
 Eindhoven University of Technology

MASTER

Use case modeling within object-role modeling

Ramírez Montaño, W.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4d4077fd-1892-4847-b759-86ff6f0d2187

Use Case modeling within
Object-Role Modeling

Conceptual modeling into the Object-Oriented paradigm

Waldo Ramírez Montaño

Department of Mathematics and Computer Science
Software Engineering & Technology Research Group

Graduation Supervisor: dr. ir. I. Barosan
Graduation Tutor: ir. F.A.I. Peeters

External Supervisor: dr. ir. R. Middelkoop

Assessment Committee:

prof. dr. ir. M.G.J. van den Brand
dr. ir. I. Barosan
ir. F.A.I. Peeters
dr. ir. R. Middelkoop
dr. E.P. de Vink

Eindhoven, November 2013

“Imposible” es una enorme palabra que gira alrededor de quienes prefieren el
sólo vivir en el mundo que han recibido, en lugar de explorar la capacidad que
tienen para cambiarlo. Imposible no es un hecho, es una opinión. Imposible no
es una declaración, es un reto. Imposible es potencial. Imposible es temporal.
Imposible es el todo o la nada... tú lo decides.

“Impossible” is an enormous word that twists around those who prefer to only
live in the world that they have received, rather than to explore their capacity
to change that world. Impossible is not a fact, but an opinion. Impossible is not
a declaration, but a challenge. Impossible is potential. Impossible is temporal.
Impossible is everything or nothing... you decide.

— 2012, Waldo Ramírez Montaño.

Abstract

The user requirements are typically the starting point in the development of a system. The elaboration
of requirements involves several kinds of participants: from domain experts to stakeholders. Thus,
the contents of requirements tend to be in Natural Language to enable that any participant can read
and understand them. Nevertheless, the Natural Language statements may include ambiguities or lack
of clearness in the specification of the expected goals and behavior of the system. Furthermore, the
development cycle of the system might cause a loose (or even lost) relationship between the require-
ments and the resulting software components or technical documentation.

For the development of systems in the Object-Oriented paradigm, the Early Quality Assurance
(EQuA) project offers a framework to motivate a formal specification of requirements with Model
Driven Engineering (MDE) and Object-Role Modeling (ORM) techniques. This specification strengthens
the relationship between requirements and the resulting software components because EQuA trans-
forms the requirements in Natural Language into a Requirements Model. The main components of
this model are: Actions, Rules, Relevant Facts and Quality Attributes. This model can be modified by
domain experts or stakeholders with the Symbiosis tool, so that they can create the Object Model of
the system under development.

The Use Case modeling within ORM thesis is a contribution to the EQuA project in the specifica-
tion of the expected behavior of the system. After a research and analysis of Use Cases modeling and
related topics, this contribution proposes a formal metamodel of Flows, which includes a Controlled
Natural Language (CNL). This formalism allows the specification of normal or alternate flows in a Use
Case Model. In addition, this formalism is designed to accept the definition of an external dictionary
with the vocabulary to validate the CNL. The implementation of this contribution has been achieved
as a prototype that increments the functionality of Symbiosis. As a result, Symbiosis can use elements
of the EQuA framework to (i) prepare the dictionary and validate the vocabulary that is used in the
use cases and (ii) link Actions with use cases. Another result is that the metamodel of Flows can be ex-
tended. This extension has been partially implemented and seeks to specify a lower layer of expected
behavior in the system under development, that is, the normal or alternate flows of objects. Therefore,
this extension can be suitable for the definition of the Interaction Model in the EQuA framework: the
expected behavior of objects of the Object Model. The completion of this extension is part of the future
work.

Finally, a preliminary case study is included in this report. This study is related to the ICONIX1

software development methodology to analyse the functionality of the prototype.

1Lightweight Use Case Driven methodology [43] with UML scope

Use Case modeling within Object-Role Modeling v

Preface

This thesis completes my experience as a master’s student of Computer Science & Engineering in the
Eindhoven University of Technology (TU/e), faculty of Mathematics and Computer Science (W&I) in
the group of Software Engineering & Technology (SET). This thesis contributes in one of the sub-
projects of the Early Quality Assurance in Software Production (EQuA) project funded by the Dutch
Ministry of Education, Culture and Science. The contribution consists of a Controlled Natural Lan-
guage (CNL) developed with Model Driven Engineering (MDE) techniques to model flows of behavior.
The implementation has been achieved as a prototype that extends the Symbiosis tool of EQuA. This
prototype is reviewed with a preliminary case study. Most of the work was achieved in the ISAAC
Software Solutions BV. Additional activities have been done in the TU/e, the Laboratory for Quality
Quality Software (LaQuSo) and the Fontys University of Applied Sciences.

In the context of this thesis, I deeply appreciate the collaboration and feedback of my graduation
supervisors Ion Barosan, Frank Peeters and Ronald Middelkoop. The connection between LaQuSo and
the SET would have not been possible without Ion. Frank is more than the graduation tutor as he has
conducted the development of Symbiosis and his critics and guidance have been essential feedback.
The concrete advises from Ronald at ISAAC helped me to avoid technical conflicts.
I also express my gratitude to Mark van den Brand to participate as member of the assessment commit-
tee. The lead of Mark in the SET group and his encouragement in Model Driven Software Engineering
have been important for the improvements of this research. The revision of Erik de Vink as a formal
methods specialist has provided a valuable perception of this work.

In the context that completes my experience as a master’s student in Eindhoven, I profoundly
appreciate the support from my family. Nothing of this would have been possible without you.
Finally, to all my peers and friends in any context, you know that I also appreciate and thank you.

Waldo Ramírez Montaño
Eindhoven, November 2013.

Use Case modeling within Object-Role Modeling vii

Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 EQuA project and the Symbiosis tool . 1
1.2 Motivation and problem definition . 2
1.3 Scope of the research . 4
1.4 Research questions . 5
1.5 Thesis outline . 6

2 Preliminaries and related work 7
2.1 EQuA Requirements Model . 7
2.2 EQuA Object Model . 9
2.3 Related work . 11

2.3.1 SBVR, Petri nets, Use Case modeling . 11

3 Use Case Analysis and Design 15
3.1 Analysis with ICONIX . 15
3.2 Connecting analysis and design . 17

3.2.1 Natural Language Processing (NLP) . 18
3.2.2 Controlled Natural Language (CNL) . 20

3.3 Domain Specific Language (DSL) . 23
3.4 Model Driven Engineering (MDE) . 25

4 Use Case and Interaction Models 27
4.1 CNL with MDE: DSML . 27
4.2 Semantics Validation . 30

4.2.1 Design of UseCase and Interaction Models . 31
4.2.2 Semantic restrictions . 32
4.2.3 CNL Dictionary as middleware between Xtext CNL and Symbiosis 37

5 Prototype design and implementation 39
5.1 Xtext . 39
5.2 Dependency Injection pattern . 41
5.3 Architecture and implementation as a Symbiosis component 44

5.3.1 Use Case Model Implementation . 45
5.4 Preliminary case study . 48

6 Conclusions and Future work 53

Use Case modeling within Object-Role Modeling ix

CONTENTS

Bibliography 57

Appendix 61

A Symbiosis tool 61
A.1 General description . 61
A.2 Fact breakdown . 63
A.3 Type Configurator . 64
A.4 Categories for organizing use cases . 65

B Selected formalisms of the Object model 67
B.1 Lemmas . 67
B.2 Elementary Object Model . 67
B.3 Standard Types . 68
B.4 Role related utilities . 68

C CNL Design 69
C.1 CNL Extended-BNF . 69
C.2 Examples of Object life-cycle with CNL EBNF . 71
C.3 CNL with MDE . 73
C.4 Descriptions of Rule Delegates . 74

D Prototype 78
D.1 Xtext CNL EBNF . 78
D.2 Xtext CNL API . 81
D.3 Isolated Vocabulary . 82
D.4 Outline of the dependency graph for the CNL . 84

E Preliminary case Study 85
E.1 Requirements Model of the BookInternetStore . 85
E.2 Object Model of the BookInternetStore . 86
E.3 Use cases of the BookInternetStore . 87

x Use Case modeling within Object-Role Modeling

List of Figures

1.1 Requirements abstraction in EQuA . 2
1.2 MVC pattern in the Symbiosis tool . 2
1.3 The EQuA framework . 4

2.1 The context of the Requirements Model . 8
2.2 The Object Model Metamodel (simplified version) . 9
2.3 Fact breakdown example . 10
2.4 Constraint example . 10
2.5 Uniqueness constraint example . 10
2.6 Selected excerpts of SBVR and Petri net literature . 13
2.7 Selected excerpt of UMGAR literature . 14

3.1 ICONIX phases related to the EQuA framework models . 16
3.2 ICONIX Use case association stereotypes . 17
3.3 Example of phrase and typed dependency structures in NL 19
3.4 CNL architecture . 20
3.5 Abstract Syntax Tree (AST) of AddBook . 24
3.6 CNL Dictionary and CNLV Metamodels . 26

4.1 Ecore metamodel class hierarchy diagram . 28
4.2 Features and Actions in Xtext CNL . 29
4.3 Semantic metamodel as a class diagram . 30
4.4 Architecture of Use Case and Interaction Models . 31
4.5 Validation with isolated and interoperability rules . 34
4.6 Preliminary prototype . 35

5.1 Processing stages in Xtext . 39
5.2 Implementation of the CNL architecture . 40
5.3 Dependency graph analogy . 41
5.4 Dependency graphs with Guice . 42
5.5 Guice and EMF in Xtext without Equinox . 43
5.6 Fragment of the dependency graph for the CNL . 43
5.7 Architecture of the prototype . 44
5.8 UseCaseViewer Swing component . 46
5.9 UseCaseEditorDialog Swing component . 47
5.10 Use Cases diagram . 51

A.1 The Requirements Viewer tab . 61
A.2 Class diagram of the BookInternetStore example project . 62
A.3 The Fact Breakdown tab . 63
A.4 The Type Configurator tab . 64
A.5 Category example – Requirement and UseCase Viewer . 65
A.6 Category example – UseCases Editor . 66

Use Case modeling within Object-Role Modeling xi

LIST OF FIGURES

C.1 Order and Delivery sample execution . 71
C.2 Order life-cycle . 72
C.3 Delivery life-cycle . 72
C.4 NP-VP pattern as a class diagram . 73
C.5 Syntax metamodel as a graph . 73

D.1 Outline of the dependency graph for the CNL . 84

E.1 UseCaseViewer with the case study . 90

xii Use Case modeling within Object-Role Modeling

List of Tables

1.1 Definitions of static and dynamic behaviors . 3
1.2 Status quo of the EQuA research . 3
1.3 Problem definition . 4

2.1 Components of the Requirements Model . 7
2.2 Example of requirements . 8
2.3 Observations for the modeling of dynamic-behavior . 12
2.4 Grammatical rules of UMGAR . 14

3.1 Characteristics of ICONIX as benefits for the EQuA framework 16
3.2 ICONIX ‘three magic questions’ to write a use case . 16
3.3 ICONIX Use case guidelines for the EQuA framework . 17
3.4 NL observations for the design of the CNL . 19
3.5 CNL atomic grammatical definitions . 20
3.6 CNL auxiliary grammatical structures and NP definition . 21
3.7 CNL VP definition . 21
3.8 CNL loop and conditional grammatical structures . 22
3.9 CNL Action-type and flow definitions . 22
3.10 CNL formal definition . 24

4.1 Types of grammar rules in Xtext CNL . 28
4.2 Semantic rules general definition . 32
4.3 Syntactical comparison between SBVR and CNL Dictionary 37

5.1 Excerpt of the Requirements and Object Models . 48
5.2 <AddBook> use case . 49
5.3 <ChangePriceOfBook> use case . 49
5.4 <StartCustomerSession> and <EndCustomerSession> use cases 50
5.5 <AddCustomer> and <PrepareAddress> use cases . 50
5.6 Linkage between use cases and action requirements . 51

C.1 Key-symbols and Keywords . 69
C.2 Terminal rules . 69
C.3 Production rules . 70
C.4 Semantic rule delegates (I) . 74
C.5 Semantic rule delegates (II) . 75
C.6 Semantic rule delegates (III) . 76
C.7 Semantic rule delegates (IV) . 77

D.1 CNL API for Symbiosis . 81
D.2 Isolated Vocabulary: Key-words . 82
D.3 Isolated Vocabulary: Reserved words . 82
D.4 Isolated Vocabulary: Regular expressions . 83

Use Case modeling within Object-Role Modeling xiii

LIST OF TABLES

E.1 Fact and Action requirements of the BookInternetStore . 85
E.2 Rule and Quality requirements of the BookInternetStore . 85
E.3 Fact-types of the BookInternetStore . 86
E.4 Use cases for the actor <client> (I) . 87
E.5 Use cases for the actor <client> (II) . 88
E.6 Use cases for the actor <officer> . 88
E.7 Use cases for the actor <customerServiceClerk> . 89

xiv Use Case modeling within Object-Role Modeling

Chapter 1

Introduction

1.1 EQuA project and the Symbiosis tool

The four-year project Early Quality Assurance in software production (EQuA) was funded by the Dutch
Ministry of Education in November 2010[11]. EQuA is focused on the early error detection and cor-
rection along the software development cycle in order to achieve early high quality results. As the
scope of EQuA is extensive, the structure of EQuA consists of five sub-projects with the collaboration
of academic and industry partners. The parters that are directly related to this thesis are the Fontys
University of Applied Sciences (Fontys) and the Eindhoven University of Technology (TU/e) in the aca-
demic sector, as well as the ISAAC Software Solutions (ISAAC) company in the industry sector. The
sub-project that is directly linked to this thesis is the one that attends the field of validation of re-
quirements and models[37] for the early detection of errors. In the rest of this report, ‘EQuA’ is
utilized to refer to this sub-project.

EQuA includes research about the industrial practices that are used in the development of soft-
ware. In particular, Vonken et al.[50] prepared an academic survey about the software engineering
practices in The Netherlands. This survey reveals that agile methodologies do not guarantee early
high quality results. Furthermore, some companies still endorse the waterfall methodology. Another
result is that stakeholders are commonly and directly involved in the definition of requirements. To
increase the satisfaction and quality expectations of stakeholders and software developers, they need
a clear understanding of requirements. EQuA has been developing a framework to achieve it.

The EQuA framework considers the utilization of Natural Language (NL) to define requirements.
This strategy aids the stakeholders by minimizing the learning of new technical knowledge. One chal-
lenge with NL is the elimination of semantic ambiguities with texts of free structure. For this challenge,
the EQuA framework considers Controlled Natural Language (CNL) approaches. Another challenge is
the traceability between requirements and the components of the system design. For example, the
traceability between the class diagram and the functional requirements. Vonken et al. reveal that this
traceability is ignored by half of the respondents of their survey. The main reasons are business or
management issues, such as the available budget. As consequences of ignoring this traceability, the
time and complexity increases in terms of the software implementation, the system tests or the system
maintenance. The EQuA framework pursues to achieve this traceability.

The EQuA framework proposes the Requirements Model and the Object Model, as shown in
Figure 1.1. These models represent the domain of reality, that is, the abstraction of requirements from
the part of reality that is feasible for the system to be developed. The transformations of elements
of the Requirements Model into elements of the Object Model are achieved by the EQuA framework,
which uses the Object-Oriented (OO) paradigm with Object-Role Modeling (ORM)[25] and Model Driven
Design (MDD) strategies. Symbiosis is the implementation of the EQuA framework with the Model-

Use Case modeling within Object-Role Modeling 1

CHAPTER 1. INTRODUCTION

Requirements
Model

Object
Model

Domain
of Reality

Abstraction Transformation

Figure 1.1: Requirements abstraction in EQuA

View-Controller (MVC) [41] design pattern as shown in Figure 1.2. Symbiosis enables the user to
register the abstraction of the domain and to obtain the Object Model. The processing of user requests
is done with the controller component. This component employs the EQuA framework to register,
transform and synchronize elements of the Requirements and Object Models. Moreover, the controller
applies updates to the view component, according to the states of the models. A general description
of Symbiosis with an example project is available in Appendix A.1.

Model

Requirements
Model

Stakeholder
/

Project member

Object
Model

Registration of a
requirement

Controller

View

Breakdown of a
requirement element

Register requirement
element

Transform requirement
element

Updated perspective
of model

Modify element

Synchronize
models

Updated state of model

The abstraction of the domain of reality is done with the registration of requirements. The breakdown of require-
ments constructs the Object Model. The traceability is conducted with the synchronization of models.

Figure 1.2: MVC pattern in the Symbiosis tool

Additional information on EQuA and Symbiosis is available in [23], [42].

1.2 Motivation and problem definition

Diverse scientific and empirical studies agree with EQuA and confirm that clear abstraction and com-
munication of requirements cause a successful design and implementation of the expected system.
The achievement of this abstraction and communication are the base of the problem. The following
ground work highlights concepts that are the base of the motivation. Bollen [9] argues that ‘ready
to use’ solutions, such as Enterprise Resource Planning (ERP) systems, cannot guarantee a proper de-
termination of requirements. As alternative, the explicit semantic verification of requirements with
a conceptual modeling approach is suggested. This approach is based on the Cognition enhanced Nat-
ural language Information Analysis Method (CogNIAM), which is a variation of the Object-Role Modeling
(ORM). Rosenberg et al. [43] propose an empirical Use Case Driven methodology, the ICONIX. This
methodology confirms the importance of feedback from the stakeholders and users. Similar to EQuA,
but without a formal approach, the ICONIX constructs the static-behavior of the domain of reality.
Afterwards, the analysis of dynamic-behavior is encouraged with detailed discussions of Use Cases
between project members and stakeholders. These behaviors are part of the motivation for a clear

2 Use Case modeling within Object-Role Modeling

CHAPTER 1. INTRODUCTION

BEHAVIOR DEFINITION

Static Behavioral aspects of the system, which are defined by the classification of re-
quirements in order to design the static structure of the system. Each class
includes its static behavior as properties, (constrained) operations and rela-
tionships with other classes. In the context of this thesis, the Object Model
provides the class diagram as the design of the structure. Notice that this
behavior does not contemplate time-driven behavior.

Dynamic Behavioral aspects of the system, which are defined by the time-driven flow of
execution of the system. In the context of this thesis, the dynamic behavior
can be either external or internal. The external behavior refers to use cases
as the flow of activities that the system should perform in collaboration
with external users. The internal behavior refers to sequential communica-
tion between objects of the Object Model, according to the use cases. The
objects use the static-behavior to accomplish the communication.

Table 1.1: Definitions of static and dynamic behaviors

communication of requirements. Their definitions are available in Table 1.1. Yang et al. [51] explore
Model Driven Architecture (MDA) and Unified Modeling Language (UML) to fill the gap between the
analysis of requirements and the design of solutions. These authors suggest to use noun-verb-noun
statements in active voice for the specification of interaction between the user and the system, akin
to ICONIX. Zikra et al. [52] propose Model Driven Development to achieve ‘requirements-to-model’
integration and produce reusable software components. This proposal contemplates Natural Language
Processing (NLP) and ‘guidelines’ to create the models, which is analogous to Symbiosis.

The status quo of the EQuA research [37] is shown in Table 1.2. EQuA has utilized scientific
and empirical knowledge to achieve a fairly mature stage of steps 1 to 6 for clear communication
of requirements between project members and stakeholders. The abstraction of requirements uses a
conceptual modeling similar to ORM. The formal results are the Requirements Model and the Object
Model. These models derive the static-behavior of the objects that compose the system. The motiva-
tion of this thesis is how to represent the dynamic-behavior between users and the system, namely, the
scenario-analysis in step 7 of the EQuA research. The dynamic-behavior can be articulated in two lay-
ers: the external-behavior and the internal-behavior, as specified in Table 1.1. The external-behavior
is the scenario-analysis. The internal-behavior focuses on the interaction between objects of the Ob-
ject Model. Thus, this thesis includes the analysis of internal-behavior as part of the motivation. The
analysis of source-code generation is briefly inspected. Moreover, as EQuA is not only intended for
academic purposes, industrial practices are considered. For the external-behavior, its modeling with
use cases is part of the motivation. The problem definition is resumed in Table 1.3.

1. Construction of an Object Model from requirements.
2. Refinement of the Object Model by applying rules.
3. Visualization of the Object Model as a UML class diagram.
4. Document model elements so that all their sources are traceable.
5. Object Model transformation with Model Driven Design techniques.
6. Synchronization of model elements when a source changes.
7. Refinement of the Object Model based on scenario-analysis.
8. Automatic generation of test scripts based on scenarios and critical facts.
9. Generation of source code for all classes of the Object Model.

Table 1.2: Status quo of the EQuA research

Use Case modeling within Object-Role Modeling 3

CHAPTER 1. INTRODUCTION

BEHAVIOR PROBLEMS

External - Propose a Use Case Model that is linked to the Requirements Model.
- Validate the utilization of elements of the Object Model in the Use Case Model.
- Implement a prototype for the modification and visualization of the Use Case Model.
- The prototype should consider Natural Language.
- Extend the Symbiosis tool with the prototype.

Internal - Propose an Interaction Model that is linked to the Object Model and Use Case Model.
- Propose a strategy to extend the behavior of objects.
- Research the possibility to transform the Interaction Model into source code.

This thesis emphasizes the attention to the external-behavior, which is indicated as scenario-analysis in Table 1.2.

Table 1.3: Problem definition

1.3 Scope of the research

The design of the EQuA framework is depicted in Figure 1.3. The project members and stakeholders
are the users of this framework. These users utilize Natural Language to manually register require-
ments in the Requirements Model. Similarly, these users should register use cases in the Use Case
Model. These two models should provide automatic updates as responses, i.e., transformations or
modifications to model elements. Symbiosis already comprises the Requirements Model and its up-
dates. This thesis focuses on accomplishing the Use Case Model. Moreover, the manual linkage
between these two models is also part of the scope.

Requirements
Model

Interaction
Source

Stakeholder
/

Project member

Use Case
Model

M A
A

M
A

M

Class
Diagram

Interaction
Model

Object
Model

S

S A
S
A

A

Domain
Source

A
Legend:
A: Automatic
M: Manual
S: Semiautomatic

The models highlighted in red represent the scope of this thesis. The inspections of the Requirements Model and
Object Model are needed due to their linkage with the models in the scope. The Interaction source, Domain source
and Class diagram are additional topics in the EQuA framework, which are out of scope in this thesis.

Figure 1.3: The EQuA framework

4 Use Case modeling within Object-Role Modeling

CHAPTER 1. INTRODUCTION

Symbiosis tool allows the users to semi-automatically create the Object Model from the Require-
ments Model. The traceability of requirements is managed with automatic updates in the Require-
ments Model due to modifications in the Object Model. Correspondingly, a semi-automatic creation of
the Interaction Model from the Use Case Model should be expected. Furthermore, the modifications in
the Object Model should trigger automatic updates in the Interaction Model. The scope of this thesis
includes the Interaction Model.

1.4 Research questions

This thesis addresses the motivation and problem definition with two research questions. The first
question encloses the main goals of this thesis as it refers to the definition of Use Case and Interaction
Models according to the EQuA models. The second question is a consequence of the first question, as it
refers to constraints that assume the availability of Use Case and Interaction Models. These questions
are as follows:

RQ1 How can the Use Case and Interaction Models be designed based on the current Object Model?

The answer of this question requires a broad analysis of the Object Model, Requirements Model and
Symbiosis.

→ A formalization of dynamic external-behavior is expected with the Use Case Model, whereas, a
formalization of dynamic internal-behavior is expected with the Interaction Model. Is it feasible
to propose one model-driven formalism that is re-used in both cases?

→ The Use Case Model needs a strategy to link requirements with use cases. What cardinalities to
use between use cases and the requirements in the Requirements Model?

→ In the Interaction Model, how to represent the sequential communication between objects of the
Object Model?

→ How to categorize the use cases according to the Requirements Model?

→ How to utilize a Natural Language approach with the Object Model that becomes the source of
vocabulary for the Use Case and Interaction Models? How to validate the syntax and semantic
of the Natural Language approach?

→ How to acknowledge external sources of behavior in use cases? The use case actors should be
included in the Use Case Model, but how they interact with the Object Model?

→ How could the Interaction Model foresee the operations of objects, as well as to scrutinize the
possibility to add new operations?

→ How to maintain the traceability between the formalization of dynamic-behavior and the EQuA
models?

→ The prototype is expected to be compatible with the Symbiosis tool.

RQ2 How can we handle the [manually added] rules?

The Requirements Model recognizes ‘rules’ as a special kind of requirement. To answer this question,
a deeper analysis of these rules is needed, as they serve as constraints for the dynamic-behavior.

→ A portion of rules is automatically generated by EQuA. Is it convenient to make the revision of
these rules as part of the semantics validation?

→ The rest of rules are manually added by the user. What could be utilized to extend the validation
of rules to include new rules?

Use Case modeling within Object-Role Modeling 5

CHAPTER 1. INTRODUCTION

1.5 Thesis outline

The remainder of this report is structured as follows. Chapter 2 starts with the analysis of the Re-
quirements and Object Models from the EQuA framework. This chapter finishes with an overview of
related work. Chapter 3 focuses on the RQ1 with special attention to the Use Case Model and the pos-
sibility of re-using it to propose the Interaction Model. This chapter considers suggestions of industrial
practices, in particular, ICONIX. Chapter 4 describes the formalization of the Use Case and Interaction
Models with Model Driven Engineering (MDE) techniques via a Domain Specific Language (DSL) with
Controlled Natural Language (CNL). Moreover, to answer the RQ2, this chapter discusses a middleware
component to handle requirement rules and the linkage between the models in the EQuA framework.
Chapter 5 includes a detailed description of the implementation of Use Case and Interaction Models
as a prototype. This description includes technical issues, the architecture of the prototype, as well as
the validation of models with aid of the middleware component. This chapter closes with a prelim-
inary case study to review the functionality of the prototype in Symbiosis. Chapter 6 completes this
report with conclusions and future work.

6 Use Case modeling within Object-Role Modeling

Chapter 2

Preliminaries and related work

This chapter introduces a comprehensive analysis of the foundations of this thesis. First, the reasoning on the
EQuA framework models is resumed. Afterwards, the investigation of selected related work is presented.

The User Requirements Specification (URS) describes the domain of reality for the system to be
developed. This specification is commonly written in Natural Language (NL). The NL benefits the
stakeholders in the validation of requirements, although ambiguities may arise – specially in the un-
derstanding of requirements. The Requirements Model offers a structured representation of the URS
to avoid its misconception. This model is the mediator between the abstraction of the domain of reality
and the Object Model. Complementary, the Object Model is the mediator between the Requirements
Model and the dynamic-behavior models: the Use Case and Interaction Models.

2.1 EQuA Requirements Model

The Requirements Model pursues the examination of the URS by means of Model Driven Design (MDD)
with an Object-Role Modeling (ORM) perception. This model proposes four kinds of requirements,
which are described in Table 2.1. Each kind is a component of the model. The action, fact and rule re-
quirements conform the functional requirements. These three components, with emphasis on the facts,
produce the vocabulary that should be used within the Use Case and Interaction Models. The detail
of the actions should be specified with use cases. Thus, a linkage between the Requirements Model
and the Use Case Model is noticed. The rules foreshadow constraints that create linkages between
the Requirements Model and the Use Case, Interaction and Object Models. The constraints that are
applied to the Object Model have a direct relation with the Interaction Model, as these constraints
restrict the interaction between objects.

