7 162.8
s|¬MR

z | 8.61 8.13
ε -0.7 -0.67

Table 7.7: Results of 2-year simulation for |¬MR
z |; case II

Figure 7.6: Normal distribution fit to x̄¬MI
z
in 2009; Case II
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7.2.3 Case III

The focus of our analysis within case III is with respect to the system’s behaviour as we have
shown in case I and II that the individual Markov chains simulate according to expectation. As
such we do not present ε-measures here.

Only members of age-groups A2 and A3 are active on the healthcare insurance switching market.
Thus A1 and any membership group should be constant throughout simulation, which is the case
as can be seen in table 7.8.

A3 on the other hand does show some mutational activity, on a regular basis. It should show a
decline with respect to A3,Mz wheras the decline in members should be added to A3,¬MR

z . As
the contents of A3 and any membership set should only change at January 2009, we have also
depicted the results in table 7.8.

As A2 shows irregular behaviour, any combination with either Mz and ¬M I
z should be different

throughout the course of simulation. As we can see in tables 7.9 and 7.10, the simulation respects
the expected behaviour and shows little prediction errors with respect to the expected values.

Year: 2008 2009
Months: 1→12 1→12
E(|A1,Mz|) 25 25
x̄|A1,Mz| 24.46 24.46
s|A1,Mz| 4.47 4.47
E(|A1,¬M I

z |) 23 23
x̄|A1,¬MI

z | 23.52 23.52
s|A1,¬MI

z | 4.27 4.27
E(|A1,¬MR

z |) 39.5 39.5
x̄|A1,¬MR

z | 38.84 38.84
s|A1,¬MR

z | 5.56 5.56
E(|A3,Mz|) 25 21
x̄|A3,Mz| 24.94 20.74
s|A3,Mz| 4.34 4.18
E(|A3,¬M I

z |) 23 23
x̄|A3,¬MI

z | 23.06 23.06
s|A3,¬MI

z | 5.05 5.05
E(|A1,¬MR

z |) 39.5 43.5
x̄|A3,¬MR

z | 39.88 44.08
s|A3,¬MR

z | 5.35 5.48

Table 7.8: Results of A1 and A3 and any membership-group; Case III

We identify that case III respects the expected behaviour. We additionally note that the monitors
placed on combinations of membership and age states result in good quality normal distributions
as well. As an example we have depicted the combination Mz, A3 for both 2008 and 2009 in figure
7.7.

7.2.4 Case IV

With respect to estimation errors (though omitted in result table 7.11) and behaviour.

The case differs however with respect to the previous cases if we take a look at normal distribution
fitting quality. This specifically occurs in case of illness as one can identify in figure 7.8. The reason
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Year: 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
E(|A2,Mz|) 50.00 50.31 50.61 50.91 51.21 51.51 51.81 52.10 52.40 52.69 52.98 53.26
x̄|A2,Mz| 50.48 50.82 51.02 51.44 51.76 52.08 52.36 52.62 52.94 53.3 53.58 53.82
sE|A2,Mz| 5.87 5.79 5.72 5.65 5.42 5.64 5.73 5.81 5.68 5.73 5.70 5.71
E(|A2,¬M I

z |) 46.00 45.69 45.39 45.09 44.79 44.49 44.19 43.90 43.60 43.31 43.02 42.74
x̄|A2,¬MI

z | 45.68 45.34 45.14 44.72 44.4 44.08 43.8 43.54 43.22 42.86 42.58 42.34
s|A2,¬MI

z | 5.91 5.87 5.84 5.77 5.73 5.73 5.58 5.54 5.33 5.44 5.47 5.54
E(|A2,¬MR

z |) 79 79 79 79 79 79 79 79 79 79 79 79
x̄|A2,¬MR

z | 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14
s|A2,¬MR

z
| 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41

Table 7.9: Result of A2 and any membership group in 2008; Case III

Year: 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
E(|A2,Mz|) 53.55 53.83 54.11 54.39 54.67 54.94 55.22 55.49 55.76 56.03 56.29 56.56
x̄|A2,Mz| 53.98 54.36 54.7 54.96 55.3 55.58 55.92 56.24 56.52 56.76 57.04 57.26
sE|A2,Mz| 5.74 5.80 5.99 6.07 5.92 5.83 5.71 5.76 5.85 5.91 5.95 5.96
E(|A2,¬M I

z |) 42.45 42.17 41.89 41.61 41.33 41.06 40.78 40.51 40.24 39.97 39.71 39.44
x̄|A2,¬MI

z | 42.18 41.8 41.46 41.2 40.86 40.58 40.24 39.92 39.64 39.4 39.12 38.9
s|A2,¬MI

z | 5.57 5.67 5.76 5.92 5.95 5.90 5.87 5.83 6.05 6.00 6.04 6.16
E(|A2,¬MR

z |) 79 79 79 79 79 79 79 79 79 79 79 79
x̄|A2,¬MR

z | 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14 79.14
s|A2,¬MR

z
| 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.41

Table 7.10: Result of A2 and any membership group in 2009; Case III

Figure 7.7: Normal distribution fit to x̄|Mz,A3|for both case 2008 and 2009; Case III

for this is the fact that given x̄ and s, we would expect a Normal distribution that for a sufficient
share consists of values smaller than 0. Logically 0 forms a bare minimum with respect to the
number of ill people. Note that the Normal distributions for Mz, A1,¬Dd show better results.
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Year: 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
E(|Mz, A1,¬Dd|) 23.00 22.93 22.86 22.79 22.72 22.65 22.59 22.52 22.45 22.39 22.32 22.26
x̄|Mz,A1,¬Dd| 23.72 23.7 23.64 23.52 23.44 23.36 23.34 23.28 23.28 23.16 23.14 23.08
s|Mz,A1,¬Dd| 4.33 4.28 4.26 4.26 4.32 4.27 4.38 4.48 4.48 4.43 4.45 4.49
E(|Mz, A1, Dd|) 2.00 2.07 2.14 2.21 2.28 2.35 2.41 2.48 2.55 2.61 2.68 2.74
x̄|Mz,A1,Dd| 1.74 1.76 1.82 1.94 2.02 2.1 2.12 2.18 2.18 2.3 2.32 2.38
s|Mz,A1,Dd| 1.34 1.36 1.42 1.50 1.56 1.59 1.52 1.55 1.55 1.55 1.53 1.60
Year: 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
E(|Mz, A1,¬Dd|) 22.19 22.13 22.06 22.00 21.93 21.87 21.81 21.75 21.69 21.62 21.56 21.50
x̄Mz,A1,¬Dd 22.96 22.86 22.86 22.78 22.72 22.64 22.62 22.54 22.48 22.4 22.34 22.32
sMz,A1,¬Dd 4.51 4.61 4.55 4.59 4.48 4.38 4.39 4.41 4.43 4.41 4.39 4.39
E(|Mz, A1, Dd|) 2.81 2.87 2.94 3.00 3.07 3.13 3.19 3.25 3.31 3.38 3.44 3.50
x̄Mz,A1,Dd 2.5 2.6 2.6 2.68 2.74 2.82 2.84 2.92 2.98 3.06 3.12 3.14
sMz,A1,Dd 1.63 1.60 1.56 1.59 1.59 1.62 1.65 1.71 1.62 1.75 1.73 1.72

Table 7.11: Case IV - Results

Figure 7.8: Normal distribution fit to x̄|Mz,A1,Dd| for January, June and December of 2008

7.2.5 Case V

Case V does not differ much with respect to case IV as can be seen in figure 7.12. Practically
the only difference is the fact that the number of people being ill are either traversing pathway A
or pathway B. Though the predicted behaviour and values are again very acceptable the normal
distribution fits are all of bad quality. This is again due to the expected little amount of people
in either pathway. The corresponding distribution fits can be found in appendix F.

7.2.6 Case VI

Interesting in case VI is the behaviour of both the expected and predicted values. Like in all other
cases the predicted and expected values are very close and roughly show similar behaviour. We
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Year: 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
E(|Mz, A1, Dd, PA|) 0.00 1.00 1.03 1.07 1.10 1.14 1.17 1.21 1.24 1.27 1.31 1.34
x̄|Mz,A1,Dd,PA| 0 0.92 0.94 1.04 1.1 1.1 1.22 1.24 1.28 1.3 1.34 1.4
s|Mz,A1,Dd,PA| 0.00 0.96 0.95 0.96 0.92 0.92 0.86 0.86 0.87 0.88 0.95 0.98
E(|Mz, A1, Dd, PB |) 0.00 1.00 1.03 1.07 1.10 1.14 1.17 1.21 1.24 1.27 1.31 1.34
x̄|Mz,A1,Dd,PB | 0 1.06 1.08 1.14 1.18 1.24 1.24 1.24 1.3 1.38 1.4 1.42
s|Mz,A1,Dd,PB | 0.00 0.90 0.89 1.00 1.03 1.05 1.01 0.99 1.00 1.02 1.02 1.00
Year: 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
E(|Mz, A1, Dd, PA|) 1.37 1.40 1.44 1.47 1.50 1.53 1.56 1.60 1.63 1.66 1.69 1.72
x̄|Mz,A1,Dd,PA| 1.5 1.56 1.6 1.6 1.62 1.64 1.64 1.7 1.76 1.76 1.8 1.82
s|Mz,A1,Dd,PA| 1.06 1.06 1.08 1.08 1.09 1.07 1.07 1.08 1.11 1.11 1.10 1.11
E(|Mz, A1, Dd, PB |) 1.37 1.40 1.44 1.47 1.50 1.53 1.56 1.60 1.63 1.66 1.69 1.72
x̄|Mz,A1,Dd,PB | 1.42 1.52 1.56 1.58 1.58 1.58 1.62 1.68 1.72 1.78 1.82 1.86
s|Mz,A1,Dd,PB | 1.00 0.96 1.00 1.06 1.06 1.06 1.06 1.09 1.13 1.17 1.16 1.17

Table 7.12: Case V - Results

expect a steady state solution that is not predicted by the simulation. We do note the predicted
values to be very close to a steady state distribution.
The results are presented in table 7.13. A visualization of the results of case VI can be found in
figure 7.9.

