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Abstract

This thesis is focused on finding the shape of droplets and bubbles, by using different
numerical techniques. Another objective is to treat free surface flows that involve sur-
face tension. Our approach in dealing with these free surfaces is to separate the flow
simulations from the surface tracking algorithm. Two methods for finding the shape
of bubbles have been used: the shooting method and an optimization method. Our
interest is to introduce surface tension in SPH (Smoothed Particle Hydrodynamics).
We chose the an easy approach, the Tartakovsky’s approach, in order to see the effects
of surface tension over the fluid flow.
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1 Introduction

Why can some insects walk on the water? Why are soap bubbles round? Why does
the water climb up a thin tube? To answer this we have to introduce the concept of
surface tension. Surface tension is most apparent on the interface between a liquid and
a gas, but it exists on any interface between two different media or phases. Originating
from an energy imbalance on the molecular level, the surface tension is apparent as a
tensile force on the surface. This tensile force depends linearly on the local curvature
and a material property, the surface tension coefficient. The dependence on the local
curvature means that surface tension is most important on small length scales.

The surface tension is thus something that is apparent as a tension on an surface
embedded in a higher dimensional space. This makes its treatment in numerical sim-
ulations quite difficult. Most numerical approaches would discretize space, dealing
with an interface with thermodynamically consistent properties in the middle of it;
this requires a lot of implementation detail.

Industrial advances in semi-conductor and related industries make length scales in
production processes evermore smaller. Since free surface flows, droplets, and bubbles
appear in many stages of production, a reduction in length scales means that proper
treatment of surface tension becomes more and more important.

1.1 Goal

In this thesis, we aim to make an overview of a wide range of available analytical and
numerical techniques for the treatment of free surfaces that experience surface tension.
Our specific interest is in finding a coherent treatment of free surfaces in Smoothed
Particle Hydrodynamics (SPH), a meshless method, so we can later include droplet
forming in the debris cloud of hyper-velocity impacts.

1.2 Outline

We start in Chapter 2 by defining surface tension and exploring the underlying physics
with some sample problems. In Chapter 3, we start to look at numerical techniques to
find the shape of droplets if we know the pressure inside and outside the droplet, for
example from flow computations. Chapter 4 is devoted to Smoothed Particle Hydro-
dynamics, a meshless method. We add in Chapter 5 our conclusions.
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2 Surface tension

2.1 Background

The interface between two materials that are in contact with one another is called a
surface. The force between these two materials which keeps this surface in shape is
called surface tension. It depends on the attractive forces between the particles within
the given liquid and also on the gas, vacuum, solid, or liquid in contact with it. At-
traction forces between particles of the same type are represented in Figure 2.1.1. Two
cases are presented.

Figure 2.1.1: (a) A molecule within the liquid (b) A molecule at the surface [11]

In the first container a molecule is represented within the bulk liquid. This molecule
has neighboring molecules on all sides. The surrounding molecules attract the central
molecule equally in all directions, which leads to a zero net force. Contrary, the second
container has a molecule on the surface. Because this molecule does not have other
liquid molecules above the surface, on this molecule a net force is acting, pulling
the molecule in the interior direction. This attractive force makes the liquid surface
to contract. This contraction stops when the surface area is minimum, as repulsive
collisional forces act as well. Without external forces, the liquid gets a rounded form,
which is the minimal surface area. In 3D the minimal surface area is a sphere.

The surface tension, notated by the Greek letter gamma γ or sigma σ, is a property of
the two materials.

The phenomenon called surface tension can be defined as the magnitude F of the force
exerted parallel with the surface of the liquid per unit length over which it acts. It can
be formulated as

γ =
F
L

, (2.1.1)
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CHAPTER 2. SURFACE TENSION

where γ is the surface tension, F is the force (N) and L is the unit length (m).

Surface tension leads to a pressure difference across the surface, according to Young-
Laplace law [18]:

∆p = γ

(
1

R1
+

1
R2

)
, (2.1.2)

where R1 and R2 are the principal radii of curvature, ∆p is the pressure difference and
γ the surface tension.

In the case of a sphere with R1 = R2 = R, (2.1.2) becomes

∆p =
2γ

R
.

An important constant in fluid mechanics is the capillary length (Lc) which is a scale
for an interface between two fluids. The capillary constant is defined in the book of
Lautrup [18] as

Lc =

√
γ

ρg
. (2.1.3)

The measurements in SI units for surface tension is N/m (Newton per meter), consid-
ering the force per unit length. Another equivalent is J/m2 for surface energy, which
is energy per unit area.

• 1 N/m = 1 J/m2.

Liquid Temperature Surface tension N/m Density kg/m3

Acetone 20◦C 0.023 791.00
Glycerol 20◦C 0.063 1.261
Mercury 20◦C 0.476 13.546

Water 20◦C 0.073 998.2071
Water 100◦C 0.059 958.4

Table 2.1.1: Values of surface tension for different materials at specific temperatures, against air.

In nature, water, at 20◦C, has a high surface tension. A few examples of surface tension
values, for different materials, can be seen in Table 2.1.1. If the surface tension is high,
like in the case of mercury, the attractive force of the particle is higher than other
liquids with lower surface tension.

Considering the surface tension and density from Table 2.1.1, then the Lc in (2.1.3)
gives the typical length scale of the diameter.

Surface tension is temperature dependent. The surface tension of water in contact
with air decreases significantly with temperature as shown in the graph represented
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CHAPTER 2. SURFACE TENSION

in Figure 2.1.2. More values of surface tension of water as function of temperature are
mentioned in [33].

Figure 2.1.2: The surface tension of water decreases significantly with temperature. Values are taken
from [33]

Another way to alter the surface tension is by using surfactants, which prefer to stay
in the surface, attracting the surface water molecules in competition to the bulk water
hydrogen bonding and so reducing the net forces away from the surface.

A few examples where surface tension is an important factor are described further in
this section and in Section 2.2.

Figure 2.1.3: Water strider; source [24]

A common example is given by the small insects that walk on water (eg. water strider,
see Figure 2.1.3). This is possible because the weight of the insect is supported by the
high surface tension of the water.
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CHAPTER 2. SURFACE TENSION

Figure 2.1.4: Needle floating on top of water(credit: Cory Zanker)

A nice example and easy to do as an experiment at home is to make a needle (or a
paper clip, see Figure 2.1.4) float. If you carefully place one of these objects onto the
surface of water, it can float, even though the object is several times more dense than
the water. If you want to sink the needle, just agitate a bit the water so that the surface
tension breaks.

Figure 2.1.5 is a cross section of a needle floating on the surface of water. The force
of the weight of the needle is balanced by the surface tension. Thus, the mass of the
needle is supported by the surface of the water. As we can see from the figure, the
forces of surface tension are symmetrical.

Figure 2.1.5: Forces enabling a needle to float on water

Some examples from our everyday life are: washing with hot water lowers the surface
tension and the clothes gets wetter, using soap and detergents also lowers the surface
tension, because it lowers the force of attraction between particles.

Droplets are another result of surface tension. Water from a tap, does not flow in a
continuous stream, but rather in a series of drops. The shape of drops is caused by the
surface tension of the water. The shape is not completely spherical because of the force
of gravity pulling down on it. In the absence of gravity, the drop would minimize the
surface area in order to minimize tension, which would result in a perfectly spherical
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CHAPTER 2. SURFACE TENSION

shape. Also for stationary droplets, the surface tension tries to minimize its surface by
making it as spherical as possible.

In the paper of Grubelnik and Marhl [10], the process of drop formation of a falling
liquid stream is described. It is presented how surface tension influence the drop
formation. A falling stream is getting narrowed as it falls because of gravity, then
swells are formed until the diameter of the stream goes to zero and drops are formed.
Representative photographs are shown in their paper, with these undulations, as in
Figure 2.1.6, which we cannot observe, because the amplitude is small. For a better
understanding they discuss also about the pressure in the stream, which is larger
where the stream has a smaller radius.

Figure 2.1.6: Perturbations of the water stream [10]

Beard, Bringi and Thurai [4] presented in their paper a study case of the raindrop
shapes, where they show that the shape of a very small raindrop is spherical and for
bigger raindrops the shape is more like a hamburger. Also, Brian Lim [21] changed
the popular image of a raindrop, the teardrop, with his study. He plotted the shape
of raindrops at different diameters. Examining his results in Figure 2.1.7, we state that
raindrop shape is either spherical or more like a hamburger, but not even close to a
teardrop shape.

12



CHAPTER 2. SURFACE TENSION

Figure 2.1.7: Shape of rain droplet computed by Brian Lim [21], for d =1,2,3,4,5 and 6 mm with the
origin at center of volume

The problem of droplets will be discussed in more details in the next chapter.

2.2 Examples of surface tension

In order to understand the concept of surface tension, we look at three different ex-
amples where the surface tension is an important property: stationary droplets, water
coming from a tap and rain drops.

2.2.1 Stationary droplet

A droplet of water placed on a solid surface is called a stationary water droplet. These
droplets have different shapes and this is a consequence of surface tension, the contact
angle that the droplet makes, gravity and the dimension of the water droplet.

Surface tension is a property of the interface between two materials. In the case of a
stationary droplet, there are three different interfaces upon which surface tension act:
solid-air, solid-liquid and liquid-air (see Figure 2.2.1).
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CHAPTER 2. SURFACE TENSION

Figure 2.2.1: Drop sitting on a horizontal solid surface with contact angle θ and center height z

The angle measured between the tangent to the surface and the solid surface, is the
contact angle (θ angle in Figure 2.2.1).

The contact angle indicates the case of wettability: a big contact angle is associated with
a poor wetting surface, mostly non-wet surface, in contrast with a small contact angle
which represents a surface mostly wet. If the angle is zero, the surface is complete
wet, see Figure 2.2.2.

Figure 2.2.2: Drops sitting on a horizontal solid surface with different contact angles

As we mentioned, gravity is another factor that contributes to the flattened droplets.
The influence of the gravity depends on the capillary length (Lc, see equation (2.1.3)).
Thus, if the Lc is small, we can neglect gravity, but for a bigger Lc gravity will act over
the droplet.

To see how all these factors influence the shape of droplets, we consider three water
droplets, having different diameters: 1 mm, 5 mm and 2 cm and the contact angle to
be an acute angle of θ = 45o.

The capillary length for the interface air-water at 25 ◦C is 2.7 mm [18].

The book by Lautrup [18] presents two formulations to approximate the central height
of the droplet. Since

z ≈ R
1− cos θ

sin θ
for R� Lc, (2.2.1)

we get
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CHAPTER 2. SURFACE TENSION

z ≈ 2Lc sin
θ

2
for R� Lc, (2.2.2)

where z is the central height of the droplet, R is the radius of the droplet, Lc is the
capillary length and θ is the contact angle.

Case 1 : To estimate the height of the droplet with the radius 0.5 mm, which is much
smaller than water’s capillary length, we will use equation (2.2.1), which leads to

z ≈ R
1− cos θ

sin θ
= 0.207 mm. (2.2.3)

Case 2 : For the second droplet, with the radius 2.5 mm not much smaller than the
capillary length, we use (2.2.1) to approximate the central height

z ≈ R
1− cos θ

sin θ
= 1.035 mm. (2.2.4)

In these two cases droplets have spherical shape, because we neglect gravity and their
radii are much smaller than the capillary length.

Case 3: For the third case, the radius is 1 cm, which means that R3 � Lc, so we will
use a different formula, equation (2.2.2), where gravity will influence the shape of the
water droplet

z ≈ 2Lc sin
θ

2
= 0.76Lc ≈ 2.06 mm. (2.2.5)

Gravity flattens larger drops. No matter how big the radius will be, the height will be
approximately 2 mm for contact angle of θ = 45o.

The shape of a stationary water droplet has to satisfy the Young-Laplace equation,
which describes the capillary pressure difference between two fluids separated by an
interface

γ(
1

R1
+

1
R2

) = ∆p, (2.2.6)

where γ is the surface tension, R1 and R2 are the radii of curvature and ∆p = pi − pe
is the pressure difference across the interface.

The curvature is evaluated using a tangent angle coordinate system. We consider the
equations of the tangent angle derived by Brian Lim [21] and by Beard and Chuang
[3], with the variables s arc length and θ angle between the tangent at the surface and
the horizontal line:

dx
ds

= cos(θ),

dz
ds

= sin(θ).
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CHAPTER 2. SURFACE TENSION

As Lim demonstrated in [21], after assuming the external pressure to be zero and
internal pressure pi =

2γ
R0

+ ∆ρgz, equation (2.2.6) can be written as

γ(
1

R1
+

1
R2

) =
2γ

R0
+ ∆ρgz. (2.2.7)

Using the tangent coordinate system, as Liu shown in [21], Appendix A2, we can write
(2.2.7) as

γ(
dθ

ds
+

sinθ

x
) =

2γ

R0
+ ∆ρgz. (2.2.8)

As Rio and Neumann in [27], we will consider two more equations

dV
ds

= πx2 sin θ,

dA
ds

= 2πx,

where V is the volume and A is the surface area.

The system of ordinary differential equations as function of arc length s, for determin-
ing the shape of the stationary water droplet is:

dx
ds

= cos(θ),

dz
ds

= sin(θ),

dθ

ds
=

2
R
+

∆ρgz
γ
− sin θ

x
, (2.2.9)

dV
ds

= πx2 sin θ,

dA
ds

= 2πx,

with the conditions:

x(0) = z(0) = θ(0) = V(0) = A(0) = 0.

Equation (2.2.9) was derived by rearranging (2.2.8).

Assume γ = 0.072 N/m, a contact angle of θ =45 ◦C and three different radii 0.05 mm,
0.25 mm, 1 cm for water droplets. The liquid is considered to be water while the other
fluid is air. The system was solved in Mathematica, with the function NDSolve
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CHAPTER 2. SURFACE TENSION

Figure 2.2.3: Drop shape for radius 0.05 cm, where we have the value for height = 0.020 67 cm

The shape of the droplet with the radius 0.05 cm is spherical, as we expected, because
the droplet is minimizing its contact surface and here gravity is negligible. In Figure
2.2.3 we can see that the central height is 0.2067 mm. This result is approximately the
same with what we obtain in (2.2.3).

Figure 2.2.4: Drop shape for radius 0.25 cm, where we have the value for height = 0.0971 cm

In Figure 2.2.4 the radius of droplet is 0.25 cm and the central height obtained is
0.971 mm. Again the result is approximately the same with what we calculated be-
fore in (2.2.4). The shape is spherical, because the effect of gravity over droplet is very
low.

Figure 2.2.5: Drop shape for radius 1 cm, where we have the value for height = 0.220 cm

In Figure 2.2.5 the radius of droplet is 1 cm and the central height is 2.20 mm. The
result is appropriate to the one from (2.2.5). In this situation the shape is not spherical
anymore. It is flattened compared with the previous two. If we increase the radius of
the drop, the height will not be bigger, because around 2 mm is the maximum.
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CHAPTER 2. SURFACE TENSION

2.2.2 Water from tap

Surface tension is an important factor in the spontaneous breaking of the jet of water
coming from a pipe. A water jet that is falling vertically under gravity, at the beginning
it has constant radius, and after a critical point, where it changes its shape, it gets into
a flux of droplets. This phenomenon occurs as a result of surface tension.

In order to explain how surface tension influences the water jet, we will consider the
following experiment: a glass of 0.2 l fills with water in 2 min, with the measurements
from Table 2.2.1 (measurements come from a picture taken to a water jet). In the
measurements the length of the laminar water jet is 0.10 m, after which we observed it
break in droplets.

Quantity Unit Value Meaning
Dtap−screen cm 3.3 Size of tap on screen

Dtap m 0.019 Physical diameter of tap
Scale - 0.019/3.3 Screen-reality scale

Djet−screen cm 0.25 Diameter of jet on screen (before perturbations)
Djet m 0.0014 Physical diameter of jet (before perturbations)

Table 2.2.1: Measurements experiment

The volume flow rate written in terms of volume of fluid V and time t is

Q =
V
∆t

. (2.2.10)

Replacing it with data from experiment, this yields to

Q =
0.2× 10−3 m3

120 s
= 1.67× 10−6 m3/s. (2.2.11)

Another formula for the volumetric flow is

Q = vA,

which can be written as

Q = v
π

4
D2, (2.2.12)

where D is diameter, v is the velocity field of the water flowing and A is the cross-
sectional area.

