
 Eindhoven University of Technology

MASTER

Porting the digital radio mondiale receiver on the Ericsson M7400 platform

Liu, Y.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e407a54b-745c-4255-8918-99db8484bae2

Porting the Digital Radio Mondiale
Receiver on the Ericsson M7400

platform

By

Yang Liu

Final Project Thesis
Eindhoven University of Technology
Department of Mathematics and Computer Science

Student:
Yang Liu (0804638)
y.liu.1@student.tue.nl

Supervisor:
Prof. Dr. ir. C.H.van Berkel
Eindhoven University of Technology
kees.van.berkel@ericsson.com

Tutor:
Dr. ir. Peter de Jager
Senior Software Engineer
Ericsson B.V.
peter.de.jager@ericsson.com

ii

iii

Abstract

Software Defined Radio (SDR) is a modern wireless communication tech-
nology. In SDR, the software is implemented on general-purpose processors
to handle the communication tasks. Digital Radio Mondiale (DRM) is a
new digital broadcasting standard using the SDR technology. This thesis
concerns the development of an embedded DRM receiver on the Ericsson
platform. The C++ code of the DRM receiver is from the Open Source PC
software, Dream DRM receiver. The Ericsson platform M7400 is selected as
the hardware to implement the embedded DRM receiver. The DRM code is
ported on the MSS (Modem Subsystem) of the M7400 platform to achieve
a DRM receiver program of the multi-core version. The MSS contains two
ARM Cortex R4 processors and one EVP (Embedded Vector Processor) core.
The EVP is a new generation DSP (Digital signal processor) of Ericsson.

The DRM code was firstly simplified and isolated in order to obtain a sim-
ple, independent, compatible program running on PC and the program only
contained the main DRM receiving process. Before porting the DRM pro-
gram on the target platform, an intermediate step of porting the code on the
Cortex A8 Real-Time System Model(RTSM) was performed. The program
was then optimized based on the profile report of the program on Cortex
A8. After that it was ported on the Cortex R4 of the M7400 to achieve a
single-core version which cannot reach the real-time requirement. The multi-
core version of the program was analyzed with the help of the analysis tool,
Pareon from Vector Fabrics. Finally we ported Viterbi decoder function on
EVP and developed the DMA communication between the ARM and EVP
core. Thus a embedded DRM receiver of the multi-core version was accom-
plished on the M7400. It provided a speed up of 1.7X comparing with the
single core version on the Cortex R4 and it could deliver a real-time service.

This project also shows that the ARM and EVP’s cooperating architecture
on M7400 is suitable to process the SDR receiving task. And Pareon from
Vector Fabrics is an appropriate tool in the analysis of the multi-core version.

Keywords: SDR DRM ARM EVP Multi-core Pareon DMA

iv

v

Abbreviations

DRM Digital Radio Mondiale
MSS Modem Sub System
ARM Advanced RISC Machine
EVP Embedded Vector Processor
RTSM Real-Time System Model
SDR Software Defined Radio
OFDM Orthogonal Frequency-Division Multiplexing
ACC Advanced Audio Coding
QoS Quality of Service
CR Cognitive Radio
SoC System on Chip
NoC Network on Chip
MLC Multi Level Coding
SDC Service Description Channel
FAC Fast Access Channel
MSC Main Service Channel
RISC Reduced Instruction Set Computing
CISC Complex Instruction Set Computing
DMA Direct Memory Access
VA Viterbi Algorithm
HD Hamming Distance
BM Branch Metric
PM Path Metric
MCAPI Multi-core Application Programming Interface
AXI Advanced eXtensible Interface
APB Advanced Peripheral Bus

vi

Contents

1 Introduction 1

1.1 Background of the Project . 1

1.2 Introduction of the Dream DRM Receiver 3

1.3 Introduction of the Ericsson M7400 platform 3

1.4 Problem Description . 3

1.5 Outline of the thesis . 4

2 Analysis of the DRM Receiver 7

2.1 DRM Receiver Outline . 7

2.2 Analysis and Isolation of the DRM receiver processing flow 10

2.3 DRM receiver’s benchmark . 12

3 Background of the M7400 platform hardware 17

3.1 ARM . 17

3.2 EVP . 19

3.3 On-Chip Communication . 21

4 Porting the DRM Receiver program on ARM 25

4.1 Porting the DRM receiver program on Cortex A8 25

4.2 Comparison of Cortex A8 and Cortex R4 31

4.3 Porting the DRM receiver program on Cortex R4 33

4.3.1 Modifications of the DRM receiver program 33

4.3.2 Profile results on Cortex R4 . 33

5 Analysis and Realization of the multi-core version 37

5.1 MLC and Viterbi Decoder’s working principles 37

5.1.1 MLC encoder and decoder . 37

5.1.2 Viterbi Decoder . 40

5.2 Modification on the Viterbi decoder . 44

5.3 Pareon’s analysis in the multi-core version 46

5.4 Achieving the Viterbi decoder on EVP . 56

6 Communication between the ARM and the EVP 63

viii

6.1 Programming on the DMA . 63
6.2 Communication between the ARM and EVP with the DMA 66

7 Multi-core version Performance’s Estimation and Verification 71
7.1 Estimation of the Multi-core version Performance 71
7.2 Profile results on the M7400 platform . 77

8 Conclusion 81
8.1 Conclusion . 81
8.2 Future Work . 82

Appendix A. ARM Linker configuration on Cortex R4 85

Appendix B. Multicore Communications API’s implementation 89

Chapter 1

Introduction

1.1 Background of the Project

As various wireless networks make up an increasing part of our daily lives, there is a big
desire for the optimization in wireless communication systems. To begin with, modern
communication technology standards define an extremely high transmission rate, which
is a challenge to the hardware to support a high data rate while minimizing the power
consumption of the platform. Therefore, the hardware is required to perform well, both
in processing speed and power. Besides, another trend of the wireless communication
is to provide a seamless service over various wireless networks in a single device [1].
However, the support of multiple protocols of various networks significantly increases
the complexity of the communication task. This can be solved by using the software.
The platform uses the general-purpose processor rather than the specific-purpose hard-
ware. The software processing complex tasks of different services is implemented on the
general-purpose processor to support the communication. In short, a fully optimized
communication software and a well-performed platform are necessary for the implemen-
tation of the wireless communication.

Software defined radio (SDR) is a modern software-based wireless communication tech-
nology. It realizes modulation, encoding, filtering and other radio communication pro-
cesses which are traditionally implemented by circuits, by means of the software on PC,
cell phone or other computer systems [2]. The SDR supports multiple communication
protocols including multi-band, multi-standard, multi-service and multi-channel. This
software based implementation has some obvious advantages including ease of adaptation
and flexibility over the traditional hardware based analogue radio [3]. Firstly, it is recon-
figurable to provide a high adaptable service. The SDR can easily switch within modes
according to the environment or user requirements [4]. In the transmitter end, it not
only transmits the signal but also configures settings according to the environment. If
the Cognitive radio (CR) is applied, which senses the environment and tracks changes,

2 CHAPTER 1. INTRODUCTION

the SDR automatically reacts on CR’s finds to characterize all possible transmission
channels, propagation paths as well as modulation methods, and finds the best mode to
transmit. Otherwise, the user can configure the transmitter by himself, motivated by
his own knowledge or detection of the environment. In the receiver end, it detects the
transmission mode and corrects possible errors. What’s more, some software tools are
used to improve the quality of service (QoS) [5]. Secondly, in terms of the flexibility,
the SDR can be easily redesigned for a new or changed protocol and the redesign cost
is obviously less than the traditional analogue radio.

In 2001, the European Telecommunications Standards Institute (ETSI) defined an Or-
thogonal frequency-division multiplexing (OFDM) based SDR, known as Digital Radio
Mondiale (DRM). The working frequency of DRM is the same as the analogue radio
system and it is divided into 2 modes, DRM30 and DRM+ [6]. DRM30 mode is de-
signed to utilize AM broadcast bands below 30 MHz and DRM+ mode works above
30 MHz, which is the FM band. The analogue radio system working on this frequency
range has advantages of a large coverage area and relatively little interference caused by
the environment [7]. But it also has some disadvantages, low flexibility, service quality
limitations as well as sensitive to interferences from the long-distance propagation. DRM
inherits the advantages of the traditional radio and implements the digital technology,
various transmission modes and different bandwidths to overcome the analogue system’s
drawbacks.

DRM’s main processes include OFDM modulation/demodulation, mapping/de-mapping,
cell interleaving/de-interleaving and so on. DRM achieves these processing routines by
software. It has 4 transmission modes, namely Mode A, Mode B, Mode C and Mode
D. These 4 modes are various robustness modes which suit different channel conditions
and the details can be seen in Table 1.1 from [7]. The ability to select from a range of
transmission modes is a key and revolutionary feature of DRM. This allows the broad-
casters to balance or exchange bit-rate capacity, signal robustness, transmission power
and coverage [6]. The CR technology, as discussed above, has not been applied in DRM
yet. Therefore, in response to any local changes in the environment, the DRM user can
dynamically changes robustness transmission mode without disturbing the audience.