Year: 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
E(|Mz, A1, Dd, PA|) 0.00 1.00 6.55 8.12 7.93 7.31 7.85 8.50 8.76 8.63 8.57 8.65
x̄|Mz,A1,Dd,PA| 0 0.96 6.66 8.36 8.3 7.66 8.02 9.04 9.22 9.18 9.06 8.7
s|Mz,A1,Dd,PA| 0.00 0.96 2.46 3.06 3.12 2.49 2.63 2.68 2.93 3.12 3.22 3.01
E(|Mz, A1, Dd, PB |) 0.00 1.00 5.95 4.07 2.25 1.42 2.29 2.68 2.49 2.13 2.09 2.21
x̄|Mz,A1,Dd,PB | 0 1.12 6.16 4.14 2.46 1.22 2.38 2.66 2.22 2.2 2.14 2.62
s|Mz,A1,Dd,PB | 0.00 0.99 2.20 1.71 1.73 1.01 1.47 1.57 1.51 1.54 1.46 1.60
Year: 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009
Month: 1 2 3 4 5 6 7 8 9 10 11 12
Statistic:
E(|Mz, A1, Dd, PA|) 8.75 8.77 8.75 8.74 8.76 8.77 8.77 8.77 8.77 8.77 8.77 8.77
x̄|Mz,A1,Dd,PA| 8.72 9.02 8.78 9.02 9.28 9.68 9.64 9.4 9.54 9.7 9.26 9.32
s|Mz,A1,Dd,PA| 3.19 2.98 2.91 2.69 2.88 2.87 2.76 2.81 2.87 2.93 3.02 3.55
E(|Mz, A1, Dd, PB |) 2.27 2.23 2.18 2.18 2.20 2.21 2.20 2.19 2.19 2.19 2.19 2.19
x̄|Mz,A1,Dd,PB | 2.12 2.16 2.24 2.36 2.18 2.36 2.5 2.14 2.1 2.44 2.8 2.34
s|Mz,A1,Dd,PB | 1.64 1.65 1.32 1.40 1.85 1.53 1.65 1.23 1.24 1.50 1.98 1.57

Table 7.13: Case VI - Results

73 Defining a financial forecasting model for healthcare insurance companies / Version 1.0



Technische Universiteit Eindhoven University of Technology

Figure 7.9: Visualization of E(|Mz, A1, Dd, PA|), E(|Mz, A1, Dd, PB |), x̄|Mz,A1,Dd,PA| and
x̄|Mz,A1,Dd,PB | in case VI.

7.2.7 Case evaluation in conclusion

The proof of concept cases have brought the following insights with respect to collaborative Markov
chain simulation:

• Prediction accuracy seems to be rather good with respect to the expected values. We expect
errors to go down when the number of replications will be increased.

• According to the central limit theorem (i.e. 50 replications of simulation per case) the
simulation results should follow a normal distribution, which is the case.

• In case of a low expected value of a certain state combination, combined with a minimum
value normal distribution fitting quality is rather low.

7.3 Managerial implications and recommendations

7.3.1 Implementing the model proposed

Implementation strategy

Using the lessons learned during data analysis and proof of concept case execution we have con-
structed an implementation strategy that should support healthcare insurance companies in imple-
menting the proposed system. In general the proposed scheme shows similarities with the general
methodology used within this research though it is specifically tailored keeping the proposed model
in mind. A graphical representation of the proposed implementation strategy is depicted in figure
7.10

1. Requirement elicitation phase
In the requirement elicitation phase one has to determine what the forecasting-requirements
are. Questions one might ask within this phase are:

• What amount of diseases will be simulated? Are we assessing only one disease or are
we implementing multiple diseases which potentially influence each other’s impact on
an individual?

• What is the typical time-span of prevalence? Is a person typically ill for a couple of
days? months? years?
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• What is a suitable time step-size given the typical time-span of prevalence?
• What kind of institutional pathway model to use? i.e. pathway-based versus institution

based?
• What is a suitable amount of simulation elements?
• What is a suitable time-span in terms of simulation?
• . . .

The end goal of this phase is to have an idea of what one wants to predict, what is a suitable
time-frame, what type of institutional pathway modelling is associated etcetera.

2. Model design phase
In the model design phase, one materializes the requirements set earlier into a concept model.
One should design basic models for all elements identified and design a conceptual version
of the system of collaborative Markov chains which should be used for simulation.

3. Parameter identification phase
In this phase we analyse the concept model designed in the previous phase with respect to
the “transition parameters” needed by the model. Within this case we again need to answer
several questions. Questions one might ask within this phase are:

• What parameters do we need to estimate in general?
• What parameters can we estimating using company data?
• What parameters have to be estimated using axillary sources?
• What parameters might be dependent?
• How to solve dependent parameters? i.e. Use one model parameter to model a certain

phenomenon or use combinations of parameters?
• What are “bottleneck” parameters? i.e. What parameters are complex in terms of

estimation, data quality etcetera.
• . . .

4. Model refinement phase
Within this phase one might refine the model defined earlier. The refinement should be
based on the parameter identification phase. If some parameter for some reason turns out
not to be predictable we might refine the model accordingly. Note that modification of the
model might lead to new parameters as well. The new parameters should again be identified
after which we should potentially refine the model again. The parameter identification and
model refinement phase are of an iterative fashion and might be executed multiple time.

5. Parameter estimation phase
If the modeller is certain that the model is correct, sound etcetera and all associated pa-
rameters can be estimated, the modeller should start estimation. For each parameter, the
modeller is able to use a different prediction technique. If within the parameter estima-
tion phase, parameters do turn out to be hard to predict or even unpredictable, the model
refinement and parameter identification phase should again be executed.

6. Model implementation phase
If the modeller is certain that all parameters within the proposed model are correctly es-
timated the modeller can start implementing the model. We advise to use a simulation
framework which roughly follows the same structure as the one implemented for this specific
research.

7. Simulation phase
If the model is implemented within the simulation framework of choice, simulation of the
system of collaborative chains needs to be performed. Note that in the case of a non cyclic
dependency graph one can also compute the steady state distribution in product form.
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8. Evaluation phase
The final phase is the evaluation phase in which the simulation output needs to be evaluated.
If possible the simulation output should also be assessed in terms of correctness. After the
first simulation and evaluation a base-case is constructed. The model is now ready for reuse
and can be used to test several changed parameter settings.

Figure 7.10: Graphical representation of proposed model implementation strategy

Running time

The performance of the simulations are depicted in table 7.14 (The simulation machine specifica-
tion can be found in appendix G.

Case: Average runtime (sec.) Std. on runtime (sec.)
Case I 283 0.4
Case II 238.52 0.71
Case III 516.42 0.61
Case IV 885 1
Case V 968.34 1.57
Case VI 987 4

Table 7.14: Run-time performance of the proof of concept cases

The nature of the simulation framework implementation and associated running time results does
not provide in giving accurate estimations of potential running times for more complex and realistic
scenario’s. We do hover provide a rough basic analysis and some recommendations with respect
to simulation framework implementation.

Basic analysis We identify the performance in terms of running time to be rather bad. We
identify the addition of additional chains to the system as a whole to increase running time. If
we compare case I and II with case III we identify the running time to be roughly doubled, it is
in fact in-between two times the running times of case I and II (case II performs slightly better
with respect to case I). In fact the number of chains as well as the total number of has doubled.
The running time of case IV is actually higher than expect if we calculate the increase in terms
of chains and states. With respect to case V and VI the running time seems to increase less than
expected.
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Simulation environment We have implemented the simulation environment in MATLAB. Though
it is a convenient programming language for defining mathematical solutions it is not very suitable
compared to the class-based approach as used in the research. If a mathematical programming
environment is chosen, such as MATLAB, we advise to utilize the programming environment char-
acteristics. In the case of MATLAB, it is actually optimized for matrix and vector operations. We
therefore advise to utilize this in future implementations. In general it is advisable to implement
the simulation framework in a programming environment that is more suitable for computational
intensive problems.

Monitor implementation Currently updating of the simulator-class monitors is performed
during execution. During simulation we have noted that this negatively affects the running time.
We therefore advise to keep track of each chain’s states throughout simulation and post process
the associated monitors.

Distributed computing As the simulation of collaborative Markov chains is somewhat a repet-
itive endeavour it lends itself perfectly for distributed computing. We strongly advise to use dis-
tributed computation technology such as MapReduce as it positively impacts on the overall running
time.

