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Abstract 

 
In this master thesis project the impact of closed loop supply chains on environmental 

performance and costs is assessed. A framework is developed in order to help decision making 

on closing the loop in Nike’s supply chain. This framework is used to assess the environmental 

and cost impact of several scenarios with different recycling processes and network designs. 
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Management Summary 

 
Sustainability is an important part of Nike’s business strategy. Sustainable thinking is included in 

decisions made for the future. One of the sustainable initiatives within Nike is the recycling of 

apparel, creating a closed loop supply chain. Closed loop supply chains give the opportunity to 

use more environmental friendly materials, and to use the post-consumer waste created. In 

order to maximize this possible benefit, this project evaluated the CO2 emissions, energy use 

and the cost impact created by transportation and recycling processes in such a closed loop 

supply chain.  

Research Design 

The following research question and sub-questions are stated in this project:  

How can the impact of closed loop supply chains on environmental performance and costs be 

determined? 

- How can the environmental performance be determined?  

- What is the environmental performance of current yarn supply chains? 

- How can the impact of recycling processes on the environmental and cost impact be 

demonstrated? 

- How can a closed loop supply chain network be designed and what is the impact on 

environmental performance and costs? 

In this project the apparel category of Nike is considered for closed loop recycling. Apparel is 

made of few materials, often cotton or polyester. The technology for closed loop recycling of 

these materials is available, and consumers in Europe are used to donate post-consumer 

clothing. Energy use and CO2 emissions are taken into account, since they have considerable 

impact on the environment. These are also acceptable measures in academic papers, so data is 

more easily available. For the recycling processes, data from academic papers is used, and for 

transport, the NTM methodology is used to assess the CO2 emissions and energy use.  

A framework is developed for the evaluation of the impacts. In this project, collecting post-

consumer apparel, sorting the material based on fiber type and recycling the material into new 

yarn are the most important processes. All the transportation in between is included. 

Comparisons are made with the normal production process for polyester, and the end-of-life 

procedure for collected material, incineration. Objectives are selected for minimizing the 

energy used, CO2 emissions and costs.   
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Results 

Based on information from a life cycle analysis of Nike, the environmental impacts of the 

current production process for cotton and polyester are determined. In an initial scenario, five 

stores are selected in Western Europe for the collection of post-consumer material. The 

material is transported to a sorting facility in the Netherlands. Three standard scenarios for 

polyester recycling are included, mechanical recycling in China, back-to-monomer recycling in 

Japan and back-to-oligomer recycling in Taiwan. The output is polyester yarn that can be used 

in the production of new apparel.  

In the first assessment it is shown that in all three recycling processes more energy can be 

recovered and less carbon dioxide emitted than with the incineration of polyester waste. When 

comparing these recycling methods with the normal production of polyester yarn, they score 

significantly better on both energy use and CO2 emissions. Up to 68% of the energy use can be 

reduced when one kilogram of yarn is produced via mechanical recycling instead of virgin 

production. The results are dependent on the amount of input needed for the recycling 

process, to get one unit of output. This yield is initially assumed to be 60% based on previous 

tests with recycling polyester. With a lower yield, more material need to be collected, sorted 

and transported. The actual yields of the processes are unknown. However it is unlikely they 

are low enough to prefer virgin produced yarn instead of recycled yarn based on environmental 

impacts.  

The impact of transport is relatively small compared to the total environmental impact. 

However abating the impact of transport is still interesting, since it can be realized easy by 

changing the network design for example. Several options for sorting and recycling locations 

are assessed in this project. When scenarios are optimized based on energy use and CO2 

emissions for the stores selected in this project, sorting should take place in Switzerland and 

recycling in Turkey. If costs are minimized, both for the sorting and recycling location India is 

selected.    

Costs for the recycling of yarn are higher than virgin produced yarn in this project. The costs for 

sorting and transportation have a relative high impact on total cost, compared to the 

environmental impact created by sorting and transportation. Especially the first transportation 

move from store to sorting facility is expensive due to the use of 3PL.  

Further research 

More research is needed on processes for closed loop recycling of apparel. This allows for a 

better decision on the recycling method that will be used. The yield and output quality in these 

processes are still uncertain factors. Also the effects on other environmental measures in the 

closed loop supply chain can be assessed. Another option is the extension of the optimization 

model used in this project.  
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1. Introduction 

 
This document is the report for a master thesis project in Operations Management and Logistics 

at Eindhoven University of Technology. The master thesis project is made in cooperation with 

Nike, under supervision of dr. Tarkan Tan from Eindhoven University of Technology and Aad 

Ramondt of Nike. In this project the impact on environmental performance and costs of closed 

loop supply chains is studied. A framework is developed in order to assess different scenarios.  

In section 1.1 general background information of the research area is given. A description of 

Nike, the cooperating company is given in section 1.2. Section 1.3 briefly introduces closed loop 

recycling and the structure of the report is given in section 1.4.  

1.1 General background 

1.1.1 Research area 

Concerns of environmental issues have gained interest by many parties, including universities, 

governments and companies in recent years. This is due to resource exhaustion and 

environmental deterioration. Carbon footprints in firms have to be reduced either voluntary or 

by regulation like the EU ETS. This has led to an increase in operations research on sustainable 

supply chains. Research is needed to explore the effects of sustainable operations and to 

provide ways of combining them with regular supply chain management. The first stream of 

research on green supply chain management has been reviewed by Srivastava (2007) who 

described the topic as: “integrating environmental thinking into supply-chain management, 

including product design, material sourcing and selection, manufacturing processes, delivery of 

the final product to the customer as well as end-of-life management of the product after its 

useful life.” Another review by Seuring and Müller (2008) define sustainable supply chain 

management as: “management of material, information and capital flows as well as 

cooperation among companies along the supply chain while taking goals from all three 

dimensions of sustainability, i.e., economic, environmental and social, into account which are 

derived from customer and stakeholder requirements.” Both reviews indicate that existing 

supply chain management is extended with environmental concerns. Srivastava’s (2007) 

reasons therefore are regulations imposed by governments in order to reduce emissions, the 

environment worsened by human activities and increasing pressure on companies. Other 

reviews that show the increase in operations research on sustainable supply chains is done by 

Corbett and Klassen (2006) and Kleindorfer et al. (2005).  

Life Cycle Assessment (LCA) of products is an important aspect of this project and is a specific 

stream of research within green supply chain management. It can be defined as “Compilation 

and evaluation of the inputs, outputs and the potential environmental impacts of a product 
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system throughout its life cycle” (ISO, 1997). An LCA consists of four phases: Goal and scope 

definition, life cycle inventory analysis (LCI), life cycle impact assessment (LCIA) and 

Interpretation (Finnveden, 2009). In the first phase the reasons for the study and its boundaries 

are given, as well as a functional unit which is a qualitative measure to compare goods. LCI is 

the phase in which data is collected on the involved processes. The LCIA is used to understand 

and evaluate the environmental impact. In the interpretation phase the results of all previous 

phases is used to draw conclusion and give recommendations.  There are two kinds of LCA, 

attributional and consequential (Finnveden, 2009). Attributional LCA’s are defined as: “focus on 

describing the environmentally relevant physical flows to and from a life cycle and its 

subsystems” (Finnveden, 2009). Therefore this is mainly to describe the environmental impacts 

of the entire lifecycle of a product. Consequential LCA’s are defined as: “aim to describe how 

environmentally relevant flows will change in response to possible decisions” (Finnveden, 

2009). These are to determine the environmental impacts of a change in the system.  

In closed loop supply chains the process of taking back products from customers is studied in 

order to recover value by reusing the product or parts of it. Closed loop supply chains are 

defined by Guide and Van Wassenhove (2009) as “the design, control, and operation of a 

system to maximize value creation over the entire life cycle of a product with dynamic recovery 

of value from different types and volumes of returns over time”. The main steps of a closed loop 

supply chain are product collection, return logistics, inspection/separation, 

remanufacturing/recycling and redistribution (Guide et al., 2003). Closed loop supply chains are 

often believed to be sustainable operations, since waste is reduced, the use of new resources 

and energy intensive production processes avoided.    

1.1.2 Previous research at the TU/e 

Useful research at the TU/e for this project is the carbon regulated supply chain research by 

Van den Akker et al. (2009). They developed the TERRA (Transport Emission Reporting and 

Reduction Analysis) tool based on the NTM method (NTM) for an accurate evaluation of 

emissions from transport.  

Other interesting research is a master thesis by Koomen (2012). In this thesis emission 

reduction options are evaluated for transport and process decisions in a chemical company. 

Earlier research mainly focused on reducing emissions from transport only. The resulting 

transport decisions however might have a negative effect on the emissions from other 

processes. The thesis by Koomen (2012) showed which transportation and processes needed to 

be included in the boundaries of the system, by developing a general framework. This 

framework identified the effect of reduction options on emissions. The framework was used to 

analyze three changes in the business process. Also insights where given on promising emission 
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reduction options. The research by Koomen (2012) is interesting for this master thesis since LCA 

was used to determine the emissions for the supply chain of the chemical company.  

1.2 Company description 

In this section a short description of Nike, the company where this project is performed is given. 

1.2.1 Nike 

Nike, Inc. is an athletic footwear, apparel and equipment company. The company is founded in 

1964 as “Blue ribbon sports”. The name changed in 1978 to Nike, named after the Greek 

goddess of victory. It is the world market leader in in sports shoes and apparel with its highly 

recognized logo, the Swoosh. They sell products under their own name, as well as under 

affiliate brands: Jordan, Converse Inc., Hurley International and Nike Golf. In 2012, more than 

44,000 people worked at Nike and they had sales revenue of $24.1 billion. The world 

headquarters is situated in Beaverton, Oregon, USA, and the Europe headquarters in Hilversum, 

the Netherlands. The products Nike manufactures can be divided in three broad categories: 

Footwear, apparel and equipment. These are sold directly to customers or to wholesale 

customers. 

1.2.2 Sustainability at Nike 

15 years ago sustainability was seen as a risk management issue that is a cost on business and a 

drag on performance. Nowadays sustainability is one of the most important business strategies 

at Nike. It is viewed as an innovation opportunity and a competitive advantage in their vision: 

“our vision is to build a sustainable business and create value for Nike and our shareholders by 

decoupling profitable growth from constrained resources”. This means sustainability is needed 

to remain competitive in the long term. An example of a view Nike has that threatens their 

future is that resources will run out and this will have an effect on the cost and availability of 

these resources. Also traditional production and transportation models might no longer be 

useful with increasing energy costs and greenhouse gasses. However the demand for Nike’s 

products is not believed to decrease so sustainable operations are needed. In order to ensure 

the commitment of the management, there is a vice president sustainable business and 

innovation.  