Table 1.1: DRM’s 4 robustness transmission modes [7]
Robustness Mode Typical Propagation Conditions

A Gaussian channels, with minor fading

B Time and frequency selective channels, with longer delay spread

C As robustness mode B, but with higher Doppler spread

D As robustness mode B, but with severe delay and Doppler spread

1.2. INTRODUCTION OF THE DREAM DRM RECEIVER 3

1.2 Introduction of the Dream DRM Receiver

In our project, the Dream DRM receiver is chosen as the implementation software target,
which is an Open-Source software under the GNU General Public License (GPL). The
DRM software is a C++ program running on the personal computer (PC). It is designed
to run under Mac OSX, Microsoft Windows and Linux. The start time of the project
was June 2001 by the Institute of Communication Technology, Darmstadt University of
Technology.

This software project implements a working software receiver with the basic features
of DRM. The receiver runs in two modes, DRM and Analogue. In the DRM mode,
it receives the DRM signals and provides the service which can be an audio service,
possiblly with associated data or a data service. The audio service supports Advanced
Audio Coding (ACC) audio and AAC+ audio. The data service supports Electronic
program guides (EPG), Multimedia Object Transfer (MOT) Slide Show, Broadcast Web
Site and Journaline. In the analogue mode, it can only process the AM, FM analogue
signals.

1.3 Introduction of the Ericsson M7400 platform

The Ericsson M7400 is chosen as the target platform to port the Dream DRM receiver.
The M7400 is one of the productions of the Thorium Modem Solution which aims to
provide modem platforms for smartphones, tablets and connected devices for the LTE
(long-term evolutio), HSPA (High Speed Packet Access) market. It is chosen to port the
DRM implantation on the Modem Sub System (MSS) of the platform. The MSS con-
tains two ARM (Advanced RISC Machine) processors and one EVP (Embedded Vector
processor) processor. The ARM core is expected to process tasks with high complexity
but low data rate, for instance, protocol stack handling, user interfaces and application
frameworks. High data rate tasks with generic parallel processing, especially vectoriz-
able tasks are assigned to the EVP core. A good task scheduling on the platform, for
software which means a good multi-core version, will significantly increase the software’s
performance and greatly decrease the platform power consumption.

1.4 Problem Description

This project aims to map the DRM Dream receiver on the Ericsson M7400 platform
including partitioning C/C++ code into ARM and EVP. In addition, the interface needs
to be developed to achieve the communication between processors.

Previous researches of the multi-core DRM receiver’s implementation on embedded hard-
ware platforms, provides us useful experiences in the project. The Hijdra project of NXP

4 CHAPTER 1. INTRODUCTION

contained a work of a DRM program mapping in the Hijdra architecture [8]. The DRM
receiver was executed on TriMedia and the Viterbi decoder took up 10% of the whole
execution time. In order to improve the performance, the Viterbi decoder was sepa-
rated from the receiver and mapped on a Viterbi accelerator. A 5% improvement in
the speed performance was achieved. Paper [9] also concerned the DRM program map-
ping. It achieved a run-time mapping of a DRM program to a heterogeneous System
on Chip (SoC). The platform consisted of multiple tiles of different types (e.g. ARM,
FPGA, DSP, FPGA) interconnected by a Network-on-Chip (NoC). Partitioning a DRM
receiver into smaller independent blocks was done and tasks were mapped into different
hardware tiles.

The project is started with the DRM implementation’s source code downloaded from the
Dream DRM’s website and the System-C model of the target M7400 platform provided
by Ericsson. Finally it is expected to achieve a embedded multi-core version of the DRM
receiver implementation on M7400. The main scope of this project is to port the DRM
receiver’s main processing code on the M7400 platform. Comparing to the related works,
an additional goal of this project is to evaluate the EVP and ARM’s cooperating perfor-
mance. The Vector Fabrics tool, Pareon is also involved in the analysis of the program’s
multi-core version. Vector Fabrics [10] is a company which specializes in developing
tools for the design and implementation of multicore, multi-threaded applications and
embedded systems.

The project consists of these steps. An analysis and isolation work of the DRM receiver
program is done at the beginning. Then an intermediate step of porting the DRM code on
an ARM virtual processor with a fast simulation speed, is achieved. On the basis of the
profile report delivered in the intermediate step, some modifications must be done to the
source code. Afterwards, the modified DRM receiver is ported on the ARM core of the
target M7400 platform. Based on the profile report on the target platform, a research of
the multi-core version of the DRM program is done with the help of the software Pareon.
It is excepted that a similar conclusion as in [8] can be delivered that the Viterbi decoder
should be moved to another processor. The Ericsson company provides an EVP version
Viterbi decoder. Based on the provided EVP code, a modified Viterbi decoding program
suiting the DRM receiver is created. After developing the communication between the
EVP and ARM core with the DMA controller, the performance of the DRM receiver
multi-core version is estimated and compared with the actual profile report running on
the target platform.

1.5 Outline of the thesis

Chapter 1 provides an introduction to the project and relative concepts including the
software and the target platform. In Chapter 2, an analysis of the target software, DRM
receiver is achieved. A detailed background of the hardware including the ARM Cortex
R4, EVP and on-chip communication is discussed in Chapter 3. The mapping work and

1.5. OUTLINE OF THE THESIS 5

profile report on the ARM Cortex A8 and Cortex R4 are presented in Chapter 4. This
is followed by the description of Multi Level Coding (MLC), Viterbi decoder working
principles, analysis of the multi-core version by Pareon as well as implementation of
Viterbi decoder on EVP in Chapter 5. The development of the communication can be
seen in Chapter 6. The calculation process of the multi-core improving performance
estimation and the actual profile report are in Chapter 7. Finally the study ends with
conclusions and future works in Chapter 8.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Analysis of the DRM Receiver

In this chapter, the outline of the DRM receiver is shown and the functionality of each
module is described in 2.1. Subsequently, 2.2 presents the DRM isolation steps and
discusses the data flow of the DRM main processing. Finally, the creation and usage of
the benchmarks to check functional correctness and to analyze the real-time performance
are given in 2.3.

2.1 DRM Receiver Outline

As the DRM receiver’s main running target is the computer or the mobile device, low en-
ergy consumption and easy implementation are required for these platforms. Therefore,
there should be some constraint on the DRM signal. The bandwidth of a DRM passband
signal is less than 20 kHz so that there won’t be a big pressure on the filtering process in
the DRM receiver. What is more, the number of carriers used in the OFDM-modulation
is relatively small (max 460). In the OFDM-modulation process of the transmitter, the
encoded data are modulated into OFDM symbols. Each OFDM symbol is constituted
by a set of carriers and these closely spaced orthogonal sub-carrier signals are used to
carry data. Thus the small amount of carriers result in a less heavy computational load
of de-modulation an OFDM symbol in the receiver [11].

The outline of the DRM receiver is given in Figure 2.1. There are 6 modules, namely
RF-reception, A/D-converter, OFDM demodulation, De-mapping, Channel decoding
and Source decoding.

The antenna and RF-reception can use the same modules as the analogue radio.

The A/D-converter converts the analog signal from the RF-reception into the digital
signal.

The OFDM demodulation involves a series of complex processing steps including Sam-

8 CHAPTER 2. ANALYSIS OF THE DRM RECEIVER

R
F-recep

tio
n

A
/D

 co
n

verter

O
FD

M

d
e

m
o

d
u

latio
n

D
e-m

ap
p

in
g

C
h

an
n

el
d

eco
d

in
g

So
u

rce d
e

co
d

in
g

Audio

Service

Data

Figure 2.1: DRM receiver outline structure

ple Rate Correction, Synchronization, Channel Estimation and Demodulation. The
detailed processing steps are as following [11], the first step is to correct the sample
rate and then acquire a coarse frequency offset estimation without the detection of the
robustness mode. Based on the received signal, the receiver detects the robustness mode
and achieves the timing acquisition which means getting the position of OFDM signals.
With the knowledge of the robustness mode and timing, the useful part of OFDM signals
can be extracted and demodulated. The first OFDM symbol of each frame contains ad-
ditional pilots for frame synchronization. After obtaining frequency pilots, the receiver
can call the frequency offset tracking to achieve the frame synchronization and get the
frame from the signal. Now the beginning of the frame is obtained, so channel estimation
and timing tracking can be called. With timing tracking, the obtained frame in frame
synchronization is corrected. Thus the receiver obtains all the transmitter parameters,
channel parameter and uses them to obtain demodulated signals. The dataflow chart of
the OFDM demodulation can be seen in Figure 2.2.

The De-mapping processing stage follows the OFDM demodulation and it divides de-
modulated signals into 3 channels, Main Service Channel (MSC), Fast Access Channel
(FAC) and Service Description Channel (SDC), based on the cell mapping of the trans-
mission frame. The detailed transmission frame structure can be seen in [7]. MSC is the
channel of the multiplex data stream which occupies the major part of the transmission
frame and it carries all the digital audio services, together with possible supporting and
additional data services. FAC is the channel of the multiplex data stream containing the
information that is necessary to find services and begin to decode the multiplex. SDC is
the channel of the multiplex data stream which gives information to decode the services
included in the multiplex and information to enable a receiver to find alternative sources
of the same data [7].

