
Citation: Cuadra, J.; Hurtado, E.;

Pérez, F.; Casquero, O.; Armentia, A.

OpenFog-Compliant

Application-Aware Platform: A

Kubernetes Extension. Appl. Sci.

2023, 13, 8363. https://doi.org/

10.3390/app13148363

Academic Editor: Juan Francisco De

Paz Santana

Received: 19 June 2023

Revised: 12 July 2023

Accepted: 17 July 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

OpenFog-Compliant Application-Aware Platform:
A Kubernetes Extension
Julen Cuadra * , Ekaitz Hurtado , Federico Pérez, Oskar Casquero * and Aintzane Armentia

Systems Engineering and Automatic Control Department, University of the Basque Country (UPV/EHU),
48013 Bilbao, Spain; ekaitz.hurtado@ehu.eus (E.H.); federico.perez@ehu.eus (F.P.);
aintzane.armentia@ehu.eus (A.A.)
* Correspondence: julen.cuadra@ehu.eus (J.C.); oskar.casquero@ehu.eus (O.C.);

Tel.: +34-(94)-6014213 (J.C.); +34-(94)-6014459 (O.C.)

Abstract: Distributed computing paradigms have evolved towards low latency and highly virtual-
ized environments. Fog Computing, as its latest iteration, enables the usage of Cloud-like services
closer to the generators and consumers of data. The processing in this layer is performed by Fog Ap-
plications, which are decomposed into smaller components following the microservice paradigm and
encapsulated into containers. Current state-of-the-art container orchestrators can manage hundreds
of simultaneous containers. However, Kubernetes, being the de facto standard, does not consider the
application itself as a top-level entity, which limits its orchestration capabilities. This raises the need
to rearchitect Kubernetes to benefit from application-awareness, which refers to an orchestration
method optimized for managing the applications and the set of components that comprise them.
Thus, this paper proposes an application-aware and OpenFog-compliant architecture that manages
applications as first-level entities during their lifecycle. Furthermore, the proposed architecture
allows the definition of organizational structures to group subordinated applications based on user-
defined hierarchies. This logical structuring makes it possible to outline how orchestration should be
shaped to reflect the operating model of a system or an organization. The proposed architecture is
implemented as a Kubernetes extension and provided as an operator.

Keywords: Fog Computing; OpenFog; Kubernetes; container; microservice; application-aware

1. Introduction

Fog Computing has emerged as a distributed computing paradigm that pretends
to solve some of the Cloud Computing issues [1–4], as it brings the services typically
offered by the Cloud closer to the devices that produce the data, improving data security
and networking performance [5,6]. For example, in the Smart Manufacturing domain,
Programmable Logic Controllers (PLCs) commonly used in factories are strongly adapted
to execute sequential and repeating applications that control and monitor a machine or a
process. However, PLCs usually lack the computing, storage and networking capabilities
needed to execute analytical applications. In this context, Fog Computing allows for an
improvement of the responsiveness and task conformance of the analytic applications and
enables feedback to the productive process.

Being a relatively novel research topic, great efforts have been made to standardize
Fog Computing. OpenFog is the most renowned standard, being an IEEE standard since
2018 [7]. OpenFog states that the Fog works in coordination with the Cloud to offer high-
level services to the lowest tier of IoT devices. The distinction between Fog Computing and
Edge Computing is a debated topic [4,5,8,9]. Although some authors consider that the Fog
and the Edge should be treated as equals [1,10,11], this work is aligned with OpenFog and,
thus, we refer to the set of heterogeneous and distributed resources between the Cloud and
the IoT devices as Fog instead of Edge.

Appl. Sci. 2023, 13, 8363. https://doi.org/10.3390/app13148363 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148363
https://doi.org/10.3390/app13148363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6868-0618
https://orcid.org/0000-0003-4196-4685
https://orcid.org/0000-0003-4191-5648
https://orcid.org/0000-0002-6612-241X
https://doi.org/10.3390/app13148363
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148363?type=check_update&version=2

Appl. Sci. 2023, 13, 8363 2 of 28

OpenFog defines Fog Applications (herein, applications) as being “composed of a loosely
coupled collection of microservices” [7] (p. 85). The microservice paradigm used to design ap-
plications is based on separating the application logic into smaller independent, executable,
scalable and upgradeable elements (i.e., microservices) that work together to achieve the
goal of the application [12–14]. Therefore, we align with the OpenFog consideration of
Fog applications as a collection of microservices and focus on the separation of concerns
between the development of the application components and the design of applications.

To execute microservices, Fog Computing takes advantage of the lightweight virtual-
ization method that containers provide. This way, each microservice can be encapsulated
inside of a container and deployed in distributed devices, or Fog Nodes as OpenFog calls
them. Handling the numerous containers in a computer cluster and provisioning a com-
munication environment around them requires a tool for container deployment, scaling
and management. OpenFog recommends automating all of these actions through an entity
commonly known as a container orchestrator. There are different options, Kubernetes
being the most popular one [15]. It is estimated that around 70% of the published academic
works have used Kubernetes as opposed to other orchestration solutions [16]. Additionally,
many of the leading IT companies offer managed Kubernetes versions and other popular
orchestration solutions are based on Kubernetes, such as Red Hat’s OpenShift [17].

The design of applications and the development and deployment of the components
that compose them are usually considered separate processes. When designing Cloud
Application, there are two main ongoing projects that are worth mentioning and analyzing
on their own:

1. The Topology and Orchestration Specification for Cloud Applications (TOSCA) [18] is
a standard that describes the usage of topology templates to define workloads that
represent Cloud Applications as a collection of services [19]. The topology template
is viewed as a graph of components and the relationships between them [20], where
lifecycle dependencies can be established for the components, as utilized in [21].

2. The Open Application Model (OAM) [22] focuses on the modeling of a cloud ap-
plication as a Directed Acyclic Graph (DAG). They define a Cloud Application as
follows: “A cloud native application is a collection of interrelated, but discrete components
(services, tasks, workers) that, when coupled with configuration and instantiated in a suitable
runtime infrastructure, together accomplish a unified functional purpose”. The OAM mainly
consists of two elements: the OAM component that defines workloads related to
certain runtime environments and the OAM application where the OAM components
are interconnected.

Despite the differences they may exhibit, these projects have the same goal: to treat
the set of components of an application as a functional unit. This has led to the search
for synergies between them: in [12], the authors define applications based on TOSCA and
transform them into OAM-compatible files.

The design of an application as a DAG helps represent its computations and the
communications that interrelate them [23]. Therefore, in the context of Fog Computing, a
Fog Application is equivalent to a DAG where the vertices represent the microservices and
the edges represent the data exchange between them. Figure 1a shows how the conception
of Fog Applications as DAGs can be applied in the manufacturing domain, allowing the
design of applications that describe different operations related to the data of each asset in
the factory.

However, the DAG concept does not establish relations between applications, although
some may refer to the same asset. In fact, the DAGs of Figure 1a could be arranged by
a robot, as in Figure 1b, or by Assembly Lines (AL) as in Figure 1c. Organizing DAGs
in different ways would provide benefits from the point of view of their management,
making it possible to reflect the operating model of a system or an organization. An
orchestrator could provide support to help establish relationships between DAGs; but, as
far as the authors know, this requirement has not been addressed yet. Kubernetes provides
a resource called Deployment that allows for defining a list of containers and accordingly

Appl. Sci. 2023, 13, 8363 3 of 28

parameterizing them to deploy an application. A single container, or a group of containers
sharing resources, is hosted inside what Kubernetes calls a Pod, the smallest deployable
computing unit in Kubernetes. Thus, a Pod represents a microservice. The developer is
responsible for translating the design of the application as a collection of microservices to
a list of containers in a Deployment. Therefore, although Kubernetes can manage all the
microservices that comprise an application, it is not aware of their collective representation
as an application. In this sense, since Kubernetes cannot handle the application itself as a
first-level entity, neither can it handle the organizational structure of a set of interrelated
applications and leverage it for application management.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 29

(a) (b) (c)

Figure 1. DAG organization according to different criteria: (a) Unrelated DAGs in the system; (b)

DAGs organized by robot, Assembly Robot (AR) and Transport Robot (TR) and (c) DAGs organized

by Assembly Line (AL). Icons made by Eucalyp and manshagraphics from www.flaticon.com (ac-

cessed on 6 June 2023).

However, the DAG concept does not establish relations between applications, alt-

hough some may refer to the same asset. In fact, the DAGs of Figure 1a could be arranged

by a robot, as in Figure 1b, or by Assembly Lines (AL) as in Figure 1c. Organizing DAGs

in different ways would provide benefits from the point of view of their management,

making it possible to reflect the operating model of a system or an organization. An or-

chestrator could provide support to help establish relationships between DAGs; but, as

far as the authors know, this requirement has not been addressed yet. Kubernetes pro-

vides a resource called Deployment that allows for defining a list of containers and ac-

cordingly parameterizing them to deploy an application. A single container, or a group of

containers sharing resources, is hosted inside what Kubernetes calls a Pod, the smallest

deployable computing unit in Kubernetes. Thus, a Pod represents a microservice. The de-

veloper is responsible for translating the design of the application as a collection of micro-

services to a list of containers in a Deployment. Therefore, although Kubernetes can man-

age all the microservices that comprise an application, it is not aware of their collective

representation as an application. In this sense, since Kubernetes cannot handle the appli-

cation itself as a first-level entity, neither can it handle the organizational structure of a set

of interrelated applications and leverage it for application management.

In this context, this work focuses on integrating the application concept into container

orchestrators, which would enable application-aware platforms; that is, platforms with

built-in intelligence that could treat applications as first-level entities, providing auto-

mated and more efficient management. Application-aware orchestration may include

monitoring the status of the microservices that compose the application as well as man-

aging their lifecycle during the deployment and execution of the application.

This work contributes an application-aware Fog platform aligned with OpenFog.

More precisely, the contribution of this paper is twofold: (a) proposal of a novel hierar-

chical application structure, which extends the typical conception of applications as

DAGs, with user-defined N levels from the application management point of view (herein,

the so-called “Hierarchical Application Management Structure”, HAMS) and (b) integrat-

ing the previous proposal in Kubernetes. As a result, Kubernetes will be aware of the user-

defined concepts and levels in which the application management hierarchy is structured,

managing their execution as if they were native Kubernetes objects. All of this provides

an OpenFog Technology Ready platform which, along with the case study presented, clas-

sifies as a Technology Readiness Level of four.

The rest of the article is structured as follows. Section 2 presents a survey section that

analyzes the contributions as well as limitations of the related state-of-the-art work. Sec-

tion 3 presents our OpenFog-compliant system architecture and the Kubernetes extension

methods for its implementation, followed by a description of the available testbed and the

designed applications. Section 4 describes the platform resulting from the implementation

of our proposal in Kubernetes. Section 5 discusses the usage of the platform and the

Figure 1. DAG organization according to different criteria: (a) Unrelated DAGs in the system;
(b) DAGs organized by robot, Assembly Robot (AR) and Transport Robot (TR) and (c) DAGs organized by
Assembly Line (AL). Icons made by Eucalyp and manshagraphics from www.flaticon.com (accessed
on 6 June 2023).

In this context, this work focuses on integrating the application concept into container
orchestrators, which would enable application-aware platforms; that is, platforms with
built-in intelligence that could treat applications as first-level entities, providing automated
and more efficient management. Application-aware orchestration may include monitoring
the status of the microservices that compose the application as well as managing their
lifecycle during the deployment and execution of the application.

This work contributes an application-aware Fog platform aligned with OpenFog. More
precisely, the contribution of this paper is twofold: (a) proposal of a novel hierarchical
application structure, which extends the typical conception of applications as DAGs, with
user-defined N levels from the application management point of view (herein, the so-called
“Hierarchical Application Management Structure”, HAMS) and (b) integrating the previous
proposal in Kubernetes. As a result, Kubernetes will be aware of the user-defined concepts
and levels in which the application management hierarchy is structured, managing their
execution as if they were native Kubernetes objects. All of this provides an OpenFog
Technology Ready platform which, along with the case study presented, classifies as a
Technology Readiness Level of four.

The rest of the article is structured as follows. Section 2 presents a survey section
that analyzes the contributions as well as limitations of the related state-of-the-art work.
Section 3 presents our OpenFog-compliant system architecture and the Kubernetes exten-
sion methods for its implementation, followed by a description of the available testbed and
the designed applications. Section 4 describes the platform resulting from the implementa-
tion of our proposal in Kubernetes. Section 5 discusses the usage of the platform and the
deployment of the case study. Finally, Section 6 presents the conclusions and comments on
future work.

2. Related Work

As the objective of the paper is twofold, the state of the art is analyzed from the point
of view of both contributions: first, the literature regarding Fog Applications is analyzed;
then, works related to Kubernetes extensions are described.

www.flaticon.com

Appl. Sci. 2023, 13, 8363 4 of 28

2.1. Fog Applications

This section is devoted to the analysis of applications in Fog Computing or in Cloud
to Edge Computing solutions. The focus of this analysis is to identify the main way of
designing, composing and deploying applications in these distributed environments.

In [12], the authors studied the management of application elasticity in Kubernetes.
To do so, they divided applications into small and independent microservices. Each of
these microservices represented a single functionality encapsulated in a Pod, managed by
Kubernetes. The application itself was represented as a Deployment in Kubernetes and they
considered it to make runtime adaptation decisions about the elasticity of the microservices.

Sebrechts [21] focused on modeling the applications and explicitly reflecting the
relationship between the services that compose them based on TOSCA concepts. In fact,
tools such as Kubernetes do not reflect the connections, and that task requires reverse
engineering from the application managers.

