
 Eindhoven University of Technology

MASTER

Advanced ultrasound beam forming using GPGPU technology

van Bavel, Y.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5079ef4a-1a81-4d70-9d37-b7a1ef98306f

Advanced ultrasound
beam forming using
GPGPU technology

Master Thesis

Yannick van Bavel

Committee:
prof.dr. H. Corporaal Eindhoven University of Technology
ir. G.J.W. van den Braak Eindhoven University of Technology
prof.dr. J.J. Lukkien Eindhoven University of Technology
dr.ing. P.J. Brands Esaote Europe

Eindhoven, October 31, 2013

Abstract

Ultrasound scanners are often used in medical diagnostics for visualising body parts without enter-
ing the body. An image is created by visualising reflections from an ultrasound pulse, transmitted
into the body. Current scanners use a scanning which creates an image line by line, using focused
pulses on each line separately. This method results in high quality images, but it limits the frame
rate. In order to increase the frame rate, a different scanning method, called plane wave scanning,
has to be used. With plane wave scanning a complete frame is acquired using a single ultrasound
pulse on all channels.

However, plane wave scanning increases the computational load, because more data needs to
be processed after each transmission. Therefore, more compute performance is needed to pave
the way for high frame rate ultrasound imaging in to the kHz range, while a maximum frame
rate of only 100 Hz is common today. GPGPU technology can deliver the needed performance
requirements.

Esaote created a plane wave ultrasound research platform, allowing researchers to create their
own applications for control of the scanner, receiving data, and for processing. In order to sup-
port researchers, with processing on a GPU, a high performance computing framework is created,
which manages a compute pipeline on a GPU. The framework allows researchers to focus on the
GPU implementations of their algorithms, instead of application development. The first pipeline
implemented with the framework shows a 67 times improvement, compared to a naive CPU imple-
mentation, reaching a frame rate of 6.8 kHz at 8 mm image depth. The improvement gets bigger
for larger image depths, because the GPU’s peak performance is not reached at small depths.

When designing a system it is important to select a GPU, which meets the frame rate require-
ments. In order to assist system designers, with the selection of a GPU, a performance model is
introduced. The model divides a kernel in parts and estimates the running time of each part. The
running time of the entire kernel is predicted by taking the sum of all kernel parts. The results in
this thesis show an error of 10% or less for the NVidia Fermi architecture.

ii Advanced ultrasound beam forming using GPGPU technology

Contents

Contents iii

1 Introduction 1
1.1 Related work . 2
1.2 Contributions . 3
1.3 Outline . 3

2 Ultrasound Imaging 4
2.1 Ultrasound scanning . 5

2.1.1 Line by line scanning . 5
2.1.2 Plane wave scanning . 6

2.2 Imaging pipeline . 6
2.2.1 DC removal . 7
2.2.2 Bandpass filter . 7
2.2.3 Delay and Sum reconstruction . 8
2.2.4 Hilbert transform and envelope detection 9
2.2.5 Colour map . 9

3 CUDA platform 11
3.1 Hardware architecture . 11

3.1.1 Kepler architecture . 12
3.2 Programming and execution model . 14
3.3 Difficulties in CUDA programming . 15

4 High Performance Computing Framework 17
4.1 Overview . 17
4.2 HPC framework features . 19
4.3 Pipeline configuration . 19
4.4 Filter implementations . 20
4.5 Results . 22

5 Performance Model 24
5.1 Utilisation roofline . 24
5.2 Performance of SFU and FP . 27
5.3 Divide & Conquer . 29

5.3.1 Discarding shared memory accesses . 29
5.3.2 Prediction . 30
5.3.3 Results . 31

5.4 Discussion . 32

6 Conclusion & Future work 33
6.1 Future work . 33

Advanced ultrasound beam forming using GPGPU technology iii

CONTENTS

Bibliography 35

iv Advanced ultrasound beam forming using GPGPU technology

Chapter 1

Introduction

Figure 1.1: Example of an ultrasound scanner of Esaote.

An ultrasound scanner, see figure 1.1, is a commonly used device in medical diagnosis. It can
visualise parts inside the human body by using ultrasound, without entering the body. Ultrasound
waves are transmitted into the body and will reflect on body parts. The reflections, or echoes,
are received by the scanner and transformed into an image. These images are used to gather
information about someone’s health and can help to diagnose diseases.

In the past years ultrasound processing has shifted from dedicated hardware to software running
on a PC, allowing ultrasound scanners to become faster, real-time, and smaller. Current imple-
mentations on a general Central Processing Unit (CPU) reach frame rates of 100 Hz. The next
step is ultrafast (kHz range) ultrasound scanning, enabling more accurate tracking of movements
and blood flow measurements. This step again increases the computational needs for ultrasound
processing. The goal is to reach the current scanner’s frame rate of 2 kHz at an image depth of 8
mm. The CPU cannot reach that throughput, therefore the usage of a Graphical Processing Unit
(GPU) is investigated.

A GPU is a processor specialized in graphical operations. The hardware is specifically designed
for altering graphical data with the purpose of displaying them on a screen. When GPUs with
programmable pipelines were released, people started to become attracted in using the GPU for

Advanced ultrasound beam forming using GPGPU technology 1 of 35

CHAPTER 1. INTRODUCTION

general purpose computing. At first they had to convert their calculations to graphical operations
with all the constraints of a graphics API. In 2006 NVidia released the Compute Unified Device
Architecture (CUDA) [8], enabling general purpose computing directly on their GPUs. The work
presented in this thesis uses the CUDA platform to enable ultrafast ultrasound processing.

A system designer has to take the system’s requirements into account when designing a system.
One requirement can be the performance of the system. In order to select a GPU he should know
the performance it can deliver for a specific application. Therefore, a new performance model
for CUDA GPUs is introduced, which takes specifications of the GPU and the algorithms into
account. It can assist designers in choosing the right GPU for a system, which will meet the
requirements.

1.1 Related work

GPUs have been used for ultrasound processing, since GPUs with programmable pipelines are
available. In [12] a frequency domain image reconstruction algorithm for plane wave imaging is
discussed using the OpenGL graphics API. At that time the speed up on the GPU was a factor
two compared to a CPU, but the expectation was that the performance of GPUs would increase
significantly in the near future.

Multiple discussion have been started, now GPU programming is available more easily. Eklund
et al.[1] and So et al.[10], both conclude that a GPU is suited for many examples of ultrasound
processing. The GPU has also other advantages, beyond high performance. The cost and energy
efficiency of GPUs might make it appropriate for the portable, battery powered ultrasound scan-
ners. However, the discussions notice the increased complexity in GPU programming.

A lot of research is performed on performance modelling for (GPU) architectures. The roofline
model [13] states that an application’s performance is either bounded by the memory bandwidth or
by the computational performance. It uses the computational intensity to determine which bound
is applicable for a kernel. It also introduces ceilings for suboptimal implementations, uncoalesced
memory accesses for example. The roofline model gives a very rough estimation, because only
floating point operations are taken into account.

In [11] the roofline model was extended by creating new rooflines: memory utilisation roofline
and computational utilisation roofline. Both rooflines are calculated by taking the operations and
memory accesses of a kernel into account. After the utilisation rooflines are calculated, they are
applied in the same as the rooflines of the original model.

The analytical model described in [3] uses memory and computation warp parallelism to ana-
lyse the amount of execution overlap between warps. Although this model gives accurate results,
it is hard to apply. Many parameters have to be put into the model and also benchmarking is
required to gather some GPU parameters.