A cell de-interleaving function is applied to MSC in the receiver. Because MSC is trans-
ferred in a higher protection level than the other two channels by locating an additional
cell interleaving processing after the MSC channel encoding process in the transmit-
ter. The cell interleaving routine is aimed at changing the possible burst error into the
random error which can be corrected by the receiver’s channel decoding routine. The
burst error means error occurs in contiguous sequence of symbols while for random er-

2.1. DRM RECEIVER OUTLINE 9

Sample rate correction

Start

Coarse Frequency
Estimation

Detection of
Robustness mode

Timing Acquisition

Know the
frequency

Frequency offset
correction

NO YES

Know the
mode

NO
YES

OFDM demodulation

Frame synchronization
using pilots

Timing tracking
Channel Estimation

Frame synchronization
Sucessful?

 Frame synchronization
detection

NO

YES

Figure 2.2: OFDM demodulation’s dataflow chart

10 CHAPTER 2. ANALYSIS OF THE DRM RECEIVER

ror, error symbols are randomly located in the sequence. After interleaving, the adjacent
code blocks scatter. So adjacent error blocks are also separated and the burst error is
converted into the random error.

The Channel decoding processes MSC, FAC and SDC separately. The Channel decoding
in DRM is multi level decoding including QAM de-mapping, Viterbi decoding and so
on. In MSC, FAC and SDC, the decoding parameters are all different.

In the last stage Source decoding, the output bits of the Channel decoding are decoded
into audio, data or other services.

2.2 Analysis and Isolation of the DRM receiver processing
flow

All the work and result of the DRM on PC is achieved on the Linux OS of a workstation
using an Intel i7 processor. Since the DRM receiver program has to be ported from the
PC to an embedded system, it is not wise to port the whole original program. It is better
to delete some functions unnecessary on the target platform, to simplify the main DRM
process for the purpose of achieving a minimal version of DRM receiver. Furthermore,
an isolation work of the code related to the main DRM processing flow is finished on
the minimal DRM receiver in order to get a simple, independent and compatible DRM
receiver program. The structure of the expected DRM receiver program can be seen in
Figure 2.3.

O
FD

M

d
e

m
o

d
u

latio
n

D
e-m

ap
p

in
g

C
h

an
n

el
d

eco
d

in
g

Decoded
signal

Benchmark
Source

Figure 2.3: DRM Receiver expected minimal structure

These steps have been done to achieve a minimal version of DRM receiver. Firstly,
the Dream DRM receiver is built on our own PC’s Linux environment with supported
external libraries and building tools. An analysis of external libraries is done and it
comes to a conclusion that for the minimal version, the only external library needed
is Libfftw, which is a library to provide the function of ”Fastest Fourier Transform”,
and other libraries can be ignored. The details of the FFTW library can be referred to
[12]. The relevant code of the Libfftw library is extracted and embedded into the main
function so that the main program can call the required functions of FFTW easily.

2.2. ANALYSIS AND ISOLATION OF THE DRM RECEIVER PROCESSING
FLOW 11

Secondly, the main program is simplified to isolate the DRM receiver function. Many
functions like GPS, DRMLogger, Graphical User Interface (GUI) and so on which run
on PC, are not useful on the target platform. The original program has the code to
support the function of the DRM transmitter, receiver and simulation of the whole
process from the sender via the channel to the receiver. In the receiver part, there are
also routines to support the analogue mode to receive and demodulate AM and FM
signals. These functionalities are not relevant to the main scope of the project, so they
are removed.

Finally, a further-simplification step on the main signal processing routine is imple-
mented. The modules reading from the sound interface including audio file, sound
card, as well as decoding source and playing the decoded audio are removed from the
flow.

A full image of the DRM receiver processing flow after these simplification steps is
presented in Figure 2.4.

In the part of OFDM demodulation, there are 6 stages, namely Input Resample, Fre-
quency Synchronization Acquire, Time Synchronization, OFDM Demodulation, Syn-
chronization using pilots and Channel estimation. OFDM cells are demodulated at the
output of the OFDM demodulation. In the part of de-mapping, there is one processing
stage, OFDM cell De-mapping. It separates the MSC, FAC and SDC off the carriers.
The next part is Channel decoding, it decodes MSC, FAC and SDC separately. De-
pending on the different importances of information channels, the decoding function of
various level complexity is applied to MSC, SDC and FAC separately. The decoding
process of MSC is extremely complicated and costs much more time comparing with the
routine of FAC and SDC. The detailed working principle of decoding is discussed in sec-
tion 5.1. What’s more, two more stages, De-multiplexer and De-interleave for cells are
applied for MSC channel decoding. The decoded SDC and FAC contain the information
on how to decode the MSC and how to find alternative sources of the same data, and
give attributes to the services within the multiplex [7]. Therefore, SDC and FAC are
imported into the Utilization Stage to change the setting of the receiver.

Since the DRM receiver has to process the continuous real-time input and output data
stream, the program uses the input driven processing sequence which means the process
routine is called when enough input data is delivered to the processing stage. There are
buffers between processing stages and they act as the input or output of the stage. The
processing stage checks its input buffer whether data is enough to call one routine. If so,
it calls the processing function and exports the output data to the output buffer which
also acts as the input of the next stage. Otherwise, the stage keeps on waiting. Two
kinds of buffers are used in the program, namely single buffer and circular buffer. The
single buffer is used when the input block size of the buffer equals to the output block
size. However sometimes the buffer needs a different input size and output size. In this
case, the circular buffer is applied.

12 CHAPTER 2. ANALYSIS OF THE DRM RECEIVER

Figure 2.4: The minimal version of DRM receiver and its benchmark files

2.3 DRM receiver’s benchmark

The DRM dream project website provides some benchmarks to help developers and
users to check the functional correctness of the receiver. These benchmarks are antenna-
received modulated digitized signals recording from the sound card interface of an inte-
grated DRM receiver. The received signals are packed in the Wav file. Here the bench-
marks containing audio services are chosen, because the audio service is the main service
of the DRM and there is a strict processing time requirement on such service.

The received signals cannot be directly imported into DRM receiver processing stages.

2.3. DRM RECEIVER’S BENCHMARK 13

They must be processed in the stage of Read Data before demodulation. In the Read
Data stage, it reads the signal recording file in the buffer in the type of 16-bit int and
checks the sample rate of the file from its header to see whether it is equal to the receiver’s
supporting rate 48000Hz. If unsupported, an additional resample has to be done. Then
according to the sound file’s audio channel setting, namely stereo and mono, an audio
channel process is used to produce a two channel signal stream. If the channel is mono,
it extends the mono channel into a stereo channel by copying the values of the single
channel to another channel. If the channel is stereo, it just copies the data. At last,
the receiver handles the stereo channel data based on the receiver’s setting, the default
setting is mix channel. For the setting of mix channel, it converts stereo channel
data from 16-bit int type to 64-bit double type and then mix two channels by averaging
their values. There are also other settings like left channel, right channel, I/Q input
and so on. Thus all the pre-processing routines are finished and the achieving data are
stored in buffer DemodDataBuf. The DRM main processing function reads the data in
buffer DemodDataBuf and starts the main DRM processing.

At the output of the main DRM processing routine, information channels, MSC, FAC
and SDC, are obtained. It utilizes the information in FAC and SDC to change parameters
and demodulation methods in the receiver and it decodes the MSC information into the
audio file and plays the audio. Using the GUI the information of the audio quality
can be seen including signal-to-noise ratio (SNR) and weighted modulation error ratio
(WMER) and delay. From paper [13], it can be concluded that audio dropouts detectable
by non-professional listeners do not occur if the signal-to-noise ratio is greater than 17
dB.

Three benchmark of received signals in different robustness modes, are chosen to test the
original receiver. The parameters of them can be seen in Table 2.1. These benchmark
files are used to test the receiver and all SNRs are larger than 17 dB. The detailed result
can be observed in the evaluation dialog window. The detailed result including SNR,
WMER and delay can be seen in Table 2.2. The delays which indicate the time period
between the launch of the software and the start of the audio service, are also acceptable.

Table 2.1: Benchmarks for the DRM receiver
File name Bandwidth sample rate Robustness Mode

received signals recording1 10kHz 48000Hz Mode B

received signals recording2 10kHz 48000Hz Mode A

received signals recording3 10kHz 48000Hz Mode C

Our minimal version of the DRM receiver only contains the main DRM process. The
interface with different source inputs, decoding MSC and playing the audio are excluded.
The chosen benchmarks cannot be directly processed to do the functional check of the
program. The new benchmarks are created for the main DRM signal processing program
based on the original received signal benchmarks using the default setting in the Read

14 CHAPTER 2. ANALYSIS OF THE DRM RECEIVER

Table 2.2: Benchmark results for the DRM receiver
File name SNR WMER Delay

received signals recording1 31.8db 28.5db 0.82ms

received signals recording2 17.4db 17.7db 0.58ms

received signals recording3 21.2db 19.9db 0.82ms

Data stage as discussed before. The creation process can be seen in Figure 2.5.

The original program with different benchmarks are launched and the data in Demod-
DataBuf is stored, which is the output buffer of the stage Read Data, in order to obtain
the input data of the main DRM processing. The data is stored and it can be used as
the test input file of the DRM main signal processing program. The data of SDCDecBuf,
FACDecBuf and MSCDecBuf, which are output buffers of the stage Channel Decoding,
is also saved into files as the standard test result of the main DRM processing. Thus
the new benchmarks are created.