The division of applications in microservices was also treated in [20], leaning on
TOSCA to reflect the microservices and their communication relationships. Furthermore,
the authors focused on the importance of considering the communications between mi-
croservices when scheduling individual Pods in Kubernetes. The approach presented
in [19] presented a model-driven, role-based application orchestration approach where
applications were designed based on TOSCA templates, transformed into OAM-compatible
YAML files and deployed in a OAM-extended Kubernetes. This way, the application design
could leverage the capabilities of TOSCA modeling and abstract the designer from the
implementation in a deployment platform.

In [13], the authors presented an Application-Centric Orchestration Architecture
(ACOA) focused on the distributed scheduling of applications in the Cloud-Edge con-
tinuum. Following the Workload Model, applications are made up of components that
comprise executable elements. Components are deployed inside containers and the ap-
plication topology is represented in channel elements that reflect message transmission
between pairs of components, representing applications as directed graphs.

Other works have proposed the division of applications in functions using the server-
less pattern [14,24]. Functions are executed in containers and managed by orchestrators.

It is clearly noticeable that microservices are the leading paradigm when designing
applications in distributed environments. Furthermore, the design of applications and
their deployment are usually considered separate processes and decoupling the design of
applications from the development and deployment of the components that compose them
is a requirement in the works identified.

2.2. Kubernetes Extensions

The management of applications or their components in distributed environments
such as the Fog has been discussed in Section 1. Kubernetes is the leading tool when
it comes to container orchestration. As such, many authors inspect the capabilities that
Kubernetes offers when considering its extension to accommodate any custom logic that
might want to be implemented in the orchestrator.

KubeEdge [25] is an Edge infrastructure built on top of Kubernetes that aims to provide
RPC-based communications between microservices deployed at the Edge and the Cloud. A
Kubernetes controller is deployed on the Cloud (EdgeController) to remotely manage edge
nodes, and to allow remote deployment on the Edge from the Cloud. The state of the cluster
is synced between the Cloud and the Edge through a sync service and the workloads are
managed by a EdgeCore agent running on the Edge nodes.

The authors in [12] proposed a hierarchical Kubernetes extension (Me-kube) to manage
the elasticity of microservice-based applications. Their approach is based on Monitor, Ana-
lyze, Plan and Execute (MAPE) control loops: one MAPE loop for each microservice, acting
as a Microservice Manager, and one loop for each application, acting as an Application
Manager. This allows for the definition of global policies for the management of Applica-
tions and different local policies for their microservices. Application Managers determine

Appl. Sci. 2023, 13, 8363 5 of 28

the scaling actions to be implemented based on microservice metrics and communicate
decisions to the Microservice Managers that execute decisions through the Kubernetes API.

The work in [26] presented a Kubernetes controller (High Availability State Controller)
to address availability issues that emerge with the default high availability Kubernetes
services to restore Pods. The controller reacts to Pod scaling events and selects an active
Pod in charge of providing a certain service, while another Pod is identified as a standby
Pod, aware of the active’s state and ready to intervene given that the active Pod fails.

In [27], the authors utilized Kubernetes extensions to introduce a new concept (Dataset)
on Kubernetes, managed by the Datashim framework. The Dataset is implemented as a
Custom Resource Definition (CRD), and each of these resources acts as a pointer to some
data source implemented as a Persistent Volume Claim. They construct a Dataset operator
to manage the Dataset resources using the operator-sdk toolkit. This controller then creates
a Persistent Volume Claim and a Secret for every Dataset resource.

The authors in [28] presented a management model for the Cloud Native Network
Function. The Kubernetes Master Node is extended with a Network Management Controller
(a Kubernetes controller) and a Network Management Resource Definition component (a
Kubernetes CRD). Kubernetes Worker Nodes, on the other hand, are extended through the
sidecar concept where two containers are deployed inside a Pod, one of them acts as a proxy
(Management Agent) while the other container implements the application logic.

The authors of ACOA [13] implemented their generic architecture over Kubernetes,
utilizing the standard Kubernetes extension methods. They implemented an Application
Controller and a Component Controller to manage applications and components, enabling
an application-centric scheduling approach.

The work in [21] presented the orcon orchestrator, built as a Kubernetes extension.
They introduced the concepts of relationships, interfaces and roles to the Kubernetes
API, implemented as annotations in Kubernetes objects to which orcon services react.
To extend the definition of the roles, two CRDs are implemented: ProviderConfig and
ConsumerConfig. These resources are managed by the Relations Controller, implementing
the Kubernetes Controller pattern.

Other works such as [20,29–33] developed different Kubernetes scheduler extensions,
by modifying one of the tasks of the scheduler or even entirely replacing it. Most of these
approaches utilize an agent that runs on worker nodes, collects metrics such as latency and
feeds these metrics to the scheduler to enable decision making. The approach in [31] goes a
step further and creates a Custom Resource NodeProfile to store the resource profile of a
given node. This resource is accompanied by a controller (Zeus-manager) that manages the
life cycle of the NodeProfile resources and takes rescheduling decisions.

Some efforts have been made to develop orchestration solutions. However, these solu-
tions cannot compete with the coverage of state-of-the-art container orchestrators. Kubernetes
extensions offer great capabilities to add custom logic to container orchestration, as in the
works reviewed here. Although these works do not necessarily follow our objective of devel-
oping an application-aware orchestrator, they utilize Kubernetes to achieve their different
orchestration objectives, and, thus, we took them as a reference to guide our solution.

3. Materials and Methods

First, this section presents the conceptualized architecture, as well as the extension of
the application concept with the HAMS. Then, the Kubernetes architecture is analyzed,
and its extension methods are detailed. Finally, the available testbed is described.

3.1. OpenFog-Compliant Architecture

This section is devoted to presenting the system architecture and its working principles.
Figure 2 shows the architecture, based on the three-layer design proposed by OpenFog.
The lowest level is composed of IoT devices, that is, sensors and actuators that interact with
the physical world. The second layer, or Fog, comprises the devices that receive, process
and send data produced by the IoT devices to both the Cloud and back to the IoT layer.

Appl. Sci. 2023, 13, 8363 6 of 28

The uppermost layer, or Cloud Computing, is composed of a set of centralized data centers,
which provide permanent storage capabilities and store container images in the Container
Image Registry (CIR) for their use in the Fog layer. The interaction between the layers is
as follows: the IoT device layer utilizes a Fog-IoT Message Hub to send messages to and
receive messages in an asynchronous manner from the Fog; the Cloud layer, on the other
hand, utilizes a Fog-Cloud Interface to send and receive data from the Fog in a direct and
synchronized manner.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 29

their different orchestration objectives, and, thus, we took them as a reference to guide our

solution.

3. Materials and Methods

First, this section presents the conceptualized architecture, as well as the extension of

the application concept with the HAMS. Then, the Kubernetes architecture is analyzed,

and its extension methods are detailed. Finally, the available testbed is described.

3.1. OpenFog-Compliant Architecture

This section is devoted to presenting the system architecture and its working princi-

ples. Figure 2 shows the architecture, based on the three-layer design proposed by Open-

Fog. The lowest level is composed of IoT devices, that is, sensors and actuators that inter-

act with the physical world. The second layer, or Fog, comprises the devices that receive,

process and send data produced by the IoT devices to both the Cloud and back to the IoT

layer. The uppermost layer, or Cloud Computing, is composed of a set of centralized data

centers, which provide permanent storage capabilities and store container images in the

Container Image Registry (CIR) for their use in the Fog layer. The interaction between the

layers is as follows: the IoT device layer utilizes a Fog-IoT Message Hub to send messages

to and receive messages in an asynchronous manner from the Fog; the Cloud layer, on the

other hand, utilizes a Fog-Cloud Interface to send and receive data from the Fog in a direct

and synchronized manner.

Figure 2. Proposed system architecture.

At the Fog layer, the architecture is based on a Fog Node acting as a Master Node

that manages the cluster, and a set of Worker Nodes that perform the necessary pro-

cessing. The Master Node enables the centralized access to the cluster for external users,

manages the dynamic addition of Worker Nodes to the cluster and assigns the workloads

to be deployed on each Worker Node. Moreover, the Resource Storage at the Fog layer is

centrally accessible through the Master Node. To run containers, both the Master Node

and the Worker Nodes need an adequate container runtime engine that enables an envi-

ronment for container execution.

Figure 2. Proposed system architecture.

At the Fog layer, the architecture is based on a Fog Node acting as a Master Node
that manages the cluster, and a set of Worker Nodes that perform the necessary processing.
The Master Node enables the centralized access to the cluster for external users, manages
the dynamic addition of Worker Nodes to the cluster and assigns the workloads to be
deployed on each Worker Node. Moreover, the Resource Storage at the Fog layer is
centrally accessible through the Master Node. To run containers, both the Master Node and
the Worker Nodes need an adequate container runtime engine that enables an environment
for container execution.

An agent runs on each Worker Node to locally manage the workloads assigned
and provides the necessary network infrastructure for workload communication. The
workloads assigned to the Worker Nodes are the microservices that compose an application.
In fact, Kubernetes defines workloads as “an application running on Kubernetes” [34]. Each
microservice runs inside of a container and, to support the decoupling of the microservices,
they make use of the Intra-Fog Message Hub to communicate by using a data-oriented
protocol. On the other hand, the Master Nodes and the Worker Nodes directly communicate
through a request-response protocol, such as HTTP, and can talk to the Cloud and the IoT
Devices layers via the Fog-Cloud interface and the Fog-IoT Message Hub, respectively.

The platform resulting from the implementation of this architecture is designed fol-
lowing the principle of Platform as a Service (PaaS). Therefore, the resulting platform, as
OpenFog states, “allows customers to develop, run and manage applications without the com-
plexity of building and maintaining the infrastructure typically associated with developing and
launching an application” [7] (p. 14). The platform is composed of applications that represent
the workloads deployed on the Fog Nodes. The application logic can be subdivided into
application components that work together to accomplish the business objectives of the

Appl. Sci. 2023, 13, 8363 7 of 28

application. These components are selected when designing the application and, following
OpenFog’s philosophy, are considered Application Microservices during runtime. In sum-
mary, business logic is designed as functionalities offered by application components and
provided as services offered/required by Application Microservices.

To be compliant with OpenFog, the authors propose a software architecture that relies
on the Software viewpoint of OpenFog’s architecture. This is based on a three-layer model
that describes the software that runs on a Fog platform. Figure 3 compares OpenFog’s stack
to our software architecture stack.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 29

An agent runs on each Worker Node to locally manage the workloads assigned and

provides the necessary network infrastructure for workload communication. The work-

loads assigned to the Worker Nodes are the microservices that compose an application.

In fact, Kubernetes defines workloads as “an application running on Kubernetes.” [34]. Each

microservice runs inside of a container and, to support the decoupling of the micro-

services, they make use of the Intra-Fog Message Hub to communicate by using a data-

oriented protocol. On the other hand, the Master Nodes and the Worker Nodes directly

communicate through a request-response protocol, such as HTTP, and can talk to the

Cloud and the IoT Devices layers via the Fog-Cloud interface and the Fog-IoT Message

Hub, respectively.

The platform resulting from the implementation of this architecture is designed fol-

lowing the principle of Platform as a Service (PaaS). Therefore, the resulting platform, as

OpenFog states, “allows customers to develop, run and manage applications without the com-

plexity of building and maintaining the infrastructure typically associated with developing and

launching an application” [7] (p. 14). The platform is composed of applications that repre-

sent the workloads deployed on the Fog Nodes. The application logic can be subdivided

into application components that work together to accomplish the business objectives of

the application. These components are selected when designing the application and, fol-

lowing OpenFog’s philosophy, are considered Application Microservices during runtime.

In summary, business logic is designed as functionalities offered by application compo-

nents and provided as services offered/required by Application Microservices.

To be compliant with OpenFog, the authors propose a software architecture that re-

lies on the Software viewpoint of OpenFog’s architecture. This is based on a three-layer

model that describes the software that runs on a Fog platform. Figure 3 compares Open-

Fog’s stack to our software architecture stack.

Figure 3. Comparison of OpenFog’s Software View (Left) and our Software Stack (Right).

The bottom layer of Figure 3 brings together the aspects related to the hardware on

top of which the Software Backplane (the platform itself) is built. The Application Support

services lay on the Software Backplane. These services do not satisfy any business-specific

need on their own. However, they provide infrastructure services (i.e., message buses,

storage volumes, operation management) to the workloads that do achieve business goals

and applications. In our platform, Application Support services are covered by the Infra-

structure Components, which are subdivided into Support Infrastructure Components

and Supervision Infrastructure Components.

• Support Infrastructure Components offer common services that are deployed once

per cluster and assist in operations such as component communication. They are rep-

resented during runtime as infrastructure microservices, providing an API for each

one of the services they offer.

Figure 3. Comparison of OpenFog’s Software View (Left) and our Software Stack (Right).

The bottom layer of Figure 3 brings together the aspects related to the hardware
on top of which the Software Backplane (the platform itself) is built. The Application
Support services lay on the Software Backplane. These services do not satisfy any business-
specific need on their own. However, they provide infrastructure services (i.e., message
buses, storage volumes, operation management) to the workloads that do achieve business
goals and applications. In our platform, Application Support services are covered by the
Infrastructure Components, which are subdivided into Support Infrastructure Components
and Supervision Infrastructure Components.

• Support Infrastructure Components offer common services that are deployed once
per cluster and assist in operations such as component communication. They are
represented during runtime as infrastructure microservices, providing an API for each
one of the services they offer.

• Supervision Infrastructure Components offer services for the management of the
resources related to the HAMS. These components are responsible for creating the
required resources and managing their relationships and their lifecycles.

Therefore, the Software Backplane acts as a control plane (e.g., making global deci-
sions about the cluster, such as starting new Pods or assigning Pods to Nodes), while the
Application Support acts as the management plane (e.g., in the manufacturing domain,
enabling tasks closer to the applications, such as launching all the DAGs related to a station
at boot, or stopping all DAGs related to a line when it stops as production needs decrease).