REQUIREMENT DESCRIPTION

Action General description of tasks or activities that are intended to be executed
with the support of the system.

Fact Evidence (i.e., verifiable truth) from the domain of reality. This compon-
ent establishes the pillar of conceptual modeling in Symbiosis. The facts
overlay the relationship between objects and underlay the actions.

Rule Constraints with respect to facts and actions. Therefore, this component
applies restrictions to either the static- or dynamic-behavior of the system.

Quality Attributes stipulated by non functional requirements.
These requirements have the scope of non-behavioral requirements[47],
which is out of scope in this research.

Table 2.1: Components of the Requirements Model

Use Case modeling within Object-Role Modeling 7

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Facts
Rules

Actions
Requirements Model

Use Case
Model

Project member

Breakdown

Input Dynamic external behavior

Validation Object Model
Quality Attributes

Owner of

requirement

Interaction
Model

Dynamic internal behavior
ConfigurationAutomatic update

Figure 2.1: The context of the Requirements Model

Figure 2.1 depicts an overview of the input and validation of requirements. First, a project member
or product owner registers a requirement in the Requirements Model. Second, a stakeholder becomes
the owner of the requirement. This owner governs the life-cycle of the requirement. For instance,
the approval or denial of the requirement. Next, this life-cycle is managed with Symbiosis. The
facts receive semi-automatic breakdown transformations to populate the Object Model. Similarly, the
rules receive semi-automatic transformations to configure the Object Model. The facts and rules are
automatically updated according to modifications in the Object Model, which achieves the traceability
between the Requirements and Object Models. This thesis seeks the definition of the linkages between
the Requirements Model and the dynamic-behavior models, specifically, (i) between actions and the
Use Case Model and (ii) between rules and the Interaction Model.

An example of requirements is available in Table 2.2. The fact specifies the context of the action.
Also, the Requirements Model assumes facts as concrete evidence, rather than a generalization of
evidence. In other words, this fact indicates the concrete proof of a unique book, order and price in
order to aim for a clear abstraction of evidence. The context and the concrete evidence are ingredients
based on the ORM1, which are used to avoid ambiguity and to create a formal representation of
requirements. The rule example is a result of a configuration in the Object Model. Specifically, the
terms ‘Book 9815 on order 27’ and ‘23.50 euro’ are recognized as formal elements, instead of simple
NL. In addition, this rule is updated with NL for an easier understanding of stakeholders. Finally, the
quality attribute example specifies an important security attribute, although it is out of scope.

REQUIREMENT EXAMPLE

Action A customer can order one or more books.
Fact The price of Book 9815 on order 27 is 23.50 euro.
Rule Two (or more) facts about “The price of <orderedBook:OrderedBook> is

<price:Real> euro.” with the same value on <orderedBook:OrderedBook> are
not allowed.

Quality Sign up by a customer is protected.

The breakdown of the fact is the source of the formal elements that are specified in the rule, between angle
brackets. These formal elements are another representation of facts, but in the context of the Object Model. The
visualization of this breakdown example in Symbiosis is available in Appendix A.2.

Table 2.2: Example of requirements

1A formal representation with ORM focuses on specifying what the system should do and not precisely how the system
should do it, so that the prediction of the possible states of the system is feasible[17]. In Symbiosis, the main formal represent-
ation is the Object Model.

8 Use Case modeling within Object-Role Modeling

CHAPTER 2. PRELIMINARIES AND RELATED WORK

2.2 EQuA Object Model

The Object Model is the conceptual model of the domain of reality, because it contains type level
components that play roles in this domain according to facts [24]. These components are created
with the breakdown process, which is based on conceptual modeling methodologies [25]. Special
attention is given in the following aspects of communication of information: registry of relevant facts,
maintenance of facts, derivation of facts from other facts and retrieval of facts when requested [4].
These aspects are managed with the Object Model Meta-Model, which is presented in the next figure.

The breakdown of a fact returns its type level equi-
valent, namely the fact-type. An Object Model dir-
ectly depends on fact-types. A fact-type is com-
posed of roles because it represents the relation-
ship in which substitution-types play a role in the
source fact.

The substitution-type is implemented by either
object-types or base-types. An object-type con-
tains roles, but it does not represent a relationship
between these roles. A base-type cannot contain
roles because it represents a breakdown terminal.
The type of object for a base-type is one of the fol-
lowing: String, Boolean, Natural, Integer,
Real or Character.

The fact-types are also the generalization of object-
types, hence, an object-type is a fact-type. The
size of a fact-type (or object-type) is defined as its
amount of roles.

A breakdown example is illustrated in Figure 2.3.

Figure 2.2: The Object Model Metamodel (simplified version)

The constraint and behavioral-feature elements are not precisely type level components of the meta-
model. They represent meta-data for Object Models. The constraints provide configuration for the
Object Model. This configuration includes the coverage of rule requirements. Therefore, the con-
straints should be used by the Interaction Model to restrict the dynamic-behavior between fact-types.
A constraint example is depicted in Figure 2.4. The behavioral-features determine characteristics of the
static-behavior in the Object Model, such as properties or operations of object-types. The behavioral-
features should be used in the Interaction Model for the communication between object-types. On
the other hand, the Use Case Model should utilize the type level components for the communication
between users of the system and the Object Model. Therefore, the behavioral-features and the type
level components should be part of the vocabulary for the Use Case and Interaction Models.

The Object Model should be ‘elementary’ to allow its transformation into the class diagram. The
formal specifications2 of the Object Model assert that elementary fact-types are the atomicity of an ele-
mentary Object Model. If a breakdown causes that the corresponding fact-type loses information, then
this fact-type is elementary. So, the non-elementary fact-types should receive breakdown to achieve
elementary fact-types. From the formal scope, the elementariness of a fact-type is reviewed with its
size, its uniqueness constraints (ucn) and the ‘n-1 rule’ formalism. A ucn specifies a set of roles that
should have unique values, i.e., no duplication of values in distinct instances of the fact-type. The
‘n-1 rule’ evaluates that the size of the smallest ucn is at least one less than the size of the fact-type.

2Selected formalisms of the Object Model are available in Appendix B

Use Case modeling within Object-Role Modeling 9

CHAPTER 2. PRELIMINARIES AND RELATED WORK

The allocation of ucn is semi-automatic and its implementation generates configurations such as the
example in Figure 2.4. The analysis of this example with ucn is depicted in Figure 2.5.

FT1: <PriceOrderedBook>
TThhee pprriiccee ooff BBooookk 99881155 oonn oorrddeerr 2277 iiss 2233..5500 eeuurroo..

Breakdown 1

TThhee pprriiccee ooff BBooookk 99881155 oonn oorrddeerr 2277 iiss 2233..5500 eeuurroo..

OT1: <OrderedBook>role: orderedBook
BT1: Realrole: price

Breakdown 2

BBooookk 99881155 oonn oorrddeerr 2277

OT2: <Book>role: book
OT3: <Order>role: order

99881155 2277

BT2: Stringrole: isbn
BT3: Naturalrole: nr

Breakdown 3 Breakdown 4

Legend:
FTn: fact-type n, OTn: object-type n,
BTn: base-type n

The fact that starts this example is the one
from Table 2.2. The breakdown 1 creates FT1 with
two roles, one for OT1 and one for BT1. FT1 relates
OT1 and BT1 with the verb ‘is’. The breakdown 2
creates two roles that are contained in OT1, one
for OT2 and one for OT3. OT1 does not relate
OT2 and OT3. No breakdown is applicable in BT1.
The breakdown 3 produces the role for BT2, which
is contained in OT2. Similarly, the breakdown 4
returns the role for BT3, which is contained in OT3.
No breakdown is feasible for either BT2 or BT3.

Figure 2.3: Fact breakdown example

Rule: Two (or more) facts about “The price of <orderedBook:OrderedBook> is
<price:Real> euro.” with the same value on <orderedBook:OrderedBook> are not
allowed.

FT1a: The price of Book 9815 on order 27 is 23.50 euro.
FT1b: The price of Book 9815 on order 27 is 32.00 euro.

The rule that initiates this example is the one from Table 2.2. This rule states a condition to control the instanti-
ation of the fact-type described in Figure 2.3. The two example instances of FT1 have the same value on OT1. This
situation violates the rule and would cause corruption of the Object Model, for instance, there would be conflict
to indicate if either FT1a or FT1b is the valid instance of FT1.

Figure 2.4: Constraint example

PriceOrderedBook OrderedBook
ROLE TYPE UC ROLE TYPE UC

orderedBook OrderedBook uc15 book Book uc3
price Real — order Order uc3

Both fact-types are elementary. The size of PriceOrderedBook is 2 and its uniqueness constraint uc15 matches
the ‘n-1 rule’ with 1 role. If two or more instances of this fact-type duplicate the value of the role ‘orderedBook’,
the uc15 is disobeyed, such as exposed in Figure 2.4. The elementariness of OrderedBook is similar: its size
is 2 and its uniqueness constraint uc3 accomplishes the ‘n-1 rule’ with 2 roles. Hence, two or more instances of
OrderedBook should avoid the same combination of values in the roles ‘book’ and ‘order’. The display of uc3 in
Symbiosis is available in Appendix A.3.

Figure 2.5: Uniqueness constraint example

Additional constraints are important for the transformation of the Object Model into a class dia-
gram. These are the dynamic constraints and the navigability. The dynamic constraints are the re-
sponsibilities of a fact-type over its roles. These responsibilities establish the allowed access to these
roles. For instance, consider a fact-type with three responsibilities over one of its roles and that these
responsibilities specify that this role is settable, retrievable and removable. In the class diagram, these

10 Use Case modeling within Object-Role Modeling

CHAPTER 2. PRELIMINARIES AND RELATED WORK

responsibilities are transformed into the setter, getter and remove operations in the fact-type for this
role. The navigability specifies if a role is aware of its fact-type or not. If a role is aware then it is
navigable. A base-type cannot be navigable as it is a breakdown terminal and no additional fact-types
can be obtained from it. The navigability allows Symbiosis to detect the relevant fact-types that are
inaccessible in the Object Model. In order to have access to these relevant fact-types, Symbiosis imple-
ments the factory design pattern with singleton classes in the class diagram. Each singleton class is
known as a ‘registry class’ and corresponds to one of the relevant inaccessible fact-types. Appendix A.1
includes a class diagram example with dynamic constraints and registry classes.

The Object Model has been extensively researched in Symbiosis. At the moment of this writing
the accessibility to the latest publication of the Object Model research is reserved to project members.
Nevertheless, additional information about this model or the Requirements Model is available in the
EQuA project website [11].

2.3 Related work

The Requirements and Object Models provide the core ingredients to model the dynamic-behavior in
EQuA. This section resumes the survey of related work that was studied to match other studies with the
core ingredients. First, this section presents the analysis of two methodologies that pursue goals that
are similar to the ones of EQuA. Next, potential topics to achieve the modeling of dynamic-behavior
are discussed.

The Object-Oriented-Method (OO-Method) [35], [36] intends to mix formal methodologies with
industrial pragmatic experience in order to offer a formal basis known as OASIS, which is analogous to
the Object Model. One difference between OO-Method and EQuA is the perception of behavior: for a
class, the OO-Method specifies its attributes as the static components and its operations as the dynamic
components. The OO-method has also considered NLP [15], [29] with special attention to syntax and
semantics patterns in the Spanish language. Another difference with EQuA is that the OO-Method
receives use cases scenarios as input, rather than fact requirements. The OO-Method formulates se-
mantic patterns from use cases and suggests common behavior. To achieve this, an intermediate graph
model is created from the use case scenarios. This graph model contains morphological, lexical and
statistical information, which is then transformed into the OASIS model.

The Object-Process Methodology (OPM) [6] utilizes a holistic perspective with models as dia-
grams. These diagrams are known as Object-Process Diagrams (OPD) and are based on the Directed
Typed Graphs (DTG) formalism. An OPD has the structural and behavioral aspects in itself. However, as
OPD has hierarchical architecture, the allocation of ‘sub-OPDs’ is permitted. To obtain these sub-OPDs,
the transformations known as ‘inzoom’ or ‘outzoom’ are utilized. These transformations are based on
the DTG formalism. This formalism establishes constraints to filter and validate transformations. The
OPM research has focused on the interoperability and interconnectivity of systems [30]. One of the
results is the Object-Process Language (OPL), a Controlled Natural Language (CNL). The OPM could
be considered to model use cases with OPL and interaction of fact-types with OPD. Nevertheless, this
strategy could require a re-structure of the Object Model to adapt it as an OPD, which is out of scope.

After the analysis of EQuA, OO-Method and OPM, observations are discussed for the modeling of
external- and internal-behavior in Table 2.3.

2.3.1 SBVR, Petri nets, Use Case modeling

Bollen [7] discusses the first release of Semantics Of Business Vocabulary And Business Rules (SBVR) as a
specification that defines a structured sub-set of English vocabulary, which is based upon fact-oriented
modeling (i.e., ORM or CogNIAM). Bollen proposes to provide a structure of ‘verbalizable knowledge’.
For instance, a noun concept in SBVR should be structured as a noun or noun phrase. This opens the

Use Case modeling within Object-Role Modeling 11

CHAPTER 2. PRELIMINARIES AND RELATED WORK

→ NLP or CNL strategies are utilized in any of the reviewed methodologies. It is definitely
advantageous the review of those strategies to achieve the external-behavior. These topics
are discussed in Section 3.2.

→ To predict or restrict the dynamic-behavior, the conceptual modeling (EQuA, OO-Method) or
process modeling (OPM) focus on a delegate to validate constraints in the dynamic-behavior.
The analysis of a standard specification to implement this delegate is convenient. CogNIAM
is a variation of ORM that acknowledges the standard specification of SBVR. As EQuA is
based on ORM, the analysis of CogNIAM and SBVR to control constraints is feasible.

→ The internal-behavior modelled as a flow or process in OPM invites the analysis of a standard
directed graph specification, such as Petri nets.

→ EQuA and the OO-Method pursue industrial practices. The analysis of Use Case modeling
alternatives with pragmatic objectives is beneficial.

Table 2.3: Observations for the modeling of dynamic-behavior

possibility to structure SBVR noun concepts as EQuA fact-types or SBVR verb concepts as the relation-
ship between roles in fact-types. Nijssen [32] suggests the utilization of CogNIAM to understand SBVR.
The utilization of diagrammatic frameworks, such as the CogNIAM knowledge triange (Figure 2.6),
should improve the description of core aspects of SBVR. Ross [44] considers that the essence of SBVR
is the usage of ‘pre-packaged semantics’. These semantics are a vocabulary that contains terms (e.g.,
the fact-types from EQuA) and their definition (e.g., the behavioral-features from EQuA). Bollen [8]
agrees with the reasoning of Ross: “The main building blocks for semantic in the SBVR are the following:
vocabularies and terminology dictionaries, noun- and verb concepts, and definitional- and operational
business rules”.
SBVR and EQuA are based on conceptual modeling, which is a clear advantage. Nevertheless, a disad-
vantage is that considerable time is required to analyse the complete SBVR specification and then to
pursue its implementation. Furthermore, the new SBVR 1.1 specification has been recently released3,
which may require a new survey study.

The Petri nets could be an implementation of dynamic-behaviors as directed graphs. Hee et
al. [48] present an approach to model use cases and object life-cycles as Petri nets. This approach
composes Petri nets with the ‘fusion’ of places and transitions and decomposes Petri nets with the
removal of places and (isolated) transitions. Thus, composed Petri nets represent the synchronization
of use cases or object life-cycles. The transitions describe events in use cases and operations in object
life-cycles. The places represent the states of the system. The goal is to compose a complex Petri net
that represents the entire dynamic-behavior of the system. A similar approach is proposed by Cheung
and Chow [12]. This approach composes or decomposes labelled Petri nets. The places use ‘condition
labels’ and the transitions use ‘event labels’. These labels could be utilized to represent constraints
of the Object Model. Fahland and Woith [20] focus on behavior as adaptive processes with a set of
‘scenarios’, which they define as partial executions of the system. In this manner “a scenario can be de-
clared as possible, imperative, or forbidden” [18], which could fit with constraints of the Object Model.
The scenarios are represented as acyclic labelled Petri nets with the name of ‘oclets’. The forbidden
scenarios are predicted as ‘anti-scenarios’ with ‘anti-oclets’. The prediction of an anti-oclet depends on
the history of execution. Thus, an anti-oclet becomes detected if the history enables the state in which
this anti-oclet could be executed. This strategy enables the modeling of exceptions, which could be
perceived as alternate flows in use cases or object life-cycles. Another alternative is an extension of
Petri nets known as ‘proclets’ [19]. A proclet models the life-cycle of an ‘artifact’ and includes ‘ports’ to
enable interaction between other proclets; an example is displayed in Figure 2.6. The artifacts could
represent object-types of the Object Model and ports could represent interaction between object-types.

3Object Management Group (OMG), September 2013, http://www.omg.org/spec/SBVR/1.1/

12 Use Case modeling within Object-Role Modeling

http://www.omg.org/spec/SBVR/1.1/

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Left: CogNIAM knowledge triange (figure taken from [32]). Right: Example of two proclets that model the
life-cycle and interaction of the ‘order’ and ‘delivery’ artifacts (figure taken from [19]).

Figure 2.6: Selected excerpts of SBVR and Petri net literature

Petri nets is a formalism that could be assimilated by domain experts to model the interaction of object-
types. Unfortunately, this formalism suffers a higher risk of acceptance from the stakeholders in the
modeling of use cases.

Use Case modeling methodologies can help the project members and stakeholders in having a
uniform understanding of the expected external-behavior of the system. Sinning et al. [46] discuss
the misunderstandings between Software Engineering and Human Computer Interaction teams. These
authors propose a ‘separation of concerns’ strategy to link use cases with a ‘task model’. This model
focuses on user-interface requirements and provides a visualization to the use case actors. Jorgensen
and Bossen [26] propose ‘Executable Use Cases’ (EUC). An EUC consists of three tiers: (1) ‘Prose
tier’ for an informal NL specification of use cases, (2) ‘Formal tier’ for an executable model to narrow
the gap between informal and formal representations of use cases; model examples are UML state
machines or Petri nets, and (3) ‘Animation tier’ for a graphic display of the formal tier in order to
strengthen the communication between project members and stakeholders. Deeptimahanti et al. [14]
focus on UML specifications and introduce the ‘UML Model Generator from Analysis of Requirements’
(UMGAR) technique. This technique uses NLP for the input requirements, which are then analysed
with user feedback (i.e., semi-automatically). Moreover, UMGAR is based on ‘Use-case Driven Object-
Oriented Analysis and Design’ (OOAD) techniques, such as ICONIX. The traceability of requirements
is offered with information retrieval techniques and structured key words. In addition, a glossary is
offered to facilitate the communication between project members and stakeholders. Event flows of
use cases are specified in NL but with eight grammatical rules. The UMGAR architecture is depicted
in Figure 2.7 and the grammatical rules are listed in Table 2.4.

The approaches of task model and EUC highlight the user interface layer, whereas EQuA and UMGAR
focus in the formal specification of the dynamic-behavior. However, in contrast to EQuA, UMGAR
generates the class diagram upon the use cases, that is, the static-behavior depends on the analysis of
the dynamic-behavior. In EQuA, the Requirements and Object Models generate the static-behavior for
then analyse part of the dynamic-behavior with use cases.

The intuition of Use-case Driven techniques and grammatical rules in UMGAR are conceived in this
thesis as follows. The Use-case driven practices are analysed with the ICONIX methodology in Sec-
tion 3.1. The concept of grammatical rules is substituted with the definition of a CNL in Section 3.2.2.

Use Case modeling within Object-Role Modeling 13

The Use Case Model Developer is the core component for the analysis of requirements. This component assumes
pre-processed requirements with NLP techniques. The Conceptual Model Generator and Design Class Model De-
veloper components are equivalent to the Object Model in EQuA (figure taken from [14]).

Figure 2.7: Selected excerpt of UMGAR literature

1. Subject (NP) in the sentence is considered as sender object.
2. Object (NP) is considered as receiver object. And Predicate (VP) can also contain noun

phrase which can be treated as receiver object based on the VP structures.
3. The verb phrase between subject and object is taken as message passed between objects.
4. If sentence is having subject and predicate, without any object, then sequence stated in the

use-case specification helps to identify the relation between both messages.
5. Conditional statements represent sequence of statements; and can be handled by keeping If

clause at the beginning of the sentence and an end_If clause at the end of the sentence.
6. Concurrent statements show sequence of actions performed at the same time, and are

handled by inserting Start_ConCurrent clause at the beginning and End_Concurrent clause
at the end of concurrent statements.

7. Iterative statements are handled by inserting Start_While statement at the beginning and
End_While at the end of the iterative statements.

8. Synchronization statements are handled by keeping Start_Sync word after the first sentence
to show the synchronous message started and after the last sentence End_Sync word is used.

NP refers to ‘Noun Phrase’ and VP refers to ‘Verb Phrase’ (list taken from [14]).

Table 2.4: Grammatical rules of UMGAR

Chapter 3

Use Case Analysis and Design

This chapter presents the strategies for the analysis and design of use cases. ICONIX Use-Case driven practices fit
in the analysis. These practices are contemplated in the design of the CNL, which is proposed as a DSL with MDE.

3.1 Analysis with ICONIX

Rosenberg and Stephens [43] propose ICONIX as a Use-Case driven iterative process with steps that
are based on industrial empirical experience and with strengths in UML analysis and design. This
process does not imply a strict project life-cycle and can be utilized in waterfall or agile methodologies.
Nkandla and Dwolatzky [28] classify ICONIX as a process situated between eXtreme Programming
(XP) and the Rational Unified Process (RUP). The core similarity between the EQuA framework and
ICONIX is that a domain of reality is the first model that should be defined1. This model produces
the elements of the static-behavior, which are then used in Use Case modeling. This strategy contrasts
with the UMGAR process, in which the Use Case modeling is utilized to produce the elements of the
static-behavior (see Figure 2.7). The ICONIX process iteration is organized in four phases, as follows,

1. REQUIREMENTS. The functional requirements are abstracted as an unambiguous domain model.
Afterwards, the first-draft use cases are created and labelled as the behavioral requirements,
which should utilize elements from the domain model.

2. ANALYSIS/PRELIMINARY DESIGN. The UML robustness diagrams of the behavioral requirements
are created with robustness analysis. These diagrams are utilized to remark what objects of
the domain model participate in use cases. As a result, updates in either first-draft use cases
or the domain model are applied. This phase highlights the traceability between the domain
model and use cases, as well as the proposal of operations for objects.

3. DETAILED DESIGN. The UML sequence diagrams of use cases are obtained with sequence dia-
gramming. This strategy allows to assign the proposed operations to classes in the domain
model. As a result, the domain model evolves into a UML class diagram.

4. IMPLEMENTATION. The coding of classes and their unit testing is performed. Subsequently,
integration tests are prepared on the use cases to test their normal and alternate flows. Finally,
the code and domain model are cleaned to prepare the next iteration.

The adoption of ICONIX in the EQuA framework is convenient as both methodologies focus on
firstly defining the domain of reality to create the static-structure of the system. The identification of
functional requirements in ICONIX is equivalent to the creation of the Requirements Model in EQuA.
The manual modeling of functional requirements as the domain model in ICONIX is equivalent to
the semi-automatic transformation of the Requirements Model into the Object Model in EQuA. Thus,
the guidelines to specify behavioral requirements in ICONIX can be employed in the design of the
Use Case Model in EQuA. This strategy becomes meaningful to partially answer the research question
RQ1, that is, the formalization of the Use Case Model can consider these guidelines and the analysis

1This model is the domain model in ICONIX and the Requirements and Object Models in the EQuA framework.

Use Case modeling within Object-Role Modeling 15

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

REQUIREMENTS

RequirementsModel
Domain model

Functional requirements
Behavioral requirements

ANALYSIS /
PRELIMINARY DESIGN

UML robustness diagram
Behavioral requirements

Domain model

DETAILED DESIGN
UML sequence diagram

Domain model

IMPLEMENTATION

Source code
Test plans

Domain model

Use CaseModel

ObjectModel
Behavioral requirements

UML class diagram

Figure 3.1: ICONIX phases related to the EQuA framework models

→ Industrial practices as the fundamentals with an Object-Oriented UML scope.
→ Easy adoption. ICONIX is a medium-sized process [28] without strict specifications for the

life-cycle of a project.
→ Domain model before use case modeling. Equivalent to the strategy in the EQuA framework,

where the domain model is the Object Model and the use case modeling is the external-
behavior modeling.

→ Traceability of use cases with the domain model.
→ Simple Natural Language sentences in use cases.
→ Precise flow structure in use cases: event/response flows with normal and alternate flows.
→ Easy understanding of use cases for project members and stakeholders.

Table 3.1: Characteristics of ICONIX as benefits for the EQuA framework

of traceability of requirements is possible with the static-structure of the system. Figure 3.1 suggests
the presence of the EQuA models in the ICONIX process and Table 3.1 résumés the benefits of ICONIX
for the EQuA framework. The rest of this section focuses on the analysis of the ICONIX guidelines for
the definition of use cases.

ICONIX remarks the questions “what are the users of the system trying to do?” and “what is the user
experience?” for the definition of the dynamic-external-behavior. As a response, ICONIX proposes the
utilization of concrete event flows in each use case according to the questions shown in Table 3.2. By
acknowledging the context of the EQuA framework – specially the Object Model – and the reasoning
of the UCQn questions, the guidelines are resumed in Table 3.3.

QUESTION REASOINING

UCQ1 What happens? To outline the normal flow of the use case.
UCQ2 Then what else happens? To complete the normal flow.
UCQ3 What else might happen? To define alternate flows of the use case.

Table 3.2: ICONIX ‘three magic questions’ to write a use case

16 Use Case modeling within Object-Role Modeling

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

→ Use case should not exceed two paragraphs. Large use cases should be structured as a set
of concrete scenarios to improve their re-usability.

→ The sentences should have active voice to state who or what performs the event.
→ The sentences should follow an event/response flow to describe the dialogue between the

system and actors.
→ The sentences should have a Noun-Verb-Noun structure (N-V-N).
→ The sentences should include vocabulary from the Object Model. Some nouns as fact-types

and their verbs as their operations. The rest of nouns as actors with their verbs as requests
of persistence (i.e., CRUD — Create, Read, Update, Delete) for the system.

→ In industrial practices, the link of use cases is mostly achieved with the following use case
association stereotypes: «invokes» and «precedes». These stereotypes replace the stereo-
types «includes» and «extends» because they are sub-types of «invokes». An example of these
stereotypes is available in Figure 3.2.

→ The use cases can become the base of the users guide: the runtime behavior specification.

Table 3.3: ICONIX Use case guidelines for the EQuA framework

Use Case A Use Case B
Use Case C

Use Case D

<<precedes>>
<<invokes>>

<<invokes>>

The stereotype is read according to the direction of its arrow. In this example, the Use Case A precedes (i.e., must
be completed before) Use Case B. On the other hand, the Use Case B invokes Use Case C and Use Case C.

Figure 3.2: ICONIX Use case association stereotypes

ICONIX suggests the organization of use cases per packages and actors. In the context of EQuA,
this suggestion is substituted with the organization of use cases according to the categories of require-
ments defined in the Requirements Model2. In ICONIX, the presented guidelines correspond to the
first-draft use cases, which are then formalized as UML diagrams in the forthcoming phases. Never-
theless, this thesis proposes a formal representation of use cases with NLP to define a CNL with MDE.
The NL under consideration is the English language and the discussion about this proposal is initiated
on the following section.