Wav
file
input

Resample
Sample

rate≠48000Hz

Channel
Extension

Sample
rate=48000Hz

Mono Channel

Data Type
Convertio
n

Stereo Channel

Mix
Channel

Benchmarks
Input File

Split SDC

Split FAC
Utilize
DRM

Save to
WAV

Play
audio

Split MSC

…...

DRM main processing

Benchmarks
output Files

Figure 2.5: generation of the DRM main processing program’s benchmark input and
output files

Through an observation of the created benchmarks, it can be found that the data in the
input file are in the type of 64-bit double and their ranges are from -32168.0 to 32167.0.
The content is the digitized, time domain, modulated, 48kHz sample rate received radio

2.3. DRM RECEIVER’S BENCHMARK 15

signal stream. In output files, there are 3 files for MSC, SDC and FAC separately and
data in files are binary in the type of 8-bit char. The DRM sends the information in the
unit of frame and MSC, SDC and FAC bits are mixed in the frame. The program firstly
divides bits belonging to different information channels and then writes the divided bits
of one frame into output files for MSC, SDC and FAC. The details of benchmark files
can be seen in Table 2.3.

Table 2.3: Benchmarks for the DRM receiver’s main processing program
File
name

type data
type

file size
(byte)

frame
num-
ber

bit number per
frame

original benchmark file

mytest1 input 64-bit
double

28794880 - -

received signals recording1
1MSC output 8-bit

char
4888800 175 6984

1FAC output 8-bit
char

52416 182 72

1SDC output 8-bit
char

158760 63 630

mytest2 input 64-bit
double

13051656 - -

received signals recording2
2MSC output 8-bit

char
2834400 75 9448

2FAC output 8-bit
char

22752 79 72

2SDC output 8-bit
char

81852 29 630 to 798

mytest3 input 64-bit
double

22400368 - -

received signals recording3
3MSC output 8-bit

char
506736 138 3672

3FAC output 8-bit
char

40608 141 72

3SDC output 8-bit
char

57792 49 282 to 630

In order to evaluate the modified DRM processing program’s demodulation and decod-
ing quality, a tiny testing program is created to compare the MSC output with the
benchmark MSC output, frame by frame to measure the bit error and error rate in each
frame.

Besides functional correctness, it is also required to test the timing performance of the
DRM program. The DRM receiver is a real time system and it is required to provide a

16 CHAPTER 2. ANALYSIS OF THE DRM RECEIVER

lasting audio service which means that the audio service will not be interrupted because
of the unfinished processing of an audio frame. The DRM processing execution time
should be less than its produced audio duration time so that a new audio stream is
produced before the end of the current playing audio stream.

One transmission frame contains one MSC frame and other SDC, FAC frames and these
SDC, FAC frames contain the information of how to obtain the MSC frame in the same
transmission frame. Thus, only the whole transmission frame is processed, the receiver
can obtain the MSC frame. Each MSC frame is in the same size for each benchmark.
After decoding, it generates the audio of the same time period. Therefore, based on the
audio stream duration and the MSC frame number, the audio stream duration per frame
can be calculated, which can be seen in Table 2.4. It can concluded that audio stream
duration per MSC frame is more than 400 ms. Considering the real time requirement, it
means that the processing time of each MSC frame (equalling to the processing time of
the whole transmission frame) should be less than 400 ms. However, for the first frame,
there is no such requirement because the processing time of the first frame only results
in a latency before the start of the service and will not influence the lasting audio.

Table 2.4: The audio stream duration per MSC frame
benchmark input audio stream dura-

tion
number of MSC
frames

duration per MSC
frame

mytest1 73420 ms 175 420 ms

mytest2 30814 ms 75 411 ms

mytest3 55629 ms 138 403 ms

In conclusion this chapter mainly describes the software. The background of the DRM
software is introduced and the detailed analysis, isolation work of the program and the
creation of the benchmarks are discussed. The introduction of the hardware is presented
in next chapter.

Chapter 3

Background of the M7400
platform hardware

The background of the target M7400 platform hardware is introduced here. Since it is
chosen to port the implementation on the MSS system, the structure MSS system of the
M7400 is presented in Figure 3.1. The ARM processor (section 3.1), the DSP processor
EVP (section 3.2) as well as the on-chip communication (section 3.3) are presented
respectively in this chapter.

Figure 3.1: The MSS system of the M7400 platform

3.1 ARM

ARM architecture processors are a family of Reduced Instruction Set Computing (RISC)
-based computer processors which are designed and licensed by the company ARM Hold-

18 CHAPTER 3. BACKGROUND OF THE M7400 PLATFORM HARDWARE

ings. Now ARM architecture processors are widely used in the electronic market. The
ARM based product’s market share is more than 75% in mobile phone market, 25% in
mobile computers and digital TVs, 50% in enterprise applications and less than 5% in
Microcontrollers/Smartcards in 2009 according to [14].

The original DRM software is aimed at personal computer which contains the proces-
sor in X86 architecture rather than ARM. X86 is based on Complex Instruction Set
Computing (CISC) which leads to the most essential difference comparing with ARM of
RISC.

The different instruction sets result in various characteristics of ARM and X64 proces-
sors. On one hand, the ARM core has a simple hardware architecture, as a result the
ARM core has an obvious advantage in energy performance. The power saving advan-
tage makes the ARM core suitable in embedded systems like the smart phone or Tablet
PC. On the other hand, the X86 processor especially Intel core’s complex hardware has
the strength of execution speed so it is always used in computers and servers. A per-
formance comparison between typical ARM and X86 processors is provided in paper
[15]and [16]. In the first paper, the ARM Cortex A8 and Atom N330 are used to test
benchmarks . They are both aimed at embedded system, especially mobile processor
markets. With integer benchmarks, the Cortex A8 is slightly slower than the Atom N330
in the benchmark performance per Mhz. However, the Cortex A8 performance is even
100 times slower than the Atom N330 in double precision floating point benchmarks.
The Cortex A8 deliveries a big advantage over the Atom N330 in power consumption
ranging from 1 to 8 times power saving in most integer and double precision floating
point benchmarks. In paper [16], comparisons of Cortex A8 to Atom N450 and Cortex
A9 to Intel i7 are made. Considering the execution time, the A8 is about 4 times slower
than the Atom and the A9 is approximately 7 times slower than the i7. But the A8 only
consumes one third power comparing with the Atom and A9 costs 20 times less power
than i7.

In the target M7400 platform, the ARM core is Cortex R4. The Cortex R4 is aimed
at deeply embedded system, which means the system is of big constraints in terms of
memory, time and power consumption [17]. In a deeply embedded system the function-
ality or the behaviour normally is not altered very often and the end user is not able to
modify, add or remove functionality to it.

The Cortex R4 was released in 2006 and is designed for semiconductor processes from
the 90 nm node onward. The advanced semiconductor technology enables the Cortex R4
to achieve a high performance with a limited clock frequency and power consumption.
Besides the semiconductor technology, there are also many other features enhancing the
Cortex R4. It supports two instruction sets, ARM and Thumb-2. The ARM instruction
set has comprehensive data-processing, control functions and a high performance. On
the contrary, the Thumb-2 instruction set provides a higher code density, lower memory
size and cost but sacrificing the performance. Consequently, the ARM core can alter-
nately use two instruction sets to execution different parts. Critical parts like handling

3.2. EVP 19

interrupts use ARM instruction sets to ensure the performance and insignificance parts
are executed by the Thumb-2 instruction to reduce the cost [18]. The Cortex-R4 is also
highly configurable. The configuration includes clock frequency, cache, Tightly-Coupled
Memory Interface and so on. Therefore the hardware can be minimized according to the
running software to save the energy. The Cortex R4 also enables a quick response to an
interrupt ranging from 20 cycles to 30 cycles [19].

The Cortex R4 provides another version called Cortex R4F, which includes a Floating
Point Unit (FPU) extension. The Cortex R4’s FPU is based on VFPv3-D16 (Vector
Floating Point) architecture, which gives a full support of single-precision and double-
precision arithmetic operations. It includes a register bank to support floating point
operations. There are 2 views of the register bank, 16 double-precision 64-bit double
word registers, D0-D15 and 32 single-precision 32-bit single word registers [20].

With FPU, the Cortex R4 processor’s application field expands, for instance, automotive
electronics that uses sophisticated control algorithms, accurate image processing method
and other single precision floating point applications. What’s more, the existing software
written in C/C++ or other high level programming languages , including floating-point
algorithms, can be re-targeted to the ARM platform with less cost of the speed. When
required, the FPU can perform double-precision (64-bit) floating-point calculations at
the expense of some calculation speed [19].

Without FPU, the Cortex R4 processor has to use the software to emulate floating point
operations, which leads to a much higher time cost comparing with using FPU.

In summary, the Cortex-R4 processor delivers a high performance combined with cost
and power efficiencies across a broad range of deeply-embedded applications. Cortex
R4’s main application markets includes imaging and printing device, automotive system
control, storage device driver and wireless communication device [19].