The uppermost level of the Software viewpoint of OpenFog’s architecture is composed
of Application Services. These fulfill business goals and requirements and are dependent
on the services provided by the lower layers. Therefore, applications make use of Appli-
cation Services and Application Support services to pursue their goals. In our platform,
Application Services are covered by Application Components, represented at runtime by
application microservices.

According to their persistence on the platform, application components are separated
into Ephemeral and Permanent components. Ephemeral application components have
their lifecycle tied to the application to which they belong. They start running at the same
time the application deployment is requested and are decommissioned from the platform

Appl. Sci. 2023, 13, 8363 8 of 28

at the same time as the application. Permanent components, on the other hand, exist on
the system and their deployment can be requested by the users or by the applications
themselves. However, their lifecycle is not tied to any application. Thus, permanent
application components may exist prior to the deployment of any application and may
persist once the application is no longer running. The services provided by these permanent
application components may be used at the same time by many applications, resulting in a
multitenancy of these components and optimizing the performance of the platform.

Applications deployed on the platform are also categorized according to their lifecycle.
Permanent applications pursue the realization of stream processing tasks, where incoming
data are constant and some kind of data treatment is required; for example, IoT sensors in
continuous processes. Ephemeral applications pursue the realization of batch processing,
where data comes in batches or packages, are processed on demand and, upon completion,
the application is no longer required. Thus, ephemeral applications are deployed to process
some data and decommissioned once the data has been processed. This behavior is inherent
to manufacturing processes where production requests come in batches as opposed to a
constant manner.

Lastly, the deployment of every concept previously explained in this section is per-
formed leveraging the advantages the container virtualization offers. In our platform,
containers encapsulate both application microservices and infrastructure microservices
so that these containers can be deployed on the diverse Fog Nodes that form the plat-
form. These nodes are hierarchically structured and their management, as well as the
management of the container execution, is delegated to the container orchestrator.

3.2. Hierarchical Application Management Structure

This section presents the Hierarchical Application Management Structure on which
our proposal is based: “a hierarchical application structure that extends a DAG by adding
N levels defined by application designers from an application management point of view.
As previously stated, integrating such an application structure in orchestrators allows for
the management of the microservices, the DAGs themselves and the HAMS levels.

The starting point is the two levels usually considered in DAGs (Application and
Component), to which N additional levels are added that allow for the management of
applications at different levels. Therefore, we define the Application Structure concept as
the composition of the two DAG levels and the N HAMS upper levels. In general, each
level acts as a manager of the elements of its lower level. As an instance, Figure 4 shows an
example of a HAMS where N = 1. An application formed by two components is assigned
to a Level 1 Resource.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 29

an example of a HAMS where N = 1. An application formed by two components is as-

signed to a Level 1 Resource.

Figure 4. HAMS exemplification where N = 1.

The previous example can be both vertically and horizontally scaled, which increases

the management possibilities. Vertical scaling implies adding additional levels to the hi-

erarchy. For example, the previously described Level 1 Resources could be organized in

Level 2 Resources, which implies adding a new upper level to the HAMS of Figure 4.

Therefore, in this case, the number of HAMS levels (N) is raised to two (see Figure 5).

Horizontal scaling means adding new DAGs or even adding new elements at any of the

N levels of the HAMS. Scaling is not limited to adding levels or elements to the levels, but

they can also be scaled down; i.e., removed from the system without affecting the global

representation of it. Note that the proposed HAMS is flexible enough to allow elements of

any of the N levels to exist on the system without being part of any element of its upper

level (see rightmost Level 1 Resource in Figure 5).

Figure 5. HAMS vertically scaled to where N = 2 and horizontal scalability (highlighted in green)

illustrated adding additional Resources and additional Applications.

At runtime, each level of the HAMS is implemented by a Supervision Infrastructure

Component aware of the resources of its level and is responsible for the management of

the elements of its lower level. Details of the HAMS implementation within the Kuber-

netes orchestrator can be found in Section 4.2.

3.3. Kubernetes and Its Extension Methods

This section presents the implementation of the previously described architecture. As

Kubernetes is the de facto standard when it comes to container orchestration, this work

proposes integrating the architecture through standard Kubernetes extension methods.

Figure 4. HAMS exemplification where N = 1.

The previous example can be both vertically and horizontally scaled, which increases
the management possibilities. Vertical scaling implies adding additional levels to the
hierarchy. For example, the previously described Level 1 Resources could be organized
in Level 2 Resources, which implies adding a new upper level to the HAMS of Figure 4.
Therefore, in this case, the number of HAMS levels (N) is raised to two (see Figure 5).

Appl. Sci. 2023, 13, 8363 9 of 28

Horizontal scaling means adding new DAGs or even adding new elements at any of the N
levels of the HAMS. Scaling is not limited to adding levels or elements to the levels, but
they can also be scaled down; i.e., removed from the system without affecting the global
representation of it. Note that the proposed HAMS is flexible enough to allow elements of
any of the N levels to exist on the system without being part of any element of its upper
level (see rightmost Level 1 Resource in Figure 5).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 29

an example of a HAMS where N = 1. An application formed by two components is as-

signed to a Level 1 Resource.

Figure 4. HAMS exemplification where N = 1.

The previous example can be both vertically and horizontally scaled, which increases

the management possibilities. Vertical scaling implies adding additional levels to the hi-

erarchy. For example, the previously described Level 1 Resources could be organized in

Level 2 Resources, which implies adding a new upper level to the HAMS of Figure 4.

Therefore, in this case, the number of HAMS levels (N) is raised to two (see Figure 5).

Horizontal scaling means adding new DAGs or even adding new elements at any of the

N levels of the HAMS. Scaling is not limited to adding levels or elements to the levels, but

they can also be scaled down; i.e., removed from the system without affecting the global

representation of it. Note that the proposed HAMS is flexible enough to allow elements of

any of the N levels to exist on the system without being part of any element of its upper

level (see rightmost Level 1 Resource in Figure 5).

Figure 5. HAMS vertically scaled to where N = 2 and horizontal scalability (highlighted in green)

illustrated adding additional Resources and additional Applications.

At runtime, each level of the HAMS is implemented by a Supervision Infrastructure

Component aware of the resources of its level and is responsible for the management of

the elements of its lower level. Details of the HAMS implementation within the Kuber-

netes orchestrator can be found in Section 4.2.

3.3. Kubernetes and Its Extension Methods

This section presents the implementation of the previously described architecture. As

Kubernetes is the de facto standard when it comes to container orchestration, this work

proposes integrating the architecture through standard Kubernetes extension methods.

Figure 5. HAMS vertically scaled to where N = 2 and horizontal scalability (highlighted in green)
illustrated adding additional Resources and additional Applications.

At runtime, each level of the HAMS is implemented by a Supervision Infrastructure
Component aware of the resources of its level and is responsible for the management of the
elements of its lower level. Details of the HAMS implementation within the Kubernetes
orchestrator can be found in Section 4.2.

3.3. Kubernetes and Its Extension Methods

This section presents the implementation of the previously described architecture. As
Kubernetes is the de facto standard when it comes to container orchestration, this work
proposes integrating the architecture through standard Kubernetes extension methods.

Kubernetes is composed of a control plane that is responsible for managing the totality
of the cluster. It is composed of four main elements: the API Server that exposes the Kuber-
netes API; the etcd database, a NoSQL database that provides storage to the cluster; the
controller-manager (c-m) that manages the native Kubernetes resources; and the scheduler
(sched) that assigns workloads to nodes.

The rest of the cluster is composed of worker nodes. These nodes provide the pro-
cessing capabilities to the cluster, and it is where the applications are deployed. There are
two components that run on every worker node and that represent the agent deployed on
a Worker Node: the kubelet that is responsible for running Pods and reporting the state
of the node to the master and the kube-proxy (k-proxy) that enables Pod communication
inside of the cluster.

It is noticeable that some efforts have been made to develop orchestration solutions
apart from the leading orchestrators [21]. However, these solutions usually fail to cover the
totality of the requirements presented in the flow of application deployment and cannot
compete with the coverage of state-of-the-art container orchestrators. Kubernetes, being
the de facto standard in the industry, becomes the go-to solution for deploying and or-
chestrating applications. Kubernetes is highly configurable, providing several methods
for its extension without the need to patch its open-source code [35]. Furthermore, ac-
cording to [15], Kubernetes is a much more extensible container orchestrator framework
than other popular solutions. Therefore, the extension capabilities offered by Kubernetes
make it possible to develop independent addons or plugins that aim to cover some of the
features Kubernetes is missing [12,13,21,25–28], or to extend some of the functionalities of

Appl. Sci. 2023, 13, 8363 10 of 28

the Kubernetes control plane elements [20,29–33,36]. These extensions, if following stan-
dard extension methods [13,27,28], can be immediately applicable to already established
Kubernetes production environments, making them suitable for companies to implement.
Our proposal focuses on two extension methods:

• API extensions: Kubernetes works with a set of native or built-in resources used
to deploy, run and manage the required Kubernetes resources, such as, Pods, De-
ployments, Nodes or Services. Most of the users will have their requirements met
with these. However, user-defined resources can be added to the Kubernetes API.
These new resources are called Custom Resources (CRs) and are usually implemented
by declaring resource types or schemas in Kubernetes through CRDs. When a new
resource type is added to Kubernetes using CRDs, all of the Kubernetes tools, such
as kubectl (CLI tool for Kubernetes), can be used to interact with them. From the
Model-Driven Engineering (MDE) point of view, CRDs act as meta-models that define
the characterization and composition rules of the different resource types, while CRs
are models or instances of a certain CRD.

• Controllers: By themselves, CRs only act as a recipient or model containing certain
information. As these are not built-in Kubernetes resources, the orchestrator (c-m
component) does not intervene in their management. Controllers are clients of the API
server and are responsible for the management of their associated CRs.

The composition of Controllers and custom resources constitutes what Kubernetes calls
the operator pattern [37]. Each kind of CR has a Controller responsible for its management
and Controllers follow the Kubernetes control loop (constantly watching their associated
resources and accordingly acting when detecting deviations between the desired resource
specification and the actual in-cluster resource state).

Figure 6 shows how the Kubernetes cluster is extended to include our proposal. The
native Kubernetes control plane is divided into the control plane and the management
plane. The control plane is responsible for orchestrating the new resources deployed in the
cluster. The CRDs and the CRs that are instantiated based on the definition provided by
the CRDs are stored inside of the etcd database.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 29

Figure 6. Kubernetes cluster with the extension elements highlighted in orange. Icons made by

Pause08 www.flaticon.com (accessed on 6 June 2023).

The newly defined management plane is composed of the Supervision Infrastructure

Components and the Support Infrastructure Components. The former are deployed in the

Master Node. In contrast, the latter are not bound to the Master Node, and they can be

deployed in certain Worker Nodes according to different criteria. For example, location-

awareness or latency-awareness of application components require the use of certain In-

frastructure Services or deployment in Worker Nodes with certain capabilities. Therefore,

the management plane is extended to cover both Worker and Master nodes.

3.4. Case Study

This section presents: (a) the testbed on which the case study was deployed; (b) the

HAMS designed for the case study; (c) the Support Infrastructure Components available

for the applications; and (d) the applications designed to validate the proposal.

3.4.1. Testbed

Industry 4.0 consists of the integration of multiple technologies that can be deployed

into several control layers. Thus, the specific multi-layer approach considered in this case

study is aligned with OpenFog and comprises the IoT, Fog and Cloud layers presented in

Figure 7.

In this testbed, the data production is at the IoT layer, composed of a manufacturing

cell that performs the assembly operations of a set of 3D printed parts emulating the shaft

of a stepper motor. The assembly cell comprises a KUKA KR3 R540 robot [38], managed

by a Siemens ET 200SP Open Controller [39], which embeds a virtualized PLC and Win-

dows 10 operating system. To have greater flexibility in performing the tests, the testbed

also has Digital Twins (DTs) to simulate additional manufacturing cells. These DTs are

modeled and simulated using the software-in-the-loop approach with Tecnomatix Process

Simulate 16.0.1 [40] and PLCSIM Advanced V3.0 [41] tools. All the equipment in this

testbed was sourced from the respective local distributors in Spain.

Figure 6. Kubernetes cluster with the extension elements highlighted in orange. Icons made by
Pause08 www.flaticon.com (accessed on 6 June 2023).

www.flaticon.com

Appl. Sci. 2023, 13, 8363 11 of 28

The newly defined management plane is composed of the Supervision Infrastructure
Components and the Support Infrastructure Components. The former are deployed in
the Master Node. In contrast, the latter are not bound to the Master Node, and they
can be deployed in certain Worker Nodes according to different criteria. For example,
location-awareness or latency-awareness of application components require the use of
certain Infrastructure Services or deployment in Worker Nodes with certain capabilities.
Therefore, the management plane is extended to cover both Worker and Master nodes.

3.4. Case Study

This section presents: (a) the testbed on which the case study was deployed; (b) the
HAMS designed for the case study; (c) the Support Infrastructure Components available
for the applications; and (d) the applications designed to validate the proposal.

3.4.1. Testbed

Industry 4.0 consists of the integration of multiple technologies that can be deployed
into several control layers. Thus, the specific multi-layer approach considered in this case
study is aligned with OpenFog and comprises the IoT, Fog and Cloud layers presented in
Figure 7.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 29

Figure 7. Testbed available to deploy the case study. The elements of the IoT layer are represented

in green, the elements of the Fog layer in blue and the elements of the Cloud layer in orange.

After each batch process, the production data are sent to the Fog layer through the

Fog-IoT Message Hub. The Fog layer receives the data produced by the IoT layer and

turns the data collected into insights with the aim of taking decisions that improve the

efficiency and productivity of the production processes. The elements that form the

testbed in the Fog layer can be classified as follows:

• The Fog Computing cluster is based on 12 DELL Optiplex 780 computers running

Ubuntu 20.04 and connected through an unmanaged D-Link DGS-1024D gigabit

switch. One of the computers acts as a Master Node while the rest of the computers

act as worker nodes. Each one of the Fog Nodes runs K3s [42], a lightweight, certified

Kubernetes distribution specifically designed for IoT applications.

