
 Eindhoven University of Technology

MASTER

Secure service discovery in building automation and control systems

Ünlü, M.

Award date:
2012

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b149ebed-98b8-4c3b-bff5-6d6ae5fb6ebf


Secure Service Discovery in Building Automation

and Control Systems

MASTER’S THESIS

Mehmet Ünlü
Department of Mathematics and Computer Science

Supervisors:
Prof. Dr. Milan Petković (TU/e)

Dr. Sandeep S. Kumar (Philips Research)

October 16, 2012



Abstract

Building Automation and Control Systems (BACS) are intelligent net-
works of distributed sensors and actuators, which enable monitoring and
control of heating, ventilation, and air conditioning (HVAC), lighting, and
safety systems deployed in commercial buildings. These sensors and actu-
ators can be seen as resources of the corresponding nodes interacting with
each other, and with users providing various device services. For easy com-
missioning and cost-effective operation of BACS, service discovery opera-
tions are essential.

BACS is very critical part of a building infrastructure requiring that
device and services are accessed and controlled in a secure way. Conse-
quently, security and access control must be incorporated as integral part
of the methods for service discovery in BACS. Furthermore, any security
solution needs to take into account the domain specific requirements such
as constraints on computation power, limited memory of nodes, and com-
munication bandwidth, among others.

The objective of this thesis is to identify design requirements of a secure
service discovery protocol in BACS. Further based on these requirements,
a design solution is presented and analyzed based on the constraints of the
system. Functionality of the proposed design is implemented as a proof-of-
concept and the system is evaluated.

Keywords. building automation, security, service discovery, sensor net-
works, constrained devices



Acknowledgements

This thesis report has been written as a part of my Master’s study at the
Department of Mathematics and Computer Science at Eindhoven University
of Technology, in cooperation with Philips Research, Eindhoven.

Firstly, I would like to thank Sandeep Kumar, Sye Loong Keoh, and Os-
car Garcia Morchon from Philips Research for providing me the opportunity
to work on this project and for providing constant feedback on my work.
I heartily express my thanks and gratitude to Sandeep for his supervision,
and for providing great advice and support at every step during this project.
I sincerely thank my supervisor Milan Petković from Eindhoven University
of Technology for his valuable guidance and constructive comments.

I would also thank the members of my assessment committee, Milan
Petković, Sandeep Kumar and Tanır Özçelebi, for the time they invested in
evaluating my thesis.

Besides other invaluable friends in Eindhoven, I also thank all my col-
leagues at Philips Research for the pleasant working environment and for
the nice moments together. A special thanks goes to my office mate Roge for
the nice discussions, the exchange of ideas, and for daily help and support.

Last but absolutely not least, I wish to extend my deepest and most
sincere thanks and gratitude to my family for their love, pray and support
throughout my study years, and to mein Schatz, Nur, for being and bearing
with me through all difficult moments that existed while working on this
project.

Eindhoven, October 2012
Mehmet Ünlü



Contents

1 Introduction 7
1.1 Problem domain and context . . . . . . . . . . . . . . . . . . 8
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Intended audience . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and related work 10
2.1 Building automation and control systems . . . . . . . . . . . 10

2.1.1 Architecture of BACS . . . . . . . . . . . . . . . . . . 10
2.1.2 IP-based networking in BACS . . . . . . . . . . . . . . 11
2.1.3 Installation, commissioning and operational phases . . 13

2.2 Service discovery . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Service Location Protocol (SLP) . . . . . . . . . . . . 14
2.2.2 Universal Plug and Play (UPnP) . . . . . . . . . . . . 16
2.2.3 Devices Profile for Web Services (DPWS) . . . . . . . 17
2.2.4 CoRE Resource Directory . . . . . . . . . . . . . . . . 21
2.2.5 DNS-Based Service Discovery (DNS-SD) . . . . . . . . 22

3 Use cases and requirements 25
3.1 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Device installation . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Pre-commissioning . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Commissioning . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4 Operational . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Security threat analysis . . . . . . . . . . . . . . . . . . . . . 27
3.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Functional requirements . . . . . . . . . . . . . . . . . 29
3.3.2 Technical requirements . . . . . . . . . . . . . . . . . . 30
3.3.3 Security and privacy requirements . . . . . . . . . . . 31

4 Design 33
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 DNS-based service discovery for BACS . . . . . . . . . 33

1



4.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 DNS-SD security layer . . . . . . . . . . . . . . . . . . 37

4.3 Protocol specifications . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Pre-commissioning . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Commissioning . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Operational . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Other considerations and open challenges . . . . . . . . . . . 58

5 Design validation and evaluation 61
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Reference implementation environment . . . . . . . . . 61
5.1.2 Implementation details . . . . . . . . . . . . . . . . . . 62

5.2 Discovery validation . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Message size . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Memory footprint . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Response time . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusion and final remarks 73

2



List of Figures

2.1 Typical architecture of BACS . . . . . . . . . . . . . . . . . . 11
2.2 SLP agents and transactions . . . . . . . . . . . . . . . . . . . 14
2.3 SLP service discovery without DA . . . . . . . . . . . . . . . 15
2.4 Basic building blocks of a UPnP network . . . . . . . . . . . 16
2.5 DPWS clients (controllers) and devices [7] . . . . . . . . . . . 18
2.6 DPWS protocol stack . . . . . . . . . . . . . . . . . . . . . . 19
2.7 DPWS discovery messages [24] . . . . . . . . . . . . . . . . . 19
2.8 Client operation modes . . . . . . . . . . . . . . . . . . . . . 20
2.9 Device with endpoints, function sets and resources . . . . . . 21
2.10 The resource directory architecture . . . . . . . . . . . . . . . 22
2.11 DNS-SD architecture . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Use case scenarios in different phases . . . . . . . . . . . . . . 26

4.1 Overview of the system components and interactions . . . . . 35
4.2 Network topology of the system . . . . . . . . . . . . . . . . . 37
4.3 DNS-SD Server components . . . . . . . . . . . . . . . . . . . 37
4.4 Steps completed in pre-commissioning phase . . . . . . . . . . 40
4.5 Discovery of the server by devices (active discovery) . . . . . 40
4.6 Server address advertising (passive discovery) . . . . . . . . . 41
4.7 Service preregistration . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Service preregistration in security level 1 . . . . . . . . . . . . 44
4.9 Service preregistration in security level 2 . . . . . . . . . . . . 45
4.10 Steps completed in the commissioning phase . . . . . . . . . . 46
4.11 Querying all services preregistered by a device . . . . . . . . . 47
4.12 Service verification and enabling by CT . . . . . . . . . . . . 48
4.13 Getting and enabling device IP address . . . . . . . . . . . . 49
4.14 Service verification and enabling in security level 1 . . . . . . 50
4.15 Operational key generation by CT . . . . . . . . . . . . . . . 51
4.16 Service verification and enabling in security level 2 . . . . . . 52
4.17 Sending operational configuration to device . . . . . . . . . . 52
4.18 Creating filters with PTR records . . . . . . . . . . . . . . . . 53
4.19 Creating a multicast group . . . . . . . . . . . . . . . . . . . 54
4.20 Actions performed in the operational phase . . . . . . . . . . 55

3



4.21 Service discovery and request . . . . . . . . . . . . . . . . . . 56
4.22 Service discovery and request with transaction signatures . . 57
4.23 Service discovery and request over DTLS . . . . . . . . . . . 58

5.1 Econotag hardware . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Implementation of service registration and discovery . . . . . 63

4



List of Tables

3.1 Security requirements and the threats they are related . . . . 32

5.1 Size of DNS messages for registration . . . . . . . . . . . . . . 67
5.2 Size of DNS messages for discovery . . . . . . . . . . . . . . . 68
5.3 Memory requirements of the implementation and example ap-

plications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Security mechanisms and requirements met . . . . . . . . . . 71

5



Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks . . . . . 12

ACE Access Control Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

BACS Building Automation and Control Systems . . . . . . . . . . . . . . . . . . . . . . . 7

CoAP Constrained Application Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CoRE Constrained RESTful Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

CT Commissioning Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

DHCP Dynamic Host Configuration Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 15

DNS Domain Name System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

DNS-SD DNS-Based Service Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

DPWS Devices Profile for Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

DTLS Datagram Transport Layer Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

IETF Internet Engineering Task Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

MAC Message Authentication Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

mDNS Multicast DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

RD Resource Directory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

RR Resource Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

RRset Resource Record Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

SLP Service Location Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

SSDP Simple Service Discovery Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

TSIG Transaction Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

UPnP Universal Plug and Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

WSA Web Services Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6



Chapter 1

Introduction

Building Automation and Control Systems (BACS) are an important part
of modern commercial buildings. They provide automated control of indoor
conditions by improving interaction with and between devices in a build-
ing environment. The driving factor of building automation and control
is to provide more comfortable environments for inhabitants, while reduc-
ing building energy and maintenance costs. Although traditionally only the
core domains which are lighting and heating, ventilation, and air condition-
ing (HVAC) were targeted, today other typical building services, such as
safety, security, and lifting systems, are also considered for an integration.
Diversity of devices which are integrated into BACS are increasing due to
relatively decreasing costs of processing and storage capabilities of embed-
ded systems. Moreover, the trend towards the IP-based communication
and recent advances in wireless communication network technologies, such
as ZigBee and 6LoWPAN, lead to a tighter integration of building subsys-
tems. New functionalities, heating or cooling adapting to window blinds,
for instance, become possible with this integration.

With growing number of devices interacting and operating together in
buildings, additional requirements have emerged for a more efficient inter-
operation. BACS are mainly networks of distributed sensors and actuators.
These sensors and actuators can be seen as resources of the corresponding
nodes interacting with each other, and with users providing various device
services. For easy commissioning and cost-effective operation of BACS, ser-
vice discovery operations are essential. The ability to locate other devices
and their services within the building and being able to communicate with
them without the need for reconfiguration each time, is fundamental to ca-
pabilities of devices in BACS. Service discovery is the technology that has
been developed using a number of approaches to achieve this.

Since BACS also constitute a critical infrastructure of building, it is
required that device services are accessed and controlled in a secure way.
This requires secure and access controlled methods for service discovery and

7



control in the BACS. Furthermore, any security solution needs to take into
account the domain specific requirements such as constraints on computation
power, limited memory of nodes, and communication bandwidth, among
others.

1.1 Problem domain and context

This study concerns itself with the device and service discovery problem in
the domain of BACS. Although there have been various service discovery
mechanisms and protocols proposed in the IT world so far, applicability of
those in a BACS environment still remains as an issue to be studied.

Any device and service discovery solution for BACS should first identify
the functional, technical, and security requirements of the domain. It should
consider the trending technologies in device communication, while keeping
an eye on the propriety nature of the legacy systems. In addition, a possible
design should target seamless integration with less overhead and minimal
human intervention.

The design solution proposed in this study is supported with a functional
prototype since the work is based on the real world problems. With the anal-
ysis and further validation of the design, some of the remaining challenges
will be identified, as this is an initial attempt to solve the problem.

1.2 Objective

The objective of this thesis is to identify design requirements of a secure ser-
vice discovery protocol in BACS. Based on these requirements and existing
service discovery approaches, a design solution is presented and analysed
while keeping the constraints of the system in mind. Finally, a prototype of
the proposed service discovery solution is implemented on a wireless sensor
network and the system is evaluated.

1.3 Intended audience

The intended audience of this document includes graduate students, pro-
fessionals, and researchers in the field of security for building automation
and service discovery. The reader is assumed to be familiar with the basics
of data and communication security. A basic knowledge of wireless sensor
networks and Domain Name System (DNS) is also useful.

1.4 Structure of the thesis

The thesis is organized as follows:

8



• Chapter 2 covers the relevant background information related to the
problem domain. We first give an overview of building automation
and control systems. We describe architectural details and different
phases of BACS lifecycle. Next, we discuss various service discovery
solutions with their capabilities and security features.

• In Chapter 3, we present a use case scenario for service discovery in
BACS. After discussing possible threats and misuses, we enumerate
functional, technical, and security requirements for the service discov-
ery system in the last section of this chapter.

• In Chapter 4, we propose a design solution satisfying the system re-
quirements while keeping the BACS lifecycle in mind.

• Chapter 5 contains the details of the prototype implementation and
evaluates the proposed solution based on message sizes, memory re-
quirements and time based efficiency. Furthermore, a validation of the
proposed design is given in terms of functional and security perspec-
tives.

• The achievements of the thesis are summarized in Chapter 6. The the-
sis is concluded with final remarks and potential directions for future
work.

9



Chapter 2

Background and related work

This chapter provides the relevant background information related to the
problem domain. The first section gives an overview of building automa-
tion and control systems while describing architectural details and different
phases of BACS lifecycle. Various service discovery solutions with their
capabilities and security features are discussed in the remaining parts.

2.1 Building automation and control systems

Core functionality of Building Automation and Control Systems (BACS)
is to maintain comfortable indoor conditions via the integration of various
systems, such as heating, ventilation, and air conditioning (HVAC), light-
ing, and safety systems, while minimizing the energy used. The field of
BACS has been continuously evolving for the last years, resulting in in-
creased complexity as new services and requirements are added. With more
powerful embedded systems, building automation devices are more capable
of processing data and communicating with other information systems.

Before designing any solution for BACS, it is necessary to have a closer
look at the architectural details, enabling technologies, and main processes
in BACS lifecycle.

2.1.1 Architecture of BACS

A typical architecture of BACS is presented in Figure 2.1. The classical
model is basically a three-layer hierarchical structure, in which each layer
has a particular set of functions [20].