The Boat Hull model [5] adapts the roofline model by adding algorithmic classes. The usage
of classes enables performance prediction before code development. One main difference with the
roofline model is that the result of the model is the running time of an algorithm, instead of the
performance. Also, additional instructions, offset, are introduced. They incorporate instructions,
like address calculations, which were not taken into account by the original roofline model.

In order to verify a model one can use kernels from applications, but it can also be good to use
microbenchmarks [14]. These are small programs, usually created for doing specific measurements.
A second reason for microbenchmarking is to verify the theoretical performance of a GPU.

2 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 1. INTRODUCTION

1.2 Contributions

This thesis shows that a GPU is a better candidate for ultrasound processing than a CPU. In
order to utilize a GPU for ultrasound processing a high performance computing framework is
created. The framework creates a computing pipeline at run time based on a configuration file. A
developer only has to focus on the implementation of a filter step and not on pipeline management
and connecting filters to each other.

The main contributions of this work are:

1. An advanced beamforming pipeline has been developed on the GPU, which can reach frame
rate of at least 2 kHz at an image depth of 8 mm.

2. A new high performance computing framework is developed, in which all algorithms are
implemented.

3. A new performance model is introduced for NVidia GPUs, which enables device selection
based on performance requirements.

1.3 Outline

Chapter 2 gives an introduction in ultrasound imaging and the needed algorithms. The CUDA
platform is explained in chapter 3. In chapter 4 the high performance computing framework is
introduced, including performance results of the algorithms and a comparison between running
times on GPU and CPU. The performance model is described in chapter 5. The conclusions and
future work are given in chapter 6.

Advanced ultrasound beam forming using GPGPU technology 3 of 35

Chapter 2

Ultrasound Imaging

Ultrasound (US) is a sound wave with a frequency above the human hearing range of 20 kHz.
One application of ultrasound is medical ultrasonography, which is a non invasive method for
visualizing body structures as shown in figure 2.1.

An ultrasound probe, or transducer, contains multiple piezoelectric elements, called channels.
Each channel can be used for transmitting and receiving of ultrasound waves. The probe is placed
on the patient and an US pulse is sent into the body. The channels acquire the returning echoes
by sampling at multiple time instances. Each time instance will correspond to a certain depth,
because a sound wave has a certain velocity. The depth of a sample is an important feature,
because it can be used to locate objects and to measure distances between them. An echographic
image with a larger depth can be created when more samples are taken. The sequence of samples
acquired by a single channel is called radio frequency (RF) signal or vector and will result in a
singe vertical image line. The combination of vectors from all channels is called a frame. Section
2.1 explains how ultrasound scanners acquire data and section 2.2 defines the steps needed to
create an echographic image.

(a) Probe on patient’s neck. (b) Resulting visualization.

Figure 2.1: Medical ultrasonography applied on the carotid artery.

4 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 2. ULTRASOUND IMAGING

2.1 Ultrasound scanning

The way of acquiring US signals is called a scanning protocol. This section will explain a tradi-
tional scanning protocol (line by line scanning) and a protocol for ultrafast imaging (plane wave
scanning).

2.1.1 Line by line scanning

The traditional scanning method is line by line scanning. With line by line scanning the ultrasound
pulses are focused on a single vertical image line, and often also focused at a certain depth. A
small group of the channels is used to create a beam focused on a single vertical line, as shown in
figure 2.2.

Figure 2.2: Focused ultrasound transmission.

All reflections from that pulse are delayed and added to form a single beam, figure 2.3. A
frame is formed by transmitting a pulse for each line, one after each other. Although this gives
high resolution images, it limits the frame rate because multiple firings are needed to construct a
single frame. Moreover, a difference in time exists between the lines of a frame, because lines are
formed after each other.

Figure 2.3: Vertical line by line beamforming.

Advanced ultrasound beam forming using GPGPU technology 5 of 35

CHAPTER 2. ULTRASOUND IMAGING

2.1.2 Plane wave scanning

The scanning method with the highest frame rate is plane wave scanning. A higher frame rate
allows tracking of fast moving objects. With plane wave scanning all channels are used for the
transmission to form a planar US wave. This plane wave is not focused around a vertical line in
contrast to line by line scanning.

Also all channels are used, at the same time, to receive the echoes. In figure 2.4 this is illus-
trated because every probe element creates an US signal. In theory the frame rate of this method
is only limited by the sound travel time. The spatial resolution of the frames, however, is low, due
to the unfocused transmission.

Figure 2.4: Plane wave scanning.

Another drawback of plane wave scanning is the need for image reconstruction algorithms in
software, introducing additional computational needs. An echo is received by multiple channels,
this causes point reflectors to show up as an arc as shown in figure 2.5.

D
ep

th

Figure 2.5: Time of flight image of a single point reflector using plane wave scanning.

2.2 Imaging pipeline

Several steps are needed to reconstruct an echographic image from the plane wave scanning results:

1. DC removal.

6 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 2. ULTRASOUND IMAGING

2. Bandpass filter.

3. Delay and Sum reconstruction.

4. Hilbert transform & envelope detection.

5. Colour map.

The processing steps are applied in a sequential, frame based pipeline. This section will explain
these steps in more detail. Later on, in chapter 4, these steps are implemented on a GPU to meet
the high throughput constraints of the plane wave scanning method.

2.2.1 DC removal

Each vector is sampled by a different receive channel, each introducing a different offset (DC).
Figure 2.6 shows an unreconstructed echographic image without the DC removed, it is created
by applying an envelope detection and a colour map. The different offsets of each channel cause
vertical bars with different colours in the image. Also, the bars will spread over the image during
the reconstruction stage, resulting in a white haze on the image. A DC removal applied on each
column will remove these unwanted effects.

D
ep

th

Figure 2.6: A unreconstructed echographic image without the DC removed.

The DC is removed by subtracting the average ax of each vertical image line x from each
sample r (x, y):

ax =

M−1∑

y=0

r (x, y)

M
with M the number of samples in depth. (2.1)

rDC removed (x, y) = r (x, y) − ax (2.2)

2.2.2 Bandpass filter

The received signals can contain noise from different sources, but only the returning echoes should
be visualised. These echoes will have a frequency similar to the frequency which was used for the
transmission. A FIR bandpass filter could be applied on each line of a frame, to remove the noise.
However, a regular FIR bandpass filter will change the phase of signal, see figure 2.8a. A phase
shift of the signal will change the depth of samples. In figure 2.8a the phase shift causes a change
in the location of the peaks of the signal. The location of a peak corresponds to a certain depth
of a strong reflecting object. So, a phase shift will change the location of object.

In order to retain the phase of the signal, the FIR filter is applied in the forward and reverse
direction [9]. This means that the FIR filter is applied twice, while reversing the signal in between,
see figure 2.7. As shown in figure 2.8b this method does not change the phase of signal. A second
advantage is that the filter order is doubled, increasing the strength of the filter.

Advanced ultrasound beam forming using GPGPU technology 7 of 35

CHAPTER 2. ULTRASOUND IMAGING

Figure 2.7: The zero phase bandpass filter pipeline.

(a) FIR bandpass filter.

Depth

A
m

p
li

tu
d

e

original
filtered

(b) Zero phase bandpass filter.

Figure 2.8: The difference in phase of a regular bandpass filter and the zero phase bandpass
filter.

2.2.3 Delay and Sum reconstruction

In figure 2.9 the travel path of a sound wave and one of its reflections is shown. However, the
sound wave will reflect in a lot of directions. So, the reflections from a point s (x, y) are not only
received by the channel directly above the point, but by all channels x′. The reflection r (x′, y′) is
the sample acquired by a channel x′ at a depth y′. In order to reconstruct the signal at s (x, y),
samples from all channels should be combined.