3.2 Connecting analysis and design

The phase 2 of the ICONIX process seeks to fill the gap in use cases between what to do (i.e., the
analysis) and how to do it (i.e., the design) with the robustness diagram. However, Rosenberg and
Stephens [43] recognize that this diagram actually depends on the NL text of use cases: “a robustness
diagram is an object picture of a use case. ... the trick is in writing your use case correctly”. This reasoning
spurs the research on NLP in accordance with the guidelines of Table 3.3.

2A category and use case example is available in Appendix A.4

Use Case modeling within Object-Role Modeling 17

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

3.2.1 Natural Language Processing (NLP)

The NLP is an extensive research field with diverse outlooks. Brill [10] proposes a rule-based Part
Of Speech (POS) tagger. This tagger is trained according to machine-learning and/or information
retrieval techniques. After the learning process, an unknown word becomes tagged according to its
last three letters. For instance, ‘terhguous’ would be tagged as an adjective because the ‘ous’-ending
is mostly used in adjectives. This proposal is unsuitable for the utilization of the ICONIX guidelines
because the project member or stakeholder are assumed as the authors of use cases with vocabulary
from the Object Model. Nevertheless, the POS tagger could be an extension of the breakdown of fact
requirements from the Requirements Model in order to suggest roles and their relations.

Bajwa et al. [3] offer the Alchemy System3 for the Artificial Intelligence (AI) field, including NLP
knowledge extraction for OO modeling. Alchemy is related to Markov logics with declarative pro-
gramming. Its NLP methodology has defined three classes according to the constraints of the NL text.
These classes are: (1) Object class for objects or classes in a particular scenario: Main Actor Object,
Co-Actor Object, Recipient Object and Thematic Object; (2) Method class for the function or method
that is represented by the action performed in a sentence; (3) Attribute class to recognize adjectives
in a sentence as attributes of an object. With these classes, the algorithm of Alchemy corroborates
the convenience of the N-V-N structure for sentences in OO modeling. Moreover, this structure can be
studied as Noun Phrase - Verb Phrase (NP-VP) due to the utilization of POS tagging in the algorithm.
For the utilization of the ICONIX guidelines, the usage of the NP-VP structure is feasible to enrich the
NL text of use cases in the EQuA framework.

The parsing of phrase structures, such as NP or VP, generate multi-word components to represent
syntax with nested structures. The typed dependencies are also structures of sentences, but their
parsing generates semantic trees to represent branched dependencies between words. De Marneffe
et al. [13] suggest a method with two phases to extract typed dependencies. The first phase is the
dependency extraction, in which any Penn Treebank 4 phrase structure grammar parser suffices, such
as the Stanford parser5 for the English language. This parser provides the phrase structure parse tree
and suggest the ‘head’ of each component. The second phase is the dependency typing, in which the
heads are used in the semantic analysis of all the words. These words are labelled (i.e., typed) with a
grammatical relation. Each grammatical relation is matched with one of the patterns over the phrase
structure parse tree: “Conceptually, each pattern is matched against every tree node, and the matching
pattern with the most specific grammatical relation is taken as the type of the dependency”. The graphical
resulting representation of this method is a directed acyclic tree graph with one root. Figure 3.3 shows
and example of phrase and typed dependency trees.

The role posets technique is proposed by Pérez-González and Kalita [38]. This technique consists
of the utilization of the 4W language (4WL) with partially ordered sets (posets) of roles. The 4WL is
a semi-natural language with four main objectives “... a 4W sentence tries to answer the following four
questions related to a particular object: What does the object do?, Who receives the action?, Which other
participates? and When does it happen? ...”. The role posets is a framework based on the thematic
theta roles from Chomsky, in which the role of a noun in a sentence depends on the relative position of
the noun and on the semantic of the main verb in the sentence [39]. This analysis of roles is achieved
with the ‘roles machine’, a semantic structure that groups verbs according to formal schemes. The
target of role posets is to support decisions in the construction of the static-structure of the system.
As a result, the Graphic Object Oriented Analysis Laboratory (GOOAL) [39] is an academic tool that
supports sub-sets of English and Spanish languages and intends to emulate the reasoning that analysts
perform in the abstraction of requirements. The role prosets framework is akin to the Object Model in
EQuA. Similarly, the 4WL for role prosets is analogous to a CNL for the Object Model in EQuA.

3http://alchemy.cs.washington.edu/
4http://www.cis.upenn.edu/~treebank/
5http://nlp.stanford.edu/software/stanford-dependencies.shtml

18 Use Case modeling within Object-Role Modeling

http://alchemy.cs.washington.edu/
http://www.cis.upenn.edu/~treebank/
http://nlp.stanford.edu/software/stanford-dependencies.shtml

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

Images generated with the Stanford parser and Grammarscope: http://grammarscope.sourceforge.net/

The sentence ‘User provides address with street, number, zip, city, country’ is an example with active voice and NP-VP
pattern. Left image: displays the phrase structure. The first NP-VP substructure yields low structural complexity
in NP and high structural complexity in VP. Right image: displays the typed dependency structure. The root
dependency is the verb and represents the communication between the noun subject (nsubj) and the direct object
(dobj). Interestingly, the dependency of the preposition (prep) ‘with’ is with the verb, rather than with the dobj.
This is due to the semantic link between verbs and ‘with’ in the English Language. For instance, if the prep ‘in’ is
used instead of ‘with’, its dependency would be to the dobj instead than to the verb. In any case, notice that the
complexity of dependencies increases in the object clause of the sentence (i.e., dobj, pobj).

Figure 3.3: Example of phrase and typed dependency structures in NL

The English language is built upon phrased structures. The specification of the CNL in this research
should focus on patterns of phrase structure that match the N-V-N pattern. This is because Symbiosis
users would create use cases based on the CNL instead of parsing raw NL (i.e., no NLP pre-processing is
needed). The NP-VP pattern of phrase structure matches the N-V-N, as shown in Figure 3.3. Moreover,
as N-V-N is simple, the typed dependencies should maintain the verb as the root dependency. Table 3.4
depicts observations about the NL, ICONIX guidelines and validation approaches for the design of the
CNL (RQ1), which is discussed on next subsection.

→ The POS tagging strategy could be utilized to pre-process fact requirements for the Require-
ments Model and propose fact-type candidates.

→ The utilization of active voice sentences yields two structural patterns. In both patterns,
the structural complexity increases in the object clause of the sentence.
(1) The NP-VP as a pattern of phrase structure. The VP can consist of the verb and another
NP for the object clause. This pattern is feasible for the CNL for EQuA.
(2) The root-verb as a pattern of typed dependencies structure. The amount of branches
that depend on the verb is higher in the object clause.

→ The CNL for the EQuA requires semantic validation. A CNL example with the support of a
semantic component is the 4WL.

Table 3.4: NL observations for the design of the CNL

Use Case modeling within Object-Role Modeling 19

http://grammarscope.sourceforge.net/

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

3.2.2 Controlled Natural Language (CNL)

Essentially, a CNL is a subset of the NL that consists of limitations of the vocabulary and grammar. The
Object Model provides the vocabulary that comes from the abstraction of the Requirements Model.
The limitations of grammar consist of a formal language to achieve syntax and semantic validations.
A core definition of grammar for an English CNL tends to depend on the research context and a stand-
ard core definition is practically unavailable [33]. Therefore, the utilization of the reviewed ICONIX
guidelines and NLP techniques are used in the design of the CNL to articulate flows of events. The ar-
chitecture of the CNL is shown in Figure 3.4. This subsection discusses the phrase-structure grammar
in detail and initiates the review of the context-free language and the CNL Dictionary.

CNL
SYMBIOSISPhrasestructure Grammar

CNL
EBNF

CNL
validator

Contextfree DSL

CNL
DICTIONARY

Legend:
Structure definition
Processing of text
Element mapping

Figure 3.4: CNL architecture

The grammatical structures begin with the atomic elements, which constitute the lowest gram-
matical layer. These elements are the noun and verb, which are defined in Table 3.5. The guideline
N-V-N has limitations for the Use Case or Interaction Models. For example, in the specification of prop-
erties of fact-types. Hence, this guideline has been adapted to the NP-VP pattern of phrase structure, as
specified on Table 3.4. For this adaptation, auxiliary grammatical structures are proposed in Table 3.6.
These grammatical structures aid in specifying attributes of fact-types and in joining grammar elements
for an easier human reading. The CNL definition of NP (NP) is also available in Table 3.6. The VP
(VP) has two structures. The first one is the callable verb phrase (VPC) and contains the verb (V)
and zero or more NP. The VPC is prominent in the design of sequential flows as it completes the
pattern of phrase structure NP-VP. Nevertheless, the Interaction Model requires inner communication
between flows. The interaction verb phrase (VPI) is the second kind of VP and it specifies the state of
initialization or expectance of a VPC . The CNL definitions related to VP are depicted in Table 3.7.

DEFINITION 1 - NOUN (N) Element that represents either the semantic source of the verb (the
subject) or the semantic receptor of the verb (the object).
N can be actor (Nα) or non-actor (Nβ) and Nα can be human (NαH)
or external-system (NαE).

DEFINITION 2 - VERB (V) Element that represents the flow of action that is originated by a N.
V can be transitive (VT) or intransitive (VI) and in present tense.

Table 3.5: CNL atomic grammatical definitions

20 Use Case modeling within Object-Role Modeling

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

DEFINITION 3 - KEY PHRASE (KP) Structure to specify a string that joins grammar elements
or structures. KP is formed by syntax-free words and num-
bers which should be regulated with semantic validation.

DEFINITION 4 - BASE PHRASE (BP) Structure that represents a base-type element that corres-
ponds to a N. BP supports the specification of a value for
the base-type.

DEFINITION 5 - N PARTICULARIZATION Syntax-free string that specifies detail of a N, such as a
(par t) determiner (e.g., ‘the’, ‘an’) or adjectives.

DEFINITION 6 - N PREDICATE (pred) Word that specifies the resulting CRUD state on N.
DEFINITION 7 - NOUN PHRASE (NP) Structure to specify a noun phrase:

NP= par t N pred KP BP1 BP2 ... BPi ... BPn
where: par t, pred, KP and BPi : i > 0 are optional.

Table 3.6: CNL auxiliary grammatical structures and NP definition

DEFINITION 8 - CALLABLE VP (VPC) Structure to complete the pattern of phrase structure
NP-VP by specifying either an intransitive verb phrase
VC I for unary actions without nested NP or a transitive
verb phrase VC T with nested NP:

VPC I = VI BP1 BP2 ... BPi ... BPn
where: BPi : i > 0 are optional and they correspond to
the N subject.

VPC T = VT NP1 NP2 ... NPi ... NPn
where NPi : i > 1 are optional.

DEFINITION 9 - REMOTE ACTION (R) R= NP VPC
where: VPC is optional.

DEFINITION 10 - INTERACTION SCOPE Word that specifies if the interaction is to be called
(scope) or expected.

DEFINITION 11 - INTERACTION VP (VPI) Structure to specify one or more remote actions:
VPI = scope0 R0 KP1 scope1 R1 KP2 scope2 R2 ...

KPi scopei Ri ... KPn scopen Rn
where: KPi scopei Ri : i > 0 are optional.

DEFINITION 12 - VERB PHRASE (VP) Structure to specify a verb phrase. This structure is
either a VPC or a VPI .

Table 3.7: CNL VP definition

The prior definitions are used in Table 3.8 and Table 3.9 to articulate event-types including their
order of execution in the flow. In Table 3.8, the sentence (ATS) is the most common event-type, as it
has the NP-VP pattern. The trigger event-type has two kinds. The consequence trigger (ATT C) repres-
ents pre-conditions that cause the flow. The second kind is the natural trigger (ATT N) for the typical
initialization of flows. The end event-type has three kinds. The go-to event-type (ATEG) terminates

Use Case modeling within Object-Role Modeling 21

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

the sequential execution with a ‘jump’ to an event-type from the same or distinct flow. The second
kind is the post event-type (ATEP), which specifies the result of a CRUD request and terminates the
flow. The last kind of end event-type is the exit-use-case event-type (ATEE), which terminates the flow
that executes the event and the specified flow.

DEFINITION 13 - FOR-LOOP (L) Structure to specify the initialization of a sub-flow for a par-
ticular NP. This structure is either LE or LD.

LE = ‘for’ ‘each’ NP1 KP NP2
LD = ‘for’ ‘every’ NP

DEFINITION 14 - CONDITIONAL (I) Structure to specify a condition to initialize a sub-flow:
I= ‘if’ NP

Table 3.8: CNL loop and conditional grammatical structures

DEFINITION 15 - RANK (step) String that specifies the order of the event in the
FL.

DEFINITION 16 - SENTENCE (ATS) ATS = step NP VP ‘.’
where: VP is optional.

DEFINITION 17 - CONSEQUENCE TRIGGER ATT C = step ‘Cause:’ NP1NP2 ... NPi ... NPn ‘:’
(ATT C) where: NPi : i > 1 are optional.

DEFINITION 18 - NATURAL TRIGGER ATT N = step NP0 V KP1 NP1 KP2 NP2 ... KPi NPi
(ATT N) ... KPn NPn ‘:’

where: KPi ,NPi : i > 0 are optional.

DEFINITION 19 - GO-TO (ATEG) ATEG = step ‘Continue’ F T KP step ‘.’
where: F T is optional.

DEFINITION 20 - POST (ATEP) ATEP = step ‘Post’ NP ‘.’
DEFINITION 21 - EXIT (ATEE) ATEE = step ‘Exit’ F T ‘.’
DEFINITION 22 - SUB-FLOW LOOP (ATL) ATL = step L ‘:’ λ KP rank ‘;’
DEFINITION 23 - SUB-FLOW CONDITIONAL (ATI) ATI = step I ‘:’ λ KP rank ‘;’
DEFINITION 24 - ACTION-TYPE (AT) AT = {ATS ,ATT C ,ATT N ,ATEG ,ATEP ,ATEE ,

ATL ,ATI}
DEFINITION 25 - LIST OF ACTION-TYPES (λ) λ= Ordered list of events from the set AT.
DEFINITION 26 - FLOW-TYPE (F T) String that specifies the name of the flow and its

type: normal or alternate.
DEFINITION 27 - ACTOR LIST (actors) List of Nα.
DEFINITION 28 - NON-ACTOR LIST (nonActors) List of Nβ .
DEFINITION 29 - FLOW (FL) FL= F T ‘:’ actors ‘.’ nonActors ‘.’ λ

where: actors and nonActors are optional.

Table 3.9: CNL Action-type and flow definitions

22 Use Case modeling within Object-Role Modeling

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

Moreover, the possibility to start nested flows (sub-flows) is offered with for-loop and conditional
grammatical structures. These structures are shown in Table 3.8. The for-loop LE focuses on a sub-
flow for all the objects that correspond to a NP in a flow. The for-loop LD focuses on a sub-flow for
each NP1 that is contained in NP2. In the conditional structure I, a NP is employed to establish the
decision criteria to start the sub-flow. The rest of grammatical structures and definitions are available
in Table 3.9. The LE , LD and I are used to create two event-types, the sub-flow loop (ATL) and the
sub-flow conditional (ATI). All the definitions of event-types are grouped in the set called action-type
(AT). To complete the grammatical structures of the CNL, the representation of the flow is discussed.
The flow (FL) consists of the string flow-type (F T) and three lists. F T specifies the name of the use
case or fact-type and the type of flow, that is, either normal or alternate flow. The first list specifies the
set of Nα and the second list specifies the set of Nβ . The last list is λ and it contains the action-types
that represent the flow of events.

The grammatical structure definitions are the core to specify formal syntax and semantics of the
CNL. These formalisms should achieve the linkage between the Use Case or Interaction Models and
the Requirements or Object Models. The formal syntax does not need to define a general purpose
language, as the language domain focuses on the NP and VP structures of the English language.
Therefore, a Domain-Specific-Language (DSL) is suitable. In concrete, a context-free DSL is preferable
due to the phrase-structure grammar of the CNL. The DSL is discussed in Section 3.3. The formal
semantics accomplishes two objectives: the linkage between the aforementioned models and the se-
mantic check of the DSL. These two objectives are designed as two components, the CNL Validator
(CNLV) and the CNL Dictionary. The CNLV depends on the syntax validation of the context-free DSL
and utilizes the Dictionary to obtain vocabulary and validate semantics. The Dictionary is an independ-
ent component that stores key strings of the language domain and exploits the advantage of Model
Driven Engineering (MDE) by guarding object transformations of model components. The semantic
formalisms are discussed in Sections 3.3, 3.4.

3.3 Domain Specific Language (DSL)

The expressiveness of the context-free language is limited to the phrase structures described on the
previous section, yielding the convenience of a DSL rather than a general purpose language. In the
computer science field, the equivalent to these structures can be an Extended Backus-Naur Form (EBNF)
syntax notation. The proposed notation consists of production rules, terminal rules, keywords and key-
symbols. The production rules are derived from the CNL grammatical definitions and structures. The
terminal rules represent either base-types, CRUD predicates for fact-types, ICONIX actor guidelines,
words, integer numbers or strings. The keywords are static groups of terminal symbols and the key-
symbols are single terminal symbols. The keywords, key-symbols and terminal rules are utilized in the
production rules. The formal definition of this EBNF as the syntax component of the CNL is presented
in Table 3.10.

The CNL EBNF is utilized to achieve the syntax validation of the textual input. This validation
applies the lexical analysis of the input to create the stream of tokens to be validated. Afterwards, the R
rules validate the tokens to generate the Abstract Syntax Tree (AST) of the input. The strategy adopted
for this syntax validation is available in the discussion of the prototype implementation, Section 5.3. As
an AST example, Figure 3.5 illustrates the AST of the normal flow of use case AddBook. The definitions
of the Subsection 3.2.2 are utilized to explain this example. The Flow start symbol corresponds
to the grammatical structure of Def.29. The λ list (Def.25) is represented by ActionTypeList.
Figure 3.5 provides details of the sixth ActionType by highlighting its derivation to a NP-VP sentence
(Def.16) with NounPhraseExp and VerbPhraseExp symbols. The VerbPhraseExp uses Def.8 to
contain an additional NounPhraseExp and achieve the N-V-N guideline. Moreover, the derivation of
this additional NounPhraseExp adds information of the noun ‘StockBook’ with a BasePhraseExp
(Def.4).

Use Case modeling within Object-Role Modeling 23

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

DEFINITION 30 - CNL EBNF Tuple G = (V,Σ, R,Flow), where:

1. V is the set of non-terminal symbols that represent the grammatical structures of the CNL.

2. Σ is the set of terminal symbols that conform the alphabet. This set contains letters, numbers,
key-words and key-symbols: Σ = {a,b..y,z,A,B,..,Y,Z,0,1,..,8,9} ∪ Key-words ∪ Key-symbols.
where: Key-words and Key-symbols are specified in Appendix C.1.

3. R is the set of production and terminal rules. Each r ∈ R has the form:
r = (v, w), where v ∈ V and w = (V ∪Σ)∗. The textual mode of r is: v::=w

4. Flow is the start symbol, Flow ∈ V .

The V , R and textual mode of each r ∈ R are available in Appendix C.1.

DEFINITION 31 - CNL CN T (G) =
n

w ∈ Σ∗ : Flow
∗
⇒ w

o

, where:

w are the strings containing only terminal symbols that can be derived from the start symbol

Flow. The derivation (
∗
⇒) is the chained application of r ∈ R, that is, the repetitive application

of rules to produce w from Flow.

Table 3.10: CNL formal definition

FLOW

ACTORLIST NONACTORLISTACTIONTYPELIST

TRIGGERTYPE 1
ACTIONTYPE 2

ACTIONTYPE 3

ACTIONTYPE 4

ACTIONTYPE 6

ACTIONTYPE 5

ENDTYPE 7

NOUNPHRASEEXP VERBPHRASEEXP

NOUNPHRASEEXPVERB

BASEPHRASEEXP

66 <<ccuussttoommeerrSSeerrvviicceeCClleerrkk>> {{ccoommpplleetteess}} <<SSttoocckkBBooookk>> wwiitthh [[ssttoocckk::NNaattuurraall]] ..

RANK

The AddBook use case is available in Appendix A, Figure A.6

Figure 3.5: Abstract Syntax Tree (AST) of AddBook

24 Use Case modeling within Object-Role Modeling

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

The AST example depicts that the design of the CNL EBNF is not strongly attached to the type
level definitions of the Object Model. The only type level that is syntactically defined is the base-type.
The rest of type level elements are abstracted as nouns by the CNL Validator (CNLV). This design issue
is important in two senses related to the RQ1. First, the minimization of the maintainability work of
the CNL EBNF with respect to the Object Model. Second, the possibility to re-use the CNL EBNF for
the Interaction Model. The first reason separates syntax tasks from semantics tasks [21] and offers
cohesion to the CNL EBNF. The semantics tasks are redirected to the CNLV. The second reason pursues
the utilization of the CNL to represent the interaction between fact-types6. As noted in Figure 3.4, the
CNLV completes the DSL and establishes the linkage between the CNL and Symbiosis. The design of
the CNLV should be compatible with the Model-Driven environment in Symbiosis. Therefore, Model-
Driven Engineering techniques are appropriate to complete the DSL and to propose the Use Case and
Interaction Models.

3.4 Model Driven Engineering (MDE)

The CNL Validator (CNLV) accomplishes the validation of semantics with two schemes. In the first
scheme, CNLV checks restrictions that do not depend on the Object Model. For example, an action-
type with a N-V sentence (i.e., V is a unary operation) should be executed by nonActors and not by
actors. In the second scheme, CNLV checks restrictions that depend on the Object Model. For instance,
the base phrases (BP) of a noun phrase (NP) should correspond to the base-types of a fact-type. As the
type elements in the Requirements and Object Models are defined with metamodels, the convenience
of MDE techniques is highlighted in the formal design of the semantics validation. Details about these
schemes are presented in Section 4.2. The CNLV can be perceived as a Semantic Model [21] for the
DSL. In fact, the DSL of the CNL becomes a Domain Specific Modeling Language (DSML) [45] to facil-
itate the design of the Use Case and Interaction Models.

The CNLV requires vocabulary of the CNL to accomplish both phases of validation. The inclusion
of vocabulary in the CNLV would augment its maintenance complexity. As an alternative, a loosely
tied component is proposed, the CNL Dictionary. The metamodel of this dictionary is shown in Fig-
ure 3.6. This metamodel facilitates the classification and variation of the contents of a dictionary with
respect to the CNL. The unique element that should be tightly coupled with the CNL grammar is the
Keyword element. The ReservedWord and ReservedVerb elements are utilized to validate the CNL key
phrases (KPs). The KPs aid in the validation of semantics with logical constraints rather than with
syntax structures. In other words, this approach minimizes the definition of semantics with syntax
by substituting an excess of keywords with reserved words or verbs for KP. Furthermore, the logical
constraints should allow a richer validation of KP instead of only syntax errors. The RegularExpres-
sion element permits a higher abstraction of strings to validate strings with respect to their context or
type. Thus, the composite design pattern is suggested with the ExpressionPart abstract class to allow
the manipulation of children classes to RegularExpression. Finally, BehavioralFeatureMap and FlowMap
elements represent the mapping of elements between the CNL and the Object and Requirements Mod-
els.

The metamodel of the CNLV is also depicted in Figure 3.6. The Restriction element is the core
of the semantics validation. The actorKindSet attribute configures the kinds of noun as actor, such
as NαH , NαE and Nβ in the CNL grammar. The interactionKindSet attribute configures the kinds of
interaction scope, such as ‘calls:’ or ‘expects:’ in the CNL grammar. The Rule element specifies the se-
mantics constraints for the CNL. This element contributes in answering the RQ1 with emphasis in the
formalization of the semantics validation. Moreover, this element proposes the hypothesis to answer
the RQ2 by abstracting the rules of the Requirements Model. The connection between Symbiosis and
the CNL is achieved by the Validator element. This element requests the access to a flow (FL) in CNL
and allows Symbiosis to use Restriction to validate the flow with vocabulary from the Object Model.

6Examples of Flow for fact-types are available in Appendix C.2

Use Case modeling within Object-Role Modeling 25

CHAPTER 3. USE CASE ANALYSIS AND DESIGN

Figure 3.6: CNL Dictionary and CNLV Metamodels

The Dictionary provides an indirect support to the Validator and Symbiosis: The Validator loads
the mapping of FLs into the Dictionary for Symbiosis and Symbiosis loads the vocabulary into the
Dictionary for the Validator. Before further detail in the semantics validation, the CNL EBNF needs to
be considered in the MDE paradigm to facilitate its communication with the CNLV. This approach re-
quires the modeling of keywords, key-symbols, production and terminal rules as part of a metamodel
for the CNL EBNF. Thus, this metamodel should provide structure to the EBNF in order to enrich its
textual syntax formalisms. The discussion of the design of a CNL EBNF metamodel actually completes
the definition of the CNL as a DSML. This discussion motivates the review of technical specifications of
Symbiosis because (i) the design of the prototype becomes deeply involved and (ii) the availability of
standard frameworks that are compatible with Symbiosis could facilitate the design and implementa-
tion of the prototype. The discussion of CNL as a DSML is continued in Section 4.1 and further details
of semantics validation are available in Section 4.2.

26 Use Case modeling within Object-Role Modeling

Chapter 4

Use Case and Interaction Models

This chapter discusses the CNL as a DSML, presents the Use Case and Interaction Models as an extension of Symbiosis
and provides details about semantics validation. The CNL Dictionary as an external service is briefly examined.

4.1 CNL with MDE: DSML

The architecture of the CNL (Figure 3.4) remarks that the formal definition of the context-free DSL is
based on the phrase-structure grammar of the limited English NL. As the Symbiosis tool utilizes JRE7
as the platform for its execution, the research of frameworks related to structural MDE approaches in
Java has been performed [27] [5]. A standard and mature Java framework that focuses on structured
models is the Eclipse Modeling Framework (EMF)1. This framework employs the XML Metadata Inter-
change (XMI) to specify models, although their specification as Java interfaces or UML class diagrams
is also supported. EMF offers runtime support and tools to transform these models into Java classes
accompanied with ‘adapter’ classes to permit visualizing and command-based editing of models, as
well as a basic model editor. The models of this framework are defined by the Ecore metamodel. This
metamodel is defined by itself with EObject implementations. Figure 4.1 shows that all the classes
of the Ecore metamodel implement the EObject interface, either directly or indirectly. Hence, the
Ecore metamodel becomes the meta-metamodel of the EMF.

EMF does not need a special Java Virtual Machine (JVM), which maintains the compatibility with
Symbiosis. The reworking of the CNL EBNF as an Ecore metamodel is the task to complete the design
of the CNL as a DSML. The adaptation of terminal and production rules as EObject classes is a feasible
alternative. For this adaptation, an extension of the EMF is available, the Xtext language devel-
opment framework2. Xtext is focused on the development of DSLs and functions as a Language
Workbench [21]. This is a clear advantage because Xtext includes documentation and tools to accel-
erate the evolution of DSLs under EMF without the need to manually model the Ecore metamodel.
Furthermore, the Xtext documentation [16] assures that the resulting DSL can be utilized without the
necessity of the Eclipse IDE, which suits with the needs of Symbiosis: “The compiler components of your
language are independent of Eclipse or OSGi and can be used in any Java environment. They include such
things as the parser, the type-safe abstract syntax tree (AST) ... and static analysis aka validation and last
but not least a code generator or interpreter. These runtime components integrate with and are based on
the Eclipse Modeling Framework (EMF)”.