The functional level (or field level) mainly consists of sensors and actua-
tors, which provide collection of real-time status data and real-time control.
Occupancy sensors, temperature and flow meters, light switches and dim-
ming controllers, and valves in a heating circuit are examples of sensors and
actuators in the field level. The control in BACS is realized using various

10



Figure 2.1: Typical architecture of BACS

controllers connected to the network of these sensors and actuators. It is
also likely to have different subsystems with their own communication ar-
chitectures and protocols in the functional level. Users can read the status
from displays and change the settings according to their preferences using
switches. A supervisor unit attached to the building network configures and
manages the BACS, providing precise definitions of the behaviour of the
system under various circumstances. Additionally, the overall management
of the system can be done from a back-end management server or through
remote interfaces like a web browser.

2.1.2 IP-based networking in BACS

In traditional BACS deployments, different subsystems in the functional
level are loosely coupled within a building, and maintained by different per-
sonnel. However, with the advent of wireless mesh open standards (like
ZigBee on top of IEEE 802.15.4), the physical silos between the various
systems are largely removed creating a more closely integrated system. An-
other pushing factor of this integration is the technologies shared from IT
world, such as standardization efforts of Constrained RESTful Environ-
ments (CoRE) working group at the IETF, appearing in building control
networks.

Although IP was originally designed to be used for the communication
between personal computers through the Internet, today a variety of devices
are shifting to IP-based communication in the general Internet-of-Things
trend, including those used in building automation and control.

Using IP networks as a backbone for BACS is not a new concept [12].
Possibility of using already available LAN cabling and easier integration with
the rest of the IT world have been major benefits of this approach. The trend

11



resulted in new high level protocols for system integration, including those
that employ well established Web technologies, such as XML, SOAP and
RESTful Web Services. For example, BACnet, one of the most commonly
used communications protocol for BACS, has been extended to support
generic Web services interface recently [1].

With an IP-based backbone, several subsystems of the BACS are con-
nected by gateways to that common backbone network. Different field level
protocols might be used for communication between devices inside each sub-
system. For example, lighting system of the building may employ DALI
protocol, while another subsystem of wireless temperature sensors commu-
nicate over ZigBee. In addition to using IP networks as a backbone, current
direction is to use it to communicate directly with the end devices. Al-
though it was previously too expensive to implement the whole IP stack
for resource constrained devices, increasingly many devices are able to con-
nect to the Internet as microcontrollers become more powerful and cheaper.
With the advent of the IPv6 over Low-Power Wireless Personal Area Net-
works (6LoWPAN) standard, even battery-powered wireless sensor nodes
can use an IP interface for communication [18].

Integration in the functional level and accessibility of data from all sub-
systems lead to new functionalities, such as heating or cooling adapting to
window blinds. It also makes it possible to have end-to-end security between
devices, ease of configuration without middle boxes like gateways, and in-
teroperability between devices from different manufacturers. Moreover, it
becomes much easier to adapt standards-based technologies such as existing
device and service discovery protocols. Utilizing these technologies in BACS
can improve the functionality of integrated subsystems to provide more com-
fortable environments for occupants, and to support and ease the work of
system operators. A common communication platform could enable build-
ing systems to operate together rather than in separate modes. In addition,
such an intelligent integrated system is able to perform more efficiently.

While understanding that IP-centric communication is the direction of
BACS for the future, it is important to note that there are new security
challenges that result from this convergence. The tighter integration of
formerly dedicated stand-alone systems together with remote management
facilities requires the underlying control system to be reliable and robust
against malicious attempts. Easier and remote access to subsystems and to
even field level devices gives rise to new threats in the BACS domain. Misuse
of compromised management devices to gain access to sensors, actuators,
and controllers, or directly accessing to field level devices to manipulate
the behaviour of the hosted control applications are only some examples.
This is especially true for the integration of more sensitive systems like
access control and security alarm systems. Nevertheless, protection is also
desirable for other service types as well, considering undesirable economic
impact of a company-wide attack on the lighting system, for example.

12



2.1.3 Installation, commissioning and operational phases

There are three main phases after the design stage of BACS. These are
namely installation, commissioning, and operational phases. Different per-
sonnel with different expertise perform these roles typically.

Installation process covers setting up endpoint devices in pre-determined
places in the building. Sensors, actuators, displays and controllers are in-
stalled according to a floor plan which shows physical locations of devices to
be installed. After providing power connections, installation is completed by
running a verification procedure that shows proper connectivity and proper
local operation of the devices.

Commissioning is the process of ensuring that all building systems per-
form interactively according to the design intent and operational needs. It
covers operations such as distributing network and security parameters and
operational configuration to the devices, establishing relationships between
them, enabling them to communicate over an application level protocol, and
similar bootstrapping. This process integrates and enhances the previously
separate system functions by high level configuration and verification. Com-
missioning is largely done after the installation of devices, controllers and
communication network, and it can be applied throughout the life of the
building.

After installation and initial commissioning, all systems in the building
are configured and calibrated to operate optimally. Status of the building
environment gets collected by sensors continuously during operation, and the
systems adjust their behaviour accordingly in order to provide satisfactory
indoor environmental conditions.

2.2 Service discovery

With the number and diversity of networked devices increasing, automatic
discovery of those devices and their services is getting more important in
many network scenarios, including home and building automation systems.
With service discovery, devices may automatically be aware of the services
of other devices that they can interact with, and advertise their own services
together with their properties.

In BACS, service discovery process begins after the installation of field
level devices and network infrastructure. With the necessary configuration
being done in the commissioning phase, devices can advertise their services
and search for other required services on the network using the underlying
discovery protocol.

As a considerable amount of work has been done in this field, there
are various mechanisms and protocols which have been proposed and/or
implemented already. Some of those protocols are designed for particular
sets of objectives, while more general purpose approaches also exist.

13



This section overviews some well-known service discovery protocols, namely
Service Location Protocol (SLP), Universal Plug and Play (UPnP), Devices
Profile for Web Services (DPWS), DNS-Based Service Discovery (DNS-SD),
and a more recent protocol, CoRE Resource Directory, with the focus on
their suitability for BACS.

2.2.1 Service Location Protocol (SLP)

The SLP [16] is an Internet Engineering Task Force (IETF) standard for
service discovery that enables the discovery of services by computers and
other devices in a network without prior configuration. SLP is designed
for TCP/IP networks, and it is scalable up to large enterprise networks,
as it combines several techniques useful in such networks, such as optional
directory services and fine-grained search.

The SLP architecture consists of three main components:

• User Agents (UA) are devices that perform service discovery, on behalf
of the client.

• Service Agents (SA) are devices that advertise services, with their
location and characteristics.

• Directory Agents (DA) are devices that collect service information
received from SAs in their cache and respond to queries from UAs.

Figure 2.2: SLP agents and transactions

Interactions between the SLP agents are shown in Figure 2.2. When a
new device providing a service joins a network, it registers its service to DA.
Later on, a user can query this service from the DA. The user can finally
access the service using the address and attributes fetched from the DA.

14



Before using the DA, clients (UA or SA) must first discover the existence
of the DA. This can be done in three ways: static, active, and passive. In
static method, Dynamic Host Configuration Protocol (DHCP) is used to
distribute the addresses of DAs to SLP agents that request them, using the
DHCP options defined in [27]. With active discovery, agents send multicast
queries to SLP multicast group address for DA discovery. A DA responds
directly to the requesting agent via unicast eventually. As the third method,
DAs multicast periodically for their services in case of passive discovery.

Figure 2.3: SLP service discovery without DA

It should be noticed that the existence of DAs in a network is not manda-
tory. They are used especially in large networks with many services in order
to reduce the amount of traffic, categorize services into different groups,
and allow SLP to scale. Therefore, SLP supports two operational modes
for different administration requirements and network scales, depending on
whether a DA is present or not. For smaller networks such as home net-
works, it is more effective to deploy SLP without a DA. If there is no DA,
UAs send their service requests to the SLP multicast address (see Figure
2.3). SAs listening for these multicast requests will send unicast responses
to the UA if they have the requested service. However, if a DA exists on
the network, UAs and SAs are required to use it instead of communicating
directly.

A service is defined with a URL and additional unlimited number of at-
tributes. The URL contains the host address, the port number, and the path
of the service. Service attributes are the name/value pairs that characterize
the service. Service URL and service attributes with their default values are
specified by service templates, which are defined in [15].

Most packets in SLP are transmitted using UDP, while it is also possible
to use TCP to transmit longer packets. Since UDP is not reliable, SLP
agents repeats multicast transmissions several times until they receive an
answer.

A public-key cryptography based security mechanism is defined for SLP

15



in order to provide the authenticity and integrity of service announcements
by signing them. However, the deployment of SLP with this mechanism
may be inconvenient, because public keys of every SA must be installed on
every UA, defeating the original purpose of locating services without prior
configuration.

SLP is a vendor-independent, open-source protocol, and has been adopted
widely. It has been implemented for many devices already [2], especially for
LAN-enabled printers that are discoverable out of the box.

2.2.2 Universal Plug and Play (UPnP)

UPnP [28] is a combination of network protocols defined by a consortium of
vendors from the industry, including Microsoft, Intel, Sony, and Samsung. It
is designed to provide simple peer-to-peer connectivity between devices and
PCs in a rather small network without enterprise class devices. Main concept
of UPnP is to extend the idea of Plug and Play (PnP), which allows adding
new peripherals to a PC easily, throughout the network. Seamless discovery
and control for the devices of different vendors with zero configuration is
targeted. UPnP aims that compatible devices can join a network, obtain
IP addresses, announce themselves, query other devices and services, and
disconnect dynamically.

UPnP utilizes many existing standard protocols including IP, TCP, UDP,
HTTP, XML, and SOAP. It is designed to be independent of operating
systems, programming languages, or physical media.

Figure 2.4: Basic building blocks of a UPnP network

There are three basic components of a UPnP network, namely devices,
services, and control points as shown in Figure 2.4. A device can contain
services and other nested devices. An XML-based document is hosted by
each UPnP device, which describes the set of services and properties of the

16



device. Services are the smallest units of control in UPnP. They are defined
in the device description document, together with a pointer to the service
description. A service consists of a state table, a control server, and an
event server. The state table represents the current service state through
state variables. The control server updates the state table as new action
requests received, and those changes are sent to interested subscribers by the
event server. A control point is a controller which is capable of discovering
and controlling other devices. After discovery, it can retrieve device and
service descriptions, invoke actions to control the service, and subscribe to
services’ events. For a full peer-to-peer networking, devices are expected to
implement control point functionality.

Device addressing, discovery, description, control, event notification, and
HTML-based presentation of device services are included in the complete
UPnP protocol. Simple Service Discovery Protocol (SSDP) is the protocol
that enables advertisement and discovery of services in a UPnP network.
It was described as an IETF Internet draft [13] in 1999. Although this
proposal has since expired, SSDP stayed as a part of the UPnP protocol
stack. It is a text-based protocol based on HTTPU, an extension of HTTP
using UDP as the data transport protocol. A control point sends multicast
search requests to discover devices and services. On the other hand, devices
listening on this multicast port send unicast replies if the search criteria
match. Similarly, SSDP allows devices to advertise their services to control
points on the network.

UPnP does not provide any authentication and authorization for devices
and applications by default. Device implementations therefore must have
their own mechanisms, or implement Device Security Service [10] which
is specified by UPnP Security Group. UPnP Security concerns with the
control protocol, SOAP, between devices and control points. It provides
control message security for authentication, authorization, integrity, and
confidentiality. It also specifies a security procedure to discover and take
ownership of secure devices on a network [37]. Every secure component
must have a public and private key pair according to this specification.

UPnP-UP (UPnP - User Profile) [30] is a non-standard extension pro-
posed to allow authentication and authorization mechanisms for UPnP de-
vices and applications. It employs a new network entity, UPnP User Profile
Server, which is responsible for storing user profile information such as full-
name, username, and password, and providing authentication and access
control methods based on these credentials.

2.2.3 Devices Profile for Web Services (DPWS)

Web Services provide standard solutions for interoperability between dif-
ferent software components which are running on various platforms and/or
frameworks [4]. W3C Web Service Standards (WS-*), which are based on

17



the SOAP protocol, are widely used for this purpose. DPWS [19] is an OA-
SIS standard [7] that defines a subset of WS-* specifications for secure mes-
saging, discovery, description, and event notification on resource-constrained
devices.

Although DPWS has similar objectives to those of UPnP, it is more
aligned with Web Services technology including many extension points that
allow the integration of device services in more general enterprise scenarios.
The specification was first published in 2004, and DPWS version 1.1 was
approved as OASIS standard together with WS-Discovery 1.1, and SOAP-
over-UDP 1.1 in 2009.

There are two types of services defined in the DPWS specification: host-
ing services and hosted services. Hosting services are special services at-
tached to a device, and has the main role in device discovery. Hosted ser-
vices are the services that define the device functionality. Discovery of hosted
services depends on their hosting device. DPWS devices and services are
depicted in Figure 2.5. Beside these hosted services, there are also built-in
services for service advertisement and discovery, service metadata exchange,
and publish/subscribe event notifications.

Figure 2.5: DPWS clients (controllers) and devices [7]

DPWS is based on core Web Services standards and uses further spec-
ifications as it is shown in Figure 2.6. Most of the specifications are part
of the Web Services Architecture (WSA) [4] and are not explained in this
chapter. SOAP and WS-Addressing are used for all messaging. WS-Policy
is used to express declarations about capabilities, requirements and charac-
teristics of service implementations. WS-Security provides optional mecha-
nisms for end-to-end message integrity, confidentiality, and authentication.
WS-MetadataExchange and WS-Transfer are used for retrieval of metadata
that describes what other endpoints need to know to interact with a specific
endpoint. WS-Eventing defines a protocol for managing the Web Services

18



based publish/subscribe mechanism.

