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Abstract

Criterion-based segmentation is the problem of subdividing a trajectory into a small number of
parts such that each part satisfies a global criterion. We present an algorithmic framework for
criterion-based segmentation of trajectories that can efficiently process a large class of criteria.
Our framework can handle criteria that are stable, in the sense that these do not change their
validity along the trajectory very often. Our framework takes O(n log n) time for preprocessing
and computation, where n is the number of data points. It improves upon the two previous
algorithmic frameworks on criterion-based segmentation, which could only handle decreasing
monotone criteria, or had a quadratic running time, respectively. Furthermore, we propose
a new segmentation method based on the dynamic Brownian Bridge Movement Model. This
segmentation method has only one parameter: the segment penalty factor, which can be chosen
automatically or interactively using a so-called stability diagram. We finally show how to
combine the dBBMM-based method with criteria.
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Chapter 1

Introduction

Over the past few years movement tracking devices have become widely available for all kinds
of applications. Many cars have a GPS receiver installed for navigation purposes. In sports,
modern-day hikers, bikers and runners can track their movements using GPS trackers. Nowadays
it is even possible for smartphones to measure their location, which enables the development of
all kinds of smartphone-applications that make use of this information.

The recent advances in movement tracking technology are not just a significant development
in the consumer electronics sector. A broad variety of scientific disciplines, including traffic
analysis, geography, market research, surveillance, security and ecology, show an increasing
interest in movement patterns of entities moving in various spaces over various times scales.

Tracking devices record a so-called trajectory, which is a series of timestamped locations;
that is, latitude-longitude pairs accompanied by a timestamp. Most devices also record other
attributes, such as velocity, acceleration and bounds on the inaccuracies of the recorded values.
Currently, the amount of recorded data is rapidly increasing, and methods are needed for
processing and analyzing these data.

There are numerous analysis tasks concerning trajectory data. Many of those tasks are of a
geometric nature and are studied in computational geometry. Computational geometry is the
branch of computer science dedicated to algorithms that solve problems, concerning geometric
objects such as points, lines and planes [10]. Computational geometry emerged from the field
of algorithms design and analysis about forty years ago, and it has grown into a very active
research discipline ever since, mainly due to the great technological advances in its application
domains, including computer graphics, robotics and geographic information systems (GIS).

Various problems concerning trajectories have been studied in this field of research. A basic,
yet complicated problem is defining a good metric that measures the similarity between trajec-
tories [1], which can be used in for instance the search for similar subtrajectories [4]. Another
example is the popular places problem [3], which is about finding the most frequently visited
regions, given a number of trajectories.
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We study the following important analysis task: finding a segmentation of a trajectory. Seg-
menting a trajectory means “splitting” the trajectory into pieces, which are called segments.
There are two conflicting goals of segmenting a trajectory. First of all the movement within
each segment should be homogeneous in some sense. Note that this homogeneity can be defined
in multiple ways, for instance, the speed, heading or location should not vary much inside a seg-
ment. Secondly the number of segments should be small, which is equivalent to segments being
long. Determining the best tradeoff between the two goals is not an easy process and depends
on the context in which the segmentation is used [17]. In Figure 1.1 this issue is illustrated
by two segmentations of the same trajectory, which are segmented at different scales (different
tradeoffs between homogeneity and number of segments).

(a) Small scale (b) Large scale

Figure 1.1: Two segmentations of the same trajectory at different scales. Segments are shown
in different colors.

In this thesis we focus on criterion-based segmentation. In this setting the number of segments
is minimized subject to the constraint that each segment is homogeneous according to a formal
criterion. There are numerous criteria that can be used. For example, we can bound the
maximal speed range, or require that each segment fits in a disk of a certain radius.

Usually, segmentation is part of a larger analysis process. It is often combined with clas-
sification of the segments to give the segments a meaning. For instance the segments of an
bird trajectory could be classified into resting, flying, and eating. An example of a classified
segmentation is shown in Figure 1.2.

We have developed a new framework for criterion-based segmentation. Compared to other
efficient criterion-based methods it allows for a much broader class of criteria. It can for instance
handle outlier-tolerant criteria. Furthermore, our framework incorporates the classification of
segments in the segmentation method, which allows us to enforce rules based on segment classes,
such as restrictions of the form “a hunting segment must be followed by a resting segment or
an eating segment”.

An important issue regarding the criterion-based segmentation method is determining the
exact criteria and their parameter values. That is why we have developed a novel segmentation
method that does not rely on specific parametrized criteria, but on a statistical movement
model: the dynamic Brownian Bridge Movement Model (dBBMM) [15,16].

Given a trajectory (a sequence of measured points) the dBBMM models the movement in be-
tween the measured points. The model has only one parameter: the Brownian motion variance,
which corresponds to the animal’s mobility along the trajectory.
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Figure 1.2: Segmentation of geese data. Red/pink indicates migration flight, yellow stopovers.
Blue markers indicate the end of a stopover.

In the research field of the movement ecology, this model has been used for various trajectory
analysis tasks. For instance, the model was used on trajectories of simultaneously moving
animals to compute where animals encounter each other, and whether they avoid, attract or
follow each other [5]. Furthermore, it has been used to estimate the home range of animals,
which is (intuitively) the area in which animals are expected to spend most time. All this
information can be of great importance in the organization of wildlife conservation.

Our novel segmentation method based on the dBBMM is essentially a model fitting algorithm,
which returns a segmentation as part of the model-fit. The model fitting procedure is guaranteed
to be optimal with respect to a quality metric called the information criterion. Choosing the
“right” information criterion is a complex procedure which requires domain-knowledge. We
have developed means to provide insight in the process of picking it. Figure 1.1 shows two
segmentations returned by the algorithm for different information criteria. Furthermore we
have combined the dBBMM-based segmentation method with the criterion-based segmentation
methods to get the best of both worlds.

1.1 Related work

There has been a lot of research on computational trajectory analysis [13], even on the seg-
mentation problem alone. Many segmentation algorithms were developed, each formalizing the
segmentation goals in their own way. Previous work focused on finding a semantic annotation
of the trajectory [14], profile based segmentation [11] and criterion-based segmentation [6]. In
this thesis we focus on the latter type of segmentation.

There are two ways in which trajectories have been handled in this context: continuous
and discrete. In the continuous variant the trajectory is interpolated to obtain a continuous
trajectory that can be split into segments at any point on its interpolated curve. In the discrete
variant the segments have to start and end at recorded points. Hence, a discrete segmentation is
only based on the recorded data and not on (possibly incorrectly) interpolated points in between.
On the other hand, a continuous segmentation is more flexible in terms of splitting points than
in the discrete problem. However, it is unclear when or whether this added flexibility improves
the segmentation result. Therefore we focus on the discrete segmentation problem. Others have
developed methods that apply to both the discrete and the continuous problem.
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Buchin et al. [6] have developed an algorithmic framework that computes a (discrete or con-
tinuous) segmentation given a decreasing monotone1 criterion. Many simple criteria concerning
homogeneity of location, speed and heading are in this class. Also disjunctions and conjunctions
of those simple criteria belong to this class of criteria. In this framework, a segmentation can
be computed in O(n log n) time for discrete and continuous problem, where n is the number of
data points.

Their framework has been used to segment animal tracks of migrating geese [7]. In this setting,
the segmentation is based on multiple criteria, each of them defining a class corresponding to
a movement state, in this case stopover and migration flight, which provided means to classify
the segments.

There are many meaningful criteria that are not decreasing monotone. These criteria are
in general harder to handle. Aronov et al. [2] showed that finding a valid segmentation given
a non-decreasing-monotone criterion is a hard problem in the continuous setting. For several
specific non-decreasing-monotone criteria, most importantly the standard deviation criterion
(with linear interpolation), they present a polynomial time segmentation algorithm.

For a generic non-decreasing-monotone criterion in the discrete setting they present a simple
algorithm with running time Θ(n2). We note that this algorithm is not very suitable for tra-
jectories with a large number of data points, due to the quadratic running time. In practice
heuristics have been applied to handle criteria that are not decreasing monotone [7].

All the related work described above deals with discrete trajectories, or with continuous
trajectories that are assumed to be completely known. For the analysis of animal trajectories this
is often not realistic. Therefore studies have focused on estimating those continuous trajectories,
given a set of discrete measurements (that might even contain inaccuracies). In this context the
Brownian Bridge Movement Model (BBMM) [15] proved to be a very useful model.

The BBMM is based on the properties of a conditional random walk between successive pairs
of locations, dependent on the time between locations, the distance between locations, and the
Brownian motion variance, which is related to the animal’s mobility. This Brownian motion
variance is assumed to be a constant in the BBMM, and it can be estimated by a maximum
likelihood method.

However, different behavioral states in animal movement correspond to different values of the
Brownian motion variance [16]. Hence, for many real world trajectories the Brownian motion
variance cannot be assumed to be constant. There is an extended version of the BBMM that
assumes a varying instead of a constant Brownian motion variance. It is called the dynamic
Brownian Bridge Movement Model (dBBMM). Kranstauber et al. [16] proposed a windowing
method to fit a discrete trajectory with the dBBMM. The method estimates the Brownian
motion variance at each point along the trajectory.

1These criteria are called monotone in [6].
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1.2 Results and organisation

In Chapter 2 we discuss our criterion-based segmentation framework, which allows for handling
a broad class of criteria: the stable criteria, in O(n log n) time, with n the number of data
points. This includes decreasing and increasing monotone criteria and Boolean combinations of
them. Furthermore, our framework allows for efficient outlier handling. We can approximate
an outlier-tolerant criterion [2] at the expense of an extra factor log n in the running time.

The framework also allows for segmentation by movement states. In this setting the seg-
mentation is combined with classification. The concept of movement states allows for a broad
range of additional segmentation rules. First of all, rules can be defined for breaking ties. The
criterion-based segmentation problem only minimizes the number of segments. Segmentations
with equal segment count are considered equal. However, in practice some segmentations are
better than others, despite having equal segment count, for example because of the exact loca-
tion of segment boundaries. Optimization rules that distinguish between those segmentations
can be formalized in terms of movement states.

Secondly, we can add restrictions on the state transitions by enforcing rules of the form “in
every segmentation movement state A can only be followed by movement state B,C or D”. The
framework also allows for penalization of certain state transitions, instead of forbidding those
transitions.

We have also developed means for interactive parameter selection, the stability diagram.
Furthermore, we did a case study on data of migrating geese, in which we applied the methods
we developed.

Chapter 3 is about our novel segmentation method which is based on the dBBMM. This
method is in its essence a method that estimates the Brownian motion variance along the
trajectory. Changes in this variance define the segments. The variances are chosen in such a
way that they optimize a certain information criterion goal function, which consists of a part
that measures the quality of the segmentation, and a part that equals the number of segments
times a penalty factor. The penalty factor is the only parameter of the model. We provide
means to find suitable values for this parameter in the form of a stability diagram.

Finally, we show how to add criteria to the dBBMM-based method. First of all we show
how to add an increasing monotone criterion. Secondly we show that the whole criterion-based
framework that we presented in Chapter 2, can be combined with the dBBMM-based segmenta-
tion method. The segmentation algorithm concerning this combined method is fundamentally
different from the original dBBMM-based method, and is basically an extension/adaptation of
the framework of Chapter 2.
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Chapter 2

Criterion-based segmentation

In this chapter a new framework for criterion-based segmentation is presented. First we for-
malize the criterion-based segmentation problem in Section 2.1. In Section 2.2 we discuss two
important criteria classes: the decreasing and increasing monotone criteria. Furthermore, we
state some basic properties of those criteria.

In Sections 2.3-2.5 our new segmentation method is presented. Our approach is somewhat
similar to the method by Aronov et al. [2]. They presented (as a side note) a simple algorithm
for discrete segmentation based on any computable criterion. The first step of this method is
to compute the start-stop matrix. The storage of this matrix takes Θ(n2) space. The second
step is the computation of the actual segmentation from this matrix using a simple Dynamic
Program (DP) with running time Θ(n2).

Our approach consists of two steps with similar goals. First we construct a compressed start-
stop matrix. This data structure can efficiently test for any candidate segment whether it
satisfies the criterion. The compressed start-stop matrix is of size O(n) and can be computed
in O(n log n) time for a broad class of criteria. It is discussed in more detail in Section 2.3. In
Section 2.4 we discuss how to compute this data structure for several specific criteria.

In the second step the actual segmentation is computed from this compressed start-stop
matrix in O(n log n). This algorithm is described in Section 2.5. Moreover, we can combine the
segmentation with classification by movement states and put in extra segmentation rules for
the movement states, as is described in Section 2.6.

Choosing the segmentation criterion parameters is crucial but also difficult in practice, because
it requires domain knowledge. To fine-tune the parameters, the segmentation needs to be
computed multiple times, each time using a slightly different setting of parameters. To make
this interactive process easier, we introduce the stability diagram in Section 2.7, which supports
the user with some visual feedback.