• A DELL Optiplex 7010 is used as a gateway between the Fog Cluster and the Cloud,

implementing the Fog-Cloud Interface of our proposed architecture. This enables the

Fog layer to reach the Container Image Registry when needed.

3.4.2. Designed HAMS

The first step to implementing the platform is to define the HAMS. To do so, the

organizational and business needs must be analyzed. As stated in the previous subsection,

the testbed is composed of industrial robots and their digital twins, considered manufac-

turing assets. That sets the first level of the HAMS (Asset). Assets are elements that execute

unitary operations on the products to add value during the whole Assembly Line pro-

cessing. Each Asset has a set of DAGs assigned to it, which represent the logical applica-

tions that process the information related to each Asset.

From an organizational point of view, it is convenient to group assets that interact in

the same assembly line. Therefore, the second level (Assembly Line) is identified as a com-

position of different Assets. The sum of these two organizational levels sets the number of

levels presented in the HAMS (i.e., N = 2).

3.4.3. Support Infrastructure Components

As previously explained, the services offered by Support Infrastructure Components

do not have any specific use on their own and cannot accomplish any business need. How-

ever, they provide infrastructure services to the application components that do achieve

business goals. Therefore, the design of applications is dependent on the Support

Figure 7. Testbed available to deploy the case study. The elements of the IoT layer are represented in
green, the elements of the Fog layer in blue and the elements of the Cloud layer in orange.

In this testbed, the data production is at the IoT layer, composed of a manufacturing
cell that performs the assembly operations of a set of 3D printed parts emulating the shaft
of a stepper motor. The assembly cell comprises a KUKA KR3 R540 robot [38], managed by
a Siemens ET 200SP Open Controller [39], which embeds a virtualized PLC and Windows
10 operating system. To have greater flexibility in performing the tests, the testbed also has
Digital Twins (DTs) to simulate additional manufacturing cells. These DTs are modeled
and simulated using the software-in-the-loop approach with Tecnomatix Process Simulate
16.0.1 [40] and PLCSIM Advanced V3.0 [41] tools. All the equipment in this testbed was
sourced from the respective local distributors in Spain.

After each batch process, the production data are sent to the Fog layer through the
Fog-IoT Message Hub. The Fog layer receives the data produced by the IoT layer and turns
the data collected into insights with the aim of taking decisions that improve the efficiency
and productivity of the production processes. The elements that form the testbed in the
Fog layer can be classified as follows:

Appl. Sci. 2023, 13, 8363 12 of 28

• The Fog Computing cluster is based on 12 DELL Optiplex 780 computers running
Ubuntu 20.04 and connected through an unmanaged D-Link DGS-1024D gigabit
switch. One of the computers acts as a Master Node while the rest of the computers
act as worker nodes. Each one of the Fog Nodes runs K3s [42], a lightweight, certified
Kubernetes distribution specifically designed for IoT applications.

• A DELL Optiplex 7010 is used as a gateway between the Fog Cluster and the Cloud,
implementing the Fog-Cloud Interface of our proposed architecture. This enables the
Fog layer to reach the Container Image Registry when needed.

3.4.2. Designed HAMS

The first step to implementing the platform is to define the HAMS. To do so, the orga-
nizational and business needs must be analyzed. As stated in the previous subsection, the
testbed is composed of industrial robots and their digital twins, considered manufacturing
assets. That sets the first level of the HAMS (Asset). Assets are elements that execute unitary
operations on the products to add value during the whole Assembly Line processing. Each
Asset has a set of DAGs assigned to it, which represent the logical applications that process
the information related to each Asset.

From an organizational point of view, it is convenient to group assets that interact
in the same assembly line. Therefore, the second level (Assembly Line) is identified as a
composition of different Assets. The sum of these two organizational levels sets the number
of levels presented in the HAMS (i.e., N = 2).

3.4.3. Support Infrastructure Components

As previously explained, the services offered by Support Infrastructure Components
do not have any specific use on their own and cannot accomplish any business need.
However, they provide infrastructure services to the application components that do
achieve business goals. Therefore, the design of applications is dependent on the Support
Infrastructure Components available and the services they offer. For this case study, five
components have been considered:

• MQTT broker: It runs the Fog-IoT Message Hub that acts as a link between the IoT
and Fog layers. As its name suggests, it uses MQTT, a lightweight message protocol
used in IoT applications, which is based on a publish-subscribe model.

• Kafka: The Intra-Fog Message Hub is implemented through Kafka. It is an event
streaming platform based on a publish-subscribe model. It allows and enables the
communication of the application components that run on the cluster.

• eXist-DB: A NoSQL database designed to store XML data in a native way.
• InfluxDB: A NoSQL database designed to store time series data.
• Grafana: A tool for monitoring and analyzing data from different databases. It allows

visualizing the data processed and stored by the applications.

3.4.4. Designed Applications (DAGs)

The objective of these applications is to collect and process the data obtained from the
IoT layer. Specifically, we selected the Overall Equipment Effectiveness (herein OEE) as
the Key Performance Indicator (KPI) to measure the productivity of the assets. The OEE is
recognized as one of the most insightful KPIs to assess the overall productivity of a given
manufacturing asset [43]. Two applications are designed, developed and deployed per asset:

1. Acquisition: This application obtains the data produced by the asset and stores it on
a NoSQL database. Its logic is divided into two components: one that subscribes to
the MQTT broker and obtains the manufacturing data (C_1), and the other that stores
that data inside the eXist database (C_2). Note that the MQTT broker represents the
Fog-IoT Message Hub.

2. Processing: It is a data processing application that is composed of three components
as follows: the first component (C_1) reads the previously stored data from the eXist
database and sends it to the second component; then, the second component (Process)

Appl. Sci. 2023, 13, 8363 13 of 28

is a permanent component that processes the data and extracts the OEE from it; finally,
the OEE is sent to the third component (C_3) that stores it in a InfluxDB NoSQL
database.

To illustrate the design of these applications, Figure 8 represents the two DAGs for
the Asset Assembly Robot_1 in the application structure designed. To help understand the
relations between Application Components and Support Infrastructure Components, a
bottom layer has been added to show Support Infrastructure Components and their use by
the Application Services.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 29

Infrastructure Components available and the services they offer. For this case study, five

components have been considered:

• MQTT broker: It runs the Fog-IoT Message Hub that acts as a link between the IoT

and Fog layers. As its name suggests, it uses MQTT, a lightweight message protocol

used in IoT applications, which is based on a publish-subscribe model.

• Kafka: The Intra-Fog Message Hub is implemented through Kafka. It is an event

streaming platform based on a publish-subscribe model. It allows and enables the

communication of the application components that run on the cluster.

• eXist-DB: A NoSQL database designed to store XML data in a native way.

• InfluxDB: A NoSQL database designed to store time series data.

• Grafana: A tool for monitoring and analyzing data from different databases. It allows

visualizing the data processed and stored by the applications.

3.4.4. Designed Applications (DAGs)

The objective of these applications is to collect and process the data obtained from

the IoT layer. Specifically, we selected the Overall Equipment Effectiveness (herein OEE)

as the Key Performance Indicator (KPI) to measure the productivity of the assets. The OEE

is recognized as one of the most insightful KPIs to assess the overall productivity of a

given manufacturing asset [43]. Two applications are designed, developed and deployed

per asset:

1. Acquisition: This application obtains the data produced by the asset and stores it on

a NoSQL database. Its logic is divided into two components: one that subscribes to

the MQTT broker and obtains the manufacturing data (C_1), and the other that stores

that data inside the eXist database (C_2). Note that the MQTT broker represents the

Fog-IoT Message Hub.

2. Processing: It is a data processing application that is composed of three components

as follows: the first component (C_1) reads the previously stored data from the eXist

database and sends it to the second component; then, the second component (Pro-

cess) is a permanent component that processes the data and extracts the OEE from it;

finally, the OEE is sent to the third component (C_3) that stores it in a InfluxDB

NoSQL database.

To illustrate the design of these applications, Figure 8 represents the two DAGs for

the Asset Assembly Robot_1 in the application structure designed. To help understand the

relations between Application Components and Support Infrastructure Components, a

bottom layer has been added to show Support Infrastructure Components and their use

by the Application Services.

Figure 8. Applications are designed per asset that forms the Assembly Lines. Permanent component

C_2 in the Processing application is highlighted in green.
Figure 8. Applications are designed per asset that forms the Assembly Lines. Permanent component
C_2 in the Processing application is highlighted in green.

These applications can be also represented as DAGs, as shown in Figure 9. In this
view, the usage of Support Infrastructure Components is inherent to the programming of
the individual application components and, thus, is not represented. Figure 9 focuses on
the communication between components, which is based on the Intra-Fog Message Hub
implemented using Kafka. Therefore, the links between components represent the Kafka
topics where data are transmitted.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 29

These applications can be also represented as DAGs, as shown in Figure 9. In this

view, the usage of Support Infrastructure Components is inherent to the programming of

the individual application components and, thus, is not represented. Figure 9 focuses on

the communication between components, which is based on the Intra-Fog Message Hub

implemented using Kafka. Therefore, the links between components represent the Kafka

topics where data are transmitted.

Figure 9. Assembly Robot_1 applications as DAGs.

The complete case study, with the four applications designed for the two Assets, is

represented in the application structure in Figure 10. The addition of the second Asset,

Assembly Robot_2, is an exemplification of horizontal scaling applied to an already-existing

structure. As the Process permanent component offers a service used in both applications,

it is represented as a component of both applications.

Figure 10. Additional asset added in the assembly line. The component Process is used in both Pro-

cessing applications.

4. Results

This section explains how the proposed architecture and application management

hierarchy are implemented in Kubernetes utilizing the materials and methods presented

in the previous section, resulting in an application-aware orchestration platform, which is

also OpenFog compliant.

The set of components detailed in this section comprise the Supervision Infrastruc-

ture Components of the platform. They manage the resources that are dynamically created

and decommissioned in the system. Kubernetes states that “Whether your workload is a sin-

gle component or several that work together, on Kubernetes you run it inside a set of Pods” [34].

These Pods are then managed by the so-called workload resources that manage sets of

Pods. These workload resources establish controllers and behaviors additional to those

provided by Kubernetes that can be implemented by using CRDs. Therefore, to include

Kubernetes at all levels of the application structure, i.e., every level of the HAMS as well

as the two levels identified for DAGs, we propose to implement a CRD, a controller and

the necessary access control files for each of the levels.

The CRD is a generic definition or meta model of a type of resource. It is written in

YAML (a subset of JSON) and its structure is pre-established by Kubernetes, divided into

Figure 9. Assembly Robot_1 applications as DAGs.

The complete case study, with the four applications designed for the two Assets, is
represented in the application structure in Figure 10. The addition of the second Asset,
Assembly Robot_2, is an exemplification of horizontal scaling applied to an already-existing
structure. As the Process permanent component offers a service used in both applications, it
is represented as a component of both applications.

Appl. Sci. 2023, 13, 8363 14 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 29

These applications can be also represented as DAGs, as shown in Figure 9. In this

view, the usage of Support Infrastructure Components is inherent to the programming of

the individual application components and, thus, is not represented. Figure 9 focuses on

the communication between components, which is based on the Intra-Fog Message Hub

implemented using Kafka. Therefore, the links between components represent the Kafka

topics where data are transmitted.

Figure 9. Assembly Robot_1 applications as DAGs.

The complete case study, with the four applications designed for the two Assets, is

represented in the application structure in Figure 10. The addition of the second Asset,

Assembly Robot_2, is an exemplification of horizontal scaling applied to an already-existing

structure. As the Process permanent component offers a service used in both applications,

it is represented as a component of both applications.

Figure 10. Additional asset added in the assembly line. The component Process is used in both Pro-

cessing applications.

4. Results

This section explains how the proposed architecture and application management

hierarchy are implemented in Kubernetes utilizing the materials and methods presented

in the previous section, resulting in an application-aware orchestration platform, which is

also OpenFog compliant.

The set of components detailed in this section comprise the Supervision Infrastruc-

ture Components of the platform. They manage the resources that are dynamically created

and decommissioned in the system. Kubernetes states that “Whether your workload is a sin-

gle component or several that work together, on Kubernetes you run it inside a set of Pods” [34].

These Pods are then managed by the so-called workload resources that manage sets of

Pods. These workload resources establish controllers and behaviors additional to those

provided by Kubernetes that can be implemented by using CRDs. Therefore, to include

Kubernetes at all levels of the application structure, i.e., every level of the HAMS as well

as the two levels identified for DAGs, we propose to implement a CRD, a controller and

the necessary access control files for each of the levels.

The CRD is a generic definition or meta model of a type of resource. It is written in

YAML (a subset of JSON) and its structure is pre-established by Kubernetes, divided into

Figure 10. Additional asset added in the assembly line. The component Process is used in both
Processing applications.

4. Results

This section explains how the proposed architecture and application management
hierarchy are implemented in Kubernetes utilizing the materials and methods presented
in the previous section, resulting in an application-aware orchestration platform, which is
also OpenFog compliant.

The set of components detailed in this section comprise the Supervision Infrastructure
Components of the platform. They manage the resources that are dynamically created and
decommissioned in the system. Kubernetes states that “Whether your workload is a single
component or several that work together, on Kubernetes you run it inside a set of Pods” [34]. These
Pods are then managed by the so-called workload resources that manage sets of Pods.
These workload resources establish controllers and behaviors additional to those provided
by Kubernetes that can be implemented by using CRDs. Therefore, to include Kubernetes
at all levels of the application structure, i.e., every level of the HAMS as well as the two
levels identified for DAGs, we propose to implement a CRD, a controller and the necessary
access control files for each of the levels.