7.3.2 The need for solid Information infrastructures and -provision

Referral administration

As one should have noted, although we assumed that institutional pathways are actually recon-
structible given declaration data, the dataset provided for this research tends to show the opposite.
What we cannot assess here is the fact whether the query used to generate the dataset was erro-
neous which results in missing values or whether this data is actually unavailable. To gain insight
in this type of data availability an additional assessment concerning healthcare insurance company
data should be made.

A data-element that in any case would help in pathway reconstruction is “referral” information.
Typically one can not go to a polyclinic (for example the group of urologists) without a general
practitioner’s referral. If healthcare providers would provide detailed information regarding referral
behaviour this would greatly help in institutional pathway reconstruction using declaration data.

Medical history

Within discussions with company X it was indicated that people that are “seriously ill”, which
often means that several declarations will be made concerning the person, are assumed not to
switch in terms of healthcare insurance company. Interestingly though company X also indicated
that the medical track-record of a person is not incorporated when a person becomes a member.
Thus new members start with a “clean sheet”.

Investigating this phenomenon in the public domain yields an NZA report in which the switching-
behaviour of chronically disabled [38] is researched. It concludes that it does not differ signifi-
cantly from “healthy” people. We cannot pinpoint whether the claim made concerning switching
behaviour of ill people is correct or not. If it where incorrect it could impact the results of insti-
tutional care pathway based forecasts.

If an ill person does switch it might be the case that we identify his/her future treatment trajec-
tory as a valid institutional care pathway for the specific disease at hand. As the eventual goal of
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the forecast was to be able to assess an increased throughput of “optimal” institutional pathways
given some dimension, we might run into problems here. If we falsely assume a shorter pathway
to be valid, caused by the fact that a part of the real institutional care pathway was backed by a
different healthcare insurance company, we might underestimate potential costs.

Given the fact that healthcare insurance companies (i.e. healthcare company X) claim that ill
people do not switch though they in fact do not collect any medical track record of new patients,
they can not justify their claim. Given the potential introduction of erroneous analyses it might
be wise to agree on recording past medical declarations/data.

7.4 Discussion

7.4.1 Level of detail of the model proposed

As we have seen healthcare insurance membership dynamics lend itself to be modelled as a system
of collaborative Markov chains. The model presented within this research as such concerns the
conceptual idea, definitions, analysis and implementation of collaborative Markov chains within
the given context.

Let us discuss the level of detail provided by the model proposition by using the example of
polynomial functions. Let us consider the general formula of polynomials:

f(x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0

A 2nd order polynomial or quadratic function is a specific instantiation of the general formula of
polynomials, in which n=2 yielding:

f(x) = a2x
2 + a1x+ a0

Still this second order polynomial quadratic function on itself is not able to produce function
values. This can only be done if we instantiate a2, a1 and a0. Thus consider:

a2 := a1 := a0 := 1

yields:
f(x) = x2 + x+ 1

The terminology on polynomials basically addresses the concept of hierarchy within modelling.
The question remains how the models defined within this research hold with respect to the analogy
of polynomials as presented just yet.

The basic definition of collaborative Markov chains can roughly be found at the same hierarchical
level as the general formula of polynomials. Within the proof of concept cases we have assessed
some predictive behaviour of systems that follow this generalized structure.

The final model proposition however is an instantiation of the general idea of collaborative Markov
chains. The instantiation has been tested with respect to viability of assumptions in the data
analysis part. We have also roughly tested the behaviour of the instantiation during the proof-of-
concept cases.

Note that the actual predictive quality of the result generated by a collaborative Markov chain
based simulation is strictly depending on the quality of the parameters used as an input. For
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example, if we identify some parameter value increase of 5%, though model a decrease of 5%, the
model will logically output figures that on average depict an outflow of 5%.

In the light of this perspective the results of this exploratory research do not provide a full fledged
prediction, rather a model usable to generate a prediction/forecast equivalent to the first upper
hierarchical model levels in the polynomial based analogy. Finding accurate and usable parameters
with respect to performing real-data based predictions is left as a challenge for the potential user
of the model.

7.4.2 The actual impact of membership dynamics on M(z,t)

As we have seen in the evaluation of the “real healthcare data”, the impact of membership dynamics
with respect to membership volume and structure does not seem to be as large as expected. This
might partly be the case because the NZA research actually shows that the switching rates are
actually growing in 2011 and 2012, whereas the data covers 2006 to 2010. Whether the age-
dependence of switching actually impacts on the membership structure remains to be seen in
future analyses of healthcare insurance company data.

7.4.3 Lack of dependency-based initialization within the research

As indicated we did not implement any dependency-based initialization. This basically results in
the fact that simulation outcome of some of the proof of concept cases would always result in a
certain prediction error with respect to the actual input. Therefore within quantification of the
results we have additionally shown expected values for certain results as we implicitly where able
to incorporate an expected result in the output. An open challenge remains on how to incorporate
dependency based initialization.
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Chapter 8

Conclusion

8.1 Summary

Within this research we have posed the use of a system of collaborative Markov chains as a fi-
nancial prediction model for healthcare insurance companies. After evaluation of related research
we started with an analysis phase in which we have assessed several topics related to financial
forecasting with integration of institutional care pathways. We have provided definitions for the
basic membership-structures of a healthcare insurance company, associated incidence and preva-
lence rates and institutional pathways.

The concepts identified and defined within the analysis phase have been further developed within
the design phase. In this phase we have assessed the applicability of Markov chains as a represen-
tation for membership dynamics. Consequently we have assessed the applicability of using Markov
chains to represent incidence and prevalence and associated institutional care pathway traversal.
The conditionality of “associated pathway traversal” within this system of three Markov chains
led to the concept of collaborative Markov chains.

The concept of collaborative Markov chains has consequently been introduced. In essence it is
a collection of Markov chains of which some of the transition probabilities in chains within the
collection are influenced by the state of other chains within the collection.

Research within the healthcare market (which was later been backed in the data analysis phase)
showed that age is an influential factor with respect to switching behaviour. In the context of the
proposed system this means that probability parameters in the Markov chain depicting member-
ship might differ according to the age of the corresponding person. Age could be incorporated
within the system as a data-based parameter. However we have motivated the preference to ex-
ploit the general idea of collaborative Markov chains and to incorporate age within a τ -based
Markov chain which we defined as being the “age/vitality” chain. Additionally we have provided
some equivalence rules between the τ -based age/vitality model and a parametrized vitality-based
Markov chain.

In our final design proposition we posed a system of collaborative Markov chains that at least
consists of the following chains:

• Membership model; representing membership dynamics

• Age model; representing age/vitality development over time
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• Disease model; representing incidence and prevalence

• Pathway traversal model; representing associated institutional care pathway traversal

Within the final design proposition we do not specifically enforce any fixed structure. Additionally
we identified that depending on the type of disease(s) assessed the model proposed might even
be modified in terms of its structure. We additionally posed the requirement of the following
dependencies for any basic model:

1. Membership depends on age.

2. Age depends to some extend on disease.

3. Disease depends to some extend on age.

4. Pathway traversal depends on disease.

The cyclic fashion of the dependency graph led to the assessment of sampling techniques for
collaborative Markov chains in general. We have expressed the relation between a random-walk
fashioned simulation strategy and the concept of Gibbs sampling.

Within the research we have additionally written a simulation framework to support the proof-of-
concept cases. We have provided a basic description of the framework, introduced the concept of
monitors and discussed the problem of “propagation lag” within the current simulation framework
implementation.

Several properties of a real healthcare dataset have been assessed within the proof of concept
phase of the research. The analysis of the data provides a more solid understanding of the ac-
tual behaviour of membership groups throughout time. Some of the assumptions made during
model definition could be confirmed by means of data analysis (for example the impact of age on
switching behaviour). Other assumptions could not always be backed up accordingly. Specifically
the actual impact of (irregular) membership-set mutation remains somewhat questionable. Note
however that due to both the data being somewhat dated and missing information within the data
we could neither acknowledge nor prove some assumptions.

A set of six proof of concept cases was drawn up which found their basis within the final design
proposition. All cases show that simulation using a system of collaborative Markov chains results
in accurate predictive behaviour. Additionally the results produced by simulation tend to follow
a normal distribution which lends itself for possible further statistical analysis of the simulation
results.

8.2 Conclusions

Within this section we will conclude in what way we have been able to solve the main problem
definition and subsequent research questions as defined within this research. Finally we will relate
the model presented to its intended purpose as defined within the motivational section of chapter
1.

8.2.1 Assessing the main problem definition

Let us revisit our main problem definition:
The problem at hand is the need for a financial forecast model which:
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• Incorporates care demand

• Allows to incorporate associated institutional care pathway traversal and corresponding costs

• Is modular in design such that it allows for multiple case-based forecast computations

Within this research, we defined a system of collaborative Markov chains that can act as a finan-
cial forecasting model. The incorporation of care demand has been accounted for by means of a
membership dynamics Markov model and an associated disease model. A part of the care demand
component is supported by the addition of the age model within the system.

The system of collaborative Markov chains also consists of a institutional care pathway module
which is directly depending on the disease model. Integration of the financial performance of the
associated institutional care pathways has however not been studied in depth as the incorporation
of associated pathway traversal has been studied in depth.

A system of collaborative Markov chains always needs a set of input parameters. Within the cur-
rent simulation framework, case-based forecast computations are executed easily by modification
of a subset of the input parameters.