We have experimented with our framework and present a case study on data of migrating
geese in Section 2.8.

2.1 Criterion-based segmentation

Throughout the thesis we use the following definition of a trajectory.

Definition 1 A trajectory τ is given by a sequence of n triples (xi, yi, ti), where (xi, yi) is the
location of a moving entity (e.g., an animal) at time ti. We denote the timestamped locations
of τ by τ(i) = (xi, yi).
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We treat a trajectory as a discrete sequence of timestamped locations, hence a subtrajectory
can only start and end at recorded time stamps. A subtrajectory of τ starting at time ti
and ending at time tj is denoted by τ [i, j]. If a subtrajectory τ ′ is completely covered by a
subtrajectory τ ′′ we denote this by τ ′ ⊆ τ ′′.

This thesis is about segmenting trajectories, which is defined as follows:

Definition 2 A segmentation of a trajectory is a partition of a trajectory τ in subtrajectories
called segments. These segments are disjoint (except for their endpoints) and cover the whole
trajectory τ .

We use k to denote the number of segments and si for i = 0, 1, . . . , k to denote the end points of
the ith segment. The points τ(si) for i = 0, 1, . . . , n are called splitting points. A segmentation
is thus given by τ [s0, s1], τ [s1, s2], . . . , τ [sk−1, sk], with 0 = s0 < s1 < · · · < sk = n.

Our segmentation approach is based on criteria, which are defined in Definition 3.

Definition 3 A criterion C is a function that maps the set of subtrajectories (candidate seg-
ments) to the Booleans.

The value of C for candidate segment τ [i, j] is denoted by C(i, j). The idea is that criteria
indicate whether a candidate segment is “homogeneous enough”. A candidate segment that
satisfies C is called a valid segment, and a segmentation consisting only of valid segments
is called a valid segmentation. The goal of criterion-based segmentation is to find a valid
segmentation of τ with a minimal number of segments, given a trajectory τ and a criterion C.
Such a segmentation is called optimal.

2.2 Criteria

Not all criteria can be handled in the same way. Different criteria can require fundamentally
different segmentation algorithms. Previous work focused mainly on the class of decreasing
monotone criteria, which can be handled in a similar way [6].

Definition 4 A criterion is decreasing monotone if and only if it has the property that if it
holds on a certain candidate segment τ ′, it also holds on every subsegment τ ′′ ⊆ τ ′ of that
segment. This is depicted in Figure 2.1.

⇓

τ ′

τ ′′

Figure 2.1: For decreasing monotone criteria the validity of τ ′ implies the validity of τ ′′.

There are numerous examples of this kind. For instance, criteria that bound the range of
a trajectory attribute (such as speed and heading) are decreasing monotone. Requiring that
a segment fits a fixed size disk yields a decreasing monotone criterion as well. Furthermore,
combinations of decreasing monotone criteria are decreasing monotone criteria too, as is stated
in Theorem 1.
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Theorem 1 [6, Theorem 15] A combination of conjunctions and disjunctions of decreasing
monotone criteria is a decreasing monotone criterion.

Consider the following greedy strategy to segment a trajectory. Start at the beginning of the
trajectory, and make the first segment as long as possible according to the criterion. Now start
the second segment at the end of the first one, and also make it as long as possible. Repeat
the process until the end of the trajectory is reached. Previous work showed that applying this
greedy strategy results in an optimal result in case of a decreasing monotone criterion.

Theorem 2 [6, Theorem 4] For decreasing monotone criteria, the greedy segmentation strategy
yields an optimal segmentation.

Our framework can also handle a fundamentally different class of criteria: the class of the
increasing monotone criteria.

Definition 5 A criterion is increasing monotone if and only if it has the property that if it
holds on a certain candidate segment τ ′, it also holds on every supersegment τ ′′ ⊇ τ ′ of that
segment. This is depicted in Figure 2.2.

⇓
τ ′

τ ′′

Figure 2.2: For increasing monotone criteria the validity of τ ′ implies the validity of τ ′′.

Important examples are the minimum length and duration criterion that place lower bounds
on length and duration of a segment, respectively. Furthermore, combinations of increasing
monotone criteria are increasing monotone criteria. This is proven in Theorem 3.

Theorem 3 A combination of conjunctions and disjunctions of increasing monotone criteria is
an increasing monotone criterion.

Proof. Let C1 and C2 be increasing monotone criteria. We show that the conjunction C1 ∧C2

and the disjunction C1 ∨C2 are increasing monotone. First we consider the conjunction. Let τ ′

be a subtrajectory of τ . Assume that C1 ∧ C2 is satisfied by τ ′. Let τ ′′ be a supertrajectory of
τ ′. τ ′′ satisfies criterion C1, because τ ′ satisfies C1. The same holds for C2. This implies that
C1 ∧ C2 is satisfied by τ ′′. Hence C1 ∧ C2 is increasing monotone.

Now the consider the disjunction. Let τ ′ be a subtrajectory of τ . Assume that C1 ∨ C2

is satisfied by τ ′. Let τ ′′ be a supertrajectory of τ ′. Without loss of generality assume that
criterion C1 is satisfied by τ ′. Then, C1 is also satisfied by τ ′′. Hence C1 ∨C2 is satisfied by τ ′′.
This proves that C1 ∨ C2 is increasing monotone. �

Segmentation based on increasing monotone criteria alone has a meaningless result: either
the whole trajectory is “segmented” into one segment, or the trajectory cannot be segmented
at all. However, Boolean combinations of increasing and decreasing monotone criteria can
yield meaningful results. For a combination of increasing and decreasing monotone criteria, the
greedy strategy does not always yield an optimal result, as is proven in Theorem 4.
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Theorem 4 For a combination of decreasing and increasing monotone criteria, the greedy
segmentation strategy does not necessarily yield an optimal segmentation.

Proof. Consider the trajectory τ [0, 5] in Figure 2.3. It is a regularly sampled track (ti = i
for all i = 0, . . . , 5) of an object that is moving with constant acceleration (τ(i) − τ(i − 1) = i
for all i = 1, . . . , 5) starting at τ(0) = (0, 0). Assume that the criterion is a conjunction of a
duration criterion D (increasing monotone) and a bounded speed range criterion S (decreasing
monotone). Criterion D requires a minimum segment duration of 3 and criterion S allows for
a maximum speed range of 4, where the speed is estimated by forward-differentiation.

τ

v

0 1 2 3 4 5

Figure 2.3: Trajectory τ and speed v along τ . The gray box has height 4 and indicates that
τ [0, 4] satisfies S.

In this case, the greedy strategy picks τ [0, 4] as first segment, since this is the longest segment
starting at t0 that satisfies D ∧ S. There is no segment starting at t4 that satisfies D, so the
greedy strategy fails to find a segmentation. However, there is an (optimal) segmentation
τ [0, 2], τ [2, 5] which satisfies D ∧ S. �

Our framework is not limited to decreasing or increasing monotone criteria. We can handle
a more general class of criteria: the stable criteria. Stable criteria do not change their validity
along the trajectory very often. This is formalized in Section 2.3.2. This class of criteria contains
Boolean combinations of increasing and decreasing monotone criteria.

2.3 Compressed start-stop matrix

2.3.1 Start-stop matrix

A start-stop matrix stores the relation between a trajectory τ and a criterion C. Consider the
parameter space of the set of subtrajectories of τ . For any candidate segment τ [i, j], the start
parameter i is associated with the column index and the stop parameter j with the row index
of the matrix. So a matrix entry (i, j) in the upper left triangle (i ≤ j) represents a candidate
segment. Each of those is assigned a value C(i, j), which is true if the criterion C is satisfied by
the candidate segment and false otherwise. A candidate segment is called part of the free space
if it satisfies C and it is part of the forbidden space otherwise.

Consider a segmentation of τ into a sequence of segments τ [s0, s1], . . . , τ [sk−1, sk]. Consecu-
tive segments τ [si, si+1], τ [si+1, si+2] share a trajectory point. This means that the row index of
the matrix entry corresponding to τ [si+1, si+2] is equal to the column index of the matrix entry
corresponding to τ [si, si+1]. Hence the matrix entries corresponding to the segments τ [si, si+1]
together with the entries (si, si) on the main diagonal form a staircase. Furthermore, a segmen-
tation is valid if and only if the non-diagonal vertices of the staircase lie in the free space. See
Figure 2.4 for an example of a valid segmentation.
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stop

start

0
1
2

0 1 2

. . .

. . . n

n

Figure 2.4: A start-stop matrix and an optimal segmentation into four segments. The free
space is white, the forbidden space is gray. The segmentation is valid, because the four vertices
corresponding to segments (indicated by dots) lie in the free space.

2.3.2 Compressing the start-stop matrix

For many criteria the start-stop matrix can be compressed significantly by applying run-length
encoding to each row. Run-length encoding is a simple form of data compression in which runs
are stored in a compressed form [12]. A run is a sequence of consecutive values that are equal.
In our case, we have runs of true values and runs of false values, which we call blocks and
gaps, respectively. Runs are stored as pair of value and count. We call this row-wise run-length
encoded start-stop matrix the compressed start-stop matrix.

Consider the start-stop matrix for a decreasing monotone criterion. The property “if C is
satisfied by a certain segment, it is also satisfied by every subsegment” implies that all matrix
entries to the right of a true value must be true. Recall that a matrix entry (i′, j) right of a
matrix entry (i, j) corresponds to τ [i′, j] being a subsegment of τ [i, j]. A row of a decreasing
monotone start-stop matrix hence consists of at most two runs: an optional gap followed by an
optional block. An example of a start-stop matrix for a decreasing monotone criterion is shown
in Figure 2.5(a).

In a similar way the start-stop matrix for an increasing monotone criterion can be compressed.
The increasing monotone property implies that all matrix entries to the left of a true value must
be true. A row of such a start-stop matrix hence consists of an optional block followed by an
optional gap. An example is shown in Figure 2.5(b).

Using the compressed instead of the uncompressed start-stop matrix for decreasing and in-
creasing monotone criteria reduces the storage to O(n). In Section 2.4 we show that this com-
pressed start-stop matrix can be computed in O(n log n) for many decreasing and increasing
monotone criteria.

Stable criteria

Our framework is not limited to decreasing and increasing monotone criteria. In fact, it can
handle any criterion that has a computable compressed start-stop matrix. The running time of
the algorithm (described in Section 2.5) that computes the optimal segmentation from a com-
pressed start-stop matrix is O((λ+n) log n), where λ is the number of blocks in the compressed
start-stop matrix.
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The λ measures the stability of the criterion. If it is low, the criterion does not change its
validity along the trajectory very often. The most interesting class of criteria is the class of
criteria that have a compressed start-stop matrix with λ = O(n) blocks. We call those criteria
stable. Furthermore, we use the following more general definition.

Definition 6 A criterion is λ-stable if and only if it has the property that
∑n

j=0 v(j) = λ,
where v(j) denotes the number of times the validity of the candidate segments τ [i, j] changes,
for i = 0, 1, . . . , j − 1.

We have already seen two examples of stable criteria:

Theorem 5 A decreasing monotone criterion is a λ-stable criterion, with λ ≤ n, where n is
the number of points on the trajectory.

Theorem 6 An increasing monotone criterion is a λ-stable criterion, with λ ≤ n, where n is
the number of points on the trajectory.

There are also stable criteria that are neither decreasing monotone or increasing monotone.
In the next sections some various examples are given.

2.3.3 Combining and transforming compressed start-stop matrices

Decreasing and increasing monotone criteria can be combined to get compound criteria, which
can be more effective at segmenting trajectories than singleton criteria, as has been demon-
strated in [7]. There are two ways to combine criteria: the conjunction and disjunction.

More general, given a λ1-stable criterion C1 and a λ2-stable criterion C2 and their compressed
start-stop matrices, the compressed start-stop matrix of C1 ∧ C2 can be computed efficiently.
The criterion C1 ∧ C2 is satisfied by a candidate segment τ [i, j] if and only if C1 and C2 are
satisfied. The key observation is that the free space of the start-stop matrix of C1 ∧ C2 equals
the intersection of the free space of the start-stop matrices of C1 and C2. This implies that
the criterion C1 ∧ C2 is λ∧-stable, with λ∧ ≤ λ1 + λ2. The run-length encoded form of this
intersection can computed per row taking in total O(λ1 + λ2 + n) time. An example is given in
Figure 2.5.

Similarly, the compressed start-stop matrix of C1∨C2 equals the union of the free space of the
start-stop matrices of C1 and C2. The criterion C1 ∨C2 is hence λ∨-stable, with λ∨ ≤ λ1 + λ2.
This union can also be computed in O(λ1 + λ2 + n) time. This is summarized in the following
lemmas.