Xtext offers the Grammar Language3 as the core textual definition for new DSLs. This language
opens the possibility of grammar re-usage, which Xtext refers to as ‘grammar mixin’. The Grammar

1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/Xtext
3http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/

org/eclipse/xtext/Xtext.xtext

Use Case modeling within Object-Role Modeling 27

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext

CHAPTER 4. USE CASE AND INTERACTION MODELS

The shadowed elements are abstract classes. The elements highlighted in blue are mentioned in this section
(image based on http://help.eclipse.org/indigo/index.jsp?nav=/22)

Figure 4.1: Ecore metamodel class hierarchy diagram

Language expects textual definitions that are based on an EBNF with an OO scope. Apart from describ-
ing the concrete syntax, the Grammar Language allows the mapping of the EBNF syntax to EObject
classes. Hence, the refactoring of the CNL EBNF Tuple G = (V,Σ, R,Flow) produces the Xtext CNL
EBNF, which should derive the Ecore metamodel. This refactoring is simplified with (i) the utilization
of the Xtext alphabet as Σ and (ii) adjustments according to the Grammar Language ∀r ∈ R to create
the refactored rules R′. Xtext offers a common representation of terminal symbols with the grammar
of Common Terminals4. The mixin of the grammar of Common Terminals in Xtext CNL EBNF allows to
assure that ∀r ′ ∈ R′, r ′ represents a class that implements the EObject interface. The rules R′ finish
being of four types, as described in Table 4.1. The structure of the Ecore metamodel is automatically
defined by Xtext according to the types of classes returned by the rules R′. The Xtext CNL EBNF and
the Ecore metamodel complete the Xtext CNL, a Domain Specific Modeling Language (DSML).

TYPE OF RULE DESCRIPTION

Terminal Transforms textual input into a single terminal symbol and returns an
EDataType (EString by default). A terminal rule can be configured to return
other type of EDataType, such as EInt.

Data-type Similar to a terminal rule. The main difference is that a data-type rule uses ter-
minal symbols instead of textual input and returns an structured EDataType.

Enum Enumeration of strings. This rule can be seen as a subset of data-type rules
that return EEnum. An EEnum class is formed by an enumerator of strings.

Parser These rules are employed by the parser to transform the terminals into the AST
(syntax validation) and to create the Ecore metamodel with EClass classes.

Table 4.1: Types of grammar rules in Xtext CNL

4http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.xtext.doc/help/
CommonTerminals.html

28 Use Case modeling within Object-Role Modeling

http://help.eclipse.org/indigo/index.jsp?nav=/22)
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.xtext.doc/help/CommonTerminals.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.xtext.doc/help/CommonTerminals.html

CHAPTER 4. USE CASE AND INTERACTION MODELS

Xtext utilizes the terminal rules in the lexer phase to obtain a raw object representation of the
textual input. The EDataType and EEnum classes are used in the parsing phase to represent data-
structures in the Ecore metamodel. The EClass classes are utilized to complete the parsing phase
and represent the logic structure of the AST, the Ecore metamodel. This metamodel is achieved with
metadata in the parser rules. Xtext refers to this metadata as ‘features’ and ‘actions’. The features
are the assignment of attributes or relationships to an EClass by means of an EObject or a cross-
reference. An EObject should be assigned as either an attribute of the EClass or a composition
relationship with another EObject, whereas a cross-reference should be assigned as an association
relationship with another EObject. On the other hand, the ‘actions’ specify which type of EObject
should be explicitly returned by the parser rule. Therefore, an action can specify a generalization
relationship between EObjects. An exemplification of features and actions is provided in Figure 4.2.

The first row of images presents two fragments of use case flows. The left-side flow uses the EndExp rule on
the third step, which makes cross-reference with the Flow rule on the right-side flow. The second row of images
displays the CNL EBNF of the EndExp and Flow rules. These rules clarify that the cross-reference is represented
by a third rule, namely, the FlowType. The bottom row illustrates the refactored EndExp rule, which returns
an EndExp class. This class receives the feature called name as an EString attribute. In addition, this class em-
ploys actions to specify that the feature called expression is used to generalize three classes: GoToExp, PostExp
and EndUseCaseExp. The GoToExp class obtains the following features: particularFlow as an association re-
lationship with the Flow class (by means of its FlowType feature), keyphrase as an attribute with a list of IDs
and actionTypeReference as a Rank. The types of ID and Rank depend of the type of their rules. Similarly, the
assignment of features is done for PostExp and EndUseCaseExp.

Figure 4.2: Features and Actions in Xtext CNL

The MDE strategies evoke the following modularity in the Xtext CNL:

→ The Xtext CNL EBNF is the syntax metamodel that is defined by the CNL EBNF grammar re-
factored with the Grammar Language. This metamodel returns the structural inference of the
textual input. This inference is the AST model, which Xtext labels as the ‘Node Model’.

→ The Ecore metamodel is the semantic metamodel that is defined by the OO metadata specified
in the Xtext CNL EBNF. This metadata produces the EObject classes that are modeled as the
logic inference of the AST. This inference is the Ecore model of the CNL EBNF grammar.

→ The CNLV metamodel is the semantics validation metamodel that has been presented in Sec-
tion 3.4. The definition of this metamodel depends on the EMF. The resulting models should
perform semantics validation of Ecore models.

→ The CNL Dictionary metamodel is the vocabulary metamodel that has been presented in Sec-
tion 3.4. This metamodel is loosely coupled with the CNL but enriches its semantics validation
with vocabulary sources, such as Symbiosis.

Use Case modeling within Object-Role Modeling 29

CHAPTER 4. USE CASE AND INTERACTION MODELS

ppaarrttiiccuullaarrUUsseeCCaassee
00....11

FFllooww AA FFllooww BB

CCrroossss
rreeffeerreennccee
wwiitthh
FFlloowwTTyyppee

Flow A: fragment of the transformation of the Ecore metamodel with the classes that are closely related to the
Flow root class. The EndExp and GoToExp classes show the relationships that were cited in Figure 4.2. Flow
B simulates to be another instance of the same fragment. The magenta arrow speculates a logical association
relationship between classes of distinct instances. This speculation has been confirmed in Figure 4.2.

Figure 4.3: Semantic metamodel as a class diagram

The EMF offers alternate MDE functionalities to improve the CNL and to propose strategies of
communication between the Xtext CNL metamodels and Symbiosis, specifically the Use Case and In-
teraction Models. Figure 4.3 presents one fragment of the Ecore metamodel as a UML class diagram
that has been used to analyse the communication between the Ecore and CNLV metamodels5. The
EBoolean attributes facilitate the review of contents in the EObject classes. The composition re-
lationships improves the design of the sequence of validation. The generalization relationships are
useful to specify class castings within the validation. The association relationships depict the cross-
references that are helpful in the object-linking validation, specially in situations between distinct
model instances, as shown in Figures 4.2, 4.3. The design of semantics validation for the Use Case
and Interaction Models is discussed on next section.

4.2 Semantics Validation

As mentioned in Section 3.4, the CNLV suggests two schemes to apply validation with ‘semantic re-
strictions’6. These schemes are validation with isolated vocabulary and validation with vocabulary
interoperability. The vocabulary is provided by the CNL Dictionary in both schemes. In the first
scheme, the vocabulary is available in the Keyword, ReservedWord, ReservedVerbs and RegularExpres-
sion components of the Dictionary. The nouns, verbs and base-types that are introduced in flow models
are unknown and assumed as valid for the context of use cases or object life-cycles. In the second
scheme, the vocabulary is extended with the BehavioralFeatureMap and FlowMap components of the
Dictionary. BehavioralFeatureMap should be utilized by Symbiosis to include the nouns, verbs and
base-types to employ in the Xtext CNL, whereas FlowMap should be used by the Xtext CNL to include
the flow models that should be acknowledged by Symbiosis. The architecture of the Use Case and
Interaction Models is presented in the next subsection, followed by subsections with the discussion of
semantic restrictions and the possibility of utilizing the CNL Dictionary as an external service.

5The Appendix C.3 contains another fragment of this transformation, as well as a fragment of the transformation of the Xtext
CNL EBNF into a syntax graph.

6These restrictions correspond to the Restriction component of the CNLV metamodel.

30 Use Case modeling within Object-Role Modeling

CHAPTER 4. USE CASE AND INTERACTION MODELS

CNL Delegate
Flow persistence

Ecore models

Use Case Model

Symbiosis

Xtext CNL

CNL Delegate
Flow persistence

Ecore models

Interaction Model

Object LinkageUC Linkage

Dynamic
internal

behavior
Dynamic
external
behavior

Figure 4.4: Architecture of Use Case and Interaction Models

4.2.1 Design of UseCase and Interaction Models

The Use Case and Interaction Models are proposed to extend the Symbiosis tool. Most of the research
has been focused on the Use Case Model and the Interaction Model is briefly discussed. Nevertheless,
these models have strong similarities in their architectures and the Xtext CNL has been designed to suit
both models. This study is suggested as ground work for further research in the Interaction Model.
The architecture of both models is depicted in Figure 4.4. The Flow persistence and CNL Delegate7

components represent the interoperability between Xtext CNL and Symbiosis. Xtext CNT stores the
flows according to the URI specifications of the EMF and these specifications are managed by Flow
persistence. This persistence component is proposed because the serialization of projects in Symbiosis
uses a distinct strategy. The functionalities of Flow persistence could be assigned to CNL Delegate, de-
pending on the implementation of the Use Case and Interaction Models. CNL Delegate prepares and
sends information to the Xtext CNL. This information includes the type and contents of flows (i.e.,
use case or object flows) as well as vocabulary. As a response, CNL Delegate receives the Ecore models
and the results of their validation from Xtext CNL. These Ecore models are instances of the the Ecore
metamodel and this metamodel is the formalization of the dynamic-behavior that is re-used for the
Use Case and Interaction Models (RQ1). The UC Linkage and Object Linkage components maintain
the interdependence between Ecore models and the Requirements Model. UC Linkage should specify
the cardinality between use cases and action requirements, as well as the categorization of use cases
(RQ1). Object Linkage should specify the correspondence between fact-types and rule requirements
(RQ2).

Additional discussion is provided for the validation with vocabulary interoperability. The CNL Del-
egate should utilize the Object Model to obtain the list of fact-types and remove the fact-types that
are systematically generated. In other words, the fact-types to consider are the ones that have been
prepared by the users of Symbiosis. Afterwards, for each one of these fact-types, the base-types are
collected. If a fact-type is an object-type, its methods are also collected. The CNL Delegate prepares all
the collected information for the BehavioralFeatureMap component of the Dictionary.

Currently, the rule requirements would not be added to the Dictionary because the definition of
rules in CNL Delegate is distinct to the definition or rules in Symbiosis. Further research is required to
specify a transformation between these definitions of rules.

7This component is a delegate of the Validator component of the CNLV metamodel.

Use Case modeling within Object-Role Modeling 31

CHAPTER 4. USE CASE AND INTERACTION MODELS

4.2.2 Semantic restrictions

The CNL use cases or object flows are analyzed as CNL Ecore models. Thus, their contents are manipu-
lated as EObjects by the Restriction component of the CNLV metamodel (Figure 3.6). This component
represents the semantic restrictions and is configured with (i) the kind of actors and interactions and
(ii) Rule components. The first configuration should match with the EBNF rules ACTORKIND (Table C.2)
and InteractionScope (Table C.3). The second configuration consists of semantic rules that valid-
ate EObjects. This subsection presents the semantic rules for the schemes introduced in Section 4.2.
In the scheme of validation with isolated vocabulary, the semantic rules are referred to as isolated
rules. These rules are the base of the semantic validation, as they use the vocabulary that is known by
default. In the scheme of validation with vocabulary interoperability, the semantic rules are referred
to as interoperability rules and they extend the isolated rules. In both schemes, the rules check the
states of the EObjects. The valid states depend on the CNL Dictionary and on the structure of the
Ecore (i.e., semantic) model.

The root of the semantics validation is formed by four isolated rules that are presented in Table 4.2.
These four rules correspond to the root EObject (i.e., Flow) and the EObjects that compose it:
FlowType, ActorList, NonActorList and ActionTypeList (Figure C.5). The exception of hav-
ing a composition relationship is FlowType, which is designed as an EDataType that is manipulated
as a String8. Hence, FlowType becomes the attribute ‘name’ of Flow (Figure 4.3). As design issue,
the rules IR are directly executed by the Validator component of the CNLV metamodel, whereas the
rest of rules (i.e., rule delegates, Table 4.2) are directly executed by IR. This issue is feasible due to
the OO structure of the Ecore models. The attributes and relationships of EObjects provide to IR the
possibility of ‘navigating’ the Ecore model. Accordingly, each IR can utilize other EObjects for their
validations as well as call one or more χo rule delegates.

DEFINITION 32 - ROOT RULES (IR) Set of isolated rules that are the base of semantics validation,
IR = {ξF low ,ξActor List ,ξNonActor List ,ξActionT ypeList}, where:

ξF low validates with Flow and FlowType EObjects,
ξActor List validates with ActorList EObject,
ξNonActor List validates with NonActorList EObject,
ξActionT ypeList validates with ActionTypeList EObject.

DEFINITION 33 - RULE DELEGATE (χo) Isolated or interoperability rule that is utilized by IR, where o
is the EObject to validate. The χo rule may use another rule χ ′o
to complete the validation. Nevertheless, the χo rules should
not utilize IR.

Table 4.2: Semantic rules general definition

The ξF low validates the states of Flow and FlowType. The states of Flow depend on its attrib-
utes and relationships. The states of FlowType depend on reserved words from the ReservedWords
component (Figure 3.6). These words are used to create key phrases, which are lists of Strings
with variable values. In this context, the reserved words are referred to as the set of words RW .
The FlowType has four valid syntax representations according to its production rule. Consider this
production rule to enumerate its WORD non-terminal symbols in order to create the data structure

8The reason for using EDataType instead of EClass has been to enable the utilization of FlowType as a String for cross-
references in Xtext. In this manner, the traceability of alternate flows from its normal flow is accomplished.

32 Use Case modeling within Object-Role Modeling

CHAPTER 4. USE CASE AND INTERACTION MODELS

SF lowT ype, which represents the state candidates of FlowType,

FlowType ::= ‘<’ WORDa ‘>’ ((WORDb WORDc)|(WORDd WORDe Rank ‘.’ WORD f)|
(‘UseCase’)|(‘UseCase’ WORDg WORDh Rank ‘.’ WORDi))

then, SF lowT ype = { s1F lowT ype, s2F lowT ype, s3F lowT ype, s4F lowT ype }
where: s1F lowT ype = {WORDa,WORDb,WORDc}, s2F lowT ype = {WORDa,WORDd ,WORDe,WORD f },

s3F lowT ype = {WORDa}, s4F lowT ype = {WORDa,WORDg ,WORDh,WORDi}

ξF low considers {‘normal’,‘alternate’,‘flow’} ⊂ RW , thus, FlowType is valid if:

for s1F lowT ype → WORDb=‘normal’ ∧ WORDc=‘flow’,
for s2F lowT ype → WORDd=‘alternate’ ∧ WORDe=‘flow’,
for s4F lowT ype → WORDg=‘alternate’ ∧ WORDh=‘flow’

This validation of states of FlowType with reserved words replaces the overuse of keywords in the static struc-
ture definition of FlowType. An important benefit is that the reserved words could be modified changing the
structure of the syntax and semantic models. This simplifies their maintainability.

ξF low also obtains metadata for other semantic rules. To represent the classification of Flow, the
boolean isUseCaseFlow of Validator is used. Its value is false in the case of s1F lowT ype and
s2F lowT ype, its value is true in the case of s3F lowT ype and s4F lowT ype. Moreover, data structure of
FlowType is stored in Validator. In this manner, the attribute ‘name’ for the Noun (Figure C.4)
that should represent to the Flow, is acknowledged with WORDa. In the case of s2F lowT ype (or
s4F lowT ype), Rank specifies the step in the normal flow that should be the source of the use case
(or object) alternate flow. To complete the validation of Flow, ξF low validates the state of Flow with
its EBoolean attributes ‘hasName’, ‘hasActorList’, ‘hasNonActorList’ and with its composition relation-
ship with ActionTypeList. This composition has the name ‘flow’ in the Ecore model. Hence, Flow
is valid if:

hasName ∧ flow.size= 1

In addition, ξF low may provide warning feedback to the user:

if !hasActorList ∧ isUseCaseFlow, notify the absence of actor nouns.
if !hasNonActorList, notify the absence of non actor nouns.

This validation result of ξF low does not employ interoperability with Symbiosis. In the contrary case,
Validation should prepare the FlowMap component of the Dictionary. Therefore, ξF low may utilize the
rule delegate χF low . This delegate uses the metadata generated by ξF low and validates that the Flow is
registered in the FlowMap. In addition, if Flow is an alternate flow, the cross-reference to the normal
flow should exist via the Rank of FactType. In other words, χF low confirms that Flow is valid if,

Flow ∈ FlowMap ∧ FlowType has state s1F lowT ype or s3F lowT ype
(i.e., the flow is known in Symbiosis as a normal flow)

or if Flow ∈ FlowMap ∧ FlowType has state s2F lowT ype or s4F lowT ype
(i.e., the flow is known in Symbiosis as an alternate flow)

then, Flown ∈ FlowMap ∧ FlowTypen has state s1F lowT ype or s3F lowT ype ∧
ActionTypeListn of Flown has the Rank.
(i.e., the normal flow is known in Symbiosis and has a step identified by the Rank)

where: Flown is the normal flow of Flow, ActionTypeListn composes Flown

An exemplification of one Flow instance in a valid state is illustrated in Figure 4.5.

The definitions of ξF low and χF low in the prior paragraphs use unconventional formal specifica-
tion. Part of the future work is to propose their standard formal specification. Due to the strategy of
validating with states of EObjects and the structure of the semantic metamodel, the specification of
semantic rules with Structural Operational Semantics (SOS) [1] [31] is promising.

Use Case modeling within Object-Role Modeling 33

CHAPTER 4. USE CASE AND INTERACTION MODELS

VVaalliiddaattiioonn wwiitthh iinntteerrooppeerraabbiilliittyy rruullee

FlowType B in state s4

FlowMap

Flow B hasName = trueFlow B flow.size = 1
vvaalliiddaattiioonn wwiitthh iissoollaatteedd rruullee

Flow B

Flow A

ξF low validates that Flow B is an alternate use case. The reserved words ‘alternate’ and ‘flow’ pursue a valid
FlowType B; hasName is true due to the double colons after FlowType B; flow.size=1 because Flow B has only one
list of action-types (i.e., the steps 1, 2 and 3 represent the only ActionTypeList instance that composes Flow
B). As the FlowMap is available, ξF low also employs the delegate rule χF low to extend the validation of Flow B.
χF low confirms the existence of Flow B and its normal flow, Flow A. The navigation in the steps of Flow A validates
the existence of the Rank specified in FlowType B.

Figure 4.5: Validation with isolated and interoperability rules

A general form of either isolated or interoperability rules could be based on the definition of
deduction rules in the SOS:

〈Premises〉

S
t−→ S′

where: 〈Premises〉 are the statements or configurations that anticipate a conclusion,

S
t−→ S′ is the conclusion that declares a predicate from state S to state S′,

t−→ symbolizes the transition of states labelled as t.

The deduction of the transition t holds if the configurations of the premises are valid. Recalling the
validation of FlowType in rule ξF low , consider the deduction rule:

¬

FlowType, s1F lowT ype, WORDb = ‘normal’,WORDc = ‘flow’, {‘normal’,‘flow’} ∈ RW
¶

FlowType UCN F−−−→ FlowTypeUCN F

The premises specify the configuration as a FlowType in state s1F lowT ype with the value of each
corresponding WORD and the required reserved words. If the premises are valid, the transition
from FlowType to FlowTypeUCN F is deducted, where the label UCN F refers to ‘use case normal
flow’. Similarly, the premises and conclusions could be defined for the transitions from FlowType
to FlowTypeUCAF (use case alternate flow), FlowTypeON F (object normal flow) and FlowTypeOAF
(object alternate flow). These deduction rules of FactType could be utilized as premises for the
deduction rule to validate Flow:

Flow, (FlowTypeUCN F ∨ FlowTypeUCAF ∨ FlowTypeON F ∨ FlowTypeOAF), hasName, flow.size= 1
�

Flow V F−→ FlowV F

The transition labelled as V F (valid flow) represents the conclusion of FlowV F as a valid state if the
premises hold. Further study is required in the analysis and specification of isolated or interoperability
rules with SOS scope. As the SOS is focused on the specification of (dynamic) internal-behavior, a
potential advantage of this further work would open the opportunity to design a formal transformation
from the rules of the Requirements Model into SOS deduction rules of the Interaction Model.

34 Use Case modeling within Object-Role Modeling

CHAPTER 4. USE CASE AND INTERACTION MODELS

In the remainder of this section, an informal description of the missing IR rules is provided. The
ξActor List validates the state of each Noun that composes the ActorList in the Ecore model. (Fig-
ure C.4). First, the EBoolean attribute ‘preparesList’ of ActorList indicates if the keyword ‘ActorList:’
is present or not. This attribute provides a message that indicates how to specify actors when this
keyword is written but the list of actors is empty (which is an invalid state of ActorList). After-
wards, the OO polymorphism is used in the validation, because ξActor List checks that each Noun in the
list is extended as an Actor type. The ActorList becomes invalid if a NonActor type is included in
the list. Next, the validation reviews that no Noun is duplicated. This includes the checking of name
duplication between Nouns from the ActorList and from the NonActorList. The ActorList
achieves the state of valid if no duplication is found. Finally, ξActor List transforms the list of Actors as
a set of Actors, that is, the actorSet attribute of the Validator component. This transformation is to
achieve an easy mapping of actors for the validation of action-types.

The ξNonActor List is similar to ξActor List , as it validates the state of each Noun that composes
the NonActorList (Figure C.4). The main difference is the utilization of NonActor instead of
Actor.The functionality of the EBoolean attribute ‘preparesList’ is the same as in ActorList; the dif-
ference is the keyword that is represented by this attribute: ξNonActor List utilizes ‘NonActorList:’ rather
than ‘ActorList:’. Before validating the no duplication of NonActors, ξNonActor List reviews that the use

The semantics validation reports one error that is assigned to the BaseType located in the TriggerType (blue
arrow). This error does not affect the valid state of the ActionTypeList, which contains the five action-
types. However, the enumeration of these action-types is not sequential, which assigns two warnings to the
ActionTypeList (magenta arrows). This prototype was utilized to simulate the communication with Symbiosis
in order to prepare the loading of NonActors from an external data source: the NonActorList is not written
in this flow example, but this prototype prepares it from an external data input. However, the two warnings that
state “No reference to the Fact-type of...” reveal that the external data input is limited. This limitation restricts
some χo rules to only use isolated vocabulary.

Figure 4.6: Preliminary prototype

Use Case modeling within Object-Role Modeling 35

CHAPTER 4. USE CASE AND INTERACTION MODELS

case (or object) name (i.e., the WORDa from FlowType) is used to specify the NonActor that rep-
resents the Flow. If this NonActor is not specified, a warning message is prepared. Furthermore, if
the Flow is a use case flow, ξNonActor List reviews that the NonActor that represents the system under
development is on the NonActorList. This NonActor should utilize the name ‘System’ and if it is
not in the list, a warning message is prepared. The NonActorList becomes valid if no duplication of
Nouns is detected. Finally, the list of NonActors is transformed into the attribute nonActorSet of
the Validator component.

The ξActionT ypeList validates all the action-types (i.e., steps) of the Flow. These action-types can be
TriggerType, ActionType or EndType (Figure C.5). In fact, as the TriggerType and EndType
are extensions of ActionType and ActionType composes ActionTypeList (Figure 4.3), the
ξActionT ypeList employs χActionT ype to validate any action-type. Furthermore, after each call to χActionT ype,
ξActionT ypeList validates that the sequence of action-types is correctly enumerated. This is achieved
with the sequential validation of the Rank (i.e., the step number) via χRank. The valid state of
ActionTypeList is defined with the correct structure of the list of action-types. The state remains
valid even if the enumeration is incorrect, although a warning message is prepared to report it9. The
invalid states detected by χActionT ype are assigned to the correspondent ActionType; an example
is available in Figure 4.6. The ξActionT ypeList starts with the validation of TriggerType as the ini-
tial action-type. This is achieved with the EBoolean attribute ‘hasFirstAction’ of ActionTypeList
and χActionT ype. Afterwards, χActionT ype is utilized to validate the list of action-types that follow the
TriggerType. Finally, χActionT ype validates the EndType.

There is no clear specification to assure that a χo is either an isolated or interoperability rule. This
depends on the availability of the CNL Dictionary, rather than on the specifications of the χo rules.
Thus, the Dictionary could be perceived as a service for the Validator. This intuition is exemplified
in Figure 4.6. If the service is unavailable or partially available, the χo rules that need vocabulary
interoperability might be limited to work as isolated rules. Oppositely, if the service is available, the
χo rules that require it would function as interoperability rules. Appendix C.4 provides a description
of each χo rule. Some of these descriptions highlight the advantage of utilizing reserved words in key-
phrases, as they diminish the structural dependence between syntax and semantics. In other words,
the utilization of keyphrases allows to extend the variability of semantics validation with less depend-
ence on the complexity of the EBNF rules.

The next subsection initiates the discussion of the Dictionary as a service for future improvements of
the Xtext CNL.

9This warning (and other warnings) can become an invalid state with low workload in the adjustment of the implementation.
This is an advantage of MDE with structured semantic rules.

36 Use Case modeling within Object-Role Modeling

CHAPTER 4. USE CASE AND INTERACTION MODELS

4.2.3 CNL Dictionary as middleware between Xtext CNL and Symbiosis

In general, the contents of the CNL Dictionary are (i) keywords, (ii) key phrases and (iii) vocabulary
from Symbiosis. The keywords should not be modified as they are tightly tied to the syntax structure.
The key phrases are formed by reserved words, verbs and regular expressions. These phrases become
lists of Strings with variable values that are loosely tied to the syntax structure. The vocabulary from
Symbiosis depends on each project and consists of fact-types and the map of flows. The key phrases
and vocabulary from Symbiosis could be perceived as an ontology that is based on the projects of Sym-
biosis. Thus, the Dictionary as middleware could benefit the evolution of key phrases and vocabulary
in multiple projects of an enterprise. Furthermore, to extend the standardization of the Dictionary,
the analysis of its similarities with SBVR could motivate the evolution of the Dictionary as a standard
SBVR-based service for extended compatibility.

An initial analysis of similarities between the CNL Dictionary and SBVR is presented as follows.
Table 4.3 discusses a syntactical comparison. Next, the class relationships and semantic concepts are
discussed. This analysis is based on the comparison of Bajwa et al. [2] between SBVR and the Object
Constraint Language (OCL).

SBVR VS CNL DICTIONARY COMPARISON

Vocabulary vs Key phrases The vocabulary in SBVR utilizes keywords and user
defined elements. The keywords are predefined and are
an auxiliary part of the SBVR rules.

The keywords and reserved words are part of the isol-
ated vocabulary in the Dictionary. The keywords are pre-
defined and aid in the syntax structure of the CNL. The
reserved words are similar to the user defined elements
in SBVR. These words can be grouped as key phrases and
achieve a meaning that depends on the EObject that con-
tains them.