In order to be more sustainable on the environmental dimension, detailed targets and 

commitments are set for Nike’s environmental performance. Accurate measurement of factory 

and environmental performance is needed. Therefore Nike has developed their manufacturing 

index. Targets are set for energy use, waste, water, toxics. This way the performance of 

innovation of products, processes and transportation can be measured. For example, there are 

sustainability indexes within Nike to help design products with more environmental friendly 

materials, such as organic cotton, and with more sustainable processes and less waste. Another 

sustainable example is apparel made from polyester of recycled PET bottles.  
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1.3 Closed loop recycling 

Closed loop recycling of textiles includes the collection of post-consumer material for the 

production of yarn that can be used in new clothing. The most dominant form of recycling 

nowadays is open-loop recycling. The quality of the output material from the recycling process 

is too low to be used as input for new clothing, and therefore it is downgraded. Recycled 

material can for example be used as mattress upholstery or isolation material in cars. This way 

the value is partly recovered from textile waste. Otherwise it would have been incinerated. 

However this does not reduce the need for raw materials in the production of apparel. 

Therefore closed loop recycling is an interesting option.  

Companies are gaining interest in closed loop recycling of textiles (Oakdene Hollins, 2013). One 

reason is the increasing awareness of the environmental impact of textile by consumers. There 

are initiatives by both governments and retailers or brands to increase the collection of post-

consumer textile. For example Puma, H&M and Jack & Jones started in-store collection 

programs.  

1.4 Report structure 

After an introduction in sustainable supply chains, the cooperating company and closed loop 

recycling in chapter 1, in chapter 2 the research design is given with the problem description, 

research questions answered and the research approach. The framework used in this project 

and the measurement of environmental impact and costs is discussed in chapter 3. Chapter 4 

describes the current production process for yarn. Different recycling methods are discussed in 

chapter 5. In chapter 6 the results are given for the environmental and costs impact of several 

scenarios. Furthermore sensitivity analyses are conducted. Chapter 7 shows the main findings 

of the master thesis project and the implementation of the findings are discussed in chapter 8.   

This master thesis report contributes to the literature in the following way. Instead of focusing 

solely on reducing impacts by recycling, or reducing impacts from transport, this study 

combines these two aspects of closed loop supply chains in textile. In order to minimize the 

environmental impact with closed loop supply chains both aspects are important. The right 

recycling process is selected, and the network design optimized to minimize energy use, CO2 

emissions and costs. Only focusing on one of these aspects might lead to suboptimal decisions.  
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2. Research design 

 
In this chapter the design of the research is given. The problem description is given in section 

2.1, the research question in section 2.2, and the research approach for the problem in section 

2.3. 

2.1 Problem description 

Sustainable innovation is one of Nike’s most important business strategies. In their apparel 

product category the most used fibers are cotton and polyester. There are a number of 

sustainability issues with these materials, such as energy intensive production processes, 

excessive water, land and chemical use and the depletion of valuable resources. A promising 

option to avoid resource depletion and to reduce post-consumer waste is to close the loop in 

supply chains, by recycling. Post-consumer apparel has to be collected, sorted and recycled into 

yarn which can be used for the production of new apparel. The aim is to produce a product of 

equal quality from recycled fibers. This primary recycling is the most beneficial form of recycling 

in resource perspective, since it will decrease the demand for virgin fibers. The main driver in 

this field is to maximize the economic benefits by recovering value from used products. In the 

last decade closed loop supply chains are often also associated with sustainability (Srivastava, 

2007). It is believed that the environmental impact is reduced by avoiding waste and raw 

materials. At end of life, products are used instead of being disposed.  

However closing the loop does not always lead to a “win-win” situation where both the 

business objectives of a company and the environmental performance will benefit. Often a 

tradeoff has to be made between economically rational decisions and environmental 

performance. The main problem is how to select the right transportation and processes in 

order to make the supply chain feasible and sustainable. Therefore several objectives are 

needed, environmental objectives for energy use and carbon dioxide emissions and an 

economic objective. In Guide et al. (2003) the main steps of a closed loop supply chain are 

described. These are product collection, return logistics, inspection/separation, 

remanufacturing/recycling and redistribution. Decisions have to be made on all these steps. It is 

not straightforward that closing the loop is more sustainable than the virgin process for raw 

materials. In a closed loop supply chain first used products need to be collected somewhere, for 

example at the store. Then a reverse logistic network has to be set up, in order to bring the 

used products back to the factory. At the factory the product needs to be disassembled and 

materials made ready for recycling and the production of new apparel. These extra 

transportation moves and processes are likely to be energy intensive and resources have to be 

put in. A framework based on life cycle assessment (LCA) has to be made in order to assess if 

closing the loop is more sustainable than the current supply chain. Also the economic feasibility 

has to be assessed.  
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2.2 Research questions 

From this problem description in section 2.1 the following research question is derived:  

How can the impact of closed loop supply chains on environmental performance and costs be 

determined? 

In order to answer the main question of the master thesis project, the following sub-questions 

have to be answered.  

1. How can the environmental performance be determined?   

 

As stated in the problem description Nike is investigating the option to close the loop in 

their apparel supply chain. A framework is developed in order to assess the 

performance of several closed loop scenarios. The right goal and boundaries have to be 

chosen in order to make an assessment. The framework is used to calculate the costs 

and environmental impact for several impact areas.  

 

2. What is the environmental performance of current yarn supply chains? 

 

In order to compare the environmental performance and costs of closed loop options in 

the supply chain, a reference scenario is needed. This is the current production process 

of polyester and cotton yarn. 

 

3. How can the impact of recycling processes on the environmental and cost impact be 

demonstrated? 

 

The main benefit of a closed loop supply chains is recovering the value from used 

products. This will be done in a number of recycling steps. The framework is used to 

assess the environmental impact and costs of all the steps in a closed loop supply chain 

with recycling. The impact of recycled yarn is compared with yarn from the normal 

supply chain.   

  

4. How can a closed loop supply chain network be designed and what is the impact on 

environmental performance and costs? 

 

In order to help decision making in a closed loop supply chain, the impact of different 

locations in a closed loop supply chain is assessed.  
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2.3 Research approach  

In this section the approach is provided that is used to answer the questions of the previous 

section. First a framework is developed using life cycle assessment in order to determine the 

environmental performance and costs of alternatives. Using a desk search alternative options 

for recycling post-consumer clothes are collected. Data is gathered on the current supply chain, 

transportation and recycling processes. With use of the framework an assessment is made of a 

closed loop supply chain for polyester and cotton products. It is important to note that this is 

different from a complete LCA for a product system. In this project the goal is to compare 

different closed loop supply chain alternatives with each other and the current supply chain, on 

environmental measures. Only a part of the supply chain has to be included for this evaluation.  

After the impact assessment is made for a certain recycling supply chain, a number of 

comparisons are made. They are compared with end-of-life options for post-consumer textile. 

Normally clothes will be incinerated or landfilled for example. It is interesting to see if recycling 

is preferred. The recycling scenarios are also compared with the current production of yarn, 

which is produced with virgin materials.   

Next sensitivity analyses are included to show the impact of uncertain data. Then the feasibility 

of economic and other considerations is given. Also the impact of using different locations in a 

CLSC is shown in the supply chain design.   

Data collection of LCA is very time consuming. For example it is also difficult to gather data on 

some processes in a closed loop supply chain in this industry. These processes are not yet 

common in the industry, and therefore not included in general databases. Also companies are 

reluctant to publish data due to confidentiality issues. A hybrid data collection method is used, 

where specific data is used if available, and generic data from literature or databases otherwise. 

 

 

  



8 
 

3 Environmental impact and cost measurement 

 
In this chapter the determination of the environmental and cost impact is introduced. In 3.1 the 

environmental measures are discussed. Section 3.2 introduces the processes included in this 

project and section 3.3 describes the impact measurement of transport. In 3.4 a framework is 

made for environmental and cost impact measurement.   

3.1 Evaluation 

At Nike there are three main product categories, footwear, apparel and equipment. For the 

master thesis project, the apparel category is chosen with cooperation of Nike, since the 

materials used in apparel are most likely targets for closed loop recycling. The natural fiber 

cotton and the synthetic fiber polyester, or polyethylene terephthalate (PET) are the most 

common raw materials in the apparel industry. Cotton and polyester represent 34% and 45% of 

the global fiber production (Bartl, 2011). The consequences of producing cotton on the 

environment are the water, land, energy consumption and pesticides that are used (TNO, 

2010). The dominant contributions of polyester are the use of energy intensive resources and 

the energy use for production (TNO, 2010).  

There is no scientific consensus about environmental impact measures. Based on the main 

contributors on the environmental impact for cotton and polyester and Nike’s LCA, measures 

are chosen. In Nike’s LCA of the current supply chain, water and land use, chemistry and waste 

are used next to energy demand and carbon emissions. For the framework in this project 

energy use (non-renewable) and global warming potential are used as impact categories. For 

GWP, CO2 equivalent emissions are the most common reference (IPCC, 2007). In this report CO2 

equivalent emissions are used. These measures are commonly accepted, which increases the 

availability of reliable data. Non-renewable energy use is called energy use in this report. CO2 

equivalent emissions are called CO2 emissions in this report.   

Multi-criteria analysis is used to analyze the impact of recycling polyester and cotton. The 

criteria will be compared with each other directly. It is not straightforward what decision to 

make based on this approach. A holistic view is needed to compare different alternatives on 

multiple criteria. Two functional units are chosen for the assessment. To compare end-of-life 

scenarios for post-consumer clothes 1 kg of cotton or polyester waste is used. To compare yarn 

production, 1kg of yarn is used as a functional unit.  

3.2 Processes 

Not the entire life cycle of Nike products is included in the assessment. This is not necessary 

since it is not likely all the stages are influenced by closing the loop.  
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Defining the boundaries of the system is important in order to make the right decisions on 

recycling. For the current supply chain of polyester and cotton the scope is from the farm or 

wellhead (cradle), to the finished yarn (gate). See Figure 1 for an overview of the supply chain. 