3.2 EVP

The EVP is a next generation Digital Signal Processor (DSP), which is designed for
high computation applications such as 3G, 3.5G and Multimedia. It processes data in
parallel as in the traditional DSP. Its processing speed can be up to 30 GPOS (30× 109

operations per second). Besides SIMD (Single Instruction Multi Data), it also supports
VLIW (Very Long Instruction Word). The maximum VLIW-parallelism available equals
5 vector operations plus 4 scalar operations plus 3 address updates plus loop-control
[21]. Some specific vector operations including Intra-Vector operation as well as Shuffle
operation, are also delivered by the EVP.

The EVP architecture combining SIMD and VLIW can be seen in Figure 3.2 from
paper [22]. The main word width is 16 bits and it also supports 8 and 32 bits. The
bit supporting design is based on the characteristic of the wireless protocol which is

20 CHAPTER 3. BACKGROUND OF THE M7400 PLATFORM HARDWARE

the main EVP application target. Since most wireless protocol’s algorithms operate on
variables with small values, 16 bits length is normally big enough.

Figure 3.2: The EVP architecture [22]

The main computation units in the EVP are divided into 3 groups, namely Scalar Data
Computation Unit (SDCU), Vector Data Computation Unit (VDCU) and Address Com-
putation Unit (ACU). VDCU contains Vector Load Store Unit (VLSU), Vector Arith-
metic Logical Unit (VALU), Vector Mask Arithmetic Logical Unit (VMAU), Vector
Multiply ACcumulate Unit (VMAC), Vector Shuffle Unit (VFU) and Intra Vector Unit
(IVU). With the support of VDCU, EVP can process operations on all elements of the
vector in parallel or operations within the elements of a single vector. In the SDCU,
there are Scalar Load Store Unit (SLSU), Scalar Arithmetic Logical Unit (SALU), Pred-
icate Arithmetic Logical Unit (PALU) and Scalar Multiply ACcumulate Unit (SMAC).
SDCU provides the hardware to compute the single variable and it can work in parallel
with VDCU.

From the introduction of the EVP hardware, it can be seen that the EVP is good at
high-performance generic parallel processing. However it is not optimized for complex
tasks, for instance, real-time controlling, protocol handling and so on. It usually works
in the multi-processor system to co-operate with other processors. A typical multi-core
system design and its task allocation can be seen in Figure 3.3. It can be concluded
from the figure that high complexity tasks are executed in the ARM and DSP. The
low complexity tasks with big bandwidth is assigned to the EVP and the hardware
accelerator.

The EVP also performs well in the power consumption. Paper [22] shows that the
EVP of 90nm running at 300 MHz generates a power of 1mW/MHz including a typical
memory configuration. The EVP power performance can be compared with the Signal
processing On Demand Architecture (SODA) which is also a DSP designed for the SDR

3.3. ON-CHIP COMMUNICATION 21

Figure 3.3: The task assignment of EVP-involved multi-core system

application. At 180nm, the power of SODA is 3W which is predicted to reduce to 250
mW if 65 nm technology is applied [23]. Normally, a typical hand held wireless device has
a total power budget of 100 mW ∼ 300 mW [1]. Consequently, the energy performance
of EVP is in the same level as other SDR processors and it is suitable to be applied on
the handle device platform without a large power consumption.

3.3 On-Chip Communication

On-chip communication is an important element in the multi-core system since the
components of the system need to communicate with each other during the running
of the system. There are usually two requirements on the communication. The first
is that the communication must ensure a correctly and reliably data transfer. This is
an essential demand for communication. Another requirement is the latency guarantee
which implies that a data unit must travel through the communication architecture and
reach its destination within a finite time determined by a latency bound [24]. The latency
is influenced by many factors including bandwidth, interconnect topology, commination
protocol and so on.

The NoC (Network on Chip) of the target M7400 platform is bus. It is a simple archi-
tecture and all components are connected to a shared bus. There is a Direct Memory
Access (DMA) in the bus to control all kinds of data transfers including memory to
memory, peripheral to memory , memory to peripheral and peripheral to peripheral.
Other master components write to DMA’s slave port to access to the DMA’s configura-
tion registers and launch a transfer. After that, the master component is free and can
involve in other tasks. While DMA’s master port will connect to the source and the
destination to control the transfer. The transfer initialized by DMA is the burst transfer
which sends multi-data in a burst with requesting only once for the access token, thus
it can achieve a very high throughput comparing with other transfer modes.

There are some existing bus-based communication architecture standards which define
data transfer modes, protocols, bus architectures as well as component interfaces. The
application of the architecture standard will significantly speed up SoC integration and

22 CHAPTER 3. BACKGROUND OF THE M7400 PLATFORM HARDWARE

promote IP reuse over several designs [24]. Some popular architectures are listed here,
ARM Microcontroller Bus Architecture (AMBA) 2.0, 3.0, IBM CoreConnect, STMi-
croelectronics STBus and so on. The architecture applied in the target platform is
Advanced eXensible Interface (AXI) bus which is introduced in the AMBA 3.0 bus
architecture.

The AXI bus is a high performance bus which is designed to support the connection
of high bandwidth, high frequency components without using complex bridges. It is
backward compatible to AMBA 2.0 AHB and APB interfaces. AXI provides a burst-
based, pipelined data transfer bus, Five separate channels are defined: read address,
read data, write address, write data, and write response and bandwidth ranges from 8
to 1024 bits.

The working principle of AXI is shown in Figure 3.4 and 3.5. While reading, the response
information from the slave is received on the read data channel. While writing, the
response information from the slave is received on the write response channel. In the
burst mode, AXI requires the address of only the first data item in the burst to be
transmitted and the following addresses of the burst do not need to be transferred but
calculated by the slave interface itself based on the burst’s first address. Thus the address
channel is freed and can be assigned to other transfer tasks. This is an improvement
of AMBA 3.0 comparing with AMBA 2.0. In the AMBA 2.0 AHB bus, every data’s
address has to be transferred. In summary, the AMBA 3.0 AXI bus in the platform can
deliver a high throughput, reliable communication to the system.

Figure 3.4: AMBA AXI bus channel reading working principle

In this chapter, the hardware of the M7400 platform is introduced. The work of porting
the software on the hardware is discussed in next chapter.

3.3. ON-CHIP COMMUNICATION 23

Figure 3.5: AMBA AXI bus channel writing working principle

24 CHAPTER 3. BACKGROUND OF THE M7400 PLATFORM HARDWARE

Chapter 4

Porting the DRM Receiver
program on ARM

This chapter discusses the porting work on ARM. An intermediate step of porting the
Cortex A8 model is shown in 4.1. The comparison between the Cortex A8 processor and
the Cortex R4 processor is achieved in 4.2. Then based on the profile report on Cortex
A8 and the comparison conclusion, the DRM receiver needs to be optimized and ported
on the Cortex R4 in 4.3.

4.1 Porting the DRM receiver program on Cortex A8

Before porting on the target platform, a intermediate step of porting on an easy trans-
plant ARM core, is necessary for the reason that the software changes its running en-
vironment from X86 to ARM. On the X86 processor, the compile tool is gcc while the
program has to be compiled by armcc on ARM. Different compile tools and different
processor architectures may cause unexpected errors of the program, therefore a verifi-
cation step to confirm the functional correct of the program on the ARM core is a need.
As mentioned in 3.1, the processing ability of ARM architecture is obviously weaker
than that of the X86 architecture. The execution speed on the ARM may be signifi-
cantly slower than on the PC, even cannot reach the real-time requirement. As a result
a measurement on the processing time is necessary.

The ARM Development Studio 5 (DS-5) supports debugging on Cortex-A8 Real-Time
System Model (RTSM). The RTSM helps users to debug the software on the ARM
without the requirement for actual hardware. The model has already been installed
the Linux as the operation tool. The DS-5 tool will automatically link the application
image without user’s own boot file. The model’s running speed is also satisfactory. The
RTSM’s simulation time (the real world time) is a few minutes in running DRM program
of processing 11 frames. However for the same workload, the System-C model of the

26 CHAPTER 4. PORTING THE DRM RECEIVER PROGRAM ON ARM

target platform takes more than two hours in actual time. Therefore, it is not wise to
directly debug on the the target platform’s System-C model. In RTSM, the absolute
timing accuracy is sacrificed to achieve the fast simulated execution speed. The model
can be used for confirming software functionality, but the accuracy of cycle counts, low-
level component interactions, or other hardware-specific behaviors are not reliable [25].
Nevertheless, it is still a good reference to consider the coarse execution time. In short,
the Cortex-A8 RTSM is a suitable platform to process a verification routine.

The DRM receiver is directly mapped on the Cortex A8 model without any modification
or optimized compile option. 3 benchmark inputs mytest1, mytest2 and mytest3 are
imported into the program to do the functional check. All output results are 100%
matched with the standard benchmark outputs.

The function gettimeofday can get the current time of Linux expressed in seconds and
microseconds. Normally the time is transformed into millisecond to support a millisecond
accuracy measurement. The function can be allocated at the beginning and the ending
of the target part to get the running time of the target. This is used to measure all the
time result in this section.