The key phrases could utilize reserved words that are
based on user defined elements of SBVR practices.

Noun Concept vs Fact-type In SBVR, the Noun Concept is classified as either an ‘object
type’ or an ‘individual concept’. Usually, common nouns in
English are used as object types and proper nouns are used
as individual concepts.

The fact-types in Symbiosis are already classified in the Ob-
ject Model. The Dictionary could offer an ontology ap-
proach to re-use fact-types. Moreover, the classification of
nouns in the CNL could be enriched in the Dictionary. For
instance, the non-actor nouns could be acknowledged as
fact-types or flows. The actors in the CNL could be classi-
fied as proper nouns.

Verb Concept vs Behavioral Feature The verb concept are commonly operations of business en-
tities in SBVR.

The Dictionary has a similar interpretation of verbs, as it
stores operations of object-types from the behavioral fea-
tures provided by Symbiosis.

Table 4.3: Syntactical comparison between SBVR and CNL Dictionary

The association, composition and generalization class relationships are prepared by the Object

Use Case modeling within Object-Role Modeling 37

CHAPTER 4. USE CASE AND INTERACTION MODELS

Model in Symbiosis. A transformation could be applied to these relationships to store them in the
Dictionary according to SBVR, that is: the associations as ‘associative fact types’, the compositions as
‘categorization fact types’ and the generalizations as ‘partitive fact types’.

SBVR utilizes two basic types of rules: structural and operative. The structural rules define conditions
and restrictions according to the structure of business models. The operative rules focus on the be-
havior of business activities and operations. The analysis of semantic rules IR and χo with SOS could
provide a formal representation to them that considers the structure of the semantic model and the
(states of) behavior for the Use Case and Interaction Models. Thus, a transformation from the SOS to
SBVR definitions might be feasible.

The complete specifications of SBVR are available in [34].

38 Use Case modeling within Object-Role Modeling

Chapter 5

Prototype design and implementation

This chapter presents the technical details about the implementation of the Xtext CNL and the Use Case Model. A
preliminary case study is included to consider future modifications to complete the extension of Symbiosis.

5.1 Xtext

The utilization of Xtext has been introduced in Section 4.1 within the context of EMF and grammar
rules. This section discusses the implementation of Xtext 2.4.2 to achieve the prototype for Symbiosis
according to the documentation [16]. Xtext is classified as a DSL Workbench for External DSLs [22].
An External DSL requires a distinct infrastructure from the one used by the host language. The CNL
(external DSL) requires a parser not used for the host language, Java. The top image of Figure 5.1
depicts that Xtext uses the Modeling Workflow Engine 2 (MWE2)1 generator to create the core of the
CNL API. This generator uses the workflow and the CNL grammar2 to create the ANother Tool for
Language Recognition (ANTRL)3 parser, the Ecore metamodel and the ‘Java validator fragment’ class
that enables the utilization of the CNLV. The MWE2 generator also creates the Eclipse plug-ins for a
CNL Eclipse editor. The general processing of plain text files with the ‘.cnl’ extension consists of two
stages, as illustrated in the bottom image of Figure 5.1.

ANTLRParser(classes)
Ecoremetamodel

Javavalidatorfragment

Xtext CNL
EBNF

AST Ecore modelNode modelCNL files input ANTLRParser XtextAPI

MWE2Generator

MWE2Workflow

Eclipseeditor
Legend: Tool / API

Config. / File
(1) (2)

Top image: illustrates the generation of the CNL API core and the Eclipse IDE with the MWE2 generator. Bottom
image: shows the general stages to process CNL files.

Figure 5.1: Processing stages in Xtext

1http://www.eclipse.org/Xtext/documentation.html#MWE2
2The Xtext CNL EBNF is available in Appendix D.1.
3http://www.antlr.org/

Use Case modeling within Object-Role Modeling 39

http://projects.eclipse.org/projects/modeling.tmf.xtext/releases/2.4.2
http://www.eclipse.org/Xtext/documentation.html#MWE2
http://www.antlr.org/

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

In stage (1) the ANTLR parser processes the files and returns their ASTs. In stage (2) the Xtext API –
which is based on the EMF API – uses the Ecore metamodel and transforms the ASTs into ‘intermediate
representations’, the semantic (Ecore) and syntax (Node) models. These representations are logical
abstractions which could be transformed into ‘final representations’, such as Java source code4 or
Ecore serialization. The inclusion of the semantics validation extends the general processing with a
third stage.

Legend:
Processing of text
Element mapping

CNLJavaValidator
DictionaryForJavaValidator

SYMBIOSIS

CNLStandAloneValidator
Dictionary

Figure 5.2: Implementation of the CNL architecture

The third stage depends on the CNL architecture (Subsection 3.2.2) with the implementation of
CNLV and the Dictionary. Figure 5.2 includes the outline of these implementations. The compon-
ents of CNLV are represented by the AbstractDeclarativeValidator class of the Xtext API.
This class prepares the general configuration to access Ecore models for its validation. The ‘Java
validator fragment’ class automatically extends the AbstractDeclarativeValidator with the
AbstractCNLJavaValidator class, which particularizes the configuration for the Ecore models that
result from stage (2). The implementation of CNLV is the manual extension of the AbstractCNLJava-
Validator class with the CNLJavaValidator class, which implements the root isolated rules IR,
the χo rules, as well as the attributes of the Validator and Restriction components. Regarding IR and
χo rules, the Xtext offers a declarative call of rules with the @Check annotation. This annotation was
utilized according to the design of the CNLV, that is, only the IR rules should use this annotation. For
instance,

(A) @Check public void checkActionTypeList(ActionTypeList instance)
(B) private void checkActionType(ActionType instance)

(A) corresponds to ξActionT ypeList and utilizes @Check whereas (B) corresponds to χActionT ype and does
not utilize the annotation. Hence, (A) should be called by the CNLJavaValidator and (B) should be
called by an IR or χo rule.

The third stage is completed with the implementation of the components of the CNL Dictionary.
These components are implemented with the two classes that are depicted in Figure 5.2. Dictionary
is an abstract class that contains the isolated vocabulary5. This class is extended by the Dictionary-
ForJavaValidation class in order to include the vocabulary of interoperability. So, to enable the
send/receive information to/from Symbiosis, Figure 5.2 highlights the class that interoperates with
Symbiosis: CNLStandAloneValidator. This class avoids the utilization of the Eclipse editor and

4This transformation is supported by Xtext and it could be an advantage for the Interaction Model, because the object flows
could be transformed into Java code for the developers of the System.

5This vocabulary is available in Appendix D.3.

40 Use Case modeling within Object-Role Modeling

http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.4/org/eclipse/xtext/validation/AbstractDeclarativeValidator.html
http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.4/org/eclipse/xtext/validation/AbstractDeclarativeValidator.html

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

functions as the controller of CNLJavaValidator for Symbiosis. However, the implementation of
CNLStandAloneValidator requires the configuration of API dependencies to obtain the CNL en-
vironment in a JVM without Eclipse. The strategy to satisfy these dependencies is discussed in the
next section.

5.2 Dependency Injection pattern

The CNL API needs the Xtext API at runtime. Similarly,
the Xtext API requires diverse APIs along its processing
stages. This strategy consists of transitive dependencies
at the granularity of objects. That is, an object may have
one or more relationships of dependency with other ob-
ject(s) that could be from other API and that could have
other dependencies and so on. This chain of dependen-
cies could be represented as an object graph [40] also
known as dependency graph. A conceptual analogy to
the dependency graph but with API granularity is shown
in Figure 5.3. The greyish APIs are not required in the
prototype for Symbiosis.

CNL API

Xtext API

EMF API

GMF API

Equinox
APIANTLR

API

This section focuses on the design pattern used to configure
the dependencies for the CNLStandAloneValidator.

Figure 5.3: Dependency graph analogy

The dependency injection is a software design pattern that focuses on an efficient construction
of dependency graphs in which the objects have a convenient separation of ‘configuration’ from ‘beha-
vior’. In this context, ‘configuration’ is the approach employed to ‘inject’ (i.e., satisfy) the dependencies
that an object requires to provide its behavior. ‘Behavior’ represents the functionalities offered by the
object. Thus, an object can be perceived as a dependency if its functionalities are required to fulfill
the functionalities of another object. On the other hand, an object can be a dependent if it needs one
or more dependencies to execute its functionalities. In Java, the class structure can provide an intu-
ition of dependencies with the attributes and signatures of constructors and methods. For instance,
some private attributes could become encapsulated dependencies if the signatures of constructors or
methods do not request them. Thus, the instantiation of dependencies needs to be done in the body
of constructors or methods. The encapsulation of dependencies causes that the dependent becomes
the responsible to satisfy dependencies, which usually causes hard-coding rather than configuration
of dependencies. Oppositely, the dependent could receive the dependencies [49] and forget about
where or how to obtain them. The challenge is to formulate a configuration that constructs or finds
the dependencies.

Xtext utilizes the Google Guice framework6 to create the configuration and inject dependencies.
Guice proposes a dependency Injector class that handles the ‘wiring’ of dependencies to create the
dependency graph. In this manner, the dependency and dependent objects can focus on providing
their functionalities and skip the responsibility of solving dependencies. Guice proposes a strategy of
configuration that exploits benefits of the Java type-safe nature. This strategy is the specification of
configuration in Java classes. These classes should implement the Guice Module interface and the
implementations basically consist of bindings that map types of objects7. The Injector uses these
bindings to wire the dependencies. The validation of the configuration (i.e., the implementations
of the Module interface) is equivalent to the type check of the bindings, which is done by the Java
compiler. This is the principal reason to avoid the specification of configuration with other sources
(e.g., XML files).

6http://code.google.com/p/google-guice/
7The mapping of types is currently limited in the Java language (e.g., generics), which has been the main motivation to offer

the Guice framework.

Use Case modeling within Object-Role Modeling 41

http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Module.html
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html
http://code.google.com/p/google-guice/

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

Dependent: BillingService Execution that uses the (implemented)
BillingService:

Injector

Configuration: BillingInjectModule.
AbstractModule implements Module and
is part of the Guice API.
@Provides annotates the methods that
should specify the construction of objects.

Implementation1: RealBillingService Implementation2: RealBillingService

The difference between the two implementations is the injection of ProductOrder. Interestingly, the Injector
needs to construct the ProductOrder in both cases because no binding specifies how to map this type. On the
left hand side graph, the Injector can deduce that the RealBillingService depends on ProductOrder,
whereas on the right hand side graph the dependency is not clearly specified, but the Injector can satisfy it
due to the @Provides annotation. In both graphs, the solid edges represent dependencies, the dashed edges
represent bindings and the double arrowed edges involve the @Provides annotation. In the execution, first, the
Injector is generated by Guice with the configuration. Second, the instance of the service is created according
to the required bindings. Finally, the service requests a ProductOrder instance to charge the price without
worrying how to obtain this instance.

Figure 5.4: Dependency graphs with Guice

Furthermore, the configuration can include methods that specify an alternative to construct object
instances. These methods would be utilized by the Injector if it needs to provide instances and the
bindings do not suffice. Figure 5.4 shows a service implemented with the Injector in two slightly

42 Use Case modeling within Object-Role Modeling

https://code.google.com/p/google-guice/wiki/ProvidesMethods
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html
https://code.google.com/p/google-guice/wiki/ProvidesMethods
https://code.google.com/p/google-guice/wiki/ProvidesMethods
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

different manners, but with the same configuration. The resulting dependency graphs are distinct.
The configuration includes bindings and the construction of one dependency.

GUICE EMF

The dependency graph for the utilization of the
CNL is created with Guice in Xtext. Thus, the
initialization of the Injector is required, such
as the initialization shown in Figure 5.4 or the
initialization included in the Eclipse editor. For
runtime environments without the Eclipse ed-
itor, Xtext automatically generates a class that
(i) creates the Injector and (ii) configures the
EMF environment for the Ecore models. Both
tasks are easily achievable with the doSetup()
method.

Figure 5.5: Guice and EMF in Xtext without Equinox

The CNLStandaloneSetup (Figure 5.5) is used by the CNLStandAloneValidator to prepare
the CNL environment for Symbiosis or another non-Eclipse environment. For example, the preliminary
prototype shown in Figure 4.6 also uses the CNLStandAloneValidator. This preliminary prototype
includes a functionality to obtain the visualization of the dependency graph for the CNL. Figure 5.6
depicts a fragment of this graph. Appendix D.4 includes an outline of the entire graph.

Figure 5.6: Fragment of the dependency graph for the CNL

Use Case modeling within Object-Role Modeling 43

http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html
http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

5.3 Architecture and implementation as a Symbiosis component

From the scope of implementations, the contributions of this thesis can be perceived in two groups:
the Xtext CNL and the Xtext CNL prototype for Symbiosis. The first group has been discussed in
prior sections, such as the implementation of the CNL architecture in Section 5.1. The proposal to
achieve the second group is now discussed. Briefly recalling, Symbiosis8 is a stand alone application
that follows the MVC design pattern in the Java Platform Standard Edition9 7 (Java SE 7) with Swing
components10 for the GUI. The technical requisite for the prototype is to be Java SE 7 compliant, which
is accomplished without conflicts. The architecture of the prototype is a detailed extension of the CNL
architecture (Figures 3.4, 5.2) and is depicted in Figure 5.7. The Swing components maintain the GUI
structure of Symbiosis. These components send validation requests (of syntax or semantic nature)
to the Use Case Model (Figure 4.4). The syntax and semantic requests are either manually caused
with the load of CNL files or semi-automatically caused with modifications on the loaded CNL files.
The manual requests are triggered with the specification of the root location of CNL files or with the
creation of a new file. The semi-automatic requests depend on a Timer class that is controlled by the
Swing component that displays the contents of CNL files. The Timer checks that after a modification
of contents from the user, if a time period t without new modifications happens, then the requests of
validation are sent11. Thus, the user implicitly request validations with the modification of contents
of CNL files. This strategy requires to save the CNL file in order to send the requests. Therefore,
the CNLStandAloneValidator utilizes temporal files. The user can save the modifications in the
original files via the GUI.

Legend:

API extensionCNL file
User

Interaction SwingGUI
Load / Save

Use CaseModel

Syntax request
or

Semantic request
Response

CNLStandAloneValidator
Request CNLStandaloneSetup

CNL setup

GuiceAPI

Create
InjectorRequest

dependencies

Solve
dependencies

EMFAPI

XtextAPI

CNLV

Xtext CNLEBNF

Ec
ore

mo
del

No
de

mo
del

Apply EMF
setup

Xtext CNL

Request

CNLDictionary

Vocabulary

Vocabulary

Response

Request

Request / Response

Dependency InjectionSymbiosis
User

Response

Initialization

The syntax requests are attended by Xtext CNL EBNF and the semantic requests are attended by CNLV.

Figure 5.7: Architecture of the prototype

8Additional information about Symbiosis is available in Section 1.1 and Appendix A.
9http://www.oracle.com/technetwork/java/javase/overview/index.html

10http://docs.oracle.com/javase/7/docs/technotes/guides/swing/
11The implementation utilizes t = 2000 milliseconds.

44 Use Case modeling within Object-Role Modeling

http://docs.oracle.com/javase/7/docs/api/javax/swing/Timer.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/Timer.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/swing/

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

The Use Case Model updates the CNL Dictionary and uses the CNLStandAloneValidator to
attend the validation requests. The implementation of the CNLStandAloneValidator uses the CNL
dependencies and the EMF setup with the CNLStandaloneSetup class (Figure 5.5) and offers public
methods to do the validations. The syntax validation is done by Xtext CNL EBNF during the load of
CNL files and the results are the Node models, which are the Xtext representations of the ANTLR ASTs.
These models are useful to enrich error or warning messages with raw content (i.e., values of tokens)
of the CNL file. The semantic validation is achieved with the Ecore models of all the Node Models.
The Ecore models are available with the XtextResourceSet12 class, which maps the set of Ecore
models to their URIs. The XtextResourceSet is employed by CNLV to execute the root semantic
rules IR (and implicitly the χo delegates) over the EObjects of the Ecore models. Furthermore, the
CNL Dictionary is used in the semantic validations to review the mapping of elements between the
Symbiosis and Xtext CNL. These elements are the fact-types and its behavioral features, as well as the
use case Ecore models from the XtextResourceSet13. The CNLStandAloneValidator sends the
response of syntax or semantic validations to the Use Case Model. This response is displayed to the
user with the Swing components.

5.3.1 Use Case Model Implementation

This implementation of the Use Case Model architecture (Subsection 4.2.1) is divided in two groups:
the compliance with the Symbiosis MVC Model and the Swing GUI. The first group implies that the Use
Case Model should follow the implementation strategy of the Requirements and Object Models. The
second group consists of the development of Swing components according to the Swing design of
Symbiosis.

The implementation of compliance with the Symbiosis MVC Model is pursued with the extension
of the Symbiosis abstract Model class14, as well as with the implementation of the Serializable
interface. The extension of Model allows the manipulation of the Use Case Model with the Symbiosis
MVC Controller, so that the communication with the Requirements and Object Models is consistently
obtained. The implementation of Serializable is deeply related to the file saving of Symbiosis
projects. The runtime instance of the Use Case Model should be serializable in order to save its state
in the file that saves the Symbiosis project. An entire serialization of the Use Case Model would imply
the inclusion of the CNL files, which is not affordable due to two reasons, (i) these files are already
serialized (i.e., its state is already saved) and (ii) the transformation of these files as Ecore models
is responsibility of the Xtext CNL. Intuitively, a feasible alternative is the usage of transient attributes
in the Use Case Model, mainly due to reason (i). These attributes should avoid saving the state of
the CNL files. Additionally, based on reason (ii), the set of Ecore models can also avoid serialization
because the Xtext CNL regenerates them from the CNL files. The elements that are related to the
CNL files and are not generated by Xtext CNL are the UC Linkages, which should be serialized. Briefly
recalling, these elements specify the relationships of use cases with the Requirements Model, such
as the action requirements that are linked to a use case. Thus, the proposed implementation of the
Use Case Model uses transient attributes as currently discussed and serializes the UC Linkages. The
Flow persistence and CNLDelegate components of the Use Case Model are implemented as a separate
controller class that manages the processing of CNL files and updates the CNL Dictionary.

The implementation of Swing GUI consists of two Swing classes, the UseCaseViewer and UseCase-
EditorDialog. The UseCaseViewer is implemented as a JPanel that is accessible in Symbiosis
as the tab that is red highlighted in Figure 5.8. This figure also groups the contents of this tab in
four sections and describes them. The UseCaseEditorDialog is a pop-up JDialog that allows the
user to modify use case flows. This JDialog can be accessed in two manners: from menu bar of

12XtextResourceSet and XtextResource are part of the Xtext API that extends the EMF API. This extension could be
utilized in other EMF environments. For instance, the casting of these two classes to ResourceSet and Resource respectively,
could be used for pure Ecore model manipulation without conflicts.

13The non use case Ecore models (i.e., object flows) are not mapped.
14The access to this class is reserved to Symbiosis project members.

Use Case modeling within Object-Role Modeling 45

http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.4/org/eclipse/xtext/resource/XtextResourceSet.html
http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.4/org/eclipse/xtext/resource/XtextResourceSet.html
http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.4/org/eclipse/xtext/resource/XtextResourceSet.html
http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JPanel.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JDialog.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JDialog.html
http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.4/org/eclipse/xtext/resource/XtextResourceSet.html
http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.4/org/eclipse/xtext/resource/XtextResource.html

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

Symbiosis in the ‘UseCase’ drop down menu, or by selecting a flow in the UseCase Viewer tab for then
right-clicking on it in order to select the option ‘Edit flow...’ from the pop-up menu. Figure 5.9 depicts
the UseCaseEditorDialog and groups its contents in four sections with their descriptions.

The Interaction Model could be implemented similarly. The Xtext CNL supports object flows (see
Appendix C.2) and the architectures of the Use Case and Interaction Models have the same structure.
Furthermore, the creation of Java source code from the object flows could be accomplished with
an extension of Xtext CNL. Xtext supports a transformation of the DSLs models into source code by
means of templates and the Xtend15 language. Further research would be required to consider this
transformation.

The API involved in the development of the prototype for Symbiosis is listed in Appendix D.2.

A

B C

D

A JButton and JTextField that specify the root path that contains the CNL files.
B JTree that organizes the use cases of the project. Each branch is a normal flow and displays

the status of the use case (either realized or unfinished), its category and the amount of linked
action requirements. Each leaf of a branch is an alternate flow and displays its label, which is
the source step of the normal flow followed by a descriptive string.

C JTextArea that presents the flow-type, amount of actors, amount of steps and the file that
contains the flow.

D JTextField, JComboBox, JCheckBox and JButton represent the fields to create a new use
case flow. The JTextField expects the name of the use case, the JComboBox indicates the
available categories from the Requirements Model, the JCheckBox specifies if the new flow is
normal (unchecked) or alternate (checked) and the JButton submits the request of new use
case flow.

Figure 5.8: UseCaseViewer Swing component

15http://www.eclipse.org/xtend/

46 Use Case modeling within Object-Role Modeling

http://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextField.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTree.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextField.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JComboBox.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JCheckBox.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextField.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JCheckBox.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html
http://www.eclipse.org/xtend/

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

A

B

C

D

A JComboBox, JCheckBox and JButton. The JComboBox allows to select which flow to visu-
alize. The JCheckBox permits to specify if the use case is realized (checked) or unfinished
(unchecked). This specification can only be done in normal flows (i.e., it becomes read-only for
the alternate flows). The JButton saves the changes of the flow.

B JTextPane and JTextArea that represent the main request and response Swing components
for the Use Case Model. The JTextPane is the text editor for the contents of the flow and
utilizes the following style of font colors: blue for nouns, magenta for base-types and red for
verbs. The JTextArea is a read-only area that displays the responses from the Use Case Model.
This figure shows a semantic error caused by a base-type that does not exist in the fact-type
‘Customer’.

C Three read-only JLists and a JButton. The JLists display related project information (from
top to bottom): list of fact-types, list of use cases and list of action requirements with the same
category than the current use case. Several action requirements can be selected so that the
JButton links them with the current use case.

D Read-only JTextField that specifies the amount of syntax and semantic issues (i.e., warnings
and errors) are in the current state of the flow.

Figure 5.9: UseCaseEditorDialog Swing component

Use Case modeling within Object-Role Modeling 47

http://docs.oracle.com/javase/7/docs/api/javax/swing/JComboBox.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JCheckBox.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JComboBox.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JCheckBox.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextPane.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextPane.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JList.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JList.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextField.html

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

5.4 Preliminary case study

The preliminary case study simulates a domain of reality with requirements for a book-store system
over the Internet. The Symbiosis prototype is utilized for the conceptual modeling of this domain
in a project named BookInternetStore. The Requirements and Object Models have been previously
generated in order to pursue the experimentations of use case modeling. An excerpt of these models16

is available in Table 5.1. Before the experimentations, consider the following exemplification of the
abstraction of the domain with Symbiosis. First, the text ‘Book 87104 has currently a price of 22.50
euro’ is a fact of the domain. This text is manually registered in the Requirements Model as the
fact requirement DEF.6. ‘DEF’ is the default category of requirements in Symbiosis. Finally, the semi-
automatic breakdown of DEF.6 is done to register the fact-type <CurrentPriceBook> into the Object
Model. This fact-type represents the relationship between the base-type <price:Real> and the object-
type <Book>17. This example recalls the non-deterministic nature of this approach, because part of
the criteria of abstraction depends on decisions of the users of Symbiosis. The manual registration of
quality, rule and action requirements is similar to the registration of fact requirements and they are
not transformed with breakdowns.

Some rule requirements are derived from the constraints of static-behavior in the Object Model. These
constraints are focused to guarantee the elementariness of the Object Model so that this model can be
utilized in use case modeling.

NAME FACT REQUIREMENT FROM THE REQUIREMENTS MODEL

DEF.4 The price of book 9815 on order 27 is 23.50 euro.
DEF.6 Book 87104 has currently a price of 22.50 euro.

NAME ACTION REQUIREMENT FROM THE REQUIREMENTS MODEL

DEF.52 A fact about “There are currently <stock : Natural> pieces of <book : Book> in
stock.” may change after input of such a fact.

DEF.82 Some actor of the (sub)system must get the opportunity to add a fact of <Book>
later on.

NAME RULE REQUIREMENT FROM THE REQUIREMENTS MODEL

DEF.18 Two (or more) facts about <Book> with the same value on <isbn : String> are not
allowed.

DEF.30 Every <Book> cannot exist without a fact about “<book : Book> has currently a
price of <price : Real> euro.”, without any consideration.

KIND NAME FACT-TYPE EXPRESSION FROM THE OBJECT MODEL

OT Book book <isbn : String>
FT CurrentPriceBook <book : Book> has currently a price of <price : Real> euro.

The quality requirements are out of scope in this research. The processing of rule requirements as constraints
of the dynamic-behavior of objects is part of further research with the Interaction Model. The linkage of action
requirements with use cases is proposed in this research.

Table 5.1: Excerpt of the Requirements and Object Models

The total amount of action requirements is 18 (Table E.1), from which the (dynamic) external-
behavior is specified according to the changes of state of fact-types. These changes are analogous to
the CRUD storage persistence. For example, consider the action DEF.82 from Table 5.1, which is ana-
logous to the CRUD ‘create’ function for the <Book> fact-type. The use case that is linked to DEF.82
is <AddBook> and consists of two flows. The normal flow (left hand side of Table 5.2) is the ideal
behavior in which the step 4 is linked to the DEF.82. In addition, it was noticed that DEF.52 (Table 5.1)
could be also linked to this use case. The text in quotes in DEF.52 is the expression that represents

16Complete perspectives of these models are available in Appendix E.
17The object-type is the sub-type of fact-type that does not represent a relationship between other fact-types

48 Use Case modeling within Object-Role Modeling

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

Linked action requirements: DEF.82, DEF.52.
<AddBook> UseCase:
ActorList: <customerServiceClerk:Human>.
1 <AddBook> starts:
2 <customerServiceClerk> {provides} <Book>.
3 <System> {reviews} <Book,EXISTS>.
4 <System> {adds} <Book>.
5 <System> {prepares} <StockBook>

"of"<Book>.
6 <customerServiceClerk> {completes}
<StockBook> with [stock:Natural].

7 Post <StockBook,CREATED>.

<AddBook> UseCase alternate flow 3.bookExists:
1 Cause: <Book,EXISTS>:
2 <System> {displays} "existent"<Book>.
3 Exit <AddBook> UseCase.

Some of the related definitions:
Fact requirement DEF.12: There are currently 45 pieces of book 23491 in stock.
Type expression of <StockBook> : There are currently <stock : Natural> pieces of <book : Book> in stock.

Table 5.2: <AddBook> use case

Linked action requirements: DEF.2, DEF.47, DEF.48.
<ChangePriceOfBook> UseCase:
ActorList: <officer:Human>.
1 <ChangePriceOfBook> starts:
2 <officer> {provides} <Book>

with [isbn:String].
3 <System> {searches} <Book>.
4 <System> {displays} <CurrentPriceBook>.
5 <officer> {updates} <CurrentPriceBook>

with [price:Real].
6 Post <CurrentPriceBook,UPDATED>.

