
 Eindhoven University of Technology

MASTER

Visualization of business process architectures

Milde, T.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f711c744-f85b-4eec-b977-a6e6af147e8e

Visualization of Business Process
Architectures

by
Thomas Milde

Eindhoven, September 2013

Final thesis for the Master of Science program in Business Information Systems
as defended on Friday 27th September 2013
by Thomas Milde, BSc, student identity number 0787581

Information Systems group
Department of Industrial Engineering and Innovation Sciences
Eindhoven University of Technology

Assessment committee:
Dr. ir. R.M. Dijkman Department of Industrial Engineering and Innovation Sciences,

Eindhoven University of Technology
Ir. R.R.H.M.J. Goverde Precedence BV
Prof. dr. ir. H.A. Reijers Department of Mathematics and Computer Science,

Eindhoven University of Technology

Abstract

As business process management spreads across most big enterprises and other organi-
zations, they build process collections of hundreds of models. Managing these process
collections as a whole poses a major challenge to those organizations. Business process
architectures are an approach to structuring and understanding process collections. This
report proposes visualization as a means of communicating about process architectures.
Similar developments in literature about software architecture research are analyzed.
Based on literature and input from practitioners, use cases and requirements for business
process architecture visualization techniques have been identified. A prototypical visu-
alization tool that serves a selection of these use cases has been implemented. Starting
points for further research in the field of business process architecture visualization are
pointed out.

Preface

This thesis is the result of my graduation project for the Master’s program in business
information systems at Eindhoven University of Technology (TU/e). The project was
carried out at the information systems group at the department of industrial engineering
and innovation sciences of TU/e. Input from a practical perspective was provided by
Precedence B.V., Maastricht.

I would like to thank everyone who contributed to the project. First of all, I want to
thank my first supervisor Remco Dijkman who suggested the topic for this project and
supported me from its start until the finalization of this thesis. Furthermore, I want
to thank Roy Goverde and Mark Cloesmeijer from Precedence for their valuable input
and Roy Goverde for participating in the assessment committee. Thirdly, I would like
to thank Hajo Reijers for his feedback on the draft of this thesis and his participation in
the assessment committee.

Last, but not least, I would also like to thank my friends and family who encouraged me
and gave me personal support when I needed it.

Thomas Milde
Eindhoven, September 2013

Contents

1 Introduction 11
1.1 Business process architectures . 11
1.2 Motivation for the visualization of business process architectures 12
1.3 Goals . 12
1.4 Research approach . 13
1.5 Thesis structure . 14

2 Visualization techniques for software architectures 16
2.1 Software architecture visualization . 16
2.2 Methodology . 16
2.3 Framework for visualization techniques . 17
2.4 Results . 20
2.5 Conclusions about software architecture visualization 30

3 Specification 35
3.1 Use cases . 35
3.2 Visualization and abstraction techniques 40
3.3 Summary . 43

4 Architecture and Implementation of the prototype 44
4.1 Functionality of the prototype . 44
4.2 Architecture of the implementation . 56
4.3 Summary . 59

5 Validation 60
5.1 Framework for the test . 60
5.2 Setup of the test . 64
5.3 Limitations . 66
5.4 Current status of the evaluation . 67
5.5 Summary . 67

6 Conclusions 68
6.1 Results . 68
6.2 Limitations . 69
6.3 Future work . 70
6.4 Summary . 72

7

A Literature study protocol 73
A.1 Search strategy . 73
A.2 Results of the literature search . 74

B Documentation of the prototype 84
B.1 Interaction sequences . 84
B.2 Class structure . 87
B.3 Libraries . 96

C User test 97
C.1 Steps of the tool introduction . 97
C.2 Questions for the introduction of the use cases 98

Bibliography 99

8

List of Figures

1.1 Goal tree . 13
1.2 Process diagram of the project . 15

2.1 Overview in Feijs and De Jong’s visualization, image from [7] 21
2.2 SHriMP views, image from [21] . 22
2.3 EvoSpaces, image from [1] . 23
2.4 Visualization for analysis by Langelier et al., image from [15] 25
2.5 SAVE visualization, image from [14] . 26
2.6 Software architecture visualization by Panas et al., image from [18] 27
2.7 Pie chart visualization by Samia et al., image from [19] 28
2.8 Overview in software architecture visualization by Li et al., image from [16] 29

3.1 Final use cases . 38

4.1 Use case selection for the prototype . 46
4.2 Relation between functionalities and use cases 47
4.3 Block-based visualization . 48
4.4 Block-based visualization with groups . 49
4.5 Connectogram visualization . 50
4.6 Tree visualization . 52
4.7 Comparison table . 54
4.8 Architecture of the prototype . 57

5.1 Relations between functionalities and use cases for evaluation 61

B.1 Interaction sequence during startup of the application 85
B.2 Interaction sequence upon user input . 86
B.3 Top-level package structure . 88
B.4 Class diagram of the controller package 89
B.5 Class diagram of the model package . 92
B.6 Class diagram of the ui package . 94
B.7 Class diagram of the analysis package . 95
B.8 Class diagram of the imports package . 96

9

1 Introduction

In business process management, processes of a company are created, documented, im-
proved and analyzed with the goal of improving efficiency, quality and other measures.
A big number of tools allows modeling and analyzing individual process models and
managing collections of these models. The process collection of a big organization can
easily contain models for hundreds of business processes. For example, the SAP reference
model which has been described in [3] contains more than 600 process models that may
be relevant for running an enterprise. While each process itself may be well-documented
and can be analyzed with good tool support, the relations between the business pro-
cesses are often not well, if at all, documented and understood. Even a clear structure
in the process collection may be missing. Research into business process architecture
(BPA) tries to cope with that problem. In this thesis, techniques for the visualization of
business process architectures are explored.

1.1 Business process architectures

Typical enterprises have a big number of processes involved in their primary as well as in
their supporting activities. For stakeholders, it is important to keep an overview of these
processes in order to fully understand the working of the enterprise. However, without a
structure, it is hardly possible to keep this overview. Business process architectures try
to address this problem [6] by introducing explicit relations between processes.

Most of the literature on business process architectures does not provide a clear defi-
nition of that term. Eid-Sabbagh et al. [6] give a formal mathematical definition of a
process architecture, but also state that "a business process architecture is a collection
of business processes and their interdependencies with each other". While the formal
definition is suitable for formal analyses, it does not seem appropriate for this work, be-
cause a more intuitive definition of what comprises a process architecture is needed when
developing a practical application. The latter definition is more intuitive, but lacks some
important aspects. It does not mention that the processes are all part of the same orga-
nization. Organization may refer to a company, government entity or non-governmental
organization as well as to a sub-unit or collaboration (e.g. of supply chain partners) of
such entities. When applied correctly, a business process architecture contains all the
processes of the organization in question. If it does not, then important dependencies
may be missed and therefore the reliability of any conclusions derived from the process
architecture is doubtful. The dependencies between processes are classified by [6] to be

11

compositions (process to subprocess relationship), specializations, triggers or information
flows. Among these dependencies, the composition can be seen as a particularly impor-
tant one because it gives a hierarchical structure to the process architecture. However,
not necessarily the entire hierarchical structure of a process architecture is represented
by composition relationships between processes. There can also be groups of processes
that are logically grouped although they are not the subprocesses of one common parent.
These logical groupings need to be added to the definition. Considering these aspects,
a business process architecture can be defined as follows:A business process architecture
is a structured collection of the business processes of an organization. It consists of the
business processes, their relations and a hierarchical structure of processes and groups of
processes.

1.2 Motivation for the visualization of business process
architectures

As mentioned before, a process architecture can consist of hundreds of processes. The
processes have many relations among each other and understanding the whole process
architecture may be a difficult task. In many fields, graphical representations are used
in order to make complex information more understandable. For example, mechanical
engineers use drawings and 3D-animations to design complex systems and communicate
about them. Building architects and software engineers use similar tools.

Graphical notations that show all details of an architecture, like the one used in [6] can
help to analyze the architecture, but may be too technical to get an overall insight into
the working of the process. A visualization should help a business user to get an overall
idea about the structure of the process collection. However, it should also provide a
possibility to get more detailed information about the process architecture.

1.3 Goals

As stated in the previous section, a visualization is supposed to help the user understand
the structure of and relations in the process architecture. Therefore, the main goal of
this research is the development of an easy-to-use and useful graphical visualization of
process architectures. The term useful refers to the requirement that fulfilling a certain
task should be supported by the tool. The tasks are defined as use cases in section 3.1.

To visualize a process architecture, the relations between processes need to be known.
Hence, a sub-goal is the identification of relations between processes on the same hierar-
chical level or on different hierarchical levels. The reference hierarchical levels emphasizes
that there may be relations between any two processes in the process architecture. Fur-
thermore, it was mentioned that the main intention behind the visualization is to ease the

12

1 Development of
BPA visualization

1.1 Identification of
process relations

1.2 Identification of
possibilities for

abstraction

Figure 1.1: Goal tree of the research. The goals are stated in a shortened form.

understanding of a process architecture. To achieve this, there has to be an abstraction
from details because a user cannot understand hundreds of objects and connections at
the same time. Hence, another sub-goal is the identification of possibilities to abstract
from the details of a process architecture in order to obtain multiple levels of detail. The
goals can be seen in figure 1.1.

1.4 Research approach

The research approach is described by figure 1.2. The first step of the research was a
literature study. The goal of the literature study was twofold: First, concepts about
business process architectures (BPAs) needed to be identified, especially the relations
that exist in process architectures. Secondly, visualization techniques had to be found.
As visualization of BPAs is a new field, there is no literature about that exact topic. Lit-
erature from a neighboring field was consulted to compensate for that. The visualization
techniques found were evaluated as a basis for drafting requirements for visualization
techniques for BPAs.

In the second step, use cases for a business process architecture visualization tool and
possible approaches to solving them have been identified. Using findings from the liter-
ature study, a number of use cases was identified and discussed with practitioners who
regularly work on business process architectures. Their input was used to decide on the
final use cases. Subsequently, a number of visualization techniques that may help to solve
these use cases have been selected.

As a third step, a prototype was implemented that applies the findings from the first two
steps and solves a selection of the use cases identified before.

The prototype was presented to the practitioners who initially gave input about the use
cases and their feedback was collected. Furthermore, a test plan for a user test has been

13

developed. Carrying out and evaluating the user test is left as future work.

1.5 Thesis structure

The rest of this report is structured as follows: Chapter 2 describes the literature study
done in step one of the research. Chapter 3 describes the use cases that were found to
be relevant and the requirements for visualization techniques addressing these use cases.
Chapter 4 documents the architecture and implementation of the prototype. Chapter 5
describes the test plan for a large-scale test and the steps done as a preliminary validation.
Chapter 6 presents results, limitations and suggests future work.

14

Project start

Literature study
Publication
databases

Literature
search protocol

Characteristics
of visualization

techniques
identified

V

Specifications
of requirements

for BPA
visualizations

Identification of
use cases

V

Requirements
for BPA

visualization
specified

Input from
practitioners

Prototype
implementation

Prototype
implemented

Demonstration
to practitioners
and acquisition

of feedback

V

Specification of
a test plan

Feedback
acquired

Test plan
specified

V

Do and
evaluate big

scale user test

User test
results acquired

Figure 1.2: Process diagram of the project

15

2 Visualization techniques for software
architectures

This chapter presents a literature review about visualization techniques used in the re-
lated field of software architecture visualization. There is no published work yet in the
field of business process architecture visualization and software architectures have par-
allels to BPA’s which make it possible to draw conclusions from software- for business
process architecture visualization. These parallels and the domain of software architec-
ture visualization will be briefly introduced in the first part of the chapter. Subsequently,
the methodology of the literature review is presented. After introducing the evaluation
framework used for the literature study, the results are presented.

2.1 Software architecture visualization

A software architecture describes the structure of a software system on a level that is more
abstract than source code. It can have any level of abstraction ranging from a high level
view with a few modules representing big functional components down to a very detailed
view that is close to the actual implementation. Just like a BPA, a software architecture
can be hierarchical, but also contains other types of relations between modules. Big
software systems have a complicated structure that yields problems for understandability.
Visualization is used here as an aid to assist the software architect in understanding the
structure of a system. As software architecture is a much more established field than
business process architecture, much research has already been done into the visualization
of software architectures. Visualization techniques can help in the general understanding
of a software system’s structure, but also in the analysis of concrete properties.

2.2 Methodology

In order to obtain literature for this study, the search engine Google Scholar has been
used as well as Springer Link, the catalog of the library of TU Eindhoven and IEEE
Xplore. The search term Software architecture visualization has been used in each of
these sources. Papers were considered relevant if they present a visualization technique
for software architectures or compare such visualization techniques. They were considered
irrelevant if they were not about software architecture visualization or if they report only

16

on implementation details rather than the actual visualization technique. After scanning
the abstracts of the search results, 9 publications have been considered relevant. A full
protocol of the literature search can be found in appendix A. The relevant publications
have been analyzed using the framework presented in the next section.

The framework is a modified version of a general framework for data visualization intro-
duced by Shneiderman[20]. The framework has been modified to fit the particular goals
of this study: irrelevant aspects have been removed and additional ones have been added.
An aspect is considered relevant if an implementation of this aspect from some domain is
likely to provide an added value for the domain of business process architectures. Three
criteria have been added to the general framework. Two of them are domain specific.
They are considered relevant because the domains of software architecture visualization
and BPA visualization have similarities that make the reuse of concrete elements of vi-
sualization techniques possible. A third element was added as an indicator of the quality
of the visualization technique. The specific elements will be explained in section 2.3.

2.3 Framework for visualization techniques

In order to analyze and compare different types of software architecture visualization,
criteria are needed for identifying the most important aspects of each visualization tech-
nique. The goal of this literature review is surveying the properties of software archi-
tecture visualizations in order to get a basis for the development of requirements for
business process architecture visualizations. This means that the framework does not
need criteria that facilitate a precise evaluation of every technique, but criteria that give
an insight into the general ideas of the techniques. The framework used here is a mod-
ified version of the one presented in [20]. It consists of the aspects described below and
summarized in table 2.1. The framework will be used further throughout this thesis the
identify properties of visualization techniques.

2.3.1 Metaphor

A software architecture or business process architecture is an abstract concept which
cannot be seen directly. Some primitives have to be found that graphically represent the
elements of a software architecture. In some visualization techniques, a metaphor is used
to ease the understanding of the abstract concepts. A metaphor is a comparison between
the concepts of a software architecture and a concept in the real world.

It is interesting for this study to know about the metaphor used because a business
process architecture is just as abstract as a software architecture.

17

Name Question Source
Metaphor Does the visualization use a metaphor

and, if so, which?
Domain-specific
addition

Primary artifacts Which primitives are used for
visualizing the primary artifacts?

Domain-specific
addition

Overview How is a general overview over the data
provided?

[20]

Zoom Which possibilities are provided for
zooming in and out in order to select
the level of detail or overview?

[20]

Filter Which possibilities and/or techniques
are offered for selecting the displayed
items other than by selecting the level
of abstraction?

[20]

Details on demand How is detailed information about items
provided and which information is
provided on demand?

[20]

History Are functions implemented to undo
actions done in the visualization? If so,
how does it work?

[20]

Extract Can the state of the visualization be
exported in order to use it in other
tools? If so, what exactly can be
exported with which goal?

[20]

Evaluation How have the authors evaluated their
visualization technique?