Lemma 7 Given a λ1-stable criterion C1 and a λ2-stable criterion C2, the criteria C1 ∧ C2

is λ∧-stable, with λ∧ ≤ λ1 + λ2. Given the compressed start-stop matrices of C1 and C2 the
compressed start-stop matrix of C1 ∧ C2 can be computed in O(λ1 + λ2 + n) time.

Lemma 8 Given a λ1-stable criterion C2 and a λ2-stable criterion C2, the criteria C1 ∨ C2

is λ∨-stable, with λ∨ ≤ λ1 + λ2. Given the compressed start-stop matrices of C1 and C2 the
compressed start-stop matrix of C1 ∨ C2 can be computed in O(λ1 + λ2 + n) time.
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(c) Criterion C1 ∧ C2

Figure 2.5: Two start-stop matrices and their conjunction.

Criteria can also be transformed by applying negation. Given a λ-stable criterion and its
compressed start-stop matrix the compressed start-stop matrix of the negation of the criterion
can be computed efficiently: Change the forbidden space to free space and vice versa. For a
row with an even number of runs this does not change anything to the number of blocks. For
a row with an odd number of runs this could decrease or increase the number of blocks by one.
Hence the resulting criterion is λ¬-stable, with λ¬ ≤ λ + n. The computation takes O(λ + n)
time.

Lemma 9 The negation of a λ-stable criterion C is a λ¬-stable criterion, with λ¬ ≤ λ + n.
Given the compressed start-stop matrix of C the compressed start-stop matrix of ¬C can be
computed in O(λ+ n) time.

We can formulate complex compound criteria that consist of a number of simple criteria that
are combined using conjunctions, disjunctions and possibly transformed (at any level in the
criterion expression) using negations. We call such a compound criterion a Boolean combination.
The following theorem is a direct consequence of Theorems 5, 6, and Lemmas 7, 8 and 9.

Theorem 10 A Boolean combination of a constant number of decreasing and increasing mono-
tone criteria is a stable criterion. Given the compressed start-stop matrices of all those criteria
the compressed start-stop matrix of the Boolean combination can be computed in O(n) time,
where n is the number of points on the trajectory.

Applying negation to a decreasing or increasing monotone criterion has a special property,
which is useful in Section 2.4, where we show how to compute the compressed start-stop matrix
for decreasing and increasing monotone criteria.
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Lemma 11 The negation of a decreasing monotone criterion is an increasing monotone crite-
rion and vice versa.

Proof. Let τ be a trajectory. Let C be a decreasing monotone criterion. Assume for the
purpose of contradiction that ¬C is not increasing monotone. This means that there is a
candidate segment τ [i, j] that does not satisfy C, for which a supersegment τ [i′, j′] exists with
i′ ≤ i and j′ ≥ j that satisfies C. However, validity of τ [i′, j′] implies validity of τ [i, j] by
the decreasing monotonicity of C. This is a contradiction. The proof of the other direction is
analogous. �

2.4 Computing the compressed start-stop matrix

The compressed start-stop matrix for a decreasing monotone criterion can be computed using
the algorithm ComputeLongestValid . Given a trajectory data set τ and a decreasing monotone
criterion C, the algorithm computes for every trajectory index j the smallest index i for which
τ [i, j] satisfies the criterion. This index is stored in LVj . Given LVj it is straightforward
to compute the actual compressed start-stop matrix in O(n) time. Note that for increasing
monotone criteria the compressed start-stop matrix can be computed using the same algorithm.
Simply replace ¬C by C in ComputeLongestValid and negate the resulting compressed start-stop
matrix. The correctness of this method is a direct consequence of Lemma 11.

Algorithm ComputeLongestValid(C, τ)
1. i← n;
2. Initialize empty DC ;
3. for j ← n to 0
4. do while i ≥ 0 ∧ DC .SegmentIsV alid()
5. do i← i− 1;
6. DC .Extend(i);
7. LVj ← i+ 1
8. j ← j − 1;
9. DC .Shorten(j);

The algorithm ComputeLongestValid computes LVj by moving two pointers i and j backwards
over all n points of the trajectory τ . Both pointers start at the last point of the trajectory.
Pointer i is moved backwards until the segment τ [i, j] is not valid. At that moment we can
conclude that LVj is equal to i+ 1. Then the pointer j is moved one step and the next LVj is
determined in a similar fashion. Note that it is not necessary to reset pointer i to j, because C
is decreasing monotone.

Testing whether τ [i, j] satisfies a criterion is not a straightforward task. Therefore the data
structure DC is included in the algorithm to keep track of the validity of candidate segment
τ [i, j]. The actual form of this data structure depends on the kind of decreasing monotone
criterion C that is considered. It allows for three operations. First of all it can be queried for
the validity of τ [i, j] using the SegmentIsValid function. Secondly the segment τ [i, j] can be
extended by one point at the start, when i is decreased by 1. Thirdly the segment τ [i, j] can be
shortened by one point at the end, when j is decreased by 1.

The algorithm ComputeLongestValid consists of at most O(n) steps in which the interval
τ [i, j] is extended or shortened. The running time of the algorithm depends on the precise data
structure that is used for DC . Let E(n), S(n) and V (n) denote the running times of respectively
the Extend, Shorten and SegmentIsValid operations. The following theorem follows directly.
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Theorem 12 The procedure ComputeLongestValid computes for every trajectory index j the
smallest index i for which τ [i, j] satisfies the decreasing monotone criterion C in O(n(E(n) +
S(n) +V (n))) time, where n is the number of points on the trajectory, and E,S, and T are the
running times of respectively the Extend, Shorten and SegmentIsValid operations on the data
structure DC as described above.

The following sections list some basic decreasing monotone criteria and the data structure
DC that is used for computing the corresponding compressed start-stop matrices.

2.4.1 Range criterion on attribute

There is a large class of criteria of the form “for all points in the segment attribute a should be
within a certain range of size α”. Alternatively such a criterion can be seen as an upper bound
of α on the difference between the maximal and the minimal value of attribute a over all points
in the segment.

The data structure DC keeps track of the this minimal and maximal element. For monotone
attributes, such as duration, traveled distance and number of points on the segment, this is
easy, because they are monotone. They increase along the trajectory. The minimal and maximal
element of the segment hence correspond to respectively the first and last element. Keeping track
of those elements when extending or shortening the candidate segment takes constant time. We
test the validity of the current candidate segment by comparing the difference between minimal
and maximal element with α in constant time.

For non-monotone attributes, such as speed, data structure DC is slightly more complicated.
We use an ordered multiset data structure such as a balanced binary search tree [9] to keep
track of all attribute values of the current candidate segment. Extending and shortening the
candidate segment correspond to respectively inserting and deleting an attribute value. Testing
whether τ [i, j] is valid consists of a query for the maximal and minimal element in the multiset
and comparing their difference with α. Using a balanced binary search tree all three operations
take O(log n) time.

If the value of attribute a of all points on a segment, including both endpoints, are required to
lie within a range of α, situations can arise in which no segmentation is possible. For instance,
when the difference in a between consecutive points τ(i) and τ(i+1) is larger than α. One could
argue that it would be better to allow segmentations with a splitting point at τ(i) or τ(i + 1)
than to forbid all segmentations. This is equivalent to ignoring either the first or the last point
of a segment in the computation of the minimal size range.

The algorithm ComputeLongestValid requires only a small change to make this possible. If
the starting point of a segment is excluded we simply need to decrease all LVj values by one.
If the stopping point of a segment is excluded, all LVj need to be shifted one step, that is:
LVj ← LVj−1.

In practice, it can be very useful to allow for a constant number c of outliers that do not need
to lie within the range of size α. This does not affect decreasing monotonicity. A similar data
structure is used as before. We consider the c+ 1 canonical (ending at attribute values that are
present) ranges that cover all values except for c outliers. See for example Figure 2.6, where
two outliers are allowed. Finding those ranges takes O(c log n) time. If the smallest range is
less than α the candidate segment is valid.
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Figure 2.6: An ordered set of values and its corresponding c+ 1 canonical ranges that cover all
but c elements (c = 2).

2.4.2 Lower bound / Upper bound on attribute

Another class of criteria is of the form “for all points in the segment attribute a should be ≥ γ
(or ≤ γ)”. These criteria are especially useful in compound criteria. To maintain the validity of
the candidate segment τ [i, j] we simply keep track of the number of elements that have a < γ.
Adding and removing a point respectively to or from τ [i, j] take O(1) time. Testing validity
consists of testing whether the number of points with a < γ is zero, which takes constant time
as well.

This approach can easily be extended to handle a constant number c of outliers. In that case
only the testing procedure changes. The number of points with a < γ has to be compared to c
instead of zero. The running times remain the same, and are independent of c.

2.4.3 Angular range criterion on attribute

The range criterion for angular attributes, such as heading and turning angle, is similar to the
range criterion for ordinary attributes. The only difference is that the value range is wrapped
around, or stated differently: the attribute values are computed modulo 2π. For instance, the
heading values π/6 and 11π/6 can be covered by a range of size π/6− 11π/6mod2π = π/3. If
the upper bound on the angular range α is less than π, the approach is similar to the ordinary
range criterion. We maintain a minimal and maximal element that differ less than π (modulo
2π) and span all values in between.

However, if the upper bound α is larger than π the circular nature of the angular domain
prevents us from maintaining a meaningful maximal and minimal element. In that case we
keep track of the largest gap (empty interval) between consecutive angular values instead. The
smallest angular range that can cover all the attribute values has size 360◦−g, where g ∈ [0, 2π)
is the angle of this largest gap. To keep track of this largest gap we use two ordered multiset
structures that both store the set of gaps. The sets are ordered by respectively size and angular
order. Testing validity corresponds to a query for the largest gap g and comparing 360◦ − g
with α. Extending and shortening correspond to respectively splitting and merging a gap, both
taking O(log n) time using the set structures.

The data structure can be extended to allow for a constant number c of outliers. Instead of
storing gap-intervals that span exactly two values, we store intervals that span exactly 2 + c
values. Testing validity remains unchanged. However, the extend and shorten operations have
to change. Inserting a value changes c intervals and create one new interval. Deleting a value
changes c intervals and delete one. Both operations take O(c log n) time. An example is given
in Figure 2.7 for two outliers.
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(a) Before insertion (b) After insertion

Figure 2.7: Inserting the dashed value in the angular range data structure, which allows two
outliers. Only the changed intervals are shown.

2.4.4 Disk criterion

A disk criterion has the form “all points in the segment can be covered by a circle with fixed
radius r”. Data structure DC keeps track of the smallest enclosing circle cenc of the points on
the segment. The query corresponds to comparing the radius of the smallest enclosing circle
to r.

It is not straightforward to maintain the smallest enclosing circle efficiently in a dynamic set-
ting. The asymptotically fastest technique lifts the problem to convex programming over a half-
space intersection [8]. Insertions, deletions and smallest enclosing circle query are guaranteed to
take only polylogarithmic time. Using this data structure the algorithm ComputeLongestValid
has a near-linear running time.

Figure 2.8: The 4-approximate
convex hull of a point set and its
smallest enclosing circle.

However, the complex data structure described in [8]
has high constant factors in the running time. We there-
fore maintain an approximate smallest enclosing circle us-
ing our method described below. Using an approximate
smallest enclosing circle instead of an exact algorithm can
cause differences in the segmentation, but the differences
(if any are present) are mostly insignificant. Note that the
approximation ratio can be chosen arbitrary close to one.

The idea of the approximation scheme is to maintain
a constant size approximate convex hull and compute the
radius r′ of its smallest enclosing circle c′enc when the struc-
ture is queried. The approximate convex hull consists of
the (at most 2k) extreme points in k regularly sampled
directions. We call this the k-approximate convex hull.
An example is shown in Figure 2.8. Thin lines are drawn
through the points on the hull to indicate the directions
in which the points are extreme. In Figure 2.8 the approximate enclosing circle is not equal
to the smallest enclosing circle, since there is a point that is not enclosed by the approximate
enclosing circle. This point is indicated by an arrow. However, Theorem 13 states that the two
circles never differ a lot.
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Theorem 13 Given a point set P . Let r and r′ be the radii of the smallest enclosing circles of
respectively P and its k-approximate convex hull. Then,

1 ≥ r′

r
≥ 1− 1

2 cot( π2k )
= 1−O

(
1

k

)
.

Proof. The upper bound on r′/r is not hard to prove. The radius r′ is at most r, because the
set of points that c′enc encloses is a subset of the set of points that cenc encloses. Hence 1 ≥ r′/r.

The lower bound requires some more insight. Let points p and q be consecutive points on the
k-approximate convex hull of P . The situation is depicted in Figure 2.9. The lines `p and `q
define two of the 2k regularly oriented empty half-planes of the k-approximate convex hull. All
points reside inside the (lower) half-planes defined by `p and `q, because p and q are extreme
points.