8.2.2 Answering the research questions

Within this section we try to answer our initial research questions as presented in the introduction
and answer them using the lessons learned throughout execution of the project:

1. How do we define and forecast care demand from a healthcare insurance company perspec-
tive?
We have defined care demand as the proportion of members of a healthcare insurance com-
pany that is or will get ill. We pose to predict future care demand by implementing a
membership model, an age model and a disease model within a system of collaborative
Markov chains.

2. How do we define and incorporate institutional pathways within the care demand prediction
model?
We have defined institutional pathways as the sequence of healthcare providers that a patient
visit during treatment for some disease. We pose to integrate institutional care pathways by
adding an additional model into the system of collaborative models as presented earlier by
a model representing institutional pathway traversal.

3. How do we combine financial pathway performance as a price component with the care de-
mand prediction model?
We have not specifically assessed the combination of financial pathway performance as a
price component with the care demand prediction model. We do note however that combin-
ing financial pathway performance is straightforward as the model proposed will output a set
of people that are predicted to traverse a certain path. Thus given a certain financial per-
formance for a certain pathway, we can easily calculate the associated financial performance
for the predicted group of people traversing the path.

8.2.3 Relating the model to its intended usage

Recall the need for a the model to support a healthcare insurance company in contracting amongst
healthcare providers. The model allows its user to compute future care demands and associated
pathway traversal. Additionally one should be able to compute the associated costs. Though not
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explicitly researched, we could compute these costs by multiplying the predicted traversal with
the average costs of an institutional care pathway.

If the healthcare insurance company has performed a simulation given the current situation in
terms of financial pathway performance a base-line is constructed. The insurer can now assess
what impacts different traversal amounts would have on the predicted associated costs by modi-
fying parameters within the input model.

As an example if a healthcare insurance company has identified that one of three institutional
pathways associated with a disease is optimal, the insurer can assess what the impact of an in-
creased throughput of this (type of) path will be. This knowledge is a valuable asset within
contracting. The healthcare insurance company can confront healthcare providers that are not in
an optimal path that a group of peers is able to perform better. Consequently the insurer could
provide contracts similar to the ones provided within an optimal path.

Note that there are several other strategies here, both in terms of contracting as in general with
respect to increasing throughput. If a certain optimal institutional care pathway differs from less
performing peers on a pathway level (that is different typed providers on the path), the insurer
might try to motivate clients to traverse such path. In such case the insurer might however inter-
fere with the role of the medical specialist. These type of strategical constructs are not subject of
study here.

Thus the model presented can act as a tool to produce base-line simulations and consequently
produce modified cases using parameter modification. The results of these modified cases might
act as a basis for contract negotiations.

8.3 Limitations

8.3.1 Complexity

Comparing the proof of concept cases to real life cases

The proof of concept cases used within research are of a very simplistic nature compared to the
real healthcare system and to real healthcare insurance company data. As one should have noted
however, the input files of the given cases were already of a very complex nature. Apart from
the given complexity when simulating simplistic cases, let us look at the additional layers of
complexity which come into play when choosing simulation of more realistic cases (some of which
we will discuss in more detail in consequent sections):

• Distinction between regular versus irregular membership mutation
Within the proof of concept cases, we have chosen to distinguish between a group of regular
and irregular in/out-flowers. Making this distinction allows us to omit the usage of time-
dependent probabilities. It poses the requirement to be able to estimate what portion of
people would be a “regular” in/out-flower and what portion would be a “irregular” in/out-
flower. It is not very likely that we are actually able to pose such division on all non-member
elements in the system.

• Time dependent probabilities
Within the proof of concept cases and also in the simulation framework itself, we only
implemented time independent probabilities. Even if we would distinguish between regular
and irregular in- and outflow, it is still very unlikely that we would not use any form of time
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dependency. As we have seen in the Vectis research the activity of people as being switchers
is actually rising, thus we expect a larger amount of in- and out-flowers for future years.

• Age groups
In the current proof of concept we only use three age bins. In real life however we would
either use individual ages or age bins of a limited size (for example age-bin size 5) which
increases complexity of both the age/vitality chain as the associated dependencies.

• Ageing
In the proof of concept, members of a certain age group can not get into a new age group. In
real life, people will get older and thus we should allow for such behaviour as well. Within the
simulation framework we have implemented means for defining τ steps as we have proposed
for the age/vitality chain. We have omitted this in the “proof of concept” cases.

• Birth Rates
In the proof of concept we have omitted any form of “person generation”. Thus, in the proof
of concept a person is a member of age-group A1, A2 or A3 and he/she will stay in this
group infinitely. Determining birth rates are a complex problem in general with respect to
systems of collaborative Markov chains.

• Death rates
As with birth rates, we have omitted the death rates in the proof of concept cases. In
essence implementing death rates is not a complicated task, however as it forms a sort
of “synchronized sink” throughout the system it would cause a “drain” effect. Thus when
implementing some sort of death rates one should also implement birth rates (and vice versa).
Note that, as mentioned, in the real healthcare data we do not know the cause of leaving
and thus these rates are hard to estimate.

• One disease versus multiple diseases
In the proof of concept case we have only looked at one fictional disease with some probability
of occurring. In real life cases it might be convenient to model several disease types or even
a collection of (related) diseases.

• Associated pathways
Logically, the number of associated pathways will grow according to the number of diseases
in the system. Additionally note that the number of pathways in our example case, (only
2) is somewhat low. Especially when using institutional integrated care pathways we expect
the number of pathways to be significantly higher.

Providing means for complexity calculation

As we have seen in the previous subsection there are a number of elements within the proof of
concept cases that would be more complex in reality. In this section we will construct a definition
of the complexity of the system provided.

Let us first analyse the common divisor of all previously mentioned elements which add complexity
to the proposed solution in real life cases, i.e.:

“The number of parameters increases”

We therefore deem the number of parameters to be estimated as a valid indicator for the model
complexity. We will assess complexity for both time independent an time dependent probabilities.
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Time independent probabilities Let us look at a chain Ci within a collaborative Markov
environment that has no dependencies at all. Assume the statespace of SCi consists of n states:

SCi = {si1, si2, ..., sin}

Logically, the initial state vector is a 1×|SCi | vector depicting for each state the initial probability.
The transition Matrix is trivially an |SCi | × |SCi | matrix. The total number of parameters to be
estimated in this case is those parameters for the initial state vectors together with those of the
transition matrix, or |SCi |+ |SCi |2.

Now, let us take a certain chain Cj , which has some corresponding set of dependencies d(Cj).
In this case we need to multiply the complexity as defined in the non-dependent case with the
product of all chains in d(Cj).This results in a complexity of:

ΠCk∈d(Cj)|SCk |(|SCj |+ |SCj |
2)

As we now know how to compute the complexity of a single chain, we are also able to compute the
complexity of a whole system as it is just the sum of the complexity of all the chains in the system.

Time dependent probabilities If time dependent probabilities are implemented this adds an
additional multiplicative factor in terms of the number of time-frames used. First let us explore
how this impacts in terms of a single chain.

Let us assume we perform a simulation starting at time t0 and ending at time tmax. We as-
sume a time step size of 1, thus the simulation time line would be t0, t0 + 1, ..., tmax. Now let us
additionally assume that we have a sequence T that indicates time intervals of time dependent
probabilities. For example if T =< t0, ti, tmax >, we have two time-intervals which may consist of
different probabilities, i.e. [t0, ti) and [ti, tmax).If T =< t0, ti, tj , tmax > (in which j > i) then we
would have time intervals [t0, ti), [ti, tj) and [tj , tmax].

Now the question remains, how does the number of time intervals in which we would like to imple-
ment different probabilities affect our complexity measure. Actually this is rather straightforward.
First let us inspect the initial state vector/matrix. Clearly the time frames do not influence the
number of parameters we need to estimate in terms of initialization, so that part is equal to the
time independent case.

Now let us consider the transition matrix. First take the case that we have time indepen-
dent probabilities again, in that case we can draw up T as T =< t0, tmax >. In this case,
we need to estimate only one transition matrix (i.e. |T | − 1). Now let us take a look at the
two-interval case, T =< t0, ti, tmax >. Now we need to estimate two transition matrices, i.e.
ΠCk∈d(Cj)(|SCk |) ∗ |SCj |2 ∗ 2. If we repeat this for the three-interval case we would need a multi-
plication factor of three.

Note that for every n−interval based time sequence T , we have |T | = n+ 1. Thus an n−interval
based time dependent probability system needs a multiplication of n with respect to the number
of transition matrices, where |T | = n+ 1.
Thus we can reformulate the number of parameter estimations needed for transition matrix esti-
mation as:

ΠCk∈d(Cj)(|SCk |) ∗ |SCj |
2 ∗ |T − 1|

Thus the total complexity of a single chain Cj with time interval sequence T can be formulated
as:

ΠCk∈d(Cj)|SCk |(|SCj |+ |SCj |
2 ∗ (|T | − 1))
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8.3.2 Inactive elements

As indicated, to maintain a realistic simulation we need “sink states”. If we do not want our system
to “drain”, we implicitly need “source states” as well. The problem with Markov-based models in
general with a sink state is the fact that the sink will form the steady-state solution of the model
as there is a probability to get into the sink and no probability to get out of the sink.

Within the proposed collection of Markov chains we do present a source state depicting people
that will be born in the future. Thus, there exist elements that are “inactive” at start and will
become active in a later stage of simulation. The existence of inactive elements, a source and
sink state does not limit the model of generating viable results though it poses some additional
challenges for the modeller:

• Amount quantification
A first challenge is to be able to quantify the amount of inactive persons at start of sim-
ulation. In context of the problem at hand this means quantifying the amount of people
expected to be born during the course of simulation.