Figure 2.6: DPWS protocol stack

WS-Discovery, a discovery protocol based on SOAP-over-UDP, is lever-
aged by DPWS for automatic service discovery. It defines three different
endpoint types: target service, client, and discovery proxy. Clients search
for target services that offer themselves to the network, and discover them
dynamically. The search starts with a Probe message; devices that match
the search send a unicast ProbeMatch response directly to the client. Then,
a client sends a Resolve message to locate a device by name, and the match-
ing device sends a ResolveMatch response to the client. Figure 2.7 shows an
overview of the messaging in discovery.

(a) In ad-hoc mode (b) In managed mode

Figure 2.7: DPWS discovery messages [24]

A discovery proxy is used in order to scale the discovery to enterprise-
wide scenarios, since multicast discovery is limited to local subnets. Another
function of a discovery proxy is to suppress multicast messages to reduce
network traffic. Therefore, a client may work in an ad-hoc or a managed
mode of operation depending on the existence of a discovery proxy on the
network (see Figure 2.8).

Although DPWS does not require that endpoints be secure, it defines a
recommended baseline for interoperable security between devices and clients.
In order to mitigate message alteration, denial of service, replay, and spoof-

19



Figure 2.8: Client operation modes

ing attacks regarding discovery process, compact signatures are used as an
evidence of authenticity and integrity of discovery messages. A sender cre-
ates the compact signature from a full XML Signature for optimized trans-
mission, and the receiver expands the compact signature to a full XML Sig-
nature for verification. Discovery messages are not considered as confiden-
tial. TLS/SSL is used to create an end-to-end secure channel for metadata
exchange and control traffic. It enables each participant to authenticate the
identity of the other, to verify the integrity of the received messages, whilst
also providing confidentiality for all messages between devices and clients.
X.509 certificates are used as credential by devices. Signing WS-Discovery
messages and establishing TLS/SSL connections are done by using those
certificates. X.509 certificates or username/password credentials through
HTTP Authentication can be used for client authentication.

As DPWS relies on Web Services, it is programming language indepen-
dent, and has generic mechanisms of abstraction. It provides a complete set
of functionalities for device integration, reducing interdependencies between
components. On the other hand, despite its limited constraint functionalities
targeting small devices, it still has limitations because of complex descrip-
tions and verbosity of XML Web Services. Embedded devices rarely have
enough memory and processing power to process complex XML messages.
Furthermore, acceptance from the home and building automation industry
and manufacturing partners is not very high yet.

Within the European R&D ITEA project SIRENA (Service Infrastruc-
ture for Real-time Embedded Networked Applications) [3], some of the first
DPWS implementations have been produced for embedded devices.

20



2.2.4 CoRE Resource Directory

Constrained RESTful Environments (CoRE) is an IETF working group
whose purpose is to overlay the REST architecture to resource constrained
devices and networks in a suitable form. Machine-to-machine (M2M) appli-
cations such as smart energy and building automation are mainly targeted
by CoRE. In such environments, where no humans are included in the pro-
cess and statically created interfaces result in fragility, discovery of resources
offered by devices has a big importance. CoRE Resource Directory [32] is a
specification proposed by this group that describes how to discover resources
from constrained servers that host them.

Figure 2.9: Device with endpoints, function sets and resources

Direct discovery of resources using multicast is not very practical in
many M2M settings because of large and dispersed networks or sleeping
nodes. CoRE Resource Directory specification aims to solve this problem
by utilizing a Resource Directory (RD), which allows other servers to register
their resources and query them later on. It defines the interfaces which are
required to discover a resource directory, and to register, maintain, lookup
and remove resource descriptions.

Figure 2.10 depicts the resource directory architecture. An endpoint
(EP) is a web server that registers its resources to the RD. It is defined as a
web server with an associated port number, thus a physical node may have
more than one endpoints (see Figure 2.9). The RD provides a set of REST
interfaces to be used by other endpoints to register and maintain resource
directory entries. Those entries are expressed in CoRE Link Format [31].
Furthermore, the RD implements other interfaces to validate entries, and

21



for clients to lookup resources from the RD.
Resource directory entries on the RD are soft state and should be peri-

odically updated by the endpoints. Also, an RD can proactively discover the
resources from endpoints, or validate existing entries in the same manner.

REST interfaces between an RD and endpoints are called Resource Di-
rectory Function Set. Notice that all those interfaces can be realized using
Constrained Application Protocol (CoAP), an HTTP-like application layer
RESTful protocol for constrained environments, or using HTTP. Discovery
of an RD can be done by sending multicast or unicast requests to a well-
known path. Some alternative methods are using a default location such as
edge router, assigning an anycast address to RD, or using DHCP.

Figure 2.10: The resource directory architecture

After discovering the directory, an endpoint may register its resources
by sending a POST request containing the list of resources to the registra-
tion interface. The update interface is used to update or refresh previously
registered entries. An RD can check the validity and freshness of an end-
point’s registered resources by using the validation interface. This is done
by sending a special GET request to the endpoint. All RD entries have a
timeout, and are removed after their lifetime, however they should be re-
moved by endpoints if they are no longer available. This is performed using
the removal interface of the RD.

The lookup interface allows lookups for registered resources. Filters can
be applied to return only entries with specified attribute values when query-
ing the RD. The result is a list of links corresponding to the lookup request.

Security for CoRE Resource Directory is provided by recommended se-
curity techniques for CoAP. CoAP may be used with Datagram Transport
Layer Security (DTLS), a protocol that provides communications security
for unreliable datagram traffic [29].

2.2.5 DNS-Based Service Discovery (DNS-SD)

DNS-Based Service Discovery is a method of using the existing DNS archi-
tecture and records to locate devices and their services [5]. Although DNS

22



is known exclusively as mapping host names to IP addresses, it is a more
general hierarchical database that can store almost any kind of data for
different purposes, as indicated in the specification [11]. DNS-SD was orig-
inally proposed by Apple, and was implemented under the name Bonjour
(previously Rendezvous) 1 with a combination of Multicast DNS (mDNS).
mDNS is another specification which enables devices to use DNS function-
ality without a conventional DNS server in a local network environment [6].
It is often implemented together with DNS-SD.

DNS Resource Records (RRs) are used in DNS-SD to provide informa-
tion about services. SRV RRs (RFC 2782) are used to describe a service
with a service name, port number, and the corresponding hostname. Map-
ping between hostnames and IP addresses are defined with A (RFC 1035) or
AAAA (RFC 3596) records, in case of IPv4 and IPv6 addresses respectively.
A TXT record (RFC 1035) additional to SRV record can hold user-defined
service attributes, for instance, queue names which are often used with LPR
printers. Finally, PTR records (RFC 1035) are useful for assigning ser-
vice instances to a service. For example, an SRV record with the name
_http._tcp.example.org lists all _http._tcp services (i.e. Web servers)
for the domain example.org. An example for PTR records can be a record
with the name MyPrinter._ipp._tcp.example.org. It defines a printer
instance, MyPrinter, with the Internet Printer Protocol (IPP) that is ac-
cessible via TCP on the domain example.org.

(a) Local LAN (b) Wide Area

Figure 2.11: DNS-SD architecture

Although major DNS-SD implementations make use of mDNS in order
to operate on the local link, it can also be deployed with a conventional
unicast DNS server. In this way, integration of resource constrained devices
into the Internet infrastructure would be more feasible, following the Internet
of Things vision. DNS-SD architectures for both cases are shown in Figure
2.11.

DNS-SD security

DNS-SD is only a specification for how to use the existing DNS for service
discovery purposes. It defines how to name and use records to utilize DNS

1Apple Inc. mDNSResponder [Online] http://www.opensource.apple.com/

tarballs/mDNSResponder/

23

http://www.opensource.apple.com/tarballs/mDNSResponder/
http://www.opensource.apple.com/tarballs/mDNSResponder/


as a service discovery solution. It does not specify any additional security
mechanisms to those that already exist for DNS security [5].

DNSSEC [21] is recommended to be used where the authenticity of the
information is important. Also, in order to control which clients have per-
mission to update DNS records, secure updates [36] is recommended.

DNS Security Extensions (DNSSEC) is an extension specification for
DNS that allows clients to validate the authenticity and the integrity of a
DNS response through the definition of additional RRs. The main purpose
of DNSSEC is to protect DNS clients from believing forged DNS data.

Public key cryptography is used by DNSSEC to meet its requirements.
A Resource Record Set (RRset) is a set of RR within a zone that share
the same name, class and type. Every RRset is digitally signed by the
authoritative owner, and published along with the corresponding public key
in the DNS itself. It does not make use of digital certificates or any other
form of external credentials. The DNS system itself is used for storage and
distribution of all the necessary security credentials.

In order to check a DNS response, a client retrieves the related digital
signature RRs, calculates the hash value of the RRset, and verifies the signa-
ture using the published originator public key. Then the client can validate
the originator public key using a hierarchical signature path that leads to
a point of trust. After all these checks are successfully done, the client has
some confidence that the DNS response was authentic and complete.

In secure DNS, Transaction Signature (TSIG) and SIG(0) mechanisms
are used to protect the exchange between two particular entities.

In TSIG, a Message Authentication Code (MAC) is calculated through
a shared secret between a pair of hosts. These hosts can exchange DNS
information together with a signature based on that secret. Since only these
two hosts hold the secret, no third party can create the signature. The
mechanism is lightweight and useful between paired hosts that have a long-
term relationship such as primary and secondary name servers for a domain.
It also has a key distribution scheme by means of the TKEY extension [9].

SIG(0) mechanism is based on public-key cryptography. The message is
signed by the host’s private key while the public key is stored in DNS. The
generated MAC/signature is included in the message as a SIG(0) RR. Au-
thentication using SIG(0) is more scalable while calculation and verification
of MAC in TSIG is computationally inexpensive.

DNS dynamic updates allow users to update (add or delete) their RRs
and RRsets. Dynamic updates should be authenticated in order to protect
DNS data from malicious parties. TSIG or SIG(0) can be used for those
authentications.

24



Chapter 3

Use cases and requirements

In this chapter, we contemplate over possible use cases for service discovery
in BACS. After discussing possible security threats, the last section enumer-
ates functional, technical, and security requirements for the service discovery
system.

3.1 Use cases

This section describes few of the service discovery related use cases in each
phase of the BACS. We use a lighting system scenario in the use cases.
The scenario includes a light sensor, lamps, and window blinds, which are
planned to operate in a specific room cooperatively. The light sensor controls
the lamps and window blinds according to the amount of light in the room
automatically. However, it is supposed to control only those lamps and
window blinds which are in the same room as the sensor. Following use cases
illustrate the scenario starting from the installation phase, and explains the
usage of discovery protocol during the whole life cycle.

3.1.1 Device installation

Device installation scenario covers setting up a device in a pre-determined
place in the building, providing necessary connections, and verifying the
local functionality eventually. An installer, a low-voltage electrician usually,
arrives on-site during the construction of the building. He installs the sensor,
window blinds, and lamps according to a floor plan which shows physical
locations of devices to be installed. Notice that the installer does not have to
know operational details of the devices necessarily. After fixing the devices
and providing the power connection, he checks if the devices can be powered
on and off, using a central power switch for instance.

25



3.1.2 Pre-commissioning

After the devices have been installed and powered on, they become part of
a wireless network due to an easy network setup mechanism. This assumes
that an IP network has been installed and is operable already. Being part of
the network means having an IP address, and being able to send and receive
messages over IP. Getting an IP address can be done using DHCP or using
an address auto-configuration method, for instance. As soon as the devices
is able to communicate within the network, they start to announce/register
their functionalities, i.e. the services they provide. For example, a lamp can
have a lamp service that can be turned on, turned off, or dimmed. In order
that registration to be done, a device first needs to locate the registration
point on the network, if any exists. This can be achieved by sending multi-
cast queries (active discovery), or waiting for an advertisement message from
the registration point (passive discovery). Service registration/announce-
ment messages need to be authenticated and confidential if it is stated as a
requirement.

Figure 3.1: Use case scenarios in different phases

3.1.3 Commissioning

Commissioning of the installed devices is done by a commissioner using a
commissioning tool. Commissioning tool is a device such as a tablet com-
puter that can be trusted. This is typically achieved through a certificate
issued by a trusted authority. The commissioner goes to each device using a
floor plan. IP addresses of the devices are not known by the commissioning
tool at that stage.

Every device has a unique identifier (UID) that can be read by the com-
missioner, e.g. using a barcode reader. After reading the UID of a specific
device, the commissioner queries for the device and service information that
has been registered/advertised by the device itself. He verifies that the reg-
istration data matches with intended type of the device, and that data is
authentic. The assumption here is that the commissioning tool is able to

26



authenticate the source of this information (the device itself), for example
by holding a factory default pre-shared key associated with the UID read.
After the verification, the commissioner authorizes the device to be part of
the system, so that the device can query other devices and their services via
the discovery protocol. Finally, further configuration of the device is per-
formed by adding the operational instructions to the device and/or to the
controller, e.g. which devices and services will be queried by a commissioned
device during operation. In addition, if there is an access control mechanism
for the devices and services, necessary access control policies consistent with
the operational instructions are set by the commissioner.

3.1.4 Operational

The light sensor is programmed to control only the lamps and window blinds
in the same room according to the current amount of light. After the initial
commissioning of the devices has been performed, the sensor first needs to
find the lamps and window blinds in the room. It uses the discovery protocol
to get a list of required devices and their services. Then it gets the infor-
mation that describes how to access those services again using the discovery
protocol. It should be possible to authenticate the sender of these discovery
query and response messages. Furthermore, those messages are considered
confidential, and should be encrypted appropriately against eavesdropping.
Preferably, the sensor caches the discovery results for future use for a defined
lifetime. After discovering the lamps and window blinds, the light sensor
sends service requests to those devices in order to control their current state
according to the light intensity measured. Target devices process the re-
quests and adjust their state accordingly, after applying the relevant access
control policies eventually.