Consider a point s which lies on cenc, but not inside c′enc. Point s has to lie outside the
k-approximate convex hull. Without loss of generality we assume that s resides in the triangle
∆pqI, with I the intersection point of `p and `q. The distance between s and pq is an upper
bound on the difference between r and r′. Note that the distance from point s to the line
segment pq is at most the distance between I and pq.

The angle α between `p and `q is fixed and is equal to π
(
1− 1

k

)
. Thus, given p, q and α

the point I is located on a circle arc that goes through p and q. Hence the distance between
I and pq is maximal when it is located at the bisector of pq. In that case the distance equals
‖pq‖

2 tan(α/2) ≥ r − r′. Combining this with the fact that ‖pq‖ is a lower of r yields

r′ ≥ r − ‖pq‖
2 tan(α/2)

≥ r
(

1− 1

2 tan(α/2)

)
.

Note that tan(α/2) = tan(π2
(
1− 1

k

)
) = cot( π2k )O(k). Substitution yields the result stated in

the theorem. �

p q

αs

I

`p `q

Figure 2.9: The distance between I and pq is at most ‖pq‖
2 tan(α/2) .

To maintain the k-approximate convex hull the pointset is stored k times, each point set ordered
in a different regularly sampled direction. Using an efficient set structure [9], insertion and
deletion take O(log n) time per set, so O(k log n) time in total. Getting the k-approximate
convex hull also takes O(k log n) time. We compute the smallest enclosing disk for this set of
points with a randomized incremental algorithm in O(k) time [10].

2.4.5 A fraction of outliers instead of a constant number

In the previous sections we discussed how to allow a constant number of outliers per segment in
a decreasing or increasing monotone criterion. Allowing a fraction of points per segment to be
outlier is more useful in practice. Changing the constant number of outliers to a fraction results
in a criterion that is no longer increasing monotone [2]. In fact, it can even be non-stable.
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Theorem 14 Let C be a decreasing or increasing monotone criterion. Allowing a number of
outliers proportional to the number of points in a segment can make the criterion non-stable.

Proof. Consider a trajectory with a certain attribute a that has alternating values: a(0) =
1, a(1) = −1, a(2) = 1 and so on. Assume that we want to segment according to a range
criterion on attribute a with range 1. Allowing a fraction of 1/2− ε outliers (with small enough
ε > 0) yields a completely alternating validity of segments. That is, for any starting point i and
any end point i′ we have that τ [i, i′] is valid (or invalid), τ [i, i′ + 1] is invalid (or valid), and so
on. Hence the compressed start-stop matrix would have Ω(n2) blocks and the criterion would
be non-stable. �

However, we can approximate the fraction of outliers criterion. The idea behind the approxi-
mation is as follows. The fraction of outliers criterion of the form “C except for a fraction f of
the points” is equivalent to:

C ∨
((C except for 1 outlier ) ∧ ( number of points on segment ≥ 1/f)) ∨

((C except for 2 outliers ) ∧ ( number of points on segment ≥ 2/f)) ∨
. . . ∨

((C except for nf outliers ) ∧ ( number of points on segment ≥ n))

This compound criterion has O(n) clauses of stable criteria, so it is not necessarily a stable
criterion. However, in practice this combination of criterion can already have acceptable per-
formance, since f is usually very small. Furthermore, we can leave out some of the last clauses
if we assume a maximum segment length.

We can also properly approximate the criterion by using less terms and allowing some slack in
the number of outliers. We can formulate an approximation criterion such that the fraction of
allowed outliers for any segment is between (1− ε)f and (1 + ε)f . The approximation criterion
consists of several clauses similar to the exact criterion above. The first clause C remains
unchanged. For the second clause we pick

(C except for 1 outlier ) ∧
(

number of points on segment ≥ 1

(1 + ε)f

)
.

The extra slack in the allowed number of outliers enables us to use larger minimum length
in the third clause. It is easy to see that the first two clauses correctly bound the number of
outliers for all segments with number of points ≤ 1

(1−ε)f . Hence the third clause is:(
C except for

1 + ε

1− ε outliers

)
∧
(

number of points on segment ≥ 1

(1− ε)f

)
.

The next clauses are chosen in a similar way. The (i− 2)-th clause is of the form:(
C except for

(
1 + ε

1− ε

)i
outliers

)
∧
(

number of points on segment ≥
(

1 + ε

1− ε

)i 1

(1 + ε)f

)
.

To cover all segment lengths, the last clause (the imax-th clause) should satisfy(
1 + ε

1− ε

)imax 1

(1 + ε)f
≥ n.
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Hence the total number of clauses imax is bounded as follows

imax = O
(

log( 1+ε
1−ε) (nf(1 + ε))

)
= O

(
log( 1+ε

1−ε) n
)
.

This implies that the total number of blocks in the compressed start-stop matrix is
O
(
2(logn)/(log((1+ε)/(1−ε)))

)
. For fixed ε this means that the criterion is O(n log n)-stable. The

result is summarized in the following theorem.

Theorem 15 Let C be a decreasing or increasing monotone criterion, which allows for ignoring
a constant number of outliers. The fraction of outliers criterion can be approximated with a
2(logn)/(log((1+ε)/(1−ε)))-stable criterion, where n is the number of points on the trajectory. This
approximation guarantees that the fraction of allowed outliers per segment is between (1− ε)f
and (1 + ε)f .

2.5 Computing the optimal segmentation

Before presenting our algorithm on compressed start-stop matrices, we discuss a simple algo-
rithm that computes the optimal segmentation given an uncompressed start-stop matrix [2].
This dynamic programming algorithm is based on the following property:

Observation 1 The optimal segmentation for τ [0, i] (if it exists) either consists of just one
segment, or it is equal to an optimal sequence of segments for τ [0, j] appended with a segment
τ [j, i], where j is an index such τ [j, i] is valid.

Observation 1 allows us to transform the segmentation problem to a shortest path problem in
an unweighted directed acyclic graph on n vertices, having the start-stop matrix as adjacency
matrix. The Dynamic Program SimpleComputeSegmentation finds this shortest path from 0 to
n. It computes the optimal segmentation Opti of τ [0, i] incrementally for i = 0, . . . , n. Instead
of storing the complete segmentation for each i, only the starting index of the last segment
(last) and the total number of segments (count) is stored. The actual segmentation can be
retrieved from the DP-table in O(n) time.

Algorithm SimpleComputeSegmentation(τ, C)
1. Opt0.last← nil; Opt0.count← 0;
2. for i← 1 to n
3. do Opti.count←∞
4. for each j for which τ [j, i] satisfies C
5. do if Optj .count+ 1 < Opti.count
6. then Opti.count← Optj .count+ 1;
7. Opti.last← j;

For each index i the algorithm loops over all valid candidate segments τ [j, i], while maintaining
the optimum. The optimal segment in this context is the segment τ [j, i] for which Optj consists
of the smallest number of segments.
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Our approach is similar to SimpleComputeSegmentation: The algorithm ComputeSegmenta-
tion loops over all indices i and for each i it determines the optimal last segment. Our algorithm
finds this optimal segment more efficiently. Instead of processing the valid starting indices one
by one, a whole block of consecutive valid indices is processed at once. These blocks correspond
to the blocks in the compressed start-stop matrix S at row i. To allow for an operation that
efficiently processes a block of valid indices, Opt is stored in a balanced binary tree T instead
of an array. A node in T corresponds to an entry in Opt and has three fields: last, count and
index. The tree T is ordered on index.

Algorithm ComputeSegmentation(τ,S)
1. Initialize empty T ;
2. Create new node ν0;
3. ν0.index← 0; ν0.count← 0;
4. T .Insert(ν0)
5. for i← 1 to n
6. do Create new node ν;
7. ν.index← i;
8. ν.count←∞;
9. for each block b at row i of S
10. do ν ′ ← T .GetMinimalCount(b);
11. if ν ′.count+ 1 < ν.count
12. then ν.count← ν ′.count+ 1;
13. ν.last← ν ′.index;
14. T .Insert(ν);

For each row i in the compressed start-stop matrix a new element storing the optimal segmen-
tation for τ [0, i] is created and inserted in T . Furthermore, the query algorithm GetMinimal-
Count is executed Bi times while maintaining the optimal starting index for the last segment,
where Bi is the number of blocks at row i.

Algorithm RetrieveSegmentation(T , i)
1. ν ← T .F ind(i);
2. k ← ν.count;
3. while k > 0
4. do Output [sk−1, sk] = [ν.last, ν.index];
5. k ← k − 1;
6. ν ← T .F ind(ν.last);

When the tree T is computed the actual segmentation for τ [0, n] is retrieved using the algo-
rithm RetrieveSegmentation. This takes O(n log n) time using the standard find operation for
binary search trees. It is also possible to maintain cross pointers between nodes. That is, a node
ν stores a pointer to the node ν ′ for which ν.last = ν ′.index. Maintaining those cross pointers
yields no increase in asymptotic running time. Using those pointers, the find operations take
only constant time each, which results in a running time of O(n) for retrieving the segmentation
from T .

The GetMinimalCount query is the crucial part of our algorithm. Its input is a block b at row
i of the compressed start-stop matrix. Assume that block b covers the indices b.begin, b.begin+
1, . . . , b.end. These indices are starting indices of valid candidate segments, which end at i.
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Figure 2.10: A tree T and two
search paths. The nodes in
the white subtrees and the white
nodes on the paths are between
the two search paths.

The goal of the GetMinimalCount procedure is to find
the candidate segment starting at j ∈ [b.begin, b.end] for
which Optj consists of the smallest number of segments.
This corresponds to finding the node in T with minimal
count over all nodes with index ∈ [b.begin, b.end].

To find this node one could simply visit all nodes with
index ∈ [b.begin, b.end] and keep track of the one with
minimal count in O(n) time, but this can be done more
efficiently. According to the binary search tree property
the nodes with index ∈ [b.begin, b.end] are located be-
tween the paths to b.begin and b.end. Figure 2.10 shows
an example.

A node ν is between the paths to b.begin and b.end if
and only if it is in one of the following three sets

1. on the path to b.begin , with ν.index ≥ b.begin, or

2. on the path to b.end, with ν.index ≤ b.end, or

3. in the right or left subtree of a node in respectively
set 1 or 2.

There are at most O(log n) nodes in set 1 and 2, and there can be a linear number of nodes
in set 3. However, the size bound on sets 1 and 2 implies that the number of subtrees that
define set 3 is at most O(log n). To speed up the search we augment [9] the balanced binary
search tree T . Each node ν is augmented with the fields ν.mincount and ν.argmincount, which
are equal to respectively the minimal value of count over all nodes in the subtree rooted at ν
and a pointer to the node where this minimum occurs. This enables us to find the node with
minimal count in a subtree (given its root) in constant time.

Algorithm GetMinimalCount(b)
1. νsplit ← node where search paths to b.begin and b.end split up
2. minb ← νsplit.count;
3. for each node ν ′ on path from νsplit to b.begin
4. do if ν ′ is left child of its parent
5. then minb ← min(minb, ν

′.right.mincount, ν
′.count);

6. for each node ν ′ on path from νsplit to b.end
7. do if ν ′ is right child of its parent
8. then minb ← min(minb, ν

′.left.mincount, ν
′.count);

9. return node where minb occurs;

The procedure GetMinimalCount iterates over all O(log n) nodes on the search paths to
b.begin and b.end, while maintaining the node with minimal count in between. If a node of set
1 or 2 is encountered the optimum is updated according to that node and according to that
nodes child in set 3. We conclude the following running time.

Lemma 16 The procedure GetMinimalCount finds the candidate segment starting at j ∈
[b.begin, b.end] for which Optj consists of the smallest number of segments O(log n) time.
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Theorem 17 Given a trajectory τ and a compressed start-stop matrix S of a λ-stable criterion,
the algorithm ComputeSegmentation computes the optimal segmentation in O((n + λ) log n)
time, where n is the number of points on the trajectory.

Proof. We showed that running time is dominated by the λ calls to GetMinimalCount . Com-
bining this with Lemma 16 yields the theorem. �

2.6 Segmentation by movement states

The most natural way to define a criterion for segmentation according to multiple behavioral
movement states is a disjunction of subcriteria, of which each subcriterion corresponds to a
behavioral state:

Behavior 1 ∨ Behavior 2 ∨ · · · ∨ Behavior m.

As was described in Section 2.3.3, to segment according to such a disjunction we take the union
of the compressed start-stop matrices. However, taking the union of the compressed start-stop
matrices makes us lose valuable information: the segmentation algorithm cannot distinguish
between different classes of segments anymore.

The algorithm ComputeSegmentation can be extended in such a way that this valuable infor-
mation remains. In this extended algorithm the input consists of the m compressed start-stop
matrices that correspond to the m behavioral states. The loop of lines 9-13 over all blocks of
the compressed start-stop matrix is executed once for each of the m start-stop matrices. Given
the m individual start-stop matrices, classification of the segments is possible. To store the
classification each node in T has an extra field storing the movement state of the last segment.
When the optimal starting point of the last segment is changed on line 13 the movement state
corresponding to the current compressed start-stop matrix is assigned to this field. The running
time of this segmentation/classification algorithm is O(mn log n).