• Activity-generation strategy
Apart from quantifying the amount of people one has to decide on some “activation strategy”.
Roughly we can define two strategies:

– Probabilistic
In a probabilistic activation strategy, we treat the transition from an inactive state to
an active state as being probabilistic. For example:
P (Xt+1 = xactive|Xt = xinactive)
There is one problem involved with the probabilistic strategy, i.e. as it is a probabilis-
tic process chance exists that not all inactive elements will be activated throughout
simulation.

– Deterministic
If one decides to implement activation deterministically (i.e. by τ -step technique), one
defines a fixed point in time within the simulation at which an inactive element will
become active.
Determination of the actual point in time can of course be of a probabilistic fashion.

To summarize, in the probabilistic strategy we have no guarantee that an inactive element
will actually be active throughout the course of simulation, whereas we do have this guar-
antee in the deterministic strategy. The deterministic strategy however needs some more
administration capacity with respect to the probabilistic strategy.

• Conditional probability quantification
The fact that we incorporate inactive elements might pose some additional challenges to
estimation of related parameters. What this basically means is that in the model proposed,
we would incorporate activation in the age/vitality model and then synchronize throughout
the system using the dependencies within the system. We incorporate it in the age/vitality
chains as in the model proposed being inactive basically means being unborn (or death,
using sink states). The most logical thing to do is to initialize the age/vitality model first
and use a determined initial age/vitality chain to initialize other chains. This means that
we need to take the probability of being inactive into account and scale the probabilities of
membership to active age states.

Concluding on inactive elements, though a limitation factor, the challenging factors can definitely
be handled and if performed correctly it should not affect the quality of the simulation outcome.
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8.4 Future research

We identify the following topics as being of potential interest with respect to future research:

• Recognition and reconstruction of institutional pathways
In this research we assumed that pathways are reconstructible. The question however is
whether this is actually the case. There are several dimensions where one could look at with
respect to recognition and reconstruction of institutional pathways:

– What types of diseases lend themselves for pathway-based quantification and analysis
and how to classify them?

– Is the current data quality of “an average healthcare insurance company” a sufficient
level for pathway reconstruction?

– What algorithms are suitable for reconstruction?

– Can we directly generate Markov chains, pathway based or institutional based, out of
insurance company data?

• Dependency graph analysis for Collaborative Markov chain simulation
As noted we did not implement dependency graph analysis for determination of execution
order within simulation. An interesting topic of study is to assess the effects of different
dependency graph analysis algorithms on the simulation output. Additionally one could
assess how to implement dependency prioritization within the simulation framework.

• Solutions in equivalence with combined state-space based single Markov chains
We can reconstruct the existence of a Kronecker product-based solution to collaborative
Markov chains if it does not have an cyclic dependency graph. Is it however possible to define
a mathematical model that supports cyclic graphs as well? Can we build a combined state-
space based single Markov chain that represents the collaborative Markov chain system?
How do we express the dependencies in the model, given that they are cyclic? i.e. is fuzzy
membership to an execution order a viable solution?

• Investigating strategical steering mechanisms towards optimized institutional
pathways
The model proposed allows for assessing different scenario’s by inputting different parame-
ters. Assume a healthcare insurance company wants to benefit from an institutional pathway
that is rated as “optimal”. How should a healthcare insurance company do this? Should the
company increase the throughput on a given institutional path? Or should the company use
the optimal performance of a given path within contract negotiations?

• Defining a meta-model for collaborative Markov chains
Currently the simulation framework does not allow any form of visualization. Mainly input
tables are used to define chains and dependency relations and such. Can we define a meta-
model for collaborative Markov chain models and consequently instantiate a graphical model
editor?
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Appendix A

The Dutch healthcare system

A.1 Healthcare service levels

Within the healthcare system we define four levels of care [39]:

• Baseline care
Within baseline care (Dutch: “Nulde lijn zorg”) healthcare providers are active which provide
care in terms of a “consulting” or “educational” basis. A characteristic feature of baseline
care is the provision of care to patients before actual health problems occur.

• Primary care
Within primary care (Dutch: “Eerste lijn zorg”) health care providers are active which provide
generalized care. Medical professionals like general practitioners and obstetricians are active
within primary care. A characteristic feature of primary care (as is for baseline care) is the
direct accessibility of patients. There is no need for a medical referral to access primary
health care services.

• Secondary care
Secondary care (Dutch: “Tweede lijn zorg”) mostly acts as a successor of healthcare providers
in primary care. Medical professionals within secondary care are most often referred to as
specialists and operate in hospitals or private medical clinics.

• Tertiary care
The upper level of care, tertiary care (Dutch: “Derde lijn zorg”) concerns academic centers
which provide high-end clinical care. Additionally, academic research is conducted within
these centers. Mental health care is also a part of the healthcare system. Typically the care
provided to mental health patients is concentrated within the primary care level. A patient
can however be referred to the secondary care level in case of more serious mental issues.

In general patients first visit a healthcare provider at the primary care level in case they endure
any mental or physical problems. If the healthcare provider at the primary care level is not able
to cure the patient, he or she will be referred to a healthcare provider at secondary or third level.

A.2 Key actor definition

Though there is no unified model of what actors play a role we define the following key actors within
the Dutch healthcare, apart from actual (governmental) system definitions as follows [40, 41]
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• Health consumers
In general health consumers are represented by all patients. Every natural person either
living or working in the Netherlands is a potential patient within the Dutch healthcare
system. The health consumers (i.e. patients) form the demand side of the Dutch healthcare
system.

• Healthcare Providers
Healthcare providers are all institutes which provide medical care to the healthcare con-
sumers. An institute could for example be a hospital, a general practitioner, a dentist etc.
Healthcare providers act on all four different healthcares service levels defined in section
“Healthcare service levels”. All together they form the demand side of the Dutch healthcare
system.

• Healthcare Insurance Companies
Healthcare insurance companies act as basic as a link between health consumers and health-
care providers. A health consumer pays a premium to the healthcare insurance company.
The healthcare insurance company covers costs of her clients if they are in need of medical
care by a healthcare provider. Depending on the actual healthcare system definition, they
might perform additional activities such as contracting within the healthcare market.

• Government
The government shapes the rules within the healthcare system. Though the intentions are
present to reduce the governmental influence within the market, the governmental role will
always be present within the system. The NZA embodies the government within the sys-
tems and acts as a market manager, making sure the key actors (specifically healthcare
providers and health care insurance companies) behave according to rules set by the govern-
ment. Although the NZA does not have any governmental regulative power, it can set rates,
performance measures and budgets when needed1.

A.3 Actor Interaction

The relations among the different actors defined within the healthcare market are schematically
depicted in figure A.1.

Apart from the four key actors defined earlier we identify a fifth entity in the market scheme,
the NZA. As stated, the NZA represents the government within the system and acts as a market
manager and thus regulates the market. The government itself shapes the market and defines the
rules in which actors may behave. Within the market we identify three interrelated submarkets
[40, 41] being:

• Healthcare insurance market
In this market, healthcare insurance companies compete in order to cover prospective pa-
tients. Patients form the demand side whereas heatlchare insurance companies form the
supply side.

• Healthcare provision market
In this market, healthcare providers compete in order to provide care to patients. Though
historically this market was not vitally present, the new governmental regulations make this
market more vital. Patients form the demand side whereas healthcare providers form the
supply side.

1http://www.nza.nl/organisatie/
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Figure A.1: Schematic representation of the relations among key actors in heatlhcare

• Healthcare purchasing market
In this market, healtcare providers compete in order to get contracts from different health-
care insurance companies. Healthcare insurance companies form the demand side whereas
healthcare providers form the supply side.
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Appendix B

Mathematical definitions

B.1 Time series models

ARIMA-models use two separate models and combine these [16, 23].
First there is the auto-regressive model:

Xt = φ1Xt−1 + ...+ φpXt−p + et (B.1)

As one can see the AR(p)-model stated in equation B.1 is a weighted sum of the previous encoun-
tered value combined with a certain error measure et at time t. For now we specifically assume
E(Xt) = 0 and that Xt is stationary. All et’s follow an identical N(0, σ2

e). The AR(p)-model
depicted is of order p.

Secondly there is the moving-average model:

Xt = et − θ1et−1 − ...− θqet−q (B.2)

The MA model describes a weighted negative sum over the past errors to generate a forecast. In
this case the MA(q)-model depicted in equation B.2 is of order q.
Combining the two models into an ARMA(p,q) yields:

Xt = φ1Xt−1 + ...+ φpXt−p + et − θ1et−1 + ...+ θqet−q (B.3)

Additionally, the lag operator L is deifined as:

LXt = Xt−1, L
2Xt = Xt−2, ..., L

iXt = Xt−i (B.4)

We can now rewrite B.3 as:

(1− φ1L− ...− φpLp)Xt = (1− θ1L− ...− θqLq)et (B.5)

If Xt is not stationary, its first, second, ... dth difference might be:

Xt −Xt−1 = (1− L)Xt

Xt − 2Xt−1 +Xt−2 = (1− L)[(1− L)Xt] = (1− L)2Xt

Adding the difference equation to make the series stationary leads to an ARIMA(p,d,q) model:

(1− φ1L− ...− φpLp)(1− L)dXt = (1− θ1L− ...− θqLq)et (B.6)
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Note that equation B.6 represents a univariate time-series model (i.e. based on one statistical
variable). The multivariate representation is usually presented in vector form, called VARIMA.