Forward, we will approximate the length of the jet, from the moment it leaves the
pipe, until it presents perturbations, undulations of the water jet, in order to compare
it with the measurement from the picture.

18



CHAPTER 2. SURFACE TENSION

The fluid flow through a pipe with diameter Dtap, is laminar if the Reynolds number
is smaller than 2000. If the Reynolds number is bigger than 3000, the flow is turbulent,
and when it is between 2000 . Re . 3000 the flow is unstable. The Reynolds number
[29] is

Re =
vDρ

µ
, (2.2.13)

where v is the velocity of the fluid, ρ is the density of the fluid, and µ is the dynamic
viscosity of the fluid.

In free falling under gravity, the velocity of the fluid at distance h from the pipe is :

v =
√

v2
0 + 2gh, (2.2.14)

which is Galilei’s formula, where v0 is the velocity when the water leaves the pipe and
g is the gravity.

We know the volume flow rate from (2.2.12), so we can calculate the velocity when the
water leaves the tap:

v0 =
4Q

πD2
tap

= 5.89× 10−3 m/s.

Figure 2.2.6: Our own experiment with an every day realization of surface tension: we photograph
running tap water to measure the diameter at different heights and collect the water to
measure the average flow rate.

Equation (2.2.12) can be written as a formula for the diameter of the flow with velocity
v.

D =

√
4Q
πv

. (2.2.15)
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From equation (2.2.13), we have

vD =
µRe

ρ
. (2.2.16)

Replacing D from equation (2.2.15), in equation (2.2.16), will lead to another formula-
tion for the velocity

v

√
4Q
πv

=
µRe

ρ
=⇒

√
4Qv

π
=

µRe
ρ

=⇒ 4Qv
π

=
µ2Re2

ρ2 ,

v =
µ2Re2π

4Qρ2 . (2.2.17)

Putting together equation (2.2.14) and equation (2.2.17), we will get the formula for
the length of the laminar water jet, starting from the tap:√

v2
0 + 2gh =

µ2Re2π

4Qρ2 ,

v2
0 + 2gh =

µ4Re4π2

16Q2ρ4 ,

h =
1

2g

(
µ4Re4π2

16Q2ρ4 − v2
0

)
. (2.2.18)

All variables are known, so we replace gravity with g = 9.8 m/s2, viscosity with
µ = 8.9× 10−4 Pa s, Reynolds number with Re = 2000, volume flow rate with Q =
1.67× 10−6 m3/s and density with ρ = 103 Kg/m3, we will get that the laminar water
jet has the length h = 0.11 m. This result is approximately the same with the measure-
ment from the Figure 2.2.6.

Further we analyze more the water jet. What we can notice in Figure 2.1.6 are the
perturbations in the flow, which cause waves of very small amplitude, that sometimes
we cannot observe. The perturbations became bigger in time and cause formation of
drops at the bottom. This process is due to the surface tension, because the water
tends to reduce its surface area.

From [18], we know that the jet is chopped into pieces of size λ = π
√

2Djet, which
represents the wavelength. So, for our experiment the wavelength has a diameter of
λ = 0.006m. Then the radius of the wavelength is r ≈ 0.003m. In this case, the
approximately volume of a droplet that is formed at the bottom is Vdroplet ≈ 0.1127×
10−6m3.
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2.2.3 Rain droplet

The shape of the falling rain droplets is a subject treated by many researchers, in the
form of experimental and theoretical investigations. The understanding of the rain
drop shape started with the experimental work of P. Lenard (1904) [20], who observed
that the surface tension is a factor in drop deformation. High-speed photographs
reveal the shape of different diameters rain droplets, as in [4], Figure 2.2.7.

Figure 2.2.7: Rain drop shape [4]

Since initial particles have different sizes and rates of coalescence, rain drops have
different sizes, . They have the ranging sizes of the diameter from 1 to 5 millimeters.
Rarely can they reach 9 mm, but above this they tend to break up.

Figure 2.2.8: Shape of rain drops[figure source P. Broks]
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The shape of droplets is spherical. Increasing the size of the rain drop, the shape will
change and the drop will become flatter. This is contrary to popular image of the
rain droplet being tear drop. The rain drop larger than 5 mm, usually splits into two
separate drops (see Figure 2.2.8, E).

Figure 2.2.9: Shape of rain drops[source figure: USGS science for a changing world]

Small raindrops with radius less than 1 mm are spherical due to the surface tension
of the water. This surface tension is making the molecules stick together, as it acts
like a “skin" of the water. As they became larger they tend to look like a hamburger
and when they increase their size, the shape looks more like a parachute (see Figure
2.2.9); after that they break. The hamburger shape is given by the increasing of the fall
velocity and the pressure on the bottom. At the top small air circulation disturbances
creates less air pressure, such that surface tension keeps the round shape. When the
size of the drop goes over 4.5 mm then a depression is developing, forming the shape
of a parachute. When the rain drop splits it is because of the lower surface tension
and air the flows around the drop.

Figure 2.2.10: Rain drops reach the terminal velocity

There are some factors that can affect the size of the rain drop. The velocity of the
falling droplet is directly proportional to its diameter. Thus, larger droplets falls with
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bigger velocity, see Figure 2.2.10. Falling droplets have to deal with air resistance
or frictional force. The size of the droplet bottom or the surface area resisting the
fall, influence the magnitude of the force. Frictional drag increases as the droplets
accelerates, or speeds up.

As a rain drop falls, it has constant velocity and no acceleration. This is called terminal
velocity, when the frictional and gravitational forces balance and the droplet falls at a
constant speed. This again depends on size; smaller droplets reach faster the terminal
velocity than larger droplets, see Figure 2.2.10. Another factor that influence the size
of the droplet is the fact that the falling droplet eats up more droplets, increasing its
volume.

When the droplet is falling, the acceleration takes place only for a few seconds and
then it falls with terminal velocity. Figure 2.2.11 shows that for a droplet with a
diameter of 1 mm the acceleration is about 1 s, compared with a bigger droplet with
a diameter of 7 mm, which accelerates around 3 s and only then reaches the terminal
velocity.

Figure 2.2.11: Velocity of rain drops at different diameters

In the case of smaller drops, they are not falling, they are remaining in clouds.

In fluid mechanics, the Reynolds number (Re) is mentioned many times, because it
gives a measure of the ratio of inertial forces to viscous forces. It is a dimensionless
number which characterize the flow of a fluid, in different regimes, such as laminar
or turbulent flow. The flow is turbulent when the inertial forces dominate over the
viscous forces, which means that we have a fluid that flows fast and a large Re. The
laminar flow is encounter when the viscous forces are dominant, which means that we
have a fluid that flows slowly and a low Re.

The Reynolds number is defined as
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Re =
ρvL

µ
,

where v is the velocity of the drop, ρ is the density of the fluid (for water, at 20 ◦C is
0.998 21 g/cm3 ), L is the traveled length of the fluid, µ is the viscosity of the fluid. So,
the Re is dependent on the velocity of the drop.

For a small Re (Re � 1) the drag coefficient1 is inverse proportional to the Re. The
drag coefficient continues to decrease with the increasing of Re, until it gets constant,
at bigger Re (103 < Re < 2 · 105).

In order to obtain a formulation for the terminal velocity we will use Newton’s Second
Law F = ma, where F is the sum of all forces, m is the mass of the object and a is its
acceleration. This law implies that the acceleration of the drop is directly proportional
to the net force acting on it, and inversely proportional to its mass. By definition,
terminal velocity has no acceleration, which means that the net force acting on drop
is zero. Thus, a drop that is falling through the air will hit the terminal velocity when
the drag force is equal to its weight

F = mg− 1
2

CdρAv2 = 0,

where
Fg = mg, (2.2.19)

is the gravitational force and

Fd =
1
2

CdρAv2, (2.2.20)

is the drag force.

So, the formula for velocity can be written as

v =

√
2mg

ρACd
,

where v is the velocity, m is the mass, g is the standard gravity, Cd is the total drag
coefficient, ρ is the air density, and A is the cross sectional area; the last three terms
are constants.

Sometimes we need to calculate the velocity depending on time. In order to get this
formulation, we will start again from Newton’s Second Law, but this time in terms of
the rate of change of velocity over time. For constant mass it writes:

F = m
dv
dt

. (2.2.21)

1Drag coefficient is a dimensionless quantity, which quantifies the drag of an object in a fluid medium,
like water or air. It is defined as Cd = 2Fd

ρv2 A
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Knowing that F = Fd − Fg and replacing gravitational force (2.2.19) and the drag force
(2.2.20), equation (2.2.21) can be written as

m
dv
dt

=
1
2

CdρAv2 −mg.

This leads to a formulation for the derivative of velocity over time, with Cd, ρ and A
constants

dv
dt

=
CdρAv2

2m
− g.

After integrating, we find the formula for the velocity of a rain drop, depending on
time

v(t) =

√
mg

1
2 CdρA

(
e−2t

√
g 1

2 CdρA
m − 1

)

1 + e−2t

√
g 1

2 CdρA
m

.

The results from Figure 2.2.11, are obtain using this formula. As we can see on the
graph, we can conclude that smaller droplets reach terminal velocity faster than bigger
droplets.

Further we want to compute the pressure distribution of a potential flow around a
droplet, to see if the pressure is the same around the droplet. In order to do that
we make the following assumptions: the droplet is spherical, it is not deformable,
incompressible and isothermal. Another assumption is about the medium in which
the droplet is considered, also isothermal, we have no viscosity, which means zero
friction, such that we have an ideal medium.

The surface pressure distribution is calculated from Bernoulli’s equation at points a
and b (for a flow coming from left to right, a is left to the droplet and b is right to the
droplet), where ρa and ρb are densities, va and vb are velocities, pa and pb are pressures
at those points. Summing the static pressure and the dynamic pressure leads to

1
2

ρav2
a + pa =

1
2

ρbv2
b + pb.

We can rewrite the previous formulation in terms of pressure difference, by

pb − pa =
1
2

ρav2
a −

1
2

ρbv2
b.

We assumed that the fluid is incompressible so we do not have changes in density
which means ρa = ρb = ρ.

pb − pa =
ρ

2
(
v2

a − v2
b
)

.
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We denote the free stream velocity and pressure 2 as U∞ and p∞. Then we substi-
tute the velocity at point b as a function of b point’s radial coordinate vb = vb(θ) =
−2U∞ sin θ. Finally, we obtain a formulation for the pressure distribution

pb − pa =
ρ

2

(
U2

∞ − (−2U∞ sin θ)2
)

,

pb = pθ = pa +
ρ

2
U2

∞
(
1− 4 sin 2θ

)
.

Assume that pa is zero, we get

pθ =
ρ

2
U2

∞
(
1− 4 sin 2θ

)
.

In order to find the drag force, we will integrate the pressure at the angle θ over all
circle

D =

ˆ 2π

0
pθdθ =

ˆ 2π

0

ρ

2
U2

∞
(
1− 4 sin 2θ

)
dθ.

We can write the pressure in terms of pressure coefficient

Cp = 1−
(

vb

U∞

)2

,

so, in our case it is
Cp = 1− 4sin2θ. (2.2.22)

Figure 2.2.12: Pressure coefficient distribution for flow past a sphere

2Free-stream velocity and pressure is the velocity and the pressure far away from any object or bound-
aries in the part of the flow that is not disturbed by any object or boundaries.
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Figure 2.2.12 shows the graph of the pressure coefficient as a function of θ. We can
consider this as ideal pressure distribution. When the Cp is at zero, it means that the
pressure is the same as the free stream pressure, at Cp equal to one means that the
pressure is at a stagnation point which is the biggest pressure, and as the Cp goes
below zero the pressure decreases.

For a better understanding of the pressure distribution around the droplet we analyze
a few COMSOL simulations.

a) velocity = 1 m/s ; radius = 0.5 mm 2a) velocity = 1 m/s ; radius = 0.5 mm

b) velocity = 1 m/s ; radius = 2 mm 2b) velocity = 1 m/s ; radius = 2 mm

Figure 2.2.13: Pressure distribution around a droplet (1)

We chose to use COMSOL because it is a nice and simple way to couple mechanisms,
in order to understand their combined effect. Figure 2.2.13 and 2.2.14 contains two
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simulations each, where the velocity of the droplet is 1 m/s or 10 m/s. The radius of
the sphere was computed for two values 0.5 mm and 2 mm. The material in which the
droplet is placed is air. The air flow is considered to be laminar with the direction of
the flow from left to right. In our simulation the flow is symmetrical with respects
to the x-axis. Another condition that was taken in consideration is the fact that at
the boundary of the circle we have positive velocity relative to the boundary (slip
condition).

c) velocity = 10 m/s ; radius = 0.5 mm 2c) velocity = 10 m/s ; radius = 0.5 mm

d) velocity = 10 m/s ; radius = 2 mm 2d) velocity = 10 m/s ; radius = 2 mm

Figure 2.2.14: Pressure distribution around a droplet (2)

Figure 2.2.13 and 2.2.14 represents the pressure distribution over a droplet. First
columns are plots of the magnitude of pressure using a color scale. Polar plots with
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the theta angle from 0 ◦C to 360 ◦C are represented in second columns. In all cases the
pressure reaches the highest values when the flow encounters the droplet in the way
(the left part of the droplet). Following the theta angle from 180 ◦C to 90 ◦C, we see a
decreasing in pressure, from the highest value to the lowest. Looking at the first quad-
rant, and considering the theta angle from 90 ◦C to 0 ◦C, we can observe an increase
in pressure. Note that the pressure is distributed symmetrical on the x axis but not
on the y axis. The pressure is much bigger for theta at 180 ◦C compared to the one at
theta 0 ◦C.

a) v = 1 m/s, r = 0.5 mm b) v = 1 m/s, r = 2 mm

c) v = 10 m/s, r = 0.5 mm d) v = 10 m/s, r = 2 mm

Figure 2.2.15: Velocity streamlines over droplet, where v[m/s] is the velocity magnitude and
r[m/s] the droplet radius

Comparing plots from Figure 2.2.13 where the velocity is the same but the radius is
different, we can conclude that the magnitude of the pressure depends on the radius
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of the droplet. The lowest pressure over droplet is reached when the radius is bigger
and the highest for a droplet with a smaller radius.

The velocity is another influence factor. Taking in consideration 2.2.13 (a) and 2.2.14
(c), where the radius of the droplet is 0.5 mm, the difference is the magnitude of the
velocity. Increasing the velocity, the magnitude of the pressure will be also increased.
This means that a droplet that is falling with a big velocity will be much flatter, due to
the pressure, than droplets falling with smaller velocity.

Moreover, analyzing Figure 2.2.13 with Figure 2.2.15, we can observe how the pressure
is getting higher when the flow is slowing down. The velocity of the flow is decreasing
until it reaches a speed of zero. It has the minimum value at the point at which the
flow hits the droplet. The maximum velocity is reached, where the pressure is very
low, which is on top (90 ◦C) and on bottom of the droplet (270 ◦C).

Further, we want to obtain the graphical illustrations for the shape of droplets. In
the first step, we will consider the curvature to be constant, then we will introduce
pressure into curvature, to see how this will influence the shape. Later on, we will
introduce pressure data taken from COMSOL simulations (cases presented in Figure
2.2.13 and 2.2.14) into curvature in order to find the shape of droplets and bubbles.
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3 Finding bubble shapes from curvature
or pressure

One approach to deal with a free surface simulation is to separate the flow simulation
from the surface tracking algorithm. This is a common approach in fluid-structure
interaction methods, which could be employed to free surface problems. As we have
seen previously the local curvature and the pressure jump over an interface are related
by the Young-Laplace equation (2.1.2). It gives the coupling between the two problems.

In this chapter we introduce and analyze two different methods to find the shape of
bubbles, given the curvature. We also show how this curvature is obtained from flow
computations. In the first method, the shooting method, we rewrite the problem as
a (non-linear) ordinary differential equation with periodic boundary conditions and
look for the numerical solution. In the second method we consider the problem as a
curve-fitting problem, or more generically as an optimization problem, since we add
an additional constraint to preserve mass/area/volume.