The complete process divided into different phases is summarized in
Figure 3.1.

3.2 Security threat analysis

We need to consider the main assets, potential attackers, and security threats
in the system before determining the requirements. It is important to note
that the analysis in this section is done from the service discovery point of
view.

Assets in the system which should be protected from illegitimate ac-
cess or modification are device and service information transmitted with the
discovery protocol, and commissioning material including configuration set-
tings, keys and security parameters which enables secure service discovery.

Some potential attackers by whom the mentioned assets could be threat-
ened:

27



• Hackers may be with mischievous or malicious intention. They may
be college kids playing with building systems (e.g., turning lights off)
or criminals who try denial-of-service (DoS) attacks, theft, destruction
of property, etc.

• Employees who are disgruntled may use their knowledge of networks,
computers, and protocols, or using physical access to those to perform
unauthorized actions.

• Criminals may be thieves, terrorists, competitors, employees, etc.
Typical scenarios include simply gathering information about the build-
ing to break in, and DoS attacks with a variety of purposes such as
making a political statement, interfering with business, etc.

• Competitors monitoring the network to gather information about re-
source usage patterns, for example, can use this information for cor-
porate research.

• Human errors which can affect system implementation, network ad-
ministration, flaws in software, etc. Those are the main reasons for
commissioning.

The following is a list of threats that could be directed at the components
of the discovery system during different phases [14,17]:

1. Unauthorized registration point: An unauthorized registration point
may be installed on the network with the intention of collecting device
and service information, or sending incorrect information to devices.
Such a malicious agent could disrupt the operation of discovery proto-
col, by returning unauthorized information, or by simply not returning
any results at all.

2. Unauthorized device: An unauthorized device may be introduced into
the system with the intention of registering/announcing many bogus
services, or accessing and collecting information registered at a regis-
tration point.

3. Unauthorized commissioning tool: An attacker could access and mod-
ify device and service information on the registration point using an
illegitimate commissioning tool. Moreover, configuration settings and
security parameters of devices may also be compromised by such an
attack.

4. Eavesdropping attack: An adversary may intercept the transmitted
data during the commissioning and operational phases. This is even
easier in case of a wireless medium. Device and service information,
security parameters, or configuration settings may be susceptible to

28



eavesdropping. Obtained data then might be used to compromise the
authenticity and confidentiality of the communication channel.

5. Man-in-the-middle attack: Commissioning and operational phases may
be vulnerable to man-in-the-middle attacks. Data transmitted be-
tween two system components over the IP backbone may be controlled
by an adversary sitting in between the entities, and the data can be
collected, modified, or simply dropped thereafter.

6. Packet insertion: Bogus packets may be sent to devices or other en-
tities in the system by inserting fabricated messages into the network
or replaying previously recorded messages.

7. Privacy threat: Privacy of the occupants who are using a device might
be compromised by tracking the device’s location and usage. Gathered
information may allow an attacker to deduce behavioral patterns of
users without their consent. Such information can then be sold to
interested parties for marketing purposes, for example.

8. Denial-of-service attack: Since devices have scarce memory and com-
putation resources, they can be easily affected from resource exhaus-
tion attacks. A single aggregation point of service information could
also be target of a DoS attack to make it unresponsive or unreachable.
Furthermore, network availability can be compromised by jamming
the communication channel, or by flooding the network with a large
number of packets.

3.3 Requirements

Use cases discussed above, features of the existing service discovery solutions,
and related studies in [23,25,35] guide us to categorize the requirements for
our service discovery architecture in following types:

3.3.1 Functional requirements

1. Discovery of the registration point: If there exists a central regis-
tration unit on the network, devices should be able to locate it before
discovering other devices and services because they first need to reg-
ister their services to the registration point in this case.

2. Service registration/announcement: A device should be able to
register or advertise the information describing the device and the
services it hosts in order other devices to be able to discover it.

29



3. Activation by the commissioner: A device becomes part of the
system only after the cross-check and confirmation by the commis-
sioner. This assures that the device is functioning as it is intended
and interacting with other components of the system properly.

4. Finding service instance: Service instances should be returned to a
device after the discovery request. The response will be processed by
the device to get further descriptions of services and to invoke them
eventually.

5. Resolving service instance: Instance names can be resolved to
service invocation information (e.g. IP address, port and path) which
makes it possible to prepare and send service requests.

6. Device/service grouping: It should be possible to create virtual
groups of devices and services, including groups by physical location,
in order to answer queries like “all luminaries within the second floor”.

7. Filtered device/service discovery: Searches can be performed us-
ing criteria such as group and service type so as to filter out required
services.

3.3.2 Technical requirements

1. Operational efficiency: Due to the limited resources on the devices
and the real-time nature of the BACS, service discovery process should
be efficient in terms of operational time, memory footprint, and net-
work overhead.

2. Suitability with the BACS architecture: Service discovery sys-
tem should be such that it is easy to apply it to the underlying oper-
ational architecture of BACS.

3. Scalability: Since BACS usually consist of thousands of manifold
devices in different subsystems, the solution should be extendable to
a large network of devices.

4. Minimal configuration and maintenance: The system should be
able to set up and operate with minimal human intervention for the
sake of efficiency of the overall BACS lifecycle.

5. Support for legacy systems: The discovery system should be op-
erable with legacy systems in order to make the discovery of legacy
devices possible.

30



6. Interoperability with different vendors/systems: Devices from
various vendors might be operating together in the system. The dis-
covery system thus should be designed such a way that it assures
interoperability between those devices.

3.3.3 Security and privacy requirements

Following security and privacy requirements are defined in order to eliminate
the identified threats or reduce them to an acceptable level:

1. Authentication and authorization: System components must be
identifiable and authorized during the interactions they are part of:

• Registration point: A registration point must be authenticated
during service registration, commissioning, and discovery pro-
cesses in order to prevent collecting services, and returning il-
legitimate information by an unauthorized registration point.

• Devices: Only authorized devices must be able to register and
query device and service information.

• Commissioning tool: Commissioning device must be authenti-
cated while performing verification and configuration of devices
and the registration point.

2. Message integrity: Messages containing device and service informa-
tion, configuration settings, and security parameters must be protected
against malicious modifications while in transit. Such unauthorized
changes must be at least detectable to prevent using illegitimate data.

3. Message confidentiality: Configuration settings and security pa-
rameters should not be sent in plain text. In certain installations,
messages containing device and service information must be kept se-
cret against eavesdropping so that an attacker cannot perform an in-
ventory of available devices and services.

4. Inference reduction: An adversary should not be able to infer about
users and the building by collecting service information communicated.

5. DoS protection: Service discovery system should help protect sys-
tem components from the denial-of-service attacks.

31



Table 3.1 shows which security threats can be prevented or mitigated
by implementing those security requirements. ST1 to ST8 stand for the
security threats explained in Section 3.2, while SR1 to SR5 are the security
requirements.

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8

SR1 × × ×
SR2 × ×
SR3 × × ×
SR4 ×
SR5 ×

Table 3.1: Security requirements and the threats they are related

32



Chapter 4

Design

In this chapter, we propose a design solution satisfying the system require-
ments while keeping the BACS lifecycle in mind. It starts with an overview
and motivation for the proposed design. Section 4.2 presents architecture
and basic components of the system. Details of the protocol specifications
are provided in Section 4.3. Finally, some of the remaining considerations
and challenges are identified in the last section.

4.1 Overview

With the further integration of subsystems in BACS and higher interoper-
ability through more standard communication protocols, discovery require-
ments of building automation and control applications are demanding. All
previously discussed service discovery solutions have their own design goals,
specific features, and scopes. In addition to taking those solutions into con-
sideration, our approach should be to find a discovery solution that estab-
lishes a good balance between functional, technical and security related re-
quirements. Furthermore, the solution must consider the technology trends
and specific constraints in the BACS domain.

Our proposed design is a solution based on DNS-Based Service Discovery
(DNS-SD) in the broadest sense. Here, the aim is to design a DNS-SD based
solution with minimal modifications and additions to meet the requirements
of our system. Our method is following the installation, commissioning, and
operational phases of the BACS lifecycle throughout the design.

4.1.1 DNS-based service discovery for BACS

Although many protocols, including those mentioned in Section 2.2, have
been proposed to do network service discovery with IP, none of them has
succeeded to achieve ubiquity in the marketplace yet. At least, none has
achieved anything close to the popularity of the deployment of DNS tech-

33



nology and infrastructure today. Making use of those existing protocols,
implementations, infrastructure, and expertise is the major advantage of
using DNS as the basis for service discovery.

As it is stated previously (see Section 2.2.5), DNS-SD running over
mDNS is a generally used solution that provides zero-configuration and ad
hoc service discovery for small networks, e.g., home networks. However, in
larger networks like a commercial building network, a high volume of IP
multicast traffic may not be desirable. Moreover, reachability of a multi-
cast discovery in such a large network is also problematic. Thus, a credible
service discovery protocol intended for a BACS network has to provide a
registration and lookup mechanism using a central server (or servers) in-
stead of exclusively using multicast. Given that most of the companies with
an IP network already operates and maintains a DNS server, it makes sense
to make use of this expertise instead of having to introduce, operate and
maintain a complete different system and server. In addition, DNS already
has a dynamic registration protocol [34,36].

In the BACS architecture discussed in Section 2.1, we have different types
of devices and one or more services hosted by them in the functional level. A
service has properties such as type, port, and path. As it is described in the
specification [5], DNS-SD uses A or AAAA, SRV, TXT, AND PTR Resource
Records (RR) for discovery purposes. An SRV RR specifies an endpoint,
i.e. a hostname and port number. An associated (identically named) TXT
RR can contain a URI path of the service on that host. Therefore, the
SRV/TXT pair can specify a service on a device. An A or AAAA RR binds
a device name to an IP address, while the PTR RR binds a service type to
an endpoint or directly to a service instance on a device.

DNS-SD specification does not introduce additional security mechanisms
apart from standard methods which have been developed for DNS. DNSSEC,
TSIG, and SIG(0) are those mechanisms that can be utilized to provide
authentication and integrity of DNS data (see Section 2.2.5). A standard
mechanism to ensure the confidentiality of DNS messages at application
level does not exist yet. As the discovery protocol in our system will be
working on a network that mostly consists of resource constrained devices,
it cannot rely on heavyweight public-key operations like in DNSSEC and
SIG(0). Thus, we need to combine symmetric key based standard DNS
security mechanisms and additional traffic protection techniques to meet
the security requirements of the system.

In the next section, we describe the overall architecture and main compo-
nents of the proposed design. Section 4.3 provides detailed protocol specifi-
cation step by step. Finally, this chapter concludes with other considerations
and open challenges regarding our design.

34



4.2 System architecture

Overall architecture of the design is presented in Figure 4.1. It depicts basic
components of the discovery system along with an optional access control
mechanism, which is assumed to already exist in the BACS architecture,
and interactions between different components.

Figure 4.1: Overview of the system components and interactions

DNS-SD Server is the central registration and lookup point for service
discovery. Devices and the Commissioning Tool (CT) interact with the
server to pre-register, verify, and query device and service information. Com-
missioning Tool is a resourceful mobile device in the form of a laptop or a
tablet PC, for example. One of the devices (e.g., a window blind) is used to
illustrate the service pre-registration and handling of service requests, whilst
the other device (e.g., a light sensor) does the discovery and invocation of
a service. Access Control Engine (ACE) is not part of the actual discovery
process, but it is presented on the architecture in order to show the possible
integration and interaction with such a system.

Interactions enumerated in the figure are defined as follows:

1. Pre-register services. Initial registration of device and service infor-
mation by a device itself. The preregistered data is not available to be
queried until it is verified by the CT. This step assures that a device
has started operating as expected and no illegitimate data exists on
the DNS-SD server during the operational phase.

2. Verify preregistered services. Verification of preregistered data by the
CT. This process includes cross-checking the device and service infor-
mation preregistered by a device, and enabling them to be discoverable

35



by other devices.

3. Define operational instructions. Setting the instructions that a device
executes during its operation, including which devices and services to
search for and to request. These instructions are provided by the CT
to devices, or to controllers that run automated processes. The format
of these instructions is out of the scope, and is not specified in this
work.

4. Define access control policies. Defining access control policies which
are applied by devices when they receive requests to access their ser-
vices. This step is performed if there is an access control mechanism
in the system and is out-of-scope of this thesis.

5. Search for services. Discovery of devices and services with specific
types and properties via the DNS-SD Server.

6. Request service. Sending a service request to a device.

7. Check authorization. Authorization check done by the device that has
received a service request.

8. Service grant/deny. Result of the service request.

We use a centralized approach in order to fulfill the performance and
scalability related technical requirements. Aggregation of device and service
information eliminates the usage of excessive multicasting on the network.
Moreover, using the DNS caching mechanism helps reducing the number of
redundant queries generated every time when searching for a service. Every
DNS record has a Time-to-Live (TTL) value, and devices can cache the
recently queried information until they reach their TTL values. Since DNS
has a hierarchical infrastructure by design, the same can be applied here.
Subdomains of the whole discovery domain can be delegated to different
servers running on different physical pieces of hardware.

The network topology considered while designing the system is shown in
Figure 4.2. A LAN infrastructure constitutes the backbone of the network.
Devices are wireless nodes communicating over 6LoWPAN. An edge router
is responsible for routing between 6LowPAN and LAN. It performs the IP
header compression, although this is transparent for the endpoints. A Com-
missioning Tool is a mobile device which uses Wi-Fi connection in order to
interact with other components on the network. All service discovery traffic
runs on IP. Although DNS also supports TCP, UDP is used in the transport
layer due to its lower overhead.