The reflection coming from s (x, y) will be acquired by a channel x′ at depth d(x, x′, y):

d(x, x′, y) =

√
y2 + (x− x′)2

(2.3)

The signal at s (x, y) can be reconstructed by taking the sum of all reflections coming from
that point s (x, y):

s (x, y) =

N−1∑

x′=0

r (x′, d (x, x′, y)) with N being the number of channels. (2.4)

8 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 2. ULTRASOUND IMAGING

2.2.4 Hilbert transform and envelope detection

The colour map is applied on the envelope of the signal, in order to improve the image quality.
As with the bandpass filtering, it is necessary to maintain the phase of the signal. The amplitude
envelope of an analytical signal has exactly that property.

First, the Hilbert transform is applied to derive the analytical representation of a real-valued
signal x(t). If X(f) is the Fourier transform of x(t), then the Hilbert transform H(f) is given by:

H(f) =

2X(f) if f > 0,

X(f) if f = 0,

0 if f < 0.

(2.5)

Equation (2.5) removes the negative frequencies from the spectrum of x(t). This is allowed for
real-valued signals, due to the Hermitian symmetry of the spectrum, as long as the complex-valued
signal x(t) + jx̂(t) is used in the time domain after removing the negative frequencies.

In the time domain x̂(d) can be approximated by applying a phase shifting all-pass filter, see
equation (2.6). The accuracy of this method can be tuned by changing the Hilbert transform
window Hw. The application, presented here, uses a window size of 15.

x̂(d) =
2

π

Hw∑

m=1

x(t+m) − x(t−m)

m
where m = 1, 3, 5...Hw (2.6)

From the analytical signal x(d) + jx̂(d) it is easy to calculated the amplitude envelope A(d)
of the signal, equation (2.7). The envelope, obtained with this method, has no phase shift with
respect to the original signal x(d), as shown in figure 2.10, preserving the location of features in
the signal.

A(d) =
√
x2(d) + x̂2(d) (2.7)

2.2.5 Colour map

After steps 1-4 we have the reconstructed envelope of each signal in the frame. For the creation
of the image a linear gray colour map is applied on the signal’s amplitude. The amplitudes are
clipped to the range of the colour map. Equation (2.8) shows how the gray scale value v(x) is
calculated from a value x.

v(x) =

{
255 if x > max,

255 · x

max
otherwise.

(2.8)

The colour map is applied on the envelope of the signal, see equation (2.7). So, values smaller
than 0 do not occur in the data set. The result after colour mapping is shown in figure 2.11. The
figure also shows the result of the reconstruction step.

Advanced ultrasound beam forming using GPGPU technology 9 of 35

CHAPTER 2. ULTRASOUND IMAGING

b

x x′

y

x

s(x, y)

√
y2 + (x− x′)2

Figure 2.9: Travel path of a sound wave, coming from x and one of its reflections, to x′.

Depth

A
m

p
li

tu
d

e

Figure 2.10: A plot showing the real signal (green), its Hilbert transformed imaginary part
(blue) and the envelope (red).

D
ep

th

Figure 2.11: Reconstructed image of a single point reflector.

10 of 35 Advanced ultrasound beam forming using GPGPU technology

Chapter 3

CUDA platform

For general purpose computing on the GPU NVidia’s Compute Unified Device Architecture
(CUDA) platform is used. NVidia created the CUDA platform especially to ease general pur-
pose computing on GPUs. It consists of a programming and execution model and a hardware
architecture. Section 3.1 starts with the CUDA hardware architecture. In section 3.2 the pro-
gramming and execution model are explained. The difficulties of programming with CUDA are
explained in section 3.3.

3.1 Hardware architecture

Figure 3.1: Fermi streaming Multipro-
cessor (SM) architecture.

A CUDA GPU contains multiple independent
streaming multiprocessors (SM). Figure 3.1 shows
the streaming multiprocessor of the Fermi architec-
ture [7]. The SMs have 4 execution blocks:

• 2 Computational blocks containing 16 cores.

• 1 Memory instruction blocks with 16 Load/Store
units.

• A special function block with 4 special func-
tion units.

Each of these blocks operate in a Single Instruc-
tion Multiple Data (SIMD) fashion. All units in-
side a block execute the same instruction, but they
apply it on different data elements. This type of
parallelism is called Data-Level Parallelism. An
algorithm should contain enough data-level paral-
lelism in order to gain from this type of architec-
ture.

The Core blocks are called Processing Element
(PE) or CUDA core. The PEs execute floating
point (FP) and integer instructions. The Special
Function Units (SFU) calculate single precision FP
transcendental functions, like square root, sine and
cosine.

Advanced ultrasound beam forming using GPGPU technology 11 of 35

CHAPTER 3. CUDA PLATFORM

Another important part of the SM is a memory
space, called shared memory. CUDA defines mul-
tiple memory spaces. In this work two of them are
used: global and shared memory. The global memory is the GPU’s off chip memory, which is
accessible by all SMs on the chip. The shared memory is a private, on chip memory inside each
SM. It has a higher bandwidth and a lower latency than global memory. The high bandwidth is
achieved by dividing the memory in modules, called banks. The banks can be accessed in parallel,
if accesses go to different banks.

3.1.1 Kepler architecture

The previous section explained the CUDA hardware based on the Fermi architecture. The newer
Kepler architecture [6] is quite similar to Fermi, but has an important difference. The number of
processing units per streaming multiprocessor, on Kepler called SMX, increased a lot, as shown in
figure 3.2. The number of CUDA cores, executing regular FP and integer instructions, increased
with a factor 6 to 192. The warp schedulers also changed. They can now schedule an entire warp,
32 threads, every cycle, while on Fermi a scheduler only scheduled 16 threads.

A Kepler GPU has 4 warp schedulers. So, 128 threads can be scheduled every cycle, but
there are 192 cores. In order to keep all cores busy, warp schedulers have to issue 2 independent
instructions. However, a kernel should supply enough independent instructions to exploit this
parallelism.

12 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 3. CUDA PLATFORM

Figure 3.2: Kepler Streaming Multiprocessor (SMX) architecture.

Advanced ultrasound beam forming using GPGPU technology 13 of 35

CHAPTER 3. CUDA PLATFORM

3.2 Programming and execution model

The CUDA programming and execution model defines the notions kernel, thread, thread block
and warp. In this section all these notions and there meanings are introduced.

CUDA C is an extension of the C programming language. It allows programmers to create
functions, describing the functionality of a single thread, which is called a kernel. An example of
a kernel is shown in listing 3.1. This example shows how a vector addition is implemented with
CUDA. At run time multiple, parallel threads are created, each applying the programmed function.

g l o b a l void vectorAdd (f l o a t ∗ a , f l o a t ∗ b , f l o a t ∗ c)
{

i n t index = blockIdx . x ∗ blockDim . x + threadIdx . x ;

c [index] = a [index] + b [index] ;
}

Listing 3.1: Vector addition kernel.

CUDA introduces three variables for identification of a thread: blockIdx, blockDim and
threadIdx. The blockIdx and blockDim variables are used to identify the block, a thread belongs
to, and to get the dimensions of a block. The identifier of a thread inside a block is stored in
threadIdx. Each variable is a 3-dimensional vector type. So, a programmer has the possibility to
create thread blocks that match the dimension of the input data. The combination of the three
variables gives a unique identifier to each thread. The thread identifier is often used to select the
data elements a thread should use. This is also shown in listing 3.1.