3.1 Shooting method

Curvature is defined in [16, 15], as the amount by which a geometric object deviates
from being flat or straight in the case of a line. The curvature of a circle can be defined
as the reciprocal of the radius

κ =
1
R

. (3.1.1)

Thus, a circle with a large radius will have a small curvature and vice-versa.

The curvature of a curve that is given in polar coordinates as r(ϑ) is defined in [19] as

κ(ϑ) =
r2 + 2(r′)2 − rr′′

(r2 + (r′)2)3/2 , (3.1.2)

where r′ and r′′ are the first and second derivatives of r, both with respect to ϑ.

Rearranging (3.1.2) we will get a second order non-linear ordinary differential equation
(ODE)

rr′′ − 2(r′)2 + κ(ϑ)(r2 + (r′)2)3/2 = r2. (3.1.3)

Introducing u = r′, we can write (3.1.3) as a system of first order ODEs
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{
r′ = u
u′ = r + 2 u2

r −
κ(ϑ)

r (r2 + u2)3/2 ,

where ϑ is from 0 to 2π. This is a boundary value problem (BVP), with boundary
conditions r(0) = r(2π) and r′(0) = 0. We take the derivative of radius to be zero in
order to have symmetry over the x-axis.

In order to solve the system we use the shooting method [31]. This is a method used
for BVP, which reduces the problem to the solution of an initial value problem (IVP).
Thus, our BVP of first order ODE will be reduced to solving the IVP{

r′ = u
u′ = r + 2 u2

r −
κ(ϑ)

r (r2 + u2)3/2 , (3.1.4)

with r(0) = r0 and u(0) = 0, being the initial conditions.

To solve the BVP, r0 has to be determined such that it satisfies the boundary value
conditions. We chose to solve a IVP instead of BVP because of the periodicity, which
means that we do not know the starting condition.

The shooting method will be based on the secant method [1]. This method is a root-
finding algorithm which uses a succession of roots of secant lines in order to give a
better approximation to the root of a function.

Figure 3.1.1: Flow chart of the algorithm
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Using an iterative process based on the secant method, we can estimate a value for r0,
solving (3.1.4). Note that we need two initial choices (guesses) to be able to compute
the third and continue the iterations. Thus, for given r0,1 and r0,2, the secant method
computes r0,k for k > 2.

The process is described in the flowchart in Figure 3.1.1. It starts with a guess for r0,
then solves system (3.1.4) to obtain an estimation for r0. After that, a check is made
for the difference between the result from the integration and our guess

m = rnew − rguess, (3.1.5)

is made, to see if it is less than the tolerance.

Figure 3.1.2: Graphical illustration of the shooting process . Left picture when initial guesses for r0 are
0.5 and 1.2. Right picture guesses for r0 are 0.5 and 2.

Unless the absolute value of m is less than the tolerance, the algorithm continues with
the second guess for r0 and repeat the process from the beginning. If the error is not
within an acceptable tolerance, will continue updating r0 according to the secant rule
(3.1.6). The secant rule updates the radius considering the previous two radii and the
error between them, m from (3.1.5), using the following formulation

r0,i = r0,i−1 −
r0,i−1 − r0,i−2

mi−1 −mi−2
mi−1. (3.1.6)

It will iterate, to adjust the guess, until the stop criterion is satisfied, which means m
is less than the tolerance.

Further we will make some simulations to see how the method behaves.

Some graphical representations of the shooting process are presented in Figure 3.1.2.
The “shoots", attempts of the shooting method that were not good, are represented in
polar coordinates with blue, while the solution of the shooting method is marked with
red.
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The ODE solver used is ode45, which is based on Runge-Kutta method and it has
a medium order of accuracy. We assume the tolerance to be 10−5 and a constant
curvature κ = 1. The solution of the shooting process for r0 is 1 for both of the figures
and within the specified tolerance. The solution is correct considering formula (3.1.1).
Note that for Figure 3.1.2(right) the blue circles have radius approximately between
1.0001 - 1.0010, but they are not solutions because they do not satisfy the tolerance.

Figure 3.1.3: Eccentricity in the case of an ellipse

In order to point out how much the shape deviates from being circular, eccentricity is
calculated

e =

√
1−

(
b
a

)2

, (3.1.7)

because it is considered a flattening factor [14].

Here, a and b are the half major and half minor axes (see Figure 3.1.3). In the case of a
circle, the eccentricity is zero, as for an ellipse it is 0 < e < 1. In Figure 3.1.2(left), the
eccentricity of the solution is 0.0642, which means that is very close to a circle, while
in the other graph (right) the eccentricity of the solution is even better 0.0349.

Until now we have seen that the method works for a constant curvature. In order to
check if the shooting method works properly, we need more complicated cases. Thus,
we will replace the curvature κ which was constant, with different curvatures which
depend on angle ϑ, like the curve of an ellipse or of a pear.

3.1.1 Example: the curvature of an ellipse

In order to test if the shooting method is working properly, we compute a curvature
for a given radius. Then we use this computed curvature to find back that radius with
the shooting method. We then compare this result with the original curve.

34



CHAPTER 3. FINDING BUBBLE SHAPES FROM CURVATURE OR PRESSURE

First, we check the method with the curvature of an ellipse, which we compute with
formula (3.1.2), where we use the radius of an ellipse. The ellipse’s equation, in polar
coordinates, as a function of angle ϑ is

r(ϑ) =
ab√

(b cos(ϑ))2 + (a sin(ϑ))2
. (3.1.8)

In this formula a and b are the half of the major and minor radii. Note that if a and b
are equal, we deal with a circle not with an ellipse. This formulation is relative to the
ellipse’s center.

Figure 3.1.4: Shooting process considering the curve of an ellipse, with the major axis horizontal

Figure 3.1.4 is the graphical representation of the shooting process, with the curvature
depending on ϑ for the curve of an ellipse. In this figure the absolute error between the
desired shape and the computed one is really small. Here, the major axis is horizontal,
while in Figure 3.1.5, the axes are switched and the method still works.

Another formulation for the radius of an ellipse, in polar coordinates with the origin
at one of its foci, which depends on the eccentricity, is

r(ϑ) =
a

1− e cos(ϑ)
. (3.1.9)

Here, a is the distance between the focus of the ellipse and the ellipse itself, measured
by a perpendicular to the major axis, and e is the eccentricity.

Note that if eccentricity e is zero, the shape is of a circle rather than an ellipse.
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Figure 3.1.5: Shooting process considering the curve of an ellipse, with the major axis vertical

Figure 3.1.6: Shooting process for the curve of an ellipse

The graphical illustration of the shooting process in Figure 3.1.6, shows that the
method works also in this case.

The shape is very accurate. The absolute error between the desired shape and the
computed one is very small, around error = 0.006 for a tolerance of tol = 10−5.
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3.1.2 Example: the curvature of a pear shape

Another curve that we will compute, in order to test the shooting method, is a pear
curve.

Again the curvature is computed with formula (3.1.2), for a given radius which cor-
responds to a pear curve. We want to obtain the same radius after we compute the
curvature with the shooting method.

Assume the following formulation for a pear curve

r(ϑ) = 1 + a cos(ϑ) + b cos(3ϑ), (3.1.10)

where a and b are two coefficients. Note that if the coefficients are zero, we will obtain
a circle.

We considered the function cosine, to have a symmetry over the x-axis.

Figure 3.1.7: Pear curve

In Figure 3.1.7 we have the representation of formula (3.1.10) where both coefficients
are a = b = 0.2.

Using formula (3.1.10) for the radius, we compute the curvature and we test the shoot-
ing method with it. For the first case, let’s assume that the coefficients are both
a = b = 0.1, so the expected shape should be between a circle and the shape shown in
Figure (3.1.7),which is actually obtained in Figure 3.1.8.
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Further we will increase a bit the value of the coefficients, to a = b = 0.2. The
shape obtained in Figure 3.1.9 looks similar to Figure (3.1.10), so it works also for this
curvature.

Figure 3.1.8: Shooting process, with the curvature of a pear

Figure 3.1.9: Shooting process, with the curvature of a pear

The shooting method worked successfully for all tests with different curves. Now,
knowing that the method works, we look add pressure to computations.
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3.1.3 Curvature from pressure computations

First step is to add pressure to system (3.1.4). For that we can consider the Young-
Laplace equation [18]

∆p = γ

(
1

R1
+

1
R2

)
, (3.1.11)

where ∆p is the pressure difference, γ is the surface tension, R1 and R2 are the princi-
pal radii of curvature.

Small droplets have spherical shape, so the principal radii of curvature are the same
R1 = R2 = R and (3.1.11) can be written as

∆p =
2γ

R
, (3.1.12)

which can be redefined if we consider (3.1.1) for a 2D case, as

∆p = γκ. (3.1.13)

Moreover, the pressure difference can be written as the difference between the inside
pressure and the outside pressure [18]

∆p = pi − po.

In general pressure difference is written in terms of gauge pressure [9] (difference
between absolute and atmospheric pressure is approximately - 105Pa) as

∆p = pi − po = (pi − p∞)− (po − p∞),

∆p = p̂i − p̂o. (3.1.14)

The outside gauge pressure in terms of pressure coefficient (Cp) [29] is

p̂o =
1
2

ρU2
∞Cp, (3.1.15)

where Cp depends on theta, as in (2.2.22) and U∞ is the terminal velocity

U∞ =

√
ρVg

1
2 CDρA

, (3.1.16)

where ρ = 1.225 kg/m3 is density, g = 9.81 m/s2 is gravity, CD is the object’s drag
coefficient,V its volume and A its area.
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This formula is obtained by equaling drag force with gravity force, Fd = Fg, where Fg
is defined in (2.2.19) and Fd in (2.2.20). Note that the drag coefficient depends on the
hitting area. Choosing a long cylinder of volume V as the falling object, the hitting
area A is a circle. The drag coefficient [29] for a long cylinder is CD = 0.82. After all
simplifications formula (3.1.16) leads to

U∞ =

√
πRg
CD

.

Considering the symmetry of a droplet around its major axis, we refer to a 2D case; at
rest the inside gauge pressure is defined by

p̂i = pi − p∞ =
γ

R0
. (3.1.17)

Having all necessary data, we can replace curvature κ in ODE (3.1.4) with equation
(3.1.14):

κ =
1
γ

(
γ

R
− 1

2
ρU2

∞
(
1− 4sin2ϑ

))
, (3.1.18)

where p̂i and p̂o are taken from (3.1.17) and (3.1.15) respectively. Here the surface
tension for water-air axis at 25 ◦C is γ =0.072 N/m, the density of air at 15 ◦C is
ρ =1.225 kg/m3 (standard atmosphere), the ϑ angle is considered between 0 and 2π
and the terminal velocity U∞, defined in (3.1.16).

Plugging curvature (3.1.18) into the shooting method, closes the ODE system. In the
obtained results, we found that pressure influences the shape of the droplet. The
radius of the droplet is important on how much pressure will act over the shape. This
influence can be seen in the next example.

In specific, a small droplet, like the one in Figure 3.1.11, with radius of r = 0.002
, will not be influenced too much by the pressure. As for bigger droplets, like the
one in Figure 3.1.12, we calculate pi for a radius of r = 0.02 and the resulting radius
is r = 0.0173. Therefore, pressure is a factor that affects the deformation of large
droplets. An aspect that we will compare is the area of the deformed droplet with the
area of the droplet at rest.

Considering a segment of a circle, where r is the radius and ϑ is the angle, the arc
length (see Figure 3.1.10) is

ds = rdϑ.
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Figure 3.1.10: Arc length

The triangle that can be formed for every segment of circle has an area of

A = l
h
2
= ds

h
2
= rdϑ

h
2

,

A =
r2

2
dϑ.

So, the area of the deformed droplet will be

Adroplet =

ˆ ˆ
r(ϑ)drdϑ =

ˆ 0

2π
A(h)dh =

ˆ 0

2π

r2

2
dϑ

and we compare it with the area of the circle

Arest = πR2.

Figure 3.1.11: Shape unaffected by the pressure

In both cases (Figure 3.1.11 and 3.1.12), the difference between the area of the deformed
droplet and the droplet at rest is negligible, because it is around 10−6 or smaller.
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A remarkable fact is the flattening factor of the second droplet, which increased to
e = 0.5035.

Note that even though pressure’s influence can change the shape of larger droplets
their surface is preserved.

Figure 3.1.12: Shape affected by the pressure

3.1.4 Pressure jump from numerical simulations

In the last approach, we start by taking pressure data from COMSOL. They are com-
puted for a circular rigid bubble in a flow field described by Navier-Stokes equations.
Afterwards, we translate these pressure data into curvature through the inside pres-
sure pi and according to

κ =
pi + pdi f

γ
.

The surface tension of water-air is γ =0.072 N/m and pdi f (ϑ) = pcom(ϑ) − pcom(ϑ)
is the pressure information from COMSOL after subtracting the pressure average.
Finally, we compute the radius of the deformed droplet with the root finding method.

Test cases include droplets with radius r = 0.5 mm and the velocity of v = 1 m/s and
v = 10 m/s.
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In Figures 3.1.13 and 3.1.14, droplets have the same size, but the velocity is different.
The second droplet deviates from being circular because the velocity influences the
shape of the droplet. This happens because with a higher velocity comes also higher
force applied over the droplet, which means higher pressure. This can be seen also
from Figure 2.2.14 c where the highest pressure is 62.559Pa, while in Figure 2.2.13 for
a smaller droplet the highest pressure is 0.7001Pa.

Figure 3.1.13: Shape unaffected by the pressure

In Figure 3.1.14, the deformed droplet is represented with red and with green the
droplet at rest is shown. The flattening factor of the deformed droplet is e = 0.7542.
Note that the area of the droplet has not changed during the deformation. The differ-
ence in area between the flat one and the circular one is around 10−10.

From the simulations we observe that droplets have different shapes, from circular to
more flattened shapes. What influences the shape is the dimension of droplet and the
velocity of its fall.

We have seen that bigger droplets tend to deform their shape, while smaller droplets
remain the same, with a circular shape. Assuming droplets of the same size, which
fall with different velocity, they will have different shapes. Those which fall faster will
get a deformed shape.
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Figure 3.1.14: Shape affected by the pressure

3.1.5 Stiffness

A precise mathematical definition of stiffness cannot be found in literature. Stiffness
is a difficult concept in the numerical solution of ODE.

Stiff differential equations are usually considered these differential equations which
numerical methods that are used to solve them end up being numerically unstable.

The idea of stiffness appears when the solution being sought is varying slowly, but
there are nearby solutions that vary rapidly.

Runge-Kutta methods, explicit methods, cannot handle stiff systems in an economical
way, if they can handle them at all. An explicit method solves a stiff system by reduc-
ing the step size in order that the stability is retained. This needs to compute a large
number of steps. The way out of this problem is to use implicit methods.

Consider the linear differential system

y′ = Ay + b(x),

where y, b ∈ Rn and A is a constant n× n Jacobian matrix, with eigenvalues λi ∈ C,
i = 1, 2...n.

The Jacobian matrix is the matrix of all first-order partial derivatives of a vector func-
tion. So, matrix A is defined by
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A =


∂ f 1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

· · · ∂ fn
∂xn

 ,

where


y1 = f1(x1, ..., xn)
...
yn = fn(x1, ..., xn)

,

for a given set y =f(x) of n equations in n variables x1, ..., xn.

For an ODE with λi the eigenvalues of the constant matrix, stiffness arises when
|Re(λmax)| is very large and |Re(λmin)| is very small. This leads to the ratio

r =
|Re(λmax)|
|Re(λmin)|

, (3.1.19)

which is a measure of stiffness of the system, according to Lambert’s [17] first state-
ment :

“A linear constant coefficient system is stiff if all of its eigenvalues have negative real part and
the stiffness ratio is large.".

There is no exact value of the stiffness ratio r that would distinguish the non-stiff prob-
lems from the stiff-problems. However, for ratios around 1000, problems are starting to
become stiff and implicit methods are likely to be more efficient than explicit methods.
So, the effect of stiffness is more pronounced, the larger the quantities become.