2.6.1 Adding optimization goals in case of ties

Note that a segment is put into the first class, whose criterion it satisfies. Intuitively, the order
in which the start-stop matrices are handled corresponds to the order of “preference”. However,
this order does not yield real guarantees. One could also order all optimal segmentations (equal
segment count) by the number of segments of class i that they contain (and in case of ties, on
the number of segments of class i′, etc). Keeping track of the number of segments of each class
and doing a lexicographical comparison instead of the simple comparison of line 11 takes only
O(m) additional time, which does not affect the asymptotic running time.

There is another way of breaking ties that is especially practical when segmenting trajectories
of animals that show pausing or stopping behavior (see Section 2.8 for an example). This kind
of behavior can usually be described by a disk criterion. Segmenting without defining extra
rules for breaking ties, can yield strange results biased towards a certain direction (forward or
backward).
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For example, consider the trajectory of Figure 2.11. Assume that it is segmented according to
a disjunction criterion containing a disk and bounded turning angle criterion (≤ 60◦). Making
the last segment as long as possible would result in the segmentation of Figure 2.11(a). Making
the last segment as short as possible results in the situation of Figure 2.11(b). Both are not
what we would expect from a good segmentation. They are biased towards respectively the
front or the back: the segment that satisfies the disk criterion ends in a strange “limb” at its
front- or back-end.

To counteract this biased behavior, rules can be defined to break ties based on the segment
classes. In the example of Figure 2.11, one should pick the last segment as short as possible if
it satisfies the bounded turning angle criterion, and pick the last segment as long as possible if
it satisfies the disk criterion. This strategy results in the segmentation in Figure 2.11(c), which
is preferred over the other two segmentations.

start

stop

(a) Last segment as
long as possible

start

stop

(b) Last segment as short
as possible

start

stop

(c) Class dependent
tie breaking

Figure 2.11: Three optimal segmentations. Pausing segment is depicted thicker.

The tie breaking strategy is easy to incorporate in the algorithm. Simply pick the left-most or
right-most valid starting index in the GetMinimalCount procedure, depending on the current
movement state, instead of an arbitrary one. Hence two variants of GetMinimalCount are
needed: one to find the left-most and another to find the right-most valid optimal starting
index within the block. To enable those two queries on T , each node stores two argmincount
fields, one storing the left-most and another one storing the right most-node where mincount
occurs. Those changes do not affect the asymptotic running time.

2.6.2 Follow relations between movement states

In practice, transitions between movement states are not occurring at random, they are often
well-structured. The transitions can be modeled by a connected graph on m vertices, which we
call a transition graph. The rule “movement state A can be followed by movement state B”
corresponds to an edge between vertices A and B in the transition graph. We present a method
to enforce those transition relations on a segmentation.

This method computes m segmentation trees T1, T2, . . . , Tm, instead of one (as described in
Section 2.5). Each tree Ts stores the optimal segmentation for the subtrajectory τ [0, i] that
ends in movement state s for all i = 1, . . . , n.

Consider the computation of the optimal segmentation for τ [0, i+1] ending at state s. Assume
that s is only preceded by states p1, p2, . . . , pd according to the transition graph. As before, the
start-stop matrix of state s determines which segments (ending at i+ 1) are valid. Recall that
in the unrestricted setting the starting index of the last segment is chosen such that it starts
at the index j for which the optimal segmentation of τ [0, j] has minimal segment count and
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for which τ [j, i] is valid, which is computed efficiently using GetMinimalCount queries. In the
restricted case this definition of best segment changes: the last segment starts at the index j
for which the optimal segmentation of τ [0, j] ending at p1, or p2, or . . . , has minimal segment
count and for which τ [j, i] is valid according to the start-stop matrix of state s. To compute
index j we execute the GetMinimalCount query on Tp1 , Tp2 , . . . , Tpd . The rest of the algorithm
is similar. The following theorem follows directly.

Theorem 18 Given a trajectory τ consisting of n points, a movement state transition graph
G(V,E) with |V | = m and compressed start-stop matrices S∞,S∞, . . . ,Sm, each of a λi-stable
criterion with λi ≤ λ, the algorithm ComputeSegmentation computes a segmentation with mini-
mal number of segments, satisfying the transition graph G of which each segment corresponding
to movement state s satisfies the criterion of S∫ in O(|E|(n+ λ) log n) time.

Enforcing hard follow restrictions can result in situations where no valid segmentation exists.
An alternative approach is to model the transitions with a weighted transition graph, which
penalizes less likely transitions. In this setting the segmentation goal is to minimize the total
penalty of the segmentation. This can be achieved by an algorithm very similar to the one of
Theorem 18, but instead of incrementing the segment count by one, when appending a new
segment, we increment the penalty by a value depending on the transition.

One could for instance base the penalties on the probabilities of a Markov chain that describes
the movement state transitions. Going from one state to another could be penalized by the
logarithm of its probability in the Markov chain. This implies that the optimal segmentation
has the highest probability of occurring according to the Markov chain.

2.7 Interactive parameter selection

Most criteria that we have discussed involve parameters, such as the upper bound α on the
angular range of the heading and the radius r of the covering disk. Tuning these parameters is
complex, and in most applications there is no well-defined ground truth. Hence, an interactive
setting is needed. This interactive process can be guided by the stability of the parameter values.
A value is unstable if a small change to its value results in a large change in the segmentation,
i.e., in a change of the number of segments. To measure the stability of a parameter value
we run the segmentation algorithm multiple times with different parameter values and count
the number of segments for each of the resulting segmentations, and sample the function which
maps the parameter domain to the number of segments in the corresponding segmentation. The
stabler value ranges correspond to the “flat” parts of this function, that is, the parts with the
least variation in number of segments (see Section 2.8 for an example).

To compute the stability of parameter values, we need to compute the segmentation of the
same trajectory multiple times using the same criterion, but with different parameter values. For
decreasing monotone criteria, information can be reused in the different runs. For this purpose
we use the double-and-search method described by Buchin et al. [6], but instead of testing
validity for segments directly, we query a data structure that is constructed once in O(n log n)
and used in all runs with different parameter values. The running time of the double-and-search
method is reduced from O(n log n) to O(k log n) time, where k is the number of segments.

The data structure is basically a table that stores certain criterion-dependent information for
all segments of length 1, 2, 4, 8, . . . . For instance, for the range criterion on speed, the maximal
and minimal speed is stored, and for the (approximate) disk criterion the extreme points in all
k directions are stored. The data structure can efficiently (in O(log n) time) test the validity of
any segment given a certain parameter value. In case of the range criterion it can check whether
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a certain segment is valid by retrieving the maximum and minimum value from the tables and
testing whether their difference is small enough. A naive use of the retrieve query, i.e., in each
step of the double-and-search method, yields a running time of O(k log2 n). However, by reusing
information during the search, we can reduce this running time to O(k log n).

2.8 Case study

We assess the performance of our framework by analyzing two trajectories of migrating white-
fronted geese [18] during their spring migration. The goal is to segment this data set into
migration flight and stopovers (including wintering, breeding, and moult). Figure 2.12 shows
the segmentation as computed by our framework.

Figure 2.12: Trajectories of two migrating geese. Red/pink segments are flight, yellow segments
are stopovers. Blue markers indicate end of a stopover. The red to pink color map is used to
indicate the absolute number of outliers.

The data was previously analyzed and manually segmented by domain experts [18]. A
stopover segment is characterized by its limited variation in location. Therefore, the disk cri-
terion is used for stopovers. Note that a stopover is not simply a stop, but a resting place,
where a goose rests, flies (short stretches) and feeds for at least 48 hours [18] before moving
on. During flight, geese maintain the same heading for long stretches. This clearly differs from
the seemingly undirected motion that can be observed at stopovers. Hence we use the angular
range criterion for heading for flight. On this data set, a disk with radius 30 km and an angular
range of 1.7 radians yield the best segmentation result, that is, the segmentation that is most
similar to the domain-expert’s segmentation by hand.
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Figure 2.13: Stability diagram of the turning angle for two geese data sets: Adri and Kees.

Finding suitable parameters was an interactive process. Our search was aided by stability
diagrams (see Section 2.7). The stability diagram of Figure 2.13 was very helpful in our search
for a good angular range bound. The diagram clearly shows a stable region between 1 and 2.5
radians. We picked three different values in this stable region: 1, 1.7 and 2.5 and segmented
according to those parameter settings. There is a tradeoff between large stopovers that can
cover parts of flight segments and small stopovers that leave some of the stop points uncovered
which are either incorrectly labeled as flight, or which form extra stopovers. The middle value
1.7 proved to be a suitable compromise. A typical example motivating our choice is shown in
Figure 2.14.

(a) α = 1.0 rad

(b) α = 1.7 rad

(c) α = 2.5 rad

Figure 2.14: Segmentations for varying heading range bound α.
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A similar analysis was done to find a suitable disk radius. The stability diagram indicated
several stable regions. We tried one value from each of the most stable regions: 10 km, 30km
and 40 km. We preferred 30km, because it resulted in stopovers of size similar to those in
the manual segmentation. A radius of 40km mislabeled numerous migration flight segments as
stopovers. A radius of 10km was good at detecting stops, but not at finding stopovers. For this
10km radius the manually labeled stopover segments were split in stops (labeled stopover) and
non-migration flight (labeled migration flight) (see Figure 2.15).

(a) r =30 km (b) r =10 km

Figure 2.15: Segmentations for varying radius r.

The criteria as discussed above are successfully detecting stopovers, but are mislabeling some
short stops (< 48h) as stopover. We therefore placed a minimal duration criterion (48h) in
conjunction with the disk criterion as suggested by domain knowledge [18]. This resulted in the
short stops being labeled migration flight. The geese do not maintain their heading on all data
points in the migration flight (according to manual segmentation). Geese can fly in a completely
different direction for a very small period of time after which they change back to the previous
heading (zigzag). This leads to a segmentation with numerous artificial splits in the stretches
of migration flight.

Allowing a constant number of outliers per segment can improve the segmentation [7], since
flight segments are then merged. However, a constant number of outliers causes small flight
segments to cover a significant part of the stopovers, so many even that complete stopovers can
be missed by the algorithm. Instead, we allow a number of outliers proportional to the number
of points in the segment (using the method described in Section 2.4.5). In this specific case
we have chosen an outlier percentage of 20%. Allowing this percentage of outliers effectively
reduces the number of consecutive flight segments. Most of them are merged, which is preferred.
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Just optimizing with respect to the number of segments does not uniquely define the splitting
points of the segmentation. Thus, we add the rule that flight segments must be as short as
possible and stopovers as long as possible using the method described in Section 2.6.1. This tie
breaking method performs very well, especially compared to the alternative: making flight as
long as possible and stopovers as short as possible. This is illustrated by Figure 2.16.

(a) Long stops, short flight (b) Short stops, long flight

Figure 2.16: Segmentations with different tie breaking rules.

We conclude that our segmentation framework proved to be useful in practice. In contrast to
previous approaches [7], our framework offers mechanisms for enforcing a minimum duration,
optimizing the splitting points, choosing parameter values, and handling outliers in a more
consistent way, which are effective in practice. The resulting segmentations are very close to
the manual segmentation. Our labeling agrees with the manual labeling on respectively 96.3
and 92.6% of the total points.
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Chapter 3

Segmentation based on the dynamic
Brownian Bridge Movement Model

An important issue regarding the criterion-based segmentation framework of Chapter 2 is choos-
ing the right parametrized criteria. That is why we have developed a novel segmentation method
that does not rely on specific criteria, but on a statistical movement model: the dynamic Brow-
nian Bridge Movement Model (dBBMM).

First we discuss the dBBMM in Section 3.1. An important task regarding the dBBMM is
estimating the diffusion coefficient (a model parameter) along the trajectory. We introduce a
new way to describe the diffusion coefficient and relate this to the segmentation problem in
Section 3.2. Furthermore, we discuss information criteria and how they are used in our method
to formalize the tradeoff between homogeneous segments (measured in likelihood of assigned
diffusion coefficients) and number of segments.

In Section 3.3 we present our algorithm, which finds the optimal segmentation with respect
to a given information criterion. We also show a way to speed up the algorithm on realistic
data using a technique that we call table compression, and provide means to compare different
information criteria settings.

Finally, in Section 3.4 we show that our dBBMM-based segmentation method can be combined
with the criterion-based methods from Chapter 2.

3.1 Brownian bridge movement model

In this section we discuss the model and its most important properties in the context of seg-
mentation. For a more detailed description of the model see [15].