<ChangePriceOfBook> UseCase
alternate flow 3.invalidBook:

ActorList: <officer:Human>.
1 Cause: <Book,EXCEPTION>:
2 <System> {notifies} "nonexistent"<Book>.
3 Continue <ChangePriceOfBook> UseCase

in step 2.
<ChangePriceOfBook> UseCase

alternate flow 2.changeCancellation:
ActorList: <officer:Human>.
1 Cause: <ChangePriceOfBook,EXCEPTION>:
2 <officer> {cancels} <ChangePriceOfBook>.
3 Exit <ChangePriceOfBook> UseCase.

Some of the related definitions:
Fact requirement DEF.6: Book 87104 has currently a price of 22.50 euro.
Type expression of <CurrentPriceBook>: <book : Book> has currently a price of <price : Real> euro.

Table 5.3: <ChangePriceOfBook> use case

the fact requirement DEF.12 (Table E.1). This expression corresponds to the fact-type <StockBook>
(Table E.3). Thus, the input of the <StockBook> is pursued with the steps 5 and 6. On the other
hand, an alternate flow (right hand side of Table 5.2) could be initiated according to step 3 of the
normal flow. The predicate ‘EXISTS’ of the <Book> represents that the fact-type has been added pre-
viously and thus, it should not be duplicated.

The actor of the <AddBook> use case is <customerServiceClerk>, which is one of the three
human actors that have been proposed. The second actor is explicitly mentioned in DEF.2 (Table E.1)
as the ‘officer’ who can change the price of a book. The <ChangePriceOfBook> use case has been de-
signed for that purpose, as shown in Table 5.3. The fact requirement that is the source of the fact-type
<CurrentPriceBook> is included in the comments of this table. The update of this fact-type links
the use case with the action requirements DEF.2, DEF.47 and DEF.48 (Table E.1). The last two basically
refer to the same behavior of DEF.2, but without a particular actor. The <ChangePriceOfBook> use
case includes two alternate flows. Both of them are caused by an unexpected change of state that is ad-
ditional to the CRUD analogies. The prototype represents it as the ‘EXCEPTION’ predicate for fact-types
and use cases. The first exception is the request of an nonexistent <Book> in the step 3 of the normal

Use Case modeling within Object-Role Modeling 49

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

The equivalence to «invokes» in the CNL is ‘calls:’
<StartCustomerSession> UseCase:
ActorList: <client:Human>.
1 <StartCustomerSession> starts:
2 <client> {provides} "credentials of"<Customer>.
3 <System> {acknowledges} <Customer>.
4 <StartCustomerSession> calls: <AddOrder>

or calls: <RemoveOrder>
or calls: <EndCustomerSession>
or calls: <UpdateContactCompany>
or calls: <UpdateDeliveryAddress>.

5 Continue in step 4.

<StartCustomerSession> UseCase
alternate flow 3.invalidCustomer:

1 Cause: <Customer,EXCEPTION>:
2 <System> {replies} "invalid"<Customer>.
3 Exit <StartCustomerSession> UseCase.

<EndCustomerSession> UseCase:
ActorList: <client:Human>.
1 <EndCustomerSession> starts:
2 <client> {terminates} <StartCustomerSession>.
3 Exit <StartCustomerSession> UseCase.

The five use cases ‘invoked’ in <StarCustomerSession> are designed for the human actor <client>.

Table 5.4: <StartCustomerSession> and <EndCustomerSession> use cases

The equivalence to «precedes» in the CNL is ‘expects:’
<AddCustomer> UseCase:
ActorList: <client:Human>.
1 <AddCustomer> starts:
2 <AddCustomer> expects: <PrepareAddress>.
3 <System> {creates} <Customer>.
4 <System> {creates} <DeliveryAddressCustomer>

"with given"<Address>.
5 <client> {provides} <NameCustomer>.
6 Post <Customer,CREATED>.

<PrepareAddress> UseCase:
ActorList: <client:Human>,
<locatorService:ExternalSystem>.

1 <PrepareAddress> starts:
2 <client> {provides} <Address>

with [street:String], [nr:String], [zip:String],
[city:String], [country:String].

3 <System> {checks} <Address,EXISTS>
"with the"<locatorService>.

<AddCustomer> has no alternate flows and <PrepareAddress> has two alternate flows, one for an invalid
<Address> and another for the <client> to cancel the use case. These flows are available in Appendix E.3.

Table 5.5: <AddCustomer> and <PrepareAddress> use cases

flow. The second exception is a non-common behavior, which is labelled as ‘changeCancellation’ from
the step 2 of the normal flow: the <officer> prefers to cancel the <ChangePriceOfBook> rather
than to (re)specify the <Book>.

The third human actor is proposed as <client> and it participates in the majority of use cases.
Interestingly, this actor is represented by the fact-type named <Customer> (or <Company>) in or-
der to identify the relationships between the <client> and other fact-types such as <Order>. The
only exceptions are the use cases where the <Customer> (or <Company>) are created. To avoid
duplication of behavior, the <StartCustomerSession> use case is proposed. This use case utilizes
the equivalence in the CNL to the «invokes» use case relationship proposed by ICONIX. Furthermore,
the utilization of ‘particularization’ in nouns (i.e., the quoted text before nouns, such as in the step
2 of <StartCustomerSession>) could be considered to add vocabulary (e.g., new attributes for
an object-type) or more predicates for the fact-types or use cases (e.g., “invalid” in the step 2 of the
alternate flow of <StartCustomerSession>).

An additional actor is proposed but as an external system. This actor simulates a service that is
utilized in the <PrepareAddress> use case to confirm the existence of an <Address> fact-type. This
use case «precedes» the <AddCustomer> use case, as shown in Table 5.5. In <PrepareAddress>,
the <client> actor does not require a representation with <Customer>. Thus, this use case is not
invoked by <StartCustomerSession>. The <locatorService> is the external system and the
<System> uses it to confirm the correctness of <Address>. Afterwards, <AddCustomer> continues
to create the <Customer> for the <client>.

50 Use Case modeling within Object-Role Modeling

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

StartCustomerSession

UpdateStockBook

UpdateContactCompanyAddCustomer PrepareAddress

AddCompany

<<precedes>>

UpdateDeliveryAddress

AddOrder

RemoveOrder

EndCustomerSession

RemoveCustomer AddBook RemoveBookChangePriceOfBook

client

officer customerServiceClerk

<<precedes>> <<precedes>>

<<invokes>>
<<invokes>>

<<invokes>>

<<invokes>>
<<invokes>>

<PrepareAddress> avoids the duplication of behavior in three use cases. <UpdateDeliveryAddress> re-
quires the precedence of <PrepareAddress> upon the calling of <StartCustomerSession>.
The total amount of (normal and alternate) flows is 29; they are available in Appendix E.3.

Figure 5.10: Use Cases diagram

USE CASE LINKED ACTION(S)
<AddCustomer> DEF.84.
<AddCompany> DEF.84.
<PrepareAddress> —
<UpdateDeliveryAddress> DEF.49.
<UpdateContactCompany> DEF.46.
<StartCustomerSession> —
<AddOrder> DEF.1, DEF.35, DEF.50, DEF.86.
<RemoveOrder> DEF.36, DEF.87.
<EndCustomerSession> —
<ChangePriceOfBook> DEF.2, DEF.47, DEF.48.
<UpdateStockBook> DEF.51, DEF.53.
<RemoveCustomer> DEF.85.
<AddBook> DEF.52, DEF.82.
<RemoveBook> DEF.83.

The use cases with 0 linked actions represent common behavior. This modularity focuses on the re-usability of
use cases to avoid the duplication of behavior.

Table 5.6: Linkage between use cases and action requirements

The total amount of modeled use cases is 14, which are displayed in Figure 5.10. The linkage
between use cases and action requirements is shown in Table 5.6. Each use case is linked to 0 or
more action requirements, where the use cases linked to 0 represent common behavior. Oppositely,
each action requirement should be linked to 1 use case to reduce replication of behavior or ambigu-
ity. The exception is DEF.84 and the reasons are that (i) the <Company> fact-type is an extension of
the abstract <Customer> fact-type and (ii) no action requirement explicitly specifies the addition of
a <Customer> as a <Company> although there is an action requirement (DEF.46) that requests the
update of information related to a <Company>. This exception could be discussed with the project
members and stakeholders to resolve it. In fact, this is one of the results with the proposed use case
modeling: the possibility to discuss the Requirements and Object Models according to the modeling of
external behavior.

Use Case modeling within Object-Role Modeling 51

CHAPTER 5. PROTOTYPE DESIGN AND IMPLEMENTATION

Additional points conclude the discussion of the preliminary case study:

→ The use cases with CNL are used to model the flow of the behavior rather than the description
of the behavior. The details in the flows depend on the vocabulary that the prototype can utilize.

→ Suggestions of ICONIX are feasible in use case modeling with the CNL. The highlighted sugges-
tions are: simple sentences (noun-verb-noun) with active voice, the «invokes» and «precedes»
relationships and the request-response scope of use cases to represent the interaction between
the system and actors.

→ The proposal of new actions or fact-types might arise during use case modeling. Moreover, the
possibility to (re-)define action requirements for common behavior in the Requirements Model
might be feasible.

→ In addition to the classification of use cases per category of requirements, a classification per
actors could provide an organization from the behavioral point of view. This classification could
be used by action requirements.

→ In the CNL for use cases, most of the verbs are freely defined by the user according to the under-
standing to action requirements. Further work is feasible to limit the available verbs according
to a classification of verbs. For instance, in a Symbiosis project, a cumulative classification of
verbs as CRUD verbs could concretize the actual objective of the verbs in the system and could
suggest new classifications. The ‘EXCEPTION’ predicate in the prototype is an example that
extends CRUD to CRUDE for the predicates of fact-types.

→ The predicates of fact-types are utilized to represent some of their possible states. These states
‘predict’ behavior in the use cases. These predictions define alternate flows.

→ A simulation of the flows of use cases could test the possible traces of use cases. The CNL
partially contributes with the validation of enumeration and cross-reference. Further work
could create a simulator/tester that ‘follows’ the enumerations and cross-references to detect
(in)correct behavior.

52 Use Case modeling within Object-Role Modeling

Chapter 6

Conclusions and Future work

This chapter concludes with a general overview of the research, followed by concrete review of the research questions,
which include information about future work.

The Object-Role Modeling (ORM) and Model Driven Design (MDD) techniques of the EQuA frame-
work are exploited by the project members or stakeholders in the development of a system with the
Symbiosis tool. This tool semi-automatically transforms user requirements in Natural Language (NL)
into formal models. These requirements define the domain of reality for the system and their trans-
formations are the Requirements and Object Models. The first model establishes facts, actions, rules
and quality attributes as requirements. The latter model represents the facts as fact-types, which com-
pose the Object Oriented abstraction of the domain of reality. This abstraction includes the static
behavior and the class diagram of the system. The actions include tasks between users and the system.
These tasks describe the dynamic behavior in an informal manner. The rules impose constraints of
static or dynamic behavior in the system. The quality attributes stipulate non functional requirements.

This research mainly contributes with formal model representations of use cases that are linked
to the actions of the Requirements Model. These models are the Xtext CNL and the Use Case Model.
The first model uses Controlled Natural Language (CNL) to propose a restricted grammar structure of
the English Language with vocabulary that can be extended by Symbiosis. The second model joins
to the Requirements and Object Models in order to manually link CNL use cases with actions. In
both models, some of the suggestions of ICONIX have been considered to follow a scope of industrial
practices. The implementation of these models has been achieved as a prototype in Symbiosis that uses
Xtext with dependency injection configured via Guice. This prototype allows the project members and
stakeholders to model use cases that represent the flows of dynamic external-behavior between actors
and the system. A preliminary case study has confirmed the functionality of the prototype, highlighting
the traceability between the vocabulary of Symbiosis and the CNL, the re-usability of use cases and
the linkage between use cases and actions.

Additional contributions have opened the possibility to utilize the CNL and the Interaction Model to
model the dynamic internal behavior. This is future work that focuses on behavior between fact-types.
The validation of this behavior could be improved with Structural Operational Semantics specifica-
tions. Furthermore, some functionalities of Xtext might be considered to transform the CNL flows of
objects into the base source code of the system under development.

RQ1 How can the Use Case and Interaction Models be designed based on the current Object Model?

→ Is it feasible to propose one model-driven formalism that is re-used in both cases?
The Xtext CNL is the model-driven formalism that models dynamic internal- and external-
behaviors. The implementation of the Use Case Model utilizes the Xtext CNL. The proposed
design of the Interaction Model re-utilizes the Xtext CNL and could follow a similar implement-
ation. As future work, this implementation would confirm the re-utilization of the Xtext CNL.

Use Case modeling within Object-Role Modeling 53

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

→ What cardinalities to use between use cases and the requirements in the Requirements Model?
The linkage between the use cases and the (action) requirements is managed by the Use Case
Model. The preliminary case study suggests that the cardinality between use cases and action
requirements should be of 0 to many. A use case without linkage corresponds to re-usable be-
havior, that is, ‘auxiliary’ use cases. In fact, ICONIX suggests the extraction of common behavior
as use cases that are utilized with the «precedes» and «invokes» relationships. The case study
confirms this pattern of behavior, as it avoids the duplication of behavior.
The opposite cardinality should be 1. If an action requirement has more than one linked use
case, it could be decomposed into simpler action requirements or its linked use cases might be
duplicating behavior.

→ In the Interaction Model, how to represent the sequential communication between objects of the
Object Model?
Intuitively, each object life-cycle could be modeled with normal and alternate CNL flows. The
scopes of interaction ‘calls:’ and ‘expects:’ could be utilized to represent the communication
between many life-cycles. This intuition is exemplified in Appendix C.2. Further work would
apply this communication between objects of the Object Model.

→ How to categorize the use cases according to the Requirements Model?
The prototype obliges the selection of a category that is defined in the Requirements Model.
This functionality allows the automatic filtering of candidate action requirements that could be
linked to the use case.

→ How to utilize a Natural Language approach with the Object Model that becomes the source of
vocabulary for the Use Case and Interaction Models? How to validate the syntax and semantic
of the Natural Language approach?
The CNLStandAloneValidator allows the communication between the Use Case Model and
the CNL Dictionary to provide the vocabulary of the Object Model. As future work, the Interac-
tion Model could extend the vocabulary with information related to rules of the Requirements
Model. The CNLStandAloneValidator aids the Xtext CNL to receive the requests of the pro-
totype and apply the required validations, as well as to send the responses to the prototype.

→ How to acknowledge external sources of behavior in use cases? The use case actors should be
included in the Use Case Model, but how they interact with the Object Model?
The abstraction of actors as typed nouns of the CNL allow their recognition and inclusion in
the Use Case Model. This approach is also applied to fact-types and use cases. Moreover, these
nouns form part of Noun Phrases that permit the specification of details about the nouns. For
instance, the base-types of fact-types or the ‘particularization’ of nouns. The interaction between
nouns is represented by a compact syntax (mostly noun-verb-noun sentences) and regulated
with semantics validation.

→ How could the Interaction Model foresee the operations of objects, as well as to scrutinize the
possibility to add new operations?
The CNL Dictionary permits to Symbiosis the storage of behavioral features of fact-types, which
include the operations of objects. The Xtext CNL could propose new operations in the CNL
Dictionary so that the Interaction Model, in Symbiosis, could examine them and possibly include
them in the Object Model.

→ How to maintain the traceability between the formalization of dynamic-behavior and the EQuA
models?
This traceability can be perceived in three scopes: traceability with facts, actions and rules.
The first scope is achieved with the CNL Dictionary, as it guarantees that the fact-types utilized
in flows are located in the Object Model. The second scope is accomplished with the linkage
proposed in the Use Case Model (or Interaction Model), as it connects the flows with actions (or
objects). The third scope requires further work, specially for the Interaction Model, as it would
represent the constraints of rules in the flows of objects. This last scope is related to the RQ2.

54 Use Case modeling within Object-Role Modeling

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

RQ2 How can we handle the [manually added] rules?

→ A portion of rules is automatically generated by EQuA. Is it convenient to make the revision of
these rules as part of the semantics validation?
Part of the rules that are automatically generated by Symbiosis represent constraints for regis-
tries of fact-types. These registries could be implemented with design patterns (e.g., factories)
and would not need the semantics validation. On the other hand, the rest of automatically
generated rules and the semi-automatically generated rules should be considered as part of se-
mantics validation because they represent constraints of the structure of the Object Model (i.e.,
static behavior). Further work is needed to include these rules in the semantics validation.

→ The rest of rules are manually added by the user. What could be utilized to extend the validation
of rules to include new rules?
An approach similar to the formalization of flows could be applied to these rules by providing a
CNL that limits the structure of the manually added rules. In this manner, their transformation
into parts of the flows of behavior might be simpler. Even their input directly into the flows
could be an alternative. Additional discussion and research is suitable for these rules.

Use Case modeling within Object-Role Modeling 55

Bibliography

[1] ANDOVA, S., VAN DEN BRAND, M. G. J., ENGELEN, L. J. P. AND VERHOEFF, T. (2012). MDE Basics with
a DSL Focus. In SFM. Vol. 7320 of Lecture Notes in Computer Science. Springer. pp. 21–57. 33

[2] BAJWA, I. S., BORDBAR, B. AND LEE, M. G. (2011). SBVR vs OCL: A Comparative Analysis of
Standards. In Proceedings of the 14th IEEE International Multitopic Conference (INMIC 2011).
IEEE. pp. 261–266. 37

[3] BAJWA, I. S., SAMAD, A. AND MUMTAZ, S. (2009). Object oriented software modeling using NLP
based knowledge extraction. European Journal of Scientific Research vol. 35, pp. 22–33. 18

[4] BAKEMA, G., ZWART, J. P. AND VAN DER LEK, H. (2002). Fully Communication Oriented Information
Modeling (FCO-IM). FCO-IM Consultancy. 9

[5] BÉZIVIN, J., BRUNETTE, C., CHEVREL, R., JOUAULT, F. AND KURTEV, I. (2005). Bridging the Generic
Modeling Environment (GME) and the Eclipse Modeling Framework. In In Proceedings of the
OOPSLA Workshop on Best Practices for Model Driven Software Development. Vol. 5. 27

[6] BIBLIOWICZ, A. AND DORI, D. (2012). A graph grammar-based formal validation of object-process
diagrams. Software & Systems Modeling vol. 11, pp. 287–302. 11

[7] BOLLEN, P. (2008). SBVR: A fact-oriented OMG standard. In Proceedings of the OTM Confeder-
ated International Workshops and Posters on On the Move to Meaningful Internet Systems: 2008
Workshops. OTM’08. Springer-Verlag. pp. 718–727. 11

[8] BOLLEN, P. (2009). The orchestration of fact-orientation and SBVR. In Enterprise, Business-Process
and Information Systems Modeling. Vol. 29 of Lecture Notes in Business Information Processing.
Springer. pp. 302–312. 12

[9] BOLLEN, P. (2013). Enterprise resource planning requirements process: The need for semantic
verification. In Innovation and Future of Enterprise Information Systems. Eds. F. Piazolo and
M. Felderer. Vol. 4 of Lecture Notes in Information Systems and Organisation. Springer Berlin
Heidelberg. pp. 53–67. 2

[10] BRILL, E. (1992). A simple rule-based part of speech tagger. In Proceedings of the third conference
on Applied natural language processing. ANLC ’92. Association for Computational Linguistics.
pp. 152–155. 18

[11] BRUNEKREEF, J. (2010). Early Quality Assurance in Software Production. EQuA website (Visited:
Sep 2013) http://www.equaproject.nl/. 1, 11

[12] CHEUNG, K. AND CHOW, K. (2007). A petri net based method for refining object oriented system
specifications. Electronic Notes in Theoretical Computer Science vol. 187, pp. 161 – 172. 12

[13] DE MARNEFFE, M. C., MACCARTNEY, B. AND MANNING, C. D. (2006). Generating typed dependency
parses from phrase structure parses. In Proceedings of Languare Resources Evaluation Conference.
Ed. ELRA. Fifth International Conference LREC. pp. To–be–defined. 18

Use Case modeling within Object-Role Modeling 57

http://www.equaproject.nl/

BIBLIOGRAPHY

[14] DEEPTIMAHANTI, D. K. AND SANYAL, R. (2011). Semi-automatic generation of UML models from
natural language requirements. In Proceedings of the 4th India Software Engineering Conference.
ISEC’11. ACM. pp. 165–174. 13, 14

[15] DÍAZ, I., MORENO, L., FUENTES, I. AND PASTOR, O. (2005). Integrating natural language techniques
in OO-Method. In Proceedings of the 6th international conference on Computational Linguistics and
Intelligent Text Processing. CICLing’05. Springer-Verlag. pp. 560–571. 11

[16] ECLIPSE.ORG (2013). Xtext 2.4 documentation. Xtext website (Visited: July 2013) http://www.
eclipse.org/Xtext/documentation.html. 27, 39

[17] EVANS, K. (2005). Requirements engineering with ORM. In On the Move to Meaningful Internet
Systems 2005: OTM 2005 Workshops. Eds. R. Meersman, Z. Tari, and P. Herrero. Vol. 3762 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg pp. 646–655. 8

[18] FAHLAND, D. (2009). Oclets - scenario-based modeling with Petri nets. In Proceedings of the 30th
International Conference on Petri Nets and Other Models Of Concurrency. Eds. G. Franceschinis
and K. Wolf. Vol. 5606 of Lecture Notes in Computer Science. Springer-Verlag. pp. 223–242. 12

[19] FAHLAND, D., DE LEONI, M., VAN DONGEN, B. AND VAN DER AALST, W. (2011). Many-to-many:
Some observations on interactions in artifact choreographies. In Proceedings of the 3rd Central-
European Workshop on Services and their Composition, Services und ihre Komposition, ZEUS 2011.
Eds. D. Eichhorn, A. Koschmider, and H. Zhang. Vol. 705 of CEUR Workshop Proceedings. http:
//CEUR-WS.org/. pp. 9–15. 12, 13, 71

[20] FAHLAND, D. AND WOITH, H. (2009). Towards process models for disaster response. In Business
Process Management Workshops. Eds. D. Ardagna, M. Mecella, and J. Yang. Vol. 17 of Lecture
Notes in Business Information Processing. Springer Berlin Heidelberg. pp. 254–265. 12

[21] FOWLER, M. (2010). Domain Specific Languages 1st ed. Addison-Wesley Professional. 25, 27

[22] GHOSH, D. (2011). DSLs in Action 1st ed. Manning Publications Co. 39

[23] HAGEMEIJER, M. (2013). EQuA - Symbiosis: multi user aspects. ISAAC, Software Solutions. 2

[24] HALPIN, T. (1993). What is an elementary fact? In Proceedings of the 1st NIAM-ISDM Conference.
G.M. Nijssen & J. Sharp, URL (May 2013): http://www.orm.net/pdf/ElemFact.pdf. 9

[25] HALPIN, T. (1998). Object-Role Modeling (ORM/NIAM). In Handbook on Architectures of Inform-
ation Systems. Springer-Verlag. pp. 81–102. 1, 9

[26] JORGENSEN, J. AND BOSSEN, C. (2004). Executable use cases: requirements for a pervasive health
care system. Software, IEEE vol. 21, pp. 34–41. 13

[27] KERN, H. AND KÜHNE, S. (2007). Model Interchange between ARIS and Eclipse EMF. In Pro-
ceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling (DSM’07). No. TR-38 in
Computer Science and Information System Reports, Technical Reports University of Jyväskylä.
pp. 105–114. 27

[28] MNKANDLA, E. AND DWOLATZKY, B. (2004). A survey of agile methodologies. The transactions of
the SA institute of electrical engineers. pp. 236–247. 15, 16

[29] MONTES, A., PACHECO, H., ESTRADA, H. AND PASTOR, O. (2008). Conceptual model generation
from requirements model: A natural language processing approach. In Proceedings of the 13th
international conference on Natural Language and Information Systems: Applications of Natural
Language to Information Systems. NLDB ’08. Springer-Verlag. pp. 325–326. 11

[30] MORDECAI, Y. AND DORI, D. (2013). I5: A model-based framework for architecting system-of-
systems interoperability, interconnectivity, interfacing, integration, and interaction. In Proceed-
ings of the 23rd Annual INCOSE International Symposium. INCOSE’2013. 11

58 Use Case modeling within Object-Role Modeling

http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html
http://CEUR-WS.org/
http://CEUR-WS.org/
http://www.orm.net/pdf/ElemFact.pdf

BIBLIOGRAPHY

[31] MOUSAVI, M. (2005). Structuring Structural Operational Semantics. Department of Computer
Science, Eindhoven University of Technology. 33

[32] NIJSSEN, G. (2008). SBVR: N-ary fact types and subtypes- understandable and formal. Business
Rules Journal vol. 9, URL (May 2013): http://www.BRCommunity.com/a2008/b412.html.
12, 13

[33] O’BRIEN, S. (2003). Controlling controlled english – an analysis of several controlled language
rule sets. In Proceedings of EAMT-CLAW 03. Dublin City University. pp. 105–114. 20

[34] OMG (2013). Semantics Of Business Vocabulary And Rules (SBVR). OMG Formally Released
Versions Of SBVR. URL (September 2013): http://www.omg.org/spec/SBVR/index.htm.
38

[35] PASTOR, O., GÓMEZ, J., INSFRÁN, E. AND PELECHANO, V. (2001). The OO-Method approach for
information systems modeling: from object-oriented conceptual modeling to automated pro-
gramming. Inf. Syst. vol. 26, pp. 507–534. 11

[36] PASTOR, O., INSFRÁN, E., PELECHANO, V., ROMERO, J. AND MERSEGUER, J. (1997). OO-Method: An
OO software production environment combining conventional and formal methods. In Proceed-
ings of the 9th International Conference on Advanced Information Systems Engineering. CAiSE ’97.
Springer-Verlag. pp. 145–158. 11

[37] PEETERS, F. (2011). Naar een valide objectmodel. Internal project document EQuA, pp. 1–16. 1,
3

[38] PÉREZ-GONZÁLEZ, H. G. AND KALITA, J. K. (2002). Automatically generating object models from
natural language analysis. In Companion of the 17th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. OOPSLA ’02. ACM. pp. 86–87.
18

[39] PÉREZ-GONZÁLEZ, H. G., KALITA, J. K., NÚÑEZ VARELA, A. S. AND WIENER, R. S. (2005). GOOAL: an
educational object oriented analysis laboratory. In Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications. OOPSLA ’05.
ACM. pp. 180–181. 18

[40] PRASANNA, D. R. (2009). Dependency Injection 1st ed. Manning Publications Co. 41

[41] REENSKAUG, T. (2003). The Model-View-Controller (MVC) Its Past and Present. In Proceedings of
the JAOO Conference. pp. 1–16. 2

[42] ROMBLEY, G. (2012). Towards a valid object model. CSE Master’s thesis, W&I TU/e. 2

[43] ROSENBERG, D. AND STEPHENS, M. (2007). Use Case Driven Object Modeling with UML Theory and
Practice. Books for professionals by professionals. Apress. v, 2, 15, 17

[44] ROSS, R. G. (2008). The emergence of SBVR and the true meaning of "semantics": Why you
should care (a lot!), part 1. Business Rules Journal vol. 9, URL (May 2013): http://www.
BRCommunity.com/a2008/b401.html. 12

[45] SCHMIDT, D. C. (2006). Guest Editor’s Introduction: Model-Driven Engineering. IEEE Computer
39, 25–31. 25

[46] SINNIG, D., MIZOUNI, R. AND KHENDEK, F. (2010). Bridging the gap: empowering use cases
with task models. In Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive
computing systems. EICS’10. ACM. pp. 291–296. 13

[47] STELLMAN, A. (2006). Applied software project management. O’Reilly. 7

Use Case modeling within Object-Role Modeling 59

http://www.BRCommunity.com/a2008/b412.html
http://www.omg.org/spec/SBVR/index.htm
http://www.BRCommunity.com/a2008/b401.html
http://www.BRCommunity.com/a2008/b401.html

BIBLIOGRAPHY

[48] VAN HEE, K., SIDOROVA, N., SOMERS, L. AND VOORHOEVE, M. (2006). Consistency in model integ-
ration. Data and Knowledge Engineering vol. 56, pp. 4–22. 12

[49] VANBRABANT, R. (2008). Google Guice: Agile Lightweight Dependency Injection Framework (First-
press). APress. 41

[50] VONKEN, F., BRUNEKREEF, J., ZAIDMAN, A. AND PEETERS, F. (2012). Software Engineering in The
Netherlands: The State of the Practice. Software Engineering Research Group, TU Delft SERG, pp.
1–44. 1

[51] YANG, D., SU, F. AND ZHOU, T. (2012). Applying robustness analysis to MDA software paradigm.
In Instrumentation Measurement, Sensor Network and Automation (IMSNA), 2012 International
Symposium on. Vol. 2. pp. 419–422. 3

[52] ZIKRA, I., STIRNA, J. AND ZDRAVKOVIC, J. (2011). Analyzing the integration between require-
ments and models in Model Driven Development. In Enterprise, Business-Process and Information
Systems Modeling. Vol. 81 of Lecture Notes in Business Information Processing. Springer-Verlag.
pp. 342–356. 3

60 Use Case modeling within Object-Role Modeling

Appendix A

Symbiosis tool

The Symbiosis tool is a standalone application that implements the EQuA framework. The following
sections include descriptions of the Symbiosis tool within the BookInternetStore example project.