36



Figure 4.2: Network topology of the system

4.2.1 DNS-SD security layer

A DNS-SD Security Layer is introduced in our solution as a proxy between
the conventional DNS server and other parties in the system (see Figure 4.3).
It behaves like a firewall intercepting all DNS-SD traffic. It is responsible for
determining what domain a request is associated with, whether the client is
allowed access to that domain, and returning the appropriate information
back to the requestor. If it is allowed to access, the security layer forwards
the request to the DNS server, and returns the result to the requestor.

Figure 4.3: DNS-SD Server components

Most of the DNS server implementations also have simple access control
settings. The Berkeley Internet Name Daemon (BIND), the most widely
used DNS software on the Internet, for example, provides a mechanism
to specify access control lists based on network addresses and TSIG keys,

37



ensuring that updates of DNS zone data can only be performed by authorized
parties. However, the functionality is primitive, e.g., defining different TSIG
keys for different clients is not possible. Moreover, depending solely on the
access control mechanism of the DNS server implementation has a negative
effect on modularity of the system, since those mechanisms may not be
provided on every server implementation in the same way.

In our design, a pre-shared symmetric key is used between a device and
the server in order to create signatures or to encrypt the traffic. On the
other hand, the traffic between the server and the Commissioning Tool is
secured using public key cryptography. Both parties hold certificates signed
by a trusted party, and use those as their credentials. The security layer is
the point on the server side that implements these functionalities.

The DNS-SD Security Layer also improves the flexibility of the system
in terms of security. In case that resource constrained devices in the system
make use of some lightweight algorithms for encryption or hashing, which
are not specified in the DNS security standards, those algorithms can be
implemented as a part of the security layer.

CT and devices are not aware of the location of the DNS-SD Server at
first, and they need to discover it before using it. Since the security layer
represents the DNS-SD Server for the CT and devices, server advertising
is also one of the functionalities of the security layer. It is responsible for
sending unicast or multicast messages that specify its IP address. Adver-
tising messages are sent in the clear and do not have a particular security
protection.

The DNS Server can be deployed on the same physical server with the
security layer, on some other host on the network, or even somewhere else on
the Internet. If it does not reside on the same host, then the traffic must be
secured by some standard means, using an encrypted SSL/TLS connection,
for instance.

4.3 Protocol specifications

In this section, details of the discovery protocol are described step-by-step
using UML sequence diagrams. The interactions completed on the architec-
ture figure is also presented for each step.

The protocol is explained using two types of devices for illustration. The
first one is a window blind which provides a service to adjust the amount of
light coming through the window. The other device is a light sensor which
detects the current amount of light in the room it is placed in. The sensor
can dynamically discover the blind in the same room, and queries the service
provided by the blind in order to adjust the light in the room automatically.
In the sequence diagrams, the window blind registers its services, then the
sensor queries and requests the service that is provided by the window blind.

38



It is worth to be noted that only service discovery related interactions
are explained and shown in detail in the sequence diagrams. For example,
definition of the access control rules on the ACE is not detailed as it is not
part of the discovery protocol.

We use a three-level design for the security of the system. Different levels
of security can be achieved using this approach. Here, the security level is
a system-wide decision, and should be determined according to the actual
needs. Presenting the design with different security levels also allows better
understanding of the functionality in each step. The security levels are the
following:

• Security level 0: No security measures are employed for the protection
of the device and service information.

• Security level 1: Authentication and integrity of the device and ser-
vice information is achieved using message signatures generated using
symmetric keys.

• Security level 2: Confidentiality of the sensitive data is achieved by
encryption in addition to authentication and integrity.

Discovery process is explained in three parts: pre-commissioning, com-
missioning, and operational. Pre-commissioning is the phase after the instal-
lation of devices and before the commissioning is performed. Commissioning
and operational phases are part of the BACS lifecyle as they are described in
the corresponding background section. In each of these phases, the protocol
is explained for the three different security levels.

4.3.1 Pre-commissioning

Preregistration of the hosted services is performed in this phase (see Figure
4.4).

After all devices have been installed and the network setup is complete,
devices have their IPv6 addresses and they are part of a 6LoWPAN network.
A DNS-SD Server has been installed (e.g., at a controller) and functional,
but it has not been located by the devices yet. An ACE is also installed and
accessible by the devices for e.g. by querying the DNS-SD server during the
operational phase.

Server discovery

Finding location of the DNS-SD Server is the first step of the discovery
process. This can be done in two different ways: active or passive discovery.
In active discovery, a device sends a multicast query, and the server replies
with a unicast response which contains its IP address (see Figure 4.5). In

39



Figure 4.4: Steps completed in pre-commissioning phase

passive discovery, the server advertises its IP address periodically (see Figure
4.6). Both modes are supported by the designed protocol.

Figure 4.5: Discovery of the server by devices (active discovery)

In server discovery process, multicast DNS messages can be sent to
multicast IP addresses defined by Multicast DNS (mDNS) [6] or Extended
Multicast DNS (xmDNS) [22]. Those specifications define how to perform
DNS-like operations on the local link and on a multi-hop LAN without a
conventional unicast DNS server. It should be noted that both specifica-
tions have been published as Internet Drafts by IETF, and they have not
been standardized yet. However, since the Security Layer is performing this
functionality, we can use a standard DNS server.

An A or AAAA DNS RR is used in query and response messages in server
discovery. The name of the record is defined as server._dns-sd._udp.site.
Devices do not have the discovery domain information at the first place as
that configuration is done by the commissioner later. .site top-level do-
main name is borrowed from xmDNS specification to indicate that the query

40



Figure 4.6: Server address advertising (passive discovery)

or response is valid within the site local, i.e. building network. The first
part of _dns-sd._udp denotes the application protocol name, while _udp

stands for UDP as the transport protocol. Those naming conventions are
defined in the DNS-SD specification [5]. Finally, server part indicates that
the IP address queried or sent is of the DNS-SD Server.

DNS-SD Security Layer is responsible for handling server discovery mes-
sages or multicasting its location on the server side. DNS Server does not
take part in this process.

Security level 0: no security

After discovering the server, devices register the following information:

• Unique Identifier (UID) of the device, possibly based on the EUI-64
value of the network interface. UID of a device is also put on the
device in a visually readable form (e.g., via a barcode).

• IP address of the device.

• Service information, i.e. for each hosted service:

– Service type

– Port number

– URI path

This initial registration of device and service information is called prereg-
istration process, since the information registered by a device at that stage
is not yet activated for use. It has to be checked by the commissioner before
it becomes accessible for discovery. Preregistration process is depicted in
Figure 4.7 and is explained step-by-step below.

Basically, the device creates and sends Dynamic DNS Update messages
to the server in order to register the device and service information. It first
sends an update message with an A/AAAA record containing its IP address.
Then it registers its services one by one using SRV and TXT records. It
creates PTR records pointing to each registered service as the last step. It

41



Figure 4.7: Service preregistration

is also possible to send all those records using fewer DNS update messages
by putting more records in a single packet. Here, a separate packet per piece
of information to be registered is used for clarity.

The device address is registered with the name 0101.temp in the se-
quence diagram. 0101 denotes the UID of the device. Although here a
hexadecimal notation of two-byte identifier is used for the device UID, a
scheme should be defined for generating and denoting them in real-life sys-
tems. .temp top-level domain is used for all pre-registration requests. Notice
that neither the server is configured, nor the devices are aware of the ac-
tual discovery domain yet. The server is running out-of-box, and accepts
registration requests only for the .temp domain.

Each service instance is registered with an SRV/TXT record pair. Both
records share the same name, which is generated automatically by the de-
vice. Auto generation of the name 0101_blind is done by concatenating the
device UID with the service type, i.e. _blind. Service types are typically
defined by a Standards Development Organization (SDO), and is ultimately
registered with Internet Assigned Numbers Authority (IANA) [5]. If there
happens to exist more than one service instances with the same type on a
device, an additional sequence number can be appended to that name. Port
number (61616) and hostname (0101.temp) are set by the SRV record, while
the service path (/blind) is specified with the TXT record. In case of addi-
tional service properties, they are stored with the same TXT record. Data

42



syntax and general format rules for DNS-SD TXT records are laid out in the
DNS-SD specification [5]. Another SRV/TXT pair is used for each service
hosted by the device.

A PTR record with the same name (0101_all.temp) is created for each
registered service. These records is generated in order to allow the Com-
missioning Tool to get the list of all services that belong to a specific device
during the verification process. The name of the PTR record is generated
by appending the fixed _all suffix to the device UID.

DNS-SD Security Layer behaves transparently during the whole pre-
registration process. It just forwards the DNS update messages to the DNS
server, and returns the results to the requesting devices. As the underlying
transport protocol (UDP) is not reliable, devices may retry sending a DNS
update packet after a random delay period in case of no response from the
server within a pre-defined time.

It should be noticed that preregistration is done without any authen-
tication. For the authenticity, integrity, and privacy of the preregistered
data, countermeasures are defined in other security levels. However, neither
devices nor the server authenticates the other party during the process. As
there is no shared secret between devices and the server yet, there is no way
to prevent registering bogus information or introducing a fraudulent server
into the network at discovery protocol layer under the current assumptions.
Other measures should be taken to prevent denial-of-service attempts, e.g.,
by monitoring the network, or flood detection for the discovery server and
can be implemented in the security layer.

Security level 1: authentication and integrity

In this security level, origin authentication and integrity of the preregis-
tered information is achieved. Message Authentication Codes (MACs) of
the preregistration data are calculated by devices for this purpose. This cal-
culation is based on the assumption that all devices have initial factory keys
installed. In addition, those device factory keys are only available to the
Commissioning Tool in the system. Hence, generated MACs can be verified
by the Commissioning Tool in the commissioning phase. Figure 4.8 shows
how service pre-registration process is performed using MACs.

The generated MACs cover the following data:

• device UID and IP address;

• service type, port number, and path properties for each service;

• the list of service names

A separate MAC is calculated for A/AAAA record with device UID and IP
address, for each SRV/TXT record pair with service information, and for all

43



Figure 4.8: Service preregistration in security level 1

PTR records. Those MACs along with the corresponding security param-
eters which are used in calculation (e.g., algorithm used) are stored using
separate TXT records. Names of the TXT records with MACs consist of
the name of the corresponding record set plus _sig suffix, 0101_blind_sig
for the SRV/TXT record set with the name 0101_blind, for instance. This
information is registered with DNS-SD, and will be verified later during
commissioning.

Security level 2: confidentiality

In order to provide confidentiality of the device and service information,
symmetric encryption is utilized. Device and service information is en-
crypted using device’s factory key. Although we mention encryption, the
cryptographic algorithm used should be an authenticated encryption algo-
rithm that provides both authentication and confidentiality of the message.

44



A major difference from the other security levels is that only TXT records
are used in the preregistration process as it can be seen in Figure 4.9.

Figure 4.9: Service preregistration in security level 2

Data to be encrypted is constructed as name=value pairs with the same
format as in the data field of DNS-SD TXT records. Device UID and IP
address, each service information, and the list of services are encrypted
and stored separately. Security parameters are also stored along with the
encrypted data. Algorithm used, and initialization vector (IV) are some
examples that can be included in security parameters. Device UID is not
considered confidential, albeit it is included in the encrypted data to bind
the information to the device UID. It is a part of every TXT record name
that is to be registered as it is used by the commissioner to query those
data later on. TXT record name of each service instance is labeled with a
sequence number instead of service type, appended to the device UID. The
sequence number is used for creating names for different service instances in
an automatic way. Service type is a part of confidential data, and encrypted
together with service port, host UID, and service path. Notice that, DNS-
SD Security Layer is transparent during pre-registration as in the other

45



security levels since it does not possess the device factory keys perform any
verification.

4.3.2 Commissioning

In the commissioning phase, verification of preregistered services, and def-
inition of operational instructions and relevant access control policies are
performed by the Commissioning Tool (CT) (see Figure 4.10).

Figure 4.10: Steps completed in the commissioning phase

Commissioner uses a floorplan and goes to each device to perform the
specified tasks. CT can access the server, however it can not communicate
with the devices since it does not have their IP addresses yet.

Main assumption in this phase is that both CT and the security layer on
the server side have public and private key pairs, and certificates signed by a
common trusted party. The certificates can be signed with the private key of
the owner organisation or company, for instance. A secure channel is created
between the CT and the server using those certificates beforehand, and all
messages which are part of the discovery protocol are transmitted over this
channel. The traffic can be secured via DTLS as it consists of datagrams,
while SSL/TLS can also be used since DNS messages can be sent over a
TCP connection as well. Communication between CT and server is always
encrypted in all security levels. However, verification of preregistered device
and service information varies depending on the security level.

Security level 0: no security

Commissioning of a device begins with fetching the list of all preregistered
services of that device. Figure 4.11 presents the sequence diagram of this

46



process and explained in detail below.

Figure 4.11: Querying all services preregistered by a device

Before starting commissioning, another task of the commissioner is to
make necessary configurations on the DNS server. Creating the discovery
domain on the server is one of them. This domain name will be used in all
DNS-SD queries and responses during the operational phase. CT connects
to DNS server, e.g., via its configuration interface, and creates the discovery
domain (bldg.org in Figure 4.11) as the first task in this phase.

After the creation of a secure channel between CT and the server, and
configuration of the actual discovery domain, CT reads UID of the device
that is to be commissioned, for example, by scanning a barcode. Then it
queries the server for all services preregistered by that device. This is done
by creating and sending a standard DNS query with a specially named PTR
record (0101_all.temp). As the requested PTR records have been created
on the .temp domain by the device during pre-registration, server returns
all PTR records with that name, each with a service name as value.