3.1.1 Brownian bridges

The BBMM describes the movement of an object as a random process. It assumes that the
moving object has a Brownian motion. Recall that a Brownian motion can be characterized by
a starting location x and a scale parameter σm, which is called the diffusion coefficient (and
σ2m is called the Brownian motion variance). If Xt is a Brownian motion with parameters x
and σm, then

Xt = x + σmBt,

where Bt is a standard Brownian motion. This implies that Xt ∼ N (x, tσm), with N (µ, σ)
denoting the circular normal distribution with mean µ and covariance matrix σ2I.
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Tracking a moving object is done by recording multiple timestamped locations. The BBMM
can be used to interpolate the location of the object at a moment in time between the recorded
timestamps. More formally, we condition Brownian motion on the location a at time 0, and
on the location b at some time T . Such a conditioned Brownian motion is called a Brownian
bridge. Using the Markov property of Brownian motion, one can show that for 0 ≤ t ≤ T ,

(Xt | X0 = a ∧XT = b) ∼ N (µ(t), σ2(t)),

where µ(t) = a + α(b − a) and σ2(t) = Tα(1 − α)σ2m, with α = t/T . Figure 3.1 shows two
location distributions at different times.

a

b

µ(12T )

σ2(12T )

µ(14T )

σ2(14T )

Figure 3.1: A Brownian bridge and the location distributions at times T/4 and T/2. The
distributions at times 0 and T have σ2 = 0 and respectively µ = a and b

The BBMM can also handle uncertainties in the location of points a and b. If we assume
that two points are normally distributed with variances δ2a and δ2b respectively, then we can add
(1− α)2δ2a + α2δ2b to σ2(t) to correct for this uncertainty.

Aggregating all the normal probability distributions over time yields the probability density
for the fraction of time spent at each location. An example of such a density function is shown
in Figure 3.2.

Figure 3.2: Probability density for the fraction of time spent in different regions between two
sample points which correspond two the two peaks [15].
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3.1.2 Estimating the diffusion coefficient

Horne et al. [15] presented a method for estimating the diffusion coefficient using a maximum
likelihood method. In this approach, the recorded data points are partitioned in two sets.
The even-numbered points are used to define Brownian bridges, and the odd-numbered points
are used to estimate the diffusion coefficient and are assumed to be independent. To avoid
confusion we renumber and denote the bridge points by τ(0), τ(1), . . . , τ(n) and their times-
tamps to t0, t1, . . . , tn. The odd-numbered points are denoted by τ b(0), τ b(1), . . . , τ b(n − 1)
and their timestamps by tb0, t

b
1, . . . , τ

b(n− 1). We will see later on that our segmentation algo-
rithm runs on the trajectory consisting of points τ(0), τ(1), τ(2), . . . , τ(n), and treats the points
τ b(0), τ b(1), . . . , τ b(n−1) as a trajectory attribute. An example of a trajectory and its Brownian
bridges is shown in Figure 3.3.

τ (0)

τ (1)

τ (2)

τ (3)

τ b(0)

τ b(1)

τ b(2)

Figure 3.3: A trajectory τ and its Brownian bridges (adapted from [15]).

The likelihood of a candidate diffusion coefficient σ2m given a certain Brownian bridge τ [i, i+1]
(including the point τ b(i)) is:

L(σ2m | τ [i, i+ 1]) =
1

2πσ2m(i)
exp

(−‖τ b(i)− µ(i)‖
2σ2m(i)

)
, (3.1)

where µ(i) = τ(i) + α(τ(i+ 1)− τ(i)) and σ2(i) = (ti+1 − ti)α(1− α)σ2m, with α =
ti+1−tbi
ti+1−ti .

The likelihood of a candidate diffusion coefficient σ2m given multiple Brownian bridges τ [i, i′]
is simply the product of the individual likelihoods:

L(σ2m | τ [i′, i]) =
i−1∏
j=i′

L(σ2m | τ [j, j + 1]).

To estimate the diffusion coefficient for a whole trajectory Horne et al. choose the one that
maximizes the likelihood given τ [0, n]. This is equivalent to maximizing the log-likelihood of
τ [0, n]. The log-likelihood given a subtrajectory τ [i, i′] is given by:

log
(
L(σ2m | τ [i, i′])

)
=

i′−1∑
j=i

log
(
L(σ2m | τ [j, j + 1])

)
.

Substituting Equation 3.1 yields:

log
(
L(σ2m | τ [i, i′])

)
= −

i′−1∑
j=i

log
(
2πσ2m(j)

)
+
‖τ b(j)− µ(j)‖

2σ2m(j)
. (3.2)
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3.1.3 Dynamic Brownian Bridge Movement Model

The BBMM assumes that the diffusion coefficient, and therefore the movement behavior is
homogeneous along the whole trajectory. This is often not the case in practice. Kranstauber
et al. [16] introduced the dynamic Brownian Bridge Movement Mmodel (dBBMM) in which the
diffusion coefficient may vary along the trajectory to allow for changes in movement behavior.

They presented a sliding window technique which estimates the diffusion coefficient at each
of the n bridges. For each window position the bridges are fitted with one σ2m or the window is
split in two parts, of which each part is fitted with a separate σ2m. After all the window positions
are processed, each individual bridge is assigned the average σ2m over all relevant σ2m’s.

3.2 Using the dBBMM to characterize segments

In Sections 3.1.2 and 3.1.3 we discussed two methods to model the diffusion coefficients along a
recorded trajectory. We can model a constant diffusion coefficient, or a diffusion coefficient that
can change at each bridge. Allowing a diffusion coefficient that can change at each bridge does
not necessarily mean that it has to change. However, the windowing method by Kranstauber
et al. [16] results in n different diffusion coefficients on realistic trajectories.

For most trajectories, far fewer diffusion coefficients are needed to model the movement
appropriately. Many trajectories consist of a small number of segments, each corresponding to
a certain movement state. Hence we can model them using one diffusion coefficient per segment.

We have developed a novel method which, given a trajectory, computes a segmentation labeled
with diffusion coefficients. Throughout the next sections the diffusion coefficient of the i-th
segment is denoted by σm,i. An example is shown in Figure 3.4.

σ2m,1

σ2m,1 σ2m,1

σ2m,1
σ2m,1

σ2m,2

σ2m,2

σ2m,3
σ2m,3

σ2m,3

Figure 3.4: Correspondence between estimated diffusion coefficients and the segmentation.

The homogeneity of segments is measured by the likelihood of the estimated diffusion coeffi-
cient given the segment. In other words, the homogeneity of the i-th segment (recall that this
is τ [si, si+1]) is measured by L(σ2i | τ [si, si+1]). The homogeneity of the whole segmentation is
measured by the products of these likelihoods. Maximizing the overall homogeneity is hence
equivalent to maximizing the sum of all the individual loglikelihoods per segment:

log(L) = −
k−1∑
i=0

si+1−1∑
j=si

log
(
2πσ2m,i(j)

)
+
‖τ b(j)− µ(j)‖

2σ2m,i(j)
. (3.3)
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We can fix the number of segments and compute the “best” segmentation; that is, the seg-
mentation which maximizes the function of Equation 3.3. This is explained in Section 3.3.1.
However, choosing the correct number of segments is not trivial. We can formalize the trade-
off between the homogeneity of segments and the number of segments using an information
criterion.

3.2.1 Information criterion

An information criterion (IC) is a measure which evaluates the quality of a model instance.
We allow for information criteria of the following form:

−2 log(L) + kp, (3.4)

where L is the likelihood of the model instance, k is the number of variables of the model
instance, which correspond in our context to respectively the likelihood of the diffusion coeffi-
cients given in Equation 3.3, and the number of segments. The number p is a penalty factor
that counteracts overfitting.

We have developed an algorithm that finds the optimal segmentation with respect to a given
information criterion (of the form of Equation 3.4); that is, it finds the segmentation with
minimal information according to the given information criterion.

There are several ways to choose a good information criterion. One could pick one of the
two widely used information criteria, the Bayesian information criterion (BIC) or the Akaike
information criterion (AIC). The BIC has a penalty p = ln(n), where n is the number of recorded
data points for which the model is constructed. The AIC has a constant penalty p = 2. The
BIC has been used previously in the windowing technique that obtained diffusion coefficients
for the dBBMM [16].

On the other hand, custom penalty factors provide more flexibility. There is one important
observation regarding the penalty factor.

Observation 2 Given a trajectory τ and an information criterion IC with penalty factor p, let
S be the optimal segmentation of τ with respect to IC, let IC ′ be another information criterion
with penalty factor p′ > p, and let S′ be the optimal segmentation of τ with respect to IC ′.
The number of segments of S′ is at most the number of segments of S.

Intuitively, increasing the penalty factor p “decreases” the number of segments of the optimal
segmentation. Picking the right p can be a complex interactive process. We have developed
means to make this easier. This is described in Section 3.3.3.
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3.3 Segmentation algorithm

In this section we present our novel segmentation algorithm which finds the segmentation and
diffusion coefficient assignment that is optimal with respect to a given information criterion IC.

3.3.1 Dynamic programming approach

Our algorithm is basically a Dynamic Program (DP). Let Opti denote the optimal segmentation
of τ [0, i] with respect to IC. We compute all Opti in increasing order of i. In order to compute
Opti we also maintain a two-dimensional table OptF ixedLast. Each entry OptF ixedLasti,v
stores the best segmentation (minimizing the IC) of subtrajectory τ [0, i] that ends with a
segment with diffusion coefficient σ2m = v.

For this tableOptF ixedLasti,v, we need to sample the set of σ2m,i values. Let V = {v1, v2, . . . , vV }
denote this sample set. A regularly sampled set of variances starting at ε > 0 and ending with
vmax yields good results in practice. We note that vmax can be determined by an exponential
search that ends when no diffusion coefficients are fitted with

√
vmax.

Given OptF ixedLasti,v for all v, it is straightforward to compute Opti. We assume that the
last segment of the optimal segmentation ends either with v1 or v2 etc, hence

Opti = arg min
S∈{OptF ixedLasti,v | v∈V }

IC(S),

where IC(S) denotes the information of segmentation S according to information criterion IC.
The table OptF ixedLast is computed using the greedy property stated in Lemma 19.

Lemma 19 OptF ixedLasti,v is equal to one of the following options:

Append: Opti−1 appended with the one-bridge segment τ [i− 1, i].

Opti−1
i− 1 i

Extend: OptLastF ixedi−1,v with the last segment extended by τ [i− 1, i].

OptLastF ixedi−1,v

i− 1 ij
Optj

Proof. The last segment of OptF ixedLasti,v consists of one Brownian bridge τ [i − 1, i], or it
consists of strictly more than one Brownian bridge.

Case 1: Last segment consists of one Brownian bridge. The last segment is in this case
a one-bridge segment τ [i − 1, i] with σ2m = v. We are left with the part τ [0, i − 1]. Consider
the loglikelihood function of Equation 3.3. Each bridge corresponds to its own independent
term. Hence the part τ [0, i − 1] should be segmented optimally independent of the rest of the
trajectory. By definition, this results in segmentation Opti−1, which proves the append option.

Case 2: Last segment consists of strictly more than one Brownian bridge. In this case
OptF ixedLasti,v is set to OptF ixedLasti−1,v, with the last segment extended by one bridge.
We prove that this greedy choice is correct.



3.3 Segmentation algorithm 37

Let S1 denote the segmentation that is equal to OptF ixedLasti−1,v, with the last segment
extended by one bridge. Let S2 denote the segmentation of subtrajectory τ1,i−1 according to
OptF ixedLasti,v (with the last segment one bridge shorter). Since OptF ixedLasti,v minimizes
the IC we have

IC(OptF ixedLasti,v) ≤ IC(S1).

Substitution of both values yields:

IC(S2)− 2Li ≤ IC(OptF ixedLasti−1,v)− 2Li,

where Li is short for L(vτ̄ [i, i+ 1]). This implies that

IC(S2) ≤ IC(OptF ixedLasti−1,v).

By definition, segmentation IC(OptF ixedLasti−1,v) minimizes the information over all possible
values of S2. Hence IC(S2) = IC(OptF ixedLasti−1,v). Greedily choosing S2 = OptF ixedLasti−1,v
is hence correct. This proves the extend option. �

Lemma 19 implies that we can compute OptLastF ixedi,v in a dynamic programming fashion,
looping over i and v. We compute each new entry OptLastF ixedi,v using a comparison between
two already computed table entries:

IC(OptLastF ixedi,v) = min (IC(OptLastF ixedi−1,v), IC(Opti−1) + p) + log (L(v | τ [i− 1, i]))

If IC(Opti−1) + p is smaller, OptLastF ixedi,v is set according to the append option. Otherwise
it is set according to the extend option.

In our algorithm we store segmentations in the same way as the algorithm of Section 2.5:
we only store the length of the last segment. Furthermore, we store for each segmentation the
information according to our IC. For the Opti segmentations the diffusion coefficient of the
last segment is stored as well. Using this storage format computing OptLastF ixedi,v takes only
constant time. The actual segmentation can be retrieved from the tables in O(n).