The CRD is a generic definition or meta model of a type of resource. It is written in
YAML (a subset of JSON) and its structure is pre-established by Kubernetes, divided into
different sections: apiVersion, Kind, metadata, spec and status. The most important section
is the spec field (see Figure 11). It defines the structure that every instantiated CR must
follow based on its related CRD. It is divided into two subsections, namely spec and status.
The spec subsection is generated based on the openAPIv3 specification. It is separated
into optional and required fields, which are checked by Kubernetes against the CRD
when a related CR is instantiated. The status subsection is used to store state information
of the resources so the controllers can compare the actual status of the deployed object
and the desired state stored as a specification in the spec section. The status subsection
must be enabled in the subresources section. In addition, AdditionalPrinterColumns
are used to determine the field parameters when utilizing the CLI to interact with the
object, providing additional information about the state of the resources to the cluster
administrator. Additionally, it is compulsory to define the names used to interact with the
instantiated CRs by the users from the CLI or by Kubernetes itself, in the names subsection.

Each CRD is accompanied by a controller, implementing the operator concept and
achieving a fully declarative API. Each controller, acting as a Supervision Infrastructure
Component, has been designed to manage the resources of its level during their lifecycle
and to create and decommission the resources of its lower level. The state machine in
Figure 12 depicts the lifecycle proposed for a controller at any application structure level.
When the controller is initiated, it transitions to the Starting state in which the controller
reads the cluster configuration and connects to the Kubernetes API as a client. When the
controller is started, i.e., the client is created, it transitions to the Running state. Here,
the controller activates a watcher that must be aware of the resources of its level and the
events they generate to process them. Events represent the change in the state of a certain
resource inside the cluster. Our controllers distinguish three Kubernetes event types: added,

Appl. Sci. 2023, 13, 8363 15 of 28

modified and deleted. The watcher has been designed to process them through several
functions (right part of Figure 12):

• Added events represent events related to a resource that has been instantiated for the
first time in the system. The resource is passed to the Create Lower Resources() function,
which instantiates the individual resources that compose the newly instantiated CR.

• Modified events reflect that the related resource has been somehow modified. Affected
resources are passed to the Reconcile Spec Status() function that reads the current object
status, compares it to the desired spec in the CR body and accordingly acts.

• Deleted events are raised by Deleted resources. The resource is passed to the Delete Lower
Resources() function that decommissions all the lower-level resources that compose a
given CR.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 29

different sections: apiVersion, Kind, metadata, spec and status. The most important sec-

tion is the spec field (see Figure 11). It defines the structure that every instantiated CR

must follow based on its related CRD. It is divided into two subsections, namely spec and

status. The spec subsection is generated based on the openAPIv3 specification. It is sepa-

rated into optional and required fields, which are checked by Kubernetes against the CRD

when a related CR is instantiated. The status subsection is used to store state information

of the resources so the controllers can compare the actual status of the deployed object

and the desired state stored as a specification in the spec section. The status subsection

must be enabled in the subresources section. In addition, AdditionalPrinterColumns are

used to determine the field parameters when utilizing the CLI to interact with the object,

providing additional information about the state of the resources to the cluster adminis-

trator. Additionally, it is compulsory to define the names used to interact with the instan-

tiated CRs by the users from the CLI or by Kubernetes itself, in the names subsection.

Figure 11. CRD body example.

Each CRD is accompanied by a controller, implementing the operator concept and

achieving a fully declarative API. Each controller, acting as a Supervision Infrastructure

Component, has been designed to manage the resources of its level during their lifecycle

and to create and decommission the resources of its lower level. The state machine in Fig-

ure 12 depicts the lifecycle proposed for a controller at any application structure level.

When the controller is initiated, it transitions to the Starting state in which the controller

reads the cluster configuration and connects to the Kubernetes API as a client. When the

controller is started, i.e., the client is created, it transitions to the Running state. Here, the

controller activates a watcher that must be aware of the resources of its level and the events

they generate to process them. Events represent the change in the state of a certain re-

source inside the cluster. Our controllers distinguish three Kubernetes event types: added,

modified and deleted. The watcher has been designed to process them through several

functions (right part of Figure 12):

• Added events represent events related to a resource that has been instantiated for the

first time in the system. The resource is passed to the Create Lower Resources() function,

which instantiates the individual resources that compose the newly instantiated CR.

• Modified events reflect that the related resource has been somehow modified. Affected

resources are passed to the Reconcile Spec Status() function that reads the current ob-

ject status, compares it to the desired spec in the CR body and accordingly acts.

Figure 11. CRD body example.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 29

• Deleted events are raised by Deleted resources. The resource is passed to the Delete

Lower Resources() function that decommissions all the lower-level resources that com-

pose a given CR.

Figure 12. Default state machine of a given level controller.

Controllers are designed to stay in the running state as long as the platform is de-

ployed and running. When the controller is decommissioned, it transitions from the run-

ning state to the Decommissioning state. The watcher is stopped, the Kubernetes client is

deleted and the controller is stopped.

Kubernetes bases the access to its API resources on a Role-Based Access Control

method (RBAC). In our case, we utilize the Kubernetes ClusterRole resource to provide

cluster-wide access to a controller for a given resource. This way, there is a certain sepa-

ration of concerns when it comes to the responsibilities of each controller. This ensures

that no resource is modified by any process that should not alter it and that no process

has access to information it should not handle. For example, in Appendix A, Figure A1a

shows the body of a ClusterRole resource for a controller. Here, the resources to be ac-

cessed are defined and the <VERB_LIST> specifies the HTTP verbs allowed for the HTTP

calls made by the user that has this ClusterRole assigned. Furthermore, Kubernetes re-

quires these roles to be explicitly assigned to a ServiceAccount. This is performed by using

ClusterRoleBinding resources; Figure A1b shows the body of an example ClusterRole-

Binding. The roleRef is assigned to the defined subjects; in this case, the developed Se-

viceAccounts. The platform is distributed as a Kubernetes operator containing the YAML

files required to deploy the DAG levels. In addition, an Application Structure Generator

is provided as a Python script for users to determine the application structure desired.

This tool automatically creates all the necessary HAMS implementation files to create a

functional application structure ready to be deployed on Kubernetes. The generator also

parameterizes the Application Controller if there is a level above it. Each level consists of

five YAML files to be deployed in Kubernetes: the CRD, the controller Deployment and

three YAML files to enable RBAC (a ServiceAccount, a ClusterRole and a ClusterRole-

Binding). The operator code and the generator files can be found in the Data Availability

section.

Controllers can be implemented in any programming language that can communi-

cate with the Kubernetes API. We selected Python as the programming language due to

its extensive library pool and ease of implementation. The controller code must be pack-

aged in a container image and must run inside a Kubernetes Pod declared in a Kubernetes

Deployment. The HAMS controllers are implemented based on the same generic control-

ler container image that is parameterized by the Application Structure Generator.

Figure 12. Default state machine of a given level controller.

Appl. Sci. 2023, 13, 8363 16 of 28

Controllers are designed to stay in the running state as long as the platform is deployed
and running. When the controller is decommissioned, it transitions from the running state
to the Decommissioning state. The watcher is stopped, the Kubernetes client is deleted and
the controller is stopped.

Kubernetes bases the access to its API resources on a Role-Based Access Control
method (RBAC). In our case, we utilize the Kubernetes ClusterRole resource to provide
cluster-wide access to a controller for a given resource. This way, there is a certain separation
of concerns when it comes to the responsibilities of each controller. This ensures that no
resource is modified by any process that should not alter it and that no process has access to
information it should not handle. For example, in Appendix A, Figure A1a shows the body
of a ClusterRole resource for a controller. Here, the resources to be accessed are defined
and the <VERB_LIST> specifies the HTTP verbs allowed for the HTTP calls made by the
user that has this ClusterRole assigned. Furthermore, Kubernetes requires these roles to be
explicitly assigned to a ServiceAccount. This is performed by using ClusterRoleBinding
resources; Figure A1b shows the body of an example ClusterRoleBinding. The roleRef is
assigned to the defined subjects; in this case, the developed SeviceAccounts. The platform
is distributed as a Kubernetes operator containing the YAML files required to deploy the
DAG levels. In addition, an Application Structure Generator is provided as a Python script
for users to determine the application structure desired. This tool automatically creates
all the necessary HAMS implementation files to create a functional application structure
ready to be deployed on Kubernetes. The generator also parameterizes the Application
Controller if there is a level above it. Each level consists of five YAML files to be deployed
in Kubernetes: the CRD, the controller Deployment and three YAML files to enable RBAC
(a ServiceAccount, a ClusterRole and a ClusterRoleBinding). The operator code and the
generator files can be found in the Data Availability section.

Controllers can be implemented in any programming language that can communicate
with the Kubernetes API. We selected Python as the programming language due to its
extensive library pool and ease of implementation. The controller code must be packaged
in a container image and must run inside a Kubernetes Pod declared in a Kubernetes
Deployment. The HAMS controllers are implemented based on the same generic controller
container image that is parameterized by the Application Structure Generator.

The following subsections describe how these extension methods are applied to
include the different levels of the proposed application structure into the native Kubernetes
to obtain an application-aware platform.

4.1. DAG Levels

As explained in previous sections, applications are often represented as graphs, specif-
ically, DAGs. Our application structure considers the application as a DAG and distin-
guishes two levels: Application and Component. Every HAMS, let N = 0 or N = 10,
implements these lower levels as the representation of DAGs. The Application and Com-
ponent levels serve as a bridge between the conceptual representation of the real world
presented in the HAMS and the deployment of the individual microservices after the
processing of the components. Therefore, as these two levels are inherent to our proposal,
their implementation cannot be modified by the users.

4.1.1. Component Level

The lower level refers to the Component resources that implement the business logic.
In Appendix A, Figure A2 presents how the generic CRD (see Figure 11) is particularized
for the component resource. The spec subsection includes four required fields:

• name: Name of the component resource as seen in Kubernetes. It must be unique
in the system; therefore, ephemeral components are named as Application.name-
Component.name. On the contrary, permanent components, as they take part in
numerous applications, are given a name equal to Component.name. Permanent com-
ponents will be unique in the system and, thus, no further identification is required.

Appl. Sci. 2023, 13, 8363 17 of 28

• image: Name of the image to be pulled by Kubernetes. The container image in-
cludes the necessary code to run the component’s functionality and is accordingly
parameterized to interpret the rest of the component fields.

• flowConfig: This parameter holds the information related to the flow of the DAG relative
to the component. It is subdivided into two parameters, namely previous and next:

previous: An array of a duple of the name of the previous components in the
flow and the topic (IFMHtopic, Intra Fog Message Hub topic) on which the
component will be offering its service.

next: An array of a duple of the name in the flow and the topic (IFMHtopic) of
the next components on which the component will be publishing to reach the
next components.

The rest of the fields are considered optional. Therefore, they are not required when
instantiating a component:

• customization: This field allows for the customization of a component with any
additional information that might be relevant to its runtime environment, passed
as Strings defined by the component developer. It is useful when the component
developer sets additional requirements not part of the functioning of the platform but
needed by the component code.

• permanent: The persistence of the component is reflected in this field. If a component
is permanent, this field is set to True. The Component Controller will act differently
depending on the persistence of the component.

• permanentCM: Related to the previous field, it indicates the name of the ConfigMap
(Kubernetes object used as key-value storage) the permanent component will use as its
configuration file. Ephemeral components are customized at the time of deployment
using the previously explained parameters, as this type of component does not form
part of different applications during their lifecycle. However, the configuration of
permanent components is variable during runtime, and it must be updated when new
applications request their services. Therefore, ConfigMaps are used to dynamically
change the configuration of a permanent component without the need to redeploy it
(i.e., to consider the permanent component as a node in different DAGs at the same
time). Specifically, a ConfigMap is linked to a Volume (a directory containing data
in the Kubernetes cluster for Pods to consume) so when the ConfigMap is updated,
the information is ready for the container to access in the Volume. This process is
controlled by Kubernetes and is independent of both the platform and the user.

The status subsection of the Component CRD Is used to track the actual state of the
component resources in the cluster. To do so, two fields are used:

• replicas: It represents the number of available replicas in a running state in the cluster.
• situation: It is a parameter that reflects the current status of the component (Deploying

or Running). The initial situation is Deploying, but when all the desired replicas are
running, the component controller updates it to Running.

4.1.2. Application Level

The upper level refers to the DAG elements. Figure A3, shown in Appendix A, shows
how the generic CRD (see Figure 11) is customized for the application resources. In contrast
to components, the fields that define an application’s spec are all required:

• name: Name of the application resource. It must be unique in the system and, thus,
they are named as a composition of the upper resource name and the application
name.

• components: As applications are composed of a set of components, this field is an
array of component definitions that follow the specification shown in Figure A2.

• replicas: The purpose of this field is to specify the number of active replicas desired for
a given application. This is then translated into as many components as the number of
replicas desired.

Appl. Sci. 2023, 13, 8363 18 of 28

• deploy: This parameter is used to indicate whether to deploy the application as soon
as the resource is declared on Kubernetes or whether to store the application resource
defined and decide afterward to deploy the application. It is useful to define several
applications in the cluster that are expected to be run afterward.

As for the status subsection, it is used to track the actual state of the application
resources and is divided into several fields as follows:

• replicas: This field is used to track the number of application replicas that are running
at a given time.

• components: Used to track the status of the different components that form the appli-
cation. For each component, its name and its situation, specifically, the status.situation
of the component, are stored. The Application controller reacts to the change in its
component’s status and accordingly updates the whole application’s status.

• ready: It is an enumerated parameter that stores the actual application state (deploying
or running). When all the components that form an application transition to a running
state, this parameter is changed from deploying to running.