Non-domain-
specific addition

Table 2.1: Summary of the evaluation framework

2.3.2 Visualization of primary artifacts

The primary artifacts of a business process architecture are a (hierarchical) set of pro-
cesses and the relations between those processes. In the domain of software architectures,
these are a (hierarchical) set of modules/packages and their relations. Because these ar-
tifacts have no physical form, the way they are visualized can vary greatly. This means
that the way how primary artifacts are visualized, is an important aspect in the design of
a visualization technique for any of both domains. As solutions from the software archi-
tecture domain can likely be reused for business process architectures, the visualization
of primary artifacts is a valuable aspect.

18

2.3.3 Overview

Understanding the overall structure of the architecture is one of the main concerns in
as well software architecture visualization as BPA visualization. Hence, a visualization
technique needs to provide an overview of the general structure of the architecture. That
means that the user has the opportunity to see the big picture while details are omitted
and may become visible following certain user interaction.

2.3.4 Zoom

Apart from understanding the big picture, users typically also want to see more details
on parts of what they are seeing or they want to see a part more clearly. Therefore,
providing the possibility of zooming in to areas of interest and out to see the bigger
picture, can be a valuable addition to the user’s experience.

2.3.5 Filter

If many items are displayed at the same time, the user may be distracted from the
information they are actually interested in. Therefore, different ways of filtering can
be provided to limit the amount of information that is being displayed. This criterion
captures what possibilities for filtering exist in a particular visualization technique and
how they are used.

2.3.6 Details on demand

While filtering serves to reduce the amount of information that is being displayed, de-
tails on demand means providing specific information when the user requests it. One
visualization technique can provide details on demand in several ways. As specified by
the name part "on demand", the provision of details always happens upon a specific user
interaction.

2.3.7 History

When the user changes the settings of a visualization technique, they might want to undo
and redo a recent change. If the change is not trivial to make, a history function, i.e.
undo and redo provided by the software, may be valuable.

19

2.3.8 Extract

If a visualization technique has many settings or complicated interaction mechanisms,
returning to a certain situation may require a significant effort. Therefore, a user may
want to preserve the state of a visualization. Whether tools for software architecture
visualization include such a functionality may influence the decision for whether or not
to include it in a tool for BPA visualization.

2.3.9 Evaluation

Some publications only introduce a new technique, others compare multiple existing tech-
niques or empirically evaluate them. This forms the third aspect of the framework: How
is the effectiveness of the visualization technique evaluated? This aspect can give an idea
of the effectiveness of the visualization technique. However, its importance in this study
should not be overestimated. Because of the different target groups and different seman-
tics of business process architectures, the effectiveness of a visualization technique applied
to BPAs can vary significantly from the effectiveness of the same technique applied to
software architectures.

2.4 Results

This section presents the results of applying the framework to each relevant publication.

3D visualization of software architectures[7]

Feijs and De Jong present a 3D visualization for software architectures based on usage
relations between different components. Figure 2.1 shows an example of their visual-
ization technique. Lego bricks represent modules. They are grouped according to the
package they belong to. Lines between modules represent usage relations. The bricks
are grouped in layers according to freely selectable criteria.

Metaphor: Different styles of Lego bricks are used to indicate different types of compo-
nents

Primary artifacts: Components are shown as Lego bricks, connected with directed
arrows (usage relations). Hierarchy is not directly visualized.

Overview: Initially, all modules and their relations are shown, arranged in multiple
layers, as can be seen in figure 2.1

Zoom: The user can zoom in in order to see more details about a set of modules.

20

Figure 2.1: Overview in Feijs and De Jong’s visualization, image from [7]

Filter: No additional possibilities for filtering are provided.

Details on demand: The authors mention only that the name of a module can be
displayed on demand.

History: No such functionality is mentioned in the publication.

Extract: No such functionality is mentioned in the publication.

Evaluation: No evaluation is presented by Feijs and De Jong.

SHriMP views: an interactive environment for exploring Java programs[21]

Storey et al. present a visualization specifically for Java programs. They include multiple
views and allow browsing the architecture. An example of their visualization can be seen
in figure 2.2. In the picture, a class diagram can be seen on the top-left. Next to it is
source code of a selected class and below it the Javadoc documentation for that class can
be seen. The bottom-right corner shows a package structure.

Metaphor: No metaphor is used

Primary artifacts: Classes and packages are shown as rectangles, relations as lines
between those rectangles.

Overview: As an overview, the top-level class and package structure of the software is
shown.

21

Figure 2.2: SHriMP views, image from [21]

Zoom: There are multiple types of zoom: Geometric zoom shows only a particular part
of the whole architecture. Fisheye zoom emphasizes part of the architecture, but
preserves the context information. The authors also mention semantic zoom, but
this can better be classified as details on demand.

Filter: No possibilities for filtering are mentioned.

Details on demand: Zooming in with the "’semantic zoom"’ provides further details
in different views. For example, it can display documentation, package contents,
or source code.

History: The authors do not mention history functions.

Extract: The authors do not mention any extraction functions.

Evaluation: No evaluation is presented by the authors.

EvoSpaces Visualization Tool: Exploring Software Architecture in 3D[1]

Alam and Dugerdil present a 3-dimensional visualization as a software city. Figure 2.3
shows an excerpt from that visualization. It shows several districts representing packages
and buildings representing modules.

22

Figure 2.3: EvoSpaces, image from [1]

Metaphor: The architecture is visualized as a city consisting of districts with buildings
and workers.

Primary artifacts: Modules are represented by buildings, packages by districts and
methods as workers inside the buildings. Pipes between buildings represent rela-
tionships between modules.

Overview: A view of the whole city shows the structure of the software architecture. It
omits the pipes (relations). The overview can be seen in figure 2.3.

Zoom: The user can zoom in to individual buildings in order to get information about
their inner workings.

Filter: Dynamic information can be displayed by highlighting only those buildings that
are involved in a particular execution trail.

Details on demand: When the user selects a module (building), the relations (pipes)
of this module will be shown.

History: No history functions are mentioned.

Extract: No extraction functionality is documented.

Evaluation: No evaluation is presented.

Visualization-based analysis of quality for large-scale software systems[15]

Langelier et al. present a visualization technique that is aimed at analyzing particular
quality criteria of a software architecture. Two examples of this visualization are shown
in figure 2.4. The images show modules arranged by packages. Color, size and orientation
of the modules indicate three quality criteria. Red and high buildings as well as buildings
turned out of the direction of view indicate problems.

23

Metaphor: No metaphor is used. The design elements are justified by intuitive under-
standability.

Primary artifacts: Software modules are represented by three-dimensional blocks.
These blocks vary in size, color and orientation. These three variables are controlled
by one quality criterion each. Two different layouts (Treemap and Sunburst) are
proposed for arranging the blocks. The package structure is shown by grouping of
the blocks. Relations among modules are not directly shown.

Overview: The overview shows all modules grouped by packages.

Zoom: Geometric zoom is provided. The user can navigate in the three-dimensional
world.

Filter: Two types of filters exist. The first one colors modules in red which have extreme
values for particular metrics. The other one emphasizes all modules that have a
particular relation with a selected module. The emphasis is achieved by removing
the color from all other modules. This still preserves the context information.

Details on demand: No functionality for details on demand is provided, other than
the possibilities to filter.

History: History functions are not documented in the publication.

Extract: No extraction functionality is mentioned in the publication.

Evaluation: The visualization techniques are evaluated in a user test, especially focusing
on the layout techniques. The visualization proved useful in answering complex
analysis tasks. It also became evident that the layout plays a major role.

Towards empirically validated software architecture visualization[14]

Knodel et al. describe an approach for the validation of software architecture visualiza-
tion techniques and apply it to their own visualization tool SAVE. An example of the
SAVE visualization is shown in figure 2.5. It shows the top-level package structure of a
software.

Metaphor: No metaphor is used.

Primary artifacts: Components are shown as (nested) boxes and relations between the
components are shown as arrows between those boxes.

Overview: As an overview, the tool provides a high level overview of the system, i.e. it
shows the top-level modules and their relations.

Zoom: Geometric zooming capabilities are not documented.

Filter: Filtering functionality is not described by the authors.

24

Figure 2.4: Visualization for analysis by Langelier et al., image from [15]

25

Figure 2.5: SAVE visualization, image from [14]

Details on demand: Packages can be opened to show their inner structure ("semantic
zoom"). Symbols on the edges can be added in order to indicate analysis results.

History: No history functionality is documented.

Extract: No extraction functionality is mentioned in the publication.

Evaluation: Evaluation was done in several industrial projects as well as in a controlled
environment. The visualization elements were iteratively refined based on the out-
come of the evaluation.

Communicating Software Architecture using a Unified Single-View Visualization[18]

Panas et al. develop a visualization system that aims at unifying multiple stakeholder-
specific views used in other tools. An example of the visualization can be seen in figure
2.6. It shows cities representing files, buildings representing functions and lines between
cities and buildings representing relations between files and functions.

Metaphor: The software is visualized as a landscape consisting of multiple cities.

Primary artifacts: Buildings represent functions, cities represent files (modules). Dif-
ferent types of relations can be added as edges between the cities.

26

Figure 2.6: Software architecture visualization by Panas et al., image from [18]

Overview: As an overview, the complete landscape is shown. It can be seen in figure
2.6.

Zoom: Geometric zooming is available in the visualization tool.

Filter: No options for filtering are documented.

Details on demand: No details on demand are provided.

History: No history functions are documented.

Extract: No extract functions are documented.

Evaluation: No empirical evaluation is presented.

Towards pie tree visualization of graphs and large software architectures[19]

Samia and Leuschel present a so-called pie tree visualization with the aim of providing an
exact visualization that is more comprehensible than a graph-based one. The emphasis is
on visualizing the connections between individual modules. Figure 2.7 shows an example
of the visualization. It shows a number of modules, each indicated by their name and
pie charts that show its connections. Each pie chart shows either the incoming or the

27

Figure 2.7: Pie chart visualization by Samia et al., image from [19]

outgoing connections of a module. The share of a connection in such a pie chart is based
on properties of the connected module.

Metaphor: No metaphor is used.

Primary artifacts: Each module is shown by its name and two pie charts that show
which incoming and outgoing relations the module has.

Overview: The visualization has only one view which can be seen in figure 2.7. However,
it can not be considered an overview, because it does not give information about
the overall structure that can be easily understood.

Zoom, Filter, Details on demand,History, Extract: Not applicable because the
visualization provides only a single view.

Evaluation: No empirical evaluation is presented.

Navigating software architectures with constant visual complexity[16]

Li et al. describe techniques to keep the visual complexity of a graph-based visualization
at a level that allows the user to understand the information provided. Figure 2.8 shows
an example of this visualization. It indicates top-level modules as blocks and their
relations as lines.

28

Figure 2.8: Overview in software architecture visualization by Li et al., image from [16]

Metaphor: No metaphor is used.

Primary artifacts: Modules are visualized as rectangles and relations as lines between
those.

Overview: An overview is provided in the form of a visualization that shows top-level
modules and their relations. It can be seen in figure 2.8.

Zoom: A fisheye view is provided that shows the structure of a module and additionally
abstracts the rest of the visualization in order to decrease visual complexity.

Filter: An additional filtering option is not provided.

Details on demand: A semantic zoom is provided which opens up a particular module
to show its inner structure.

History: History functionality is not documented.

Extract: Extraction functionality is not documented.

Evaluation: An evaluation of the effectiveness of the algorithms is presented. However,
no validation of the practical usefulness for fulfilling particular tasks is presented.

Software architecture visualization: An evaluation framework and its application[11]

In their paper, Gallagher et al. present an evaluation framework and its application to
six visualization tools. While [11] itself does not contain sufficient information about the
visualization techniques of these tools, it serves as a source of references.

29

Source Metaphor Primary
artifacts

Overview Zoom

[7] Lego Bricks and
arrows

All modules and
relations

Geometric

[21] None Rectangles and
lines

Top-level
structure

Geometric and
Fish eye

[1] City Buildings and
pipes

All modules, no
relations

Geometric

[15] None Modules as
blocks, no
relations

All modules
shown

Geometric

[14] None Boxes and
arrows

Top-level
modules and
relations

None

[18] Landscape with
cities

Cities (modules)
and edges
(relations)

Complete
landscape

Geometric

[19] None Name label
(modules) and
pie charts
(relations)

Single view (all
modules and
relations)

None

[16] None Rectangles and
lines

Top-level
modules and
relations

Fisheye

Table 2.2: Summary of the results of the literature survey (continued in table 2.3)

2.5 Conclusions about software architecture visualization

Multiple visualization techniques have been analyzed in the previous sections using the
framework presented in 2.3. Tables 2.2 and 2.3 summarize the results found for each
visualization technique and each aspect of the framework. The tables show that for some
aspects there are tendencies in the literature reviewed. Each aspect is analyzed below
and possible implications for business process architecture visualization are discussed.

2.5.1 Metaphor

The visualizations from [1] and [18] use a city metaphor and the visualization from [7]
uses Lego bricks as a metaphor. The rest of the visualization techniques do not use a real-
world metaphor. The three techniques that use metaphors do not present a validation of
their work. Therefore, there is no conclusive evidence that a metaphor should be used; it
is not clear whether the usage of a metaphor will actually make it easier to understand

30

Source Filter Details on
demand

History Extract Evaluation

[7] None Display
module
name

No No None

[21] None Semantic
zoom

No No None

[1] Showing
execution
trail

Relations
shown on
demand

No No None

[15] Based on
metrics or
relations

None No No User test

[14] None Semantic
zoom,
analysis
results on
edges

No No Industrial
projects and
controlled
environment

[18] None None No No None
[19] None None No No None
[16] None Semantic

zoom
No No Only

verification,
no validation

Table 2.3: Summary of the results of the literature survey (continued from table 2.2)

31

the visualization. While a metaphor may help the user to relate the content to something
known, it may also distract them. Hence, a clear conclusion about metaphors cannot be
drawn.

2.5.2 Primary artifacts

All but one visualization technique shows the software components as some kind of blocks.
Depending on the metaphor, these can be buildings, lego bricks, simple rectangles, etc.
Connections are usually shown as some sort of line or arrow. Again, the exact repre-
sentation depends on the metaphor. The pie chart visualization technique by Samia et
al.[19] shows that blocks and lines are not necessarily the only solution to the problem.
In most of the visualization techniques, the blocks, i.e. the components, appear to be
more central than the arrows, i.e. the dependencies. The pie-chart visualization, in con-
trast, puts a visual emphasis on the connections by showing them in pie charts while the
components themselves are only shown as labels. What should be more central depends
on the use case of the visualization technique. Different use cases may require different
visualization techniques. However, as there is a majority of visualization techniques that
uses block-and-line based primitives, it can be assumed that this approach should be
considered for business process architecture visualizations as well.

2.5.3 Overview

There are two main ways of providing an overview. The first one is showing only the
top-level packages. The second one is a zoomed-out view of all components. The first
possibility provides an overview with less visual complexity due to a lower number of
elements. It hides most details in the overview but makes it possible to understand the
top level of the architecture. On the contrary, the second option provides more details
in the overview. The bigger an architecture becomes, the less feasible the second option
becomes. Understanding a graphic containing hundreds of elements is hardly possible
for a human observer. Hence, the first option – showing an overview by displaying only
the top-level elements – can be recommended for BPAs.

2.5.4 Zoom

A zoom functionality is usually provided and can therefore be seen as one of the ba-
sic functionalities of a software architecture visualization. It can be concluded that it
should also be present in a business process architecture visualization. Some publications
also refer to "semantic zoom" functionalities, but this type of functionality is not an ac-
tual zoom, but provides details on demand and is therefore discussed in the according
section.