The programmer does not only define the number of threads, but also divides the threads
in independent thread blocks. The thread blocks are divided over the SMs of the GPU and this
assignment will not change, while a kernel is executing. Therefore, threads within the same thread
block can share data using the shared memory of the SM. Figure 3.3 shows how blocks are divided
on two different GPUs. The CUDA software distributes the thread blocks over the available SMs
automatically. So, a program will gain from increasing the number of SMs, without interference
of the program, as long as there are enough thread blocks.

The SIMD width is hidden for the programmer. The GPU divides the threads in groups, called
warps, at runtime. The programmer has no influence on the creation of warps, they are formed
by the hardware. A multiprocessor partitions consecutive threads into warps, with the first warp
containing thread 0. All threads in a warp are scheduled by the warp scheduler at the same time,
Although the programmer does not have to pay attention to the SIMD width, for reaching peak
performance he should take the warp size, currently 32 threads, into account.

14 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 3. CUDA PLATFORM

Figure 3.3: The assignment of blocks on the GPU.

3.3 Difficulties in CUDA programming

The GPU has a high memory bandwidth and high performance. However, the programmer has
to follow some rules to reach them. This section explains some topics which are important when
programming a GPU with CUDA.

Divergence

Control flow statements can cause threads to follow different execution paths. If this happens
between threads inside a single warp, the entire warp will execute for each path. This is called
warp divergence. A warp scheduler selects an instruction from a warp and schedules it for every
thread in a warp. The SMs of a GPU are SIMD processors. Therefore, a warp can not execute
two different instructions at the same time. The problem can become larger if a divergent path
contains a synchronisation statement. Some threads will block until the rest of the warp is finished
execution. The programmer should limit the number of execution paths within warps, to reach
the peak performance.

Global memory access

A SM can combine the memory requests from a threads in a warp into a single, coalesced memory
request. If the SM is not able to do so, than the memory requests will be replayed until all
all threads performed their request. Off course this will increase the execution time and lowers
the achieved global memory bandwidth. The programmer should take care that global memory
accesses are aligned and sequential. Figure 3.4 shows two examples of uncoalesced memory accesses
on different hardware versions (compute capability).

Shared memory banks

The shared memory of each SM has a very high bandwidth, because the memory is divided in
parallel accessible banks. The number of banks is equal to the number of threads in a warp. So,
each thread should access a different bank to reach peak performance. If multiple threads access
the same bank, bank conflicts occur. This will cause replays of the memory requests, lowering the
achieved bandwidth.

Advanced ultrasound beam forming using GPGPU technology 15 of 35

CHAPTER 3. CUDA PLATFORM

Figure 3.4: Example of uncoalesced global memory accesses.

16 of 35 Advanced ultrasound beam forming using GPGPU technology

Chapter 4

High Performance Computing
Framework

A lot of research in medical ultrasonography is done off-line, using large datasets and applications
like MATLAB. The step from off-line processing to a real-time application is often big. An ap-
plication has to contain additional code, like controlling data acquisition, which has nothing to
do with the algorithms. Furthermore, with increasing computational load, more processing power
is required. A GPU is one solution to supply the required processing power, but this introduces
more complexity for the programmer. In order to support researchers in utilizing the GPU a high
performance computing (HPC) framework is created which aides them in the creation of real-time
ultrasound processing applications.

In section 4.1 an overview of the HPC framework is given. An example of a pipeline configur-
ation is given in section 4.3. The CUDA implementations of the algorithms from section 2.2 are
descrived in section 4.4. The performance results of the GPU are given in section 4.5.

4.1 Overview

Figure 4.1: An Esaote portable ultrasound scanner.

Esaote, a company developing US scanners for medical diagnostics, created a plane wave ultra-
sound research system using a portable scanner (Figure 4.1). The scanner can be connected to a
computer using a USB interface. Researchers can take full control of the scanner using a software
library. The software also supplies the unprocessed US data to the researchers. With this system
it is possible to develop reconstruction algorithms and other techniques to increase the resolution
of plane wave imaging. Also other applications, object tracking or flow measurements, can be

Advanced ultrasound beam forming using GPGPU technology 17 of 35

CHAPTER 4. HIGH PERFORMANCE COMPUTING FRAMEWORK

investigated.

The Esaote research software is split into four parts, as shown in figure 4.2:

• Acquisition driver: controls the ultrasound scanner and the data acquisition.

• Client application: sends data from the acquisition driver to the framework and serves as a
user interface.

• Framework: the high performance computing framework.

• Filter libraries: contain filter implementations.

Figure 4.2: Overview of the high performance computing framework.

The HPC framework consists of two modules: Execution Engine and Execution Environment.
The Execution Engine is the main part of the framework. It controls the computing pipeline and
provides the features described in section 4.2. The Execution Environment is an abstraction of the
used computing device. Currently, only an environment for CUDA GPUs has been built, enabling
the support of all CUDA GPUs. Currently, no environment is created for processing on the CPU.
However, filters can execute code on the CPU.

Figure 4.3: An example of a computing pipeline.

The main task of the HPC framework is to create and manage a computing pipeline on a GPU.
A pipeline is a sequence of filters which are applied on ultrasound (US) frames. An example is
shown in figure 4.3. The user can create any pipeline, as long as it does not contain cycles, using a
configuration file. The configuration file contains the desired filters, the connections between those
filters and filter parameters. Section 4.3 discusses the configuration in more detail and also gives
an example. The execution engine will dynamically load the filter libraries at runtime, create filter
instances and configures them. The execution engine will do two things based on the definition of
the connections:

1. Determine the execution schedule using topological sort [4].

2. Connect the outputs of the preceding filters to the current filter, just before execution.

18 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 4. HIGH PERFORMANCE COMPUTING FRAMEWORK

The filter libraries are an important part of the software. It allows researchers to create, share
and reuse filter implementations. The framework is able to load libraries which are not created by
Esaote. Researchers can implement their own algorithms in CUDA and combine them in a pipeline
with filters from Esaote and other universities. During filter implementation a filter developer only
has to focus on the implementation of a filter. Other features, like synchronization, scheduling
and data transfer, are done by the framework.

4.2 HPC framework features

The most important task of the HPC framework is the management of the computing pipeline.
Besides that, the framework also has some additional features:

• Synchronization: between code running on the CPU and GPU. The user is able to syn-
chronize when he wants to, but the framework will also synchronize automatically when
necessary.

• Memory copies: the GPU has its own memory space which is not accessible by the host
directly. The HPC framework maintains an input queue for the pipeline. The memory
copies from and to the GPU are done by the framework. It also takes care of synchronization
between execution and memory copy, if needed.

• Running time profiling: the framework measures the running times of the entire pipeline and
of each filter separately. The filters are measured using the environment’s timer, measuring
only the kernel’s execution time on the GPU.

• Bypass: allows disabling of selected filters at runtime as shown in figure 4.4. In this way the
effect of a filter step can be checked without restarting the program.

Figure 4.4: Example of filter bypassing.

4.3 Pipeline configuration

The framework uses a configuration file to create the computing pipeline at run-time. A script-
ing language is used to define the entire pipeline. Filter libraries are imported using the import

keyword. Filter libraries can be distributed apart from the framework and enable sharing of filter
implementations. With the filter and view keywords instantiations are created. It is allowed
to create multiple instances of the same filter type. The name of the filter can be chosen by the
creator of the configuration, but he should take care that filter names are unique. The name is
used to identify filters when the connection between the filters are defined with the link keyword.
The configuration shown in listing 4.1 will create the pipeline of figure 4.3.