An aspect that has to be mentioned, is the fact that there can be eigenvalues having
zero their smallest modulus of the real part. The contribution of that eigenvalue to
the exact solution is then constant. Lambert mentions that in this case if the moduli
of the real parts of the remaining eigenvalues are not particularly large, the system is
considered non-stiff.

Furthermore, we will consider the non-linear system of ODE that we used to calculate
droplet shapes {

r′ = u
u′ = r + 2 u2

r −
κ(ϑ)

r (r2 + u2)3/2 ,

where ϑ is from 0 to 2π, with the initial conditions r(0) = r0 and u(0) = 0.
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The first step is the linearization of the system, by using Taylor series, which in 1D is
defined for a function of f (x) as:

f (x) =
∞

∑
n=0

f n(a)
n!

(x− a)n,

and for a function f (x, y) in 2D as:

f (x, y) ≈ f (a, b) + (x− a) fx(a, b) + (y− b) fy(a, b) +O(h2),

where f is evaluated at points a and b, which are the initial conditions. The latter is
the form that we use here.

After linearization the system becomes

[
r′

u′

]
=

[
0 1

1− 2u2
1

r2
1
− κγ 4u1

r1
− κδ

] [
r
u

]
+

[
0
ε

]
, (3.1.20)

where κ is a curvature depending on ϑ and

γ = − 1
r2

1
(r2

1 + u2
1)

3/2 + 3(r2
1 + u2

1)
1/2,

δ =
3u1

r1
(r2

1 + u2
1)

1/2,

ε =
1
r1
(r2

1 + u2
1)

3/2 + κr1γ + κu1δ,

with r1 and u1, the initial conditions, which are given.

We can rewrite system (3.1.20) as

[
r′

u′

]
= A

[
r
u

]
+ b(ϑ). (3.1.21)

Now, we can use the eigenvalue of the Jacobi matrix A to test the stiffness of the system
(3.1.21), for different curvature functions κ(ϑ) and different initial conditions r(0) and
u(0).

First case, assume the curvature to be constant (κ = 1) and the initial conditions
r0 = 0.5 and u0 = 0. The shape obtained is represented in Figure 3.1.15.
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Figure 3.1.15: Shape, for κ = 1, initial values r(0) = 0 and u(0) = 0

In order to find the stiffness of system (3.1.21), we compute the eigenvalues for every
ϑ, with the same initial conditions. Figure 3.1.16, is the graphical representation of the
distribution of the eigenvalues on the real and imaginary axis. It is shown that there
are eigenvalues that have negative or positive real part, but at the same time there
are eigenvalues that have only imaginary part with zero real part. The latter kind of
eigenvalues will not contribute to the stiffness of the system. As Lambert says in the
first statement, we have to focus on the eigenvalues with big negative real part; this is
not the case in our situation. From these data we can say that the system is non-stiff.

Figure 3.1.16: Values of the eigenvalues for every angle ϑ
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For the second part of the statement (large ratio implies stiffness), we will compute the
ratio of the eigenvalues (3.1.19). In Figure 3.1.17 the values of the ratio for all ϑ angles
is shown. Since for singular ratios a non-stiff system occurs, we represent these ratios
with null in the aforementioned graph. As we expected the system is non-stiff, for the
assumed initial values, because the biggest ratio (r ≈ 17) is too small to talk about a
stiff system.

Figure 3.1.17: Ratio of stiffness for every angle ϑ

Figure 3.1.18: Graphical representation of the shooting process

In order to see if there are some changes during the shooting process (Figure 3.1.18),
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we computed the eigenvalues (Figure 3.1.19) and the ratio for the hole process (Figure
3.1.20), because the values of r(0) and u(0) will change with every "shoot" of the
method. Note that the process have a tolerance of tol = 1e− 5.

Figure 3.1.19: Values of the eigenvalues for every angle ϑ

Figure 3.1.20: Ratio of stiffness for every angle ϑ

We can see that the values do not change very much, so we can talk about non-stiffness
during the whole shooting process.

For the same curvature, if we change the initial value with r(0) = 2 , the problem will
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be totally different (Figure 3.1.21). The final system computed by the shooting method
is stiff, because the ratio is r > 1000 (see Figure 3.1.22, 3.1.23).

Figure 3.1.21: Graphical representation of the last “shoot" of the shooting process

Figure 3.1.22: Values of the eigenvalues for every angle ϑ

The last two cases presented, demonstrate that initial values influence the stiffness
of the problem. This happens because the Jacobian matrix and the eigenvalues are
different.

Comparing the two cases with the same curvature, it is clear that the initial values
influence the stiffness of the problem.
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Figure 3.1.23: Ratio of stiffness for every angle ϑ

The second case for testing the stiffness, is when the curvature is an ellipse and κ will
be computed by the formula

κ(ϑ) =
r2 + 2(r′)2 − rr′′

(r2 + (r′)2)3/2 , (3.1.22)

where r will be

Figure 3.1.24: Graphical representation of the first “shoot" of the shooting process
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r(ϑ) =
ab√

(b cos(ϑ))2 + (a sin(ϑ))2
.

The initial values this time are r(0) = 0.5 and u(0) = 0, and the constants in the radius
formula are a = 0.2 and b = 0.1. The shape obtained is represented in Figure 3.1.24.

Figure 3.1.25: Values of the eigenvalues for every angle ϑ

Figure 3.1.26: Ratio of stiffness for every angle ϑ

Data represented in Figure 3.1.25 and 3.1.26, satisfy both parts of the Lambert state-
ment. There are no eigenvalues with large negative parts, and the ratio is small (largest
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r ≈ 49), so the system is non-stiff.

Further we computed the stiffness during the entire process of shooting (Figure 3.1.27),
to see if the system remains non-stiff during the process.

Figure 3.1.27: Graphical representation of the shooting process

Figure 3.1.28: Values of the eigenvalues for every angle ϑ

Information obtained through Figure 3.1.28 and 3.1.29, lets us speak about stiffness. It
is clear that there are eigenvalues with large negative real parts, and ratio is going up
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to 3× 109, which is a very big ratio. The stiffness of the shooting method, in this case
comes from the attempt in computing the green line in Figure 3.1.27.

Figure 3.1.29: Ratio of stiffness for every angle ϑ

We analyzed separately the stiffness of the system that computed the final solution,
not the whole shooting process (Figure 3.1.30).

Figure 3.1.30: Graphical representation of the solution of the shooting process
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Figure 3.1.31: Values of the eigenvalues for every angle ϑ

Figure 3.1.32: Ratio of stiffness for every angle ϑ

The representation of the eigenvalues for the shape that we are interested in, shows
that there are no large eigenvalues with negative real parts (Figure 3.1.31), and also
the ratio (r ≈ 95, see Figure 3.1.32) is small enough to say that it is a non-stiff system.

The third case that we will test, is for a curvature of a pear, where κ is the formulation
from (3.1.22), with the radius of

r(ϑ) = 1 + a cos(ϑ) + b cos(3ϑ).
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The initial conditions will be r(0) = 1.3 and u(0) = 0. The constants from the radius
formula will be a = b = 0.1 (see representation in Figure 3.1.33).

Figure 3.1.33: Graphical representation of the first “shoot" of the shooting process

Figure 3.1.34: Values of the eigenvalues for every angle ϑ

The stiffness of the system is very low, because we have eigenvalues with very small
negative real numbers (Figure 3.1.34), and also the ratio is very small (r ≈ 44, see
Figure 3.1.35). In this case the problem is considered non-stiff for the whole process of
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shooting, because the negative real parts of the eigenvalues continue to be small, and
the ratio goes only until r ≈ 145.

Figure 3.1.35: Ratio of stiffness for every angle ϑ

The computation of the solution (Figure 3.1.36) of the shooting method is non-stiff.
This can be seen in the next figures 3.1.37, 3.1.38.

Figure 3.1.36: Graphical representation of the solution of the shooting process
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Figure 3.1.37: Values of the eigenvalues for every angle ϑ

Figure 3.1.38: Ratio of stiffness for every angle ϑ

Let’s assume that the initial condition remains the same r(0) = 1.3 and u(0) = 0, but
we change the constants of the radius a = b = 0.2, in order to obtain a shape that
looks more like a pear, Figure 3.1.39.
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Figure 3.1.39: Graphical representation of the shooting process

Figure 3.1.40: Values of the eigenvalues for every angle ϑ

Figure 3.1.40 and 3.1.41 represents data for all the “shoots" needed, until we found
the solution of the process. It is clear that there are moments when the system is stiff
(at angle 250 ◦C < ϑ < 270 ◦C), having eigenvalues with very big negative numbers,
which lead to very big ratios. What we can notice is that this is happening most of the
time in the same region of ϑ. This is not the case for the system that has to be solved
for the right solution of the shooting method (Figure 3.1.42). In this case the values of
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the eigenvalues are not so big (Figure 3.1.43), and the ratio is r < 300, Figure 3.1.44,
which means that the system is considered non-stiff.

Figure 3.1.41: Ratio of stiffness for every angle ϑ

Figure 3.1.42: Graphical representation of the solution of the shooting process

The measurement of the stiffness of the ODE depends on the eigenvalues of the matrix,
which is the constant Jacobian matrix. This matrix depends numerically on the initial
values and physically on the curvature taken in consideration. The case of the pear,
shows that a small change of the curvature κ, will become a small change in the
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computation of the Jacobian matrix. In the case of curvature κ = 1, we saw that
changes of the initial values can change the stiffness of the system.

Figure 3.1.43: Values of the eigenvalues for every angle ϑ

Figure 3.1.44: Ratio of stiffness for every angle ϑ

Stiffness is an efficiency issue. If we were not concerned about how much time a
computation takes, we would not care about stiffness. Non-stiff methods can solve
stiff problems; they just take a long time to do it.
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3.2 Optimization

Another approach to the root finding algorithm, to compute a droplet shape, is the
minimization technique. This technique is a mathematical optimization, which min-
imizes a real valued function by choosing repeatedly input values from some set of
data and computing the values of the function.

What we want to do is to find a bubble with the curvature equal to a given curvature,
which is considered an input. In order to do that, we start with a circular bubble,
and we minimize the distance between the curvature of this bubble and the given
curvature, with

min
r1,r2,... ∑

i
‖κ(r1, r2, ...; ϑi)− κ0(ϑi)‖2 , (3.2.1)

where κ0 is the given curvature and r1, r2, ... are radii at different angles ϑ.

Figure 3.2.1: Graphical representation of the minimization technique

This technique, is represented graphical in Figure 3.2.1, where the outside shape repre-
sents the curvature of the bubble that we want to find, and the inside shape represents
a given curvature. What we want to do is to take in consideration a lot of points on
the curvature of our bubble, for different angles ϑ, and to move those points on the
gray lines, until the distance between those two shapes is minimized.

Before finding a droplet shape, some tests are made with the method, using a given
curvature for the shape of an ellipse and a pear. Then the curvature of the shape that
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we are looking for is minimized considering the given curvature. In order for the
method to work, the resulted shape should be as the input one.

3.2.1 Curvature from sample points

In order to compute the curvature we will use two different approaches. The first one
is to compute the curvature by fitting circles through successive points. The second
approach uses finite differences in the polar plane to compute the curvature.

3.2.1.1 Circle fitting

The curvature is a quantity that is usually more easily understood as one over the
radius of curvature. The radius of curvature (C) is the radius (r) of the osculating
circle in a point (A). A natural approach to determine the curvature in 2D is then to
locally fit a circle.

Figure 3.2.2: An osculating circle

The minimum number of successive points that is needed to compute the curvature is
of course three, but the benefit of using a fitting method is that we can easily accom-
modate more points, by relying on a least squares fit. In order to attach the computed
curvature to a point, we will look at the same number of neighbors on the left and
right of a point, so the number should be of the form 2w + 1, where w ≥ 1.

We will use the function of Izhak Bucher (25 October 1991) [5] for circle fit. He starts
from the implicit equation for a circle with the center at (xc, yc) and a radius r:

(x− xc)
2 + (y− yc)

2 = r2.

Expanding this equation, we can introduce an alternative set of parameters (a, b, c):

x2 + y2 + ax + by + c = 0,

where a = −2xc, b = −2yc, and c = x2
c + y2

c − r2.
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Taking three successive points (xi−1, yi−1), (xi, yi) and (xi+1, yi+1), we see that all the
squares not withstanding we find a linear system in terms of (a, b, c):

x2
i−1 + y2

i−1 + axi−1 + byi−1 + c = 0,
x2

i + y2
i + axi + byi + c = 0,

x2
i+1 + y2

i+1 + axi+1 + byi+1 + c = 0.

In matrix notation, this becomes:

 x1 y1 1
x2 y2 1
x3 y3 1

 a
b
c

 =

 −(x2
1 + y2

1)
−(x2

2 + y2
2)

−(x2
3 + y2

3)

 , (3.2.2)

The solutions of system (3.2.2), give us the radius of the circle that we fit for a specific
point, using formula

R =
√
(a2 + b2)/4− c.

Knowing the radius, curvature can be found with (3.1.1).

An important drawback of this method is that we do not get the sign of the curvature.
This has to be determined otherwise: the direction of the vector pointing from the
point to the center of the circle needs to be compared with the local curve normal.

There is nothing limiting using more than three points. Using a window width1 of
w we will find a (2w + 1) × 3 matrix, which can be solved by an appropriate least
squares method, such as QR or SVD. Common numerical wisdom holds that SVD is
more robust than QR, and in numerical experiments below we indeed found that for
normally distributed noise added to coordinates of samples of a circle (see below) SVD
consistently predicted the center and radius more accurately than QR.

A graphical representation of how the method works is Figure 3.2.3, where we as-
sumed a circle with radius r = 1. We considered 40 points to which we added 20
noise. The radius of the circle obtained, fitting those points, has a radius r = 1.0190.
The result is very close to the initial one. Increasing the number of points, the result is
much accurate.

1Window width indicates the amount of neighbours points taken in consideration for each point that
we compute the curvature.
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Figure 3.2.3: Circle fit for 40 points

3.2.1.2 Central differences

The second approach is to compute the curvature by using derivatives, considering
formula (3.1.2), used for the root finding method to find the curvature. In that equation
both the first and second order derivatives of r appear. Again we will use three points
to estimate the curvature. Assuming a curve defined in polar coordinates as r(ϑ)
and that the samples have been taken at equidistant ordinates ϑi = i∆ϑ, the standard
scheme for the second order is

r′′(ϑi) =
ri+1 − 2ri + ri−1

h2 + O(h2).

Since we are using both ri+1 and ri−1 already, we also use a central difference scheme
for the first derivative, which of course has the benefit of being accurate to a higher
degree:

r′(ϑi) =
ri+1 − ri−1

2h
+ O(h2).

These approximations can be plugged into (3.1.2) directly. Like the previous method,
this approach could be extended to include more points than just the direct neigh-
bours. The aim is then not so much to increase the order, as to denoise the data. One
approach is to construct O(h2) - schemes that use more neighbors, but it is probably
better to denoise the data in a separate step by seeing ri as a noisy signal.
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3.2.2 Smooth and noisy data

An aspect that we have to take in consideration is the fact that data which we receive
to compute is not always smooth. Sometimes, almost all the time we receive noisy
data from measurements.

For example, noisy data for a circle with radius of r = 1 and noise of 2% or 20%, will
look like in Figure 3.2.4. Observe that the second picture has 10 times more noise.

a) 2% noise b) 20% noise

Figure 3.2.4: Circle with radius r = 1 and noise

If we have noisy data, like in Figure 3.2.5a, we can approximate the radius of the circle
that can be created with that data, by using Izhak Bucher algorithm of circle fit [1],
described before. The function will return the radius and the x, y coordinates of the
center of the circle for every theta. To test the algorithm, we take a circle with radius
of r = 1, to which we apply 20% noise, and then we compute the circle fit algorithm.
The result can be seen in Figure 3.2.5.

The outcome is very close to the original one.