32

2.5.5 Filter

Among the software architecture visualization techniques analyzed here, filtering is not
widely applied. Some filters based on metrics are present and another one filters in a
way that only components related to one particular component are shown. Generally,
there is not much attention for filtering techniques that mainly aim at reducing the visual
complexity. The filters present mainly aim at giving insight into a particular aspect of
the data. The reason for this is not evident from the literature. Visual complexity is
recognized as a problem, hence filtering might still be considered as a solution that allows
the user to select the right level of detail and amount of information they see.

2.5.6 Details on demand

Many visualization techniques provide a "semantic zoom", i.e. a possibility to see the
inside of a component. This is an important way of providing details on demand because
it allows keeping the overview simple while still providing the user with the option to
see all details. Some visualization techniques show relations only on demand and others
show some textual information, quality indicators, etc. on demand.

2.5.7 History and Extract

None of the visualization techniques analyzed here provides history or extract func-
tionalities. While these functionalities are included in the general framework for
visualizations[20], it can be assumed that they are not a primary concern for software
architecture visualization techniques.

2.5.8 Evaluation

Among the publications that present an evaluation, there are two different ways of eval-
uating. The first one which has been applied more, is running a user test in a controlled
environment. In such tests, the users are given assignments and their performance is used
as an indicator of the quality of the visualization technique/tool. The other evaluation
is the application in an industrial project. In this type of evaluation, the success of the
project and satisfaction of those involved can be used as an indicator for the quality of
the tool/technique.

2.5.9 Summary

In the previous paragraphs, several conclusions about software architecture visualizations
have been drawn and possible implications for the visualization of business process ar-

33

chitectures have been pointed out. As the use cases and users of BPA visualizations are
different from those for software architecture visualization, the reliability of these results
still needs to be proven. However, they can serve as a starting point in the development
of BPA visualizations.

34

3 Specification

After concepts about the visualization of software architectures have been identified in
the previous chapter, requirements for a business process architecture visualization tool
have been specified. This chapter presents these requirements divided into two parts. The
first part presents use cases for such a tool which have been identified in collaboration
with practitioners. The second part focusses on more specific requirements for BPA
visualization techniques that have been identified based on the findings from the previous
chapter as well as the use cases presented in the first part of this chapter.

3.1 Use cases

As the goal of this research is helping business experts understand the structure of a pro-
cess collection, the starting point are companies that have an (almost) complete reposi-
tory of business processes modeled in a (semi-) formal notation, but are uncertain about
the relations of the processes and the structure of the collection. The use cases are sit-
uations in which a user needs to understand the structure of the process architecture in
order to fulfill a certain task.

3.1.1 Method for use case elicitation

Based on the motivation for developing a business process architecture visualization as
well as on BPA literature, an initial set of usage scenarios of business process architectures
has been identified. These scenarios were not yet fully specified use cases. They have
been presented to two directors of Precedence, a Dutch consulting company focusing on
process architectures. They were asked for three types of feedback:

• Would a tool that supports these scenarios help in their daily work?

• Which changes should be made to the scenarios?

• In which other ways would they want to use a visualization of business process
architectures?

Taking their feedback into account, a set of final use cases has been developed. In the
following section, first the initial usage scenarios will be presented, then the feedback and
finally the final use cases.

35

3.1.2 Initial usage scenarios

The initial usage scenarios were based on the motivation for visualizing BPA’s given in
section 1.2 and on other research.

Understanding the structure of the architecture

As stated in the introduction, a business process architecture is not always easy to com-
prehend because it contains a big number of models and relations. Doing any work based
on a business process architecture requires a basic understanding of that BPA. Hence,
the first usage scenario focuses on getting a basic understanding of the structure of a
business process architecture. That means being able to distinguish the elements of a
business process architecture on a high level, understanding which high-level elements
contain what processes, and identifying the relations between these elements.

Analysis of the quality of a process architecture

Eid-Sabbagh et al. [6] state as one of the questions to be answered with business process
architectures, whether processes in relation to each other are sound. This question implies
that a user would like to find out whether there are problems in the process architecture.
Whereas the goal of visualization is not a formal mathematical analysis, patterns and
anti-patterns for right or incorrect structures in a process architecture may be seen in a
graphical visualization.

Implications of a local change

Whereas the previous two scenarios cover understanding and analyzing the process ar-
chitecture as is, processes also evolve. It is important to understand the impact on the
process architecture of changes done to a single process. Hence, analyzing the impact
of a local change is considered as a further usage scenario. A local change may also be
changing the boundaries of a process. Determining a process’ boundaries is stated as one
of the questions that can be asked to a process architecture in [6].

Path across multiple processes

Also according to Eid-Sabbagh et al. [6], another question that can be answered using
business process architectures, is which path a client needs to follow as a whole, i.e.
possibly using more than one process. This question can possibly be answered by a
visualization and is therefore considered as one of the initial usage scenarios.

36

3.1.3 Feedback by practitioners

In the first meeting with one of the practitioners, the main message was that the most
interesting usage would be the first one presented previously: A visualization of the
process architecture itself that could aid the understanding of the structure, would have
the most added value for his daily work.

The second person made it clear that he usually works with companies that already have
a clear structure in their process repository that is well understood by these companies.
But he also emphasized that there are other companies that have a repository of business
process models but no clear structure. The reason for this can be that they modeled
their processes to get a certain certification. He indicated that helping the companies in
the latter situation develop a consistent structure for their process architecture, might
be a possible growth market. Therefore, a visualization should help in developing a new
structure. Also a comparison between an existing structure and a recommended structure
would help. For companies that do not have a consistent structure yet, a visualization of
the customer’s path across multiple processes would also be helpful. It was pointed out
that finding the impact of a local change is already possible with the tools they use.

3.1.4 Final use cases

Taking into account the initially suggested usage scenarios as well as the feedback from
practitioners, the following final use cases have been developed. They are summarized
in figure 3.1.

Understanding the structure of the architecture

The first scenario, Understanding the structure of the architecture has been confirmed as
useful at least for companies that do not have a well developed view on their processes
yet.

The prerequisite for this use case is a repository of processes that are captured in a formal
or semi-formal notation. The repository should be comprehensive, i.e. it should cover
most of the processes of the organization. If this is not the case, the structure cannot be
correctly represented. The user wants to have the following interactions:

1. The tool displays the top-level structure of the process architecture. The user can
see the top-level processes and how they are related. There is an option for the
user to see details about these elements, such as the name or characterizing terms.

2. The user can select a process to refine it by showing its internal structure. This can
be repeated a number of times to reveal the hierarchical structure of the process
collection. The depth of the hierarchy depends on the individual process collection.

37

1 Understanding
the structure

of the architecture

2 Restructuring a
process architecture

3 Analysis of
the quality of a

process achitecture

4 Identification of the
clien's pathway

5 Implications of
a local change

Process architect

Figure 3.1: Final use cases

3. The user can get details about connections between processes, such as the type of
the connection. The types of relations depend on which relations are identified by
the tool. Direct dependencies are a basic type.

The success of this use case can be measured by the user’s perception of the usefulness
and ease of use of the tool when answering questions about the structure of the process
architecture.

Restructuring a process architecture

A process collection may have a defined hierarchical structure, but as processes are
added, changed, and removed over time, this structure may not accurately represent the
actual process collection anymore. Also, it was suggested in the practitioner’s feedback
that companies with an incomplete view on their process collection, would profit from
a suggestion about the structure of the process architecture. In order to restructure
the process architecture, the process architect would use certain guidelines. A tool that
analyzes the content of the process collection and shows a possible restructuring can help
them in defining a new structure.

As for the first use case, a complete repository of all the business processes of the orga-
nization is needed. The following interactions are relevant for this use case:

1. The tool displays a possible hierarchical structure that has been derived based on
the processes in the process collection and may or may not take into account the

38

current hierarchical structure. The new structure is derived automatically by the
tool based on the relations of processes among each other and/or the labels inside
the processes.

2. The user can compare the current structure with the structure proposed by the
tool in order to identify the proposed changes.

The perceived usefulness and ease of use when fulfilling tasks related to restructuring a
process architecture, can be used to measure the success of this use case. Such tasks are
judging the quality of aspects of the current structure as well as actually developing a
new structure for the process architecture.

Analysis of the quality of a process architecture

Although this scenario was not pointed out as one of the most important by the practi-
tioners, they have nevertheless seen an added value in it.

The structure of a process architecture may reveal faults in the way the organization
works. For example, circular dependencies among multiple processes may lead to a
deadlock. A clear visualization of the process architecture may help to identify such
undesirable situations. Furthermore, a comparison between the actual architecture and
a planned architecture can help a user to judge the quality of the current process archi-
tecture.

The precondition for this use case is the same as for the previous one. The following
interactions are desired:

1. The tool displays the structure of the business process architecture on different
levels of abstraction and indicates possible problems.

2. By selecting one of the indicated problems, the user can see more information about
this problem, e.g. a description of the situation and the possible consequences.

As with the previous use cases, evaluation can be based on the perceived usefulness and
ease of use when working on related tasks. The tasks in this use case involve finding
possible problems in the process architecture.

Identification of the client’s pathway

Especially for companies that do not have a good organization of their process collection
yet, it was pointed out that a graphical identification of the client’s pathway would be
useful.

Even though a company has its processes documented, it may still be unclear which
processes a client has to go through in order to get a certain service or achieve a particular

39

goal under the given circumstances. By visualizing the dependencies among processes, it
can be seen which of them may be relevant for the particular client. A similar approach
may be taken for analyzing which processes are involved in a particular business action,
like the development of a new product.

For this use case, all processes relevant to the customer have to be captured in a (semi-)
formal way in a repository. The use case includes the following interactions:

• The user selects an activity or state in a process and the tool displays all pathes
that the customer can take to reach that point of a process.

• The user selects an activity or state in a process and the tool displays all pathes
that the customer can take from this point in the process onwards.

The tasks related to this task are finding the paths to and from certain states in the
process collection. Again, perceived ease of use and usefulness should be measured.

Implications of a local change

When adding a new process to a process architecture or removing an existing one, other
processes may need to be adapted. Therefore, it is essential to know which relations exist
between processes or which need to be established.

For this use case, a process repository containing all relevant processes is necessary. As
it is not known beforehand which processes are important, the repository should be as
complete as possible. Interactions for this use case are:

• The user selects a certain process and sees which other processes it is related to.

• When the user selects one of the processes that the first one is related to, details
about the relation, such as the type (e.g. working on the same data) is shown.

In this use case, relevant tasks for measuring how well the use case is fulfilled, consist
of identifying processes that are affected by a certain change in a single process. Again,
perceived ease of use and usefulness should be measured.

3.2 Visualization and abstraction techniques

In section 2.3 a framework has been developed for assessing visualization techniques in
order to collect input for the visualization of business process architectures. The same
framework is now used to specify the requirements for a BPA visualization. The frame-
work element Evaluation is not covered, because it is not a property of the visualization
techniques itself. The requirements presented in the following sections are based on the
conclusion presented in section 2.5.

40

3.2.1 Metaphor

As stated in section 2.5, there is no evident preference for or against using a metaphor.
Hence, the decision for or against using one cannot be made entirely objectively based
on the data present. Not using a metaphor typically is a smaller implementation effort
because easier primitives can be used to visualize a business process architecture. A
metaphor may also increase the visual complexity because it adds details to the visual-
ization that do not directly transport a meaning, e.g. the water in the visualization by
Panas et al.[18]. Based on these considerations, it is suggested not to use a metaphor for
the BPA visualization.

3.2.2 Primary artifacts

As concluded in section 2.5, a graph-like structure is applicable for most cases. Hence,
a business process architecture visualization tool should have at least one visualization
that represents architecture elements (processes and groups) as nodes of a graph and the
relations between them as the edges of the graph. When trying to understand the general
structure of a process architecture, the user may also want to focus on the relations
between processes. Therefore, a visualization technique that puts a higher emphasis on
the relations should also be provided.

3.2.3 Overview

A business process architecture visualization needs to provide an overview of the top-level
structure of the BPA in the beginning. This enables the user to understand the overall
structure before they delve into more detailed views. Concretely, this means that in the
beginning the top-level elements and/or relations are shown. As argued in section 2.5,
providing an overview that shows all elements at the same time, is not useful for a big
process architecture with hundreds of elements.

3.2.4 Zoom

A geometric zoom functionality can help the user to get a better view on particular
parts or to get an overview. It should be provided wherever it is appropriate, i.e. for
any visualization technique that can be zoomed. "Semantic zoom" is considered in the
section about details on demand.

41

3.2.5 Filter

In many of the software architecture visualization techniques covered in the related work
chapter, no filtering options are provided. However, filtering is a very valuable addition.
Several filters for BPA visualizations may be useful and should be considered in the
implementation of a BPA visualization tool:

• Filtering relations to reduce visual complexity: It is anticipated that the number
of relations in the process architecture is very high and may make it hard to un-
derstand its structure. Hence, a BPA visualization tool should provide the user
options to filter edges so to show only those important to the user.

• Filtering elements to reduce visual complexity: A process architecture does not only
contain many relations, but also many processes and groups of processes. Filters
should be provided that reduce the number of elements in a way that makes it
easier for the user to understand the process architecture.

• Showing only connections of a certain node: To understand the connections of
a certain element of the process architecture, a user might want to highlight the
element and its connections. By selecting an element and applying this filter,
the element, all the elements it is connected to and the connections should be
highlighted. Highlighting can be done by completely removing all other objects, by
reducing the visibility of other objects and/or by applying a different style to the
highlighted objects. While removing other objects reduces the visual complexity, it
also removes context information which may be helpful for the user to understand
the graphic.

3.2.6 Details on demand

As concluded in section 2.5, there should be a "semantic zoom", i.e. a way to open up
the top-level elements seen in the beginning to show their contents. Furthermore, details
on demand can be provided by displaying additional (textual or other) information when
an object gets selected.

3.2.7 History and Extract

Conforming the findings from software architecture visualizations, history and extract
functionalities are not considered necessary.

42

3.3 Summary

In this chapter, five use cases have been presented that can be covered by a business
process architecture visualization tool. Furthermore, the visualization framework used
before has been applied to specify requirements for the visualizations used in such a
tool. These requirements do not fully describe a software that visualizes business process
architectures, but lay a foundation for such a tool. BPA visualization is a completely new
field and therefore a complete specification of a tool does not seem appropriate based on
the limited information available. An over-specification would also limit the possibilities
to explore techniques that may or may not be beneficial.

43

4 Architecture and Implementation of
the prototype

Based on the requirements described in the previous chapter, a prototype has been
implemented1 which covers selected use cases by means of visualization and analysis
techniques. In this chapter, the functionality of the prototype will be introduced and
its implementation will be described on an abstract level. Details of the implementation
needed for further developing it can be found in appendix B.

4.1 Functionality of the prototype

In section 3.1 five use cases for a business process architecture visualization tool have been
presented. Because of the limited time that was available for developing it, the prototype
focusses on the first and second use case, Understanding the structure of the architecture
and Restructuring a process architecture. This selection of use cases is highlighted in
figure 4.1. The first use case is the most important one because it allows the user to
understand the BPA and therefore is the basis for working with it. The second use
case was chosen because it is the starting point for structuring an unstructured process
collection or changing an existing BPA. The rest of the use cases is also considered
relevant, but left as future work. The software architecture of the prototype has been
designed to make it easy to extend it in the future in order to cover more use cases.