The sequence diagram in Figure 13 illustrates the high-level interactions between the
two DAG level controllers (management plane) and the Kubernetes control plane elements.
The initial state is a Kubernetes cluster that has been extended by deploying the Application
and Component CRDs, the ServiceAccounts, ClusterRoles and ClusterRoleBindings and
the Application and Component Controllers (which are already in their Running states).
Our controllers are highlighted in blue to distinguish them from the Kubernetes control
plane elements. The overall sequence diagram can be divided into three sections that are
coherent with the functions presented in the watcher flowchart of the controller:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 29

Figure 13. Sequence diagram of the high-level interactions between the Application (App) and Com-

ponent (Comp) controllers with the Kubernetes control plane. The creation of resources is high-

lighted in a blue section, the conciliation of the desired spec and the current status is highlighted in

green and the deletion of resources is highlighted in red. The right side represents the addition (in

blue and with a ‘+’ sign) and subtraction (in red and with a ‘−’ sign) of resources that dynamically

occur over the etcd.

• The creation of resources is initiated by an external user. An application CR is created

following its corresponding CRD metamodel, which results in a YAML file. Then, the

user declares the application in the cluster by posting the YAML file using the kubectl

CLI, and it is stored in the etcd. Then, the Application Controller watcher detects the

creation of the application resource and creates the Component CRs. Accordingly,

the Component Controller watcher detects the creation of the components and cre-

ates the Deployment resources.

• The controllers then seek the conciliation of the desired spec definition and the cur-

rent status of the resources. After the Deployments have been instantiated, the Com-

ponent Controller reacts to the changes that reflect the status of the components and

updates them in the database. The Application Controller detects changes in its re-

sources and updates its status in the etcd.

• The deletion of the resource follows a similar pattern to the creation. First, the user

requests the deletion of the resource (an application). Then, the Application Control-

ler detects the deletion of the resource and initiates a cascade deletion of all its com-

ponents. Finally, the Component Controller deletes the Deployment Resources.

It should be noted that the creation of Pods and the instantiation of containers is a

responsibility of Kubernetes; i.e., DAG level controllers do not have to deal with the De-

ployment resources. The same applies to the deletion of the resources: DAG level Control-

lers accordingly delete Deployments and Kubernetes acts.

4.2. User-Defined N HAMS Levels

As mentioned above, the levels that compose the HAMS are implemented by a CRD,

a controller, a ServiceAccount, a ClusterRole and a ClusterRoleBinding. The decision of

the number of levels that form the HAMS must be made prior to the extension of Kuber-

netes and, thus, prior to the deployment of the platform. The number of levels (N) must

be indicated, and the names of the spec section of each CRD must be specified. This infor-

mation is used by the Application Structure Generator provided by the operator to

Figure 13. Sequence diagram of the high-level interactions between the Application (App) and
Component (Comp) controllers with the Kubernetes control plane. The creation of resources is
highlighted in a blue section, the conciliation of the desired spec and the current status is highlighted
in green and the deletion of resources is highlighted in red. The right side represents the addition (in
blue and with a ‘+’ sign) and subtraction (in red and with a ‘−’ sign) of resources that dynamically
occur over the etcd.

• The creation of resources is initiated by an external user. An application CR is created
following its corresponding CRD metamodel, which results in a YAML file. Then, the
user declares the application in the cluster by posting the YAML file using the kubectl
CLI, and it is stored in the etcd. Then, the Application Controller watcher detects the

Appl. Sci. 2023, 13, 8363 19 of 28

creation of the application resource and creates the Component CRs. Accordingly, the
Component Controller watcher detects the creation of the components and creates the
Deployment resources.

• The controllers then seek the conciliation of the desired spec definition and the current
status of the resources. After the Deployments have been instantiated, the Component
Controller reacts to the changes that reflect the status of the components and updates
them in the database. The Application Controller detects changes in its resources and
updates its status in the etcd.

• The deletion of the resource follows a similar pattern to the creation. First, the user
requests the deletion of the resource (an application). Then, the Application Controller
detects the deletion of the resource and initiates a cascade deletion of all its components.
Finally, the Component Controller deletes the Deployment Resources.

It should be noted that the creation of Pods and the instantiation of containers is
a responsibility of Kubernetes; i.e., DAG level controllers do not have to deal with the
Deployment resources. The same applies to the deletion of the resources: DAG level
Controllers accordingly delete Deployments and Kubernetes acts.

4.2. User-Defined N HAMS Levels

As mentioned above, the levels that compose the HAMS are implemented by a CRD, a
controller, a ServiceAccount, a ClusterRole and a ClusterRoleBinding. The decision of the
number of levels that form the HAMS must be made prior to the extension of Kubernetes and,
thus, prior to the deployment of the platform. The number of levels (N) must be indicated,
and the names of the spec section of each CRD must be specified. This information is used
by the Application Structure Generator provided by the operator to generate the YAML files
relative to each level. Figure A4 shows how the generic CRD (see Figure 11) is customized
for the first level of the HAMS, that is, the level above the DAG levels.

The spec subsection of these resources is based on three parameters: one for their
name, another one for its list of applications and a third one to decide whether to deploy
the resource at the same time it is instantiated in the cluster. The status subsection of
the resources consists of an array to store the state of the applications by their name and
situation, as well as the ready field. This latter represents whether the applications related
to the resource have transitioned to the running state and, thus, the resource’s ready field
can be updated from Deploying to Running. The rest of the CRDs related to the additional
HAMS level are generated using the same nesting logic shown in Figure A5.

The spec subsection of these CRDs is a nested list of arrays of the lower resources.
Thus, the CRD generation begins at level 2 and continues to the Nth level. Furthermore,
their name must be specified as well as whether to deploy it. The status subsection, as for
the previous case, reflects the name and situation of the lower resources as well as the state
of the actual level resources in the ready field (Deploying or Running).

The controllers for each of the levels utilize the same controller image, accordingly
parameterized with the names of their upper, current and lower resources. For the upper-
most level, the upper level is indicated as System, and thus, the controller interprets that
it must not search for upper resources. The logic of these controllers is the same as the
logic represented in Figure 12. The sequence diagram in Figure 14 illustrates the high-level
interactions between the controllers for the HAMS levels, the Application and Component
Controllers and the Kubernetes control plane elements.

The initial state is equal to the one shown in Figure 13, although extended with the files
necessary for the HAMS levels. All of the application structure level controllers activate
watchers that are watching events in the system related to their managed resources. The
sequence starts with a user that declares the Level N Resource Definition.yaml file. The
HAMS level N Controller watcher detects the creation of the Level N Resource and issues
the creation of the Level N-1 Resources that compose the Level N Resource. Then, for
every controller related to the levels i ε [2, N − 1], the watchers detect the creation of their
respective resources and issue the creation of their lower-level resources. When the HAMS

Appl. Sci. 2023, 13, 8363 20 of 28

Level 1 Resources are created, the HAMS Level 1 controller watcher detects the event and
issues the creation of application resources, starting the sequence described in Figure 13.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 29

generate the YAML files relative to each level. Figure A4 shows how the generic CRD (see

Figure 11) is customized for the first level of the HAMS, that is, the level above the DAG

levels.

The spec subsection of these resources is based on three parameters: one for their

name, another one for its list of applications and a third one to decide whether to deploy

the resource at the same time it is instantiated in the cluster. The status subsection of the

resources consists of an array to store the state of the applications by their name and situ-

ation, as well as the ready field. This latter represents whether the applications related to

the resource have transitioned to the running state and, thus, the resource’s ready field

can be updated from Deploying to Running. The rest of the CRDs related to the additional

HAMS level are generated using the same nesting logic shown in Figure A5.

The spec subsection of these CRDs is a nested list of arrays of the lower resources.

Thus, the CRD generation begins at level 2 and continues to the Nth level. Furthermore,

their name must be specified as well as whether to deploy it. The status subsection, as for

the previous case, reflects the name and situation of the lower resources as well as the

state of the actual level resources in the ready field (Deploying or Running).

The controllers for each of the levels utilize the same controller image, accordingly

parameterized with the names of their upper, current and lower resources. For the upper-

most level, the upper level is indicated as System, and thus, the controller interprets that

it must not search for upper resources. The logic of these controllers is the same as the

logic represented in Figure 12. The sequence diagram in Figure 14 illustrates the high-

level interactions between the controllers for the HAMS levels, the Application and Com-

ponent Controllers and the Kubernetes control plane elements.

Figure 14. Sequence diagram of the high-level interactions of the complete application structure
and the Kubernetes Control Plane. The creation of resources is highlighted in the blue section, the
conciliation of the desired spec and the current status is highlighted in green and the deletion of
resources is highlighted in red. The right side represents the addition (in blue and with a ‘+’ sign)
and subtraction (in red and with a ‘−’ sign) of resources that dynamically occur over the etcd.

5. Discussion

This section illustrates how to utilize the platform developed and how to deploy the
designed applications on the platform built on top of Kubernetes. The applicability of this
method is not fixed to this example and can be adapted to a user-defined HAMS in any
domain. To help visualize the deployment of the platform over a vanilla Kubernetes cluster,
we utilize screenshots from the Kubernetes dashboard.

First, the application structure is defined (explained in Section 3.4.2), based on the
structural needs of the user: a two-level HAMS, where assembly lines represent asset
groups and DAGs are defined for each asset. Then, the Application Structure Generator
provided by the operator is used to create all the YAML files relative to each of the lev-
els. With the YAML files developed, the application structure is deployed on the cluster
(i.e., the controllers, the CRDs and their respective RBAC files, enabling the management of
said resources). Figure 15 shows, as seen from the Kubernetes dashboard, that the CRDs
related to our application structure are present and deployed and that there is a running
Deployment for every controller related to each level.

Appl. Sci. 2023, 13, 8363 21 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 29

Figure 14. Sequence diagram of the high-level interactions of the complete application structure and

the Kubernetes Control Plane. The creation of resources is highlighted in the blue section, the con-

ciliation of the desired spec and the current status is highlighted in green and the deletion of re-

sources is highlighted in red. The right side represents the addition (in blue and with a ‘+’ sign) and

subtraction (in red and with a ‘−’ sign) of resources that dynamically occur over the etcd.

The initial state is equal to the one shown in Figure 13, although extended with the

files necessary for the HAMS levels. All of the application structure level controllers acti-

vate watchers that are watching events in the system related to their managed resources.

The sequence starts with a user that declares the Level N Resource Definition.yaml file.

The HAMS level N Controller watcher detects the creation of the Level N Resource and

issues the creation of the Level N-1 Resources that compose the Level N Resource. Then,

for every controller related to the levels i ϵ [2, N-1], the watchers detect the creation of

their respective resources and issue the creation of their lower-level resources. When the

HAMS Level 1 Resources are created, the HAMS Level 1 controller watcher detects the

event and issues the creation of application resources, starting the sequence described in

Figure 13.

5. Discussion

This section illustrates how to utilize the platform developed and how to deploy the

designed applications on the platform built on top of Kubernetes. The applicability of this

method is not fixed to this example and can be adapted to a user-defined HAMS in any

domain. To help visualize the deployment of the platform over a vanilla Kubernetes clus-

ter, we utilize screenshots from the Kubernetes dashboard.

First, the application structure is defined (explained in Section 3.4.2), based on the

structural needs of the user: a two-level HAMS, where assembly lines represent asset

groups and DAGs are defined for each asset. Then, the Application Structure Generator

provided by the operator is used to create all the YAML files relative to each of the levels.

With the YAML files developed, the application structure is deployed on the cluster (i.e.,

the controllers, the CRDs and their respective RBAC files, enabling the management of

said resources). Figure 15 shows, as seen from the Kubernetes dashboard, that the CRDs

related to our application structure are present and deployed and that there is a running

Deployment for every controller related to each level.

Figure 15. CRDs and Deployments related to the deployment of the platform.

When the Applications are designed and the Components are developed (Section

3.4.4), the construction of the YAML file containing all of the Assembly Line’s information

is started. This custom resource must follow the CRD definition of the Assembly Line re-

sources, as structured in Figure A5. In this case, the Assembly Line contains two Assets,

while each of the Assets contains two Applications (see Figure 10). The Support Infrastruc-

ture Components are identified (see Figure 8) and deployed in the cluster.

Once constructed, the AssemblyLine.yaml file is posted in Kubernetes through the

kubectl CLI. According to Figure 14, this action starts the deployment process for the sub-

sequent resources. Once the AssemblyLine resource is created, two Asset resources are

Figure 15. CRDs and Deployments related to the deployment of the platform.

When the Applications are designed and the Components are developed (Section 3.4.4),
the construction of the YAML file containing all of the Assembly Line’s information is
started. This custom resource must follow the CRD definition of the Assembly Line re-
sources, as structured in Figure A5. In this case, the Assembly Line contains two Assets,
while each of the Assets contains two Applications (see Figure 10). The Support Infrastruc-
ture Components are identified (see Figure 8) and deployed in the cluster.

Once constructed, the AssemblyLine.yaml file is posted in Kubernetes through the
kubectl CLI. According to Figure 14, this action starts the deployment process for the
subsequent resources. Once the AssemblyLine resource is created, two Asset resources are
created and four application resources are created. Lastly, nine component resources are
created, one of which is a permanent component while the rest are ephemeral components.
Figure 16 shows these elements as seen from the dashboard, where the user can interact with
them and with the Pods through which they are deployed, analyze resource consumption,
check logs, etc.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 29

created and four application resources are created. Lastly, nine component resources are

created, one of which is a permanent component while the rest are ephemeral compo-

nents. Figure 16 shows these elements as seen from the dashboard, where the user can

interact with them and with the Pods through which they are deployed, analyze resource

consumption, check logs, etc.

Figure 16. Resources deployed on the cluster as seen from the Kubernetes dashboard.

As an example, Figure 17 shows the events related to the Asset Assembly Robot_1. It

should be noted how, first, the Asset is detected as successfully created and then, as the

Applications are instantiated and transitioned to the Running state, the Asset itself is

tagged as Running.

Figure 17. Events related to the Asset Assembly Robot_1.