In order to make a comparison, the gate is finished yarn. The steps after the yarn 

manufacturing are not necessary for the comparison of recycling options, since they will not 

influence the production process, distribution and use. Only the processes and transport that 

are likely to be changed or added are included in the system boundaries. Note that the impact 

of normal end of life processes of used apparel is also included in this project. For example 

energy is recovered from incinerating used apparel. The cradle of the closed loop supply chain 

is textile waste and the gate is finished yarn. The processes included are collecting, sorting, fiber 

recycling, yarn processing and the transportation in between. 

 

Figure 1: Apparel supply chain 

  

3.3 Transport 

The main environmental impacts from transportation are CO2 emissions and cumulative energy 

demand. As primary impact category CO2 equivalent emissions will be used, since this is the 

most common reference to the Global Warming Potential (GWP) (IPCC, 2007). Other 

greenhouse gasses from transportation include methane (CH4) and nitrous oxide (N2O). 

However their relative impact is very limited. CO2 has an emissions factor of 70.101 kg/GJ, CH4 

0.0028 kg/GJ and N2O 0.00057 kg/GJ (EPA, 2009). Therefore CO2 emissions in transport are 

used as reference for CO2 equivalent emissions.   

The energy demand can be calculated based on the CO2 emissions. The NTM (Network for 

Transport and Environment) methodology is used in to calculate the environmental impact 

from transport. This method provides a high level of detail for an accurate evaluation of 

transport emissions. This method also provides estimates for data that is not available in 

companies. NTM is cooperating with the European Committee for Standardization (CEN) in 
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order to develop a European standard for the calculation of the environmental impact from 

transportation. Other methods for the calculation of transport emissions are Artemis, STREAM, 

EcoTransIT and the GHG Protocol. They all have well described background but are less suitable 

for the assessment in companies for the reasons explained in Van den Akker et al. (2009).  

For the four main transportation modes, road, rail, air and water there are different calculation 

methods. In this project air transport is not considered, since transport will be done 

sustainable. Water and road transport are the most suited in textile transport, since these 

modes can be used flexible.  

For road the fuel consumption of the vehicle depends on the distance and load factor. For 

water, the fuel consumption is assumed to only depend on distance. Also vertical handling is 

included for the impact of cranes and reach-stackers (Van den Akker et al, 2009).   

Parameters: 
  : Distance travelled 
       

  : Fuel consumption for empty transport mode   

      
  : Fuel consumption for full transport mode   

    : Fuel consumption for mode   
   : Load factor based on weight 
    : Emission of fuel used in transport mode   
   : Terrain factor  
      

  : Maximum weight capacity of transport mode   
     
  : Emission for transporting 1kg of material via road with transport mode   
      
  : Emission for transporting 1kg of material via water with transport mode   

 

     
    (       

  (      
         

 )    )         
 

      
    

 

      
            

 

      
    

 

3.4 Framework 

The potential environmental and economic benefits of a closed loop supply chain should be 

investigated before a decision is made on recycling. Often reducing the environmental impact 

of companies focusses on decreasing the impact of one specific business aspect. For example 

transport emissions are reduced or equipment is replaced for more environmental friendly 

options. While there might be an environmental benefit in these efforts, it is crucial a company 

takes a broader view, and also includes processes before or after their own part of the supply 

chain. For carbon emissions, these are Scope 3 emissions (Bhatia et al, 2011). Scope 1 emissions 

are emissions created directly from company processes. Scope 2 emissions are indirect 
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emissions from electricity used by the company. Scope 3 emissions are all other indirect 

emissions, created up and downstream in the supply chain.   

This extended view is the basis of the entire assessment in this project. If recycling used apparel 

has to be assessed, all the added processes and transportation of both Nike and other players 

in this closed loop supply chain should be included. A network design model is developed in 

order to help decision making. The overall goal is to optimize the environmental performance 

of all the processes in the closed loop supply chain.  

3.4.1 Objective 

In order to support decision making in a closed loop supply chain, an objective is needed. In this 

project only option 1 and option 2 of Table 1 are considered. In option 1 either one of the 

environmental impacts (j) considered in this project can be minimized. In this objective (j) is 

either energy use or CO2 emissions. In option 2 the cost of a closed loop supply chain can be 

minimized.  

However other objectives could also be interesting. One of the environmental impacts can be 

minimized subject to a maximum of the total costs in the system in option 3. This maximum is 

for example the current price of yarn. It can also be the current price multiplied with a certain 

percentage that a company is willing to pay for recycled yarn (option 4). In the last option, the 

cost impact of the closed loop supply chain is minimized, but the environmental impact of 

recycled yarn should be smaller or equal than the current impact of yarn.  

Objectives  

Option 1                        ( ) 
Option 2                
Option 3                        ( ) 

                               
Option 4                        ( ) 

                
                          

Option 5                
                         
                        

Table 1: Objectives 

3.4.2 Model 

The approach of the model described below takes potential decision criteria into account in 

order to systematically show the optimal closed loop supply chain. By selecting the right 

locations and transport movements, this model can minimize the environmental impact or the 

costs of the system. 
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Index sets: 
   : Set of collection locations   
   : Set of sorting locations   
   : Set of recycling locations   
 
Parameters: 
    : Costs for transport between   and    
    : Costs for transport between   and    
         : Costs for collecting at  , sorting at   and recycling at   
    : Environmental impact for transport between   and    
    : Environmental impact for transport between   and    
         : Environmental impact for collecting at  , sorting at   and recycling at   
 
Decision variables: 
         : Decision for using collection facility  , sorting facility   and recycling facility    
 {0, 1}  
        : Decision for transport between   and    and between   and   
 {0, 1}  
 
Objective functions: 

    ∑     
 

 ∑∑       
  

 ∑     
 

 ∑∑       
  

 ∑     
 

 ( ) 

 
    

 

    ∑     
 

 ∑∑       
  

 ∑     
 

 ∑∑       
  

 ∑     
 

( ) 

 
     
 
∑       (3) 
∑       (4) 
∑       (5) 
∑            (6) 
∑            (7) 
   (   )     (   )      (   )      (   )       (   )  (8) 
 
Note that in this model the environmental impact is either energy use or CO2 emissions. The 

cost impact is minimized in (1). One of the environmental impacts is minimized in (2). The 

minimization of the environmental impacts is subject to the following constraints. Constraint 

(3-5) guarantee there is always at least one location opened. Constraint (6-7) ensure transport 

only goes to one destination. Constraint (8) guarantees the domain of the decision variables.   
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4 Current supply chain 

 
In this part the current supply chain for virgin cotton yarn and polyester yarn is evaluated. For 

the current supply chain of yarn, the processes and data of an LCA in Nike’s Material 

Sustainability Index (MSI) are used (Nike, 2012).  

4.1 LCA current supply chain 

The processes in Nike’s LCA are representative for the yarn used in Nike products. For the MSI a 

LCA is conducted for fabrics used by Nike. The cradle to gate scope of this lifecycle starts with 

the raw materials and ends with dyed fabric. Only the first part of the life cycle, until finished 

yarn, will be used in this assessment.  

The most interesting impact categories in Nike’s LCA for this project are GHG emissions, 

cumulative energy demand and water use, since they use typical LCI conventions for the 

calculation of these measurements. As a reference for GHG’s, kg of CO2 emissions is used for all 

the transportation and processes according to the GHG protocol method. Cumulative energy 

demand is all the energy in MJ from transportation and processes, including feedstock energy 

embodied in raw materials. Water use is all the water in liters added during processes, for 

example irrigation during crop growing and cooling water. Data is gathered mainly from 

literature and LCI databases.  

The other impact areas in Nike’s LCA are land use, chemistry and waste. There is no 

standardized method for measuring these impact areas. However they are important for Nike’s 

business. Land use is the kg of raw material that can grow on one hectare of land. Chemistry is 

divided in four categories, carcinogenicity, acute toxicity, chronic toxicity and reproductive 

toxicity. For all the substances used in different processes for each material, a score is given 

from 1 for moderate to high hazardousness, to 4 which is generally recognized as safe. The 

average score for each category is used. Waste is divided in five categories, hazardous waste, 

municipal solid waste, industrial waste, recyclable/compostable waste and mineral waste. They 

are measured in mg/kg fabric.    

4.2 Processes 

The cotton yarn process contains a few key processes that have an environmental and cost 

impact. See Figure 2. The first process is the conventionally growing of cotton in different parts 

of the world. Also ginning, the process of separating cotton fiber from the seed, is included in 

the farming step. The next step is the spinning of yarn from cotton fibers. This step includes 

carding, drawing and ring spinning of yarn. The fineness of cotton is measured in cotton count, 

expressed as singles. This is the linear density of the yarn. The higher the singles, the finer is the 
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yarn. Cotton used in shirts by Nike is often between 20s and 40s. See Appendix III for the 

energy, CO2 and water impact.  

  

Figure 2: Cotton production 

Also polyester has a few steps for the yarn production. The first step is the extraction of crude 

oil, the raw material for polyester. There are two main methods for the production of PET. Oil 

can be refined and via reaction steps either dimethyl terephthalate (DMT) or terephthalic acid 

(TPA) is made. The classic method is to produce PET from DMT, but nowadays the TPA route is 

more common. DMT or TPA is first combined with the monomer ethylene glycol (EG) to 

produce an intermediate product, the oligomer BHET. This oligomer is then polymerized into 

PET, and a part of the EG is recovered again.  

The end product of the previous steps is polymerized PET pellets. The MSI uses a TPA route for 

the production of PET pellets. In the following step the pellets are melt-spun into filament yarn, 

also known as partially oriented yarn (POY). This yarn is often texturized in drawn texturized 

yarn (DTY). See Figure 3 for the overview of process steps. The fineness of polyester yarn is 

commonly expressed as denier/filaments. Denier is the total linear mass of the yarn, and the 

filaments are the number of fibers in the yarn. The lower the amount of denier/filament, the 

finer is the yarn. A polyester yarn commonly used by Nike has the specification of 75D/72f.  See 

Appendix III for the energy, CO2 and water impact of polyester production.  

 

Figure 3: Polyester production 
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5 Closed loop supply chain 

 
In this chapter the different processes in a closed loop supply chain are described. There are 

three main steps, collecting, sorting and recycling. As a reference end-of-life option incineration 

is included.  In Appendix II and overview is given of the data sources, and in Appendix III an 

overview of the environmental impacts of these processes.  

5.1 Collecting 

The first part of a closed loop supply chain in apparel is to get products back after a consumer 

has used them.  