To support Understanding the structure of the architecture, at least one visualization
technique needed to be implemented that covers the requirements specified in section
3.2. As finding visualization techniques for BPA’s is one of the goals of this research,
it is preferable to provide more than only one visualization technique. As stated in the
requirements, there should be a visualization technique that represents a business process
architecture as a graph. Also according to 3.2, it does not need to use a metaphor. Hence,
the first visualization technique shows the BPA as a graph with no real-world metaphor.
In the remainder, this technique is referred to as the block-based visualization. Details
about it are explained in section 4.1.1.

Also mentioned in section 3.2 was that a visualization technique with a higher emphasis
on the relations should be provided as well. One possibility to achieve this was presented
in [19]. However, their suggested pie tree visualization does not work well for large

1The prototype can be downloaded at http://bpav.thomasmilde.com

44

http://bpav.thomasmilde.com

architectures because it provides only a single view. Because the data about connections
is shown by diagrams that can only be interpreted using the legend, it is also hard to get
an overview in this visualization technique. Another technique for emphasizing relations
between elements uses a circular layout. This technique is used in various fields, for
example in brain connectivity visualization [13]. It is referred to by several names, but
in this work the term Connectogram as suggested by [13] is used.

To address the need for filtering in order to reduce the visual complexity, a number
of filters specific to an individual visualization technique have been created. These are
explained together with the according visualization technique. Moreover, a visualization
technique-independent filter has been implemented. It satisfies the need for reducing the
number of nodes in the visualization by grouping them into "artificial" nodes containing a
set of groups and/or processes that are strongly interconnected. This Automatic grouping
is explained in detail in section 4.1.2.

To support the use case Restructuring a process architecture, it is necessary to provide a
technique that creates a new structure for the process architecture based on the processes
it contains. This automatic clustering is introduced in section 4.1.2. Furthermore, the
use case states that a comparison between the automatically created structure and the
original structure should be possible. Therefore, a comparison table is provided which
shows the quantitative overlap between top-level elements of the original architecture
and groups of the automatically generated architecture.

To provide the user with a known means of navigating the process architecture, a tree view
and a search function have been added. The tree view shows the hierarchical structure
of the process architecture without the relations. It is explained in section 4.1.1. The
search function allows the user to search architecture elements based on their names.

The prototype naturally needs data to be visualized. Hence, it must provide a possibility
to import a process architecture. For the first prototype, a big process collection with a
clear structure was needed. As a copy of the SAP reference model was available to the
author and because it is of sufficient size and has a clear structure, this process collection
was chosen as the data to be used in the prototype. The SAP reference model does not
explicitly specify relations between processes. To identify these relations, a dependency
detection has been implemented. It detects direct dependencies between processes based
on labels and is explained in detail in section 4.1.2.

Figure 4.2 provides an overview of how the functionalities support the use cases. In
section 4.1.1, the following four visualization techniques will be explained:

• Block-based visualization

• Connectogram visualization

• Tree view

• Comparison table

45

1 Understanding
the structure

of the architecture

2 Restructuring a
process architecture

3 Analysis of
the quality of a

process achitecture

4 Identification of the
clien's pathway

5 Implications of
a local change

Process architect

Figure 4.1: Use cases for business process architecture visualization. The use cases in
gray have not been selected for the prototypical implementation.

The visualization framework will be applied again to show in how far the visualization
techniques match the requirements described in section 3.2. Table 4.1 summarizes the
application of the visualization framework. The comparison table is not a graphical
visualization of a single process architecture but rather a comparison mechanism and
therefore the visualization framework is not applicable to it and was not applied to the
comparison table.

In section 4.1.2 the following three analysis techniques will be explained:

• Dependency detection

• Automatic grouping

• Clustering

4.1.1 Visualization techniques

Block-based visualization

The block-based visualization of the architecture shows each element of the architecture
as a node. Dependencies among processes are shown as directed edges between these
nodes. An example of such a visualization can be seen in figure 4.3. The example
shows the five processes involved in customer service. All of these processes have sub-

46

1 Understanding the
structure of the

architecture

2 Restructuring a
process architecture

Allows navigation
through processes and

shows their dependencies

Shows strength of
dependencies between

major parts

Shows the
hierarchical structure

Allows visualization
of existing dependencies

Allows easier comprehension
of the existing structure

Helps to understand the
suggested new structure

Gives insight
Into the impact
of restructuring

Gives insight into
the suggested changes

Basis for deriving
a new structure

Creates a suggestion
for restructuring the
process architecture

Creates suggestions
for changes within the
process architecture

Helps locating
elements in the

process architecture

Block-based
visualization

Connectogram
visualization

Tree visuzlization

Comparison table

Dependency
detection

Clustering of
processes

Grouping
within an existing

structure

Search
function

Figure 4.2: Relation between functionalities and use cases. Use cases are shown as el-
lipses, visualization techniques as rectangles, analysis techniques as hexagons
and other functionalities as trapezoids.

47

Figure 4.3: Block-based visualization of the Customer Service group of the SAP reference
model

processes, but this cannot be seen directly in the block-based visualization. It is possible
to show the content of any of the processes by double-clicking it. The edges between the
processes may represent multiple dependencies each. For example, the arrow from Call
center processing to Spare parts delivery processing may indicate a direct dependency
of these two elements as well as a dependency of an element inside Spare parts delivery
processing on an element inside Call center processing. On the right of the figure, a
setting "Minimum connection strength" can be seen which indicates that only those
edges will be shown that represent at least a certain number of dependencies, four in the
example.

Figure 4.4 shows an excerpt of the application of the same visualization technique to
another part of the reference model. It is a part of the top level of the reference model
and automatic grouping has been applied. The double-arrow shapes indicate that the
nodes do not represent processes, but logical groups. Each group consists of processes
and/or other groups.

The block-based visualization can be applied to the original process architecture as well
as to the automatically clustered structure. It can also be used to show both next to
each other.

The visualization framework can be filled in as follows for the block-based visualization:

Metaphor: No metaphor from the real world is used. The information is represented as
a graph.

Primary artifacts: Processes are represented as blocks in the form of value-chain arrows
and groups of processes are indicated with two overlapping value-chain arrows.
Relations are indicated as lines with an arrow on one end.

Overview: In the overview, only the top-level elements, i.e. the processes and groups
on the highest level and the relations between them, are shown.

48

Figure 4.4: Excerpt from the block-based visualization of the top-level of the SAP refer-
ence model after automatic grouping has been applied

Zoom: Zoom is not yet provided due to technical difficulties. It should be added as a
future development.

Filter: A filter for relations is provided that shows only relations that have at least a
minimum strength which can be set by the user.

Details on demand: The user can open each node to see its "content", i.e. the pro-
cesses, groups and relations it contains or its process model. This can be referred
to as "semantic zoom".

History: No history function is provided. All interactions with this visualization tech-
nique can be made undone by other user interactions, e.g. setting back the mini-
mum edge strength to its previous value.

Extract: No extract functionality is provided. The interaction mechanisms of this vi-
sualization technique are not very complex and therefore a particular state of the
visualization can be restored rather easily.

Connectogram visualization

The connectogram visualization focuses on visualizing how strongly the top-level parts
of the process architecture are connected to each other. It shows each top-level element
of the process architecture as a segment of a circle. These segments are subdivided
into segments for each sub-element, but this sub-division is not explicitly visible. The
connections between different elements are bundled per top-level element which makes it
easier to identify that connections that exist on a high level while dropping some detail
about individual dependencies. Figure 4.5 shows an example of a connectogram.

49

Figure 4.5: Top level of the reference model visualized as a connectogram

50

For the connectogram, the visualization framework can be filled in as follows:

Metaphor: No real-world metaphor is used. The process architecture is shown as a
circle.

Primary artifacts: Processes and groups are shown as circle segments. Each segment is
sub-divided into smaller segments that represent its children, but only the elements
on the current top level are labeled and therefore explicitly visible. Relations are
shown as bundled lines inside the circle that connect the respective elements of the
circle.

Overview: In the overview, all elements are represented in the circle but only the top-
level elements are labeled. To the user, only the top level elements are clearly
visible

Zoom: No zoom functionality is provided.It would likely not have a big added value
because the visualization is always fitted to the screen and does not have many
details that would profit from an inspections at a higher zoom-level.

Filter: No filters are provided.

Details on demand: When pointing at an element, its relations and the elements it is
related to are highlighted. By clicking on an element, this one can be opened, i.e.
selected as the new top level that is represented by the circle as a whole.

History: History functionality is not provided due to the simple interaction mechanisms
that do not make undo and redo functionalities necessary.

Extract: Extract functionality is also not present due to the simple interaction mecha-
nisms that allow to easily return to a certain state of the visualization.

Tree visualization

The tree visualization shows only the hierarchical structure of the process architecture.
It is mainly intended to ease navigation of the process architecture: The tree makes it
possible to easily see which node is being visualized at the moment and where it is located
in the hierarchical structure as well as to select a node to be visualized. An excerpt of
the tree visualization can be seen in figure 4.6.

The tree visualization provides the following values for the visualization framework:

Metaphor: No real-world metaphor is used. The representation is similar to the tree-
view provided by file system browsers.

Primary artifacts: Elements and groups are represented as folders or entries (branches
or leafs) depending on whether they have children or not. Relations are not repre-
sented.

51

Figure 4.6: Excerpt of the tree visualization

52

Aspect Block-based
visualization

Connectogram
visualization

Tree visualization

Metaphor No real-world
metaphor.
Visualization as
graph

No real-world
metaphor.
Visualization as a
circle

No real-world
metaphor, but
similarity to
directory trees

Primary artifacts Blocks and arrows Elements as circle
segments; relations
as bundled lines

Elements as folders
and entries;
relations not
shown

Overview Graph view of the
top-level elements

All elements and
relations shown,
but only top-level
elements labeled.

Fully collapsed tree
(except root node)

Zoom - - -
Filter Minimum edge

strength
- -

Details on demand Semantic zoom Semantic zoom
and relation
highlighting

Opening/closing of
branches

History - - -
Extract - - -

Table 4.1: Visualization framework applied to the visualization techniques of the
prototype

Overview: The overview consists of the tree structure which is fully collapsed except
for the root node.

Zoom: No zoom functionality is provided. Zooming would probably not provide consid-
erable added value because the tree does not have details that need to be seen at
a higher zoom-level and would become illegible at significantly lower zoom-levels.

Filter: No filters are provided.

Details on demand: Nodes of the tree can be expanded or collapsed to adjust the level
of detail.

History: History functionality is not provided and not needed due to the simple inter-
action mechanism.

Extract: Extract functionality is not provided and not needed due to the simple inter-
action mechanism.

53

Figure 4.7: Excerpt of the comparison table

Comparison table

In addition to the visualization techniques, a table view is provided to compare the
original structure of the process architecture to the structure resulting from automatic
clustering. Each column of the table represents a top-level entry of the original ar-
chitecture and each row represents a top-level element of the automatically clustered
architecture. Each cell states the number of processes that both of these elements have
in common, i.e. both of them have a sub-element which represents that process. An
excerpt of a comparison table can be seen in figure 4.7. The colors are chosen to support
the numerical contents of the cells. Cells that would contain the value zero are left blank
for a better overview.

As the comparison table is not a visualization of a single process architecture, but rather
a display of a comparison technique, the visualization framework has not been applied
to it.

4.1.2 Analysis techniques

To support the visualization techniques and add functionality necessary for the selected
use cases, analysis techniques have been implemented. They are described in detail in
the sections below.

54

Dependency detection

A process collection that is loaded into the tool might in principle contain information
about the dependencies among processes. Otherwise, or if the information about depen-
dencies might be inaccurate, an automatic detection of dependencies is needed. To be
able to analyze dependencies, (semi-)formal models of the processes are needed. The
SAP reference model is modeled as EPCs. This standard is well suited for analyzing
dependencies because events/statuses have to be explicitly modeled. If one process cre-
ates a certain event as a result and another process can be started by the same event,
a dependency between these two processes is indicated. The only information known
of events are their labels. Therefore, identity is based on similar labels. The choice for
similarity over exact equality of labels has been made in order to accommodate slight
variations in naming styles and/or typing mistakes.

Grouping within an existing structure

A process architecture that comes with an existing hierarchical structure may be hard to
understand if the number of elements and connections on one level is very high. It has
been observed that in such cases often a number of elements can be identified that have a
particularly strong connection among each other. This suggests that these elements form
a logical group. Hence, the prototype offers an automatic grouping that can help the user
understand the structure of the process architecture by reducing the visual complexity.

There is a single parameter that controls the grouping: the required density, i.e. the
strength of connections within the group. The density of a group is calculated by the

formula

∑
edges in group

strength of edge

maximum number of edges . The strength of an edge is a number between 0 and
1 which depends on the number of dependencies this edge represents.

Clustering of processes

A process collection may lack a hierarchical structure. An automatic clustering can
introduce the missing structure based on the content of the processes. The automatic
clustering also helps to evaluate whether the chosen hierarchical structure is the right one.
In the prototype, the Weka software[12] is used to automatically cluster all processes into
a new structure. The difference between this clustering and the grouping described before
is that the clustering creates a completely new structure while the grouping preserves
the structure as it was defined and refines it by adding additional layers.

The automatically generated clusters need names for the user to identify them. In the
prototype, the three most significant words found within the labels of the processes in
the cluster, are chosen as names. Most significant words are those that occur frequently
within the cluster and not very frequently in the process collection as a whole.

55

4.2 Architecture of the implementation

Apart from the functions as specified and explained before, there are always non-
functional requirements that also have an influence on the architecture of the software.
As stated in the beginning of this chapter, the current prototype only supports two out of
five use cases. Therefore it is important that adding additional functionality and chang-
ing existing functionality are as simple as possible. Hence, extensibility and adaptability
were particularly important. As it is a research prototype, such aspects as performance
and scalability are not a primary concern. However, to be able to test a variety of vi-
sualization and analysis techniques, to support more use cases in the future and to try
different user interaction mechanisms, adaptability and extensibility are important. In
particular, there are the following requirements:

1. It must be possible to add new visualization techniques and new analysis techniques.
The effort involved in adding a new technique should be minimized.

2. Visualization and analysis techniques do not directly depend on each other, i.e.
a visualization technique does not rely on the presence of a particular analysis
technique or the other way around.

3. The control flow of the application can be changed without modifying visualization
or analysis techniques.

4. Different data sources for process architectures can be added.

The first two requirements ensure that future research with different analysis and visual-
ization techniques can be incorporated into the prototype as easily as possible. The third
requirement makes sure that it is possible to support new use cases without changing the
complete application, because adding a new use case likely requires adding new behavior
to the application. The fourth requirement aims at allowing to test the prototype with
other process architectures in the future.

The requirements mentioned before indicate that the visualization techniques, analysis
techniques and import components should be as self-enclosed as possible. They should be
components on their own that can be exchanged easily. A model-view-controller (MVC)
architecture provides these advantages by separating the three main components model,
view and controller. The MVC architecture style has been used as a starting point for
the architecture of this application.

The implementation is split into five packages as can be seen in figure 4.8. The controller
package keeps the status of the application and controls the data and control flow. It is
the single place that needs to be adapted to change the control flow of the application,
for example to support new or changed use cases. The model package contains data
structures to represent a business process architecture, i.e. the central data artifact of
this application. All other components interact with the model. User interface compo-
nents are defined in the ui package. The visualization components are in the sub-package

56

controls

uses

creates

modifies

reads

notifies visualization
events

Figure 4.8: Architecture of the prototype

visualization to isolate them as much as possible from the rest of the application. The
analysis package contains tools for analyzing and transforming the model and the im-
ports package contains routines for loading data from an external source. Both of these
packages encapsulate their respective functionalities in a way that allows to add and
change functionality rather easily. The following paragraphs describe each package in
more detail.