Figure 18 reflects the events relative to the Process permanent component. It should

be noted that the permanent component’s ConfigMap is created with the first application

that instantiates the component. Afterward, the second application that uses the perma-

nent component modifies the existing ConfigMap adding its information, thus, making it

available to the component.

Figure 16. Resources deployed on the cluster as seen from the Kubernetes dashboard.

As an example, Figure 17 shows the events related to the Asset Assembly Robot_1.
It should be noted how, first, the Asset is detected as successfully created and then, as
the Applications are instantiated and transitioned to the Running state, the Asset itself is
tagged as Running.

Appl. Sci. 2023, 13, 8363 22 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 29

created and four application resources are created. Lastly, nine component resources are

created, one of which is a permanent component while the rest are ephemeral compo-

nents. Figure 16 shows these elements as seen from the dashboard, where the user can

interact with them and with the Pods through which they are deployed, analyze resource

consumption, check logs, etc.

Figure 16. Resources deployed on the cluster as seen from the Kubernetes dashboard.

As an example, Figure 17 shows the events related to the Asset Assembly Robot_1. It

should be noted how, first, the Asset is detected as successfully created and then, as the

Applications are instantiated and transitioned to the Running state, the Asset itself is

tagged as Running.

Figure 17. Events related to the Asset Assembly Robot_1.

Figure 18 reflects the events relative to the Process permanent component. It should

be noted that the permanent component’s ConfigMap is created with the first application

that instantiates the component. Afterward, the second application that uses the perma-

nent component modifies the existing ConfigMap adding its information, thus, making it

available to the component.

Figure 17. Events related to the Asset Assembly Robot_1.

Figure 18 reflects the events relative to the Process permanent component. It should
be noted that the permanent component’s ConfigMap is created with the first application
that instantiates the component. Afterward, the second application that uses the perma-
nent component modifies the existing ConfigMap adding its information, thus, making it
available to the component.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 29

Figure 18. Events related to the Process permanent component.

To reflect the operation of the applications as they process the OEE of the two Assets,

Figure 19 shows how the OEE is calculated through time. To that end, the Grafana Support

Infrastructure Component is used. It ingests the data left by the Processing applications

at the InfluxDB Support Infrastructure Component. To help understand the changes that

take place in the cluster when the resources are created, two videos are provided as Sup-

plementary Materials.

Figure 19. OEE calculation of the two Assets through time. The Vertical axis represents the OEE

value and the horizontal axis represents its calculation time. The green and yellow points represent

the computed OEE for Assembly Robot_1 and Assembly Robot_2, respectively. The orange points

depict the OEE threshold under which the machine performance is not acceptable.

6. Conclusions

Fog Computing presents a suitable environment for offering Cloud-like services

closer to the sources of data. However, to the authors’ knowledge, container orchestrators

are not aware of the collective representation of their components as applications, nor do

they support their logical grouping in a hierarchy based on the operating model of a sys-

tem or organization.

This work contributes with an application-aware platform that enables the design of

a HAMS the elements of which have applications designed as DAGs associated. This ap-

proach enables the consideration of abstract concepts from the organizational or business

Figure 18. Events related to the Process permanent component.

To reflect the operation of the applications as they process the OEE of the two Assets,
Figure 19 shows how the OEE is calculated through time. To that end, the Grafana Support
Infrastructure Component is used. It ingests the data left by the Processing applications
at the InfluxDB Support Infrastructure Component. To help understand the changes
that take place in the cluster when the resources are created, two videos are provided as
Supplementary Materials.

Appl. Sci. 2023, 13, 8363 23 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 29

Figure 18. Events related to the Process permanent component.

To reflect the operation of the applications as they process the OEE of the two Assets,

Figure 19 shows how the OEE is calculated through time. To that end, the Grafana Support

Infrastructure Component is used. It ingests the data left by the Processing applications

at the InfluxDB Support Infrastructure Component. To help understand the changes that

take place in the cluster when the resources are created, two videos are provided as Sup-

plementary Materials.

Figure 19. OEE calculation of the two Assets through time. The Vertical axis represents the OEE

value and the horizontal axis represents its calculation time. The green and yellow points represent

the computed OEE for Assembly Robot_1 and Assembly Robot_2, respectively. The orange points

depict the OEE threshold under which the machine performance is not acceptable.

6. Conclusions

Fog Computing presents a suitable environment for offering Cloud-like services

closer to the sources of data. However, to the authors’ knowledge, container orchestrators

are not aware of the collective representation of their components as applications, nor do

they support their logical grouping in a hierarchy based on the operating model of a sys-

tem or organization.

This work contributes with an application-aware platform that enables the design of

a HAMS the elements of which have applications designed as DAGs associated. This ap-

proach enables the consideration of abstract concepts from the organizational or business

Figure 19. OEE calculation of the two Assets through time. The Vertical axis represents the OEE
value and the horizontal axis represents its calculation time. The green and yellow points represent
the computed OEE for Assembly Robot_1 and Assembly Robot_2, respectively. The orange points
depict the OEE threshold under which the machine performance is not acceptable.

6. Conclusions

Fog Computing presents a suitable environment for offering Cloud-like services closer
to the sources of data. However, to the authors’ knowledge, container orchestrators are not
aware of the collective representation of their components as applications, nor do they support
their logical grouping in a hierarchy based on the operating model of a system or organization.

This work contributes with an application-aware platform that enables the design
of a HAMS the elements of which have applications designed as DAGs associated. This
approach enables the consideration of abstract concepts from the organizational or business
structure at runtime. Thus, the deployment of microservice-based Fog Applications may
include these abstract representations utilized in the HAMS definition. The approach
described in this work implements the presented architecture over Kubernetes, utilizing its
standardized extension methods.

The Supervision Infrastructure Services deployed as Kubernetes controllers enable
the separation of concerns between the different phases and actors found when designing,
developing and deploying Fog Applications. It abstracts the application designer from the
usage of the container orchestration tool and from the development of Support Infrastruc-
ture Components and Application Components. Furthermore, the usage of an extended
Kubernetes platform itself allows users to decouple the deployment of the application
structure elements from the runtime management.

The intelligence of the controllers makes it possible to provide scalability during
runtime to consider additional assets or applications in the platform or to include additional
abstractions as levels in the HAMS. Being implemented based on standard Kubernetes
extension methods, the platform could be extended with other available tools or operators
to cover some requirements that the proposal might not cover.

However, the proposal has some disadvantages, as in its current state it only allows
the communication of the microservices through a publish-subscribe mechanism that
requires the programmers of the components to implement that functionality and make it
parameterizable with the information provided in the component resource. Furthermore,
the proposal requires users to develop quite complex YAML files that could be automated
in further work using MDE. Additionally, although the HAMS provides some flexibility, it
cannot be modified during runtime and only one Application Structure might be deployed
at a time.

Appl. Sci. 2023, 13, 8363 24 of 28

Future work is also aimed at exploring the performance limitations of the proposal
through quantitative analysis and stress tests, searching for the limits of the controllers
developed and the application structure as a whole. In those cases, the autoscaling feature
of Kubernetes could be explored to scale controllers as needed. Scalability should also
be introduced in Application Components as the current approach only considers static
scalability or replicas.

Future work might also consider other different routes. The inclusion of more complex
DAGs and the coexistence of several simultaneous HAMS in the system should be explored.
It should be considered that every component might offer more than one service to different
entities. Support for direct synchronous communication between components could be
introduced as an alternative to the presented topic-based publish-subscribe communication
paradigm. The design and development of the HAMS and its elements could be performed
through a more user-friendly editor. Node restrictions and awareness could be improved
when deploying Fog Components.

Supplementary Materials: The following videos serve as supplementary material to the article:
https://www.youtube.com/playlist?list=PLs6bFF_iqW3H5YDCk599_OFbxnpPHL4gr (accessed on
12 June 2023).

Author Contributions: Conceptualization, J.C., O.C. and A.A.; methodology, J.C., E.H., O.C. and A.A.;
software, J.C. and E.H.; validation, J.C. and E.H.; formal analysis, J.C., O.C. and A.A.; investigation,
J.C., E.H., O.C. and A.A.; resources, O.C., A.A. and F.P.; data curation, J.C. and E.H.; writing—original
draft preparation, J.C., O.C. and A.A.; writing—review and editing, J.C., E.H., O.C., A.A. and F.P.;
visualization, J.C., O.C. and A.A.; supervision, O.C. and A.A.; project administration, O.C. and F.P.;
funding acquisition, O.C., A.A. and F.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the project PES18/48 funded by the University of the Basque
Country (UPV/EHU) and by the PhD fellowship granted under the frame of the PIF 2022 call funded
by the University of the Basque Country (UPV/EHU), grant number PIF22/188.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The files related to the operator and the Application Structure Generator
can be found in the following GitHub repository: https://github.com/JulenCuadra/AppAwarePlatform
(accessed on 12 June 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in the manuscript:

Acronym Definition
ACOA Application-Centric Orchestration Architecture
AL Assembly Line
API Application Programming Interface
AR Assembly Robot
CIR Container Image Registry
CLI Command Line Interface
CR Custom Resource
CRD Custom Resource Definition
DB Data Base
DT Digital Twin
DG Directed Graph
DAG Directed Acyclic Graph
HAMS Hierarchical Application Management Structure
HTTP Hypertext Transfer Protocol
IFMHtopic Intra Fog Message Hub topic

https://www.youtube.com/playlist?list=PLs6bFF_iqW3H5YDCk599_OFbxnpPHL4gr
https://github.com/JulenCuadra/AppAwarePlatform

Appl. Sci. 2023, 13, 8363 25 of 28

IoT Internet of Things
JSON JavaScript Object Notation
KPI Key Performance Indicator
MAPE Monitor, Analyze, Plan and Execute
MDE Model-Driven Engineering
MQTT Message Queuing Telemetry Transport
NoSQL No Structured Query Language
OAM Open Application Model
OEE Overall Equipment Effectiveness
PaaS Platform as a Service
PLC Programmable Logic Controller
RBAC Role Based Access Control
RPC Remote Procedure Call
TOSCA Topology and Orchestration Specification for Cloud Applications
TR Transport Robot
YAML YAML Ain’t Markup Language/Yet Another Markup Language

Appendix A

This appendix contains figures used to support the text of the article.

Appendix A.1. ClusterRole and ClusterRole-Binding Resources

Figure A1 presents the files to manage the RBAC for users.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 29

(a) (b)

Figure A1. Role-Based Access Control: (a) example of a ClusterRole body and (b) example of a Clus-

terRole-Binding body.

Appendix A.2. CRD Parametrizations

Figures A2–A5 detail how the generic CRD is customized for several resource types.

Figure A2. Component CRD parameterization.

Figure A3. Application CRD parameterization.

Figure A4. CRD parameterization of the first HAMS level.

Figure A1. Role-Based Access Control: (a) example of a ClusterRole body and (b) example of a
ClusterRole-Binding body.

Appendix A.2. CRD Parametrizations

Figures A2–A5 detail how the generic CRD is customized for several resource types.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 29

(a) (b)

Figure A1. Role-Based Access Control: (a) example of a ClusterRole body and (b) example of a Clus-

terRole-Binding body.

Appendix A.2. CRD Parametrizations

Figures A2–A5 detail how the generic CRD is customized for several resource types.

Figure A2. Component CRD parameterization.

Figure A3. Application CRD parameterization.

Figure A4. CRD parameterization of the first HAMS level.

Figure A2. Component CRD parameterization.

Appl. Sci. 2023, 13, 8363 26 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 29

(a) (b)

Figure A1. Role-Based Access Control: (a) example of a ClusterRole body and (b) example of a Clus-

terRole-Binding body.

Appendix A.2. CRD Parametrizations

Figures A2–A5 detail how the generic CRD is customized for several resource types.

Figure A2. Component CRD parameterization.

Figure A3. Application CRD parameterization.

Figure A4. CRD parameterization of the first HAMS level.

Figure A3. Application CRD parameterization.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 29

(a) (b)

Figure A1. Role-Based Access Control: (a) example of a ClusterRole body and (b) example of a Clus-

terRole-Binding body.

Appendix A.2. CRD Parametrizations

Figures A2–A5 detail how the generic CRD is customized for several resource types.

Figure A2. Component CRD parameterization.

Figure A3. Application CRD parameterization.

Figure A4. CRD parameterization of the first HAMS level. Figure A4. CRD parameterization of the first HAMS level.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 27 of 29

Figure A5. Generic CRD parameterization of the levels 2 to N. The red text represents the nested

resource specification as the N levels grow.

References

1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. https://doi.org/10.1109/COMST.2015.2444095.

2. Dastjerdi, A.V.; Buyya, R. Fog Computing: Helping the Internet of Things Realize Its Potential. Computer 2016, 49, 112–116.

https://doi.org/10.1109/MC.2016.245.

3. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. In Proceedings of the first

edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; Association for Computing

Machinery: New York, NY, USA, 2012; pp. 13–16.

4. Stojmenovic, I.; Wen, S. The Fog Computing Paradigm: Scenarios and Security Issues. In Proceedings of the 2014 Federated

Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 1–8.

5. Sabireen, H.; Neelanarayanan, V.J.I.E. A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Chal-

lenges. ICT Express 2021, 7, 162–176. https://doi.org/10.1016/j.icte.2021.05.004.

6. Kurdi, H.; Thayananthan, V. A Multi-Tier MQTT Architecture with Multiple Brokers Based on Fog Computing for Securing

Industrial IoT. Appl. Sci. 2022, 12, 7173. https://doi.org/10.3390/app12147173.

7. IEEE Std 1934-2018; IEEE Standard for Adoption of OpenFog Reference Architecture for Fog Computing. IEEE: Piscataway, NJ,

USA, 2018; pp. 1–176. https://doi.org/10.1109/IEEESTD.2018.8423800.

8. Qi, Q.; Tao, F. A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing. IEEE

Access 2019, 7, 86769–86777. https://doi.org/10.1109/ACCESS.2019.2923610.