Furthermore both methods which compute the curvature are tested to see differences
in accuracy.
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a) 20% noise added to a circle with radius r = 1 b) approximated shape, circle with a radius r = 1.0179

Figure 3.2.5: Circle with radius of r = 1 and noisy data

For smooth data, tests are made for the first method with three, five and seven points
and one for the second method. A circle of radius r = 0.2 is considered. In Figure
3.2.6b, the solution of the second method is the most interesting. This method is very
accurate and that is why it does not appear in Figure 3.2.6a, where the error is plotted.
Method one is more accurate when we use a bigger amount of points to compute the
curvature, Figure 3.2.6a. This means that we use more neighbors for each point. For
smooth data is better to use the second method, because is the most accurate.

a) Relative error for the curvature b) Curvature, computed with different methods

Figure 3.2.6: Computing the curvature for smooth data, where the number of points for method two
are computed by formula Nr = w ∗ 2 + 1. Note that "method 1" is the circle fit method
and "method 2" is the central differences method.
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For tests with noisy data, we used a circle with radius r = 0.2, for which we added
1% noise. What this means can be seen in Figure 3.2.7, where the difference between
noisy and smooth data is visible.

Figure 3.2.7: Radius with 1% noise

For noisy data, in Figure3.2.8a, can be seen that the second method does not give good
results as before. There are two cases of method one that cannot be seen. This happens
because the solutions of those two are very close to the exact solution. Figure 3.2.8b
illustrates how close are the results of these two cases, to the exact solution.

a) Curvature, computed with different methods b) Solutions that are closer to the exact one

Figure 3.2.8: Computing the curvature for noisy data, where the number of points for method two are
computed by formula Nr = w ∗ 2 + 1. Note that "method 1" is the circle fit method and
"method 2" is the central differences method.
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The relative error for the curvature is computed to check which method is more accu-
rate

error =

∣∣curvaturecomputed − curvatureexact
∣∣

curvatureexact
,

for all four cases taken in consideration before. From Figure 3.2.9 it is clear that when
the initial data have noise, method one is more accurate, but only when we take a
lot of points. For a few points the results are pretty close to the results of the second
method.

Figure 3.2.9: Relative error for curvature with noisy initial data. Note that "method 1" is the circle fit
method and "method 2" is the central differences method.

All in all, it is proved that the first method works better when we have to deal with
noisy data and the number of points plays an important role. An increase in the
number of points enhances the accuracy of the first method. When the initial data are
smooth, the second method gives better results.

3.2.3 Results

One way to optimize a problem is stated in terms of minimization. In our case we will
minimize the curvature, in order to find the best solution. Some tests are made to see
how good the method works.
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3.2.3.1 Curvature of an ellipse

For the first case we want to obtain the ellipse given by (3.1.8), where a = 0.2 and
b = 0.1, and is depicted in Figure 3.2.10. This ellipse’s curvature is plotted in Figure
3.2.11.

Figure 3.2.10: Ellipse shape for radius (3.1.8), where a and b are the half of the major and minor radii.

Figure 3.2.11: Curvature of the ellipse from Figure 3.2.10
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After computing the minimization function (3.2.1), for a circle of radius r = 0.2, the
obtained shape is almost the same as in Figure 3.2.10. That is because the relative error
of the radius between those two is really small, around 10−13.

So, the minimization function works very well considering the curvature of an ellipse.

3.2.3.2 Curvature of a pear

Further we would like to obtain the curve of a pear, give by formula (3.1.10). Assuming
the initial shape to be a circle of radius r = 1, after minimization of the curvature with
(3.2.1), the circle transforms into a pear shape, like the desired one (the red line in
Figure 3.2.12 becomes the blue one).

The relative error between the radii of the solution and the desired solution is again
very small, around 10−12. Note that the error peaks around 180 degrees (Figure 3.2.13),
where the curvature changes sign.

Figure 3.2.12: Pear shape
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Figure 3.2.13: Relative error for pear shape

3.2.4 Droplet shapes from computed pressure

The next step is to find the shape computing the curvature in terms of pressure, with
data obtained from COMSOL simulations, Figure 2.2.13 and 2.2.14. Curvature in terms
of pressure can be defined as

κ =
pi + pd

γ
, (3.2.3)

where k is the curvature, pi the inside pressure and pd a pressure difference between
the COMSOL pressure and its average.

An important aspect to analyze is how we can compute the area of the bubble. To
compute the bubble’s area we considered many points on the bubble for which we
know their radius. We took two approaches to compute the bubble area.

First one by using Heron’s formula. For that we computed the length of the three sides
of a pie between two successive points on the circle and the origin.

With Heron’s formula, which is used in geometry, we computed the area of a triangle,
with the lengths of the sides a, b and c

A =
√

s(s− a)(s− b)(s− c),
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where s is for the semi-perimeter of the triangle

s =
a + b + c

2
.

The length of the side a is the distance between the first point and the origin, which is
simply the radius. For the b side, the distance between the second point and the origin
is considered; it is simply the radius of the next point. Note that we take the points
around the circle counterclockwise. The third side, which is c, will be computed by
the formula of the distance between two successive points

dAB =
√
(xB − xA)2 + (yB − yA)2.

The same is for all triangles, which will give the bubble area by summing them.

The second method to calculate the bubble area is by using Green’s theorem, which
computes the area by a line integral. So, the area can be calculated by the contour
integral

A =
1
2

˛
(−ydx + xdy). (3.2.4)

Here x and y are the mid points of each linepiece between successive points.

The discretized form of (3.2.4) is

A =
1
2 ∑

i
(−ȳi∆xi + x̄i∆yi), (3.2.5)

with x̄i =
1
2 (xi+1 + xi), ∆xi = xi+1 − xi and ȳi =

1
2 (yi+1 + yi), ∆yi = yi+1 − yi.

Note that for both ways to calculate the bubble area the values of ϑ have to be ascend-
ing.

We checked these methods by considering the bubble being a circle, and compared it
to the area of a circle (A = πR2). The methods are quite accurate, because the error is
really small.

The bubble shape is not always a simple shape like a circle; there can be more com-
plicated shapes. For that we will check if the methods used to find the bubble
area also work for a “C" shape, shown in Figure 3.2.14. The area of this shape is
A = 0.75(πR2

o − πR2
i ), where Ro is radius of the exterior circle and Ri is the radius of

the interior circle . The relative error between the method that uses Heron’s formula is
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err = 0.666 as for the second method, which uses Green’s formula, the error is much
smaller, err = 3.7758e − 004. In this case we can say that for a complex shape, the
method using Green’s theorem is much more accurate.

Figure 3.2.14: “C" shape

We compute the droplet shape with data from all four cases simulated with COMSOL,
in 2.2.13 and 2.2.14.

3.2.4.1 Case 1

Figure 3.2.15: Bubble shape
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For a droplet with the radius of r =0.5 mm and the velocity of v =1 m/s, the shape of
the droplet will become as in Figure 3.2.15.

Figure 3.2.16: Curvature of the bubble in Figure 3.2.15

Figure 3.2.17: Error between curvatures in Figure 3.2.16

Note that the shape was not affected too much. This means that for very small droplets
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with small velocity, the shape remains circular. The curvature was computed with the
central differences method. The accuracy of the method is not bad, due to the fact that
the curvature is similar to the one used as an input (Figure 3.2.16). Only a small error
appears between them (Figure 3.2.17).

3.2.4.2 Case 2

Considering the same droplet with r =0.5 mm but higher velocity v =10 m/s, the
shape of the droplet is deformed from the circular shape as shown in Figure 3.2.15.

This means that the higher velocity influences the pressure acting over the droplet and
leads to a deformed shape.

The curvature finding method (central differences method) works better in this case,
because the curvature is almost the same as the initial one (Figure 3.2.16, the curvatures
are overlapping), however with a very small error (Figure 3.2.17). Note that the area
decreased by 20%.

Figure 3.2.18: Bubble shape
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Figure 3.2.19: Curvature of the bubble in Figure 3.2.18

In Figure 3.2.16, there is a flat area marked with a black ellipse. This flat part, can
be explained by looking to Figure (2.2.14) 2c, where around θ = 0 the pressure dis-
tribution is constant, so the surface tension minimize the surface area by making it as
circular as possible.

Figure 3.2.20: Error between curvatures in Figure3.2.19
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3.2.4.3 Case 3

Assume now that the droplet has a radius of r =2 mm and a velocity of v =1 m/s.

Figure 3.2.21: Bubble shape

Figure 3.2.22: Curvature of the bubble in Figure 3.2.21
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The shape of the droplet will became as in Figure 3.2.21, without significant deforma-
tions. The method used for computing the curvature is the central differences, and as
Figure 3.2.23 shows, the error is small, so the result is quite accurate.

Figure 3.2.23: Error between curvatures in Figure3.2.22

3.2.4.4 Case 4

Figure 3.2.24: Bubble shape
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For a droplet with a radius of r =2 mm and a velocity of v =10 m/s, the shape of the
droplet will deform from circular to a more flatter one, as shown in Figure 3.2.24.

Figure 3.2.25: Curvature of the bubble in Figure

Figure 3.2.26: Error between curvatures in Figure 3.2.25

The representation of the curvature in Figure 3.2.25, shows the difference between the
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initial curvature (3.2.3) and the computed one. In Figure 3.2.26 it can be seen that the
error is very big, so first method, circle fit using three points did not gave accurate
results.

Figure 3.2.27: Bubble shape

Figure 3.2.28: Curvature of the bubble in Figure
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In order to obtain a more accurate solution, we used the second method, to compute
the curvature, with derivatives. In this case, the result of the curvature is more accurate
as we can see in Figure 3.2.29 that the shape is more appropriate to the real one. Note
that the area of the deformed droplet decreased by 24% compared to the initial.

Figure 3.2.29: Error between curvatures in Figure 3.2.28

Comparing the second case with the third case, we conclude that the velocity affects
the shape of the bubble, increasing the deformation with the magnitude of the velocity.

3.2.5 Raising bubble shape

Before we have seen how the method behaves for computing the curvature in terms of
pressure, obtained from COMSOL simulations. Further, we computed the curvature
by using central differences, with radii taken from a simulation in COMSOL.

For the simulation we assume a case of a two-phase laminar flow. This means that
for a “smooth" flow in parallel layers, we have a liquid (honey) and a gas (air), which
are immiscible. In this case the fluid is incompressible, thus the density is constant.
We consider a bubble of air, with the following properties: density ρa = 1 kg/m3

and viscosity of µa = 1.81× 10−5Pa s, placed in a container with honey, of density
ρh = 1420 kg/m3 and viscosity of µh = 2Pa s. We chose honey instead of water,
because it has a higher viscosity.

From literature [4], we know that smaller droplets have a spherical shape. The bigger
they get the more their shape deviates from the sphere. As we want to obtain a
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deformed shape, we have to choose carefully the radius of the droplet. For that we
will use the Eötvös number, a dimensionless number

Eo =
∆ρgL2

γ
,

where ∆ρ is the difference in density of two phases (kg/m3), g = 9.81m/s2 is gravity,
L is the characteristic length, in this case the diameter of the bubble (m), and γ is the
surface tension (N/m). For a low Eo (less than one), surface tension dominates, as for
a high Eo the system is relatively unaffected by surface tension effects.

The internal pressure of the droplet is considered to be

pi =
γ

R
.

As for the background pressure level, it is described in Figure 3.2.30.

Figure 3.2.30: Pressure in container

Due to the fact that we simulate a raising bubble, we considered also a volume force
vertically

F = −ρg,
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where ρ is density and g is the gravitational field.

Having all necessary parameters, we can simulate a raising bubble. For a small Eötvös
number Eo = 1 the result was the expected one; a spherical bubble, with the shape
relatively unaffected. It is clear that surface tension dominates, and keeps the shape
as spherical as possible.

Increasing the Eötvös number to Eo = 10, the effects of surface tension decreased, and
the shape deformed in time, as it is visible in Figure 3.2.31 a.

(a) Eo = 10 (b) Eo = 100

Figure 3.2.31: Bubble shape

For a much higher Eötvös number Eo = 100, the shape is similar to the previous one,
but it became much sharper then before. In Figure 3.2.31 b, this happens because
surface tension is lower and the attraction forces are not so strong. Hence forces do
not minimize the bubble’s surface area as much as before.

Considering the shape of a bubble (Figure 3.2.32) obtained at a random time in the
rising process for Eo = 10, we introduced the radius function of that shape into our
minimization method.
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Figure 3.2.32: Bubble shape

Starting with an input spherical bubble of radius r = 8, we obtained again the bub-
ble shape computed from COMSOL (Figure 3.2.33). It is the same as in Figure 3.2.32,
because the error between the solution curvature and the initial one is very small as
shown in Figure 3.2.35. Therefore, the minimization method performs well at comput-
ing the shape of a droplet given an arbitrary input for the radius.

Figure 3.2.33: Bubble shape with minimizaiton method
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Figure 3.2.34: Curvature of 3.2.33

Figure 3.2.35: Error of the curvatures
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4 Smoothed Particle Hydrodynamics

Within CASA1 a broad interest in particle methods has developed over the past years,
with applications ranging from crowd management [7] to hypervelocity impacts [34,
35]. Our effort to include surface tension into SPH will pinpoint on the later research.

The debris, Figure 4.0.1, shooting out after an impact has many phases: solid, liquid,
gas, plasma. It has been shown that demolition of the direct impact zone and the shape
of the plume are predicted very accurately, but secondary impacts can be mispredicted
as the shape of the debris is lost in the cloud. Inclusion of surface tension effect will
later hopefully bring improvements to this.

We start this chapter with a general introduction to SPH, explaining the method and
its character. In the second section we have a broad look at flows and how to come to a
simple formulation. In the third section we explore three different approaches to treat
surface tension. We then discuss the actual implementation and end with showing
results.

Figure 4.0.1: Hypervelocity impact [European Space Agency]

1Centre for Analysis, Scientific computing and Applications (CASA) combines all activities related
to analysis at the Department of Mathematics and Computer Science of Eindhoven University of
Technology (TU/e). Its major research objective is to develop new and improve existing mathematical
(both analytical and numerical) methods for a wide range of applications in science and engineering.
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4.1 General formulation

Smoothed Particle Hydrodynamics (SPH) is a meshfree, Lagrangian, particle method,
invented independently by Gingold and Monaghan (1977) and Lucy (1977) for as-
trophysical problems. After that it was extended to other fields, as fluid and solid
mechanics. It was developed because an easy method to work with was needed and at
the same time to give good accuracy. A fluid is considered to be a hard phenomenon to
simulate in a realistic way and SPH has proven to perform well at doing that [22, 26].

The SPH method replaces the continuous media with a set of particles. This can be
interpreted in two ways. In a physicist’s way, SPH particles are material particles and
one can work with them like any other particle system. In a mathematical formulation,
particles are interpolation points and fluid properties can be calculated from them.

Properties of the SPH method are: stability, accuracy and adaptivity. Complying with
all three makes the method a good tool for engineering applications. The adaptability
of the SPH approximation helps when we have to deal with particle distributions in
an arbitrary way, because the SPH formulation is not affected. The SPH particles carry
material properties with them, which means that SPH is a good combination between
Lagrangian and particle method and they interact with each other within the range
given by a smoothing function.

Usually the governing equations are partial differential equations (PDEs) and using
the SPH method of discretization helps a lot, because PDEs are becoming ordinary
differential equations (ODEs) with respect to time, and it is much easier to deal with
them, with less computational costs. Numerical results can be found for different
fields, like density, pressure, velocity.

To obtain an SPH formulation there are two steps, two approximations to be made:
the kernel approximation and the particle approximation.

The first step consists in representing a function and its derivatives in continuous form
as integral representation. An integral representation or a kernel approximation of a
function f (x) used in SPH should look like

< f (x) >=

ˆ
Ω

f (x′)δ(x− x′)dx′, (4.1.1)

where f is a function of the position vector x, and δ(x− x′) is the Dirac distribution,
defined as

δ(x− x′) =

{
1 x = x′

0 x 6= x′
.

In (4.1.1), Ω is the support (fluid domain) of the point x - the domain of integration.
Using Dirac’s distribution the integral representation is exact, but only for f (x) which
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is defined and continuous in Ω. The elementary volume surrounding the point at x′

located in the neighborhood of the point at x, is notated with dx′.