The Linux time function is used to measure the running time of ARM DRM receiver and
the result is compared with the receiver’s profile report on PC which is also achieved by
this function, gettimeofday. The comparison data can be seen in Table 4.1. It can be
seen that the ARM version is as large as 300 times slower than the PC version. The ARM
version is extremely far away from the real-time service. For instance, in benchmark1,
the processing time of each MSC frame is 3447 ms in average, which is about 10X larger
than 400 ms. As mentioned in 3.1, the ARM core’s ability in processing floating point is
significantly weaker than the Intel PC and the receiver program is written based on the
floating point algorithm where most variables are in the type of double precision floating
point. The floating point results in the long execution time on the ARM core.

Table 4.1: The execution time comparison of the DRM receiver on PC and Cortex R4
model
benchmark PC (X86) execution time (ms) ARM Cortex A8 execution time (ms)

mytest1 2432 589460

mytest2 1181 290907

mytest3 1325 349277

A study of the ARM core has been made to determine the optimization strategy. A
program computing the cumulative sum from 1 to 99999 is used as a benchmark to test
the simulation speed of the model dealing with different types of data. The result can
be seen in the 2nd column of Table 4.2. It shows that processing floating point takes
100 times longer time than integer.

The default compile setting for the floating point is mfloat-abi=soft which means the
compiler generates output containing floating point software library calling for floating-

4.1. PORTING THE DRM RECEIVER PROGRAM ON CORTEX A8 27

Table 4.2: The cumulative sum testing program result on the Cortex A8 model
data type execution time with

floating-point library
(ms)

execution time with
floating-point hard-
ware (ms)

int 1.6 1.6

float 93.9 5.6

double 117.8 5.7

point operations. From the result it can be concludes that the processing of the floating
point is extremely slow using the floating point function call.

There are 3 options for compiler to process floating point soft, softfp as well as hard.
soft calls the library. softfp allows the generation of code using hardware floating-point
instructions, but still uses the soft-float calling conventions. hard allows generation of
floating-point instructions and uses FPU-specific calling conventions [26].

soft is slow and but is used when the ARM processor does not support floating point
hardware operations. Both softfp and hard generate hardware floating-point instructions
which make floating-point instructions efficient. But when using hard, all the programs
and libraries are required to be compiled using this option. softfp is chosen to enhance
the compatibility to benefit further extension development. Using the compile option
mfloat-abi=softfp, the execution speed of the testing program can be seen in the 3rd
column of Table 4.2. The execution speed for the floating point is significantly increased
when the floating point hardware operation is applied instead of calling library functions.
What’s more, operations on the single precision floating point variable (float) and double
precision floating point variable (double) take almost the same time.

In order to obtain a detailed concept of the Cortex A8’s performance and FPU’s en-
hancement, a comparison is made, between the Cortex A8 model using FPU and the PC
in the ability in processing integer and floating point data. The benchmark, Dhrystone
from [27] is chosen to test on the Intel i7 PC workstation and the Cortex A8 RTSM re-
spectively to study their abilities of processing integer. The results are provided in the
second column of Table 4.3. The VAX MIPS result is obtained by dividing the number
of Dhrystone routines per second by 1757. Similarly, the Whetstone from [28] is used
to test the floating point processing and the single precision and double precision result
can be seen in 3rd and 4th column of the table. It uses Million Instructions executed
Per Second (MIPS) to measure the performance. From the result, it can be seen that
the Intel i7 has an extremely big advantage in processing data with integer, float and
double types. It also can be concluded that the processing speed in float and double
type is almost the same in the Cortex A8 FPU.

Based on the discussion of the floating point before, the DRM receiver program is re-
complied using the option mfloat-abi=softfp. The generating floating point hardware
operations are executed by the FPU of Cortex A8, VFPLite which is in the Vector

28 CHAPTER 4. PORTING THE DRM RECEIVER PROGRAM ON ARM

Table 4.3: The Dhrystone and Whetstone benchmark result on Cortex A8 RTSM and
Intel i7 PC

Dhrystone (VAX
MIPS)

Single-precision
Whetstone (MIPS)

Double-precision
Whetstone (MIPS)

Intel i7 9517.6 2000.0 5000.0

Cortex A8 142.3 148.8 153.4

Floating Point v3 (VFPv3) architecture. The processing time of 3 benchmarks can be
seen in the 2nd column of Table 4.4.

Table 4.4: The execution time comparison of the DRM receiver on Cortex R4 model
with different compile options

benchmark using vfpv3 (ms) using vfpv3 and NEON (ms)

mytest1 80425 75469

mytest2 37712 35497

mytest3 47267 43752

There are still some spaces to further improve the performance of the program on the
Cortex A8 core because the Cortex A8 implements the NEON technology. It is a Single
Instruction Multiple Data (SIMD) extension which provides standardized acceleration
for media and signal processing applications. It supports data types including integer and
single precision floating point. The code is re-compiled with option mfloat-abi=softfp and
-mfpu=neon and -ffast-math. -ffast-math is used to speed up the program by sacrificing
the math precision. And NEON cooperates with VFP to enhance the performance. VFP
can be used for ”normal” (non-vector) floating-point calculations. Also, NEON does not
support double-precision floating point so only VFP instructions can be used for that.
The timing performance results can be seen in in the 3rd column of Table 4.4.

In the practical use of the benchmark, processing the whole benchmark input takes too
much time especially on the model of the target platform. In the following work, only
part of the benchmark is imported so that the process of generating the first 11 frames
is analyzed and each frame contains a MSC frame.

A function correctness check of the receiver also has been done to the ARM version using
the vfpv3 and NEON. The error rate testing program is implemented to evaluate the
receiver’s output. The error rate of 3 benchmarks can be seen in Figure 4.1. When using
hardware floating point operations to process floating point calculations, the calculation
accuracy is different from using software floating point library. In the receiving process,
there is a synchronization process at the beginning of the demodulation routine and the
synchronization algorithm is written in floating point. The algorithm is sensitive to the
accuracy so it results in a different demodulated result at first few frames. However,
with the process of the demodulation, the errors are corrected and the error rate in the
MSC frame is decreased.

4.1. PORTING THE DRM RECEIVER PROGRAM ON CORTEX A8 29

Figure 4.1: MSC frame’s error rate of three benchmarks

Focusing on the timing performance, the time interval of generating each MSC frame is
measured in Figure 4.2. The first MSC frame takes a much longer time comparing with
the following frames because the synchronization routine as well as some initialization
functions have to be called in generating the first frame which cost a large amount of
time. After that generating each frame costs an approximately same time. Besides,
another regular pattern is also discovered. Except the first frame, the processing time is
relatively larger in Frame 3, 6, 9 since the workload is bigger in generating these frames.
A structure of the transmitted frame can be seen in Figure 4.3 [7]. A transmission
super frame contains 3 transmission frames. Processing the first transmission frame will
generate the first MSC frame in the transmission super frame and the workload includs
demodulation and decoding of one MSC frame, one SDC frame and one FAC frame.
However, in the 2nd and 3rd transmission frame, the computation load only includes
one MSC frame and one FAC frame. Therefore, generating the first MSC frame of the
transmission super frame takes a longer time.

From the real-time view, it cannot provide a lasting service because the processing time
of some MSC frames, is longer than 400 ms though it is very close to the real-time
requirement.

A profile report is achieved to observe the processing stages’ distribution in the whole
DRM receiver’s processing benchmark1 to generate 11 MSC frames. Since the function
distribution in generating the first frame differs from the following process, they are dis-
cussed separately. The profile report of generating the first frame is in Figure 4.4. From

30 CHAPTER 4. PORTING THE DRM RECEIVER PROGRAM ON ARM

Figure 4.2: MSC frame’s processing time on Cortex A8

Figure 4.3: The frame structure of the transmitted signals [7]

the pie chart, it can be seen that the synchronization routine, Time Synchronization,
takes more than half of the running time. The profile report of generating the 2nd to
11th frame is in Figure 4.5 where the distribution is rather different from Figure 4.4. The
channel decoding function, MLC decoder takes 55% of the execution time. Among the
MLC decoder, the processing function, Viterbi decoder occupies 91% of the decoder and
the Viterbi decoder holds 50% of the whole processing time. Although synchronization
takes a lot of time in the first frame, it only results in the latency of the start of the
service which we are not interested in. Attention should be paid to the Viterbi decoder
which is considered as a hot point needing to be optimized.

4.2. COMPARISON OF CORTEX A8 AND CORTEX R4 31

Figure 4.4: Profile report of processing the first frame on Cortex A8

Figure 4.5: Profile report of processing the 2nd to 11th frame on Cortex A8

4.2 Comparison of Cortex A8 and Cortex R4

After the intermediate step, the processor Cortex R4 on M7400 must be compared with
the Cortex A8 fast model to see whether a similar timing performance can be delivered.
The ARM Cortex A8 core is designed for user applications with full-featured OS and it
results in a much higher requirement on hardware comparing with Cortex R4, planned
for deeply embedded systems with RTOS as shown in 3.1.

Considering the working frequency, the frequency of Cortex A8 core is higher than the

32 CHAPTER 4. PORTING THE DRM RECEIVER PROGRAM ON ARM

Cortex R4 processor. Normally, it works at the frequency of 800 Mhz. On the other
hand, the frequency of the Cortex R4 processor on the M7400 platform is 416 Mhz.