B.2 Notation

We denote S as being a set.
The powerset of S is denoted by P(S) = {S′|S′ ⊆ S}.
A sequence of length n over elements in S is defined as a function σ:

σ : {1, 2, ..., n} → S

Notation wise we define:

σ =< s1, s2, ..., sn > in which σ(1) = s1, σ(2) = s2, ..., σ(n) = sn

Additionally we will write σi as a notation for σ(i), representing the ith element in the sequence
σ.
The set of all finite sequences over S is denoted as S∗.

The set of positive integers is denoted as Z and includes 0, as defined in equation B.7.

Z = {0, 1, 2, ...,∞} (B.7)

The set of positive integers excluding 0 is denoted as Z+, as defined in equation B.8.

Z+ = Z\{0} (B.8)
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Appendix C

Data

C.1 Detailed description

C.1.1 Population data

Raw data

The data-set that can be used to quantify M(z,t) is provided in a membership-subscription form,
an example of this is shown in figure C.1. As stated, the data concerns actual healthcare insurance
company membership data ranging from January 1st, 2006 to December 31st, 2010.

The data-rows can be read as:
“Person p with birth year y and gender g was member of the insurance company from date ds to
date dt”.

A person p is identified by a unique person identifier. The exact source of this person’s identi-
fier is unknown and this knowledge is not needed in order to perform the analysis desired (thus
anonymity of the data does not impact the analysis). As one can see in figure C.1, a person
can have multiple membership entries. For example take person p0010818901 (i.e. Identified by ID
0010818901, first column). In this case we see two membership entries for person p0010818901:
1− 1− 2009→ 31− 12− 2009 and 1− 1− 2010→ 31− 12− 2010.

Properties

The population data consists of the following properties:

• File type
Comma separated value (.csv, cross-platform, ’;’ as column denominator)

• Number of rows (including headers)
647, 224

• Number of columns
7

– column 1: Person ID1 (unique for each person p); String of Digits; example:
′0010818901′
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Figure C.1: A screen-shot of the population data provided

– column 2: Person ID2 (unique for each person p); String of Digits; example:
′052149736146774′

– column 3: Birth year; four Digits; example: 1945

– column 4: Gender; 1-character String; either ’M’ or ’V’

– column 5: Date from; Date; example: 1− 1− 2009

– column 6: Date to; Date; example: 31− 12− 2009

Taking a quick look into the data screen-shot gives us already some interesting observations:

• For each year of membership, a person seems to have a new entry in the data. The “year”
of the from and to date seems to equal for each data row.

• People seem to be able to “leave” (cause unknown) the population described by the data
at arbitrary times (look for p0010827801 and p0010827802, lines 137 & 138, in the example
screen-shot).
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C.1.2 Declaration data

Raw data

The data-set consisting of associated declarations concerning the persons which are present in
dataset 1 is depicted in figure C.2. In this data-set we can read the data-row as follows:

Figure C.2: A screen-shot of the declaration data-set version 2 as provided

“Person p has a declaration record for treatment date dt, which was posted as a declaration on
date dd by healthcare provider h. Additionally the declaration consists of a DKG-group indicator,
an optional treatment description and an optional treating institute type.”

Properties

The population data (second version) consists of the following properties:

• File type
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Microsoft excel file (.xlsx extension)

• Number of rows (including headers)
312, 556

• Number of columns
7

– column 1: Person ID (unique for each person p); String of Digits; example: ′10000039′

– column 2: Treatment date; Date; example: 1− 1− 2009

– column 3: Declaration date; Date; example: 1− 1− 2009

– column 4: Declaring institute ID; String of Digits; example ′1952813′

– column 5: DKG group; Integer; example: 3

– column 6: Treatment description; String (Dutch); example: ’Vasculair bepaalde aan-
doeningen’

– column 7; Type of declaring institute; String (Dutch); example: ’Ziekenhuis’

The screen-shot already shows some problems concerning the data:

• Not all declarations consist of an associated declaring institute. The exact cause of this is
unclear, it could either be missing data or an erroneous query.

• The presence of the treatment description seems to be rather sparse.

• The presence of declaring institute seems to be rather sparse.

C.2 Manipulation

The programming language used for the manipulation is python as it is lightweight and very low-
level in terms of basic set-up. The script has a very linear type of execution order and roughly
performs three main activities:

• Generate a person-based membership transaction set

• Calculate for each relevant point in time the number of persons belonging to a population
set (i.e. population-member, inflow, outflow).

• Assess whether the calculated population volumes are correct.

We will present these main steps and supporting steps in more detail, each in a separate paragraph.

Calling the script

One can call the script in the command prompt by typing (given that one is visiting the directory
where the script population_data_maniuplator.py is in):
python population_data_maniuplator.py <input_data>.csv [bin size]
The first argument logically starts the python script. The second argument concerns the input
data file which should have the same structure as the data presented in the previous appendix
section. The third parameter is optional and allows the user to specify a bin size which should be
used to group the population members in terms of age groups. If no bin size argument is supplied,
the default bin size equals 1.
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Initialization

The script consists of a class called PopulationDataManipulator. The class basically comprises
some functions which allow us to manipulate the data-set in such way that it provides in the
needed information concerning population knowledge. Upon class initiation, the population data
and bin size are stored as class objects.

Membership transaction set

In the first phase, the script generates a person-based membership transaction set. For each person,
we store the birth date and person ID. Additionally we store each associated membership interval.
The generated data structure is stored as a class variable called self.membershipTransactions.

Calculation of population memberships

If the membership transaction set is set-up properly, we can use it to generate the membership
volumes (and corresponding in and out-flow). The time-steps used are in terms of months. In
membership generation we respect the following rules:

• If a person has been member for at least one day in a certain month m, this person is
considered member of the population during that month m, i.e P(z,m).

• If a person was not a member in month m, but was a member during month m + 1, the
person is a member of the inflow of month m+ 1, i.e. M←(z,m+1)

• If a person was member of the population in month m, but is not a member during month
m+ 1, the person is a member of the outflow of month m, i.e. M→(z,m). We have chosen this
structure as usually a person leaves somewhere within December. We want all these people
to be par of the outflow set. Note that this might conflict with the basic definition of M(z,t).

The script however does not literally store each person’s individual membership though it counts
the number of memberships of each person per month, resulting in |M(z,t)|, |M←(z,t)| and |M

→
(z,t)|.

Additional assumptions and associated correctness

The script assumes and proves two additional assumptions regarding the transnational input data:

• A transaction in the input data always consists of a from and to date falling in the same
year.

• A person’s transactions can never overlap.

Both assumptions are proven programmatic within the script. This means that each proposition
is tested by means of an assertion.

Result Verification

For each computed month membership volume the script checks whether it is expressible in terms
of its input and output components. Again to prove the correctness property an programmatic
proof is provided. Again we make use of the assert construct which will raise an exception if
the equation is violated.
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Manipulation output

For the given input data the manipulation script passes all tests. The script outputs its generated
population volume data to a .csv file.

102 Defining a financial forecasting model for healthcare insurance companies / Version 1.0



Appendix D

Simulation framework

The simulation framework has been designed in an object-oriented fashion. In this appendix we
have described the main properties and functioning of each class. We have also pointed out some
interesting functions which might need some additional clarification.

D.1 State Class

The state class represents a state object and only consists of one single property:

• id of type char

Thus we just create a handle object called State with an additional id property. The class is a
handle such that when copying a state variable, we actually create a reference . In other words
the following code:

a = State ( ’ a ’ ) ;
b = a ;

Will not create a copy of a but rather a reference to the object created and stored in a. Thus
if we would be able to change some parameter of a State (which is not the case in the current
implementation), this change will be both visible in a and b. A state object thus is not aware
knowledge of its environment.

D.2 Probability Class

The probability class has one mentionable property:

• currentProbability of type Decimal in domain [0, 1].

A Probability class instance has a certain numeric value between or equal to 0 and 1. This value
is (re)settable. As well as the State class, the probability class is not aware of its environment and
is inheriting from the handle class.

Note that the Probability class also has a property timedFunction. The property is intended for
time-based probability values (i.e. non-homogeneous Markov chain) though this is currently not
implemented.
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D.3 Transition Class

The Transition class logically represents a transition in a Markov chain. It connects two State
objects. Additionally it keeps track of a Probability object. As indicated, both the State class
and theProbability class are inheritances of the handle class and thus the Transition class
maintains references.
The transition class consists of the following notable properties:

• fromState of type State

• toState of type State

• probability of type Probability

• markovRenewal of type function_handle

The markovRenewal is of type function_handle. This means that the user of the framework can
specify a function which executes a user-defined Makrov renewal function. Currently, the Markov
renewal function needs a time-stamp as an input (i.e. the simulation framework makes sure the
“current time” is given as an input).
The Transition class provides means for executing the Markov renewal function by means of a
public function called executeMarkovFunciton.

D.4 Chain Class

The Chain class provides means for the user to define a Markov chain. A chain consists of some
states (State class) and provides means for making transitions in between those states (using the
Transition class).
A chain does not have any knowledge of the time its surrounding system is in. It does however
determine its next state by itself.
The Chain class consists of the following notable properties:

• states, a set of State-typed objects.