A likely option to collect post-consumer apparel is by using an in store collection box. Nike has 

experience with this type of collection from their shoe recycling program Reuse-a-shoe. The 

boxes can be placed in stores owned by Nike or other retailers. In order to demonstrate the 

environmental impact for this collection option five stores are selected. The stores in 

Amsterdam, Paris, Hamburg, Barcelona and Rome are selected since they are situated in 

different parts of Western Europe. The environmental impact from the user to the collection 

point will not be taken into account. It is assumed the user will only return used clothes when 

already going to the store, therefore this trip is not allocated to the collecting. The 

environmental impact from heating and electricity in the store will not be allocated to the 

collecting. A collection box will only use a very small part of the store.   

Another option for Nike is to make use of the inflow from general collection boxes. These are 

boxes in public where people return their used shoes and clothing. This alternative has a 

number of benefits. First people are already used to bring their shoes and clothing to these 

boxes. They also are a wide spread collection method in Europe. Therefore the inflow of used 

clothes is probably high when collaborating with a collection organization. Also the return 

logistics network already exists.  

5.2 Sorting 

The products have to be separated based on the material of the fabric. For Nike, 100% cotton 

and 100% polyester have to be separated from the textile waste. The sorting might also be 

based on the color of the returned product. For example the difference between light, medium 

and dark colors can be useful further in the process in order to dye or print fabric from recycled 

material. After the sorting, the post-consumer goods will be compressed in order to increase 

the load factor of a container. Different locations are considered for the sorting. One facility in 

Wormerveer in the Netherlands is interesting, since this facility has an automated sorting 

machine. If this machine can’t be used, people with knowledge of fabric separate the cotton 

and polyester from the inflow manually. The next facility is located in Wolfen, Germany. This is 
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the largest textile sorting company in Europe. Also sorting in India is considered, since it is on-

route to most Asian recycling facilities and labor costs are lower than in Europe. The 

environmental performance of the sorting is based on electricity and natural gas use of the 

facility. Only the impact from materials that will be recycled in the next step is allocated. This is 

assumed since there will be no losses during transport. In the sorting process, material will be 

separated in other streams, but all the material will be used. For example one kilogram of 

material is collected and brought to the sorting facility. It exists of 50% cotton and 50% 

polyester. Only the recycling of polyester is included in this project, so only 50% of the energy 

used and CO2 emitted is accounted to the recycling of polyester. This can be assumed since the 

cotton material will also be further processed, but this is not included in this assessment. The 

environmental impact from transporting the cotton to the sorting facility is accounted to the 

cotton processing. The impact of sorting is based on data from a Dutch sorting company.  

5.3 Recycling 

The used apparel has to be returned into separate fibers in order to make new yarn out of 

them. This report focusses on the recycling of polyester material, since data for cotton recycling 

is not available. As a reference to the end-of-life management incineration is included since this 

is the standard option in Europe. In Appendix II an overview of the data sources is given, and in 

Appendix III the impacts are shown.  

5.3.1 Cotton recycling 

For cotton there is only one option, to use a mechanical process, see Figure 4. The first step in 

this process is to prepare the used product for recycling. All pieces other than cotton have to be 

cut out, such as zippers buttons and fabric from other material. The next step is the fiberizing 

process where the material is returned into single fibers. The fibers can be spun into yarn as in 

the virgin process. In this process it is not possible to remove color from the fibers. This basic 

recycling method is nowadays mostly done in India and the north of Africa, for shoddy 

production (Oakdene Hollins, 2013). Post-consumer material is fiberized and re-spun into yarn 

used for the production of clothing and blankets. In more developed countries post-consumer 

cotton is often recycled open-loop, where it is downgraded to be used as isolation material for 

example.  

The energy use is estimated to be really small by experts. However the yield is low, since a lot of 

fibers in the output material are too small to be spun. A high amount of virgin cotton has to be 

added. The water use is high during the farming process, 2120L/kg cotton. Since no water is 

used in the recycling process, this amount could be saved for every kilogram of recycled cotton. 

Also all the chemicals used in the farming of cotton are avoided. The virgin process uses 

75.42MJ energy per kilogram cotton. 16.67MJ is used in the farming process, and 58.76MJ in 

the spinning process. The maximum benefit in cotton recycling is 16.67MJ, since spinning is still 
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necessary. Both transport and process energy has to be deducted. It is assumed there will be 

little or no benefit on energy use.  

 

Figure 4: Mechanical recycling of cotton 

5.3.2 Polyester recycling 

There are a few methods to create polyester drawn texturized yarn (DTY) by recycling. All these 

methods are able to produce the fineness of polyester yarn that is commonly used by Nike. The 

technologies available are based on recycling methods used for recycling bottles into fiber. 

Before the recycling process, first bottles are collected. The collected bottles are then pre-

washed, sorted on color and material, chopped into flakes, washed rinsed and dried. In this 

project post-consumer textile is recycled into fibers. Therefore a similar process is needed to 

chop the material into smaller pieces and remove all the pieces that can’t be recycled. This is a 

crucial part of the recycling process, since the yield of the process is for a large part dependent 

on this step. However, no information is available for the pre-treatment of post-consumer 

textile. Therefore the environmental impact and the yield are initially assumed to be the same 

as the process for pre-treating bottles. The process in the article by Shen et al. (2010) is used.  

One recycling method is a mechanical route, where the polyester is melted, extruded into 

pellets and subsequently converted into partially oriented yarn (POY). See Figure 5. This is the 

most common process for the recycling of PET bottles into fibers, and large scale production is 

available. One of the yarn manufacturers that recycle yarn this way is located in Suzhou, China. 

The main downside of this process is that color and other pollution of the polyester are not 

removed. This is no big issue for recycling bottles since clear bottles with little or no 

contamination are used as input. Apparel is always colored and often contains a few 

percentage of other material than PET fiber. This process has a grey yarn as output, and 

therefore can’t be used for all the purposes of virgin yarn. Also the polyester is stressed 

mechanically due to the reheating of the material. This means it technically can’t be considered 

equal quality compared to virgin yarn. The yarn also contains all the contamination that is not 

removed from the post-consumer material. When the material is recycled multiple times, it is 

suited for use in apparel. Therefore it is not a full closed loop option on the long term. However 

the method is commercially available for recycling yarn waste. Nike’s internal data for the 

environmental impact of this process is used.  

Mechanical recycling
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Figure 5: Mechanical recycling polyester 

Others methods for recycling polyester are chemical routes. These yield a higher quality of fiber 

than mechanical recycling, and are comparable to virgin yarn. These methods are full closed 

loop options, since the input material will be converted into the original raw materials for the 

production of polyester.  

There are a few different processes known, including hydrolysis, glycolysis, methanolysis, 

ammonolysis, and aminolysis. Glycolysis and methanolysis are the main chemical methods used 

for PET recycling. In these processes the polyester is depolymerized into smaller pieces. It can 

be depolymerized partially to oligomers or fully to monomers (Shen et al, 2010). The first 

process (Figure 6) is used in small scale for bottle-to-fiber recycling in Taiwan. Polyester flakes 

are depolymerized using glycolysis into oligomers. They are filtered and polymerized into pet 

pellets. Although the process is for PET bottles, the method will be similar for recycling 

polyester fibers.  

The other process (Figure 7) is used in small scale to recycle post-consumer textile in Japan. In 

this process, the polyester flakes are depolymerized into monomers using methanolysis. The 

output is DMT and EG which can be re-polymerized into PET pellets. The waste of both 

processes is incinerated with energy recovery. Next the pellets can be processed in the normal 

way to retrieve drawn and texturized yarn. The main benefit is that the color and 

contamination of other materials can be removed in the process. The output is pure polyester 

yarn, comparable to the virgin yarn. The data is used from Shen et al. (2010). This article also 

included transport of PET bottles. The energy and CO2 emissions are estimated with the NTM 

method and subtracted. Laursen et al. (1997) is used for the impact of DTY production. The 

benefit of the glycolysis is that the reaction is on lower pressure and temperature than 

methanolysis (Achilias and Karayannidis, 2004). On the other hand this process is more difficult 

to purify, and therefore less suited for textile recycling.  

 

Figure 6: Chemical recycling polyester: back-to-oligomer 
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Figure 7: Chemical recycling polyester: back-to-monomer 

5.4 Incinerating  

Normally apparel waste that is not reused or recycled is incinerated in Europe. In combined 

heat and power (CHP) plants, both energy and heat will be recovered. The main advantage of 

incineration plants for waste management of textile is that they are used for all types of waste. 

Therefore textile does not have to be separated from other waste streams. There are numerous 

of these plants in Europe, so waste doesn’t have to be transported over long distances. The 

main environmental impact from incinerating waste is the emissions to the air. The carbon that 

is embodied in the material is released to the air. Due to the heat and energy recovery, the 

energy and CO2 emission impacts from regular generation can be substituted. This means that 

the impact of fossil fuels in the normal production of energy is avoided. According to Shen and 

Patel (2010), in an average European plant 60% of the energy content of the material is 

recovered.  
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6 Results 

 
In this chapter the environmental impact and costs of a closed loop supply chain in apparel is 

shown. In 6.1 the transportation to standard recycling locations is explained. In 6.2 the energy 

and CO2 emissions impact is given for the standard scenarios, mechanical recycling in China, 

back-to-monomer recycling in Japan and back-to-oligomer recycling in Taiwan. Also sensitivity 

analyses are conducted on uncertain parameters. The impact of changes in the network design 

is treated in section 6.3. Section 6.4 gives insight in the costs of closed loop supply chains for 

apparel. In section 6.5 the optimal scenarios for environmental measures and costs are 

determined.  

6.1 Transportation 

In this part the environmental impact from transportation between locations in the closed loop 

supply chain is determined. The NTM method is used for the calculation of CO2 emissions and 

energy from this transport (NTM). NTM’s fuel consumption data for different transportation 

types is used. The NTM method is based on European transport, but will also be used to assess 

the impact of transport in Asia. In Asia trucks are often older than in Europe, and therefore 

have lower emission standards. Also the roads are worse with a lot of potholes for example. It is 

likely the NTM method will underestimate the emissions for truck transport in Asia. Truck 

distances are determined using Google Maps (Google). Nike data is used for ocean distances.    

Third party logistics providers will be used for the transportation of the collected material from 

the stores to the sorting company. The use of 3PL providers is the normal procedure for return 

logistics in Nike’s case. Nike doesn’t have its own logistics network, and their stores are 

widespread in Europe. The collected material is also assumed to be low in volume when 

transported, since stores do not have much storage capacity. Therefore the use of 3PL services 

for the transport of collected apparel is chosen.  