A.1 General description

The Requirements Viewer tab (Figure A.1) displays a perspective of the Requirements Model. The
transformation of requirements into objects is achieved in the Fact Breakdown tab. On the other
hand, the Type Configurator tab shows a perspective of the Object Model and includes tools to adjust
this model as needed. The traceability of requirements is achieved with the synchronization of the
Requirements and Object Models. Symbiosis applies automatic updates to models according to the
modifications submitted by users. The UseCase Viewer tab is a contribution of this thesis and shows
a perspective of the Use Case Model. Finally, the CD tab contains the UML class diagram, which is a
transformation of the Object Model.

The logged on user has the project role of ‘product owner stakeholder’. A project role is composed by four
attributes: the type (either project member or stakeholder), his or her name, the role (for instance, ‘product owner’)
and password. In addition to the Natural Language contents of a requirement, the Requirements Model uses
metadata to provide categorization of requirements, as well as review states and prioritization for the life-
cycle of requirements. Moreover, the Requirements Model defines four kinds of requirement elements, which are
discussed in Section 2.1.

Figure A.1: The Requirements Viewer tab

Use Case modeling within Object-Role Modeling 61

APPENDIX A. SYMBIOSIS TOOL

The class diagram is automatically generated by Symbiosis upon user request. Figure A.2 depicts
the diagram from the BookInternetStore. The class diagram shows the objects according to their re-
lations, which depend on the facts from the Requirements Model. These facts are semi-automatically
analysed with a conceptual modeling approach that is based on the Object-Role Modeling (ORM). The
resulting relations are UML standard: association, composition or generalization. Further discussion
on the Requirements and Object Models and the ORM approach is available in Sections 2.1 and 2.2.

Symbiosis automatically generates the operations of static-behavior of objects that are based on facts, such as
the constructors or setters/getters. Furthermore, the relations between objects provide information to generate
operations that confirm the relations. For instance, the object Order sustains its relation with the object Customer
via three operations; similarly Customer reports two operations with Order.

Figure A.2: Class diagram of the BookInternetStore example project

The Symbiosis tool requires the Java Platform Standard Edition 7 (JRE 71) for its execution.

1http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

62 Use Case modeling within Object-Role Modeling

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

APPENDIX A. SYMBIOSIS TOOL

A.2 Fact breakdown

From the BookInternetStore example project, the fact requirement “The price of Book 9815 on order
27 is 23.50 euro.” becomes transformed into a fact-type, a formal element of the Object model. The
breakdown transformation is not deterministic, as it is user-driven (i.e., semi-automatic). Figure A.3
shows the visualization of this breakdown in the Fact Breakdown tab of Symbiosis.

The project member analyses the requirement “The price of Book 9815 on order 27 is 23.50 euro.” and its res-
ulting fact-type is PriceOrderedBook, which represents a relationship between two roles: the ‘price’ and the
‘orderedBook’. The ‘price’ role is played by a Real number object, which is a base-type element. The ‘ordered-
Book’ role is played by an OrderedBook object, which is a fact-type element. Recursively, these two roles are
analysed by the project member in order to apply new breakdowns on them. No breakdown is possible in Real,
because a base-type is a breakdown terminal. On the other hand, a breakdown is feasible for OrderedBook, as
it contains more roles. This second breakdown produces two roles, which are the ‘book’ and ‘order’. The players
of these roles are fact-types, namely, Book and Order. Repeatedly, the analysis of breakdown is done on these
two fact-types and only new base-types are obtained. Therefore, no more breakdown is achievable.
As an important remark, the fact-types OrderedBook, Book and Order are actually object-types as they do not
represent a relationship between their roles.

Figure A.3: The Fact Breakdown tab

Use Case modeling within Object-Role Modeling 63

APPENDIX A. SYMBIOSIS TOOL

A.3 Type Configurator

Symbiosis offers a type level perspective of the Object Model with the Type Configurator tab. Fur-
thermore, this tab allows the user-driven (i.e., semi-automatic) configuration of the Object Model.
This configuration generates formal constraints, such as the uniqueness, additivity or removability of
roles in fact-types. Figure A.4 displays an Object Model example.

The sets of fact-types (FT) or object-types (OT) are presented in the lower matrix. The selected FT is OrderedBook
and its set of roles is displayed in the upper matrix. Both matrices include the constraint codes of the corresponding
FT, OT or base-type. The right hand side of this tab shows a class perspective of OrderedBook. This perspective
includes some behavioral-features, such as the constructor and properties in the upper text panel. The lower text
panel provides additional information about the selected behavioral-feature, such as the ‘quantity’ property in this
example.

Figure A.4: The Type Configurator tab

64 Use Case modeling within Object-Role Modeling

APPENDIX A. SYMBIOSIS TOOL

A.4 Categories for organizing use cases

The Requirements Model organizes the requirements with categories. A category is defined and
owner by a project member who has the responsibility of its administration. The use cases utilize the
categories for organizational purposes. Figure A.5 highlights two elements, an action requirement and
a use case, which belong to the same category. Figure A.6 strengthens the link between these two
elements.

The top image shows the Requirement Viewer tab that highlights an action requirement which refers to the
fact-type <Book> in the category ‘DEF’. The bottom image shows the UseCase Viewer tab that highlights a use
case that belongs to the same category and that is linked with 2 action requirements.

Figure A.5: Category example – Requirement and UseCase Viewer

Use Case modeling within Object-Role Modeling 65

APPENDIX A. SYMBIOSIS TOOL

The top image shows the normal flow of the highlighted use case in Figure A.5. The UseCases Editor only allows
to link use cases with action requirements of the same category. The highlighted action requirement in Figure A.5
is one of the 2 linked actions. The bottom image shows the alternate flow of the use case.

Figure A.6: Category example – UseCases Editor

66 Use Case modeling within Object-Role Modeling

Appendix B

Selected formalisms of the Object
model

B.1 Lemmas

1. n− 1 rule.
If a fact type, with size of n> 0, is elementary then the smallest uniqueness constraint includes at least
n− 1 roles.

2. Unification of fact and object types.
Every object type is a fact type.

3. Redundant uniqueness constraints.
Assume a fact type with a set of roles R; consider a uniqueness constraint uc1 which bounds the set of
roles as R1 ⊂ R and a uniqueness constraint uc2 which bounds the set of roles as R2 ⊂ R then:
R1 ⊂ R2⇒ uc2 is redundant.

4. No fact types without uniqueness.
An elementary object model does not contain a fact type, with size > 0, without an uc.

B.2 Elementary Object Model

1. Elementary Fact Type.
A fact type is elementary if it satisfies the n− 1 rule.

2. Elementary Object Type.
An object type is elementary if the corresponding fact type is elementary and every role is subject to an
uniqueness constraint.

3. An elementary Object Model.
An elementary object model contains only elementary facts and object types.

Use Case modeling within Object-Role Modeling 67

APPENDIX B. SELECTED FORMALISMS OF THE OBJECT MODEL

B.3 Standard Types

1. T def
= the set of (simple and compount) types within an object model

2. OT def
= {t | t ∈ T∧ t is an object type}

3. FT def
= {t | t ∈ T∧ t is a fact type∧ t /∈OT}

4. F def
= FT∪OT

5. BT def
= {String, Character, Natural, Integer, Real, Boolean}

6. ST def
= BT∪OT

B.4 Role related utilities

1. RL def
= {r | ∃ f ∈ F : r is a role of f }

2. t ype
def
= RL→ ST : r 7→ the substitution type used in r

3. name
def
= RL→ String : r 7→ role name of r except if role name is unknown

or empty then the name of t ype(r)

4. roles
def
= F→P (RL) : f 7→ {r | r belongs to f }

5. parent
def
= RL→ F : r 7→ (f | f ∈ F∧ r ∈ roles(f))

6. size
def
= F→ Natural : f 7→ |roles(f)|

7. nav
def
= RL→ Boolean : r 7→ r is a navigable role

8. rolesPla yedB y
def
= OT→P (RL) : ot 7→ {r | r ∈ RL∧ t ype(r) = ot ∧ nav(r)}

68 Use Case modeling within Object-Role Modeling

Appendix C

CNL Design

C.1 CNL Extended-BNF

The non-terminal symbols V are the set of left-hand side symbols of the terminal and production rules
R in Tables C.2 and C.3.

Key-symbols = { ; : . , < > [] { } " }

Keywords = { ‘NonActorList:’, ‘ActorList:’, ‘Cause:’, ‘Continue’, ‘Post’, ‘Exit’, ‘for’, ‘each’, ‘every’, ‘if’,
‘calls:’, ‘expects:’,‘UseCase’ }

Sets of concrete terminal symbols of the alphabet that are utilized in the production rules.

Table C.1: Key-symbols and Keywords

BASETYPEKIND ::= ‘Natural’ | ‘Integer’ | ‘Real’ | ‘Character’ | ‘Boolean’ | ‘String’
ACTORKIND ::= ‘Human’ | ‘ExternalSystem’
FACTPREDICATEKIND ::= ‘CREATED’ | ‘UPDATED’ | ‘REMOVED’ | ‘EXISTS’ | ‘EXCEPTION’
WORD ::= (‘a’.. ‘z’|‘A’.. ‘Z’|‘_’) (‘a’..‘z’|‘A’..‘Z’|‘_’|‘0’ ..‘9’)∗
INT ::= (‘0’..‘9’)+
STRING ::= ‘"’ (‘.’|‘,’|‘a’..‘z’|‘A’..‘Z’|‘0’..‘9’|‘ ’)∗ ‘"’

BASETYPEKIND is equivalent to the type of breakdown terminals specified in the Object Model. ACTORKIND follows
the ICONIX guidelines for use cases kind of actors. FACTPREDICATEKIND represents either the CRUD response of
a fact-type or an unexpected response. The rest of these rules generate groups of terminal symbols to represent
words, integer numbers or strings.

Table C.2: Terminal rules

Use Case modeling within Object-Role Modeling 69

APPENDIX C. CNL DESIGN

Flow ::= FlowType ‘:’ (ActorList ‘.’)? (NonActorList ‘.’)? ActionTypeList

NonActorList ::= ‘NonActorList:’ (‘,’? Noun)+
ActorList ::= ‘ActorList:’ (‘,’? Noun)+
ActionTypeList ::= TriggerType ‘:’ ActionType∗ (EndType)?
Noun ::= ‘<’ ((WORD ‘:’ ACTORKIND)|WORD) ‘>’
BaseType ::= ‘[’ WORD ‘:’ BASETYPEKIND ‘]’
BaseTypeValue ::= ‘[’ STRING ‘]’
Verb ::= ‘{’ Keyphrase∗ WORD ‘}’
BaseAndValueExp ::= BaseType (Keyphrase+ BaseTypeValue)?
TriggerType ::= Rank (BeginExp | CauseExp)
BeginExp ::= NounPhraseExp WORD (Keyphrase+ NounPhraseExp+)?
CauseExp ::= ‘Cause:’ NounPhraseExp+
EndType ::= Rank EndExp ‘.’
EndExp ::= (‘Continue’ FlowType? WORD+ Rank) |

(‘Post’ NounPhraseExp) | (‘Exit’ FlowType)
SubActionTypeList ::= ((ActionType+ EndType?)|EndType)
ActionType ::= (Rank NounPhraseExp VerbPhraseExp? ‘.’) |

(Rank (ForLoopExp | ConditionalExp) ‘:’
SubActionTypeList Keyphrase+ Rank ‘;’)

ForLoopExp ::= ‘for’ ((‘each’ NounPhraseExp Keyphrase+ NounPhraseExp) |
(‘every’ NounPhraseExp))

ConditionalExp ::= ‘if’ NounPhraseExp
NounPhraseExp ::= STRING? ‘<’ Noun (‘,’ FACTPREDICATEKIND)? ‘>’ BasePhraseExp?
BasePhraseExp ::= Keyphrase+ (‘,’ ? BaseAndValueExp)+
VerbPhraseExp ::= CallableVerbPhraseExp | InteractionExp
CallableVerbPhraseExp ::= (Verb NounPhraseExp+)|

(Verb (‘,’ ? BaseAndValueExp)∗)
RemoteActionExp ::= NounPhraseExp CallableVerbPhraseExp?
InteractionExp ::= InteractionScope RemoteActionExp

(OptionPhrase InteractionScope RemoteActionExp)∗
InteractionScope ::= ‘calls:’ | ‘expects:’
OptionPhrase ::= Keyphrase+
Rank ::= INT (‘.’ INT)∗
FlowType ::= ‘<’ WORD ‘>’ ((WORD WORD)|(WORD WORD Rank ‘.’ WORD)|

(‘UseCase’)|(‘UseCase’ WORD WORD Rank ‘.’ WORD))
Keyphrase ::= INT | WORD

Flow is the start symbol of the CNL EBNF. FlowType is the non-terminal symbol that is designed to specify if a
Flow is of either a use case or an object.

Table C.3: Production rules

70 Use Case modeling within Object-Role Modeling

APPENDIX C. CNL DESIGN

C.2 Examples of Object life-cycle with CNL EBNF

The example of ‘Artifact Choreography’ [19] is used to expose an alternative to express object life- cycle
with the CNL. The following figure shows a sample execution of the artifacts Order and Delivery,
as well as a general description of the process.

“The shop splits each order into several packages based on the availability of the ordered items. Several packages
from different orders are then delivered in one tour. In case a package cannot be delivered, it is scheduled for another
delivery tour or returned to the shop as undeliverable. The order is billed to the customer once all packages are
processed.” (figure and text taken from [19]).

Figure C.1: Order and Delivery sample execution

The analogy of the Proclet model (see Figure 2.6) to the CNL EBNF is depicted on Figure C.1 with
four example flows developed in the XText CNL GUI. This GUI is not designed to have communication
with the Object Model, thus, these flows assume an Object Model that contains the fact-types. Within
this assumption, the CNLV produces warning messages to recall that the validation of fact-types cannot
be achieved. For instance,

corresponds to the warning message on each Delivery noun.

Use Case modeling within Object-Role Modeling 71

APPENDIX C. CNL DESIGN

Figure C.2: Order life-cycle

Figure C.3: Delivery life-cycle

72 Use Case modeling within Object-Role Modeling

APPENDIX C. CNL DESIGN

C.3 CNL with MDE

Fragment of the EMF metamodel transformed into a class diagram that highlights the NP-VP pattern in the CNL.

Figure C.4: NP-VP pattern as a class diagram

Fragment of the Xtext CNL EBNF transformed into graphs. Each graph represents a rule. Along each graph,
the shadowed elements are rules and the non-shadowed elements are key-symbols or keywords. The group of
elements inside a dashed rectangle can have any sequential order in the textual input, for instance, ActorList
can happen either before or after NonActorList.

Figure C.5: Syntax metamodel as a graph

Use Case modeling within Object-Role Modeling 73

APPENDIX C. CNL DESIGN

C.4 Descriptions of Rule Delegates

The tables in this section describe the rule delegate validators χo. Some additional observations:

→ The utilization of active voice in sentences indicate that the subject noun is the direct ex-
ecutor of the verb. In this manner, the specification of BasePhraseExp (i.e., base-types)
is not suggested in subject nouns. On the other hand the direct object nouns receive the
execution of the verb, which suggests the specification of BasePhraseExp in them. Some
χo return warning messages related to these suggestions.

→ The types returned by each Xtext CNL EBNF rule, as well as the types of features in these
rules, can be inspected in Appendix D.1.

→ The reserved verbs and words are available in Appendix D.3.

RULE DELEGATE DESCRIPTION

χActionT ype The validation depends on the subtype of ActionType. The subtype is val-
idated by calling its corresponding rule delegate: χActionEx p, χSubTrig gerT ype,
χEndT ype or χTrig gerT ype.

χActionEx p First, the existence of the subject noun in the actor or non-actor list is done with
χNounPhraseEx p. Second, if the VerbPhraseExp is not present, the subject noun
should not be a human actor or should not use CRUD predicate. Also, if this
noun uses BasePhrasExp a warning is prepared, although its existence in the
vocabulary is still validated. Third, if the VerbPhraseExp is present, its type
defines the delegate to call: χOperationEx p, χUnar yOperationEx p or χInteract ionEx p.
It is also checked that if the subject noun is a human actor and the flow is a
use case flow, then the type of VerbPhraseExp should be OperationExp.

χSubTrig gerT ype First, the call to either χFor LoopEx p or χCondit ionalEx p is done according to the
type of the attribute ‘trigger’. Second, the validation of correct enumeration of
the SubActionTypeList attribute (i.e., the sub-action-types of the for-loop
or conditional expression) is done with the call to χSubActionT ypeList . Third, the
keyphrase attribute is valid if it is not empty (i.e., its words are of free con-
tents for the user). Fourth, the ‘endSubTrigger’ cross-reference should make
reference to the Rank (i.e., step number) of the SubTriggerType (i.e., the
validation of the closing of the for-loop or conditional expression). Finally, as
keyphrase can contain numbers, the validation checks the presence of semi-
colon right after the endSubTrigger cross-reference.

χFor LoopEx p This delegate is focused on object flows. The ForLoopExp can start with
either ‘for each’ or ‘for every’. In the first case, two NounPhraseExp and one
keyphrase between them are validated. The existence of nouns in the non-
actors list is validated with χNounPhraseEx p, afterwards it is checked that they do
not have CRUD predicate. If any NounPhraseExp includes BasePhraseExp
a warning message is prepared, although its existence in the vocabulary is
validated. The keyphrase should end in one of the following reserved verbs:
‘of’, ‘in’ or ‘on’. In the second case of ForLoopExp, the validation of one
NounPhraseExp is done in the same manner as in the first case.
General example 1: ‘for each <noun> of <noun>’
General example 2: ‘for every <noun>’

With further research on the Interaction Model, the validation of noun as col-
lection type in its NounPhraseExp should be appropriately included.

Table C.4: Semantic rule delegates (I)

74 Use Case modeling within Object-Role Modeling

APPENDIX C. CNL DESIGN

RULE DELEGATE DESCRIPTION

χCondit ionalEx p This delegate is focused on object flows. The existence of the noun
of the NounPhraseExp as a non actor is validated with χNounPhraseEx p.
Next, the NounPhraseExp should have no CRUD predicate but should
have BasePhraseExp. The keyphrase and BaseAndValueExp of the
BasePhraseExp are validated. The keyphrase should begin with the re-
served verb ‘has/have’ and end with the reserved word ‘attribute’. The
BaseAndValueExp should use the name of a base-type from the noun, its
expected value and a keyword to specify the conditional expression. This key-
phrase should end with the reserved word ‘as’.
General example: ‘if <noun> has attribute [base-type] as [value]’

χSubActionT ypeList This delegate also requires the Rank (i.e., step) of the SubTriggerType
that starts the SubActionTypeList in order to validate their enumeration.
The list of ActionTypes of the SubActionTypeList are iteratively valid-
ated with χActionT ype. With respect to the enumeration, the first ActionType
should have the Rank i.1, where i is the Rank of the SubTriggerType, the
point represents steps of ‘sub-ActionTypes’ and 1 represents the first sub-
ActionType. Each ActionType that follows should have its Rank as i. j+ 1,
where i. j is the Rank of the prior ActionType. Furthermore, i and j should
be positive integers.

χInteract ionEx p The InteractionExp should contain one or more RemoteActionExps.
Their validation is done with one or more calls to the χRemoteAct ionEx p
delegate. In each call, the InteractionScope of the corresponding
RemoteActionExp should be included. In the case of more than one
RemoteActionExps, each OptionPhrase is analysed as a keyphrase. This
keyphrase should start with the reserved words ‘or’ or ‘and’ to define the
kind of option between the RemoteActionExps that are linked by the
OptionPhrase.

In the scope of use cases, this rule is designed to represent the ICONIX rela-
tionships «invokes» and «precedes».
In the scope of objects, further experimentation was initiated in this rule, as
it could represent (parallel) interaction between fact-types (see Appendix C.2).
Moreover, the preliminary prototype enables the configuration of this rule. For
instance, if the subject noun of each RemoteActionExp should be the same
or if the all InteractionScope should be the same.

χRemoteAct ionEx p This rule also receives the InteractionScope, which represents the verb of
the sentence in which the subject noun is in the InteractionExp that calls
this delegate. Thus, the NounPhraseExp of RemoteActionExp is the direct-
object noun. First, the χNounPhraseEx p is called to validate that the direct-object
noun is not a human actor. Moreover, this noun should not use CRUD pre-
dicate nor BasePhraseExp. If the CallableVerbPhraseExp is not present,
then the RemoteActionExp obtains the state that is used to represent the «in-
vokes» and «precedes» use case relationships. That is, if InteractionScope
is ‘calls:’ the direct-object noun would be the use case to be invoked. If
InteractionScope is ‘expects:’ the direct-object noun would be the use case
that precedes to the subject noun.
On the other hand, if the CallableVerbPhraseExp is present, its validation
is done with the delegate that validates the corresponding subtype, that is,
with either χOperationEx p or χUnar yOperationEx p.

Table C.5: Semantic rule delegates (II)

Use Case modeling within Object-Role Modeling 75

APPENDIX C. CNL DESIGN

RULE DELEGATE DESCRIPTION

χOperationEx p This delegate utilizes χVer b to validate the operation (i.e., verb), as well as
χNounPhraseEx p for each NounPhraseExp. The nouns of these NounPhraseExp
are the direct object nouns, so they should not be human actors. The CRUD
predicate is allowed for fact-types but not for external system actors. If these
direct object nouns utilize BasePhraseExp, the keyphrase in this expres-
sion should start/end with the reserved words ‘with’/‘attribute’, otherwise
a warning is prepared. The specification of value for the base-type in the
BasePhraseExp is optional. If the value is included, it should match the type
of the base-type and the keyphrase that joins the base-type with the value could
use the reserved word ‘as’. If the keyphrase does not include it, a warning is
prepared.

χUnar yOperationEx p This delegate reviews if one or more base-types are specified. If they do, the
UnaryOperationExp is interpreted as a setter operation. The χVer b is utilized
with the indication that the verb should be the reserved verb ‘set’ and the value
for each base-type should be specified. The keyphrase between each base-type
and its value should include the reserved word ‘as’, otherwise a warning is
prepared. If no base-type is specified, the delegate χVer b is utilized without
special indications.

χTrig gerT ype TriggerType is an extension of ActionType, but ActionType is also ab-
stract. Thus, the type of its attribute ‘expression’ determines if this delegate
redirects the validation to χBeginEx p or χCauseEx p.

χCauseEx p This delegate validates that the noun of each NounPhraseExp is a non actor
with χNounPhraseEx p. Afterwards, each NounPhraseExp should specify a CRUD
predicate or a BasePhraseExp but not both. In the scope of use cases, the
predicate ‘EXCEPTION’ is proposed to represent the cause of alternate flows
that resolve unexpected executions of normal flows. In the scope of object
flows, the predicate ‘EXCEPTION’ is proposed as the analogy to the flow that
catches an exception of behavior of an object.

χBeginEx p The first NounPhraseExp is the subject noun and is validated as a non
actor with χNounPhraseEx p. Afterwards, the NounPhraseExp should not spe-
cify CRUD predicate nor BasePhraseExp. The ‘verb’ attribute of BeginExp
should be one of the following reserved verbs: ‘begin’, ‘starts’, ‘extends’, ‘pre-
cede’. If no more NounPhraseExp are included, the validation is completed. If
more NounPhraseExps are included, they are considered direct object nouns.
Thus, the verb and direct object nouns should be linked with a keyphrase
that should end with the reserved word ‘with’. A warning is prepared if this
keyword is not utilized. This delegate validates with χNounPhraseEx p that each
direct object noun is a non actor. Additionally, these direct object nouns should
not specify CRUD predicate nor BasePhraseExp.
In the scope of object flows, this expression is proposed as an analogy to a
constructor, where the direct object nouns would represent its parameters.

χEndT ype EndType is the extension of ActionType that contains EndExp, which is an
abstract EObject. Thus, the subtype of EndExp defines which delegate contin-
ues with the validation, that is, either χGoToEx p, χPostEx p or χEndUseCaseEx p.

Table C.6: Semantic rule delegates (III)

76 Use Case modeling within Object-Role Modeling

APPENDIX C. CNL DESIGN

RULE DELEGATE DESCRIPTION

χEndUseCaseEx p This delegate validates that the cross-reference ‘particularFlow’ corresponds to
a use case flow.

χPostEx p The NounPhraseExp of the PostExp is validated be a non actor via
χNounPhraseEx p. In addition, the NounPhraseExp should specify its CRUD pre-
dicate and should not contain BasePhraseExp.

χGoToEx p This delegate validates the correspondence of the cross-reference ‘particular-
Flow’ to a flow, as well as that the keyphrase should end with the reserved word
‘step’. In addition, χGoToEx p confirms the existence of the Rank (i.e., step) that
is specified where to go. Furthermore, neither ‘particularFlow’ nor the Rank
should refer to itself.

χRank This validator reviews that the enumeration of two Ranks (i.e., steps) is valid.
As any Rank belongs to an ActionType, this validator is called by the delegate
χSubActionT ypeList and the root rule ξActionT ypeList .

χNounPhraseEx p This delegate validates the existence of NounPhraseExp in the
NonActorList and/or ActorList. The validation depends on the
type of search that is specified to this delegate. For instance, the χPostEx p
calls χNounPhraseEx p specifying that the noun should be a non actor (i.e., in the
NonActorList).