Advanced ultrasound beam forming using GPGPU technology 19 of 35

CHAPTER 4. HIGH PERFORMANCE COMPUTING FRAMEWORK

environment cuda

import e saote cuda
import e sao t e r e con cuda

f i l t e r type dc removal name dc removal
f i l t e r type h i l b e r t name enve lope
f i l t e r type f i l t f i l t f name bandpass

view type colormap name echoview

l ink source frame@environment dest in@dc removal
l ink source out@dc removal dest in@bandpass
l ink source out@bandpass dest in@envelope
l ink source out@envelope dest in@echoview

Listing 4.1: Configuration example.

The configuration file does not only contain the filters and the connections between filters. It
also has the possibility to contain filter specific parameters. This is shown in listing 4.2. The
framework parses the parameter data and sends it to the filter instance, which is selected by the
name of the filter.

set param coef f s@bandpass value f l o a t 3 [−0.0049 0 .1007 0 . 4 7 6 1]
set param window@envelope value i n t 1 [1 5]
set param amplitude@envelope value bool 1 [t rue]

Listing 4.2: Filter parameters in configuration file.

An application can perform different processing steps by changing the configuration file. There is
no compilation step required to change the pipeline.

4.4 Filter implementations

All processing steps, mentioned in section 2.2, are implemented with CUDA. This section will
discuss all these implementations.

DC removal

DC removal consists of three steps:

1. Take the sum of each vertical vector.

2. Divide the sum by the number of samples in a vector. This results in the average (DC) of
each vector.

3. Subtract the average of each sample.

The first step is implemented using the parallel reduction as explained in [2]. With reduction
the problem size is reduced with each step, like a tree. Figure 4.5 explains this in more detail. The
reduction approach needs synchronisation between each step, to make sure that each step is com-
pletely finished. If a thread would be created for each reduction step, then synchronisation would
be necessary between blocks. The CUDA hardware does not support this and it would require
multiple, slow, kernel starts. Therefore, a thread block is created for each vector as illustrated in
figure 4.6, which will apply the reduction step multiple times.

Each iteration a thread will read a sample from global memory and add it to the previous
result in shared memory. The data in global memory is stored in column major order and the
memory is allocated using an aligned pitch. So, threads read the data aligned and sequentially.

20 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 4. HIGH PERFORMANCE COMPUTING FRAMEWORK

Figure 4.5: Tree based approach of reduction.

Figure 4.6: Thread block division.

This ensures coalesced memory access.

When all data from global memory is read, the reduction process continues on shared memory.
During that stage the number of active threads reduces each step by two. At the last stage of the
summation only one thread is active, which produces the average of the vector. The last step (3)
is to update all samples and write back the result to global memory. During this step all threads
are active again, each updating multiple samples.

Bandpass filter and Hilbert envelope

The bandpass filter and the Hilbert envelope have a similar implementation and will be discussed
together in this section. Both algorithms compute a sum over a one dimensional window of neigh-
bouring samples. They are applied on each vector separately, just like the DC removal. However,
the vectors are divided over multiple thread blocks.

The windows of consecutive samples overlap each other. So, threads have input data in com-
mon. On GPUs without cache, this would decrease the performance of the kernel. By using
shared memory this can be optimized. It has a higher throughput and it will reduce the number
of requests to global memory. Each thread reads a single value from global memory and stores it
in shared memory. It performs the computation using shared memory, after synchronization with
other threads in a block. Fermi and Kepler GPUs will not benefit from this optimisation, because
global memory accesses are cached on those architectures.

Advanced ultrasound beam forming using GPGPU technology 21 of 35

CHAPTER 4. HIGH PERFORMANCE COMPUTING FRAMEWORK

Figure 4.7: Thread block division of a single vertical image line for the bandpass kernel.

Figure 4.7 illustrates the thread block division of a single image line for the bandpass kernel.
The threads in the gray part of a thread block are only used for data fetching from global memory
to shared memory, but do not compute a result. This is needed because each thread only reads
a single sample and needs samples from neighbouring threads. At the borders of a thread block
there are not enough neighbours, so border threads cannot compute a result. The amount of
border threads is a multiple of the warp size. This avoids divergence inside the warps, increasing
the performance. Also, the additional threads terminate after the data fetch. So, an entire warp
terminates and will not be scheduled any more.

The bandpass filter is applied in the forward and reverse direction. This means that the filter
is applied twice, each time reversing the vector while writing the output. A vector is divided over
multiple thread blocks and synchronisation is needed between these blocks. Therefore, the kernel
is started twice.

Delay and Sum reconstruction

The calculations of the sound waves’ travel time need a square root, see figure 2.3. Unfortunately,
the throughput of a square root operation is not very high as it requires many instructions and
uses the special function units. However, the travel times are the same for each frame. So, they
can be pre-calculated and stored in global memory. Now a thread only needs to read the travelling
time from memory and use it to address the input data. Pre-calculating the travel times improved
the execution time of this filter 1.8 times.

Colour map

The colour map is implemented using the CUDA graphics interoperability with OpenGL. With
OpenGL a frame buffer is created, which can be filled by a CUDA kernel. For each output pixel
a thread is created, which reads the envelope of the signal and creates a gray scale colour value
using equation (4.1). A colour is stored using vector type containing four values, allowing the
output data to be sequentially written to the buffer.

r(x) = g(x) = b(x) =

{
255 if x > max,

255 · x

max
otherwise.

(4.1)

4.5 Results

The processing steps, mentioned in section 2.2, are implemented using the HPC framework on
an NVidia Geforce GTX660Ti. The results, together with running times on an Intel Core i5-
2300, are shown in table 4.1. The first remark is that the goal, a frame rate of 2kHz, is reached.
The GPU can process the pipeline at 6.8kHz, while the CPU processes only 101 frames per second.

22 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 4. HIGH PERFORMANCE COMPUTING FRAMEWORK

The running time of the reconstruction step is the largest. This step performs the most op-
erations per thread and also produces the most global memory traffic. In order to reconstruct a
single point a thread must read, for every column, a pre-calculated travel time and a sample from
the input data.

A large speed up is obtained from CPU to GPU. One reason is that the CPU implementations
were not parallelised. A theoretical increase in speed for the CPU would be a factor of 32, 4 cores
and SIMD width of 8 single floating point values. Off course the real speed up will be less and the
peak memory bandwidth might already be reached before the peak performance is reached, but
the GPU would outperform the CPU even if a 32 times speed up on the CPU was realised.

Furthermore, it can be noticed that the algorithms scale better on a GPU than on a CPU.
Table 4.1 also contains results from a larger data set, 128 columns with 128 mm depth. This
effectively increases the number of samples in the data set with a factor of 32. The running time
on the GPU increases 29 times, while on the CPU an increase of 240 times can be seen.

Frame dimension Kernel GPU CPU Speed up
(columns x depth) (µs) (µs)

64×8 mm DC Removal 9 126 14
Bandpass 15 238 16
Reconstruction 93 8525 92
Hilbert envelope 9 629 70
Colour map 20 328 16
Total 146 9846 67

128×128 mm DC Removal 119 3986 33
Bandpass 196 7888 40
Reconstruction 3672 2332597 635
Hilbert envelope 136 22451 165
Colour map 60 9273 155
Total 4183 2376195 568

Table 4.1: Comparison of running times on GPU and single core CPU implementation, without
use of SIMD instructions.