Whenever a collection box is full, the store triggers a request for transportation. A van picks up 

the collected clothes, and brings this to a nearby hub. Since 3PL providers combine orders, only 

the actually driven kilometers are accounted to the package. A small cost-based evaluation is 

made between UPS and DHL for the shipment between the five chosen stores and Nike’s 

logistics center in Laakdal, Belgium. UPS and DHL are chosen since Nike already has contracts 

with these providers for reverse logistics. A standard collection box for the collection of post-

consumer shoes will be send with 25kg of apparel. Shipping with DHL is three times as 

expensive as shipping with UPS. The large difference in price can be clarified by the way these 

providers determine their tariffs. UPS has fixed tariffs for a package, and DHL has tariffs per KG.  
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No actual data is available from UPS on their processes, so it is assumed the package goes to 

the hub closest to the store, and can then be transported to the hub near the destination 

directly by truck and semi-trailer. It is assumed the return logistics are efficient, so materials are 

not long in inventory at the hubs. The load factor based on weight of UPS collection vans is 40% 

on average and for UPS trucks with semi-trailer 85% on average. The load factor for UPS trucks 

is high due to the consolidation of different orders. For the collection vans the road type is 

urban, and for the truck it is highway. The gradient of the roads are assumed to be zero. If the 

collected material is sorted in Wormerveer in the Netherlands it is transported directly from the 

store to the sorting company.   

The separated cotton and polyester stream is then shipped to fiber recycling facilities. The 

maximum weight of sorted material that can be put in a TEU container is determined with data 

of the sorting facility. This is 10850 kilogram. Sorted material is compressed in bales to 

maximize the amount that fits in the container. The products are transported directly with a 

truck with semi-trailer to the Europoort in Rotterdam. Then the container is shipped with a 

6000 TEU vessel. For the back-to-oligomer recycling of polyester, the container is shipped to the 

Kaohsiung port in Taiwan, and by truck to Taipei city. For the back-to-monomer recycling, the 

products are shipped to Kobe in Japan. From Kobe the TEU is shipped to the recycling company 

in Matsuyama directly with a 333 TEU vessel. The recycling facility for the mechanical recycling 

of polyester is situated in Suzhou in China. The container is first shipped to Shanghai, and 

trucked to the recycler. See Figure 8 and Figure 9 for the overview of the locations in the closed 

loop supply chain.  

 

Figure 8: Sorting in Wormerveer 
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Figure 9: Recycling overview 

In Table 2 and Table 3 the environmental impacts for the transportation of 1kg of material from 

store to recycling facility are shown for the standard situation where products are collected in-

store, and sorted in Wormerveer in the Netherlands. Since the recycling facilities are located 

close to each other, and the shipments are of equal size, the CO2 emissions for all three 

scenarios are nearly the same.  

Transport Energy (MJ/kg) 

In-store – China   3.38 
In-store – Japan   3.55 
In-store – Taiwan 3.36 
Table 2: Energy transport  

Transport CO2 (kg CO2/kg) 

In-store – China   0.25 
In-store – Japan   0.27 
In-store – Taiwan 0.25 
Table 3: CO2 emissions transport 

6.2 Environmental impact with sensitivity analyses 

In this part the CO2 emissions and energy use of both the processes and transportation is 

combined for three standard recycling scenarios. Several parameters with uncertain values 

have been chosen that might have an impact on the results. Sensitivity analyses are conducted 

on these parameters to determine the difference in results with other values.  
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6.2.1 End-of-life options 

In the first assessment the treatment of one kilogram post-consumer material is evaluated. 

There is a fixed amount of input material in this situation. Normally this material is incinerated 

with the recovery of energy. Instead of incinerating, recycling polyester is compared as 

alternative end-of-life option. Three recycling options for polyester are compared on energy 

use and CO2 emissions with incineration. Water use is not interesting for polyester recycling, 

since little water is used in the virgin process. The same amount water also has to be used in 

the recycling processes. In the standard situation post-consumer material is collected in stores 

and sorted in the Netherlands. It is then transported to China for mechanical recycling, Japan 

for back-to-monomer recycling and to Taiwan for back-to-oligomer recycling.  

Before the actual recycling processes, the apparel needs to be pre-treated. The removal of 

unwanted material, cutting the material, washing and drying are examples of such treatments. 

However the yield of this process is unknown. For PET-bottles the yield is 75% (Shen et al, 

2010). For polyester clothing this is likely to be lower. Post-consumer clothing is not a 

homogenous stream of input, and has more unwanted materials than PET-bottles. Based on 

previous experiments with recycling polyester material by Nike, initially a yield of 60% is 

assumed for the total recycling process. The left over material is assumed to be waste, but it is 

not likely to be incinerated with energy recovery since the recycling facilities are located in Asia. 

The normal waste management option there is landfill. For the landfill of polyester, there are 

no CO2 emissions and no energy is used.  

One kilogram of post-consumer material is incinerated, recycled mechanically, entirely broken 

down chemically or partly broken down chemically. To show the benefit of each recycling 

process, the environmental impact of producing the same amount of virgin material as the 

output of the recycling process is subtracted from the impact of recycling. In Appendix I the 

calculations for the energy use and carbon dioxide emissions for these recycling scenarios are 

given. In Figure 10 and Figure 11 the impacts for recycling 1kg of polyester waste is compared 

with incinerating the same material.   
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Figure 10: Energy use 1kg of waste 

 

Figure 11: CO2 emissions 1kg waste 

From Figure 10 and Figure 11 it becomes clear all the recycling processes are beneficial in terms 

of energy impact and CO2 impact compared to incineration. When the yields of recycling are 

lower than 26%, 44% and 34% respectively for mechanical, back-to-monomer and back-to-

oligomer recycling, incineration is preferred when looking at energy use. However with 

recycling, the yarn can be used for further processing into new clothing. With incineration the 

energy recovered can be used.  

Based on CO2 emissions, it is impossible to prefer incineration. If the waste is not burned, the 

carbon remains in the product. The choice for a specific recycling process also depends on the 

use of the output material. The chemical processes have the least environmental benefit 

compared to a virgin process, but the quality of yarn is comparable to virgin yarn. The 

mechanical process is preferred in terms of energy use and CO2 emissions. The use of this 

recycled yarn might be limited since the quality is lower than chemically recycled yarn. 

Mechanically recycled white yarn is for example not possible with this process, since color is not 

removed.   
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In Figure 12 and Figure 13 the energy and CO2 impact is shown for the situation where the 

waste is incinerated with energy recovery instead of landfilling it. In the near future also 

countries in Asia will start with waste incineration. This will increase the benefit in energy 

consumption, but the CO2 trapped in the waste will be released in the incineration process. 

Overall, recycling remains the preferred method for the treatment of one kilogram of polyester 

waste.  

 

Figure 12: Energy use 1kg yarn with process waste incineration 

 

Figure 13: CO2 emissions 1 kg yarn with process waste incineration 

6.2.2 Yarn production 

Instead of a fixed amount of input material as in the previous section, in this situation there is a 

fixed amount (1kg) of output material. To get a better view on the impacts of recycling, the 

production of one kg polyester yarn is chosen as a functional unit in this section. It is important 

to note that no burden is assigned to the waste material used as input. For example, the 

environmental impact from incinerating waste if it is not recycled is not assigned to the waste. 

The calculations for the impact of producing polyester yarn are shown in Appendix I. In Figure 

14 and Figure 15 the energy and CO2 impact for transportation, sorting and the recycling 

process is shown. The total yield is again 60%, and the leftover waste is not incinerated. Based 



26 
 

on the energy and CO2 impacts all three recycling options are preferred compared to the virgin 

production of polyester, for this yield percentage. Mechanically recycled yarn uses 68% less 

energy and emits 43% less CO2 than virgin produced yarn. Even the recycling methods with the 

highest impacts, back-to-monomer recycling, uses 38% less energy and emits 22% less carbon 

dioxide. Back-to-oligomer recycling is in between, and respectively saves 50% and 31% on 

energy use and CO2.  

When the process waste is incinerated, the energy use will benefit, as seen in Figure 16. 

Mechanical, back-to-monomer and back-to-oligomer processes use 77%, 46% and 59% less 

energy. However CO2 emissions increase in this case. See Figure 17. The processes emit 

respectively only 26%, 5% and 15% less CO2 than a virgin process.  

 

Figure 14: Energy use 1kg yarn 

 

Figure 15: CO2 emissions 1kg yarn 
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Figure 16: Energy use 1 kg yarn with process waste incineration 

 

Figure 17: CO2 emissions 1kg yarn with process waste incineration 

6.2.3 Sensitivity analysis yield 

A sensitivity analysis is conducted for the yields of the pre-treatment for recycling since they 

are likely to be lower than in a bottle recycling process. Polyester apparel has more impurities 

compared to bottles. These might be prints, zippers, buttons, labels and parts of other 

materials. Before recycling they have to be removed, and less material remains for recycling. If 

the yield is lower, more post-consumer material needs to be collected sorted and transported 

and this will increase the environmental impact. In Figure 18 and Figure 19 the impact is shown 

for efficiencies of 5% to 100%. Only with a very low yield of 10%, the energy for the production 

of 1kg of polyester yarn via the back-to-monomer process is equal to the energy use in virgin 

yarn. For CO2 emissions the threshold level of the yield is 18%. Since higher yields than 18% are 

likely to be realized in recycling post-consumer polyester, it can be concluded that recycling is 

beneficial in terms of energy use and CO2 emissions.  
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Figure 18: Energy use per yield level 

 

Figure 19: CO2 emissions per yield level 

With lower yields, the energy and CO2 emissions will increase substantially. The reason for this 

is the increased transportation and sorting needed for the same output. In Figure 20 and Figure 

21 the energy use and CO2 emissions per yield level is shown when the process waste is 

incinerated. The energy use of recycling will never exceed the energy use of virgin polyester 

yarn production. With lower yields, there is more waste material. This material is incineration 

with energy recovery. However this incineration will result in high CO2 emissions in Figure 21. 

The break-even point for CO2 emissions of mechanical, back-to-monomer and back-to-oligomer 

recycling with a virgin production process, is respectively with yields of 45%, 60% and 50%. 