Theorem 20 The optimal segmentation of a trajectory τ with respect to an information cri-
terion IC can be computed in O(n|V |) time, and O(n+ |V |) space, where |V | is the size of the
set of sampled Brownian variances and n the number of points on the trajectory.

Proof. Our algorithm computes the table OptLastF ixedi,v, which is size n × |V |. Using
Lemma 19, this takes constant time per entry, hence O(n|V |) in total. Computing the ta-
ble with the overall optimal segmentations Opti takes O(|V |) per entry, hence also O(n|V |)
in total. To compute an entry OptLastF ixedi,v in loop i, only OptLastF ixedi−1,v is needed.
No access is needed to any entry OptLastF ixedi′,v, with i′ < i − 1. Hence the space of the
OptLastF ixed table can be reused. The algorithm thus requires only O(n+ |V |) space. �

We have performed several small test with our algorithm. An example is shown in Fig-
ure 3.5. The segmentation is optimal with respect to the BIC. The trajectory data is available
at Movebank. It contains the movement of a fisher [16].

Fixed number of segments

It is straightforward to change the algorithm in such a way that it computes the segmentation
with a fixed number k of segments and maximal likelihood. All tables get an extra dimension:
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Figure 3.5: Segmentation of a real world trajectory. Optimal with respect to BIC. Segments
are shown in different colors.

the number of segments. Those tables can be computed using a greedy property that is similar
to Lemma 19.

To compute OptLastF ixedi,v,m (with m the number of segments) we choose between either
appending a one-bridge segment to Opti−1,m−1 and extending the last segment of
OptLastF ixedi−1,v,m by one bridge. Each table entry is hence computed in constant time,
which results in a O(n|V |k) running time and O(n + |V |k) required space. Note that this
algorithm does not only give the best segmentation with k segments, but also the best segmen-
tations with k− 1, k− 2, . . . , 1 segments. Furthermore, the algorithm can be run incrementally,
increasing k one by one.

3.3.2 Table compression

We can significantly speed up the basic segmentation algorithm from Section 3.3.1, by using the
following observation in the DP table. Let S.last denote the starting index of the last segment
of segmentation S. In all data sets we inspected, the variation of OptF ixedLasti,v.last for a
fixed i over all v was very limited. Given a set of ordered Brownian variances v1 < v2 < · · · < vV
there seems to be only a constant (with respect to V and n) number of variances vj for which
OptF ixedLasti,vj .last 6= OptF ixedLasti,vj+1 .last. An example of this repetitive behavior on a
typical real world data set is shown in Table 3.1. The table consists of 5000 rows, but there are
only 4 changes of the last field.
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Table 3.1: DP table, with repetitive last field.

OptLastF ixed110,v
v Start of last segment Information

1.00 109 -711.2
. . . 109 . . .
12.28 109 -681.6
12.29 96 -681.6
. . . 96 . . .
33.13 96 -679.0
33.14 99 -679.1
. . . 99 . . .
37.05 99 -679.3
37.06 105 -679.3
50.00 105 . . .

Let’s assume throughout this section that for each i there are at most w variances at which
the startindex OptF ixedLasti,v.last changes. We improve the original algorithm by storing the
DP table in a compressed way. Multiple entries of OptF ixedLasti,v with equal last field can
be compressed into one entry OptF ixedLasti,[vs,vf ]. The proposed compressed table is shown
in Table 3.2.

Table 3.2: Compressed DP table corresponding to the uncompressed Table 3.1, all consecutive
entries with equal start field are compressed.

OptLastF ixed110,v
v Start of last segment Information

[1.00, 12.28] 109 f1(σ
2
m)

[12.29, 33.13] 96 f2(σ
2
m)

[33.14, 37.05] 99 f3(σ
2
m)

[37.06, 50.00] 105 f3(σ
2
m)

Note that the Information field is not constant for all variances that are stored in the same
compressed table entry. The information of a segmentation OptF ixedLasti,σ2

m∈[vs,vf ] consists

of two parts: a variable part for the last segment, which depends on the exact value of σ2m ∈
[vs, ve], and a constant part for the rest of the segmentation, which equals the information of
the optimal segmentation of τ [0, OptF ixedLasti,[vs,vf ].last]. The constant part can be stored
without causing problems to the compression.

The variable part is a function which maps σ2m to log
(
L(σ2m | τ [s, i])

)
, with s =

OptF ixedLasti,[vs,vf ].last. This function can be computed using Equation 3.2. Figure 3.6
shows an example of such a function. In many practical situations this equation solves to func-
tion with a constant number of parameters. For instance, if no error in the recorded points (all
δ = 0) is assumed the variable part can be stored by a function of the form:

c1 + c2 log(σ2m) +
c3
σ2m

, (3.5)

with c1, c2 and c3 constants.
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If the measurements were done at a regular interval (hence α = 1/2) and the errors in the
recorded points are equal, then the variable part has the form:

c1 log(c2σ
2
m + c3) +

c4
σ2m + c5

, (3.6)

with c1, c2, c3, c4 and c5 constants.

σ2mIC vs ve

Figure 3.6: Function that maps σ2m to
(
L(σ2m | τ [last, i])

)
.

The change in our DP table representation causes the need for several changes in the DP
algorithm. First of all, we do not loop over a sampled set V of variance. Instead, we loop over
all variance intervals that together cover the whole variance space.

In the original algorithm we compared the information of the append and extend option.
This was a simple comparison of two floating point numbers. In our compressed setting the
comparison between append and extend yields comparing two functions of σ2m as is depicted in
Figure 3.7. Note that the function corresponding to the append option is a constant function.
Computing this the minimum of two functions takes constant time given a suitable representa-
tion of the extend function, such as the ones of equations 3.5 and 3.6.

σ2mIC vs ve

Figure 3.7: Determining for which σ2m’s to append and for which to extend by taking the
minimum of two functions. This minimum is shown in red.

When this minimum of two functions is not completely equal to one of the two compared
functions, the variance interval is split in a number of parts: parts of the append function and
parts of the extend function. If the information can be described by a function that consists
of an increasing part followed by a decreasing part (such as the functions of equations 3.5 and
3.6), then this number of parts is at most three.

Extending the last segment or appending a new segment with a different variance takes con-
stant time given suitable representation of the information. If we extend the last segment we
change the constant number of likelihood function parameters according to the added Brownian
bridge. If we append a new segment we initialize the constant number of likelihood function
parameters according to the new segments single Brownian bridge. After looping over all in-
tervals we merge neighboring intervals that have equal start field. This guarantees that each of
the i loops in the computation of the compressed OptLastF ixed table takes O(w) time.
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The segmentation Opti is equal to the OptLastF ixedi,v with minimal IC. In the original
algorithm this is computed by simply taking the minimum over all v ∈ V . In the compressed
table variant, we find the best v ∈ [vs, ve] for every variance interval; that is, the v for which
the information criterion is minimal, and take the best of those segmentations. Computing the
best variance in a variance interval takes constant time given a suitable representation of the
extend function. The following theorem summarizes our running time analysis.

Theorem 21 Given a trajectory τ consisting of n points, the optimal segmentation with respect
to an information criterion IC can be computed in O(nw) time, where w is maximal the number
of indices at which the startindex OptF ixedLasti,v.last changes along v.

Note that the numerical operations on the variance functions take constant time with re-
spect to n and w, but their running times do depend on their precision and the exact numeri-
cal/analytical methods that are used.

3.3.3 Choosing the penalty factor

Given a trajectory, the result of the dBBMM-based segmentation algorithm only depends on
the information criterion IC, which is completely defined by one parameter: the penalty factor
p. Recall from Section 3.2.1 that increasing the penalty factor p decreases the number of
segments of the optimal segmentation. Hence this parameter controls the conceptual “scale” of
the segmentation.

We have experimented with different values of p on various data sets and noticed that the
most suitable choices for p correspond to the most stable values. The concept of stability of
segmentation parameters was already introduced in Section 2.7. A parameter value is unstable
if a small change to its value results in a large change in the segmentation, i.e., in a change of
the number of segments. The stability of a parameter can be visualized in a stability diagram,
which is basically a plot of the function which maps a value in the parameter space to the
number of segments in the segmentation corresponding to the parameter value.

In Section 2.7 we sample the parameter space and perform multiple segmentation computa-
tions. In this particular case however, we do not have to sample the penalty space. An exact
method exists and is based on a simple observation.

Observation 3 If a segmentation S is optimal with respect to a certain information criterion
IC, and it consists of k segments, then segmentation S maximizes the loglikelihood of the
diffusion coefficients over all segmentations with exactly k segments.

Our method to compute the stability diagram consists of two steps. First we compute the
information of the optimal segmentations with 1, 2, . . . , n segments. We will denote these seg-
mentations by respectively S1, S2, . . . , Sn. They can be computed inO(n2) time by the algorithm
described in Section 3.3.1. All other segmentations can be ignored due to Observation 3.

In the second step the stability diagram is computed from these segmentations. Note that for
large enough p the segmentation S1 maximizes the IC. The information of this segmentation
for any information criterion is described by the line `1 with equation (x, y) = (p, IC(p)), where
IC(p) = LS1 + p, with LS1 a constant depending on S1. More general, each segmentation Si
corresponds to a line `i with equation (p, IC(p) = LSi +i·p). An example is shown in Figure 3.8.
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Figure 3.8: Relation between lines
`1, `2, . . . , `n and the stability dia-
gram.

Segmentation S1 is optimal for all p > p1, where p1
is the rightmost intersection of `1 and another line `j .
It should be clear that the stability diagram increases
(viewed from right to left) from 1 to j at p1. In a
similar way, for p2 < p ≤ p1 the segmentation Sj is
optimal, where p2 is the rightmost intersection point
of `j and another line `j′ left of p1. At p2, the stability
diagram increases from j to j′. This argument can be
continued until the whole range of p > 0 is covered.

Computing the points p1, p2, . . . given the lines
`1, `2, . . . , `n is a well known problem in Computa-
tion Geometry. The points p1, p2, . . . define the lower
envelope of lines `1, `2, . . . , `n. There is a close con-
nection between the lower envelope of a line set and
the upper convex hull of a point set.

Consider the dual points `∗1, `
∗
2, . . . , `

∗
n of the lines

`1, `2, . . . , `n, defined by the standard dual transform,
which defines the dual transform of point p = (a, b) ∈
R2 to be line p∗ := (a · x− b = y). The upper convex
hull of the points `∗1, `

∗2, . . . , `∗n is the dual of the lower
envelop of the `1, `2, . . . , `n [10]. Recall that the upper
convex hull of a pointset can be computed in O(n) by
Graham’s scan [10], given a sorted input. The points
`∗1, `

∗
2, . . . , `

∗
n are already sorted on their x-coordinate,

since the lines `1, `2, . . . , `n are computed in ascending
order of slope. The following theorem summarizes our
result.

Theorem 22 Given the information of the optimal segmentations with 1, 2, . . . , n segments the
stability diagram for the penalty factor can be computed in O(n) time.

Unfortunately, the computation of the lines `1, `2, . . . , `n is the bottleneck in terms of running
time in our computation of the stability diagram. Computing the n lines takes O(n2) time in
total.

However, if we put an upper bound kmax on the number of segments, then it is sufficient to
compute only lines `1, `2, . . . , `kmax , which takes O(kmaxn). Computing the stability diagram
takes O(kmax). An example on a real world trajectory (fisher set) is given in Figure 3.9. The
stability diagram clearly indicates that choosing 5 segments is the best option.
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(a) Stability diagram (b) Segmentation consisting of 5 segments

Figure 3.9: A trajectory and its stability diagram (kmax = 10). The segmentation corresponds
to the broadest step in the stability diagram.

3.4 Adding criteria

In this section we combine our BBMM-based segmentation method with criterion based meth-
ods. Given a trajectory, an information criterion and a criterion, the combination method
optimizes a segmentation with respect to an information criterion like before, but this time the
optimization is subject to the constraint that each segment satisfies the criterion.

In Section 3.4.1 we show how to extend our method from Section 3.3.1 in such a way that
it handles an increasing monotone criterion (those criteria were discussed in Section 2.2). In
Section 3.4.2 a method is presented which handles stable criteria. This segmentation method is
basically an adaptation of the framework described in Chapter 2.

3.4.1 Increasing monotone criteria

The algorithm described in Section 3.3.1 did not put any restrictions on the segments of the
output. The only goal was to minimize the information criterion. On several data sets that we
tested, we noticed that the likelihood maximization method was biased towards small diffusion
coefficients (σ2m ≈ 0). The loglikelihood function has an asymptote at σ2m = 0, and hence
diffusion coefficients of approximately 0 get an extremely low score by the information criterion.
So low even, that it can compensate the penalty for adding segments completely. We experienced
that this bias in the loglikelihood method frequently leads to very short segments with an
diffusion coefficient of almost zero. A typical example is shown in Figure 3.10(a). This issue
can be resolved by putting a lower bound on the number of points on a segments as is shown
in Figure 3.10(b).