CT then queries for the information for each of the received services in
order to verify. As it is shown in Figure 4.12, this is performed by querying
ANY records with the name of service (0101_blind). Corresponding SRV
and TXT records are returned as response. Returned service information
is checked by the commissioner to verify if it matches with intended type
of device. Service type, port number, service path, and hosting device are
checked if they are consistent. This verification ensures that the device has
discovered the DNS-SD server and pre-registered its services successfully.
After checking, CT prepares a DNS update message to register this verified

47



information to the actual discovery domain (bldg.org). This process is
called enabling a service as the information registered to this domain is now
available for discovery. If CT receives no pre-registered data for a device
UID, or the received data does not match with the intended type of device,
either there is a problem with the installation of device or pre-registered
data is corrupted.

Figure 4.12: Service verification and enabling by CT

Pre-registered device IP address is queried and registered at the discov-
ery domain in the same way. CT sends a query with UID of the device,
and with type A/AAAA, then it creates a record on the discovery domain
(bldg.org) with the returned data. Verification of the returned IP address
is not possible since CT does not have this information before. So, only
verification is that the device has been able to preregister its IP address
successfully. After this step, CT knows the IP address of the device and it
can communicate with it directly if required.

During the verification and enabling, the device and service information,
CT also sets Time-to-Live (TTL) values for each resource record it registers
at the discovery domain. Every DNS resource record has a TTL value
which specifies the maximum time period that the corresponding record can
be cached by the clients who use it. Therefore, this value is used by devices
to cache the queried device and service information.

48



Figure 4.13: Getting and enabling device IP address

Security level 1: authentication and integrity

Verification of preregistered device and service information is slightly differ-
ent in security level 1. Basically, CT also needs to get and verify the MACs
which have been computed by the devices. As an example, verification of a
service information is shown in Figure 4.14.

Only difference from service verification in security level 0 is that CT
queries for the TXT record that contains corresponding MAC (0101_blind_
sig.temp) along with the SRV/TXT records (0101_blind.temp). Upon
receiving the service information and the MAC value, it verifies the MAC
with the corresponding symmetric key, i.e. factory key of the device, in order
to ensure the authenticity and integrity of the received information. After
verifying the MAC and cross-checking the service information, CT enables
the service by registering it with the actual discovery domain.

It is to be noted that any shared keys between the server and the devices,
which can be used in the operational phase for authentication and encryption
purposes, do not exist yet. In order to address this issue, an operational key
has to be created for each device by CT. This key then has to be sent both
to the server and to the device. This step is performed if authentication
or confidentiality is aimed during operation, i.e. in security levels 1 and 2.
Sequence diagram of generating an operational key is presented in Figure
4.15.

CT randomly generates an operational key for the device (Dev0101OpKey).
Then it can send the generated key in a TXT record (0101_key_server) to

49



Figure 4.14: Service verification and enabling in security level 1

the server directly, since the channel in between is already secure. DNS-SD
Security Layer processes this record and stores the operational key, associ-
ating it with the device UID 0101. In addition, CT encrypts the generated
key using the device’s factory key (Dev0101FactoryKey) and sends it to
the server to be stored at the DNS server. This encrypted version of the
operational key can be fetched by the device, and decrypted using the de-
vice’s factory key. Encrypted operational key on the server can be used as
a backup mechanism, since CT is also able to send it directly to the device
during commissioning.

Security level 2: confidentiality

In this security level, all device and service information preregistered is
stored encrypted on the DNS server. Thus, CT needs to query those TXT
records which contain encrypted preregistered data, and decrypt them be-

50



Figure 4.15: Operational key generation by CT

fore performing further operations.
We can consider the verification of a service information, for instance. As

it is presented in Figure 4.16, after getting all service names preregistered
by a device, CT first queries the TXT record with the sequenced service
name (0101_1.temp), because devices pre-register their services with se-
quence numbers, and encrypt the corresponding service types as those are
considered as sensitive data in this security level. Returned data is decrypted
using the device’s factory key, and decrypted service information is checked
and moved to the discovery domain as in previous security levels.

As the last step of commissioning, CT connects to the device via a pre-
defined configuration port. Device still lacks some configurations that it
will need during its operation. These configurations include which opera-
tional instructions to execute (i.e. which services to discover and call), which
domain to use while sending discovery queries, and what key to use for cre-
ating and verifying message signatures or encrypting the traffic. Sending
operational configuration is shown in Figure 4.17

Service grouping

Groups can be used to express a set of devices supporting a specific service
(e.g., HVAC equipment controlled by the closest temperature sensor). It
is also necessary when a set of devices should react synchronously to a

51



Figure 4.16: Service verification and enabling in security level 2

Figure 4.17: Sending operational configuration to device

sequence of commands. A common example is that a subset of lights in the
building are dimmed to the same level, set to the same color, or switched
off simultaneously.

52



Addressing a group can be done in two ways:

1. Addressing each group member individually (i.e. serial access): Addi-
tional PTR records can be used to specify the possible service discovery
queries. For example, to support queries like “all window blinds in floor
2, room 5”, “all lamps in floor 3”, or “all services within bldg.org”,
PTR records with the name of the service types can be created by
CT. Values of these PTR records refer to the names of the services to
be filtered. Commissioner should determine what kind of filtering is
needed, before creating PTR records for filtering services.

Figure 4.18: Creating filters with PTR records

In Figure 4.18, the service 0101_blind is associated with two filters:
“all window blinds in bldg.org” and “all window blinds in floor 2,
room 5”. In the second one, for instance, _blind._sub._bc._udp

specifies the service type as subtype (_blind), type (_bc), and proto-
col (_udp). Naming of the service types are defined in the DNS-SD
specification. r5.f2 is the subdomain for “floor 2, room 5”, and can
be created using any naming convention. So, the second PTR record
is for filtering on all window blinds within domain r5.f2.bldg.org.

2. Defining a multicast address for a multicast group: In this case, each
member device must enable reception of messages sent to the speci-
fied group multicast address. Furthermore, every member must have
identical port number and path, since the requests are specified in a
single multicast message.

As an example, Figure 4.19 shows defining a multicast group of lamps
on the same floor. Creating a multicast group is similar to creating a
device with a service. An AAAA record is created to enable resolu-
tion from group name to multicast address, and an SRV/TXT pair is

53



Figure 4.19: Creating a multicast group

used to specify the path and port. There is no specific convention for
group naming. However, it can be automated using service types and
sequence numbers for distinguishability. After creating the multicast
group, a service instance on a device (1234_lamp) is associated with
the group.

4.3.3 Operational

After completion of the commissioning steps, a device starts operating as
it has been set by the operational instructions. Device’s services have been
verified and enabled, and the device has been authorized to discover and
request other services on the BACS network. Authorization of a device is
done in security levels 1 and 2 by sending the security credential to the
device, i.e. the operational key.

When a device needs to call a service or a set of services, it searches
for the required service(s) using the discovery protocol first. After receiv-
ing the service invocation information from the DNS-SD server, it can send
requests to discovered services. Service request is granted or denied by a
target device based on the access control policy, if an access control mecha-
nism exists. These actions are depicted in Figure 4.20. Again, it should be
noted that access-control related interactions are not detailed in the protocol

54



specifications.
All of the actions numbered from 5 to 8 on Figure 4.20 are performed

only if a device queries for the required service(s) for the first time. Devices
can cache the results of discovery and access control queries, and they can
directly send service requests or process those requests thereafter.

Figure 4.20: Actions performed in the operational phase

Design details of the discovery protocol is discussed for different security
levels in the following subsections. Protocol is explained with a sample
scenario. A device with a light sensor searches all window blinds in a specific
room, and then sends request to a discovered service.

Security level 0: no security

The light sensor executes the operational instructions, when a triggering
occurs, e.g., when a predefined threshold for the amount of light is reached.
The sensor first sends a query to the discovery server in order to get the
list of all required services, however after checking if that information does
not already exist in cache (see Figure 4.21). This is performed with a PTR
query which includes required service type (_blind._sub._bc._udp) and
subdomain information (r5.f2.bldg.org). This PTR query is a part of
the operational instructions set by CT during commissioning.

Upon receiving the list of matching _blind services, the light sensor
queries for the service invocation details of each matching service. In Figure
4.21, port number, hosting device name, and service path of a matching
service (0101_blind) are queried as an example. Then the IP address of the
hosting device is resolved using an AAAA query. After caching the received
results if it is not done yet, the sensor sends a service request command to

55



Figure 4.21: Service discovery and request

the discovered window blind, in this case using the CoAP protocol. Target
device applies the access control policies if it exists, and then processes the
service request. Possible access control interactions are not shown for clarity
on the sequence diagram.

In this security level, neither sender authentication nor traffic encryption
is performed.

Security level 1: authentication and integrity

In order to protect the discovery request and response messages, TSIG
records are employed in this security level. As it is stated in Section 2.2.5,
TSIG is a standard mechanism to provide authenticity and integrity of the
exchange between two DNS entities based on a shared secret. After com-
missioning, each device shares an operational key with the DNS-SD Security
Layer, and this key can be used to calculate and verify TSIG MACs. Figure
4.22 shows the discovery process with transaction signatures.

Message sequence is basically the same as in the security level 0, except
each message includes a TSIG structure as the last DNS record in the packet.
Both parties verify the included message signature first, before processing
the message content. DNS-SD Security Layer determines which key to use

56



Figure 4.22: Service discovery and request with transaction signatures

to verify a TSIG, using the Name field of the TSIG record. It uses the same
key to generate the signature for the corresponding response message. After
getting the invocation information for a service via discovery protocol, it is
sensible to use DTLS to further secure the service requests in both security
levels 1 and 2.

Security level 2: confidentiality

Confidentiality of the discovery messages is achieved by encrypting the pack-
ets between a device and the server in this security level. Encryption of the
packets can be performed through a secure channel created using DTLS.
Device’s operational key is employed to create this channel. There is no
additional signatures used per message, as authenticity of the sender is also
achieved by DTLS. It should be stated that, the traffic between devices while

57



calling discovered services must be protected by some means as well, using
DTLS, for example. Securing the service invocation traffic is considered out
of the discovery process, however an equivalent level of security must be
maintained there also. Figure 4.23 presents the discovery message sequence
through a DTLS channel.

Figure 4.23: Service discovery and request over DTLS

4.4 Other considerations and open challenges

An architectural framework and a DNS-SD based service discovery proto-
col were proposed in this chapter. Our approach focuses on developing a
discovery solution for commercial building environments while providing re-
quired security measures. Although proposed solution is detailed following
the BACS lifecycle in previous sections, there are other considerations re-
garding the overall design:

• Discovery of legacy systems. It is possible to have some subsystems
with devices communicating via legacy protocols. These subsystems
are supposed to connect to the IP network through gateways. Such a

58



gateway presents a list of services within the subsystem on behalf of
the legacy devices. Then, discovery of the gateway is done as for other
devices communicating over IP.

• Battery-powered sleeping devices. Discovery of sleeping devices is not
very different from discovery of legacy gateways. It is expected that a
proxy will handle communications for the sleeping device. The proxy
will take over all the services of the sleeping device during the set-
up process. Those services then can be registered by the proxy and
consequently discovered like any other device.

• Naming conventions. Names which are used to define service types,
groups, and paths are expected to be standardized by the standard-
ization organizations in the BACS field.

• Removing preregistration data on the .temp domain. Removal of stale
data on DNS server can be performed by the commissioner using the
configuration interface. Some DNS server implementations can also
be configured to delete stale records, such as in Microsoft DNS Server.

• Unreliable messaging. As UDP is used for transporting discovery mes-
sages, system components need to implement a re-transmission mech-
anism against packet loss.

Lastly, we discuss open challenges remaining in this work and possible
future directions:

• Denial-of-service during preregistration. With the given assumptions,
our design does not propose a specific mechanism against denial-of-
service attempts during service preregistration. Mutual authentication
of devices and the DNS-SD server can help but is not possible out-of-
the box. Therefore other mechanisms based on intrusion detection
may be required to prevent this.

• Distribution of operational keys. Distribution of operational keys is
done by CT using DNS messages and sending directly to devices thor-
ough a configuration port. A more dedicated protocol can be inte-
grated into the design for bootstrapping and key distribution purposes.

• A more distributed design. Current design is based on a central server
as an aggregation point for service information in order to support
operating on large networks. The solution can be extended or modified
to become more hybrid instead of centralized, making use of (x)mDNS,
for example. Single points of failure can be avoided or minimized
against DoS attacks in this way.

59



• Event notification. Additional capability of subscribing and publish-
ing service notifications can be included, like publish/subscribe mech-
anisms in UPnP and DPWS.

60



Chapter 5

Design validation and
evaluation

This chapter contains the details of the prototype implementation and vali-
dation of the proposed design. We evaluate the prototype based on message
sizes, memory requirements and time based efficiency. Furthermore, a val-
idation of the proposed design is given in terms of functional and security
perspectives.

5.1 Implementation

A model based on DNS-SD is proposed as a design solution for service discov-
ery in BACS in the design chapter. Our design requires resource constrained
devices to be able to create and parse various DNS messages. Furthermore,
those devices need to generate and verify message signatures (TSIGs). These
requirements constitute the bottleneck for the whole system. Therefore, a
reference implementation of the client-side as a proof-of-concept is most
important to show that the design is realizable for real world use. Imple-
mentation of the server-side is kept as simple as possible. In this section,
we first provide the details of the hardware and the operating systems used
in the setup. Then we present the details of the actual implementation, and
supported scenarios in our implementation.

5.1.1 Reference implementation environment

Redbee Econotags 1 were used as wireless sensor nodes running the client-
side implementation. Figure 5.1 shows the model hardware.