These values are not unlikely for recycling processes. In a situation where the yields are lower, a 

virgin process is preferred based on carbon dioxide emissions. The consideration has to be 

made between lower emissions on one hand and lower energy use on the other hand.  
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Figure 20: Energy use per yield level with waste incineration 

 

Figure 21: CO2 emission per yield level with waste incineration 

In Figure 22 the total emissions are separated in transport and process emissions. The base 

scenario is used with in-store collecting and sorting in Wormerveer. It shows that the transport 

emissions are only a small part of the total. Respectively 13%, 10% and 10% of the total 

emissions arise from transportation. Although transportation emissions are a relatively small 

part of the emissions, decreasing these emissions is interesting. Emissions from the recycling 

processes are more or less fixed. They can only be decreased if processes are scaled up. 

However for transportation a lot of factors can be changed to decrease emissions. The most 

obvious options include changing location in the supply chain, the use of more environmental 

friendly transportation types and increased load factors. Abating of energy and CO2 emissions is 

much easier and within Nike’s scope.  

There is uncertainty in the amount of material needed as input for the recycling process, in 

order to get the same amount of output. Due to these uncertain efficiencies, the relative 
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impact of transportation compared with the total emissions change. In Figure 23 the different 

relative CO2 impact of transportation is shown. With low efficiencies transportation becomes an 

important part of the total environmental impact of the system. The abatement of 

environmental impacts from transportation is more important when yields in the recycling 

process are low.   

 

Figure 22: Transport vs. process emissions 

 

Figure 23: Relative impact transport  

6.3 Network design 

In this closed loop supply chain transport has an important impact on the environment 

depending on the yields of the recycling processes. Besides the choice between recycling 

processes, the choice of locations for the network is an important decision for Nike. Since this 

closed loop supply chain not yet exists, network design is a good option to optimize the 

environmental performance and costs. The impact of several changes to the initial network 

design will be shown in this part. 
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6.3.1 Sorting locations 

After post-consumer apparel is collected in stores, a suitable location for the sorting has to be 

selected. In the standard scenario the location is Wormerveer in the Netherlands. Two other 

possible locations are selected in Europe. Post-consumer goods are shipped directly from the 

store using a parcel network to these sorting locations. The first one is Wolfen in Germany. This 

location is selected because it houses the largest sorting facility in Europe. See Figure 24. Sorted 

material is transported to the port of Rotterdam for further processing. 

The other location is in Switzerland, due to its central location for the selected stores Western 

Europe. This might reduce the distance from stores to sorting facility. The sorted material is 

then transported to the port of Genoa in Italy for further shipping per vessel. In Figure 25 the 

overview of the supply chain is showed.  

In Figure 26 material is sorted in India. Sorting costs in India are estimated to be only 11% of the 

sorting costs in Europe. First the items are consolidated in Nike’s logistics centrum in Belgium. 

However the load factor based on weight for the shipment to India is assumed to be 25%, 

instead of 50% in the normal situation. The load factor is low since the post-consumer material 

is not yet compressed into bales. This assumption is made based on a compression factor of 2 in 

the sorting facility. If clothes are compressed before shipping, sorting is not possible. In Figure 

27  the CO2 impact from shipping 1kg of material from stores to the recycling facilities is shown, 

via all different sorting facilities.  

 

Figure 24: Sorting in Germany 
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Figure 25: Sorting in Switzerland 

 

Figure 26: Sorting in India 
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Figure 27: Sorting locations 

The optimal location is dependent on the location of the stores used in this assessment. The 

best option in terms of CO2 emissions is to sort the material in Switzerland. CO2 emissions are 

reduced with 10% compared to sorting in the Netherlands. The distance from stores to sorting 

facility is reduced due to its central location. Also the impact from sorting facility to recycling 

center is reduced, since the vessel departs in Italy instead of Rotterdam. Sorting in Germany 

increase CO2 emissions with 11% compared to the standard scenario of sorting in the 

Netherlands. The main difference is the longer distance from sorting location to the port in 

Rotterdam.  

Sorting in India increases the carbon dioxide emissions with 51% compared to sorting in the 

Netherlands. Only 5% increase is caused by the extra miles by the vessel. The main contribution 

to the increase is that post-consumer clothes are not compressed before shipping. If sorting 

takes place in Kandla, this is not be feasible. Normally, after sorting the clothes are compressed 

to increase the shipping volume of a container. 10850kg will fit in a TEU after compressing, 

equal to a load factor of 50% in weight. Less post-consumer material will fit in the container, 

and the impact of transportation will increase. In Figure 28 the CO2 impact of shipping with a 

load factor of 25%, 37.5% and 50% is shown. Emissions increase with 14% for and 43% for load 

factors of 37.5% and 25% compared to the standard scenario of a 50% load factor based on 

weight.  
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Figure 28: Different load factors 

6.3.2 Recycling locations 

In the previous scenarios, the locations of companies providing these recycling methods are 

used. In this section other possible markets for Nike are examined. For sorting the standard 

scenario is used, it is done in the Netherlands.  

An interesting option to consider is to use a recycling facility in India. The material is shipped 

from the port of Rotterdam to Pipavav in India. Then it is further transported 170km by truck 

with semi-trailer to a textile area in India. This recycling location is chosen since it is closer to 

Europe than the location considered previously. There also is a large textile industry in India for 

the production of apparel. The availability of factories is important, since sub-optimization of 

distances should be avoided. If recycled yarn has to be shipped to south-east Asia for apparel 

production, the advantages of near shore recycling are lost. See Figure 29 for the overview of 

the network.  
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Figure 29: Recycling in India 

Even closer to the collection market Europe, is Turkey. In Turkey there is also a developed 

textile industry. The material is shipped from the port in Rotterdam to Gemlik in Turkey. There 

the material is moved 30km by truck to the textile industry in Turkey. In Figure 30 the network 

is shown.  

 

Figure 30: Recycling in Turkey 
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In Figure 31 the kilograms of CO2 emissions from transportation to generate 1 kg of recycled 

yarn is shown. The process yield is assumed to be 60%. Transport emissions for India are 30% 

lower than the emissions for transport to China. For Turkey, the emissions are 55% lower than 

the emissions for shipping to China. Even when a mechanical recycling process is included, total 

emissions can be reduced with 7% when recycling in Turkey, and with 4% when recycling in 

India.  

 

Figure 31: Transport emissions 

6.4 Cost impact  

Also the cost impact in the closed loop supply chain will be analyzed. The first costs in the 

closed loop chain are the transportation costs from stores to the sorting facility. For this 

transport the logistics services of DHL or UPS will be used. They pick up the full collection box at 

the store, and transport it to one of the sorting facilities or a distribution center. UPS prices are 

per package, DHL prices per kilogram. It is estimated that on average a collection box will weigh 

25 kilograms of post-consumer clothing. Sorting either takes place in Europe or India. Sorting 

costs in Europe are based on the price of one sorting facility. Sorting costs for India are 

estimated based on expert data. The costs for shipping a FEU container are based on internal 

data from Nike. Nike has contracts with Maersk for all their inbound transport by vessel.  

Recycling costs are determined indirectly. The polyester recycling processes considered in this 

project are based on the bottle recycling processes. The price per kilogram of recycled yarn 

from bottles is used for each vendor. In our case, Nike delivers the material input. Therefore the 

price of PET bottle bales the vendor pays is subtracted from their price per kg of recycled yarn. 

The price of baled bottles is based on data from an expert within Nike. This price is divided by 

the yield of the recycling process for bottles, which is 0.75. The price for the recycling process 

itself is 6% more expensive than the price of virgin yarn.  
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In Figure 32 the costs impact for the different recycling scenarios is shown. The price of virgin 

yarn is set to 100%. See Appendix I for the determination of the costs. The price of recycling is 

only a rough estimate since actual data is unavailable. The main goal of this figure is to shown 

the division of costs in the system. This is the standard situation with in store collection and 

sorting in the Netherlands. Note that the only difference between the three recycling options is 

the difference in transportation costs, since it is assumed the price of the process is the same as 

the average price over different vendors for the process of recycled yarn from bottles. It is 

interesting that the relative cost impact of transport and sorting in the closed loop system is 

much higher than the relative CO2 impact of transport and sorting in Figure 22. Relative cost 

impacts of transport and sorting in the closed loop supply chain are 54%, 54% and 56%.   

 

Figure 32: Cost of 1kg yarn 

The chemical processes are very likely to be much more expensive. The bottle recycling 

processes are all mechanical processes which are scaled up. Chemical processes are only in 

small scale available. In Figure 33 the process costs for the chemical routes are increased with 

25%.  
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Figure 33: Cost of 1kg yarn 

The reference cost of virgin polyester does not show what Nike is willing to pay for closed loop 

recycled yarn. In Figure 34 the average price of yarn from recycled PET bottles is used as 100%. 

This is the maximum what Nike currently pays for 1kg polyester yarn. Since this yarn is used in 

Nike’s products, it is known they are willing to pay this amount. For the recycling processes only 

transport and sorting cost are displayed. Respectively, 130%, 130% and 120% of the transport 

and sorting costs in these three scenarios can be spent on the recycling process per kilogram.  

 

Figure 34: Target cost recycling 1kg of yarn 

It is interesting to see that a large part of the cost arise from transportation between stores and 

sorting. This is a relative small distance, with a limited impact on the environment. However the 

use of services from DHL or UPS is expensive. It is recommended to look into other options for 

the transportation of collected material. It might be cheaper to collaborate with companies that 

collect and sort the post-consumer material before it is returned to Nike. Or even internal 

transport can be considered when volumes are large enough. 
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The larger relative impact of transportation costs compared to process costs is showed in Figure 

35. This causes the line in Figure 36 to be much steeper than the environmental impacts per 

yield level in Figure 18 and Figure 19. 

 

Figure 35: Relative cost impact transport 

 

Figure 36: Costs per yield level 

A better insight in the costs is given with a comparison to the total cost for the production of a 

polyester shirt. In Figure 37 the cost for producing a polyester shirt is given. This specific shirt is 

chosen based on a type of polyester that is used often within Nike. The total material costs, the 

fabric used, is 44% of total costs. 43% of the total materials, or 19% of total costs is yarn. This is 

yarn from recycled PET bottles. Assuming the costs of mechanical recycling in Figure 32, the 

total yarn costs would increase with 5% for the production of a shirt.  
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Figure 37: Cost of a shirt 

6.5 Optimal scenarios 

In this part the framework of chapter 3 is used to determine the optimal scenario based on 

costs, energy use and carbon dioxide emissions. The price for mechanical recycled yarn of 

section 6.4 is used. Also a yield of 60% is assumed. The main goal of these optimal scenarios is 

to show the difference in scenario between objectives. A tradeoff can be made between the 

price paid for a kilogram of yarn and the environmental impact of that yarn. See Table 4, Figure 

38 for the energy use, Figure 39 for the CO2 emissions and Figure 40 for the cost impact. 