Advanced ultrasound beam forming using GPGPU technology 23 of 35

Chapter 5

Performance Model

Until now the work focused on using the GPU as a computing platform, which gave good per-
formance improvements. However, it is not clear whether or not the best possible performance is
reached. A performance model can be used to answer this question. For that reason this thesis
introduces a new performance model. A second reason for performance modelling is platform
selection. With a performance model the execution times on a GPU can be estimated without
actually running the kernels on the GPU.

Multiple thread blocks can be active on a streaming multiprocessor (SM) of a GPU. However,
the performance model presented here, does not take this into account. The measurements in this
chapter are all performed using a single active thread block per SM.

Section 5.1 starts with an explanation of the utilisation roofline model. In section 5.2 of a
kernel combining SFU and FP instructions is modelled. A new performance model is introduced
in section 5.3. Section 5.4 will discuss the effect on the performance model of multiple active
thread blocks.

5.1 Utilisation roofline

The utilisation roofline is an addition to the original roofline model introduced in [11]. Instead of
using a single memory bandwidth and a single operation throughput, it introduces new bounds
based on the instruction mix of a kernel and the used data sources. The utilisation roofline
consists of two roofs: Computational Utilisation Roof (cur) and Memory Utilisation Roof (mur).
The Computational Utilisation Roof is calculated by dividing the total execution time tc by the
total number of operations CQtotal, see (5.3). The total execution time is the sum of the execution
times of n operation types (5.1). CQi is the number of operations of type i with performance
Ci

ceiling.

tc =

n−1∑

i=0

CQi

Ci
ceiling

(5.1)

CQtotal =

n−1∑

i=0

CQi (5.2)

cur =
CQtotal

tc
(5.3)

Equations (5.4) show that a similar approach is taken for the memory utilisation roofline.

24 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 5. PERFORMANCE MODEL

tm =

m−1∑

j=0

MQj

Bj

MQtotal =

m−1∑

j=0

MQj

mur (x) =
MQtotal

tm
where x is the computational intensity.

(5.4)

The memory and computational utilisation roofline are combined into a single roofline by
equation (5.5). It states that the performance is either bounded by computations or by memory
transfers. Therefore, the performance of the kernel is the minimum of the two.

utilisation-roofline(x) = min (mur (x) , cur) (5.5)

In figure 5.1 the roofline model and the utilisation roofline model are shown. The solid blue and
red lines form the roofline for a NVidia GeForce GTX 470. The memory roofline is the bandwidth
of shared memory. The dashed blue and red lines form a ceiling for operations, with a lower
throughput, on global memory By applying the equations of the utilisation roofline model a single
roofline is created (black lines in figure 5.1).

0.25 0.5 1 2 4 8 16 32 64 128

32

64

128

256

512

1,020

2,050

Computational intensity (OPS/B)

P
er

fo
rm

an
ce

(G
O

P
S

)

Memory ceiling 1 (B1)

Memory ceiling 2 (B2)

Computational ceiling 1 (C1
ceiling)

Computational ceiling 2 (C2
ceiling)

Memory utilisation roofline (mur(x))

Computational utilisation roofline (cur)

Figure 5.1: Utilisiation roofline model.

Advanced ultrasound beam forming using GPGPU technology 25 of 35

CHAPTER 5. PERFORMANCE MODEL

template < i n t OPS>
g l o b a l ke rne lMu l t ip ly (f l o a t ∗ input , f l o a t ∗ output)

{
i n t index = blockIdx . x ∗ blockDim . x + threadIdx . x ;

f l o a t r e s u l t = input [index] ;

#pragma u n r o l l
f o r (i n t i =0; i < OPS; i++)
{

r e s u l t ∗= r e s u l t ;
}

output [index] = r e s u l t ;
}

Listing 5.1: CUDA microbenchmark example.

With microbenchmarks both the theoretical performance and the computational utilisation
roofline are verified on a NVidia Geforce GTX470. An example of a microbenchmark is shown
in listing 5.1. The results in table 5.1 show that the micro benchmarks comes very close to the
theoretical performance. In all cases the error is less than 1%. The results in table 5.2 show that
the cur is correct for operations handled by the same hardware pipeline. The fused multiply-add
(FFMA), multiplication (FMUL) and addition (FADD) operations are processed by the same PEs,
but with different throughput. The reciprocal square root instruction (RSQRT) is executed by the
special function unit (SFU). The calculated performance (cur) of the instruction mixes is within
the error ranges of the single instruction performance in table 5.1.

Operation Theoretical performance Measured performance Error
(GFLOPS) (GFLOPS)

FFMA 1088.6 1080.0 <1%
FMUL 544.3 540.0 <1%
FADD 544.3 540.0 <1%
RSQRT 68.0 67.5 <1%

Table 5.1: Theoretical and measured performance of a single instruction type on the NVidia
Geforce GTX470 GPU.

Operations per thread cur Measured performance
FFMA FMUL FADD (GFLOPS) (GFLOPS) Error

10 2 8 725.8 717.9 1%
2 1 0 816.5 804.4 1%
0 2 8 544.0 539.8 1%

Table 5.2: Computational Utilisation Roof applied on the NVidia Geforce GTX470 GPU.

When the Computational Utilisation roofline is applied on instructions which can execute in
parallel the model is not correct. Table 5.3 shows results of a kernel containing independent
FFMA and RSQRT operations. These instructions are executed by different hardware pipelines
and could run in parallel. The utilisation roofline ignores this and takes the sum of the execution
times. Therefore the cur is too pessimistic as these two pipelines execute in parallel.

The memory utilisation roofline (MUR) is also verified using microbenchmarking. A kernel
is created which contains independent global and shared memory requests. These requests will
overlap, because the global and shared memory operate in parallel. The results in figure 5.2 show

26 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 5. PERFORMANCE MODEL

Operation ratio Prediction Measurement Error
(FFMA:RSQRT) (GFLOPS) (GFLOPS)
1:2 99.0 101.2 2%
1:1 128.1 134.9 5%
2:1 181.4 202.3 10%
8:1 408.2 544.3 25%

Table 5.3: Computational Utilisation Roof applied on a kernel combining SFU and FP operations.

that the memory utilisation roofline is too pessimistic, because it ignores this parallelism.

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

Number of shared memory requests per global memory request

B
an

d
w

id
th

(G
B

/s
)

Measurement
MUR

Figure 5.2: The memory bandwidth combining global and shared memory accesses.

5.2 Performance of SFU and FP

Special functions and general floating point instructions are executed by different hardware pipelines,
as stated in the previous section. These pipelines can run in parallel. So, the combined perform-
ance is bounded by the slowest pipeline.

Lets assume two pipelines M0 and M1 with throughputs P0 and P1. If a kernel has O0 and
O1 amount of operations executed by pipelines M0 and M1 respectively. The time spent on each
pipeline, T0 and T1, are calculated using equations (5.6) and (5.7). The combined throughput is
calculated using the maximum of the running times of the pipelines, equation (5.8)

Advanced ultrasound beam forming using GPGPU technology 27 of 35

CHAPTER 5. PERFORMANCE MODEL

T0 =
O0

P0
(5.6)

T1 =
O1

P1
(5.7)

P0+1 =
O0 +O1

max (T0, T1)
(5.8)

(5.9)

Equation (5.8) is applied on the SFU and FP pipelines of the GeForce GTX 470. The results
in table 5.4 show that this model is too optimistic, because a larger error arises at a 8:1 ratio. So,
there must be some bottleneck, preventing full parallel execution.

The SFU and FP pipelines are fed with instructions by the same schedulers, as illustrated in
figure 5.3. These schedulers can either issue an FP instruction or an SFU instruction, but not
both at the same time. This causes a bottleneck for the hardware. The three pipelines cannot be
started at the same time.