4.2.1 The controller package

The controller package was introduced in order to keep the status of the application
saved in one central location. This makes it easier to understand and change the overall
control flow of the application than if the control is scattered around the system.

It is possible to implement all control flow in a single controller class. However, this
would result in a single big and powerful class which is considered bad style in software
engineering because it is hard to understand and maintain such a class. As extensibility
and adaptability are important, it was decided to split the control into multiple classes.
Each controller class is responsible for a certain phase of the application’s life cycle, e.g.
MainController for starting up the application and delegating to other controllers and
ExplorationController for visualizing the process architecture and allowing the user to
navigate through it.

57

The sub-package events contains classes of objects that are used for the communication
between the controllers and the user interface. It contains notifications which are sent
from the user interface to the controller upon user input as well as updates which are
sent from the controller to the user interface when a change in the visualization needs
to be performed. Both types of events are typically lightweight classes that hold a small
amount of data and do not contain application logic. The type of event indicates the
type of user interaction that has been done or the type of update that needs to be per-
formed. Compared to directly invoking specific methods, sending events allows an easier
extension of functionalities of the controller as well as the user interface/visualization
components.

4.2.2 The model package

The model package contains data structures needed for storing all information the appli-
cation uses about a business process architecture, including the (hierarchical) structure
of the architecture, the names and relations of processes and the process models if avail-
able. Furthermore, the package contains the functionality needed to efficiently access
and manipulate these data structures.

4.2.3 The ui package

The ui package contains all user interface components. The MainForm is the main
window of the application which can hold all of the other components. The visualization
sub-package contains the components (panels) that are used to graphically represent the
process architecture. There are several components for different types of visualization.
The controllers decide, according to the input of the user, which components are to be
used.

4.2.4 The analysis package

The analysis package contains techniques for analyzing and changing the model. More
concretely, there are three analysis tools. The class DependencyAnalysis computes de-
pendencies among the processes in a process collection. That means it computes the
relations between processes that are characteristic for the process architecture. The
Clusterer uses the external library Weka[12] to compute a clustering, i.e. a structure, of
the process architecture, based on these relations. The class GreedyGrouping implements
a possibility of grouping the children of a certain node in order to simplify the structure
by introducing an additional layer in the process architecture.

58

4.2.5 The imports package

The imports package provides the functionality needed to load a process collection from
an external source. At the moment, the only import loads the SAP reference model
including the pre-defined structure as well as the EPC models of the processes in the
reference model.

4.3 Summary

Based on the use cases and requirements in the previous chapter, a prototype has been
developed. The prototype covers two out of five use cases which were considered the most
important. Its functionalities are based on the requirements presented in the previous
chapter. The prototype was software-architecturally designed in a way that allows it to
be extended by future research.

59

5 Validation

The prototype that has been developed, is a new piece of technology and therefore its
practical relevance has to be evaluated. The tool is practically useful only if it is likely
to be used in practice. Therefore, the likeliness of the tool being used, i.e. its acceptance
by users, is the criterion that needs to be evaluated. More precisely, the functionalities
of the tool need to be evaluated and the evaluation should be done in the context of the
use cases they are intended for.

This chapter presents the setup for a user test that still needs to be executed. The valida-
tion has not yet been done because the previous steps of the process, i.e. identifying use
cases and requirements and implementation, took longer than planned. The validation
of the prototype is still an important step that should be carried out as future work and
therefore this test plan is presented as a basis for executing a user test. The first section
of this chapter describes the fundamentals of the test and the second section explains its
exact setup.

5.1 Framework for the test

This section gives the foundation for the test setup based on the functionalities and use
cases of this tool and on theories about the acceptance of technology.

5.1.1 Functionalities and use cases to test

In chapter 4, an overview of the functionality of the tool and its intended relation to the
use cases has been presented. The overview given in figure 5.1 which has been seen in
that chapter already, gives a starting point for the evaluation. Tree visualization and
Search function are present in current industry standard tools already and therefore
cannot present an improvement by themselves. For that reason, they are not explicitly
evaluated (indicated in gray). Dependency detection cannot be used in an isolated manner
and most of the functionalities of the prototype depend on it. Hence, testing it separately
is hardly possible. It is shown in gray as well to indicate that it is not included in the
test.

That leaves eight functionality-use case pairs that need to be evaluated. However, the
functionalities are not completely independent: Grouping and clustering rely on a vi-

60

1 Understanding the
structure of the

architecture

2 Restructuring a
process architecture

Allows navigation
through processes and

shows their dependencies

Shows strength of
dependencies between

major parts

Allows easier comprehension
of the existing structure

Helps to understand the
suggested new structure

Gives insight
Into the impact
of restructuring

Gives insight into
the suggested changes

Creates a suggestion
for restructuring the
process architecture

Creates suggestions
for changes within the
process architecture

Block-based
visualization

Connectogram
visualization

Tree visuzlization

Comparison table

Dependency
detection

Clustering of
processes

Grouping
within an existing

structure

Search
function

Figure 5.1: Relations between functionalities and use cases that need to be evaluated
separately: The functionalities Tree visualization, Dependency detection and
Search function (shown in gray) will not be evaluated directly. Use cases are
shown as ellipses, visualization techniques as rectangles, analysis techniques
as hexagons and other functionalities as trapezoids.

61

Nr. Use case Functionality
1 1 Block-based visualization
2 1 Connectogram visualization
3 1 Grouping and block-based visualization
4 1 ARIS Explorer and Designer
5 2 Clustering and block-based visualization
6 2 Clustering and connectogram visualization
7 2 Clustering and comparison table
8 2 ARIS Explorer and Designer

Table 5.1: Combinations of functionalities and use cases that need to be tested

sualization technique in order to present results to the user. Grouping will be tested
with the block-based visualization and clustering with the block-based visualization,
connectogram and comparison table. To reduce the number of tests, the combination of
clustering and grouping will not be tested.

To establish the added value of the functionalities, a comparison to an industry standard
tool (the reference tool) is necessary. The reference tool for this test will be ARIS. The
SAP reference model which is used in the prototype, has originally been modelled in
ARIS. Hence, ARIS can be seen as the base-line tool to which the new prototype should
be compared. The relevant functionalities of ARIS are the Explorer and the Designer
which provide a navigation tree and the possibility to view process models and their
properties. In the rest of this chapter, ARIS refers to the functionalities Explorer and
Designer of ARIS. Table 5.1 summarizes the tests that have to be done.

5.1.2 The Technology Acceptance Model

A multitude of theories about the acceptance of IT systems exists. A popular one is
the Technology Acceptance Model (TAM) by Fred D. Davis [4]. In contrast to newer
models like the TAM2 [22] or the Unified theory of acceptance and use of technology
(UTAUT)[23], it only focuses on the factors perceived usefulness and perceived ease of
use, not taking into account environmental factors like social influences. This is an
advantage when evaluating a new technology without a specific social and economical
environment. Furthermore, TAM2 and UTAUT are more complex models which would
significantly increase the effort for the user test because more values would need to be
measured when using them. They might provide better results but in order to limit the
effort of the user test, the TAM was chosen as the basic model for this user test.

The TAM presents a set of six statements each for perceived usefulness and perceived ease
of use. The user is asked to evaluate each statement on a likeliness scale with seven steps
(extremely likely, quite likely, slightly likely, neither likely nor unlikely, slightly unlikely,

62

quite unlikely, extremely unlikely). The following statements are given to determine the
perceived usefulness:

1. Using (system) in my job would enable me to accomplish tasks more quickly.

2. Using (system) would improve my job performance.

3. Using (system) in my job would increase my productivity.

4. Using (system) would enhance my effectiveness on the job.

5. Using (system) would make it easier to do my job.

6. I would find (system) useful in my job.

The following statements are given to determine the perceived ease of use:

1. Learning to operate (system) would be easy for me.

2. I would find it easy to get (system) to do what I want it to do.

3. My interaction with (system) would be clear and understandable.

4. I would find (system) to be flexible to interact with.

5. It would be easy for me to become skillful at using (system).

6. I would find (system) easy to use.

In both of these lists, the name of the system that was evaluated in [4] has been replaced
by (system). Other than that, the statements are literally taken from [4].

5.1.3 Adaption of TAM for the user test

The final design for the user test is based on the functionalities and use cases presented in
section 5.1.1 and the TAM as presented in the previous section. In the statements about
perceived usefulness, the TAM refers to the job of the person filling in the questionnaire.
As each test should be executed in the context of a certain use case, this reference to
the job is replaced by the respective use case. In place of the system, the functionality
as indicated in table 5.1 is filled in. This results in a final list of 48 statements. The
statements for the first combination of use case and functionality can be found in table
5.2. The lists of statements for the other seven cases can be created by replacing the
name of the functionality and/or the description of the use case. Therefore, the lists of
all eight combinations are not included here.

The statements about perceived ease of use do not refer to the user’s job. This indicates
that the usability does not depend on the task that the user tries to fulfill. Therefore,
the evaluation of the perceived ease of use is based solely on the functionality/tool, not
on the use case. The functionalities are the same as in the evaluation of the perceived

63

1. Using the block-based visualization for understanding the structure of the business
process architecture would enable me to accomplish tasks more quickly.

2. Using the block-based visualization would improve my performance in understand-
ing the structure of the business process architecture.

3. Using the block-based visualization for understanding the structure of the business
process architecture would increase my productivity.

4. Using the block-based visualization would enhance my effectiveness in understand-
ing the structure of the business process architecture.

5. Using the block-based visualization would make it easier to understand the struc-
ture of the business process architecture.

6. I would find the block-based visualization useful for understanding the structure of
the business process architecture.

Table 5.2: List of statements concerning the perceived usefulness for using the block-
based visualization for understanding the structure of the architecture

usefulness and also ARIS is included as a reference tool again. The list of statements is
modified similarly to the first one. This results in a list of 36 questions. The questions
for the first functionality are listed in table 5.3. Again, the rest of the statements can be
created by replacing the name of the functionality/tool and therefore is not reproduced
here.

5.2 Setup of the test

This section describes the practical setup of the test. Firstly, a target group is proposed
and secondly the steps of the user test session are explained.

5.2.1 User group

The users in the test should be familiar with the topic of business process management
and should have at least a basic understanding of the concept of a business process
architecture. An individual user will give the most reliable results if he or she practically
works with business process architectures on a regular basis. However, in a user test the
number of participants is very important and it would be very hard to find sufficiently
many practitioners from the BPA field who are willing to participate in the user test
because participating in that test does not directly contribute to their work. Therefore,
it is proposed to let the students of the Business Process Management course taught at

64

1. Learning to operate the block-based visualization would be easy for me.

2. I would find it easy to get the block-based visualization to do what I want it to do.

3. My interaction with the block-based visualization would be clear and understand-
able.

4. I would find the block-based visualization to be flexible to interact with.

5. It would be easy for me to become skillful at using the block-based visualization.

6. I would find the block-based visualization easy to use.

Table 5.3: List of statements concerning the perceived ease of use of the block-based
visualization

TU Eindhoven participate in this test. Towards the end of the course, they have sufficient
knowledge to qualify as test participant and earlier experiments carried out with students
of this course got high numbers of participants (more than 100). The results for each
individual user will be less meaningful than for an individual practitioner but the high
number of participants strongly increases the significance of the test result.

5.2.2 Steps of the user test

In the beginning, the tools are introduced to the participants and the rest of the test
session is outlined. After that the tests for perceived usefulness are done. At the end,
the perceived ease of use is tested.

Test introduction

The first step is an introduction to the prototype as well as to the reference tool. The
functionalities of the prototype should be shown in a demonstration of five minutes, not
including the time the prototype needs to start. Approximately the same amount of
time should be spent to introduce the functionalities of ARIS. The exact steps for the
introduction of the tools are listed in appendix C.1

Test of the perceived usefulness

To start, the first use case is introduced to the user. To help them get a concrete idea
about the use case, they are presented with a number of questions related to that use
case. The users are not asked to fill in answers for these questions. Examples for such
questions are listed in appendix C.2. Subsequently, the test for each functionality is

65

done. For this, the user is asked to explore the capabilities of the tool in working on
that use case. The list of example questions is still accessible. After the user has had
time to explore the tool’s capabilities concerning the use case, they are asked to answer
the list of six questions for the functionality-use case combination that they just tested.
After that, the test continues in the same way for the next functionality and the next
use case.

Test of the perceived ease of use

After all questions concerning the perceived usefulness have been answered, the user is
presented with the questions about the perceived ease of use. First, the questions for
the perceived ease of use of the block-based visualization are presented, then the test
continues with one functionality after the other. The user is not explicitly asked to use
the tool again because they already have experienced using it. However, access to the
tool does not need to be denied to the user for they might need to remind themselves
about the way the functionality works.

5.3 Limitations

The test plan as presented here, has a number of limitations. Firstly, as mentioned
before, the test will be carried out among students who usually lack practical experience
in working with business process architectures. This limits the reliability of conclusions
about the usefulness of the tool. Conclusions about the usability of the tool are less
affected because the judgment of usability does not depend on domain knowledge as
much.

The second important limitation is that a research prototype is being compared to an
industry-strength tool. This may be a disadvantage for the prototype because it was
created with less attention for factors like reactiveness (fast reactions upon user input),
error-freeness and an interface that looks attractive.

Furthermore, the user test measures the users’ opinion about the usefulness and ease of
use instead of measuring these characteristics directly. This can be seen as a limitation
because the users’ opinion may of course differ from objective values. However, whether
such a tool will be of any practical use depends on whether it is accepted by its poten-
tial users and they typically base their decisions on their opinion rather than objective
measures.

66

5.4 Current status of the evaluation

As mentioned above, the user test has not yet taken place. The tool has been presented
to one of the practitioners who gave input on the use cases. The functionality was
demonstrated to him in detail, i.e. all existing functionalities were shown and their
intended use was explained. Subsequently, he was asked:

• whether he thinks that the tool would be helpful in his work

• what the most significant added value of the tool would be for him

• what should be improved to increase the tool’s value

The answers indicated the following:

• The tool, if it was developed to a sufficient level of maturity, would be helpful fur
understanding and restructuring process repositories of big enterprises.

• The biggest added value of the tool is the support it provides in getting an overview
over the structure of the process repository and the way it can show the impact of
restructuring the architecture.

• More types of relations should be taken into account by the tool, such as shared
IT-systems, KPI’s and products.

• The tool should be integrated in a process management software because its func-
tionality is too narrow and attracts a too small user group to sustain as an inde-
pendent software.

The suggestions for further development are taken into account in the suggested future
work, section 6.3.

5.5 Summary

A test plan for a user test has been presented. A test according to the plan will establish
values for the perceived usefulness and perceived ease of use of the tool. The perceived
usefulness indicates whether the users think that the functionality of the tool is chosen
appropriately to support the use cases it is supposed to support. The perceived ease of
use shows the users’ opinion about the usability of the tool. The test has not yet been
carried out because of delays in earlier phases of the project.

Presenting the tool to a practitioner who works in the field of business process architec-
tures, has lead to overall positive feedback and a number of attention points for future
development and research.