The hardware specification of Redbee Econotag are as follows:

1MC1322x Hardware Guide [Online] http://mc1322x.devl.org/hardware.html

61

http://mc1322x.devl.org/hardware.html


(a) Top (b) Bottom

Figure 5.1: Econotag hardware

• ARM7 32-bit, 24 MHz microcontroller

• IEEE 802.15.4 2.4 GHz radio

• 96KB SRAM

• 128KB on-board flash memory

• 128-bit AES hardware encryption engine

We run the Contiki version 2.5 [8] on the Econotag nodes. Contiki is
an open source operating system for embedded hardware with constrained
memory and computing resources. It provides IP connectivity with the
integrated uIP stack, which supports IPv4, IPv6, UDP, and TCP protocols.
The core system is based on an event-driven kernel which effectively shares
system resources between processes by treating each process as an event
handler that run till completion and return back to the kernel when finished.

A standard PC hardware with Linux operating system is used for DNS-
SD server counterpart.

5.1.2 Implementation details

Following two core functionalities are realized in this reference implementa-
tion:

1. Registration of hosted services by a device

2. Discovery and invocation of specific services by a device

The client implementation running on Contiki is built with the following
capabilities:

1. Register the hosted services by creating and sending DNS Update
packets

2. Register device IP address

62



3. Search for services with a specific type and subdomain by sending DNS
queries to the server

4. Parse and cache the discovery response messages coming from the
server

5. Generate and verify transaction signatures (TSIGs) for discovery mes-
sages

DNS-SD Client process is implemented as a service waiting for events
coming from other processes running on the node. Basically, uIP DNS
resolver implementation is used as a template for the general structure of
the client. This is a service that can create and send DNS queries with type
A records to a server in order to resolve IPv4 addresses. We extended it to
handle AAAA, SRV, TXT, PTR, and TSIG DNS records. To achieve that,
we implemented a lightweight DNS library for Contiki. This library was
used to create and parse DNS packets with the mentioned specific records.

Two nodes are deployed as clients with the Econotag hardware. One of
them provides a service which is accessible with a CoAP interface. The ser-
vice provided is an emulation that simply toggles an LED on the node. The
other device is programmed to search for a specific type of service which is
provided by the first node. After getting the required information, the sec-
ond device sends a CoAP request to call the service. Deployed components
are shown in Figure 5.2 with all intercommunication numbered.

Figure 5.2: Implementation of service registration and discovery

Both client devices are enabled to use IPv6. They first automatically
configure an IPv6 address, which is created based on their Ethernet MAC
addresses, after the boot-up process. Another Econotag node is used as a
bridge between the client nodes and the server. It uses Serial Line Internet
Protocol (SLIP) to bridge the wireless 6LoWPAN network onto a PC via
USB interface.

63



Devices can calculate and include message signatures in the form of TSIG
records optionally. If this option is enabled, they append a TSIG record to
DNS messages that they send to the server, and verify the TSIGs included
in the received messages.

Currently, there are three HMAC algorithms standardized to be used
with TSIGs: HMACs with MD5, SHA-1, and SHA-256. However, we de-
cided to use a Cipher-based MAC (CMAC) with AES, since Redbee Econo-
tag nodes already have a built-in AES encryption engine, and hash function
implementations would consume more system resources than those used in
AES-CMAC calculation. AES-128 with CBC mode is used for this purpose,
as it is described in the AES-CMAC specification [33].

As the commissioning step is bypassed in the experiments, devices are
preconfigured with the necessary operational parameters. Devices are as-
sumed to have operational keys, discovery domain, and server address infor-
mation during the tests.

DNS-SD Security Layer is deployed with minimal functionality. It waits
for registration and discovery messages coming from devices, and forwards
them to the DNS server after verifying TSIG MAC. ldns [26] library is
used for handling DNS packets on the server side. AES-CMAC support is
implemented in this part additionally.

We deployed DNS-SD Security Layer and the DNS server on the same
PC hardware. Bind 9 is used as the DNS server software. A discovery
domain, bldg.org is created and preconfigured together with the .temp

domain on the DNS server. DNS-SD Security Layer is configured to accept
packets on port 53 (standard DNS port), while the DNS server runs on a
non-standard port.

After Client 1 (see Figure 5.2) registers its service information and IP
address, following records are created on the DNS server:

249B.temp. IN AAAA aaaa::0250:c2a8:ca77:249b

249B_lamp.temp. IN SRV 0 0 61616 249B.temp

249B_lamp.temp. IN TXT path=/lamp

The first record keeps the relation between device name and IP address.
249B is the 2-byte UID of the device, and it is associated with the device’s
IPv6 address. The SRV record represents a _lamp service instance with port
61616 on the device. Service path /lamp is stored via a TXT record with the
same name.

Before Client 2 sends the discovery query, necessary records have been
copied to the domain bldg.org which would happen during the commis-
sioning step:

249B.bldg.org. IN AAAA aaaa::0250:c2a8:ca77:249b

64



249B_lamp.bldg.org. IN SRV 0 0 61616 249B.bldg.org

249B_lamp.bldg.org. IN TXT path=/lamp

_lamp._sub._bc._udp.bldg.org. IN PTR 249B_lamp.bldg.org

Client 2 first queries the PTR record to get the list of all _lamp services.
Then it resolves the service details and the device address with the returned
value. Finally, it prepares and sends a CoAP request to invoke the service
on Client 1. Client 1 toggles the LED after receiving the CoAP message,
and sends back an acknowledgement.

Both the security layer on the server side and Client 2 include a TSIG
record created with the pre-shared key while sending the discovery queries
and responses. Generated TSIG records contain the following information:

• Name: The name of the key used in the MAC calculation.

• Algorithm Name: Name of the MAC algorithm, which is “AES-CMAC”
in our case.

• Time Signed: Time of signature creation in seconds. A preset value
has been used assuming that the device is aware of the current time,
via a time server on the network, for example.

• Fudge: Seconds of error permitted. A value of 300 seconds has been
used.

• MAC Size: Number of bytes in MAC. This is 16 bytes in case of
AES-CMAC.

• MAC: Signature calculated. It covers the whole DNS message includ-
ing the other TSIG fields.

5.2 Discovery validation

This section describes how the functional requirements are met with the
proposed design.

1. Discovery of the registration point. Server discovery is performed in
the pre-commissioning phase. It basically requires usage of multicast
messages and can be done in two different ways (active or passive
discovery).

2. Service registration/announcement. Device and service information
is preregistered by each device in the pre-commissioning phase using
DNS Update messages with A/AAAA, SRV, TXT, and PTR records.

65



3. Activation by the commissioner. Device and service information pre-
registered by the devices is stored at the .temp domain on the DNS
server. It is not accessible by other devices until it is checked and
enabled, i.e. moved to the actual discovery domain, by the commis-
sioner.

4. Finding service instance. Service discovery is done by sending stan-
dard DNS queries to the DNS-SD server. Required services are queried
with PTR records, and names of all matching services are returned as
response.

5. Resolving service instance. SRV and TXT records are queried with a
service name for service invocation information. Service port, hosting
device name, and service path are received with this query. Hostname
is resolved into an IP address with an A/AAAA query.

6. Device/service grouping. Grouping are done with additional PTR
records as it is described in Section 4.3.2. After verifying and en-
abling the services, they can be grouped into different subdomains.
In addition, a multicast group can be created with the same records
which are used to describe a device and service.

7. Filtered device/service discovery. Services can be queried with a spe-
cific type and subdomain. This is achieved with the help of created
filters. For example, a PTR query with the name
_lamp._sub._bc._udp.r5.f2.bldg.org

can be used to filter all lamps in floor 2, room 5 within the domain
bldg.org.

5.3 Performance

In this section, we present an evaluation of the performance of our solution
in relation to the functions implemented in terms of message size, memory
footprint, and response time. We monitor DNS packets with Wireshark 2 in
order to verify the correctness of generated DNS records from the devices,
to measure the DNS message sizes, and to monitor the interaction between
the server and devices. The response time was measured as the difference
between times that a device sends a DNS message to the server and receives
the corresponding response.

5.3.1 Message size

Since routing IP packets with Contiki’s uIP stack relies on the lower layer
fragmentation skills and radio transceiver of the device, supported IP packet

2Wireshark Network Protocol Analyzer [Online] http://www.wireshark.org/

66

http://www.wireshark.org/


size is limited depending on the sensor device type. For example, maximum
available payload size of an IPv6 packet is 1300 bytes for AVR Raven and
Redbee Econotag, as those can handle the lower layer fragmentation better,
while it is only 240 byes for Tmote Sky, and 140 bytes for Zolertia Z1 devices.
In order to avoid the IP packet reassembly, each message of the discovery
protocol must fit into a single IP packet.

The length of resource records which are included in DNS messages de-
pend on the length of the device UID, service name, domain name, and
service information in the TXT record. We implemented domain name
compression to reduce the size of DNS messages for efficiency. With this
method, repetitions of common parts of the domain names are represented
with a 2-byte pointer to the first appearance of the name in the message.

Registration

Message RRs Included Size (B)
(Min/Sample)

Device Address AAAA 44/55
Service Information SRV+TXT 47/80

Table 5.1: Size of DNS messages for registration

Sizes of messages used in registration are shown in Table 5.1. Those
messages are DNS Update messages which consist of a 12-byte DNS header,
the domain in which updates are performed, and the resource records to
be updated. The table shows both minimum and sample message sizes.
Minimum sizes are computed using domain names and TXT information
with minimum length. Sample sizes are the sizes of the messages observed
in the experiments with the messages stated in the Implementation section.
Sample parameters which affect the message sizes can be listed as follows:

- Temporary domain: temp

- Device UID: 249B

- Service type: _lamp

- Service path: path=/lamp

An update response message with 22 bytes is returned for each of the
registration message.

Table 5.2 summarizes the size of the discovery query and response mes-
sages. Following values are used for the calculation of sample message sizes:

- Discovery domain: bldg.org

67



Discovery

Message RRs Included Size (B) (Min/Sample)
Request Response

Service List PTR 17/46 29/70
Service Information SRV+TXT 17/36 46/92
Device Address AAAA 17/31 44/59

Table 5.2: Size of DNS messages for discovery

- Search filter: _lamp._sub._bc._udp

- Device UID: 249B

- Service type: _lamp

- Service path: path=/lamp

While querying the services with a search filter, the size of the response
depends on the number of matching services. In the experimental setup used,
there is one service returned with a 9-byte name (249B_lamp). Another 15
bytes plus the length of the service name must be added to the message size
for each extra matching service in these settings. It should be noted that
records in the question section of a DNS query message are also included in
the corresponding response message. So, this is another factor affecting the
size of discovery response messages.

As it is stated in the implementation details, a TSIG record can also
be included in the discovery query and response messages optionally. Addi-
tional overhead for including TSIG in a discovery message is 59 bytes with
an 16-byte AES-CMAC and a 5-byte key name.

5.3.2 Memory footprint

We focus on the client side implementation in this part since memory con-
straints of the client devices constitute the main limitation. Because of the
limited memory resources, reducing the code size and the number of vari-
ables and buffers is crucial. The experimental client-side implementation
consists of 1406 lines of code. It is only 861 lines if the TSIG-related code
is not included. A large part (about 50%) of the source code is for creating
and parsing DNS messages. In order to optimize the memory usage in this
part, handling of DNS messages is performed directly inside the uIP buffer
of Contiki. This method eliminates the need for additional buffers for cre-
ating and parsing DNS messages, therefore provides memory efficiency.

The code is compiled with arm-none-eabi-gcc (GCC) 4.3.2 for Redbee
Econotag. The reference implementation with one service requires 55.19 kB

68



Application Memory
Requirement (kB)

DNS-SD (with uIPv6) 55.19
DNS-SD w/o TSIG (with uIPv6) 53.80
Contiki “UDP Client” Example with uIPv6 51.28
Contiki “Hello World” Example 27.76

Table 5.3: Memory requirements of the implementation and example appli-
cations

of RAM together with Contiki and the uIPv6 stack. Without the code for
handling TSIG and AES-CMAC, memory requirement is 53.80 kB. Each
additional service to be registered costs 0.1 kB of RAM. Table 5.3 shows the
memory requirements of the implementation and some example applications
for comparison. Notice that the uIP stack consumes the most significant
amount of memory in the implementation.

5.3.3 Response time

We define response time as the length of time a client has to wait from the
moment it sends a request to the moment it receives the response from the
server. It should be noted that these are the best timings and actual real-
world response times are affected by network congestion and other factors.
The average response time for the messages without TSIG is 35 ms. The
value is 50 ms with TSIG verification enabled. It should be noted that
a 6LowPAN border router is deployed between the server and devices in
our experiments. Packets therefore are always delayed via one hop. Multi-
hop routing is handled by the uIP stack of Contiki, and it depends on the
performance of the lower layers used.

5.4 Security

Device and service information, configuration settings, and security param-
eters are considered as data assets to be protected in the system. Device
and service information includes device IP address, service type, service
port number, service path, and the relation between devices and services.
The proposed solution provides not only the required discovery functional-
ity with the security level 0, we define security levels 1 and 2 to meet the
security requirements in a gradual manner. Several security mechanisms are
employed in pre-commissioning, commissioning, and operational phases in
order to fulfill the requirements, and to avoid the relevant security threats
or minimize the negative consequences in the given BACS scenario.