• transitions, as set of Transition-typed objects.

• initialStateVec, the initial state vector of the chain, an array of decimals all between 0
and 1 with a total sum of 1.

• currentState, a State-typed object depicting the current state.

A chain can determine its next state in two ways. Either by using the initial state vector (which
is only used initially) or just by using the “current state” and its associated transitions. For de-
termining the initial state the chain class just randomly selects a starting point, using the initial
state vector (see function determineInitialState()).

To determine the next state, the chain additionally needs the time of the system that it is con-
taining it. The chain will first determine what the next state will be according to its current
state and the values of the associated transition probabilities. It will afterwards assess whether
the chain should actually update its current state to the new sate. To determine this, the chain
passes the given system time to the Markov renewal function reference maintained by the chain’s
Transition-objects.
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Thus, the chain determines every time-step what the new state will be (by determining what
transition is next) and afterwards determines by means of the Markov renewal function reference
whether this transition will actually happen. For further reference see the determineNextState-
function.

There is one additional notable procedure present within the Chain class. As we proposed a
system which contains of multiple Markov chains which share dependencies, the Chain class needs
to provide means for updating its transition probabilities throughout simulations. The Chain
class consists of a procedure which provides means for updating transition probability values in a
chain called updateTransitions(). It expects a set of tuples as an input which may contain the
following arguments:

• transition of type string or Transition.

• probability of type decimal in between 0 and 1.

• markovRenewal (optional) of type handle, used for referencing a Markov renewal function.

For performance optimization, the update function only updates transitions in the chain which
actually have the current state as a source state. Currently, the Chain class does not reset the
probabilities, these will just maintain their last updated value.

D.5 System class

As mentioned, the Chain class has no information concerning its surrounding system. This func-
tionality is accounted for by the System class. The system maintains the collection of cooperative
chains. It additionally allows for adding dependencies among two or more chains within the
system. Additionally it allows for the addition of multiple data elements which might trigger
deterministic actions within a chain (an example of this is maintaining a birth year for updating
the age module).
The System class consists of the following notable properties:

• chains, array of type Chain

• currentYear of type int (used for age calculation)

• currentMonth of type int (used for age calculation)

• dependencyMatrix

• detDataElements of type containers.Map()

• stateSpace of type char

• time of type int

• traces, array of type char

The System class provides means for the user to simulate itself. The corresponding public
procedure is called monteCarloRandomWalk, which takes the number of time-steps to be sim-
ulated as an input. If the system detects it needs to be initialized first, it will take care of this by
itself.

During simulation of a time step (taken car of by a private procedure called simulateSystemTimeStep)
the system first check whether the state space has changed compared to the previous time step. If
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so, it updates the system’s state space and checks whether some dependencies will imply changing
transition probabilities in some of the contained chains.

After potentially updating transition probabilities, the system will determine the next state and
additionally (if applicable for the chain at hand) check for any τ transitions. The System class will
record for each chain its state over time. It will record these state spaces in the trace property.

D.5.1 Simulator class

The final class which is part of the simulation framework is the Simulator class. It allows the
user to run simulations with the predefined system. Upon creation, the user specifies what system
should be simulated, for what number of elements and how long a single simulation should run.
The Simulator class consists of the following notable properties:

• combinedMonitors

• monitors

• nbElements of type int

• simulationLength of type int

• system of type System

Additionally to providing means for simulation, the simulator allows the user to track the sim-
ulation results. The user is able to define two types of “monitors” in order to capture results of
simulating:

• Single monitors - based on a single chain’s state.

• Combined monitors - based on a specified combination of multiple states.

The simulator will output the specified monitors in a .csv file in which it outputs per monitor
the number of elements which was in the specified state at the given time.
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Appendix E

Proof of concept - Case inputs

E.1 Case I

E.1.1 Simulation - Code

for i = 1 : 50
clear

%−−− Populat ion Module −−−%
populat ion = Chain ( ’ populat ion ’ , ’ population_chain_input_table ’ )

%−−− System −−−%
system = System ( ’ system ’ , 2008)
system . addChains ( [ populat ion ] )

%−−− Simulator −−−%
s imu la tor = Simulator ( ’ s imu la tor ’ , system , 350 , 24)
s imu la tor . addMonitor ( ’ populat ion ’ , ’ ∗ ’ )
s imu la tor . s imulate ( )
s imu la tor . outputMonitors ( ’ path_to_output_folder ’ )

end

E.1.2 Simulation - Input data

Initial state vector

The contents of the initial state vector is depicted in table E.1.

Mz ¬MR
z ¬M I

z
92
350

158
350

100
350

Table E.1: The initial-state vector of CM ; case I

Transition- & Markov renewal matrices

The contents of the simulation transition and Markov renewal matrices are depicted in tables E.2
and E.3.
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Mz ¬MR
z ¬M I

z

Mz
96
100

4
100 0

¬MR
z 0 1 0

¬M I
z 0 0 1

Table E.2: The transition matrix of CM ; case I

Mz ¬MR
z ¬M I

z

Mz null @yearlyTransition null
¬MR

z null null null
¬M I

z @yearlyTransition null null

Table E.3: The Markov renewal matrix of CM ; case I
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E.2 Case II

E.2.1 Simulation - code

The input code of case II is equal to case I.

E.2.2 Simulation - Input data

Initial state vector

The initial state vector of case II is depicted in table E.4.

Mz ¬MR
z ¬M I

z
100
350

158
350

92
350

Table E.4: The initial-state matrix of CM ; case II

Transition- & Markov renewal matrices

The transition- and Markov renewal matrices are depicted in table E.5 the Markov renewal matrix
is equal to case I (i.e. table E.3).

Mz ¬MR
z ¬M I

z

Mz
96
100

4
100 0

¬MR
z 0 1 0

¬M I
z

8
2400 0 1− 8

2400

Table E.5: The transition-matrix of CM ; case II
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E.3 Case III

E.3.1 Simulation - Code

for i = 1 : 50

clear

populat ion = Chain ( ’ populat ion ’ , ’ population_chain_input_table ’ )

age = Chain ( ’ age ’ , ’ age_chain_input_table ’ )

%−−− System −−−%
system = System ( ’ system ’ , 2008)
system . addChains ( [ populat ion , age ] )
system . addDependency ( ’ populat ion ’ , ’ populat ion_dependency_def in i t ion_table ’ )

%−−− Simulator −−−%
s imu la tor = Simulator ( ’ s imu la tor ’ , system , 350 , 24)
s imu la tor . addMonitor ( ’ populat ion ’ , ’ ∗ ’ )
s imu la tor . addMonitor ( ’ age ’ , ’ ∗ ’ )
s imu la tor . addCombinedMonitor ({ ’ age ’ , ’ populat ion ’ } , { ’ ∗ ’ , ’ ∗ ’ })
s imu la tor . s imulate ( )
s imu la tor . outputMonitors ( ’ path_to_output_folder ’ )

end

E.3.2 Simulation - Input data

Initial state vectors

The initial state vector of CM (membership chain) is equal to the initial state vector of case II
(table E.4). The initial state vector of CA (age/vitality chain) is depicted in table E.6.

A1 A2 A3
1
4

1
2

1
4

Table E.6: The initial-state vector of CA; case III

Transition- & Markov renewal processes

The input transition matrix for CM is depicted in table E.7. As changing age groups is not
implemented, the transition matrix of CA is just the identity matrix I of size 3. Again the Markov
renewal matrix remains unchanged.
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Mz ¬MR
z ¬M I

z

A1,Mz 1 0 0
A1,¬MR

z 0 1 0
A1,¬M I

z 0 0 1
A2,Mz 1 0 0
A2,¬MR

z 0 1 0
A2,¬M I

z
1

150 0 1− 1
150

A3,Mz
21
25

4
25 0

A3,¬MR
z 0 1 0

A3,¬M I
z 0 0 1

Table E.7: The dependency transition-matrix of CM ; case III

E.4 Case IV

E.4.1 Simulation - Code

for i = 1 : 50

clear

populat ion = Chain ( ’ populat ion ’ , ’ population_chain_input_table ’ )

age = Chain ( ’ age ’ , ’ age_chain_input_table ’ )

d i s e a s e = Chain ( ’ d i s e a s e ’ , ’ d isease_chain_input_table ’ )

%−−− System −−−%
system = System ( ’ system ’ , 2008)
system . addChains ( [ populat ion , age , d i s e a s e ] )
system . addDependency ( ’ populat ion ’ , ’ populat ion_dependency_def in i t ion_table ’ )
system . addDependency ( ’ d i s e a s e ’ , ’ d i sease_dependency_def in i t ion_table ’ )

%−−− Simulator −−−%
s imu la tor = Simulator ( ’ s imu la tor ’ , system , 350 , 24)
s imu la tor . addMonitor ( ’ populat ion ’ , ’ ∗ ’ )
s imu la tor . addMonitor ( ’ age ’ , ’ ∗ ’ )
s imu la tor . addMonitor ( ’ d i s e a s e ’ , ’ ∗ ’ )
s imu la tor . addCombinedMonitor ({ ’ age ’ , ’ populat ion ’ , ’ d i s e a s e ’ } , { ’ ∗ ’ , ’ ∗ ’ , ’ ∗ ’ })
s imu la tor . s imulate ( )
s imu la tor . outputMonitors ( ’ path_to_output_folder ’ )

end

E.4.2 Simulation - Input data

Initial state vectors

The initial state vectors of CM and CA are equal to these of case III, and are as a consequence
omitted here.
We do present an initial state vector for CD. Note that we have not implemented dependency-
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based initialization and use the input data of the combination Mz, A1, Dd as an input for the
initial state vector of CD. The corresponding initial state vector is presented in table E.8.