67

6 Conclusions

The motivation for this research was the fact that big process collections are hard to com-
prehend because of the high number of processes and relations between these processes
that they contain. Visualization has been proposed as a possible solution to this prob-
lem. As a starting point for developing requirements for a business process architecture
(BPA) visualization tool, literature from the field of software architecture visualization
has been studied. From the results of this literature study, requirements for a BPA visu-
alization tool have been concluded. Subsequently, use cases for BPA visualization have
been developed based on literature about business process architectures and input from
practitioners. Five use cases have been found.

In the next step, a prototype of a BPA visualization tool has been developed. Realizing
all five use cases within the scope of the project was not feasible and therefore two
important use cases have been selected for the tool to support. The prototype offers
multiple visualization techniques and a number of analysis techniques to support the
visualization. Finally, a test plan has been proposed for the validation of the prototype.
The proposed user test has not yet been executed because of delays in the previous steps
of the project.

6.1 Results

The main goal of this research was the development of an easy-to-use and useful graphical
visualization of process architectures. Two sub-goals have been identified: identification
of relations between processes on the same hierarchical level or on different hierarchical
levels and identification of possibilities to abstract from the details of a process architecture
in order to obtain multiple levels of detail.

The main goal has been addressed by the development of a prototype. It addresses two
of the five use cases that have been identified for the visualization of business process
architectures. The usefulness and usability have not yet formally been tested.

The first sub-goal, the identification of relations in the business process architecture, has
been addressed by a dependency detection in the prototype. That dependency detec-
tion focusses entirely on direct dependencies between processes based on event labels.
The existence of more types of relations is known to the author. For example, the ex-

68

change of messages and common use of shared resources are further relations in a process
architecture that can influence the performance of processes.

The second sub-goal, abstraction to obtain multiple levels of details, has been addressed
in the prototype in multiple ways. The first technique for abstracting from details is
showing only a single level of the hierarchical structure at a time. This technique abstracts
by not showing all elements of the architecture but also by displaying relations on an
abstract level. Secondly, there is a possibility to abstract from the relations in a process
architecture by only showing strong edges. This second abstraction technique allows
the user to select an appropriate level of detail. A third technique of abstraction is
the automatic grouping. It builds on the first technique, only showing one level of the
hierarchy at a time, and extends it by adding new dynamic levels of hierarchy. The
user can also influence the level of detail using this technique: Not only can they select
whether or not to use it, but there is also a possibility to influence the way how groups
are created.

6.2 Limitations

This section outlines limitations in the developed prototype as well as in the research
approach.

6.2.1 Limitations of the prototype

The prototype only addresses two out of five use cases that have been developed in section
3.1. This choice was made in order to be able to address two use cases in detail instead
of only touching on all five. Furthermore, the prototype only works with a single type
of relations although there are more types of relations in a process architecture. The
relations are identified based on event labels which may lead to false-positives, i.e. the
identification of relations that actually are no relations.

Except for these functional limitations, the prototype may still contain errors because it
has not been tested rigorously. The graphical design of the prototype does not live up to
the standards of current commercial software. Moreover, starting up the prototype and
certain actions within it take longer than most users would be willing to accept.

6.2.2 Methodological limitations

In the first step of the research, literature from the field of software architecture visu-
alization has been studied. This choice was made because that field is closely related
to business process architecture visualization. However, studying more fields might have
improved the results.

69

The use cases were developed based on literature from the field of business process
architectures and the input of practitioners but also influenced by the own insights of the
author. The questions from literature on which the use cases have been based, were not
selected rigorously enough to guarantee the completeness of the use cases. Furthermore,
bringing in the own insight of the author may have negatively influenced the correctness
of the use cases, but it was tried to moderate that effect by discussing the suggested use
cases with practitioners.

The prototype has not yet been subjected to a user test which means that it is not certain
yet that it fulfills its goal of making business process architectures more understandable
and helping with redesigning them.

6.3 Future work

The research presented in this work forms a foundation for further investigation into the
visualization and analysis of business process architectures. The following sections point
out future fields of work.

6.3.1 Validation

As pointed out before, a user test still needs to be carried out. This is seen as the most
important future step because it will give feedback about the quality of the work done
until now. The user test will give results for perceived usefulness and perceived usability
of each tested functionality.

If a functionality gets a high score for perceived usefulness, it means that this functionality
is a valuable addition that should be kept and further developed. A low score in that
criterion points at the opposite. It does not necessarily mean that the functionality is
useless and should not be considered anymore at all but it calls for an investigation on
the reasons for the low perceived usefulness.

A high score for perceived ease of use indicates that the users perceive the interaction
mechanisms as intuitively usable. The mechanisms should be further developed in the
same direction. A low perceived ease of use indicates that the interaction mechanisms are
not intuitive. Findings from human technology interaction should be taken into account
to redesign the interaction mechanisms.

6.3.2 Requirements and use cases

To improve the requirements that have been found and increase the confidence in them,
literature from more fields than only software architecture visualization should be stud-
ied.

70

A comprehensive overview of questions that can be answered with business process ar-
chitectures, should be created by means of surveying published literature about business
process architectures. This can help finding more use cases.

6.3.3 Types of relations

At the moment, the only type of relation that is represented in the prototype, are direct
dependencies. There are several ways in which processes can interact or be related:

Document or Information exchange: Processes can run in parallel and exchange in-
formation. In some cases, this may be captured by events in EPCs, but in other
cases or other modeling notations, further analysis may be necessary to identify
these relations.

Roles and People: Processes and activities that are executed by the same people or
people with the same roles, influence each other in a way that is not always obvious.
Two processes that share human resources, may negatively influence each other’s
performance.

IT-systems and other resources: Just like the shared use of human resources, also
the shared use of other resources may impact processes’ performance. Moreover,
shared use of an IT-System, production machinery, etc. may point to the processes
fulfilling similar functions.

Products and services: Processes related to the same product/service are not neces-
sarily part of the same group in the hierarchical structure, but they still form a
logical group throughout the organization. When making changes to a product or
service, it is essential to identify the processes that are affected.

By incorporating these relations into the visualization and analysis, the picture of the
process architecture becomes more complete. This also means that the number of rela-
tions will grow significantly and more possibilities for filtering will be needed.

6.3.4 Coverage of more use cases

The current prototype only focuses on two out of five use cases identified in chapter 3.
The rest of the use cases should be supported by a future version of the tool for it to
increase the value for the user.

Analysis of the quality of a process architecture

There are two major steps in realizing this use case. The first one is the identification
of patterns that indicate problems. These patterns can be derived from the practical

71

experience of experts in the field of BPAs and from research results in the area. The
second step is the automatic recognition of these patterns. This step requires a good
formal representation of each of the patterns.

Identification of a client’s pathway

Supporting this use case mainly requires an additional visualization technique. The
dependencies required to support it are already analyzed by the current prototype.

Implications of a local change

The additional types of relations listed above may help in identifying the impacts of
a local change. Once they are incorporated, this use case mainly requires a way of
presenting the processes affected by a change.

6.3.5 Improvement of the prototype to a higher maturity

At the moment, the tool opens only one format of a business process repository. In order
to be more useful, it should be able to open different file formats. To improve the workflow
of using the tool, it should finally be integrated in BPM tools. This would enable the
user to use the functionality of the current prototype and any future improvements in the
environment that they usually use for modelling and organizing their business processes.
Furthermore, a rigorous test for errors in the prototype should be carried out in order to
improve the reliability of the tool. Moreover, measures should be taken to improve its
performance.

6.4 Summary

The goals set in the beginning have been partially achieved and points for future im-
provement have been pointed out. A user test is the next major step in the development
of business process architecture visualizations.

72

A Literature study protocol

This appendix presents a protocol for the literature study presented in short in chapter
2. The first part describes details on the search strategy. In the second part, all search
results are listed.

A.1 Search strategy

The literature study was carried out using a number of online search engines for scientific
resources. Each search result was checked for its match with the inclusion and exclusion
criteria. Those publications that matched the inclusion criteria and did not match the
exclusion criteria, are discussed in chapter 2.

Considering the high numbers of search results that are typically found for a certain
query in the resources used, it is not feasible to assess every single result for its relevance.
However, these search engines sort the results in a way that the most relevant results are
the first ones. This means that it is legitimate to stop evaluating the results after ten
irrelevant results in a row. Hence, results that followed ten irrelevant results in a row,
were considered not to be found.

A.1.1 Search resources

The first resource used in the literature search was the search engine Google Scholar. It
searches the databases of most major publishers and therefore is a good starting point
for finding relevant literature. Furthermore, the search tool Focus of the library of TU
Eindhoven was used. It covers all online and offline resources available to that library.
After these publisher-independent resources had been consulted, the search tools of some
important publishers have been used to complete the search. Springer Link (Springer)
and IEEE Xplore (IEEE) have been searched. All the content covered by the last three
resources is also searched by Google Scholar. However, they were consulted to avoid
results that depend on only a single search resource.

73

A.1.2 Search terms and inclusion and exclusion criteria

The search term used for all the search engines was "Software Architecture Visualization"
(without the quotes). Results were considered relevant if they met at least one of the
inclusion criteria and none of the exclusion criteria. These criteria were checked based
on the abstract of the publication. If it was clear from the title of a publication that it
is not relevant, then the abstract was not consulted.

The following inclusion criteria were used:

• The publication introduces and describes a visualization technique for software
architectures.

• The publication describes one or more existing visualization techniques for software
architectures.

The following exclusion criteria were used:

• The article describes technical details of a visualization techniques, but not an
overall visualization technique.

• The article describes a specific application of software architecture visualization
and not the visualization technique itself.

As the goal of this literature study is the identification of principles in software archi-
tecture visualization that can possibly be reused for business process architecture visual-
ization, descriptions of visualization techniques are needed. Implementation details are
not the subject of this work and neither are specific tasks and workflows in software
engineering.

A.2 Results of the literature search

This section shows the results per search engine. The tables show the name, authors and
year of each publication and indicate whether it is relevant or not. If the relevance column
is filled with Duplicate, this means that the publication is relevant but has already been
found in another resource.

A.2.1 Google Scholar

Address of the resource: http://scholar.google.com

74

http://scholar.google.com

Title Authors Year Relevance
A classification and
comparison framework for
software architecture
description languages

N Medvidovic, RN Taylor 2000 No

Pattern Oriented Software
Architecture: On Patterns and
Pattern Languages

F Buschmann, K Henney, DC
Schmidt

2007 No

Scenario-based analysis of
software architecture

R Kazman, G Abowd, L Bass,
P Clements

1996 No

Software architecture:
foundations, theory, and
practice

RN Taylor, N Medvidovic, EM
Dashofy

2009 No

Software architecture
visualization: An evaluation
framework and its application

K Gallagher, A Hatch, M
Munro

2008 Yes

Playing detective:
Reconstructing software
architecture from available
evidence

R Kazman, SJ Carrière 1999 No

ArchJava: connecting software
architecture to implementation

J Aldrich, C Chambers, D
Notkin

2002 No

Abstractions for software
architecture and tools to
support them

M Shaw, R DeLine, DV Klein,
TL Ros

1995 No

A software system for
interactive and quantitative
visualization of
multidimensional biomedical
images.

RA Robb, DP Hanson 1991 No

Visualization of areas of
interest in software
architecture diagrams

H Byelas, A Telea 2006 No

The software architecture of a
real-time battlefield
visualization virtual
environment

S Julier, R King, B Colbert, J
Durbin

1999 No

Structural manipulations of
software architecture using
Tarski relational algebra

RC Holt 1998 No

Software architecture
reconstruction: A
process-oriented taxonomy

S Ducasse, D Pollet 2009 No

75

Title Authors Year Relevance
Using visualization for
architectural localization and
extraction

D Jerding, S Rugaber 1997 No

Architectural styles and the
design of network-based
software architectures

RT Fielding 2000 No

Tool support for architecture
analysis and design

R Kazman 1996 No

A Network Software
Architecture for Large Scale
Virtual Environments.

MR Macedonia 1995 No

3D visualization of software
architectures

L Feijs, R De Jong 1998 Yes

An open graph visualization
system and its applications to
software engineering

ER Gansner, SC North 2000 No

Gase: visualizing software
evolution-in-the-large

R Holt, JY Pak 1996 No

Shrimp views: An interactive
environment for exploring java
programs

MA Storey, C Best, J Michand 2001 Yes

Towards empirically validated
software architecture
visualization

J Knodel, D Muthig, M Naab,
D Zeckzer

2006 Yes

SAVE: Software architecture
visualization and evaluation

S Duszynski, J Knodel, M
Lindvall

2009 No

A software architecture
reconstruction method

GY Guo, JM Atlee, R Kazman 1999 No

Symphony: View-driven
software architecture
reconstruction

A van Deursen, C Hofmeister,
R Koschke, L Moonen, C Riva

2004 No

Visualization-based analysis of
quality for large-scale software
systems

G Langelier, H Sahraoui, P
Poulin

2005 Yes

Software evolution
observations based on product
release history

H Gall, M Jazayeri, R Klösch,
G Trausmuth

1997 No

The weather research and
forecast model: Software
architecture and performance

J Michalakes, J Dudhia, D
Gill, T Enderson, J Klemp, W
Skamarock, W Wang

2004 No

76

Title Authors Year Relevance
Secrets from the monster:
Extracting Mozilla’s software
architecture

MW Godfrey, EHS Lee 2000 No

A relational approach to
support software architecture
analysis

L Feijs, R Krikhaar, R Van
Ommering

1998 No

On the use of visualization to
support awareness of human
activities in software
development: a survey and a
framework

MAD Storey, D Čubranić, DM
German

2005 No

A hybrid process for recovering
software architecture

V Tzerpos, RC Holt 1996 No

Pattern visualization for
software comprehension

R Schauer, RK Keller 1998 No

An open software architecture
for virtual reality interaction

G Reitmayr, D Schmalstieg 2001 No

Architecture-based runtime
software evolution

P Oreizy, N Medvidovic, RN
Taylor

1998 No

Object-oriented software
development

A Eliëns 1995 No

Beyond the Renderer: Software
Architecture for Parallel
Graphics and Visualization.