Furthermore, consider an animal that is in behavioral state A for a long time. Assume that
it switches to state B and quickly back to state A. There are two ways to segment this data,
either by three or by one segment. To forbid the three segment option we could put a lower
bound on the duration of segments. Note that this is essentially a form of outlier handling.



44 Chapter 3. Segmentation based on the dynamic Brownian Bridge Movement Model

(a) Without criteria (b) Lower bound on number of points

Figure 3.10: Adding a lower bound on the number of points per segments counteracts the bias
in the likelihood method. Each segments is shown in a different color.

The above considerations motivated us to extend the algorithm from Section 3.3.1. The
input of the extended versions is not just a trajectory τ and an information criterion IC, but
also an increasing monotone criterion C. Note that the class of increasing monotone criteria
contains both the minimum duration and the minimum point count criteria that were suggested
above. Our extended algorithm finds the segmentation and diffusion coefficient assignment
which minimizes the information criterion IC, subject to the constraint that every segment
satisfies C.

First we compute for every trajectory index j the largest index i for which τ [i, j] satisfies
C. This is stored in SVj . In Section 2.4 was described how to compute this array efficiently
for various criteria. We can formulate a more general variant of Lemma 19, which states the
options for OptF ixedLasti,v in terms of array SV :

Lemma 23 OptF ixedLasti,v is equal to one of the following options:

Append: Opti−1 appended with a segment τ [`, i], with ` ∈ (SVi−1, SVi].

Optj′

i− 1 ij SVi−1 SVi

j′

Extend: OptLastF ixedi−1,v with the last segment extended by τ [i− 1, i].

OptLastF ixedi−1,v

i− 1 ij

Optj

SVi−1 SVi
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Proof. Let j′ be the starting index of the last segment of OptF ixedLasti,v. By definition
j′ ≤ SVi. We make a distinction between two cases: either j′ > SVi−1 or j′ ≤ SVi−1.
Case 1: j′ > SVi−1. The last segment is thus τ [j′, i] with σ2m = v. As in case 1 of Lemma 19,
the part τ [0, j′] should be segmented optimally according to Optj′ . This proves the append
option.

Case 2: j′ ≤ SVi−1 Let j be the starting index of the last segment of OptF ixedLasti−1,v. Note
that the segment τ [j′, i− 1] is valid, because j′ ≤ SVi−1. We can show that j′ = j. The proof
is completely analogous to case 2 of Lemma 19. �

Lemma 23 can be used to formulate our segmentation algorithm as a dynamic program, just
like Lemma 19 in Section 3.3.1. The main difference is that in the new extended setting we
compare SVi − SVi−1 + 1 options instead of two in the computation of OptF ixedLasti,v. It is
easy to see that the number SVi − SVi−1 + 1 could be O(n). However, summing this number
over all i = 1, 2, . . . , n the following telescoping behavior is observed:

n∑
i=0

(SVi − SVi−1 + 1) = n+

n∑
i=0

(SVi − SVi−1) = n+ SVn − SV0 ≤ 2n.

Hence the algorithm takes O(n|V |) time. We can no longer reuse table entries. Hence the
space required by the algorithm is O(n|V |). Table compression gets a little bit more complicated,
because the appended segments might be longer than one bridge, but it can still be done within
the same (asymptotic) running time with some straightforward additional bookkeeping and
numerical procedures. The following theorem follows immediately.

Theorem 24 The optimal segmentation of a trajectory τ with respect to an information crite-
rion IC subject to the constraint that each segment satisfies an increasing monotone criterion C
can be computed in O(n|V |) time, where |V | is the size of the set of sampled Brownian variances
and n the number of points on the trajectory.

3.4.2 Stable criteria

In Chapter 2 we discussed how to segment based on stable criteria. In this section we combine
this framework for stable criteria with our dBBMM-based segmentation method. The resulting
framework is basically an adaptation of the framework of Chapter 2.

Our approach is also similar to the approaches from Sections 3.3.1 and 3.4.1. For increasing
i = 0, 1, . . . , n we compute the optimal segmentation of τ [0, i] (denoted by Opti). This optimum
is computed as the minimum of OptLastF ixedi,v over all v, where OptLastF ixedi,v denotes the
optimal segmentation of τ [0, i] that ends on a segment with σ2m = v.

Unlike the problems of Sections 3.3.1 and 3.4.1, we are not able to pick the optimal segmenta-
tions greedily. We take a different approach that is more similar to the framework of Chapter 2.
Our algorithm relies on the following property (compare this to the property described in Ob-
servation 1).

Observation 4 The segmentation OptLastF ixedi,v (if it exists) either consists of just one
segment, or it is equal to Optj appended with a segment τ [j, i], where j is an index such τ [j, i]
is valid.

To enable efficient testing of segment validity we compute the compressed start-stop diagram
S of the criterion C using the methods described in Sections 2.3 and 2.4.
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The main part of the algorithm is ComputeSegmentationBBMM . It consists of n outer loops.
Within each outer loop we loop over all v ∈ V . Each of those inner loops is similar to a loop in
the algorithm ComputeSegmentation. We maintain one tree Tv for each v ∈ V . In iteration i a
Tv stores all segmentations that consist of Optj appended with a segment τ [j, n] (with σ2m = v)
for all j = 0, 1, . . . , i. A segmentation is stored in node by a last field, which indicates the
starting index of the last segment, and an info field, which stores the information of the whole
segmentation. The segmentations/nodes are ordered on the last field.

Algorithm ComputeSegmentationBBMM (τ,S)
1. for each v ∈ V
2. do Initialize empty Tv;
3. Create new node ν0;
4. ν0.last← 0; ν0.info← 0;
5. Tv.Insert(ν0)
6. for i← 1 to n
7. do for each v ∈ V
8. do Create new node ν;
9. ν.info←∞;
10. for each block b at row i of S
11. do ν ′ ← T .GetMinimalInfo(b);
12. if ν ′.info < ν.info
13. then ν ← ν ′;
14. OptLastF ixedi,v ←ν with last segment shortened to i;
15. Opti ← arg minS∈{OptF ixedLasti,v | v∈V } S.info;
16. for each v ∈ V
17. do Create new node ν;
18. ν ← Opti appended with segment τ [i, n] T .Insert(ν);

Note that we do not store the segmentation OptLastF ixedi,v explicitly. However, we can find
it efficiently. Let OptLastF ixedExti,v be equal to OptLastF ixedi,v, except for the last segment,
which is extended to index n instead of i. Observation 4 implies that OptLastF ixedExti,v is in
Tv at the start of iteration i and that τ [last, i] satisfies the criterion. Hence we find it by taking
the segmentation with minimal information over all segmentations in Tv for which τ [last, i] is
valid. Note that we can ignore the part of the segmentations beyond index i in this comparison,
since it has equal information for all segmentations, and hence makes no difference.

We can find this segmentation/node efficiently by calling the GetMinimalInfo procedure for
every block in compressed start-stop matrix S on row i. The procedure GetMinimalInfo is
similar to the GetMinimalCount procedure that was described in Section 2.5. It finds the node
with minimal info (instead of count). Hence Tv is augmented with the fields ν.mininfo and
ν.argmininfo.

When OptLastF ixedExti,v is found in Tv we compute OptLastF ixedi,v by removing the part
τ [i, n] from the last segment. This takes only constant time if we have precomputed

∑i
j=0 Lj

for all i. Given OptLastF ixedi,v for all v ∈ V we can compute Opti. Segmentation Opti is
equal to the segmentation OptLastF ixedi,v with minimal info over all v.

Finally we need to update the Tv structures. We add a new node to every tree Tv that
corresponds to the segmentation Opti appended by the segment τ [i, n] with σ2m = v. Such a
node can be computed in constant time, again using precomputed values for

∑i
j=0 Lj . The

running time analysis is summarized in the next theorem.
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Theorem 25 The optimal segmentation of a trajectory τ with respect to an information crite-
rion IC subject to the constraint that each segment satisfies a λ-stable criterion can be computed
in O(|V |(n+ λ) log n) time, where |V | is the size of the set of sampled Brownian variances and
n the number of points on the trajectory.
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Chapter 4

Conclusions and future work

In this thesis we have introduced a framework for criterion-based segmentation that can effi-
ciently handle a broader and more powerful class of criteria than previous algorithms. It allows
for segmentation by movement states and in contrast to previous methods we can handle a broad
range of state-based rules governing state transitions and additional optimization goals to fine
tune the exact point of transitions. We have also introduced interactive parameter selection
guided by segmentation stability.

Our segmentation framework proved to be useful in practice and yielded segmentations similar
to manual ones. Hence they can substitute these, where a manual segmentation is not possible,
e.g., due to the size of data to be analyzed. In this context the interactive approach has a large
potential. Incorporating advanced statistical methods into interactive parameter selection could
guide the user even more.

Furthermore, we have developed a novel segmentation method based on the dBBMM. As a
model fitting algorithm, our method is better than the previous window based model fitting
algorithm in terms of the resulting model complexity. The method is parametrized by only one
parameter, which can be selected automatically or interactively guided by a stability diagram.
We have also combined the novel dBBMM-based method with the criterion-based methods.

On the algorithmic side, future work could focus on the more advanced tie breaking and state
transition rules, especially targeting outlier handling. In this thesis we discussed the problem
of allowing a fraction of outliers per segment, but in practice it makes sense to define even
more complex criteria that take the location of those outliers into account. For instance, having
outliers on the start or end of a segment is undesirable. Also the relative location of outliers
could be of importance: a cluster of outliers is worse than evenly distributed outliers.

Furthermore, we noticed that our dBBMM-based method is practically always (on real world
data) segmenting “hierarchically” for increasing penalty factor; that is, given a segmentation
which is optimal for a certain penalty factor, increasing the penalty factor results in the splitting
of exactly one segment and no other changes. Further increase of the penalty factor results again
in only one extra split, and so on. This suggests that a different approach could be taken for
the computation of the optimal segmentations with fixed number of segments, which are used
in the computation of the stability diagram.

Our experiments regarding the dBBMM-based segmentation algorithm were limited and did
not comprise an in-depth ecological evaluation. We suggest a thorough evaluation of our
dBBMM segmentation in the form of case studies. Furthermore, comparing the dBBMM-based
method to the criterion-based method could provide inside to how the two methods could ben-
efit from each other. This knowledge could help formulating effective criteria for our combined
framework.
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patterns by clustering subtrajectories. Int. J. Comput. Geometry Appl., 21(3):253–282,
2011.

[5] K. Buchin, S. Sijben, T. J. M. Arseneau, and E. P. Willems. Detecting movement patterns
using brownian bridges. In SIGSPATIAL/GIS, pages 119–128, 2012.

[6] M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristan. Segmenting trajectories: A
framework and algorithms using spatiotemporal criteria. Journal of Spatial Information
Science, 3:33–63, 2011.

[7] M. Buchin, H. Kruckenberg, and A. Kölzsch. Segmenting trajectories based on move-
ment states. In Proc. 15th Internat. Sympos. Spatial Data Handling (SDH), pages 15–25.
Springer-Verlag, 2012.

[8] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. In Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
1196–1202. ACM, 2006.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 3rd edition, 2009.

[10] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Santa Clara, CA, USA, 3rd ed. edition,
2008.

[11] S. Dodge, R. Weibel, and E. Forootan. Revealing the physics of movement: comparing
the similarity of movement characteristics of different types of moving objects. Computers,
Environment and Urban Systems, 33(6):419–434, November 2009.

[12] R. C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edition). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2006.

[13] J. Gudmundsson, P. Laube, and T. Wolle. Computational movement analysis. In W. Kresse
and D. M. Danko, editors, Springer Handbook of Geographic Information, pages 423–438.
Springer Berlin Heidelberg, 2012.



52 Bibliography

[14] J. Harguess and J. K. Aggarwal. Semantic labeling of track events using time series seg-
mentation and shape analysis. In Proceedings of the 16th IEEE international conference
on Image processing, pages 4261–4264. IEEE, 2009.

[15] J. S. Horne, E. O. Garton, S. M. Krone, and J. S. Lewis. Analyzing animal movements
using Brownian bridges. Ecology, 88(9):2354–63, September 2007.

[16] B. Kranstauber, R. Kays, S. D. Lapoint, M. Wikelski, and K. Safi. A dynamic Brown-
ian bridge movement model to estimate utilization distributions for heterogeneous animal
movement. The Journal of animal ecology, 81(4):738–46, July 2012.

[17] P. Laube and R. S. Purves. How fast is a cow ? Cross-Scale Analysis of Movement Data.
15(3):401–418, 2011.

[18] R. E. van Wijk, A. Kölzsch, H. Kruckenberg, B. S. Ebbinge, G. J. D. M. Müskens, and
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