9. Pfandzelter, T.; Hasenburg, J.; Bermbach, D. From Zero to Fog: Efficient Engineering of Fog-Based Internet of Things Applica-

tions. Softw. Pract. Exp. 2021, 51, 1798–1821. https://doi.org/10.1002/spe.3003.

10. Kayal, P. Kubernetes in Fog Computing: Feasibility Demonstration, Limitations and Improvement Scope : Invited Paper. In

Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 5–9 April 2020; IEEE:

Piscataway, NJ, USA, 2020; pp. 1–6.

11. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal Workload Allocation in Fog-Cloud Computing Toward Balanced Delay

and Power Consumption. IEEE Internet Things J. 2016, 3, 1171–1181. https://doi.org/10.1109/JIOT.2016.2565516.

12. Rossi, F.; Cardellini, V.; Presti, F.L. Hierarchical Scaling of Microservices in Kubernetes. In Proceedings of the 2020 IEEE Inter-

national Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), Washington, DC, USA, 17–21 August

2020; pp. 28–37.

13. Orive, A.; Agirre, A.; Truong, H.-L.; Sarachaga, I.; Marcos, M. Quality of Service Aware Orchestration for Cloud–Edge Contin-

uum Applications. Sensors 2022, 22, 1755. https://doi.org/10.3390/s22051755.

14. Nastic, S.; Rausch, T.; Scekic, O.; Dustdar, S.; Gusev, M.; Koteska, B.; Kostoska, M.; Jakimovski, B.; Ristov, S.; Prodan, R. A

Serverless Real-Time Data Analytics Platform for Edge Computing. IEEE Internet Comput. 2017, 21, 64–71.

https://doi.org/10.1109/MIC.2017.2911430.

15. Truyen, E.; Van Landuyt, D.; Preuveneers, D.; Lagaisse, B.; Joosen, W. A Comprehensive Feature Comparison Study of Open-

Source Container Orchestration Frameworks. Appl. Sci. 2019, 9, 931. https://doi.org/10.3390/app9050931.

16. Fayos-Jordan, R.; Felici-Castell, S.; Segura-Garcia, J.; Lopez-Ballester, J.; Cobos, M. Performance Comparison of Container Or-

chestration Platforms with Low Cost Devices in the Fog, Assisting Internet of Things Applications. J. Netw. Comput. Appl. 2020,

169, 102788. https://doi.org/10.1016/j.jnca.2020.102788.

17. Red Hat OpenShift Enterprise Kubernetes Container Platform. Available online: https://www.redhat.com/en/technolo-

gies/cloud-computing/openshift (accessed on 22 May 2023).

Figure A5. Generic CRD parameterization of the levels 2 to N. The red text represents the nested
resource specification as the N levels grow.

References
1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
2. Dastjerdi, A.V.; Buyya, R. Fog Computing: Helping the Internet of Things Realize Its Potential. Computer 2016, 49, 112–116.

[CrossRef]
3. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. In Proceedings of the first

edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; Association for Computing
Machinery: New York, NY, USA, 2012; pp. 13–16.

4. Stojmenovic, I.; Wen, S. The Fog Computing Paradigm: Scenarios and Security Issues. In Proceedings of the 2014 Federated
Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 1–8.

5. Sabireen, H.; Neelanarayanan, V.J.I.E. A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research
Challenges. ICT Express 2021, 7, 162–176. [CrossRef]

6. Kurdi, H.; Thayananthan, V. A Multi-Tier MQTT Architecture with Multiple Brokers Based on Fog Computing for Securing
Industrial IoT. Appl. Sci. 2022, 12, 7173. [CrossRef]

https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/MC.2016.245
https://doi.org/10.1016/j.icte.2021.05.004
https://doi.org/10.3390/app12147173

Appl. Sci. 2023, 13, 8363 27 of 28

7. IEEE Std 1934-2018; IEEE Standard for Adoption of OpenFog Reference Architecture for Fog Computing. IEEE: Piscataway, NJ,
USA, 2018; pp. 1–176. [CrossRef]

8. Qi, Q.; Tao, F. A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing. IEEE
Access 2019, 7, 86769–86777. [CrossRef]

9. Pfandzelter, T.; Hasenburg, J.; Bermbach, D. From Zero to Fog: Efficient Engineering of Fog-Based Internet of Things Applications.
Softw. Pract. Exp. 2021, 51, 1798–1821. [CrossRef]

10. Kayal, P. Kubernetes in Fog Computing: Feasibility Demonstration, Limitations and Improvement Scope: Invited Paper. In
Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 5–9 April 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1–6.

11. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal Workload Allocation in Fog-Cloud Computing Toward Balanced Delay
and Power Consumption. IEEE Internet Things J. 2016, 3, 1171–1181. [CrossRef]

12. Rossi, F.; Cardellini, V.; Presti, F.L. Hierarchical Scaling of Microservices in Kubernetes. In Proceedings of the 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), Washington, DC, USA, 17–21 August
2020; pp. 28–37.

13. Orive, A.; Agirre, A.; Truong, H.-L.; Sarachaga, I.; Marcos, M. Quality of Service Aware Orchestration for Cloud–Edge Continuum
Applications. Sensors 2022, 22, 1755. [CrossRef] [PubMed]

14. Nastic, S.; Rausch, T.; Scekic, O.; Dustdar, S.; Gusev, M.; Koteska, B.; Kostoska, M.; Jakimovski, B.; Ristov, S.; Prodan, R. A
Serverless Real-Time Data Analytics Platform for Edge Computing. IEEE Internet Comput. 2017, 21, 64–71. [CrossRef]

15. Truyen, E.; Van Landuyt, D.; Preuveneers, D.; Lagaisse, B.; Joosen, W. A Comprehensive Feature Comparison Study of Open-
Source Container Orchestration Frameworks. Appl. Sci. 2019, 9, 931. [CrossRef]

16. Fayos-Jordan, R.; Felici-Castell, S.; Segura-Garcia, J.; Lopez-Ballester, J.; Cobos, M. Performance Comparison of Container
Orchestration Platforms with Low Cost Devices in the Fog, Assisting Internet of Things Applications. J. Netw. Comput. Appl. 2020,
169, 102788. [CrossRef]

17. Red Hat OpenShift Enterprise Kubernetes Container Platform. Available online: https://www.redhat.com/en/technologies/
cloud-computing/openshift (accessed on 22 May 2023).

18. TOSCA Simple Profile in YAML Version 1.3. 2020. Available online: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf (accessed on 5 June 2023).

19. Wang, Y.; Lee, C.; Ren, S.; Kim, E.; Chung, S. Enabling Role-Based Orchestration for Cloud Applications. Appl. Sci. 2021, 11, 6656.
[CrossRef]

20. Marchese, A.; Tomarchio, O. Communication Aware Scheduling of Microservices-Based Applications on Kubernetes Clusters.
In Proceedings of the 12th International Conference on Cloud Computing and Services Science, Online, 27–29 April 2022; pp.
190–198.

21. Sebrechts, M.; Borny, S.; Wauters, T.; Volckaert, B.; De Turck, F. Service Relationship Orchestration: Lessons Learned From
Running Large Scale Smart City Platforms on Kubernetes. IEEE Access 2021, 9, 133387–133401. [CrossRef]

22. Open Application Model. 2023. Available online: https://github.com/oam-dev/spec (accessed on 24 April 2023).
23. Deelman, E.; Gannon, D.; Shields, M.; Taylor, I. Workflows and E-Science: An Overview of Workflow System Features and

Capabilities. Future Gener. Comput. Syst. 2009, 25, 528–540. [CrossRef]
24. Pérez, A.; Moltó, G.; Caballer, M.; Calatrava, A. A Programming Model and Middleware for High Throughput Serverless

Computing Applications. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12
April 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 106–113.

25. Extend Cloud to Edge with KubeEdge|IEEE Conference Publication|IEEE Xplore. Available online: https://ieeexplore.ieee.org/
document/8567693 (accessed on 15 November 2022).

26. Vayghan, L.A.; Saied, M.A.; Toeroe, M.; Khendek, F. A Kubernetes Controller for Managing the Availability of Elastic Microservice
Based Stateful Applications. J. Syst. Softw. 2021, 175, 110924. [CrossRef]

27. Gkoufas, Y.; Yuan, D.Y.; Pinto, C.; Koutsovasilis, P.; Venugopal, S. Datashim and Its Applications in Bioinformatics. In High
Performance Computing, Proceedings of the ISC High Performance Digital 2021 International Workshops, Frankfurt am Main, Germany, 2
June–2 July 2021; Jagode, H., Anzt, H., Ltaief, H., Luszczek, P., Eds.; Springer International Publishing: Cham, Switzerland, 2021;
pp. 416–427.

28. Wu, Y.; Wang, X. Research on Network Element Management Model Based on Cloud Native Technology. In Proceedings of the
2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI), Taiyuan, China, 26–28
May 2022; pp. 17–20.

29. Haja, D.; Szalay, M.; Sonkoly, B.; Pongracz, G.; Toka, L. Sharpening Kubernetes for the Edge. In Proceedings of the ACM
SIGCOMM 2019 Conference Posters and Demos, Beijing, China, 19–23 August 2019; pp. 136–137.

30. Ogbuachi, M.C.; Reale, A.; Suskovics, P.; Kovács, B. Context-Aware Kubernetes Scheduler for Edge-Native Applications on 5G. J.
Commun. Softw. Syst. 2020, 16, 85–94. [CrossRef]

31. Zhang, X.; Li, L.; Wang, Y.; Chen, E.; Shou, L. Zeus: Improving Resource Efficiency via Workload Colocation for Massive
Kubernetes Clusters. IEEE Access 2021, 9, 105192–105204. [CrossRef]

https://doi.org/10.1109/IEEESTD.2018.8423800
https://doi.org/10.1109/ACCESS.2019.2923610
https://doi.org/10.1002/spe.3003
https://doi.org/10.1109/JIOT.2016.2565516
https://doi.org/10.3390/s22051755
https://www.ncbi.nlm.nih.gov/pubmed/35270901
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.3390/app9050931
https://doi.org/10.1016/j.jnca.2020.102788
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://doi.org/10.3390/app11146656
https://doi.org/10.1109/ACCESS.2021.3115438
https://github.com/oam-dev/spec
https://doi.org/10.1016/j.future.2008.06.012
https://ieeexplore.ieee.org/document/8567693
https://ieeexplore.ieee.org/document/8567693
https://doi.org/10.1016/j.jss.2021.110924
https://doi.org/10.24138/jcomss.v16i1.1027
https://doi.org/10.1109/ACCESS.2021.3100082

Appl. Sci. 2023, 13, 8363 28 of 28

32. Katenbrink, F.; Seitz, A.; Mittermeier, L.; Müller, H.; Bruegge, B. Dynamic Scheduling for Seamless Computing. In Proceedings of
the 2018 IEEE 8th International Symposium on Cloud and Service Computing (SC2), Paris, France, 18–21 November 2018; pp.
41–48.

33. Casquero, O.; Armentia, A.; Sarachaga, I.; Pérez, F.; Orive, D.; Marcos, M. Distributed Scheduling in Kubernetes Based on MAS
for Fog-in-the-Loop Applications. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1213–1217.

34. Workloads. Available online: https://kubernetes.io/docs/concepts/workloads/ (accessed on 10 January 2023).
35. Extending Kubernetes. Available online: https://kubernetes.io/docs/concepts/extend-kubernetes/ (accessed on 22 February

2023).
36. Sebrechts, M.; Ramlot, T.; Borny, S.; Goethals, T.; Volckaert, B.; De Turck, F. Adapting Kubernetes Controllers to the Edge:

On-Demand Control Planes Using Wasm and WASI. In Proceedings of the 2022 IEEE 11th International Conference on Cloud
Networking (CloudNet), Paris, France, 7–10 November 2022; pp. 195–202.

37. Operator Pattern. Available online: https://kubernetes.io/docs/concepts/extend-kubernetes/operator/ (accessed on 23 January
2023).

38. KR 3 R540. Available online: https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af37756
2ecaa/0000270971_en.pdf (accessed on 23 October 2022).

39. ET 200SP Open Controller. Available online: https://mall.industry.siemens.com/mall/es/es/Catalog/Products/10252972
(accessed on 5 June 2023).

40. Process Simulate Software|Siemens Software. Available online: https://plm.sw.siemens.com/en-US/tecnomatix/products/
process-simulate-software/ (accessed on 22 May 2023).

41. S7-PLCSIM Advanced. Available online: https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7
-plcsim_advanced_function_manual_en-US_en-US.pdf (accessed on 5 June 2023).

42. K3s. Available online: https://k3s-io.github.io/ (accessed on 23 January 2023).
43. Schiraldi, M.M.; Varisco, M. Overall Equipment Effectiveness: Consistency of ISO Standard with Literature. Comput. Ind. Eng.

2020, 145, 106518. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://kubernetes.io/docs/concepts/workloads/
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/0000270971_en.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/0000270971_en.pdf
https://mall.industry.siemens.com/mall/es/es/Catalog/Products/10252972
https://plm.sw.siemens.com/en-US/tecnomatix/products/process-simulate-software/
https://plm.sw.siemens.com/en-US/tecnomatix/products/process-simulate-software/
https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_advanced_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_advanced_function_manual_en-US_en-US.pdf
https://k3s-io.github.io/
https://doi.org/10.1016/j.cie.2020.106518

	Introduction
	Related Work
	Fog Applications
	Kubernetes Extensions

	Materials and Methods
	OpenFog-Compliant Architecture
	Hierarchical Application Management Structure
	Kubernetes and Its Extension Methods
	Case Study
	Testbed
	Designed HAMS
	Support Infrastructure Components
	Designed Applications (DAGs)

	Results
	DAG Levels
	Component Level
	Application Level

	User-Defined N HAMS Levels

	Discussion
	Conclusions
	Appendix A
	ClusterRole and ClusterRole-Binding Resources
	CRD Parametrizations

	References