For the floating point unit, the Cortex A8 contains a VFPLite co-processor which is
an implementation of the ARM Vector Floating Point v3 (VFPv3) architecture with 32
double-precision registers [29]. In the Cortex R4 processor on the M7400 real hardware
platform, there is no FPU available. Therefore, the floating point library is applied when
processing floating point data types. It can be estimated that if the DRM receiver is
ported on the Cortex R4 without FPU, the execution time should be close to, or even
slower than the processing time of the Cortex A8 using the floating point library shown
in Table 4.1. The execution speed on the Cortex R4 is unacceptable and it obviously
cannot achieve a real-time service. However, in the provided System-C platform model,
the Cortex R4 processor is configurable. It can enable a FPU in the virtual hardware.
After configuration, there can be a VFPv3-D16 in the same architecture as VFPLite but
only with 16 double-precision registers [20].

Since most part of the DRM code operates on floating point types, attention should
be paid in Cortex R4’s speed in processing floating point types. The single precision
and double precision Whetstone benchmarks are used as before in section 4.1. And
the result is compared with that of the Cortex A8 shown in Table 4.5. The processing
ability of single and double floating point in Cortex R4 is weaker than Cortex A8. And
unlike Cortex A8, the Cortex R4’s ability in processing single-precision is obviously
stronger than double-precision. Therefore, a data type conversion from single-precision
to double-precision, is necessary for the program implemented on Cortex R4.

Table 4.5: The Whetstone benchmark result on Cortex A8 RTSM and Cortex R4 model
Single-precision
Whetstone (MIPS)

Double-precision
Whetstone (MIPS)

Cortex R4 147.9 123.8

Cortex A8 153.4 148.8

What’s more, the Cortex A8 architecture contains a NEON co-processor which further
enhances the processing ability. This SIMD technology is not applied in Cortex R4.

A signal processing kernel speed testing is presented in [30] using Certified BDTI DSP
Kernel Benchmarks. It shows that the Cortex A8 working at 450 Mhz delivers an almost
three times the performance of the Cortex R4 of 300 Mhz.

As far as the comparison achievement is concerned, the receiver mapping on Cortex
R4 cannot provide a similar timing performance as on Cortex A8. Therefore, some
modifications must be done to the program to speed up. The optimization of the program
is presented in next section 4.3.1.

4.3. PORTING THE DRM RECEIVER PROGRAM ON CORTEX R4 33

4.3 Porting the DRM receiver program on Cortex R4

4.3.1 Modifications of the DRM receiver program

On the basis of the conclusion in 4.2, the code must be modified to speed up the re-
ceiver.

As mentioned in 4.1, the widely used double precision floating type is the essential reason
of slowing down the ARM execution. There are two options for data type conversion.
First is to transfer double precision floating point to integer, which is not realistic because
it would have a lot of work including debugging overflow and changing to an integer fftw
library. Another option is to change double precision floating point into single precision
floating point. This would also enhance the performance based on the processor’s result
shown in Table 4.5. Furthermore, the problems caused by converting into integer do not
appear. Thus the latter option is chosen in this study.

The time expensive part, Viterbi decoder function also needs to be optimized. The
Viterbi decoder is re-written in integer and a scaling processing is done to the soft-
decision inputs. The working principle and modification details of the Viterbi decoder
is discussed in 5.2.

4.3.2 Profile results on Cortex R4

For porting on the Cortex A8 model, the DS-5 software will automatically link the ARM
image to the processor and begin the execution. However, the provided platform model
is written in System-C and is launched in the software, Synopsys Virtual Prototype
Analyzer G-2012.06-SP2. The boot file has to be written using the ARM Linker to
load the application image to the processor’s memory. The details of the ARM linker
configuration is presented in Appendix A.

Since the Cortex A8 model contains the Linux operation system, it is easy to control the
input and output of the data stream to read/write from/to files with the help of the op-
eration system. However, the Cortex R4 System-C model is built without any operation
system. Semihosting [31] is implemented here to communicate input/output requests
from application code to the host running a debugger which is the Synopsys software
here. The requests includes keyboard input, screen output, and disk I/O. When a re-
quest occurs, the application invokes the appropriate Software Interrupt (SWI) and then
the debug agent handles the SWI exception and communicate with the host. After that,
the host responses to the debug agent’s communication information to export/import
the data stream.

The modified DRM receiver program is successfully ported on the Cortex R4 core of
the platform model based on the configuration as discussed before. As mentioned in
4.2, the core model setting has to be changed to enable VFU and the compile option

34 CHAPTER 4. PORTING THE DRM RECEIVER PROGRAM ON ARM

–fpu=vfpv3 d16 is used to configure the compiler to generate floating point hardware
operations for vfpv3 d16.

A functional check of the modified code is achieved as it is done in Cortex A8 model in
section 4.1. And the results can be seen in Figure 4.6. Comparing with Figure 4.1, the
error rate is slightly increased, but still acceptable.

Figure 4.6: The modified program running on Cortex R4’s MSC frame error rate of three
benchmarks

The software, Virtual Prototype Analyzer automatically provides a function traced pro-
file report. It is used to measure the time in all timing results of the M7400 plat-
form.

A similar timing performance measurement is finished as in Cortex A8 model using the
benchmark 1. The time interval of generating each MSC frame is measured in Figure
4.7. Comparing with Figure 4.2, the processing time is larger than that of the Cortex
A8. Though some modifications are already applied to the source code to speed up, it
still cannot achieve a real time service since the processing time of each frame is above
400 ms.

Profile reports based on benchmark 1 are achieved as it is done on Cortex A8 for the
research on the function distribution on generating 1st MSC frame and generating 2nd
frame to 11th frame respectively and the results are presented in Figure 4.8 and Figure
4.9. The hot spot Viterbi decoder in Cortex A8 version is still the most time expensive
part which takes 78% of the MLC decoding time and 45% of the whole running time in the
period of processing 2nd to 11th frame. Therefore, in order to increase the performance,

4.3. PORTING THE DRM RECEIVER PROGRAM ON CORTEX R4 35

Figure 4.7: MSC frame’s processing time on Cortex R4

attention should be paid to Viterbi decoder to further decrease the execution time.

Figure 4.8: Profile report of processing the first frame on Cortex R4

In this chapter, an intermediate step of porting the DRM program on the Cortex A8
is done at first. Then the program is modified in order to speed up the execution.
However, the details of the optimization on the Viterbi decoder is not shown in this
chapter. Finally it shows the profile report of the optimized DRM program on the
Cortex R4 model. The optimized single core version still cannot reach the real-time
requirement in the Cortex R4. Therefore, a multi-core version should be achieved in
the following chapters. Furthermore, in the next chapter, the detailed modification to
the Viterbi decoder of the single-core version is also discussed in section 5.2 after the

36 CHAPTER 4. PORTING THE DRM RECEIVER PROGRAM ON ARM

Figure 4.9: Profile report of processing the 2nd to 11th frame on Cortex R4

introduction the working principle of Viterbi decoder in section 5.1.

Chapter 5

Analysis and Realization of the
multi-core version

According to the conclusion in section 4.3.2, the Viterbi decoder slows down the whole
processing speed. Therefore, in the multi-core version, this part is a candidate to port
on EVP. However it still needs to be considered if its related functions also have to be
ported on another core. Thus a discussion of MLC and its belonging Viterbi decoder’s
working principles must be done in section 5.1. Then upon the Viterbi decoding’s work-
ing principle, section 5.2 shows the detailed modification of the Viterbi decoder of the
ARM single core version as discussed in section 4.3.1. The tool Pareon is used in analysis
of the multi-core version of the program and it will be discussed in section 5.3. Based on
the analysis result, section 5.4 presents the realization of the ported code on EVP.

5.1 MLC and Viterbi Decoder’s working principles

5.1.1 MLC encoder and decoder

In the transmitter end, the MLC encoding is applied in the channel encoding process.
In MLC, the source bit stream is partitioned into different streams. Each stream goes
through the encoding processes respectively and then converges together to do QAM
(quadrature amplitude modulation).

The processing flow is shown in figure 5.1. The source information is encoded into bit
stream before importing into the MLC routine. In the MLC encoding processing stage,
the Energy Dispersal is the first processing function. The purpose of this function is to
avoid the transmission of signal patterns which might result in an unwanted regularity
in the transmitted signal [7]. A scrambler is used here to convert the bit stream into
a seemingly random bit stream of the same length by using a pseudo-random binary
sequence (PRBS), thus avoiding long sequences of bits of the same value.

38CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

Figure 5.1: The processing flow of 3 level MLC encoder in the DRM transmitter

Then according to the robustness mode setting of the transmission, the bit stream is
divided into n levels in the Partitioning function. n ranges from 1 to 3.