TW Crockett 1996 No

A.2.2 TU Eindhoven library

The search tool Focus of the library of TU Eindhoven was used. It can be found at
http://library.tue.nl/focus/

Title Authors Year Relevance
3D visualization of software
architectures

"L Feijs, R de Jong" 1998 Duplicate

Towards empirically validated
software architecture
visualization

"J Knodel, D Muthig, M Naab,
D Zeckzer"

2006 Duplicate

A Systematic Analysis of
Software Architecture
Visualization Techniques

Z Sharafi 2011 No

77

http://library.tue.nl/focus/

Title Authors Year Relevance
Extreme Scaling of Production
Visualization Software on
Diverse Architectures

"H Childs, D Pugmire, S
Ahern, B Whitlock, M
Howison, Prabhat, G Weber,
W Bethel"

2011 No

Software architecture
visualization: An evaluation
framework and its application

"K Gallagher, A Hatch, M
Munro"

2008 Duplicate

Connecting research and
practice: an experience report
on research infusion with
software architecture
visualization and evaluation

"M Lindvall, WC Stratton, DE
Sibol, C Ackermann, WM
Reid, D Ganesan, D McComas,
M Bartholomew, S Godfrey"

2012 No

Visualization of software
architecture graphs of Java
systems: managing propagated
low level dependencies

"L Schrettner, L Fülöp, R
Ferenc, T Gyimóthy"

2010 No

EvoSpaces Visualization Tool:
Exploring Software
Architecture in 3D

"S Alam, P Dugerdil" 2007 Yes

Weka?STPM: a Software
Architecture and Prototype for
Semantic Trajectory Data
Mining and Visualization

"V Bogorny, H Avancini, BC
de Paula, CR Kuplich, LO
Alvares"

2011 No

Texture-based visualization of
metrics on software
architectures

"H Byelas, A Telea" 2008 No

Visualization of areas of
interest in software
architecture diagrams

"H Byelas, A Telea" 2006 No

A new software architecture for
parallel computation and
visualization

DM Butler 1992 No

Coverity Architecture Analyzer
to Deliver Advanced
Visualization of Software
Systems: Product Now
Leverages Coverity’s Patented
Software DNA Map

Anonymous 2008 No

Software visualization S Diehl 2005 No
Project visualization for
software

KT Hansen 2006 No

78

Title Authors Year Relevance
Highly Configurable Software
Architecture Framework for
Acquisition and Visualization
of Biometric Data

J Stelovsky 2007 No

The visualization handbook "CR Johnson, CD Hansen" 2005 No
Visualization Criticism "R Kosara, F Drury, LE

Holmquist, DH Laidlaw"
2008 No

A.2.3 Springer Link

Address of the resource: http://link.springer.com

Title Authors Year Relevance
Connecting research and
practice: an experience report
on research infusion with
software architecture
visualization and evaluation

"M Lindvall, WC Stratton, DE
Sibol, C Ackermann, WM
Reid, D Ganesan, D McComas,
M Bartholomew, S Godfrey"

2012 No

Highly Configurable Software
Architecture Framework for
Acquisition and Visualization
of Biometric Data

J Stelovsky 2007 No

Understanding Architecture
through Structure and
Behavior Visualization

"D Heuzeroth, W Löwe" 2003 No

An experiment on the role of
graphical elements in
architecture visualization

"J Knodel, D Muthig, M
Naab"

2008 No

Measurement and visualization
of the architecture of an adult
tree based on a
three-dimensional digitising
device

"H Sinoquet, P Rivet" 1997 No

A Visualization System for the
Comfort Analysis of Modular
Architecture: A Case Study

"D Kim, S Lee, SA Kim" 2012 No

Model Generalization and
Methods for Effective Query
Processing and Visualization in
a WebService/Client
Architecture

"M de Vries, P van Oosterom" 2007 No

79

http://link.springer.com

Title Authors Year Relevance
Visualization of the
Implications of a Component
Based ICT Architecture for
Service Provisioning

"R Wagenaar, M Janssen" 2002 No

GVis: A Java-Based
Architecture for Grid Enabled
Interactive Visualization

"Y Zhao, W Chen, Y Qiu, J
Shi"

2004 No

An object-oriented architecture
for applications of scientific
visualization and mathematical
modeling

"VA Semenov, PB Krylov, SV
Morozov, OS Tarlapan"

2000 No

On porting software
visualization tools to the web

"M D’Ambros, M Lanza, M
Lungu, R Robbes"

2011 No

Visualization of Scientific Data
for High Energy Physics: Basic
Architecture and a Case Study

CE Vandoni 1994 No

Three-Dimensional
Visualization of the Molecular
Architecture of Cell–Cell
Junctions In Situ by
Cryo-Electron Tomography of
Vitreous Sections

"A Al-Amoudi, AS Frangakis" 2013 No

Grapheur: A Software
Architecture for Reactive and
Interactive Optimization

"M Brunato, R Battiti" 2010 No

A.2.4 IEEE Xplore

Address of the resource: http://ieeexplore.ieee.org/

Title Authors Year Relevance
Software Architecture
Visualization: An Evaluation
Framework and Its Application

K Gallagher, A Hatch, M
Munro

2008 Duplicate

A Systematic Analysis of
Software Architecture
Visualization Techniques

Z Sharafi 2011 Duplicate

SAVE: Software Architecture
Visualization and Evaluation

S Duszynski, J Knodel, M
Lindvall

2009 Duplicate

SoftArchViz: A Software
Architecture Visualization Tool

AP Sawant, N Bali 2007 No

80

http://ieeexplore.ieee.org/

Title Authors Year Relevance
Let’s enforce a simple
visualization rule in Software
Architecture

BH Wu 2011 No

Communicating Software
Architecture using a Unified
Single-View Visualization

T Panas, T Epperly, D
Quinlan, A Saebjornsen, R
Vuduc

2007 Yes

An Integrated Approach of
AHP-GP and Visualization for
Selection of Software
Architecture: A Framework

KD Babu, ; P Govindarajulu,
AR Reddy, ANA Kumari

2010 No

Understanding Software
Architectures by
Visualization–An Experiment
with Graphical Elements

J Knodel; D Muthig; M Naab 2006 No

An extensible and integrated
software architecture for data
analysis and visualization in
precision agriculture

L Tan; R Haley, R Wortman,
Q Zhang

2012 No

High-level static and dynamic
visualisation of software
architectures

J Grundy, J Hosking 2000 No

The software architecture of a
real-time battlefield
visualization virtual
environment

S Julier, R King, B Colbert, J
Durbin, L Rosenblum

1999 No

A Framework for Software
Architecture Visualisation
Assessment

K Gallagher, A Hatch, M
Munro

2005 No

A model and software
architecture for search results
visualization on the WWW

O Alonso, R Baeza-Yates, R. 2000 No

Software Visualization in the
Context of Service-Oriented
Architectures

S Eicker, T Spies, C Kahl 2007 No

Extreme Scaling of Production
Visualization Software on
Diverse Architectures

H Childs, D Pugmire, S Ahern,
B Whitlock, M Howison, M
Prabhat, G Weber, W Bethel

2011 No

Towards pie tree visualization
of graphs and large software
architectures

M Samia, M Leuschel 2009 Yes

81

Title Authors Year Relevance
Architecture of a software
system for scientific data
visualisation

M Kolodnytsky, A Kovalchuk 2001 No

EvoSpaces Visualization Tool:
Exploring Software
Architecture in 3D

S Alam, P Dugerdil 2007 Duplicate

An Architecture to Support
Model Driven Software
Visualization

RI Bull, MA Storey, JM Favre,
M Litoiu

2006 No

Extreme Scaling of Production
Visualization Software on
Diverse Architectures

H Childs, D Pugmire, S Ahern,
B Whitlock, M Howison,
Prabhat, GH Weber, EW
Bethel

2010 No

The SAVE Tool and Process
Applied to Ground Software
Development at JHU/APL: An
Experience Report on
Technology Infusion

WC Stratton, DE Sibol, M
Lindvall, P Costa

2007 No

Browsing and searching
software architectures

S Elliott Sim, CLA Clarke, RC
Holt, AM Cox

1999 No

Technology Infusion of SAVE
into the Ground Software
Development Process for
NASA Missions at JHU/APL

WC Stratton, DE Sibol, M
Lindvall, P Costa

2007 No

Tool support for reverse
engineering multi-lingual
software

TD Hendrix, JH Cross, LA
Barowski, KSMathias

1997 No

Navigating software
architectures with constant
visual complexity

W Li, P Eades, SH Hong 2005 Yes

Developing an approach for
analyzing and verifying system
communication

WC Stratton, DE Sibol, M
Lindvall, C Ackermann, S
Godfrey

2009 No

An architectural connectivity
metric and its support for
incremental re-architecting of
large legacy systems

RJ Bril, A Postma 2001 No

Visualizing metrics on areas of
interest in software
architecture diagrams

H Byelas, A Telea 2009 No

82

Title Authors Year Relevance
Visualization as an aid for
assessing the mission impact of
information security breaches’

A D’Amico, S Salas 2003 No

A Study on the Application of
the PREViA Approach in
Modeling Education

M Schots, CSC Rodrigues, C
Werner, L Murta

2010 No

Model-Based Validation &
Verification Integrated with
SW Architecture Analysis: A
Feasibility Study

I Morschhauser, M Lindvall 2007 No

A two-phase process for
software architecture
improvement

R Krikhaar, A Postma, A
Sellink, M Stroucken, Cverhoef

1999 No

Software evolution based on
software architecture

H Hua 2004 No

Software impact analysis in a
virtual environment

SA Bohner, D Gracanin 2003 No

OSIRIX: An Open Source
Platform for Advanced
Multimodality Medical
Imaging

OR Faha 2006 No

83

B Documentation of the prototype

This appendix is an addition to chapter 4 and provides more in-depth information about
the implementation of the prototype. The target audience of this information are those
who want to further develop the prototype or who are interested in the details of the
implementation. It is recommended to first read the general descriptions in chapter 4
before consulting this appendix.

In the first sections, an overview of the most important interaction patterns in the pro-
totype will be given. After that, some important classes will be described in more detail.
For an in-depth description of all classes, including their fields and methods, the API
documentation (Javadoc) should be consulted. At the end of this appendix, an overview
of the external libraries used in the prototype, is given.

B.1 Interaction sequences

B.1.1 Starting of the application

When the application is started, the first class in action is MainController. It coordinates
the whole startup phase of the application as can be seen in the sequence diagram shown
in figure B.1. It creates a ProcessArchitecture object, i.e. the object that holds the
central model for the whole application. Subsequently, it creates an ImportController
object whose responsibility it is to fill the model from an external source.

The ImportController uses an SAPImporter object to load an EPML-export of the SAP
reference model. For reading the EPML data, an EPC implementation by Remco Dijk-
man is used. As the export of the reference model does not contain explicit dependencies
between processes, they need to be detected which is done by an instance of Dependen-
cyAnalysis. This step completes the import of the model and control is passed back to
the MainController. The internal workings of SAPImporter and DependencyAnalysis are
not shown in the sequence diagram. They are discussed in sections B.2.5 and B.2.4.

Subsequently, the application form, an instance of MainForm is created. Control over
the form is taken by a newly created ExplorationController, i.e. a controller that allows
navigating the process architecture using different visualizations. The MainController
finishes its work by making the form visible and adding a listener that will do some final-
izing work when the window is closed in order to ensure a clean exit of the application.

84

:MainController

model
:ProcessArchitecture

new()

run

:ImportControllernew(model)

doImport()

:SAPImporternew(model)

:DependencyAnalysisnew(model)

doAnalysis

doImport

form
:MainForm

new(model)

interactionController
:ExplorationController

new(model, form)

setVisible(true)

addWindowListener(...)

Figure B.1: Interaction sequence during startup of the application

85

User :AbstractVisualization
form

:MainForm
controller

:ExplorationController

input

notification
:InteractionNotification

new

sendNotification(notification)

actionPerformed(notification)

typical sequence

[depends on type of notification
and on thecontroller]

update
:DisplayUpdate

new

updateDisplay(update)

visual change

Figure B.2: Interaction sequence upon user input

B.1.2 Handling of user interactions

While the application is running, the user has the possibility to interact with several
user interface components. All of them, except a separate search window, are arranged
on the MainForm. All user interface components interact with the controller via the
MainForm. An interaction sequence is shown in the sequence diagram in figure B.2. The
interface component that the user interacts with, may be an instance of a subclass of
AbstractVisualization. When it receives user input, it may do some internal processing,
but it should not directly change its state upon user input. This would undermine the
principle that the state of the application is changed only by the controller. Violation
of that principle may lead to unexpected behavior and inconsistencies between different
user interface components.

The user interface component creates a notification, i.e. an instance of a subclass of
InteractionNotification. This object will be sent to the form which sends it on to the
controller. This indirection decreases the number of connections between user interface
and controller.

The actions of the controller upon receiving the notification depend on the type of the
notification, on the data it carries and on the state of the controller. The controller may
initiate changes in the model, change its state, exchange UI components, run an analysis,
etc. Typically, the last action is sending an update to the user interface to display any
changes to the user. The diagram shows the interaction sequence for sending such an

86

update. The controller creates an instance of a subclass of DisplayUpdate. That is an
object that indicates the sort of update through its type and typically holds a small
amount of data related to the update. The controller sends the update to the form. The
form sends it to all visualization components that are currently active.

Each visualization component decides on its own what to do upon receiving an update.
The actions typically depend on the type of update and the data it holds. Some visu-
alization components will ignore certain types of updates because they are not relevant
for the specific visualization technique. For example, an EdgeThresholdUpdate will be
ignored by the TreeVisualization: the EdgeThresholdUpdatesets a minimum strength for
edges to be displayed, but the TreeVisualization does not display edges at all, hence the
update is irrelevant. When a visualization component handles an update, it may cause
an InteractionNotification to be sent because some change is done that may also have
been done by a user. Such notifications might cause infinite loops of notifications and
updates if not taken care of. Therefore, the ExplorationController does not handle two
notifications at the same time, i.e. as soon as it receives an InteractionNotification, it
sets an indicator that will prevent it from processing another one. The indicator is only
removed once the actionPerformed method has been completed.

B.2 Class structure

Figure B.3 which has already been shown in section 4.2, displays the top level package
structure of the prototype. In the following sections, the most important classes from
these packages are explained.

B.2.1 The controller package

As described before, the controllers are objects that coordinate all actions in the applica-
tion and control the status of the program. At the moment, there are three controllers,
as can be seen in figure B.4: the MainController, the ImportController, and the Explo-
rationController. Apart from those three classes, there is an interface InteractionCon-
troller and there are two enumeration classes for specifying visualization techniques and
comparison techniques. The events package contains the notifications and updates sent
between controllers and the user interface.

The functionality of the MainController has been comprehensively covered in section
B.1.1: it controls the start of the application. The functionality of ImportController has
been covered in that same section: it coordinates SAPImporter and DependencyAnalysis
to load the model. ExplorationController and the events package will be covered in the
following two paragraphs.

87

controls

uses

creates

modifies

reads

notifies visualization
events

Figure B.3: Top-level package structure

The events package

As explained before, there are two different types of events: notifications and updates.
Notifications are classes of objects that can be sent from user interface components to
the controller in order to inform it about user input. Updates go the other way around,
i.e. they can be sent from the controller to the user interface in order to trigger display
changes. All notifications are subclasses of the abstract InteractionNotification class. All
updates are subclasses of DisplayUpdate. Table B.1 lists all notifications with a short
summary of their meanings. Table B.2 lists all updates with short summaries of their
meanings. Some updates have a meaning that is very similar to a certain notification, e.g.
EdgeThresholdUpdate is very similar to EdgeThresholdChangeNotification. Nevertheless,
they are different classes. The controller autonomously decides whether it will directly
translate such a notification into its corresponding update or do other processing steps.

The ExplorationController class

ExplorationController allows the user to navigate through a process architecture using
multiple visualization techniques. It does so by processing notifications sent from the
user interface components and sending updates to the visualization components.

88

MainController

_main(String[] args): void

ImportController

+doImport():void

ExplorationController

<<Interface>>

InteractionController

+actionPerformed(InteractionNotification):void+run():void

-interactionController

1

instantiates,uses
instantiates

events

uses

<<Enumeration>>

ComparisonTechnique

<<Enumeration>>

VisualizationTechnique

1

-currentComparisonTechnique

1

-currentVisualizationTechnique

Figure B.4: Class diagram of the controller package

89

Class name Explanation
ComparisonTechniqueChangeNotificiation A new technique for comparing two

models (currently table or two
graphics) has been selected.

CouplingThresholdNotification The minimum coupling for automatic
grouping has been set or automatic
grouping has been switched off.

EdgeThresholdChangeNotification The minimum strength for an edge to
be displayed has been changed.

ModelSelectionNotification The model to be displayed (currently
original model, automatically clustered
model, or a comparison of both) has
been selected.