¬Dd Dd
23
25

1
25

Table E.8: The initial-state vector of CA; case III

Transition- & Markov renewal matrices

Like with initialization, the transition- and Markov renewal matrices have not changed with respect
to the previous case and are therefore omitted here. The transition matrix for CD is depicted in
table

¬Dd Dd

A1,Mz,¬Dd
299
300

1
300

A1,Mz, Dd
1

300
299
300

A1,¬MR
z ,¬Dd 1 0

A1,¬MR
z , Dd 0 1

...
...

...
A3,¬M I

z , Dd 0 1

Table E.9: The dependency transition-matrix of CD; case IV

112 Defining a financial forecasting model for healthcare insurance companies / Version 1.0



Technische Universiteit Eindhoven University of Technology

E.5 Case V

E.5.1 Simulation - Code

for i = 1 : 1

clear

populat ion = Chain ( ’ populat ion ’ , ’ population_chain_input_table ’ )

age = Chain ( ’ age ’ , ’ age_chain_input_table ’ )

d i s e a s e = Chain ( ’ d i s e a s e ’ , ’ d isease_chain_input_table ’ )

pathway = Chain ( ’ pathway ’ , ’ pathway_chain_input_table ’ )

%−−− System −−−%
system = System ( ’ system ’ , 2008)
system . addChains ( [ populat ion , age , d i s ea s e , pathway ] )
system . addDependency ( ’ populat ion ’ , ’ populat ion_dependency_def in i t ion_table ’ )
system . addDependency ( ’ d i s e a s e ’ , ’ d i sease_dependency_def in i t ion_table ’ )
system . addDependency ( ’ pathway ’ , ’ pathway_dependency_definition_table ’ )

%−−− Simulator −−−%
s imu la tor = Simulator ( ’ s imu la tor ’ , system , 350 , 24)
s imu la tor . addMonitor ( ’ populat ion ’ , ’ ∗ ’ )
s imu la tor . addMonitor ( ’ age ’ , ’ ∗ ’ )
s imu la tor . addMonitor ( ’ d i s e a s e ’ , ’ ∗ ’ )
s imu la tor . addMonitor ( ’ pathway ’ , ’ ∗ ’ )
s imu la tor . addCombinedMonitor ({ ’ age ’ , ’ populat ion ’ , ’ d i s e a s e ’ } , . . .

{ ’A1 ’ , ’P ’ , ’ ∗ ’ })
s imu la tor . addCombinedMonitor ({ ’ age ’ , ’ populat ion ’ , ’ d i s e a s e ’ , ’ pathway ’ } , . . .

{ ’A1 ’ , ’P ’ , ’ S ick ’ , ’ ∗ ’ })
s imu la tor . s imulate ( )
s imu la tor . outputMonitors ( ’ path_to_output_folder ’ )

end

E.5.2 Simulation - Input data

Initial state vectors

In case V, we inherit all initial state vectors from case IV. Additionally as there is no dependency
based initialization we initialize the pathway chain with a probability 1 in state ¬P . We omit the
corresponding vector here.

Transition- & Markov renewal matrices

in case V, the transition and Markov renewal matrices of CM , CA and CD have not changed. Note
that, we do not take any age-group in consideration here as this is accounted for by the disease
transition matrix.
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¬P PA PB

¬Dd,¬P 1 0 0
¬Dd, PA 1 0 0
¬Dd, PB 1 0 0
Dd,¬P 0 1

2
1
2

Dd, PA 0 1 0
Dd, PB 0 0 1

Table E.10: The dependency transition-matrix of CD; case IV

E.6 Case VI

Case VI is equal to case V with respect to the model used and the simulation code, thus we omit
these here. We have only changed the transition matrix of CD. Due to the size of the corresponding
input matrix, we only show the data rows that do not consist of a “self-loops”.

¬Dd Dd

Mz, A1,¬P,¬Dd
1
2

1
2

Mz, A1, PA, Dd
1
5

4
5

Mz, A1, PB , Dd
4
5

1
5

114 Defining a financial forecasting model for healthcare insurance companies / Version 1.0



Appendix F

Proof of concept - Distribution
fitting

F.1 Case I

Figure F.1: Normal distribution fit to x̄Mz for both 2008 and 2009; Case I

Figure F.2: Normal distribution fit to x̄¬MI
z
for both 2008 and 2009; Case I
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Figure F.3: Normal distribution fit to x̄¬MR
z

for both 2008 and 2009; Case I

F.2 Case II

Figure F.4: Normal distribution fit to x̄Mz
for both 2008 and 2009; Case II

Figure F.5: Normal distribution fit to x̄¬MI
z
for both 2008 and 2009; Case II
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Figure F.6: Normal distribution fit to x̄¬MR
z

for both 2008 and 2009; Case II

F.3 Case III

Figure F.7: Normal distribution fit of x̄|Mz,A1|, x̄|¬MI
z ,A1| and x̄|¬MR

z ,A1| for both 2008 and 2009;
Case III
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Figure F.8: Normal distribution fit of x̄|Mz,A2| for both 2008 and 2009; Case III

Figure F.9: Normal distribution fit of x̄|¬MR
z ,A2| for both 2008 and 2009; Case III

Figure F.10: Normal distribution fit of x̄|¬MI
z ,A2| for both 2008 and 2009; Case III
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Figure F.11: Normal distribution fit to x̄|Mz,A3|, x̄|¬MI
z ,A3| and x̄|¬MR

z ,A3| for both 2008 and 2009;
Case III

F.4 Case IV

Figure F.12: Normal distribution fit to x̄Mz,A1,¬D for January, June and December in both 2008
and 2009; Case IV
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Figure F.13: Normal distribution fit to x̄Mz,A1,D for January, June and December in both 2008
and 2009; Case IV

Figure F.14: Normal distribution fit to x̄Mz,A1,D,PA for January, June and December in both 2008
and 2009; Case V

Figure F.15: V

F.5 Case V

F.6 Case VI
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Figure F.16: Normal distribution fit to x̄Mz,A1,D,PB for January, June and December in both 2008
and 2009; Case V

Figure F.17: Normal distribution fit to x̄Mz,A1,D,PA for February, March 2008; Case VI

Figure F.18: Normal distribution fit to x̄Mz,A1,D,PA for April, August 2008; Case VI
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Figure F.19: Normal distribution fit to x̄Mz,A1,D,PB for February, March 2008; Case VI

Figure F.20: Normal distribution fit to x̄Mz,A1,D,PB for April, August 2008; Case VI
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Appendix G

Proof of concept - Simulation
machine specifications

The system configuration of the machine used for execution is depicted in table G.1.

Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
CPU(s) 16
Thread(s) per core 2
Core(s) per socket 4
CPU socket(s) 2
NUMA node(s) 2
Vendor ID GenuineIntel
CPU family 6
Model 26
Stepping 5
CPU MHz 2260.973
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 8192K
NUMA node0 CPU(s) 0,2,4,6,8,10,12,14
NUMA node1 CPU(s) 1,3,5,7,9,11,13,15
OS Version Linux version 2.6.35.14-106.fc14.x86_64

(mockbuild@x86-09.phx2.fedoraproject.org)
(gcc version 4.5.1 20100924 (Red Hat 4.5.1-4) (GCC) )

#1 SMP Wed Nov 23 13:07:52 UTC 2011
Release Fedora release 14 (Laughlin)

Table G.1: System configuration of machine used for proof of concept case execution

123


	Abstract
	Declaration of Authorship
	Acknowledgements
	Abbreviations
	Introduction
	Motivation
	Background
	Problem description
	Research questions
	Methodology
	Outline

	Related research
	The field of care demand prediction
	The field of integrated care pathways

	Analysis
	Preliminaries
	Care demand
	Institutional care pathways

	Design
	Healthcare insurance membership as a probabilistic model
	Markov chains
	Modelling healthcare insurance membership as a Markov chain
	Diseases and institutional care pathways as Markov chains
	Collaborative Markov chains
	Incorporating age within the proposed system
	Final model proposition

	Implementation
	Monte Carlo techniques
	Using simulation for collaborative Markov chain-based sampling
	Dependency propagation
	Simulation framework

	Experimental design
	Overview
	Data Analysis
	Cases

	Results
	Data analysis
	Case evaluation
	Managerial implications and recommendations
	Discussion

	Conclusion
	Summary
	Conclusions
	Limitations
	Future research

	Appendix The Dutch healthcare system
	Healthcare service levels
	Key actor definition
	Actor Interaction

	Appendix Mathematical definitions
	Time series models
	Notation

	Appendix Data
	Detailed description
	Manipulation

	Appendix Simulation framework
	State Class
	Probability Class
	Transition Class
	Chain Class
	System class

	Appendix Proof of concept - Case inputs
	Case I
	Case II
	Case III
	Case IV
	Case V
	Case VI

	Appendix Proof of concept - Distribution fitting
	Case I
	Case II
	Case III
	Case IV
	Case V
	Case VI

	Appendix Proof of concept - Simulation machine specifications