If the Dirac distribution δ(x− x′) is replaced by a smoothing function W(x− x′, h), the
integral representation of f (x) is given by

< f (x) >:=
ˆ

Ω
f (x′)W(x− x′, h)dx′, (4.1.2)

where W is the smoothing kernel or kernel function. In the smoothing kernel, h is
called the smoothing length, defining the radius of influence of the smoothing function
W. If the smoothing function W is not the Dirac function, the integral representation
can only be an approximation. This is why it is called the kernel approximation.

The kernel approximation of the spatial derivative ∇ · f (x) is obtained by the formula

< ∇ · f (x) >≈
ˆ

Ω
[∇ · f (x′)]W(x− x′, h)dx′,

which gives

< ∇ · f (x) >≈ −
ˆ

Ω
f (x′) · ∇W(x− x′, h)dx′. (4.1.3)

The kernel function W determines the accuracy of function approximation, while the
kernel gradient determines the approximation accuracy of the first and second deriva-
tives. In order to obtain good accuracy, the kernel and the gradient have to be chosen
properly. As Monaghan said [26], it is always good to assume that the kernel is a
Gaussian, if you want to find a physical interpretation of an SPH equation. Monaghan
called this the first golden rule of SPH.

The Gaussian kernel function is adequately smooth even for higher order derivatives
and provides stable and accurate results even for random particles distributions. The
Gaussian function is defined by

W(R, h) = αe−R2
,

where R is the relative distance between two particles, located at points x and x′,
defined as R = r

h = |x−x′|
h , where r is the distance between the location of the two

particles. In order to formulate the 1D, 2D and 3D of the Gaussian kernel, α should be
replaced by 1

h
√

π
, 1

πh2 and 1
3√πh3 .

The angle brackets <> are used in (4.1.1) and (4.1.2) denote the kernel approximation.

The W smoothing function should satisfy a set of conditions:

(i) The first one is the normalization condition of the kernel that states
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ˆ
Ω

W
(
x− x′, h

)
dx′ = 1.

This condition is called also the unity condition, since the integration of the smooth-
ing function produces the unity. This property assures that a constant function is
reproduced exactly.

(ii) The second condition is the positivity condition

W(x− x′, h) ≥ 0,

for any point at x′ within the support domain of the particle at point x. This property
assures that the smoothing function is non-negative in the support domain. If it is not
satisfied, it is possible to get non-physical quantities, like negative density or negative
energy.

(iii) The third condition is the compact support condition

W(x− x′, h) = 0 when | x− x′ |> kh,

where kh is the radius of kernel support. Using this condition, integration over the
entire problem domain is localized as integration over the support domain of the
smoothing function. Thus, the integration domain Ω can be, and usually is the same
as the support domain. In other words, the particle b has no effect on particle a if it is
beyond a certain distance.

(iv) The fourth condition is the symmetry property. This condition assures that different
particles, located at the same distance but different position, should have equal effect
on a specific particle.

Figure 4.1.1: The discretization process of the continuous form (particle representation) [13]

The SPH kernel approximation can be converted into discretized forms of summation
over all the particles in the support domain. This process of summation over the
particles is commonly known as particle approximation in the SPH literature and it is
the second step in the SPH method (see Figure 4.1.1). Another 2D visualization of the
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distribution of particles over the Ω support domain with a surface S is represented in
Figure 4.1.2. There W is a smoothing function that is used to approximate the field
variables at particle i using averaged summations over particles j within the support
domain with radius of kh.

Figure 4.1.2: Particle approximation. Particles are being within the support domain of the smoothing
function W for particle i.

The continuous SPH integral representation for f (x) can be written in the following
form of discretized particle approximation

< f (x) >=
N

∑
j=1

f (xj)W(x− xj, h)dVj, (4.1.4)

where N is the number of particles within the support domain of particle j. We re-
placed the elementary volume dx′ at the location j with the finite volume of the particle
dVj that is related to the mass of the particles mj = dVjρj, where ρj is the density of
particle j, and j can take values from 1 to N. Therefore, substituting dVj in the equation
(4.1.4), a new formulation of the particle approximation can be written as

< f (x) >=
N

∑
j=1

mj

ρj
f (xj)W(x− xj, h).

A very important observation has to be made here. In the particle approximation step
two new magnitudes appear, mass and density. This is important for our purpose,
because density is a variable in problems of fluid dynamics.

The particle approximation for a function at particle i, has the form

< f (xi) >=
N

∑
j=1

mj

ρj
f (xj)Wij,
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where Wij = W(xi− xj, h). The equation states that the value of a function at a particle
i, is approximated using the values of all particles in the support domain of that
particle i, weighted by the smoothing function.

The particle approximation of a derivative for a particle i has the following form

< ∇ · f (xi) >= −
N

∑
j=1

mj

ρj
f (xj) · ∇Wij, (4.1.5)

which is the discretized form of equation (4.1.3), a summation over a set of particles.

Using those two steps one can derive SPH formulations for partial differential equa-
tions. Some equations for divergence of f (x) at particle i are described in the paper of
Liu&Liu[23]:

< ∇ · f (xi) >=
1
ρi

[
N

∑
j=1

mj
[

f (xj)− f (xi)
]
· ∇iWij

]
(4.1.6)

and

< ∇ · f (xi) >= ρi

[
N

∑
j=1

mj

[(
f (xj)

ρ2
j

)
+

(
f (xi)

ρ2
i

)]
· ∇iWij

]
(4.1.7)

There are some rules for operators, that can be used for complex system equations.
Considering two arbitrary functions of field variables f1 and f2, the following rules
can be applied.

The sum, difference and product of two SPH approximations is equal to the sum,
difference, product of the individual functions.

< f1 ± f2 >=< f1 > ± < f2 >,

< f 1 f2 >=< f1 >< f2 > .

If the function f1 is a constant, notated by c, the following equality takes place

< c f2 >= c < f2 > .

The SPH approximation operator is a linear one, so the SPH approximation operator
is a commutative one, as illustrated

< f1 + f2 >=< f2 + f1 >
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and

< f1 f2 >=< f2 f1 >

4.2 Flows in SPH

An attractive, illustrative application of surface tension computations is, as we have
seen in Chapter 2, the modeling of falling raindrops. From a flow point of view,
that is quite a complicated application, however: raindrops fall at a high velocity and
the wake behind a rain droplet contains very fine vortices that are hard to simulate.
For our purposes we want a simpler flow. We start by outlying the Navier-Stokes
equations, then show the inviscid Euler equations. Finally, we make a viscous flow by
studying a flow between two plates: Hele-Shaw flow, where the diffusion scales with
the velocity rather than its second derivative.

4.2.1 Navier-Stokes equations

The Navier-Stokes equations describe the motion of a fluid. The physical quantities
that are involved are the velocity u, density ρ and pressure p. These equations of the
fluid, are considered to describe continuous substance, not discrete particles.

The governing equations of fluid dynamics are following the three laws of conserva-
tion, as Liu presented in [23] :

• Mass conservation

Dρ

Dt
= −ρ

∂uβ

∂xβ
. (4.2.1)

• Momentum conservation

Duα

Dt
=

1
ρ

∂σαβ

∂xβ
+ F. (4.2.2)

In these equations, the Greek superscripts α, β are introduced to denote the coordi-
nate directions (2D : α, β = 1, 2 ; 3D : α, β = 1, 2, 3). Repetition of these indexes
indicates summation in the equation. The scalar density is notated with ρ, e represents
internal energy, uα indicates the velocity, σαβ is the total stress tensor, F is the external
forces (eg. gravity, surface tension, viscosity, pressure), t is for time and the spatial
coordinates are notated with xα.
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The total stress tensor σαβ is composed by two elements, one is the isotropic pressure2

and one is the viscous stress:

σαβ = −pδαβ + ταβ,

where δαβ is the Kronecker delta and the viscous stress is ταβ = µεαβ.

The definition of Kronecker’s tensor:

δαβ =

1, i f α = β

0, i f α 6= β
.

The connection between the shear stress ταβ and the viscous shear strain rate εαβ,
where µ is the dynamic viscosity is that they have to be proportional, for a Newtonian
fluid.

εαβ =

(
∂uβ

∂xα
+

∂uα

∂xβ

)
− 2

3
(∇ · u) δαβ.

The shear strain rate is used for compressible Newtonian fluid. It is composed by two
elements , the deformation velocity tensor and dilatation. If the fluid is incompressible
the second part is zero.

Further, we consider frictionless flow, so the viscous stress will be zero.

4.2.2 Euler equations

4.2.2.1 General Euler equations

We obtain the Euler equations for fluid, by rewriting the Navier-Stokes equations
(4.2.1), (4.2.2) and (??), and replacing the total stress tensor, with the isotropic pres-
sure σαβ = −pδαβ. Neglecting the viscous term from Navier-Stokes, we get the Euler
equations for frictionless flow.

• Mass conservation
Dρ

Dt
= −ρ

Duα

Dxα
. (4.2.3)

• Momentum conservation

Duα

Dt
=

1
ρ

−p
Dxα

. (4.2.4)

2isotropic pressure, is the pressure on a fluid at rest; it acts with equal magnitude in all directions
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Notations and conventions used for the Navier-Stokes equations hold here as well.
Euler’s equations are obtained from the equations of motion assuming a frictionless
flow. In a frictionless flow there can be no shear stress present, the surface forces are
due to pressure.

4.2.2.2 Euler equations approximated with SPH

The governing fluid dynamics equations are recalled and their numerical discretization
in the SPH particle approximation is illustrated.

The process of numerical discretization involves the approximation of functions, deriva-
tives and integrals at a particle by using the information taken from all its neighbours,
which are the surrounding particles that exert an influence on it.

A general SPH particle approximation of a function f at a particle i , can be written in
the discretized form of a summation of the neighbouring particles as

< fi >=
N

∑
j=1

f jWijdVj,

where the smoothing function W ij = W
(
xi − xj, h

)
; here h is the smoothing length,

which establish the area of influence of the function W. We think of particles as balls
of material having volume dVj = mj/ρj, where m is the mass and ρ is the density.

We will see further that different forms of equations can be used to describe the fluid
flows, depending on the specific circumstances.

SPH Mass conservation The density determines the particle distribution and the
smoothing length evolution. The mass of the fluid is unchanged regardless of its state
of motion.

When considering an incompressible flow, the time rate of change of mass when fol-
lowing a material fluid particle should be zero ( Dρ

Dt = 0).

In order to approximate the density, we will apply the SPH approximation to the
velocity part of equation (4.2.3)

Dρi

Dt
= −ρi

N

∑
j=1

uα
j

∂Wij

∂xα
i

dVj. (4.2.5)

The particle approximation of the gradient of unity

∇1 =

ˆ
1 · ∇W(x− x′, h)dx

′

=
N

∑
j=1

∂Wij

∂xα
i

dVj = 0,
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can be written also as

ρi ∑N
j=1 uα

i
∂Wij
∂xα

i
dVj = ρiuα

i

(
N

∑
j=1

∂Wij

∂xα
i

dVj

)
︸ ︷︷ ︸ .

0

(4.2.6)

The RHS part is equal to zero.

Next, we will add the RHS part from equation (4.2.5) with the RHS part of the equation
(4.2.6), like Liu has done in his work [23], and we will get:

Dρi

Dt
= ρi

N

∑
j=1

uα
ij

∂Wij

∂xα
i

dVj, (4.2.7)

where uα
ij = (uα

i − uα
j ). This equation is another SPH formulation, but it introduces

velocity difference into discrete particle approximation.

Another SPH formulation for mass conservation, also with velocity difference, can
be obtained, by applying the following formulation, to place the density inside the
gradient operator

−ρ
Duα

Dxα
= −

(
D (ρuα)

Dxα
− uα · Dρ

Dxα

)
.

Applying particle approximation, we have

−ρ
Duα

Dxα
= −

N

∑
j=1

ρjuα
j

∂Wij

∂xα
i

dVj +
N

∑
j=1

ρjuα
i

∂Wij

∂xα
i

dVj,

Dρ

Dt
= −

N

∑
j=1

ρj
mj

ρj
uα

j
∂Wij

∂xα
i
+

N

∑
j=1

ρj
mj

ρj
uα

i
∂Wij

∂xα
i

,

Dρ

Dt
=

N

∑
j=1

mjuα
ij

∂Wij

∂xα
i

. (4.2.8)

What we can observe is that the time rate of the density of a particle is in a relationship
with the relative velocities between this particle and all the neighbouring particles
in the support domain. The approximation in (4.2.8) is written in vector notation,
uij =

(
uα

i − uα
j

)
. This relative velocity is beneficial at reducing errors from particle

inconsistency3.

3The particle inconsistency is the discrepancy between the spatially discretized equations and the cor-
responding kernel approximations in continuous form.
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SPH Momentum conservation In order to discretize the momentum equation, we
will apply the SPH particle approximation to equation (4.2.4) :

Duα
i

Dt
=

1
ρi

N

∑
j=1
−pj

∂Wij

∂xα
i

dVj. (4.2.9)

Rewriting the particle approximation of the gradient of unity, we have that

1
ρi

N

∑
j=1
−pi

∂Wij

∂xα
i

dVj = −
pi

ρi

(
N

∑
j=1

∂Wij

∂xα
i

dVj

)
= 0, (4.2.10)

is zero, because the term in brackets is zero.

Considering the equation (4.2.9) and the equation (4.2.10), and adding the RHS part of
both of them, leads to

Duα
i

Dt
= −

N

∑
j=1

mj
pi+pj

ρiρj

∂Wij

∂xα
i

. (4.2.11)

This equation is important because it reduces errors that could come from particle
inconsistency problem.

We can get to another formulation by considering the following

1
ρ

−p
Dxα

=
D

Dxα

−p
ρ

+
−p
ρ2

Dρ

Dxα
.

Applying particle approximation to the gradient, we get:

Duα
i

Dt
=

N

∑
j=1

−pj

ρj

∂Wij

∂xα
i

dVj −
pi

ρ2
i

N

∑
j=1

ρj
∂Wij

∂xα
i

dVj

= −
(

N

∑
j=1

pi

ρ2
i

mj
∂Wij

∂xα
i
+

N

∑
j=1

pj

ρ2
j
mj

∂Wij

∂xα
i

)
,

Duα
i

Dt
= −

N

∑
j=1

(
pi

ρ2
i
+

pj

ρ2
j

)
mj

∂Wij

∂xα
i

. (4.2.12)

The conservation of momentum implies that the momentum remains constant; this
means that momentum is not created or destroyed.
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SPH formulation of Euler equations

Conservation of mass
Dρi
Dt = −ρi ∑N

j=1 uα
j

∂Wij
∂xα

i
dVj

Dρi
Dt

= ρi ∑N
j=1 uα

ij
∂Wij
∂xα

i
dVj

Dρi
Dt = ∑N

j=1 mjuα
ij

∂Wij
∂xα

i

Conservation of momentum
Duα

i
Dt = −∑N

j=1 mj
pi+pj
ρiρj

∂Wij
∂xα

i

Duα
i

Dt = −∑N
j=1

(
pi
ρ2

i
+

pj

ρ2
j

)
mj

∂Wij
∂xα

i

4.2.2.3 2D Euler equations approximated with SPH

Taking in consideration Euler equations for mass, momentum and energy conserva-
tion, we can write a 2D SPH scheme for frictionless Euler flow.

From equation (4.2.7), the 2D SPH for the mass conservation leads to

Dρi

Dt
= ρi

N

∑
j=1

(
u1

ij
∂Wij

∂x1
i

dVj + u2
ij

∂Wij

∂x2
i

dVj

)
. (4.2.13)

From equation (4.2.11), the 2D SPH formulation for momentum conservation gives
rise to two equations

Du1
i

Dt
= −

N

∑
j=1

mj
pi+pj

ρiρj

∂Wij

∂x1
i

, (4.2.14)

Du2
i

Dt
= −

N

∑
j=1

mj
pi+pj

ρiρj

∂Wij

∂x2
i

, (4.2.15)

where the superscripts denote the coordinate direction.