χVer b This delegate validates that the Verb matches reserved verbs or regular expres-
sions. As future work, this validator should include the matching of verbs with
operations according to the fact-types in the Interaction Model. In addition, a
possible extension of the CNL Dictionary could offer a CRUD classification of
verbs, which would be utilized by χVer b to extend the validation of verbs in use
cases.

Table C.7: Semantic rule delegates (IV)

Use Case modeling within Object-Role Modeling 77

Appendix D

Prototype

D.1 Xtext CNL EBNF

The Grammar Language of Xtext has been used to implement the Xtext CNL EBNF. The following notes
are related to the construction of EObjects from this grammar:

→ The assignation of features is done with the symbols ‘=’, ‘?=’ and ‘+=’. The first symbol as-
signs an EDataType attribute (e.g., EInt) or a class relationship. The second symbol assigns an
EBoolean attribute. The third attribute assigns an EList attribute.

→ The generalization/abstraction is achieved directly (i.e., using the ‘returns’ keyword in the rule
declaration or indirectly (i.e., with the “{RULE.reason}” syntax, where the reason might be
unneeded).

→ The cross-reference is specified with the syntax “[RULE|FEATURE]”, where the specification of
a feature is optional. If it is not specified, Xtext assumes the feature ‘name’ in the RULE. If
FEATURE is used, it should represent an EString attribute.

→ The data-types cannot have assignation of features (otherwise they become a rule).

/*
* Grammar definition of the Controlled Natural Language (CNL)
* for the Use Cases and Interaction models. The behavior
* is perceived as flows of actions.
* The workspace with xtext consists of 4 Eclipse projects:
* - equa.project.behavior Core project with the grammar definition
* - equa.project.behavior.tests JUnit
* - equa.project.behavior.ui Eclipse editor (i.e., GUI)
* - equa.project.behavior.sdk Feature that links the three previous projects
*
* @author: waldo ramirez-montano
*/

grammar equa.project.behavior.CNL with org.eclipse.xtext.common.Terminals

generate cNL "http://www.project.equa/behavior/CNL"

// ---------------------- MODEL RULE ----------------------
Flow:
name=FlowType hasName?=’:’ (
(actorList=ActorList hasActorList?=’.’)?
& (nonActorList=NonActorList hasNonActorList?=’.’)?
)
flow=ActionTypeList;

78 Use Case modeling within Object-Role Modeling

APPENDIX D. PROTOTYPE

// ---------------------- BEHAVIOR RULES ----------------------
NonActorList:
preparesList?=’NonActorList:’ (’,’? list+=Noun)+;
ActorList:
preparesList?=’ActorList:’ (’,’? list+=Noun)+;
ActionTypeList:
firstAction=TriggerType hasFirstAction?=’:’
(actionList+=ActionType)*
(=> lastAction=EndType)?;
Noun:
’<’(({Actor} name=ID preparesKind?=’:’ kind=ActorKind) |
({NonActor} name=ID)) ’>’;
BaseType:
’[’ name=ID is=’:’ type=BaseTypeKind ’]’;
BaseTypeValue:
’[’ name=STRING ’]’;
Verb:
’{’ keyphrase+=Keyphrase* name=ID ’}’;
BaseAndValueExp:
baseType=BaseType (keyphrase+=Keyphrase+ value=BaseTypeValue)?;

// ---------------------- TRIGGER RULES ----------------------
TriggerType returns ActionType:
{TriggerType} name=Rank (
expression=BeginExp |
expression=CauseExp
);
BeginExp:
subjNoun=NounPhraseExp verb=ID
(keyphrase+=Keyphrase+ objNounList+=NounPhraseExp+)?;
CauseExp:
hasCause?=’Cause:’ (objNounList+=NounPhraseExp)+;

// ---------------------- END RULES ----------------------
EndType returns ActionType:
{EndType} name=Rank expression=EndExp hasEnd?=’.’;
EndExp:
(name=’Continue’ {GoToExp.expression=current} (particularFlow=[Flow|FlowType])?
keyphrase+=ID+ actionTypeReference=Rank) |
(name=’Post’ {PostExp.expression=current} objNoun=NounPhraseExp) |
(name=’Exit’ {EndUseCaseExp.expression=current} particularUseCase=[Flow|FlowType]);

// ---------------------- ACTION RULES ----------------------
SubActionTypeList:
((actionList+=ActionType+ (=> lastAction=EndType)?) | lastAction=EndType);
ActionType:
({ActionExp} name=Rank subjNoun=NounPhraseExp verbPhrase=VerbPhraseExp? hasEnd?=’.’)
| ({SubTriggerType} name=Rank (trigger=ForLoopExp | trigger=ConditionalExp)
preparesSubActionList?=’:’ subActionList=SubActionTypeList
keyphrase+=Keyphrase+ endSubTrigger=[SubTriggerType|Rank] hasEnd?=’;’);

// ---------------------- CONDITIONAL AND LOOP RULES ----------------------
ForLoopExp:
hasFor?=’for’ (
(hasEach?=’each’ element=NounPhraseExp keyphrase+=Keyphrase+ collection=NounPhraseExp)
| (hasEvery?=’every’ collection=NounPhraseExp)
);
ConditionalExp:

Use Case modeling within Object-Role Modeling 79

APPENDIX D. PROTOTYPE

hasIf?=’if’ element=NounPhraseExp;

// ---------------------- NATURAL LANGUAGE RULES ----------------------
NounPhraseExp:
particularization=STRING? ’<’noun=[Noun] (preparesPredicateKind?=’,’
predicateKind=FactPredicateKind)?’>’ basePhraseExp=BasePhraseExp?;
BasePhraseExp:
keyphrase+=Keyphrase+ (’,’? baseValueList+=BaseAndValueExp)+;
VerbPhraseExp:
CallableVerbPhraseExp | InteractionExp;
CallableVerbPhraseExp:
({OperationExp} operation=Verb objNounList+=NounPhraseExp+) |
({UnaryOperationExp} operation=Verb (’,’? conditionList+=BaseAndValueExp)*);
RemoteActionExp:
nounPhrase=NounPhraseExp verbPhrase=CallableVerbPhraseExp?;

InteractionExp:
scope=InteractionScope expression=RemoteActionExp
(optionPhraseList+=OptionPhrase optionScopeList+=InteractionScope
optionExpressionList+=RemoteActionExp)*;
InteractionScope:
(calls?=’calls:’ | expects?=’expects:’);
OptionPhrase:
keyphrase+=Keyphrase+;
// ---------------------- DATA TYPES ----------------------
Rank:
INT (’.’ INT)*;
FlowType:
’<’ ID ’>’ (
(ID ID) |
(ID ID Rank ’.’ ID) |
(’UseCase’) |
(’UseCase’ ID ID Rank ’.’ ID)
);
Keyphrase:
INT | ID;

// ---------------------- ENUMS ----------------------
enum BaseTypeKind:
NATURAL=’Natural’ | INTEGER=’Integer’ | REAL=’Real’
| CHARACTER=’Character’ | BOOLEAN=’Boolean’ | STRING=’String’;
enum ActorKind:
HUMAN=’Human’ | EXTERNAL_SYSTEM=’ExternalSystem’;
enum FactPredicateKind:
CREATED=’CREATED’ | UPDATED=’UPDATED’ | REMOVED=’REMOVED’
| EXISTS=’EXISTS’ | EXCEPTION=’EXCEPTION’;

80 Use Case modeling within Object-Role Modeling

APPENDIX D. PROTOTYPE

D.2 Xtext CNL API

The CNL contribution has been developed with the Eclipse Modeling Tools IDE Kepler Release under
Linux Kubuntu 12.04, 64 bits. The resulting library for Symbiosis is the CNLStandAloneValidator.jar
file. Table D.1 contains the description of this jar and the list of its API dependencies. The deduction
of dependencies has been obtained by the Eclipse IDE. The configuration of dependencies is achieved
by Xtext with Guice. The outline of the resulting dependency graph is available in Section D.4.

LIBRARY DESCRIPTION

ANTLR 3.2 API org.antlr.generator_3.2.0.v201108011202.jar,
org.antlr.runtime_3.2.0.v201101311130.jar,

EMF 2.9 API org.eclipse.emf.codegen.ecore_2.9.0.v20130610-0406.jar,
org.eclipse.emf.codegen_2.9.0.v20130610-0406.jar,
org.eclipse.emf.common_2.9.0.v20130528-0742.jar,
org.eclipse.emf.ecore.xmi_2.9.0.v20130528-0742.jar,
org.eclipse.emf.ecore_2.9.0.v20130528-0742.jar,
org.eclipse.emf.mwe.core_1.2.1.v201306110341.jar,
org.eclipse.emf.mwe.utils_1.3.0.v201306110341.jar,
org.eclipse.emf.mwe2.language_2.4.0.v201306110940.jar,
org.eclipse.emf.mwe2.launch_2.4.0.v201306110940.jar,
org.eclipse.emf.mwe2.lib_2.4.0.v201306110341.jar,
org.eclipse.emf.mwe2.runtime_2.4.0.v201306110341.jar

Guice 3.0 API aopalliance.jar, com.google.guava_11.0.2.v201303041551.jar,
com.google.inject_3.0.0.v201203062045.jar, guice-3.0.jar,
guice-assistedinject-3.0.jar, guice-grapher-3.0.jar, guice-jmx-3.0.jar,
guice-jndi-3.0.jar, guice-multibindings-3.0.jar, guice-persist-3.0.jar,
guice-servlet-3.0.jar, guice-spring-3.0.jar, guice-struts2-plugin-3.0.jar,
guice-throwingproviders-3.0.jar, javax.inject.jar, javax.inject_1.0.0.v20091030.jar.

Xtext CNL API CNLStandAloneValidator.jar that contains: the EObject classes returned by the
EBNF rules, the ANTLR parser, the CNLStandAloneValidator class and its util-
ities, the CNLJavaValidator class, the CNL Dictionary classes and the EMF ex-
tensions generated by Xtext.

Xtend 1.4 API org.eclipse.xtend.lib_2.4.2.v201306120542.jar,
org.eclipse.xtend.typesystem.emf_1.4.0.v201306110406.jar,
org.eclipse.xtend_1.4.0.v201306110406.jar

Xtext 2.4.2 API com.ibm.icu_50.1.1.v201304230130.jar,
de.itemis.xtext.antlr_2.0.0.v201108011202.jar,
org.apache.commons.cli_1.2.0.v201105210650.jar,
org.apache.commons.logging_1.1.1.v201101211721.jar,
org.apache.log4j_1.2.15.v201012070815.jar,
org.eclipse.jdt.annotation_1.1.0.v20130513-1648.jar,
org.eclipse.xpand_1.4.0.v201306110406.jar,
org.eclipse.xtext.common.types_2.4.2.v201306120542.jar,
org.eclipse.xtext.generator_2.4.2.v201306120542.jar,
org.eclipse.xtext.util_2.4.2.v201306120542.jar,
org.eclipse.xtext.xbase.lib_2.4.2.v201306120542.jar,
org.eclipse.xtext.xbase_2.4.2.v201306120542.jar,
org.eclipse.xtext_2.4.2.v201306120542.jar

Table D.1: CNL API for Symbiosis

Use Case modeling within Object-Role Modeling 81

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/keplerr
http://www.kubuntu.org/

APPENDIX D. PROTOTYPE

The development of the prototype for Symbiosis has been done with NetBeans IDE 7.3.1 under the
same operating system. The implementation of the prototype is discussed in Section 5.3. As a remark,
the UseCaseModel class represents the new model member of Symbiosis and the new Swing GUI
components are the UseCaseViewer and UseCaseEditorDialog classes. This prototype requires
the APIs of Table D.1.

D.3 Isolated Vocabulary

Derived from the CNL grammar
LABEL VALUE LABEL VALUE

KW_ACTOR_LIST_COLONS ActorList: KW_BOOLEAN Boolean
KW_CALLS_COLONS calls: KW_CAUSE_COLONS Cause:
KW_CHARACTER Character KW_CONTINUE Continue
KW_CREATED CREATED KW_EACH each
KW_EVERY every KW_EXCEPTION EXCEPTION
KW_EXISTS EXISTS KW_EXIT Exit
KW_EXTERNAL_SYSTEM ExternalSystem KW_EXPECTS_COLONS expects:
KW_FOR for KW_HUMAN Human
KW_IF if KW_INTEGER Integer
KW_NATURAL Natural KW_NON_ACTOR_LIST_COLONS NonActorList:
KW_POST Post KW_REAL Real
KW_REMOVED REMOVED KW_STRING String
KW_USECASE UseCase KW_UPDATED UPDATED

Table D.2: Isolated Vocabulary: Key-words

Used in regular expressions or to define keyphrases
LABEL VALUE LABEL VALUE

RW_ALTERNATE alternate RW_AND and
RW_AS as RW_ATTRIBUTE attribute
RW_CNL_FILE_EXTENSION .cnl RW_FALSE false
RW_FLOW flow RW_FROM from
RW_IN in RW_NORMAL normal
RW_OF of RW_ON on
RW_OR or RW_STEP step
RW_SYSTEM System RW_TRUE true
RW_WITH with

Table D.3: Isolated Vocabulary: Reserved words

82 Use Case modeling within Object-Role Modeling

https://netbeans.org/community/releases/73/

APPENDIX D. PROTOTYPE

‘RV’ refers to reserved verb
LABEL VALUE

REGEX_ACTOR_BASE_TYPE KW_HUMAN+“|”+KW_EXTERNAL_SYSTEM
REGEX_BOOLEAN_VALUE RW_TRUE+“|”+RW_FALSE
REGEX_CHARACTER_VALUE “.”
REGEX_COLONS “:”
REGEX_FACT_TYPE_NAME “\\w+”
REGEX_FACT_TYPE_PREDICATES KW_CREATED+“|”+KW_UPDATED+“|”+KW_REMOVED+“|”

+KW_EXISTS+“|”+KW_EXCEPTION
REGEX_FILE_OR_FOLDER_NAME “\\w+(\\.\\w+)*”
REGEX_MEMBERSHIP RW_OF+“|”+RW_IN+“|”+RW_ON+“|”+RW_FROM
REGEX_NATURAL_NUMBER “0|[1-9]\\d*”
REGEX_INTEGER_NUMBER “(\\+|-)?(”+REGEX_NATURAL_NUMBER+“)”
REGEX_OPTION_WORD RW_OR+“|”+RW_AND
REGEX_FORWARD_SLASH “/”
REGEX_PACKAGE_NAME “\\w+(”+REGEX_FORWARD_SLASH+“\\w+)*”
REGEX_RANK “\\d+(\\.\\d+)*”
REGEX_LABEL “\\.([a-zA-Z]+\\w*)”
REGEX_RANK_AND_LABEL REGEX_RANK+REGEX_LABEL
REGEX_REAL_NUMBER REGEX_INTEGER_NUMBER+“(\\.\\d+)?”
REGEX_WHITE_SPACES “\\s+”
RV_BEGIN “begin|begins|start|starts|extend|extends|precede|precedes”
RV_HAVE “have|has”
RV_SET “set|sets”

Table D.4: Isolated Vocabulary: Regular expressions

Use Case modeling within Object-Role Modeling 83

APPENDIX D. PROTOTYPE

D.4 Outline of the dependency graph for the CNL

Graph created by the Injector of Guice according to the modules of configuration provided by Xtext.

Figure D.1: Outline of the dependency graph for the CNL

84 Use Case modeling within Object-Role Modeling

http://google-guice.googlecode.com/git/javadoc/com/google/inject/Injector.html

Appendix E

Preliminary case Study

E.1 Requirements Model of the BookInternetStore

Table E.1: Fact and Action requirements of the BookInternetStore

Table E.2: Rule and Quality requirements of the BookInternetStore

Use Case modeling within Object-Role Modeling 85

APPENDIX E. PRELIMINARY CASE STUDY

E.2 Object Model of the BookInternetStore

The class diagram perspective of this Object Model is available in Appendix A.1, Figure A.2.

Table E.3: Fact-types of the BookInternetStore

86 Use Case modeling within Object-Role Modeling

APPENDIX E. PRELIMINARY CASE STUDY

E.3 Use cases of the BookInternetStore

<AddCustomer> and <AddCompany> use cases
<AddCustomer> UseCase:
ActorList: <client:Human>.
1 <AddCustomer> starts:
2 <AddCustomer> expects: <PrepareAddress>.
3 <System> {creates} <Customer>.
4 <System> {creates} <DeliveryAddressCustomer>

"with given"<Address>.
5 <client> {provides} <NameCustomer>.
6 Post <Customer,CREATED>.

<AddCompany> UseCase:
ActorList: <client:Human>.
1 <AddCompany> starts:
2 <AddCompany> expects: <PrepareAddress>.
3 <System> {creates} <Company>.
4 <System> {creates} <DeliveryAddressCustomer>

"with given"<Address>.
5 <client> {provides} <ContactCompany>.
6 Post <Company,CREATED>.

<PrepareAddress> use case
<PrepareAddress> UseCase:
ActorList: <client:Human>,
<locatorService:ExternalSystem>.

1 <PrepareAddress> starts:
2 <client> {provides} <Address>

with [street:String], [nr:String], [zip:String],
[city:String], [country:String].

3 <System> {checks} <Address,EXISTS>
"with the"<locatorService>.

<PrepareAddress> UseCase
alternate flow 3.invalidAddress:

1 Cause: <Address,EXCEPTION>:
2 <System> {notifies} "invalid"<Address>.
3 Continue <PrepareAddress> UseCase in step 2.
<PrepareAddress> UseCase

alternate flow 2.cancelPreparation:
ActorList: <client:Human>.
1 Cause: <PrepareAddress,EXCEPTION>:
2 <client> {cancels} <PrepareAddress>.
3 Exit <PrepareAddress> UseCase.

<UpdateContactCompany> and <UpdateDeliveryAddress> use cases
<UpdateContactCompany> UseCase:
ActorList: <client:Human>.
1 <UpdateContactCompany> starts:
2 <client> {updates} <ContactCompany>

with new [contact:String].
3 Post <ContactCompany,UPDATED>.

<UpdateDeliveryAddress> UseCase:
ActorList: <client:Human>.
1 <UpdateDeliveryAddress> begins:
2 <UpdateDeliveryAddress> expects:
<PrepareAddress>.

3<System> {updates} <DeliveryAddressCustomer>
"with given"<Address>.

4 Post <DeliveryAddressCustomer,UPDATED>.

<AddOrder> use case
<AddOrder> UseCase:
ActorList: <client:Human>.
1 <AddOrder> starts:
2 <client> chooses <Book>.
3 <System> reviews <StockBook>.
4 if <StockBook> has [stock:Natural] as ["0"]:

4.1 <System> {notifies} "unavailable"<Book>.
4.2 Continue in step 2.
End of step 4;

5 <client> {adds} <OrderedBook>.
6 <System> {creates} <OrderOfCustomer>.
7 <client> {updates} <QuantityOrderedBook>.
8 Post <Order,CREATED>.

<AddOrder> UseCase
alternate flow 5.refusedPrice:

ActorList: <client:Human>.
1 Cause: <CurrentPriceBook,EXCEPTION>:
2 <client> {refuses} <CurrentPriceBook>.
3 Continue <AddOrder> UseCase in step 2.

<AddOrder> UseCase
alternate flow 2.cancelAddOrder:

ActorList: <client:Human>.
1 Cause: <AddOrder,EXCEPTION>:
2 <client> {cancels} <AddOrder>.
3 Exit <AddOrder> UseCase.

Table E.4: Use cases for the actor <client> (I)

Use Case modeling within Object-Role Modeling 87

APPENDIX E. PRELIMINARY CASE STUDY

<RemoveOrder> use case
<RemoveOrder> UseCase:
ActorList: <client:Human>.
1 <RemoveOrder> starts:
2 <client> {selects} <OrderOfCustomer>.
3 <System> {returns} <Order>.
4 <client> {cancels} <Order>.
5 <System> {removes} <OrderedBook>.
6 Post <Order,REMOVED>.

<RemoveOrder> UseCase
alternate flow 4.orderSent:

1 Cause: <SentAway,EXISTS>:
2 <System> {notifies} <SentAway>.
3 Exit <RemoveOrder> UseCase.

<StartCustomerSession> and EndCustomerSession use cases
<StartCustomerSession> UseCase:
ActorList: <client:Human>.
1 <StartCustomerSession> starts:
2 <client> {provides} "credentials of"<Customer>.
3 <System> {acknowledges} <Customer>.
4 <StartCustomerSession> calls: <AddOrder>

or calls: <RemoveOrder>
or calls: <EndCustomerSession>
or calls: <UpdateContactCompany>
or calls: <UpdateDeliveryAddress>.

5 Continue in step 4.

<StartCustomerSession> UseCase
alternate flow 3.invalidCustomer:

1 Cause: <Customer,EXCEPTION>:
2 <System> {replies} "invalid"<Customer>.
3 Exit <StartCustomerSession> UseCase.

<EndCustomerSession> UseCase:
ActorList: <client:Human>.
1 <EndCustomerSession> starts:
2 <client> {terminates} <StartCustomerSession>.
3 Exit <StartCustomerSession> UseCase.

Table E.5: Use cases for the actor <client> (II)

<ChangePriceOfBook> use case
<ChangePriceOfBook> UseCase:
ActorList: <officer:Human>.
1 <ChangePriceOfBook> starts:
2 <officer> {provides} <Book>

with [isbn:String].
3 <System> {searches} <Book>.
4 <System> {displays} <CurrentPriceBook>.
5 <officer> {updates} <CurrentPriceBook>

with [price:Real].
6 Post <CurrentPriceBook,UPDATED>.

<ChangePriceOfBook> UseCase
alternate flow 3.invalidBook:

ActorList: <officer:Human>.
1 Cause: <Book,EXCEPTION>:
2 <System> {notifies} "nonexistent"<Book>.
3 Continue <ChangePriceOfBook>

UseCase in step 2.
<ChangePriceOfBook> UseCase

alternate flow 2.changeCancellation:
ActorList: <officer:Human>.
1 Cause: <ChangePriceOfBook,EXCEPTION>:
2 <officer> {cancels} <ChangePriceOfBook>.
3 Exit <ChangePriceOfBook> UseCase.

<UpdateStockBook> use case
<UpdateStockBook> UseCase:
ActorList: <officer:Human>.
1 <UpdateStockBook> begins:
2 <officer> {provides} <Book> with [isbn:String].
3 <System> {searches} <Book>.
4 <System> {displays} <StockBook>.
5 <officer> {updates} <StockBook>

with [stock:Natural].
6 Post <StockBook,UPDATED>.

<UpdateStockBook> UseCase
alternate flow 3.invalidBook:

ActorList: <officer:Human>.
1 Cause: <Book,EXCEPTION>:
2 <System> {notifies} "nonexistent"<Book>.
3 Continue <UpdateStockBook> UseCase in step 2.

<UpdateStockBook> UseCase
alternate flow 2.updateCancellation:

ActorList: <officer:Human>.
1 Cause: <UpdateStockBook,EXCEPTION>:
2 <officer> {cancels} <UpdateStockBook>.
3 Exit <UpdateStockBook> UseCase.

Table E.6: Use cases for the actor <officer>

88 Use Case modeling within Object-Role Modeling

APPENDIX E. PRELIMINARY CASE STUDY

<RemoveCustomer> use case
<RemoveCustomer> UseCase:
ActorList: <customerServiceClerk:Human>.
1 <RemoveCustomer> starts:
2 <customerServiceClerk> {specifies} <Customer>

with its attribute [nr:Natural].
3 <System> {searches} <Customer>.
4 <customerServiceClerk> {removes} <Customer>.
5 Post <Customer,REMOVED>.

<RemoveCustomer> UseCase
alternate flow 3.invalidCustomerAccount:

1 Cause: <Customer,EXCEPTION>:
2 <System> {notifies} "nonexistent"<Customer>.
3 Continue <RemoveCustomer> UseCase in step 2.
<RemoveCustomer> UseCase

alternate flow 4.orderExists:
1 Cause: <OrderOfCustomer,EXISTS>:
2 <System> {informs}

"existent"<OrderOfCustomer>.
3 Exit <RemoveCustomer> UseCase.

<AddBook> use case
<AddBook> UseCase:
ActorList: <customerServiceClerk:Human>.
1 <AddBook> starts:
2 <customerServiceClerk> {provides} <Book>.
3 <System> {reviews} <Book,EXISTS>.
4 <System> {adds} <Book>.
5 <System> {prepares} <StockBook>

"of"<Book>.
6 <customerServiceClerk> {completes}
<StockBook> with [stock:Natural].

7 Post <StockBook,CREATED>.

<AddBook> UseCase alternate flow 3.bookExists:
1 Cause: <Book,EXISTS>:
2 <System> {displays} "existent"<Book>.
3 Exit <AddBook> UseCase.

<RemoveBook> use case
<RemoveBook> UseCase:
ActorList: <customerServiceClerk:Human>.
1 <RemoveBook> starts:
2 <customerServiceClerk> {requests} <Book>

with [isbn:String].
3 <System> {searches} <Book>.
4 <customerServiceClerk> {deletes} <Book>.
5 Post <Book,REMOVED>.

<RemoveBook> UseCase
alternate flow 3.nonexistentBook:

1 Cause: <Book,EXCEPTION>:
2 <System> {informs} "nonexistent"<Book>.
3 Continue <RemoveBook> UseCase in step 2.

<UpdateStockBook> UseCase
alternate flow 2.updateCancellation:

ActorList: <officer:Human>.
1 Cause: <UpdateStockBook,EXCEPTION>:
2 <officer> {cancels} <UpdateStockBook>.
3 Exit <UpdateStockBook> UseCase.

Table E.7: Use cases for the actor <customerServiceClerk>

Use Case modeling within Object-Role Modeling 89

APPENDIX E. PRELIMINARY CASE STUDY

Figure E.1: UseCaseViewer with the case study

90 Use Case modeling within Object-Role Modeling

	Contents
	List of Figures
	List of Tables
	Introduction
	EQuA project and the Symbiosis tool
	Motivation and problem definition
	Scope of the research
	Research questions
	Thesis outline

	Preliminaries and related work
	EQuA Requirements Model
	EQuA Object Model
	Related work
	SBVR, Petri nets, Use Case modeling

	Use Case Analysis and Design
	Analysis with ICONIX
	Connecting analysis and design
	Natural Language Processing (NLP)
	Controlled Natural Language (CNL)

	Domain Specific Language (DSL)
	Model Driven Engineering (MDE)

	Use Case and Interaction Models
	CNL with MDE: DSML
	Semantics Validation
	Design of UseCase and Interaction Models
	Semantic restrictions
	CNL Dictionary as middleware between Xtext CNL and Symbiosis

	Prototype design and implementation
	Xtext
	Dependency Injection pattern
	Architecture and implementation as a Symbiosis component
	Use Case Model Implementation

	Preliminary case study

	Conclusions and Future work
	Bibliography
	Appendix
	Symbiosis tool
	General description
	Fact breakdown
	Type Configurator
	Categories for organizing use cases

	Selected formalisms of the Object model
	Lemmas
	Elementary Object Model
	Standard Types
	Role related utilities

	CNL Design
	CNL Extended-BNF
	Examples of Object life-cycle with CNL EBNF
	CNL with MDE
	Descriptions of Rule Delegates

	Prototype
	Xtext CNL EBNF
	Xtext CNL API
	Isolated Vocabulary
	Outline of the dependency graph for the CNL

	Preliminary case Study
	Requirements Model of the BookInternetStore
	Object Model of the BookInternetStore
	Use cases of the BookInternetStore