In the optimal scenario based on energy and carbon dioxide emissions, sorting will take place in 

Switzerland and mechanical recycling in Turkey. Energy use is decreased with 72%, and CO2 

emissions are decreased with 47% compared to virgin yarn. This large decrease however 

increases costs with 63%. Both sorting and mechanical recycling should take place in India when 

costs are minimized. In this scenario energy use is decreased with 68% and CO2 emissions with 

42% compared to virgin yarn. Costs increase with 50%. In this optimal costs scenario 

environmental impacts only increase a little compared to the optimal environmental scenario, 

but the increase in costs compared to virgin yarn decreases significantly. The main reason are 

the low sorting costs in India, see Figure 40. Compared to the maximum Nike pays for polyester 

yarn, cost increase 24% in the optimal environmental scenario and 14% in the optimal cost 

scenario. Even when comparing the optimal environmental scenario with mechanical recycling 

in China, 12% can be reduced on energy use and 8% on CO2 emissions, while reducing costs 

with 1%. In the optimal cost scenario on the other hand, both energy use and emissions 

increase with 1%, but costs are reduced with 8%.  
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Scenario Energy (MJ/kg) CO2 (kg CO2/kg) Cost (%/kg) 

Optimal environmental   28.08 3.00 163% 
Optimal cost 32.24 3.31 150% 
Mechanical recycling China 31.74 3.27 164% 
Virgin polyester 99.69 5.69 100% 
Table 4: Optimal environmental scenario 

 

Figure 38: Energy use optimal scenario 

 

Figure 39: CO2 emissions optimal scenario 
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Figure 40: Cost impact optimal scenario 
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7 Conclusion  

 
In this chapter the main findings and the limitations of the study are presented. Also 

recommendations are given for further research. 

7.1 Main findings 

A promising way to decrease both the amount of valuable resources used, and the waste 

created in the apparel supply chain, is a closed loop recycling system. Recycling is in general 

seen as a sustainable activity. However both transportation and processes have to be added, 

which might have a negative impact on the environment. An evaluation is made to give insights 

in the environmental and cost impact of closed loop recycling. 

The standard scenarios are mechanical recycling in China, back-to-monomer recycling in Japan 

and back-to-oligomer recycling in Taiwan. Post-consumer material is collected and sorted in 

Western Europe, and the yield of the recycling processes is 60%. In Figure 41 the relative 

impacts of these methods and virgin polyester are compared, including all processes and 

transportation in the closed loop supply chain.  

 

Figure 41: Relative comparison 

First one kilogram of polyester waste is either incinerated or recycled with one of the three 

standard scenarios. Both on energy use and emissions all three recycling methods are the 

preferred treatment for polyester waste. In an extended scenario, waste created in the 

recycling process is incinerated instead of landfilled. More energy is recovered from the post-
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consumer material, but also more CO2 is emitted. However all recycling methods are still 

preferred over incineration.  

In the second assessment the focus shifted to the impact of producing of 1kg polyester yarn. 

Mechanical, back-to-monomer and back-to-oligomer recycling respectively reduce energy use 

with 68%, 38% and 50% compared with virgin polyester. Enormous reductions can be realized 

on Nike’s environmental impact when recycled yarn is used for their entire demand of 

polyester yarn. Next a sensitivity analysis is conducted for the yield in these recycling processes, 

since the value of this parameter is unknown. It is important to note that the results are highly 

dependent on the amount of input material for the recycling process. With lower yields more 

material has to be transported from the collection area in Europe to recycling facilities in Asia, 

and the contribution of transport on both the environmental and cost impacts will be more 

important. However only with unrealistic low yields virgin methods are preferred for the 

production of polyester yarn.  

In the three standard recycling scenarios, transport accounts for a small amount of the total 

CO2 emissions. It still is interesting to abate these emissions, since they can be reduced much 

easier compared to abating impacts in the recycling processes. The emissions in recycling 

processes are more or less fixed, while transport emissions can be reduced via numerous 

routes. In this project locations in the network design are changed to minimize the impact. 

Locating recycling facilities closer to the collection market is an interesting option. Transport 

emissions are reduced with 30% with recycling facilities in India, and 43% with recycling 

facilities in Turkey. Recycling in Turkey can decrease total emissions with 7%.  

For the standard scenarios, it is interesting that the relative cost impact of transport and sorting 

of the closed loop system is much higher than the relative energy and CO2 impact. Especially the 

first transport movement from stores to sorting facility is expensive, due to the use of 3PL.        

In the last assessment either one of the environmental measures or costs are minimized using 

the framework. The optimal scenario for the energy use and CO2 emissions is the same. Energy 

use can be reduced with 72% and emissions with 47%. The sorting location is Switzerland and 

the recycling facility is located in Turkey. In the scenario where costs are optimized, both 

sorting and recycling takes place in India. While energy use and CO2 emissions will only increase 

a little in the optimal cost scenario compared to recycling in China, cost are decreased. 

7.2 Limitations and further research 

For the environmental impact, energy use and CO2 emissions are included. A downside is that 

the effects of closed loop supply chains on other environmental measures are unknown. 

Different sources are used to determine the environmental impacts included in this project. 
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These sources are all subjected to different scopes and assumptions. Therefore it is possible the 

impacts might not have the same order of magnitude.    

Since closed loop textile recycling is still in an early stage of development, no large scale 

facilities are available. Important data such as the yield of the total recycling process is 

therefore not available. Extra data on these processes can be gathered in pilot tests. Large scale 

recycling techniques are necessary for a feasible system. In order to get the right input material 

for these processes, advanced collection and sorting systems are also needed. If color isn’t 

removed in the recycling process, the dyeing of the fabric might have a different impact as well.   

Also the comparison between recycling methods should be made with care. The only available 

methods for recycling post-consumer polyester textile are the back-to-monomer process and 

mechanical process. However mechanically recycled yarn has a lower quality. The strength of 

the yarn can be lower than virgin yarn, and color isn’t removed in the process. The back-to-

oligomer chemical process is not available commercially, due to issues with purifying the 

output. The cost of these processes is not known. In this project costs for recycling are based on 

PET-bottle recycling methods. 

Assumptions have been made on transport aspects as well. Containers are assumed to be full 

when shipped and transport is efficient, so no long time storage. This research is subject to all 

the assumptions in the NTM methodology. Transport emissions are based on European 

vehicles, also for transportation in Asia, where emissions might be higher. A better estimate of 

transport emissions can be gained when the actual fuel consumption of vehicles from third 

party logistic providers are included in the assessment. Also only direct emissions and energy 

use for transport is included. The locations used in the closed loop supply chain need to be 

chosen carefully, to minimize emissions. An integrated approach is needed where processes 

further up and downstream are also included. When recycling takes place in Turkey and 

material can be processed further in Turkey, this will also decrease emissions from factory to 

distribution. In this project, the carbon emissions based on energy use for the process are not 

changed per country. In reality not all countries have the same carbon emissions for energy. 

Interesting research can be done on optimization models for closed loop supply chains in 

textile. The model included in this project merely focuses on the decision to use facilities and 

transportation in between. This can for example be extended with actual quantities transported 

in the closed loop supply chain. Also capacities of both facilities and transportation modes 

might be included. Even transport mode selection can be included.      
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8 Implementation 

 
Sustainability is an important part of Nike’s business strategy. Nike takes account of the impacts 

they create now, and includes sustainable thinking in decisions made for the future. Nike has 

set specific targets for numerous sustainable topics. For example they aim to reduce CO2 

emissions per unit with 20% between FY11 and FY15. Also they want 100% of their new 

products to be designed according to standards for considered design.  

There are numerous sustainable initiatives in all parts of Nike’s business. This project is focused 

on evaluating closed loop supply chains as a method to reduce the impact of yarn. A general 

framework and tool is developed in chapter 3 to determine the environmental impact of closing 

Nike’s supply chain by recycling apparel. Several scenarios are examined and compared with 

each other. The framework can be adapted when new information is available, and new 

insights can be gained with more reliable data. In this part insights in closed loop supply chains 

are given based on previous findings.  

Closed loop supply chains are considered by Nike for the possibility to reduce the impact of 

yarn. The largest part of the energy and CO2 impact in closed loop supply chains are caused by 

the recycling processes. For the three selected methods in this project, the results show that 

mechanical recycling has the least impact. However in order to select the best method, pilot 

tests are needed. These tests will show the actual yield of the recycling processes. When for 

example the yield is very low in mechanical recycling, and very high with chemical recycling, the 

last method can still be preferred. Also the quality of the output material can be determined. 

Without a suitable application for the material in new apparel, no closed loop supply chain is 

possible. In order to realize the benefits shown in this report, the recycled yarn should be used 

in apparel that would normally be made of virgin yarn. Cooperation is needed between Nike 

and companies that provide these recycling methods.  

The first step in a closed loop supply chain for polyester material is to collect post-consumer 

material. This can be done by using in-store boxes. Nike already has experience with this in 

their Reuse-a-shoe program for the recycling of shoes. Also other apparel retailers are 

collecting material this way. Since stores have limited capacity, whenever a box is full it has to 

be transported to the sorting facility. In this project a 3PL service is used. The costs analysis 

shows this transport has a large impact on the total costs of the closed loop system. Therefore 

it is recommended to Nike to investigate alternatives for this transportation. They can 

cooperate with companies that collect post-consumer textile for shared transportation, set up 

their own transportation, or buy post-consumer material.  
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Either one of the environmental measures can be minimized as an objective, or costs can be 

minimized. Nike can also specify more specific objectives, such as the examples in section 3.4. 

When energy and CO2 emissions are minimized, the same scenario is selected. The collected 

material from stores will be transported to a sorting facility in Switzerland for the selected 

stores in this project. Nike should find the optimal location for sorting if all their stores are 

included. At the sorting location the polyester material is sorted out and stored until a FEU is 

full. This will be transported by truck to the port of Genoa in Italy. From there on it is shipped 

by vessel to the port of Gemlik in Turkey, which is close to the textile industry.  