In these equations the smoothing function is Wij = W
(
xi − xj, h

)
, the velocities in two

directions are u1
ij =

(
u1

i − u1
j

)
and u2

ij =
(

u2
i − u2

j

)
, and the volume of the particle is

dVj = mj/ρj.
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4.2.3 Hele-Shaw flow

Further, we studied the Hele-Shaw flow, because we were interested in stationary
solutions and we needed a flow with diffusion.

The flow defined by Hele-Shaw, is described as Stokes flow between two plates with
a small gap between them. The plates are flat and parallel, and the channel between
them is very small. A good reason to work with Hele-Shaw flow is that it provide us
with an easily accessible model.

Almost any microscopic flow analysis, will start from Navier-Stokes equations. It
would be an easier way to work with these equations if we simplify the equations,
because it is difficult to compute and work with the second derivative diffusion term
µ∇2u. This term will be replaced by a simpler term µ

H2 u, resulting to an equation
similar to Hele-Shaw equation, which is much easier to work with.

Figure 4.2.1: Hele Shaw scheme [source figure Amir Gat]

We will start with the Navier-Stokes equations, using tensor notation, representing
mass and momentum conservation:

∂ρ

∂t
+

∂

∂xj

(
ρuj
)
= 0, (4.2.16)

∂

∂t
(ρui) +

∂

∂xj

(
ρujui + pδij − τij

)
= fi. (4.2.17)

The notations used are ρ for density, ui stand for the three speed components, xi is
used for the 3D spatial coordinates, p is the pressure and t represents the time. The
Kronecker delta δij is defined such that δij = 1 if i = j and δij = 0 otherwise. Notated
by τij is a 3 x 3 stress tensor and by fi is a body force.

We will consider the Poiseuille flow, pressure-induced flow, between two infinite par-
allel plates at a distance h. We assume that the medium is incompressible, so equation
(4.2.16) becomes

∂uj

∂xj
= 0, (4.2.18)

which can be also written explicitly as

99



CHAPTER 4. SMOOTHED PARTICLE HYDRODYNAMICS

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0,

where u, v, w are the velocity components and x, y, z are the spatial coordinates.

For an incompressible flow, ρ does not change and its material derivative vanishes
Dρ
Dt = 0.

Considering the reduce equation of the continuity equation (eq. 4.2.18), the expression
for the strain will be also simplified to:

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Making the simplifications also in the momentum equation (eq.4.2.17) and inserting
the new formulation for strain, leads to

ρuj
∂ui

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
2µ

1
2

(
∂ui

∂xj
+

∂uj

∂xi

))
,

ρuj
∂ui

∂xj
= − ∂p

∂xi
+ µ

∂2ui

∂x2
j
+ µ

∂

∂xi

∂uj

∂xj
.

In the previous formulation the last term of the RHS vanishes because of the equation
(4.2.18), resulting a simpler expression of the momentum conservation

ρuj
∂ui

∂xj
= − ∂p

∂xi
+ µ

∂2ui

∂x2
j

. (4.2.19)

In this equation the rightmost term is difficult to compute so the idea is to replace it
with a simpler term.

Further we will use the notations x for x1, y for x2, z for x3, u for u1, v for u2 and w for
u3. The two plates stretch infinitely into the x and y directions, and the gap between
them is in the z direction.

Assuming that the horizontal flow direction is into the x-direction, leads to

v = 0 and
∂

∂y
= 0.

The plates are infinitely large, so we are interested only in the fully developed flow,
where the speed profile does not change anymore

∂u
∂x

=
∂w
∂x

= 0.
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Figure 4.2.2: Fully developed flow

After we made the assumptions regarding the direction of the flow and the fact that
the medium is incompressible, the system of equations will become

∂u
∂x

+
∂w
∂z

= 0,

ρu
∂u
∂x

+ ρw
∂u
∂z

= −∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂z2

)
,

ρu
∂w
∂x

+ ρw
∂w
∂z

= −∂p
∂z

+ µ

(
∂2w
∂x2 +

∂2w
∂z2

)
.

Taking in consideration that the flow is fully developed, all the derivatives of velocities
to x (direction of the flow) will be dropped, because it does not change anymore. In
this case the system will become even simpler

∂w
∂z

= 0,

ρw
∂u
∂z

= −∂p
∂x

+ µ
∂2u
∂z2 ,

ρw
∂w
∂z

= −∂p
∂z

+ µ
∂2w
∂z2 .

Next, we will consider two boundary conditions, the no-penetration and no-slip bound-
ary condition. The first one, represents the fact that the fluid will not pass through the
plates, and we can write it like

w(x, y, 0) = w(x, y, h) = 0,

which means that w = 0 for all z.

101



CHAPTER 4. SMOOTHED PARTICLE HYDRODYNAMICS

Figure 4.2.3: No-penetration condition

Now we are left with the first momentum equation which relates the horizontal pres-
sure drop to the viscous term and a relation which states that pressure is constant over
the height.

∂p
∂x

= µ
∂2u
∂z2 , (4.2.20)

∂p
∂z

= 0.

This expression ∂p
∂z is a function of z only, so we can directly integrate the first expres-

sion (eq. 4.2.20) over the height z.

∂2u
∂z2 =

1
µ

∂p
∂x

,

∂u
∂z

=
1
µ

∂p
∂x

z + C1,

u(z) =
1

2µ

∂p
∂x

z2 + C1z + C2. (4.2.21)

The second boundary condition that we will use is the no-slip4 condition, which is

u (0) = u (h) = 0.

Figure 4.2.4: No-slip boundary condition

Using the first condition u(0) = 0, we have that C2 = 0. Using the second condition
u(h) = 0, we have that C1 = − 1

2µ
∂p
∂x h. Substituting these in equation (4.2.21), we find

4No slip means that at a solid boundary the fluid will have zero velocity relative to the boundary.
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u(z) = − 1
2µ

∂p
∂x

z (h− z) . (4.2.22)

Thus, Poiseuille flow has a parabolic profile, and it flows in the direction of decreasing
pressure.

We will continue with a two dimensional approximation, using the main result from
the Poiseuille flow, which is the solution for a specific case. We will use the previous
result, the existence of a solution in form of a parabolic profile, to analyze the Navier-
Stokes equation, without imposing so many restrictions as we did in the last section.

Without restricting ourself to a single flow direction, we assume a profile ϕ in z direc-
tion, which is the same in both horizontal directions, and laminar5 flow, i.e. no speed
in z direction anywhere:

u(x, y, z) = ū(x, y)ϕ(z),
v(x, y, z) = v̄(x, y)ϕ(z),
w(x, y, z) = 0.

We choose to scale ϕ such that it is dimensionless
ˆ h

0
ϕ (z) dz = h,

and ū and v̄ stand for the average speeds in x and y directions.

For a parabolic profile (which represents laminar flow), this means

ϕ(z) =
6
h2 z (h− z) .

We insert these speeds in the incompressible Navier-Stokes, mass equation (4.2.18) and
momentum equation (4.2.19), to find

ϕ

(
∂ū
∂x

+
∂v̄
∂y

)
= 0,

ρϕ2
(

ū
∂ū
∂x

+ v̄
∂ū
∂y

)
= −∂p

∂x
+ µ

(
ϕ

∂2ū
∂x2 + ϕ

∂2ū
∂y2 + ϕ′′ū

)
,

ρϕ2
(

ū
∂v̄
∂x

+ v̄
∂v̄
∂y

)
= −∂p

∂y
+ µ

(
ϕ

∂2v̄
∂x2 + ϕ

∂2v̄
∂y2 + ϕ′′v̄

)
,

∂p
∂z

= 0.

5Laminar flow, means that the fluid moves in “layers", in contrast to the chaotic motion of the turbulent
flow.
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For a laminar flow, we integrate the first three equations over z from 0 to h, and divide
these by h. In order to do that we will need these relations: ϕ

′′
= −12/h2,

´ h
0 dz = h,´ h

0 ϕdz = h which is the scale and
´ h

0 ϕ2dz = 6h/5. After integration the system will
be reduced to a two-dimensional equation:

∂ū
∂x

+
∂v̄
∂y

= 0,

6
5

ρ

(
ū

∂ū
∂x

+ v̄
∂ū
∂y

)
= −∂p

∂x
+ µ

(
∂2ū
∂x2 +

∂2ū
∂y2 −

12
h2 ū

)
,

6
5

ρ

(
ū

∂v̄
∂x

+ v̄
∂v̄
∂y

)
= −∂p

∂y
+ µ

(
∂2v̄
∂x2 +

∂2v̄
∂y2 −

12
h2 v̄

)
.

This can be written in a vector form as

∇ū = 0, (4.2.23)

6
5

ρū · ∇ū = −∇p + µ∇2ū− 12µ

h2 ū. (4.2.24)

This equation looks like the normal incompressible Navier-Stokes, without the last
term. The rightmost term describes the viscous losses to the two plates and the fact
that the density increases a bit.

The distance between the two plates is much smaller than the horizontal distances,
which makes the term 12µū

h much larger than the two dimensional viscous term µ∇2ū.
For this reason we can neglect the second term in the RHS of the equation (4.2.24).

In order to demonstrate that 12µū
h � µ∇2ū we will make a dimensionless analysis,

so that we can compare them, to see which one influence more the fluid flow. Let’s
consider the following dimensionless notations L for the 2D horizontal length scale,
h for the layer thickness (L � h), U for velocity and for pressure we have p = µU

L .
We will set the following: x = Lx̃, y = Lỹ, z = Lz̃, ū = Uũ, v̄ = Uṽ, p = µU

L p̃ and
∇ = 1

L ∇̃.

Further the equation (4.2.24) will be written in a non-dimensional form

6
5

ρUũ
1
L
∇̃ (Uũ) = − 1

L
∇̃µU

L
p̃ +

µU
L2 ∇̃

2ũ− 12µ

h2 Uũ.

Dividing the equation with µU/h2 leads to

6
5

ρUh2

Lµ

L
L

(
ũ∇̃ũ

)
= −h2

L
∇̃ p̃ +

h2

L2 ∇̃
2ũ− 12ũ.

104



CHAPTER 4. SMOOTHED PARTICLE HYDRODYNAMICS

Substituting ε = h/L and Reynold’s Number ReL = ρUL
µ in the previous equation, we

obtain
6
5

ReLε2ũ∇̃ũ = −ε2∇̃ p̃ + ε2∇̃2ũ− 12ũ,

ε2
(

6
5

ReLũ∇̃ũ + ∇̃ p̃
)
=
(

ε2∇̃2 − 12
)

ũ. (4.2.25)

We look only at slow flows so the Reynold’s Number is small which leads to

ReLũ · ∇̃ũ + ∇̃ p̃ ≈ ∇̃ p̃.

Furthermore if ε� 1 we have (
ε2∇̃2 − 12

)
≈ −12.

Considering the last two observations, equation (4.2.25) will become

ε2∇̃ p̃ ≈ −12ũ,

this means that 12µū
h � µ∇2ū is true, so we can drop the viscous term.

The system of the laminar flow will be much simpler now

∇ū = 0, (4.2.26)

6
5

ρū · ∇ū = −∇p− µ
12
h2 ū. (4.2.27)

We can write the formula for the gradient of the pressure from the equation (4.2.27),
which is

∇p = −12µ

h2 ū.

Applying gradient to the previous equation we get another expression

∇2 p = −12µ

h2 ∇ū = 0.

Thus, the system for the laminar flow will look like

∇2 p = 0, (4.2.28)

ū = − h2

12µ
∇p. (4.2.29)

The first equation represents the potential flow and the second equations of the system
represents the speed in terms of pressure gradient.
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We can fill it directly into the equation of mass conservation, to obtain

∇u = ∇
(
− h2

12µ
∇p
)
= 0,

∂2 p
∂x2 +

∂2 p
∂y2 = 0.

This equation is actually the Hele-Shaw governing equation.

4.3 Surface tension in SPH

In this Chapter we looked over different approaches of how to plug in surface tension
into flow. The flow that we chose was Hele-Shaw, because it is a simpler flow which
has diffusion. First we looked over Van der Waals approach, which turned out to be
too complicated and not what we were looking. Then we analyze the Cahn-Hilliard
equation, which models a phase separation process. This was an interesting approach
but we decided to go with Tartakovsky’s approach, to add an attractive force to the
system.

4.3.1 Van der Waals equation

The equation of van der Waals is used for fluids composed of particles with positive
volume. Between these particles there is an attractive force. This force can be a van der
Waals interaction force, which is the sum of the attractive forces between particles, see
[23]. This equation is a state equation because it uses the following states variables, and
describes the relationship between them: the pressure p, the volume of the container
in which is the fluid V, the absolute temperature T and the number of moles n.

Van der Waals equation of state can be used to model the behavior of the fluid. We
need the equation of states in order to close the following Euler equation system

Dρi

Dt
=

N

∑
j=1

mjvα
ij

∂Wij

∂xα
i

,

Dvα
i

Dt
= −

N

∑
j=1

(
pi

ρ2
i
+

pj

ρ2
j

)
mj

∂Wij

∂xα
i

.

One form of the equation of van der Waals is(
p +

a
v2

)
(v− b) = kT,
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where k is the Boltzmann’s constant, v is the volume of the container shared between
each particle, a measures the strength of the attraction force and b is representing the
size of the particle.

From the equation of van der Waals, pressure can be written as

p =
kT

v− b
− a

v2 .

We can rewrite the pressure equation in terms of density, 1/v, as

p =
ρkT

1− ρb
− aρ2, (4.3.1)

where the second term is the cohesive pressure.

Considering as Liu and Liu in [23] the SPH approximation for pressure and from
(4.3.1) only the cohesive pressure part we get the following SPH formulation

Dvα
i

Dt
= −

N

∑
j=1

mj

(
−aρ2

i
ρ2

i
+
−aρ2

j

ρ2
j

)
∂Wij

∂xα
i
+ 2a

N

∑
j=1

mj
∂Wij

∂xα
i

.

Now the system will become

Dρi

Dt
=

N

∑
j=1

mjvα
ij

∂Wij

∂xα
i

,

Dvα
i

Dt
= −

N

∑
j=1

(
pi

ρ2
i
+

pj

ρ2
j

)
mj

∂Wij

∂xα
i
+ 2a

N

∑
j=1

mj
∂Wij

∂xα
i

.

A major drawback of this method is that we have had to change the equation of state
to the assumption that we deal with a Van der Waals - fluid. This is not desirable, if we
want to model hypervelocity impacts. With all phase transitions the equations of state
needed are already complicated enough. Another severe drawback of this method
is that the parameter a and b are actually not physical parameters of the underlying
material but properties of the SPH particle system. Having to tune two parameters is
unwanted.

4.3.2 Cahn-Hilliard equation

The equation of Cahn-Hilliard models the phase separation process. When we say
separation we refer to a binary fluid that by separation forms two pure domains.
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Following the approach of P. Gao and J.J. Feng in [8], we will consider two Newtonian
fluids, to be incompressible (∇u = 0) and immiscible to each other. We will neglect
inertia and gravity.

A new variable will be a phase-field variable, noted by φ, which will indicate the
domain, φ = 1 in the first fluid and φ = −1 in the second fluid.

The Cahn-Hilliard equation for advection and diffusion of φ described in [8] is

Dφ

Dt
=

∂φ

∂t
+ u · ∇φ = ∇ · (γ∇G) , (4.3.2)

where t is for time, u is the flow velocity vector, γ is representing the mobility param-
eter and G is the chemical potential. The G variable is such that

G = λ
[
−∇2φ +

(
φ2 − 1

)
φ/ε2] ,

where λ is the mixing energy density and ε is used for the capillary width.

It is a challenge to solve (4.3.2) numerically because it is a fourth order equation. For
that reason, we will simplify the equation.

Considering the Navier Stokes (NS) equations for the flow of the fluid, and the Cahn
Hilliard (CH) model, we will have the following system

∇ · u = 0, (4.3.3)

ρ

(
∂v
∂t

+ u · ∇u
)
= −∇p + µ∇2u + G∇φ, (4.3.4)

Dφ

Dt
= ∇ · (γ∇G) . (4.3.5)

The momentum equation has an extra term G∇φ, which is the contribution of the
interfacial force, and µ is the viscosity.