Operation ratio Prediction Measurement Error
(FFMA:RSQRT) (GFLOPS) (GFLOPS)
1:2 102.1 101.2 <1%
1:1 136.1 134.9 <1%
2:1 204.1 202.3 <1%
4:1 340.2 335.2 2%
6:1 476.3 465.7 2%
8:1 612.4 544.3 13%

Table 5.4: Prediction of SFU and FFMA mixture, throughput based (5.8).

Figure 5.3: The CUDA architecture showing the dependency between the FP and SFU pipeline.

From the results in table 5.4 it can be noticed that upto a ratio of 6:1 the error is very small.
This suggest that 6 FFMA operations are hidden by a single RSQRT instruction. A FFMA in-
struction is counted as 2 operations. So, effectively 3 FP instructions can be hidden by a SFU
instruction.

In equations (5.10-5.12) this overlap is accounted for. First the time spent on RSQRT in-
struction is calculated (TRSQRT). The same is done for FFMA instructions (TFMA), only for each
RSQRT instructions 6 FFMA operations are subtracted. The performance of the combination
PRSQRT + FMA is calculated by dividing the total number of operations by the total running time.

28 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 5. PERFORMANCE MODEL

TRSQRT =
ORSQRT

PRSQRT
(5.10)

TFMA =
max (OFMA − 6 ·ORSQRT, 0)

PFMA
(5.11)

PRSQRT + FMA =
ORSQRT +OFMA

TRSQRT + TFMA
(5.12)

The prediction error decreases when equation (5.12) is applied on the same microbenchmark,
as shown in table 5.5.

Operation ratio Prediction Measurement Error
(FFMA:RSQRT) (GFLOPS) (GFLOPS)
1:2 102.0 101.2 <1%
1:1 136.0 134.9 <1%
2:1 204.0 202.3 <1%
4:1 340.0 335.2 1%
6:1 476.0 465.7 2%
8:1 544.4 544.3 <1%
12:1 643.1 654.4 2%

Table 5.5: Prediction of SFU and FFMA mixture, based on an overlap factor of 6 (equation
(5.12)).

5.3 Divide & Conquer

A CUDA kernel can often benefit from the high bandwidth of shared memory. Especially when
threads have input values in common or need to share results. The following pattern is common
for a CUDA kernel, when shared memory is used:

1. Data fetch: each thread reads data from global memory and stores it in shared memory.
The number of shared stores is usually close to the number of global loads.

2. Computation: the kernel applies it computations on the data in shared memory.

3. Store result: the result of the computation is written to global memory.

The first two steps are separated by a synchronization instruction in most cases. Between steps
2 and 3 there is not always synchronization required, but there is always a data dependency. The
model proposed in this thesis will divide a kernel based on the above observation, and will predict
the running time of each part separately.

The model will only use the access time of global memory, when a step accesses both global
and stored memory. The next section will show that it does not influence the divide and conquer
(D&Q) model a lot. Section 5.3.2 will give more details about the prediction method. The
benchmarks and results are discussed in section 5.3.3.

5.3.1 Discarding shared memory accesses

The model discards shared memory accesses when, in the same kernel block, also the global
memory is accessed. Before we proceed with the clarification of the model, we show that this
is allowed for small number of shared memory accesses. A microbenchmark was created with a
single global memory load and a varying number of succeeding shared memory stores, which store

Advanced ultrasound beam forming using GPGPU technology 29 of 35

CHAPTER 5. PERFORMANCE MODEL

the data loaded from global memory. The delay, caused by the data dependency between these
two steps, is hidden by creating enough threads.

Figure 5.4 shows the running time of the kernel with increasing number of consecutive shared
memory stores. Up to 5 or 6 shared memory stores the running time only increases slightly,
the increase is probably caused by the added instruction issues. The shared memory stores are
hidden by parallel global memory accesses of other warps. So, upto 6 shared memory stores can
be discarded without introducing a large error.

0 5 10 15
0

2

4

6

8

Number of shared memory stores per global memory load

R
u

n
n

in
g

ti
m

e
(m

s)

Measured
Prediction

Figure 5.4: The running time of a kernel with a single global memory load and a varying number
of shared memory stores.

5.3.2 Prediction

The model uses an approach similar to the Boat Hull model for the prediction of each kernel
part, it is either compute or memory bounded. So, the running time is the maximum of the time
spend on computations and the time spend on memory transactions. The computation time Tc
is calculated using the cur and the overlap of SFU and FP. The overlap factor X is based on
the mix of FP instructions. For FFMA instructions X = 6, otherwise X = 3, because a FFMA
instructions counts as two FP operations.

TSFU =
OSFU

PSFU
(5.13)

TFP =
max (OFP −X ·OSFU, 0)

cur
(5.14)

Tc = TFP + TSFU (5.15)

The memory transaction time is calculated based on the total number of bytes accessed and
theoretical bandwidth. The shared memory bytes are discarded, in case global memory is also
accessed in the same block.

Tm =
Number of bytes

Memory bandwidth
(5.16)

30 of 35 Advanced ultrasound beam forming using GPGPU technology

CHAPTER 5. PERFORMANCE MODEL

Up to now only the kernel’s calculations and memory access time are taken into account. But
a kernel contains additional instructions, like address calculations. This is modelled by adding a
number of offset instructions to each kernel block. The type of instructions and the throughput
of these instructions differ a lot. The offset time Toffset for Ooffset is calculated using the lowest
performance Poffset,low and the highest performance Poffset,high:

Toffset,low =
Ooffset

Poffset,low
(5.17)

Toffset,high =
Ooffset

Poffset,high
(5.18)

Toffset = [Toffset,low, Toffset,high] (5.19)

The running time for a part of a kernel Tpart then becomes:

Tpart = max (Tm, Tc) + Toffset (5.20)

5.3.3 Results

The model is verified using four benchmarks on a GeForce GTX 470 and GTX 660 Ti. Table
5.6 contains the specifications of these GPUs. The GTX 660 Ti has the larger computational
performance of the two, but the memory bandwidths are close too each other. This will cause
predictions of memory bounded kernel parts to lie close to each other. Furthermore, the difference
between the offset high and low performance is a factor 2 for the GTX 470, but a factor 5 on
the GTX 660 Ti. The factor is higher for the GTX 660 Ti, because there is a larger difference in
throughput of different instructions.

GeForce GTX 470 GeForce GTX 660 Ti
FP performance (GFLOPS) 1089 3056
SFU performance (GOPS) 68 255
Offset high performance (GOPS) 544 1273
Offset low performance (GOPS) 272 255
Global memory bandwidth (GB/s) 134 144
Shared memory bandwidth (GB/s) 1089 1019

Table 5.6: Specifications of the NVidia GeForce GTX 470 and GTX 660 Ti.

Tables 5.7 and 5.8 give the prediction results for the NVidia GeForce GTX 470 and GTX 660
Ti of the divide & conquer (D&Q) model and the utilisation roofline model. The relative error
of the D&Q model is calculated based on the average of the prediction interval. The predictions
for the GeForce GTX 470 have an error of 10% or less and are more accurate than the utilisation
roofline (UR) model.

Kernel Measurement (µs) D&Q Prediction (µs) D&Q Error UR Error
Band pass filter 189 161 - 213 1% 40%
Hilbert envelope 241 219 - 309 10% 50%
Tiled Matrix Multiplication (256×256) 201 173 - 190 10% 20%
Tiled Matrix Multiplication (2048×2048) 91008 85950 - 92616 2% 11%

Table 5.7: Prediction results for the NVidia GeForce GTX 470.