An interesting insight in the optimal scenarios is that when costs are minimized there are still 

large environmental benefits. 68% of the energy use and 42% of the CO2 emissions can be 

reduced compared to virgin yarn. These savings are only a little less than the optimal scenario 

based on environmental measures. This situation however has the least extra costs compared 

to virgin yarn. The collected material from stores will be brought to Nike’s DC in Belgium for 

consolidation. There the material will be stored until a FEU container can be fully loaded based 

on volume. The FEU will be transported to Rotterdam by truck and subsequently put on a 

6000TEU vessel to the port of Pipavav in India. In the free trade zones of the port the material 

can be sorted based on fiber type or color. The price of sorting in India is the main reason for 

lower costs in this scenario. Only the polyester material will be further processed within the 

scope of this project. The other materials can also be recycled or sold. The remained polyester 

is then transported by truck to a textile industry in India, such as Nashik.  

Next to the assessment made in this project, the framework can be used to compare other 

initiatives that can reduce Nike’s environmental impact. These can be closed loop recycling 

options, but also other recycling options. For example the material that can’t be recycled in 

these processes can be treated differently. It can be converted into biofuel, which can be used 

in Nike’s distribution network. Or if waste cotton can’t be recycled into new cotton, viscose 

fibers can be produced.  

Also the methodology for calculating transport emissions can be used within Nike for a detailed 

calculation of their inbound and outbound emissions. Detailed information of the fleet used by 

Nike’s logistic partners can be included. Accurate measurement of the emissions is important to 

make the right decisions on reduction options. An example of an assessment that can be made 

is to use emission data of biofuel instead of regular diesel to determine the reduction in 

emissions for Nike.  
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Appendix I Calculations 

 

Parameters 

     : Energy use for transporting 1kg polyester 

     : Energy use for sorting 1kg of polyester 

     : Energy use for recycling 1kg of polyester 

     : Energy use for the production of 1kg virgin polyester 

     : Energy use for the incineration of 1kg polyester 

     : CO2 emissions for transporting 1kg polyester 

     : CO2 emissions for sorting 1kg of polyester 

     : CO2 emissions for recycling 1kg of polyester 

     : CO2 emissions for the production of 1kg virgin polyester 

     : CO2 emissions for the incineration of 1kg polyester 

    : Cost of transporting 1kg polyester 

    : Cost of sorting 1kg of polyester 

    : Cost of recycling 1kg of polyester 

    : Cost of 1kg virgin polyester 

    : Yield of the recycling process  

    : Conversion factor for CO2 emissions to energy use in transport 

End-of-life  

The energy use for recycling 1kg of polyester waste is calculated by (       )  

(       )    . The CO2 emissions for recycling 1kg of polyester waste are determined 

by (       )  (       )    . The first part of these equations  (       ) and 

(       ) are the energy used and carbon emissions for all the processes before recycling. 

This includes transportation from collection in stores to a sorting facility, the sorting process 

and the transportation from sorting facility to recycling facility. It is assumed there is no loss of 

material in this process, so the 1 kg collected material will arrive at the recycling facility. In 

section 5.2 this assumption is explained.  

    and     are computed with the NTM method. See section 3.3 for the method and 

formulas. The NTM method used in this project has CO2 emissions as output.           

   where   is a conversion factor to determine the energy used based on carbon dioxide 

emissions. For diesel this factor is 0.0729 kg CO2/MJ (Nike, 2012). As input for the NTM 

calculations, the distance travelled, transport mode and load factor based on weight or the 

weight transported with the transport mode need to be known. See section 6.1 for details on 

the transport data.  
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    and     for sorting in Western Europe are based on data from a sorting company in the 

Netherlands (direct communication). No energy use or CO2 emissions are assumed for sorting in 

Asia, since this process is entirely manual.   

The second part of the equation, (       )     for energy use and (       )     for 

CO2 emissions calculates the impact for the recycling process.         is the energy needed to 

produce    kilogram output material for every kilogram input material. For the mechanical 

process     and     are the energy and emissions for the recycling, spinning, drawing and 

texturizing polyester yarn from internal data of one of Nike’s yarn suppliers (Nike internal). For 

back-to-monomer and back-to-oligomer recycling data from Shen et al. (2010) for the recycling 

process is used. However they included transportation of bottles as input material. Therefore 

the energy and emissions for transporting 10t of bottle 225 km with truck and semi-trailer 

(Shen et al., 2010) is determined using NTM, and deducted from the recycling impact. The 

energy and emissions for drawing and texturizing yarn (Laursen et al., 1997) are not yet 

included in Shen et al. (2010) data, and therefore this is added. This resulted in     and     for 

the chemical recycling processes.        is the energy use and        is the CO2 emission 

for the virgin production of    kilogram output material for every kilogram input material. This 

amount is substituted when material is recycled into yarn, and therefore the amount of energy 

and carbon emissions can be subtracted from the recycling process. The data for     and     

is based on data from Nike’s MSI (Nike MSI, 2013). The virgin production process for polyester 

consists of four main parts, the raw material production and PET pellet production (Boustead, 

2005), the filament yarn spinning (Franklin Institute, 1993) and the drawing and texturizing of 

the yarn (Laursen et al., 1997).  

In the situation where the process waste is incinerated,  (    )      is added to (    

   )  (       )    , and  (    )      is added to (       )  (       )    . 

(    ) is the amount that is not recycled into yarn.     and     are the energy impact and 

carbon dioxide emissions from incinerating 1kg of polyester with substitution for normal energy 

production. The source is Shen and Patel (2010). It is here assumed that all the waste has the 

same incinerating properties as polyester. In real life, the waste might consist of numerous 

other materials.  

Yarn production 
The equations for recycling 1kg of polyester waste can be rewritten to compute the impact for the 

production of 1kg recycled polyester yarn. For energy use the expression is     (       )    . 

For CO2 emissions it is     (       )   . The impacts from the recycling processes      

and     are now fixed, since the amount of output is fixed to 1kg of yarn. However more 

material needs to be transported and sorted depending on the input/output coefficient   .  
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For the situations with waste incineration ( (    )   )      is added to the energy use 

equation and ( (    )   )      is added to the CO2 emissions equation. ( (    )   ) is the 

amount of material not recycled into yarn.  

   levels are changed from 5% to 100% in steps of 5% to gain the energy use and CO2 emissions 

graphs per yield level.  

Cost impact 

Costs in a closed loop supply chain are determined in a similar way as energy use and carbon 

emissions are determined.     (     )    is the expression for the cost of recycling 1kg 

polyester yarn.    is based on the price of recycled PET-bottle yarn minus the cost of PET-

bottles as input material.    for sorting in Western Europe is based on the price charged by a 

sorting company in the Netherlands. For sorting in India it is based on an estimate from an 

expert.    for transport from store to sorting facility is based on the price Nike pays for shipping 

with UPS. The average price for sending 1kg of material in 25kg boxes from the five selected 

stores to the destination locations is taken. The price of road transport is determined by a price 

for transporting a FEU per kilometer in Europe. Based on the weight in the FEU the price per 

kilogram material is determined. This is also used for transport in Asia. For sending a FEU from 

every port to port used in this project prices are determined by Nike for using Maersk lines. 

Handling costs in the ports are included. Based on the weight in the FEU the price per kilogram 

material is determined.   
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Appendix II Data sources 
 

Data Data source/assumption 

Cotton farming Cotton Inc. (2012) 
Cotton spinning Cotton Inc. (2012) 
Polyester feedstock Boustead (2005) 
Polyester pellet production Boustead (2005) 
Polyester melt-spinning Franklin Institute (1993) 
Polyester yarn processing Laursen et al. (1997) 
Sorting  Sorting company 
Mechanical recycling Nike internal 
Chemical recycling (Back-to-monomer) Shen et al. (2010), Laursen et al. (1997) 
Chemical recycling (Back-to-oligomer) Shen et al. (2010), Laursen et al. (1997) 
Polymerization PlasticsEurope (2011) 
Incinerating cotton Shen and Patel (2010) 
Incinerating polyester Shen and Patel (2010) 
Table 5: Sources processes 

Data Data source/assumption 

Road distances Google maps  
Ocean distances Nike internal 
Load factor collecting-sorting Assumption 
Load factor sorting-recycling Sorting company 
Fuel consumption NTM 
Transport mode UPS, Nike internal 
Table 6: Sources transportation 

Data Data source/assumption 

Cost virgin cotton yarn Nike internal 
Cost virgin polyester yarn Nike internal 
Cost transportation UPS, Nike internal 
Cost sorting Sorting company 
Cost recycling Nike internal 
Table 7: Sources costs 
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Appendix III Impact tables 
 

 Process Energy (MJ/kg) Source 

Polyester 99.69 Boustead (2005) 
Franklin Institute (1993) 
Laursen et al. (1997) 

Cotton 75.43 Cotton Inc. (2012) 
Table 8: Energy use virgin yarn 

Process CO2 (kg CO2/kg) Source 

Polyester 5.69 Boustead (2005) 
Franklin Institute (1993) 
Laursen et al. (1997) 

Cotton 5.63 Cotton Inc. (2012) 
Table 9: CO2 emissions virgin yarn 

Process Water (L/kg) Source 

Polyester 62 Boustead (2005) 
Franklin Institute (1993) 
Laursen et al. (1997) 

Cotton 2120 Cotton Inc. (2012) 
Table 10: Water use virgin yarn 

 

Process Energy (MJ/kg) Source 

Sorting 0.283 Sorting company 
Mechanical polyester  25.575 Nike internal 
Chemical back-to-monomer 55.8 Shen et al. (2010), Laursen et 

al. (1997) 
Chemical back-to-oligomer 43.8 Shen et al. (2010), Laursen et 

al. (1997) 
Incinerating polyester -14 Shen and Patel (2010) 
Incinerating cotton -10 Shen and Patel (2010) 
Table 11: Energy use recycling 
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Process CO2 (kg CO2/kg) Source 

Sorting 0.017 Sorting company 
Mechanical polyester  2.823 Nike internal 
Chemical back-to-monomer 4 Shen et al. (2010), Laursen et 

al. (1997) 
Chemical back-to-oligomer 3.51 Shen et al. (2010), Laursen et 

al. (1997) 
Incinerating polyester 1.5 Shen and Patel (2010) 
Incinerating cotton 1.1 Shen and Patel (2010) 
Table 12: CO2 emissions recycling 

Process Water (L/kg) Source 

Sorting - Sorting company 
Mechanical polyester  62 Boustead (2005) 
Chemical back-to-monomer 62 Boustead (2005) 
Chemical back-to-oligomer 62 Boustead (2005) 
Incinerating polyester - Shen and Patel (2010) 
Incinerating cotton - Shen and Patel (2010) 
Table 13: Water use recycling 

 