The material derivative of equation (4.3.4) can be written as

Du
Dt

=
1
ρ

(
−∇p + µ∇2u + G∇φ

)
.

Replacing the second order term with 12µ
h2 , will give rise to the Hele-Shaw equation, as

we show in Chapter 3

Du
Dt

=
1
ρ

(
−∇p− 12µ

h2 u + G∇φ

)
.
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Now, the mass conservation equation in a general form is written as

∂ρ

∂t
+∇ (ρu) = 0.

Applying the product rule, this leads to

∂ρ

∂t
+ ρ∇u + u∇ρ = 0.

So, the material derivative of the previous equation is

Dρ

Dt
= −ρ (∇u) .

Further, assume that γ = 0, so we can simplify (4.3.2) as

Dφ

Dt
=

∂φ

∂t
+ u · ∇φ = 0.

After all modifications, the system becomes

Dρ

Dt
= −ρ (∇u) ,

Du
Dt

=
1
ρ

(
−∇p− 12µ

h2 u + G∇φ

)
,

Dφ

Dt
= 0.

Further, we will write SPH formulations for the equations of the system. Using equa-
tion (4.1.5) from the previous chapter, the SPH discretization of the system is

Dρi

Dt
= ρ

N

∑
j=1

mj

ρj
uj∇iWij, (4.3.6)

Dui

Dt
=

1
ρi

N

∑
j=1

mj

ρj
pj∇iWij −

12µ

h2
ui

ρi
+

G
ρi

N

∑
j=1

mj

ρj
φj∇iWij, (4.3.7)

Dφ

Dt
= −

N

∑
j=1

mj

ρj
φj∇Wij = 0.
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Another SPH formulation for the mass conservation can be written using formula
(4.1.6):

Dρi

Dt
= −ρi

[
1
ρi

(
∑

j
mj
(
uj − ui

)
∇iWij

)]

=
N

∑
j=1

mj
(
ui − uj

)
∇iWij =

N

∑
j=1

mjuij∇iWij.

Using the same formula, the SPH momentum equation is

Dui

Dt
=

1
ρi

[
− 1

ρi

N

∑
j=1

mj
(

pj − pi
)
∇iWij

]
− 12µ

h2
ui

ρi
+

G
ρi

1
ρi

[
N

∑
j=1

mj
(
φj − φi

)
∇iWij

]
,

Dui

Dt
= − 1

ρ2
i

N

∑
j=1

mj
(

pj − pi
)
∇iWij −

12µ

h2
ui

ρi
+

G
ρ2

i

N

∑
j=1

mj
(
φj − φi

)
∇iWij.

We can derive another formulation for the momentum equation using formula (4.1.7)
as

Dui

Dt
=

1
ρi

[
−ρi

N

∑
j=1

mj

(
pj

ρ2
j
+

pi

ρ2
i

)
∇iWij

]
− 12µ

h2
ui

ρi
+

G
ρi

ρi

[
N

∑
j=1

mj

(
φj

ρ2
j
+

φi

ρ2
i

)
∇iWij

]
,

Dui

Dt
= −

N

∑
j=1

mj

(
pj

ρ2
j
+

pi

ρ2
i

)
∇iWij −

12µ

h2
ui

ρi
+ G

N

∑
j=1

mj

(
φj

ρ2
j
+

φi

ρ2
i

)
∇iWij.

The first term from (4.3.7)

1
ρi

N

∑
j=1

mj

ρj
pj∇iWij, (4.3.8)

can be rewritten as

1
ρi

N

∑
j=1

mj

ρj
pj∇iWij =

pi

ρi

(
N

∑
j=1

mj

ρj
∇iWij

)
= 0, (4.3.9)

where the term in brackets is zero.
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Adding (4.3.8) with (4.3.9) leads to

1
ρi

N

∑
j=1

mj

ρj
pj∇iWij +

pi

ρi

N

∑
j=1

mj

ρj
∇iWij =

N

∑
j=1

pj + pi

ρjρi
mj∇iWij. (4.3.10)

If we do the same steps for the third term in (4.3.7) 1
ρi

∑N
j=1

mj
ρj

φj∇iWij, will lead to

1
ρi

N

∑
j=1

mj

ρj
φj∇iWij +

φi

ρi

N

∑
j=1

mj

ρj
∇iWij =

N

∑
j=1

φj + φi

ρjρi
mj∇iWij. (4.3.11)

Putting all together (4.3.10) and (4.3.11), another SPH discretization of momentum can
be defined by

Dv
Dt

= −
N

∑
j=1

pj + pi

ρjρi
mj∇iWij −

12µ

h2 u + G
N

∑
j=1

φj + φi

ρjρi
mj∇iWij.

Note that this looks similar to the Van der Waals approach, where the contribution of
the surface tension also shows a summation of terms with mj∇iWij. This superficial
similarity is invalid however: the Cahn-Hilliard equation only puts a force near the
interface, as G is only non-zero near the interface. This is also the drawback: the
computation of G requires the use of the second derivative of the kernel, which is an
unwanted property. If we can reformulate this second derivative, however, the method
might be very interesting. Even if it has some parameters, the relation between λ and
ε on one side and surface tension γ on the other has been well established.

4.3.3 Particle system potential(Tartakovsky’s approach)

In [32], Tatrakovsky introduces an easier approach with resembles the approach cho-
sen by Liu to simulate

fij =

{
sij cos( 1

2 π‖r‖/h) r
‖r‖ , ‖r‖ ≤ h

0, ‖r‖ > h
. (4.3.12)

Here sij is a coefficient that catches the attraction between particles and r = rj −
ri. It is only dependent on the species of particles i and j. For a single fluid free
boundary problem, or for a two fluid problem with an interface, it only needs to be
non-zero for particles of the same kind. Interestingly, attractive forces can be applied
between particles of different species (just as in reality) with which contact angles can
be simulated. The number Sij can be determined by tuning benchmark cases.
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This force will be added to the momentum equation of Hele-Shaw flow.

The benefit of this approach is most of all its simplicity: rather than operating in the
smoothed domain, it is directly applied on the particles themselves. It has only one
parameter to tune, e.g. via the pressure in a droplet.

4.4 Implementation

Because of the ease of implementation, the fact that it does not need alterations in
the equation of state, and the general applicability we have chosen to implement Tar-
takovsky’s approach of Section 4.3.3 into Iason Zisis’ hypervelocity impact simulator.
This is a compact SPH implementation written in C++. The compactness makes it
ideal to test new ideas.

We implemented as Euler with additional force terms (force for Hele-Shaw and surface
tension) on the particles, so equation (4.2.13) remains the same

Dρi

Dt
= ρi

N

∑
j=1

(
u1

ij
∂Wij

∂x1
i

dVj + u2
ij

∂Wij

∂x2
i

dVj

)
,

and (4.2.14),(4.2.15) written in α coordinate direction, becomes

Duα
i

Dt
= −

N

∑
j=1
{mj

pi+pj

ρiρj

∂Wij

∂xk
i
− f TR

ij } − f HS
i ,

where f TR
ij is the Tartakovsky’s attraction force defined in (4.3.12) and f HS

i is the Hele-
Shaw term defined in (4.4.1).

We have tried various variations on Tartakovsky’s approach. In it its pure form equa-
tion (4.3.12) acts on the particles, and this is the approach we will show in the results
below. However, Zisis’ SPH formulation has a couple of extensions to the standard
SPH formulation, that allows for mass differences between the particles, but more im-
portantly uses a variable smoothing length. This means that the summation over j of
equation (4.3.12) is best interpreted as a volume-integral.

Also the Hele-Shaw friction was implemented as a particle force:

fHS
i = −µHSui, (4.4.1)

where µHS is some tunable parameter. In the experiments below we have only used
this force to overcome very high velocities, for example in the case of a square-shaped
bubble turning into a circle. The sharp corners of a square have zero radius and
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therefore infinite curvature. Also the pressure jump would become infinity at that
point according to the Young-Laplace equation. Fortunately, SPH smoothens things
out already. However, since we are more interested in the shape changes of the bubble
than in the internal reflections of the pressure waves, this term helps us to dampen
things out.

For the equation of state we have used a quasi-incompressible relation [34, 35]:

p =
Ca
7

[(
ρ

ρ0

)7

− 1

]
, (4.4.2)

where Ca =
ρ0C2

0
K , which is the speed of sound over the bulk modulus state medium.

4.5 Results and discussion

To test the implementation of the Tartakovsky’s approach, we have selected a few test
cases. First of all we will be looking at how surface tension makes a circle from a
square start form. Then we look how surface tension affects hypervelocity impacts.

4.5.1 Circling the square

In this section we check if our surface tension works as expected. Without any ex-
ternal force the surface should take a circular form and the pressure should increase.
We will look for two cases of initial squares, with different dimension, but the same
Tartakovsky attraction coefficient sij. The attraction force was added to a Hele-Shaw
flow.

Small square Assume a square with the length of 0.01 and the width of 0.01. The
grid layout has 625 particles (25 x 25) equal distributed. The parameters used are:
sij = 10, Ca = 1, µHS = 1. The simulation is made for 10,000 timesteps of 0.1 ms each.

The results are represented in Figure 4.5.1, where we can observe the effect of surface
tension into SPH. As we expected the square shape is deformed, and as the timestep
increase the shape is becoming more round. In Figure 4.5.2, can be seen the increase
of pressure, as we expected, and the low pressure at the sharp corners of the square.
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Figure 4.5.1: Small square. Initial configuration, after 1000 timesteps, after 10,000 timesteps.

Figure 4.5.2: Pressure at 0 s, 100 ms and 1 s.

Large square, same high friction In this example we considered a much bigger
square, with length of 1.0 and width of 1.0, with the same amount of particles in the
grid layout as before. We kept also the Tartakovsky parameter sij = 10, Ca = 1 and
µHS = 1, the same. The simulation is made for 10,000 times steps of 0.1 ms each.
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Figure 4.5.3: Large square. Initial configuration, after 1000 timesteps, after 10,000 timesteps.
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Figure 4.5.4: Pressure at 0 s, 100 ms and 1 s.

The results are illustrated in Figure 4.5.3 and how pressure changed in Figure 4.5.4.
As we can see the pressure increases, shape becomes round but at the end changes
are so slow, a circle is not even obtained after 100,000 timesteps. This is because of too
high friction as we will see next.

Large square, lower friction For the last case, we assumed again a large square with
length 1 and width 1. Parameters that we kept are the Tartakovsky sij = 10 and Ca =
1. This time we changed the friction coefficient, by decreasing it to µHS = 0.01. The
simulation is made for 20,000 times steps of 0.1 ms each.

Now the results are the desired ones. The fluid is set in motion by the high pressures
(Figure 4.5.6), eventually it dampens out. Pressure increases and the shape becomes
round now, Figure 4.5.5.

Figure 4.5.5: Large square, low µHS. After 5000 timesteps, 10,000 and 20,000 timesteps.
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Figure 4.5.6: Pressure at 50 s, 100 ms and 1 s.

Comparing the results of this large square, with low friction, with the results of the
small square, we can say that the computations are correct, since the surface tension
is approximately constant. We know, by computing the surface tension with formula
γ = R∆p, where R is the radius and ∆p is the pressure difference. Note that the
surface tension is scaled with h = L/N, where h is the distance between particles, L is
length and N is particles number.

4.5.2 Hypervelocity impacts

Reference: no surface tension Further we will look how surface tension affects hy-
pervelocity impacts. For that, first we have to consider a case without surface tension,
for a Hele-Shaw flow.

We consider two rectangles, which consist of 3125 particles for two grid layouts, and
we will simulate an impact between those two. The parameters then will be Tar-
takovsky sij = 0, Ca = 1 and µHS = 0. For the left rectangle the initial horizontally
velocity is u = 1. The simulation is made for 10,000 times steps of 0.1 ms each.
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Figure 4.5.7: Hypervelocity impacts, without considering surface tension. (Initial configuration, after
1000 timesteps, after 10,000 timesteps.)
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Figure 4.5.8: Pressure at 0 s, 100 ms and 1 s.
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Figure 4.5.9: Hypervelocity impacts, considering surface tension. Initial configuration, after 1000
timesteps, after 10,000 timesteps.

Figure 4.5.10: Pressure at 0 s, 100 ms and 1 s.

Reference: with surface tension The next step is to add surface tension to Hele-
Shaw flow. We take as parameters: Tartakovsky sij = 0 for projectile (left rectangle),
sij = 1 for the plate at rest (right rectangle), Ca = 1 and the friction coefficient µHS = 0.
We will assume the same amount of particles in those two grid layouts and again the
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initial horizontal velocity u = 1, for the left rectangle. The simulation is made for
10,000 times steps of 0.1 ms each.

Discussion Looking to the previous two cases, Figure 4.5.7 and Figure 4.5.9, it is
clear that surface tension keeps particles together, due to the fact that there are less
particles shot back from the plate, above and below the projectile. Another difference
is that the interface between the objects is rounder, when surface tension is present.
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5 Conclusion

In this thesis we have shown how to find the shape of bubbles and droplets by using
different numerical techniques and how to treat free surface flows that involve surface
tension.

We found the shape of droplets by using two different methods: the shooting method
and an optimization method. The shooting method, solves a (non-linear) ordinary
differential system involving the curvature as a function of angle around the shape in
order to find the solution. On the other hand, the optimization method minimize the
curvature, by computing it repeatedly, in order to find the proper solution. We found
the curvature in two ways: one by circle fitting and one by central differences. The
circle fit algorithm is more accurate when it is computed for a big number of neighbor
points. The central differences algorithm is more accurate for smooth data, while the
circle fit algorithm is better to be used for noisy data. Both methods, the shooting and
optimization method succeed on all test cases but there are some differences that we
can depict : the shooting method is more sensitive to initial guesses. In some cases,
this system can become stiff, and create difficulties in solving it with explicit numerical
methods, so a proper solver has to be chosen. Another difference of these two methods
is the way they conserve area. The area is always preserved with the shooting method,
but we cannot always rely on the optimization method to behave the same.

Simulations with both methods, show that the shape of droplets and bubbles are in-
fluenced by their dimension. Thus, small droplets have a spherical shape and the
larger they get, the deformation is more pronounced. Another factor that influences
the shape of droplets and bubbles is their velocity. Increased velocity will also induce
a proportional rise in the pressure that acts over the surface. This also alters the shape
of the droplet. The shape of droplets that are falling with high velocity are more
deformed than those that are falling much slower.

The shape of droplets, has been computed by plugging pressure into curvature. In
every case the effects of surface tension are more visible for larger droplets. This can
be observed also in several COMSOL simulations, where we computed the shape of
a raising bubble. Surface tension effects are predictable by using the Eötvös number.
For bubbles computed with a small Eötvös number, indicating that the surface tension
dominates, the shape is spherical, while for a bigger Eötvös number, the bubble is
deformed to a more flatten shape, because in this case the buoyancy forces dominate
over the surface ones.

Aspects of Smoothed Particle Hydrodynamics and flows were treated in this thesis,
where surface tension effects are quite complicate to be simulated from the point of
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a flow. Here, we explored different flows, as Navier-Stokes flow, which describe the
motion of a fluid, then we analyzed Euler’s frictionless flow. In the end Hele-Shaw
flow was treated as a viscous flow and proved to be a more accessible model. This
is similar to the Navier-Stokes flow, but the equations that describe it are simplified,
because the second derivative diffusion term is replaced with a simpler term.

We presented three ways to introduce surface tension in SPH: the first uses equation
of Van der Waals, second one is based on the equation of Cahn-Hilliard and the last
one is a particle system potential treated with Tartakovsky’s approach, which was
implemented into Iason Zisis’ hypervelocity impact simulator. Tests have been done
to point how surface tension tends to minimize a shape area. The including of surface
tension in hypervelocity impacts, was a success, because the behavior is the expected
one. More particles stay together in a more rounded shape than for the case without
surface tension.

This thesis proved to be a good study case because our goals were reached. We repro-
duced the shape of droplets and bubbles by using different numerical methods and
we introduced surface tension in hypervelocity impacts.
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