NodeSelectionNotification A node has been selected.
SearchResultSelectionNotification A search result has been selected.
VisualizationTechniqueSelectionNotification The main visualization technique

(currently connectogram or
block-based visualization) to be used
has been selected.

ZoomNotification The zoom level has been changed.

Table B.1: List of all notifications

Class name Explanation
DisplayNodeUpdate The current root node has changed. The content of that

node should be shown.
EPCModelUpdate The EPC model contained in this update should be

displayed.
EdgeThresholdUpdate Change of the minimum strength for an edge to be displayed
HighlightUpdate Contains a set of nodes that should be highlighted and

indicates whether any previous highlighting should be
cleared.

ModelChangeUpdate Indicates that the ProcessArchitecture has changed and
transports the new model.

ZoomUpdate The zoom level should be changed to the level stated in the
update. Note that currently no visualization component
supports zooming.

Table B.2: List of all updates

90

Notification class Action
ComparisonTechniqueChangeNotificiation Sets the current comparison technique

and adds the appropriate component
to the MainForm. If not done before,
runs automatic clustering.

CouplingThresholdNotification Activates automatic grouping with the
set minimum coupling inside groups or
deactivates automatic grouping,
depending on the notification data.

EdgeThresholdChangeNotification An EdgeThresholdUpdate is sent.
ModelSelectionNotification Changes the currently used

visualization technique or switches to
comparison mode. Replaces the
appropriate UI components in the
MainForm. If the new selection is
comparison, then it runs the automatic
clustering if not done before.

NodeSelectionNotification If the selected node is a leaf node with
an associated EPC: shows that EPC.
Otherwise, sends a DisplayNodeUpdate
with the selected node. If the selected
node is null, the node in the
DisplayNodeUpdate will be the parent
of the current root node or the root of
the model if the current root has no
parent.

SearchResultSelectionNotification If the selection is empty, sends an
empty HighlightUpdate (clear
highlighting). Otherwise sends a
DisplayNodeUpdate with the parent of
the selected result (if the result has a
parent) and a HighlightUpdate with
the selected result node.

VisualizationTechniqueSelectionNotification Changes the current visualization
technique. Replaces the appropriate
components in the MainForm.

ZoomNotification Sends a ZoomUpdate with the desired
zoom level.

Table B.3: Actions of the ExplorationController by notification type

91

ProcessArchitecture

ArchitectureNodeNameComparator

GeneralizedEdge

RelationWeight

Group

Process

ArchitectureNode HorizontalRelation

0..*
-nodes

0..*

-relations

1

-topLevel

compares

uses

uses

uses
uses

1
source

uses

target
1

-parent
0..1

0..*
-children

Figure B.5: Class diagram of the model package

B.2.2 The model package

The model package contains classes for representing a business process architecture. Its
classes are shown in figure B.5.

ProcessArchitecture represents a business process architecture and contains Architec-
tureNodes and HorizontalRelations, i.e. architecture elements (processes and groups)
and dependencies. The name HorizontalRelation emphasizes that hierarchical relations
are not represented as relations here, but as a tree structure: Every ArchitectureNode
can have children, i.e. other ArchitectureNodes that are below it in the hierarchy.

Except for these classes that directly represent the BPA and its elements, the model pack-
age contains three more classes. ArchitectureNodeNameComparator is used for sorting
ArchitectureNode objects in alphabetical order.

GeneralizedEdge is an abstract representation of a relation. It represents an edge as

92

visible in a visualization that only shows one hierarchical level at a time. Each relation
belongs to exactly one GeneralizedEdge: If the relation’s source and target are the same,
then that node is also source and target of the GeneralizedEdge. Otherwise, source and
target are two different nodes that have the same parent node. The source node of the
GeneralizedEdge is an ancestor of the source node of the relation and the target node of
the GeneralizedEdge is an ancestor of the target node of the relation.

RelationWeight is used for assigning a weight from 0 to 1 to a GeneralizedEdge. The
weight depends on the number of relations that the GeneralizedEdge represents and is
calculated using a polynomial function. The parameters of the function are chosen such
that the strongest edge in the model gets weight 1 and 70% of the edges get weights
between 0 and 0.95. This system avoids giving very low weights to most edges because
of a few outliers. The exact values have been chosen empirically and are not necessarily
optimal.

B.2.3 The ui package

The ui package contains all graphical components. Its classes are shown in figure B.6.
MainForm is the main window of the application. It holds most of the graphical com-
ponents. It holds one or two visualization components at a time and also contains the
ConfigurationPanel. The SearchForm is a separate window that shows search results.

The subpackage visualization contains all visualization components. All of them are
subclasses of AbstractVisualization which itself is a subclass of JPanel. JGraphXVisual-
ization is an abstract class for visualization classes that use the library JGraphX[17].

B.2.4 The analysis package

The analysis package contains classes that analyze and/or change the model. Its classes
can be seen in figure B.7. The classes ProcessGroup, a group of processes, and Weighte-
dUndirectedEdge are helpers used by GreedyGrouping.

The Clusterer class

Clusterer is used to restructure the process architecture. To achieve this, it uses the
library Weka[12]. It uses a KMeans clusterer to divide the processes into groups based
on the labels in their EPC models.

93

MainForm

ConfigurationPanel

mainForm1

configurationPanel1

SearchForm

1 mainForm

AbstractVisualization

JGraphXVisualization

BlockVisualization

EPCVisualization

ConnectogramVisualization

TreeVisualization

TabularVisualization

1

rightVisualizationPanel

0..1

leftVisualizationPanel

1 -mainForm

Figure B.6: Class diagram of the ui package

94

Clusterer

DependencyAnalysis

GreedyGrouping

ProcessGroup

WeightedUndirectedEdge

uses

uses

Figure B.7: Class diagram of the analysis package

The DependencyAnalysis class

DependencyAnalysis detects relations between processes. To do so, it compares labels of
all final events in the EPC models (i.e. events without outgoing edges) to labels of initial
events (i.e. events without incoming edges) in other EPC models. If two labels have a
string edit distance of less than 5, then they are considered to constitute a relation.

The GreedyGrouping class

GreedyGrouping is used to restructure a limited number of elements. The class tries to
form groups of elements based on a greedy algorithm. The groups have to have at least
a certain inner coupling which can be specified as a parameter.

B.2.5 The imports package

The imports package contains classes related to loading a business process architecture
from an external source. As the only external source that can currently be used, is
an EPML export of the SAP reference model, there are only two classes in the package.
They can be seen in figure B.8. The class SAPImporter reads a separate file that contains
information about the hierarchical structure of the reference model and subsequently
loads all EPC models for the processes in the reference model. For loading all models from
an EPML file, the class EPMLBulkImporter is used. It utilizes an EPC implementation
that only imports one model per time from a file. By using the EPMLBulkImporter the
program avoids reading the EPML file multiple times.

95

SAPImporter

EPMLBulkImporter

uses

Figure B.8: Class diagram of the imports package

B.3 Libraries

Multiple libraries are used at several points in the software. The list below lists all the
libraries used and their purpose. The Java standard library is not included in the list.
Other versions of the libraries than the ones stated here have not been tested.

Apache Commons IO 2.4[9]: Used for copying a file to a temporary location in class
ConnectogramVisualization

Apache OpenNLP 1.5.3[8]: Used for tokenization for the search function in class Pro-
cessArchitecture

DJ Native Swing[5]: Used for embedding a flash component in ConnectogramVisual-
ization

EPC implementation by Remco Dijkman (unpublished): Used for importing
and storing EPC models in multiple packages.

JGraphX 2.0.0.1[17]: Used for drawing graphs in JGraphXVisualization and its sub-
classes.

JSON-Java[2]: Used in the model package for creating a JSON representation of the
model to transfer it to the flash component in ConnectogramVisualization.

SWT 4.3[10]: Required in combination with DJ Native Swing for embedding a native
component in ConnectogramVisualization.

Weka 3.6.9[12]: Used for clustering in class Clusterer

96

C User test

C.1 Steps of the tool introduction

The introduction to the prototype consists of the following steps:

1. Show the top-level structure of the process architecture with the block-based visu-
alization like it is shown when the tool has just started.

2. Change the value for minimum connection strength to show the effect of this setting

3. Double-click an element to show its content. Click on the root node of the tree
view to show the top level again.

4. Enable the automatic grouping and point out a group. Disable the automatic
grouping again.

5. Select the connectogram and wait until it is shown. Point at an element to see how
its connections are highlighted.

6. Select As-is architecture instead of Designed architecture and let the users see the
resulting connectogram.

7. Select Compare both and then Table and show the resulting table to the users.

The person presenting the tool should comment everything that he or she does, especially
say which element is being clicked. This presentation shows every functionality that is to
be evaluated and therefore allows the user to see the basic interaction mechanisms that
they need during the test.

The number of relevant functionalities in ARIS is smaller. They are introduced as fol-
lows:

1. After ARIS is started, go to the Explorer and navigate to the Main group of the
database containing the SAP reference model.

2. Open up an element within the Main group in the navigation tree. Double-click on
a model within that element to show its EPC model in the Designer.

3. Open another model using the Explorer tree within the Designer.

4. Click on Explorer to return to the Explorer.

97

C.2 Questions for the introduction of the use cases

C.2.1 Use case 1 – Understanding the structure of the architecture

The goal of this use case is understanding the overall structure of the process architecture.
This involves understanding the elements and relations on the top level of the process
architecture as well as on lower levels. It also involves understanding the hierarchical
structure itself. Hence, there are two questions that focus on the top level structure
of the process architecture, two questions that focus on relations at a lower level and
two questions that focus only on the hierarchical structure. The concrete architecture
elements have been chosen to yield question of medium complexity whose answer is not
immediately obvious. The following questions are suggested for this use case:

• Does Customer Service depend on Asset accounting?

• Does Compensation Management depend on Benefits Administration or the other
way around?

• Does Call Center Processing depend on Long-Term Service Agreements?

• Does Currency translation depend on Consolidation of Investments or the other
way around?

• Is Employee transfer a process within Personnel Administration?

• Does Master Data Processing Product safety contain the group Protocol?

C.2.2 Use case 2 – Restructuring a process architecture

This use case aims at supporting the user in creating a new structure for the process
architecture. This involves finding problems in the current process collection and design-
ing a new one. The questions and tasks are intended to steer the user towards using
the capabilities of the tool to fulfill such tasks. Redesigning a whole process architecture
cannot be done within the limited time of a user test. Therefore, more indirect questions
are asked:

• Which groups in the process architecture have little coherence?

• Should the groups Customer service and Sales and distribution be merged into a
single group? Consider comparing the modeled structure with the automatically
mined as-is structure to answer this question.

• Should Production Planning and Procurement Planning be split into multiple
groups? Consider comparing the modeled structure with the automatically mined
as-is structure to answer this question.

98

Bibliography

[1] S. Alam and P. Dugerdil. Evospaces visualization tool: Exploring software architec-
ture in 3d. In Reverse Engineering, 2007. WCRE 2007. 14th Working Conference
on, pages 269 –270, oct. 2007.

[2] Douglas Crockford. Json-java: A reference implementation of a json package in java.
https://github.com/douglascrockford/JSON-java, June 2013.

[3] Thomas A. Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 Business
Blueprint: Understanding the Business Process Reference Model. Enterprise Re-
source Planning Series. Prentice Hall, 1998.

[4] Fred D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13(3):pp. 319–340, 1989.

[5] Christopher Deckers. The dj project native swing.
http://djproject.sourceforge.net/ns/index.html, June 2013.

[6] Rami-Habib Eid-Sabbagh, Remco Dijkman, and Mathias Weske. Business process
architecture: Use and correctness. In Alistair Barros, Avigdor Gal, and Ekkart
Kindler, editors, Business Process Management, volume 7481 of Lecture Notes in
Computer Science, pages 65–81. Springer Berlin / Heidelberg, 2012.

[7] Loe Feijs and Roel De Jong. 3d visualization of software architectures. Commun.
ACM, 41(12):73–78, December 1998.

[8] The Apache Software Foundation. Apache opennlp. http://opennlp.apache.org/,
August 2013.

[9] The Apache Software Foundation. Commons io.
http://commons.apache.org/proper/commons-io/, June 2013.

[10] The Eclipse Foundation. Swt: The standard widget toolkit.
http://www.eclipse.org/swt/, June 2013.

[11] K. Gallagher, A. Hatch, and M. Munro. Software architecture visualization: An
evaluation framework and its application. Software Engineering, IEEE Transactions
on, 34(2):260 –270, march-april 2008.

[12] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD

99

Explorations Newsletter, 11(1):10–18, 2009.

[13] Andrei Irimia, Micah C. Chambers, Carinna M. Torgerson, and John D. Van Horn.
Circular representation of human cortical networks for subject and population-level
connectomic visualization. NeuroImage, 60(2):1340 – 1351, 2012.

[14] Jens Knodel, Dirk Muthig, Matthias Naab, and Dirk Zeckzer. Towards empirically
validated software architecture visualization. In Proceedings of the 2006 ACM sym-
posium on Software visualization, SoftVis ’06, pages 187–188, New York, NY, USA,
2006. ACM.

[15] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. Visualization-based analy-
sis of quality for large-scale software systems. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, ASE ’05, pages 214–
223, New York, NY, USA, 2005. ACM.

[16] Wanchun Li, P. Eades, and Seok-Hee Hong. Navigating software architectures with
constant visual complexity. In Visual Languages and Human-Centric Computing,
2005 IEEE Symposium on, pages 225 – 232, sept. 2005.

[17] JGraph Ltd. Jgraph. http://jgraph.com/jgraph.html, May 2013.

[18] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc. Communicating
software architecture using a unified single-view visualization. In Engineering Com-
plex Computer Systems, 2007. 12th IEEE International Conference on, pages 217
–228, july 2007.

[19] M. Samia and M. Leuschel. Towards pie tree visualization of graphs and large
software architectures. In Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, pages 301 –302, may 2009.

[20] B. Shneiderman. The eyes have it: a task by data type taxonomy for information
visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages
336–343, 1996.

[21] M.-A. Storey, C. Best, and J. Michand. Shrimp views: an interactive environment
for exploring java programs. In Program Comprehension, 2001. IWPC 2001. Pro-
ceedings. 9th International Workshop on, pages 111 –112, 2001.

[22] Viswanath Venkatesh and Fred D. Davis. A theoretical extension of the technology
acceptance model: Four longitudinal field studies. Management Science, 46(2):186–
204, 2000.

[23] Viswanath Venkatesh, Michael G. Morris, Gordon B. Davis, and Fred D. Davis.
User acceptance of information technology: Toward a unified view. MIS Quarterly,
27(3):pp. 425–478, 2003.

100

	Introduction
	Business process architectures
	Motivation for the visualization of business process architectures
	Goals
	Research approach
	Thesis structure

	Visualization techniques for software architectures
	Software architecture visualization
	Methodology
	Framework for visualization techniques
	Results
	Conclusions about software architecture visualization

	Specification
	Use cases
	Visualization and abstraction techniques
	Summary

	Architecture and Implementation of the prototype
	Functionality of the prototype
	Architecture of the implementation
	Summary

	Validation
	Framework for the test
	Setup of the test
	Limitations
	Current status of the evaluation
	Summary

	Conclusions
	Results
	Limitations
	Future work
	Summary

	Literature study protocol
	Search strategy
	Results of the literature search

	Documentation of the prototype
	Interaction sequences
	Class structure
	Libraries

	User test
	Steps of the tool introduction
	Questions for the introduction of the use cases

	Bibliography