In the pre-commissioning phase, there is no preshared secret between

69



any device and the discovery server. Moreover, devices are not able to per-
form public-key cryptographic operations due to their constrained resources.
Therefore, it is not possible to create a trust relationship between devices
and the server in pre-commissioning phase with the current assumptions.
It should be added that this might lead to some threats such as denial-of-
service attacks in this phase. A rogue party may announce itself as server
and collect service information, for example. In such a case, disclosure of
device and service information can be prevented by encrypting data as in the
security level 2. In another case, an attacker may send bogus preregistration
data continuously to the server threatening the server availability. As the
proposed discovery solution does not provide explicit mechanisms for protec-
tion from DoS attacks in the pre-commissioning phase, other countermea-
sures are needed to alleviate the effects of such attacks, such as monitoring
the network activity and using intrusion detection systems. Also noteworthy
is the fact that all preregistered device and service information is temporary
and not enabled to be used as discovery data before it is verified by the
Commissioning Tool.

For origin authentication and integrity of preregistered data, devices cre-
ate and register additional TXT records containing MACs of the device and
service information preregistered in the security level 1. Those MACs are
created using the factory key of the device. Thus, any party that has the
factory key of the device can authenticate the preregistered information and
can verify its integrity. With encrypting preregistered data in the security
level 2, confidentiality is also achieved in addition to data origin authenti-
cation and integrity. Moreover, privacy requirements are met since it is not
possible for an unauthorized party to decrypt and observe the device and
service information preregistered.

All communication between CT and server is secured regardless of the
security level in the commissioning phase. A secure channel is created with
SSL/TLS or DTLS using the mutually trusted certificates of both parties.
This assures that only CT with a trusted certificate can have access to
preregistered data. CT can verify the authenticity and integrity of device
and service information by verifying the associated MACs or decrypting the
data with the corresponding device key in security levels 1 and 2. This is
based on the assumption that CT holds initial factory keys of the devices.
Eavesdropping the traffic between CT and server is not profitable since the
channel is encrypted.

Data, which is verified and enabled by CT, becomes available to autho-
rized devices in the operational phase. Authorization of devices is done with
the operational keys generated and distributed by CT. The operational key
which is shared between a device and the server is used to create a secu-
rity context during the discovery process. In security level 1, authenticity
and integrity of data exchanged is ensured by the TSIG mechanism. Both
device and server create and append a TSIG record, which contains the

70



MAC of the transmitted data, to all outgoing packets. The other party
verifies the MAC with the operational key used between the pair. TSIG
mechanism also ensures that only authorized parties can access the discov-
ery information on the server. Security level 2 requires a DTLS connection
in order to provide message confidentiality. All packets are encrypted with
a secure channel established via DTLS, using the operational keys. With
this encrypted channel, it is not possible for an adversary to infer further
information by observing the discovery traffic.

Table 5.4 provides a summary of proposed security mechanisms in our
solution. It also shows which security requirements are met with a given
mechanism in each phase. SL1 and SL2 are the security levels 1 and 2
respectively. SR1 to SR5 represent the security requirements, which are
defined in Section 3.3.3.

Security Mechanisms SR1 SR2 SR3 SR4 SR5

Pre-commissioning
SL1: Additional TXT records with
MAC

+ + - - -

SL2: Preregistered data encrypted
with device’s factory key

+ + + + -

Commissioning
Secure channel established between
CT and server via SSL/TLS/DTLS

+ + + + ∼

Operational
SL1: TSIG mechanism used + + - - ∼
SL2: DTLS channel created be-
tween device and server using the
operational key

+ + + + ∼

∼: mitigates the risk

Table 5.4: Security mechanisms and requirements met

Although the countermeasures in the pre-commissioning phase do not
provide a mutual authentication between a device and server, they allow
authorized parties (i.e., CT in the commissioning phase) to authenticate
the origin of the preregistered data later on. SR1, authentication and au-
thorization requirement, is therefore shown as met in the pre-commissioning
phase in Table 5.4. Data integrity and confidentiality is achieved by comput-
ing MACs and encrypting the preregistered data in this phase. Protecting
the system availability especially in the pre-commissioning phase is hard to
achieve by solely the service discovery system. Hence, the issue should be
addressed in a separate layer by some other means as mentioned before.
Authentication, data integrity and confidentiality requirements are met via

71



the secure channel established between CT and server in the commissioning
phase. Securing the communication also reduces the risk of someone learning
service usage patterns by observing the traffic. Attempts to access to server
for commissioning without a valid certificate are simply refused, therefore
constituting a measure against denial-of-service attacks. TSIG mechanism
provides message authentication and integrity at transaction level during
operation. Furthermore, access control to device and service information is
done by verifying TSIG record in a request. DTLS, which is required in
security level 2, is used if privacy of the transmitted data is also required.

72



Chapter 6

Conclusion and final remarks

We proposed a device and service discovery system based on DNS-SD in
this work. As it is stated in the background chapter, there are many ex-
isting service discovery mechanisms and protocols for specific or general
purposes in the IT domain. We presented and analyzed some of them that
we think most promising to be utilized in BACS. These solutions are getting
more realizable in BACS domain, as BACS are more increasingly using IP-
based communication in all levels and devices have become more powerful
in terms of processing power and storage. Nevertheless, they are still not
directly applicable in a commercial building environment mainly because
of two reasons. First, the existing service discovery solutions, which are
based on protocols and technologies like XML, SOAP and Web Services, are
still too heavyweight for embedded devices. Secondly, most of the discovery
solutions are either not designed with built-in security mechanisms, or im-
plement public key cryptography which is again not truly achievable with
resource constrained devices yet. Based on the analysis of possible threats,
as we discussed in Chapter 3, a service discovery solution should provide
authentication, integrity, and confidentiality mechanisms in BACS domain.

The main contribution of this study is to analyze functional, techni-
cal, and security requirements of a device and service discovery solution for
BACS, and to provide a realizable design while taking into account the in-
stallation, commissioning, and operational phases of the BACS lifecycle. A
special effort has been put on making use of the already existing techniques
when possible. This is also the primary reason for us to choose DNS-SD as
the basis of the designed protocols. As DNS-SD promotes, it makes more
sense to use the existing software, infrastructure, and expertise that every
network needs already, instead of deploying an entire parallel system just
for service discovery.

Since DNS-SD does not specify any additional security mechanisms to
those that already exist for DNS security, the proposed design employs sev-
eral measures to meet the security requirements in different phases. Those

73



measures have been defined gradually within three security levels. For in-
stance, we defined a symmetric key based message signature scheme for
the authenticity and integrity of device and service information, as the rec-
ommended DNSSEC mechanism does not fit the constraints of the system
because it is based on public key cryptography.

It is important to note that while this thesis constitutes an attempt
to solve the device and service discovery problem in BACS, there are still
remaining challenges and possible improvements to the proposed design so-
lution. Some of these challenges have already been posed in the last section
of Chapter 4. To summarize, the model can be extended to become more
distributed and avoid single points of failure. A special key distribution
mechanism can be integrated for the management of operational keys. Ad-
ditional capabilities, such as publish/subscribe mechanisms in UPnP and
DPWS, can be included to make the proposed design a more complete de-
vice services solution. Finally, although a functional prototype has been
implemented on a wireless sensor network, we believe that with further op-
timizations it is possible to reduce the network and memory overhead.

74



Bibliography

[1] BACnet - A data communication protocol for building automation and
control network. ANSI/ASHRAE Std. 135-2008, 2009.

[2] Bettstetter, C., and Renner, C. A comparison of service dis-
covery protocols and implementation of the service location protocol.
Proc. EUNICE Open European Summer School, Twente, Netherlands
(2000).

[3] Bohn, H., Bobek, A., and Golatowski, F. SIRENA - service
infrastructure for real-time embedded networked devices: A service
oriented framework for different domains. In Networking, Interna-
tional Conference on Systems and International Conference on Mobile
Communications and Learning Technologies, 2006. ICN/ICONS/MCL
2006. International Conference on (2006), IEEE, pp. 43–43.

[4] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion,
M., Ferris, C., and Orchard, D. Web services architecture. World
Wide Web Consortium (2004).

[5] Cheshire, S., and Krochmal, M. DNS-based service discovery.
Internet Draft, December 2011.

[6] Cheshire, S., and Krochmal, M. Multicast DNS. Internet Draft,
December 2011.

[7] Driscoll, D., and Mensch, A. Devices profile for web services
version 1.1. OASIS Standard (June 2009).

[8] Dunkels, A., Gronvall, B., and Voigt, T. Contiki - A lightweight
and flexible operating system for tiny networked sensors. In Local Com-
puter Networks, 2004. 29th Annual IEEE International Conference on
(2004), IEEE, pp. 455–462.

[9] Eastlake, D. Secret key establishment for DNS (TKEY rr). RFC
2930, September 2000.

[10] Ellison, C. UPnP security ceremonies 1.0. UPnP Security Working
Group.

75



[11] Elz, R., and Bush, R. Clarifications to the DNS specification. RFC
6347, July 1997.

[12] Finch, E. Is IP everywhere the way ahead for building automation?
Facilities 19, 11/12 (2001), 396–403.

[13] Goland, Y., Cai, T., Gu, Y., and Albright, S. Simple service
discovery protocol v1.0. Internet Draft, June 1999.

[14] Granzer, W., Praus, F., and Kastner, W. Security in building
automation systems. Industrial Electronics, IEEE Transactions on 57,
11 (2010), 3622–3630.

[15] Guttman, E., Perkins, C., and Kempf, J. Service templates and
service: Schemes. RFC 2609, June 1999.

[16] Guttman, E., and Veizades, J. Service location protocol, version
2. RFC 2608, June 1999.

[17] Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S., Kumar,
S., and Wehrle, K. Security challenges in the IP-based internet of
things. Wireless Personal Communications (2011), 1–16.

[18] Hui, J., and Culler, D. Extending IP to low-power, wireless personal
area networks. Internet Computing, IEEE 12, 4 (2008), 37–45.

[19] Jammes, F., Mensch, A., and Smit, H. Service-oriented device
communications using the devices profile for web services. In Proceed-
ings of the 3rd international workshop on Middleware for pervasive and
ad-hoc computing (2005), ACM, pp. 1–8.

[20] Kastner, W., Neugschwandtner, G., Soucek, S., and New-
mann, H. Communication systems for building automation and con-
trol. Proceedings of the IEEE 93, 6 (2005), 1178–1203.

[21] Larson, M., Massey, D., Rose, S., Arends, R., and Austein, R.
DNS security introduction and requirements. RFC 4033, March 2005.

[22] Lynn, K., and Sturek, D. Extended multicast DNS. Internet Draft,
March 2012.

[23] Martocci, J., Schoofs, A., and van der Stok, P. Commercial
building applications requirements. Internet Draft, July 2010.

[24] Modi, V., and Kemp, D. Web services dynamic discovery (WS-
discovery) version 1.1. OASIS Standard (June 2009).

76



[25] Munir, S., Dongliang, X., Canfeng, C., and Ma, J. Service
discovery in wireless sensor networks: Protocols & classifications. In
Advanced Communication Technology, 2009. ICACT 2009. 11th Inter-
national Conference on (2009), vol. 2, IEEE, pp. 1007–1011.

[26] NLnet Labs. ldns library. http://www.nlnetlabs.nl/projects/ldns/
Accessed: 20 Sep 2012.

[27] Perkins, C., and Guttman, E. DHCP options for service location
protocol. RFC 2610, June 1999.

[28] Presser, A., Farrell, L., Kemp, D., and Lupton, W. UPnP
device architecture 1.1. UPnP Forum.

[29] Rescorla, E., and Modadugu, N. Datagram transport layer secu-
rity version 1.2. RFC 6347, January 2012.

[30] Sales, T., Sales, L., Pereira, M., Almeida, H., Perkusich, A.,
Gorgônio, K., and de Sales, M. Towards the UPnP-UP: Enabling
user profile to support customized services in UPnP networks. In Mo-
bile Ubiquitous Computing, Systems, Services and Technologies, 2008.
UBICOMM’08. The Second International Conference on (2008), IEEE,
pp. 206–211.

[31] Shelby, Z. Constrained restful environments (CoRE) link format.
RFC 6690, August 2012.

[32] Shelby, Z., Krco, S., and Bormann, C. CoRE resource directory.
Internet Draft, July 2012.

[33] Song, J., Poovendran, R., Lee, J., and Iwata, T. The AES-
CMAC algorithm. RFC 4493, June 2006.

[34] Vixie, P., Thomson, S., Rekhter, Y., and Bound, J. Dynamic
updates in the domain name system (DNS update). RFC 2136, April
1997.

[35] Weber, R. Internet of things - new security and privacy challenges.
Computer law & security review 26, 1 (2010), 23–30.

[36] Wellington, B. Secure domain name system (DNS) dynamic update.
RFC 3007, November 2000.

[37] Zhu, F., Mutka, M., and Ni, L. Service discovery in pervasive
computing environments. Pervasive Computing, IEEE 4, 4 (2005), 81–
90.

77


	Introduction
	Problem domain and context
	Objective
	Intended audience
	Structure of the thesis

	Background and related work
	Building automation and control systems
	Architecture of BACS
	IP-based networking in BACS
	Installation, commissioning and operational phases

	Service discovery
	Service Location Protocol (SLP)
	Universal Plug and Play (UPnP)
	Devices Profile for Web Services (DPWS)
	CoRE Resource Directory
	DNS-Based Service Discovery (DNS-SD)


	Use cases and requirements
	Use cases
	Device installation
	Pre-commissioning
	Commissioning
	Operational

	Security threat analysis
	Requirements
	Functional requirements
	Technical requirements
	Security and privacy requirements


	Design
	Overview
	DNS-based service discovery for BACS

	System architecture
	DNS-SD security layer

	Protocol specifications
	Pre-commissioning
	Commissioning
	Operational

	Other considerations and open challenges

	Design validation and evaluation
	Implementation
	Reference implementation environment
	Implementation details

	Discovery validation
	Performance
	Message size
	Memory footprint
	Response time

	Security

	Conclusion and final remarks