The predictions for the GTX 660 Ti have a higher error and it does not perform well on the
band pass filter and Hilbert envelope benchmarks, when compared to the GTX 470. The GTX

Advanced ultrasound beam forming using GPGPU technology 31 of 35

CHAPTER 5. PERFORMANCE MODEL

660 Ti is not fully occupied, when only one block is active per SM. So, it is not able to reach peak
performance. However, the prediction error for the D&Q model is less than for the UR model.

Kernel Measurement (µs) D&Q Prediction (µs) D&Q Error UR Error
Band pass filter 187 101 - 190 29% 40%
Hilbert envelope 260 125 - 280 28% 54%
Tiled Matrix Multiplication (256×256) 176 170 - 198 4% 5%
Tiled Matrix Multiplication (2048×2048) 72307 85313 - 96709 21% 17%

Table 5.8: Prediction results for the NVidia GeForce GTX 660 Ti.

5.4 Discussion

The measurements in this chapter only allowed kernels to run a single active block per SM, because
the divide & conquer model does not take multiple active blocks per SM into account. In this
section the effect of multiple active blocks on the model is shown.

A kernel was programmed and configured to execute with 768 threads on a GeForce GTX 470.
The number of active blocks per SM was configured, by changing the shared memory configura-
tion. In table 5.9 the results are shown. When two blocks are active on a SM, more latencies can
be hidden which decreases the kernel’s running time. The model does not take this into account,
causing the error to increase.

1 Active block per SM 2 Active blocks per SM
Total blocks D&Q Prediction (µs) Measurement (µs) Error Measurement (µs) Error (µs)
14 212 - 234 239 7% 239 7%
28 425 - 468 476 6% 391 14%
56 850 - 936 950 6% 751 19%
112 1699 - 1873 1896 6% 1458 22%

Table 5.9: The effect of multiple active blocks per SM on a GeForce GTX470.

The number of active blocks per SM can be calculated using the available resources of a SM
and the resource request of a kernel. The effect of the amount of blocks per SM is harder to
determine. More research is needed in order to add this to the divide & conquer model.

32 of 35 Advanced ultrasound beam forming using GPGPU technology

Chapter 6

Conclusion & Future work

This thesis has shown that the GPU is a good candidate for ultrasound processing. The perform-
ance goal of 2 kHz was reached with a frame rate of 6.8 kHz at 8 mm. Which exceeds the frame
rate of the current scanner. The high frame rate enables the tracking of moving parts in the body.
Also flow measurements will benefit from this high frame rate.

A framework was introduced which can create processing pipelines on the GPU dynamically.
A filter developer will only have to focus on the filter implementation and the framework will take
care of the rest. By using this framework an application can change the processing pipeline without
compilation. Furthermore, the framework is able to import filter libraries from multiple sources,
also from the research community, besides Esaote. So, the transfer from research to product is
easier with the presented framework.

Also, a performance model was introduced which enables system designers to select a CUDA
GPU based on the performance requirements. The accuracy is higher than the previous introduced
utilisation roofline model, while it is still easy to apply. The prediction error for Fermi GPUs is
lower than 15% and below 30% for the Kepler architecture. The model, together with the high
performance computing framework, will ease the usage of a GPU for ultrasound processing.

6.1 Future work

The high performance computing framework currently only supports a single CUDA GPU. This
makes it only suited for GPUs of NVidia. In order to support GPUs from different vendors, like
AMD, it should also support OpenCL. A second change for the framework would be multi-GPU
support. A system can have multiple GPUs available for computing. In order to increase the
performance the framework could use multiple GPUs. It could run multiple instances of the same
pipeline on the available GPUs or it could divide the filters over the available GPUs. The task of
the framework would be to transfer the data between the GPUs and to start the filter execution
on the right GPU.

For smaller systems an Accelerated Processing Unit (APU), combining a CPU and GPU on
the same chip, might be more suitable. It can deliver a higher performance than a CPU, but
consumes less power than a GPU. In case the framework is going to be used on smaller systems,
than it might be good to look at applying it on APUs.

The running time of a kernel differs when the number of active blocks per SM changes. If the
performance prediction model could predict the effect of the number of active blocks per SM, than
the accuracy could increase.

Advanced ultrasound beam forming using GPGPU technology 33 of 35

CHAPTER 6. CONCLUSION & FUTURE WORK

Currently the performance prediction model does not take cache hits into account. Global
memory accesses benefit a lot, when they hit the cache. The accuracy of the model could be
increased, if cache hits are included. However, this will also make the model more difficult to use.
The cache hits can be measured by a profiler, but this requires that a GPU is already available.
Or a model for predicting the hit rate could be created.

A last issue of the model is, that it is created and tested with CUDA GPUs, just like the
framework. When it would also be applicable for other (GPU) architectures, then designers have
more options to choose from.

34 of 35 Advanced ultrasound beam forming using GPGPU technology

Bibliography

[1] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte. Medical Image Processing on the
GPU Past, Present and Future . Medical Image Analysis, 2013.

[2] M. Harris. Optimizing Parallel Reduction in CUDA.

[3] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-level
and Thread-level Parallelism Awareness. In Proceedings of the 36th annual International
Symposium on Computer Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009.
ACM.

[4] A.B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, November
1962.

[5] C. Nugteren and H. Corporaal. The Boat Hull Model: Enabling Performance Prediction
for Parallel Computing Prior to Code Development. In Proceedings of the 9th conference on
Computing Frontiers, CF ’12, pages 203–212, New York, NY, USA, 2012. ACM.

[6] NVidia. Whitepaper: NVIDIA GeForce GTX 680.

[7] NVidia. Whitepaper: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.

[8] NVidia. CUDA C Programming Guide, 2012.

[9] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing. Pearson Education,
2006.

[10] H.K.-H. So, J. Chen, B.Y.S. Yiu, and A.C.H. Yu. Medical Ultrasound Imaging: To GPU or
Not to GPU? Micro, IEEE, 31(5):54–65, 2011.

[11] M. Spierings and R. van der Voort. Embedded platform selection based on the Roofline
model. Master’s thesis, Eindhoven University of Technology, 2011.

[12] T. Sumanaweera and D. Liu. GPU Gems 2, chapter Chapter 48: Medical Image Reconstruc-
tion with the FFT. 2005.

[13] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual Performance
Model for Multicore Architectures. Communications of the ACM, April 2009.

[14] H. Wong, M.M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystifying GPU
Microarchitecture through Microbenchmarking. In Performance Analysis of Systems Software
(ISPASS), 2010 IEEE International Symposium on, 2010.

Advanced ultrasound beam forming using GPGPU technology 35 of 35

	Contents
	Introduction
	Related work
	Contributions
	Outline

	Ultrasound Imaging
	Ultrasound scanning
	Line by line scanning
	Plane wave scanning

	Imaging pipeline
	DC removal
	Bandpass filter
	Delay and Sum reconstruction
	Hilbert transform and envelope detection
	Colour map

	CUDA platform
	Hardware architecture
	Kepler architecture

	Programming and execution model
	Difficulties in CUDA programming

	High Performance Computing Framework
	Overview
	HPC framework features
	Pipeline configuration
	Filter implementations
	Results

	Performance Model
	Utilisation roofline
	Performance of SFU and FP
	Divide & Conquer
	Discarding shared memory accesses
	Prediction
	Results

	Discussion

	Conclusion & Future work
	Future work

	Bibliography