Each partitioned bit stream is encoded separately. The convolutional coding with a
original code rate 1/4 and constraint length 7 is applied. The codeword is defined as the
equation 5.1. The structure of convolutional encoder can be seen in figure 5.2 from [7].
Every 1 bit inputs into the encoder, it will generate 4 bits output. Therefore, the code
rate is 1/4. There are 6 shift registers in the decoder, as a result 7 bits in the encoder
are involved in calculating the output bits. So the constraint length of the encoder is
7.

b0,i = ai
⊕
ai−2

⊕
ai−3

⊕
ai−5

⊕
ai−6

b1,i = ai
⊕
ai−1

⊕
ai−2

⊕
ai−3

⊕
ai−6

b2,i = ai
⊕
ai−1

⊕
ai−4

⊕
ai−6

b3,i = ai
⊕
ai−2

⊕
ai−3

⊕
ai−5

⊕
ai−6

(5.1)

However, if the original encoder’s code rate is directly put into use, a large amount of
output bits are generated and it gives a significantly large burden on the transmitter
and receiver. Therefore, a puncturing processing to output bits is necessary in order
to decrease the code rate. Various puncturing patterns are stored and applied to the
convolutional output bits to remove some of the parity bits without influencing the
error-correction ability.

Bit-wise interleaving shall be applied for some of the streams. The punctured bits are
interleaved according to the corresponding interleaving table.

Finally, the divided bit streams are converged in the QAM function. In QAM, the con-
stellation points are usually arranged in a square grid with equal vertical and horizontal

5.1. MLC AND VITERBI DECODER’S WORKING PRINCIPLES 39

Figure 5.2: The structure of convolutional encoder in the DRM transmitter [7]

spacing and the number of points in the grid is usually in a power of 2. In this module,
the number of point is decided by the bit stream level n. The point number equals 4n,
therefore 4-QAM, 16-QAM and 64-QAM are implemented here. In each mapping, 2 bits
are extracted from each divided stream to act as the vertical and horizontal coordinates.
Since the stream number n matches the QAM size, the extraction bits of n streams are
suitable to process a mapping at the constellation which can be seen in Figure 5.3.

Figure 5.3: The multi level QAM mapping working principle

Based on the channel encoding process, a corresponding channel decoder is built in
the receiver end. The MLC decoding is also named multistage decoding (MSD). The
decoding is an iterative process which means the lower level decoding result will be of
help to decoding the higher level bits as seen in Figure 5.4.

The data flow structure of MLC decoding can be seen in Figure 5.5. One decoding routine

40CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

includes QAM de-mapping, Bit de-interleaving, De-puncturing and Viterbi Decoder.
After decoding ,the decoded bits are imported into the encoding routine which consists
of the same processing functions as in the encoder of the transmitter. The encoded
bits are iteratively imported back to the QAM de-mapping function and work as the
determined bits to help estimate the bits of the next level.

Figure 5.4: The iterative decoding process of MLC decoder

Figure 5.5: The processing flow of MLC decoder in the DRM receiver

There is an iterative number parameter that effects the decoding times of each output
bit. In the DRM receiver, the default setting of this parameter in the MLC decoder is 2
which is applicable to 2 levels and 3 levels MLC decoder. For instance, in 2 level MLC
decoder, 2 data streams X and Y are decoded. The X stream is firstly decoded and then
the X result helps in decoding the Y stream. This is the first iteration. In the second
iteration, the Y stream result from the last iteration, helps the re-decoding work of X,
and the final result of X stream is obtained. The final result of X stream helps decode
the Y stream. However, as to the 1 level MLC decoding, since it only contains one bit
stream, even if it iteratively inputs into the decoder, it cannot be helpful in the 4-QAM
de-mapping. The output bit of the 1 level MLC decoder is decoded only once.

5.1.2 Viterbi Decoder

Among all the processing functions in the MLC decoder, the most time-expensive part
is Viterbi Decoder. A detailed working principle of the Viterbi decoder is discussed
below.

There are two parts in the decoder, namely trellis construction and trace back. In the

5.1. MLC AND VITERBI DECODER’S WORKING PRINCIPLES 41

decoder, Viterbi Algorithm (VA) is used to find a maximum likelihood (ML) estima-
tion of a transmitted code sequence c from the received sequence r by maximizing the
conditional probability P (r|c).

In the trellis construction, the Branch Metric (BM) is used to present the conditional
probability of one encoding branch based on the received encoded bit sequence. Two
methods can be used to present the received encoded bit, namely Hard-Decision and
Soft-Decision. In the Hard-Decision, each received encoded bit is presented by 1-bit
quantized decoder input. Then the BM of a branch is obtained by calculating the
Hamming Distance between the decoder inputs and the encoding bits of the branch.
Hamming Distance stands for the number of differing bits between two bit sequence.
The smaller BM indicates that the the decoder inputs is more closed to the encoding
bits of the branch, thus the possibility of this branch is higher. While for Soft-Decision,
it is basically the same as the Hard-Decision, but it improves the decoding quality by
using multi-bit quantized inputs to present each received encoded bit.

The Soft-Decision is applied in the Viterbi decoder of DRM. The multi-bit quantized
input is calculated by multiplying the distance of the QAM constellation which is gotten
from QAM de-mapping function and the magnitude of the channel achieved by the
channel estimation stage. Since puncturing is used, the puncturing pattern should also
be considered. A table containing the puncturing pattern for each decoding bit is created
before the MLC decoding routine. There are 6 types of puncturing patterns, namely
0000, 1111, 0111, 0011, 0001, 0101. 0 stands for un-punctured bit and 1 is for punctured
bit. For example, 0000 pattern means all 4 bits are not punctured, thus 4 inputs are
involved in calculating BM. From this analogy, if the puncturing pattern is 0001, 3 inputs
are used to decide BM. Thus based on the multi-bit quantized input and the puncturing
pattern, the difference between the received bits and every possible branch’s encoder
bits can be measured out.

Path Metric (PM) is the sum of the corresponding BMs. If two branches merge at a
state, the smallest one is chosen to survive. A whole process of trellis construction can
be seen in Figure 5.6. It is a decoder with the code rate 1/3, constraint length 3 and
the Hard-Decision is applied. The states of 00, 01, 10, 11 present the bits store in the
encoder register. Each state has two branches. The solid line branch is for the encoder
input bit 0 and the dotted line branch shows the encoder input bit 1. The bits on the
branch presents the corresponding encoder output. The received bits’ (decoder input
bits) HB with every branch are computed to obtain the BMs shown in red italic. PM
is located in every state shown in black bold. If two branches merge at a state, the
smallest one is chosen to survive as it is in state 00 in step 3. If choosing the branch
from state 00, the resulting PM is 5. However, if choosing the branch from state 10, PM
is 1. Therefore, the latter path is selected and PM is calculated as 1. The path decision
is stored in the decision bit.

Therefore, in every trellis construction step, all the BMs are calculated and added with
the corresponding PM. The confluent branches are compared to remain the smaller one

42CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

Figure 5.6: The processing of the trellis construction

and the decision bit is stored. This process results in an high computational load. In
the DRM Viterbi decoder, the constraint length is 7. Based on this, a computation load
is listed in Table 5.1. The Viterbi decoder’s trellis step number n is equal to the number
of the decoding output bits. In the implementation, normally the trellis step can be up
to 4000, which leads to a significantly large number of calculation.

Table 5.1: The computation load of the n-step Viterbi decoder of DRM
Addition operation Comparison operation Store operation

128× n 64× n 64× n

Since the PM is a result of thousands times of repeated additions, the value may be
extremely large which needs a large register to store. However, if the hardware is limited,
some methods must be done to prevent the overflow. Four normalization methods are
listed in [32], Reset Metric Normalization, Variable Shift Metric Normalization, Fixed
Shift Metric Normalization, and Modulo Metric Normalization. Normalization is not
easy to implement and it will slow down the processing speed due to its periodic checking
overflow. But it has an obvious advantage that it will not decrease the decoding accuracy
because it is the difference values between PMs that decides the decoding output rather
than the absolute values. An alternative option is scaling. If the maximum number of
steps is already known, based on the max steps n and register width, a scaling operation
can be done to the BMs to ensure that even if the maximum BM value is repeatedly
added n times, the accumulate value should not overflow in the register. The advantage
of scaling is that the implementation is easy and it won’t influence the decoding speed

5.1. MLC AND VITERBI DECODER’S WORKING PRINCIPLES 43

because the scaling is processed before the Viterbi decoding. However, the scaling will
influence the accuracy of the decoding, since the scaling of BM will decrease or increase
the difference values between PMs.

In the trace back part, the most likely sequence is reconstructed by going back in steps
and the processing can be seen in Figure 5.7. There are two methods in trace back. The
first approach is sliding window. The timing relation between the Trellis construction
and the trace back can be seen in Figure 5.8. One time trace back of a constant length
Dback occurs periodically and the period is a certain number Dforward trellis construction
steps. In trace back, the smallest PM is chosen as the starting point and construct a
path backward in the length of Dback based on the decision bits. At every turn of
trace back, Dupdate decoding bits are exported (Dupdate = Dforward). Furthermore, in
practical implementation, the trellis construction can execute in parallel with the trace
back.

Figure 5.7: The processing of the trace back

A second approach uses frames. With frames, the dependency chain is the length of the
frame [33]. In the encoding, the input bits of a frame is ended with a sequence of 0.
Trace back only happens once when the trellis construction of the whole frame ends. A
trace back from the ending to the beginning of trellis steps is done to decode the whole
bits in one time. And the starting point is chosen in the state with all 0, since the ending
of the frame is a sequence of 0.

Comparing these two approaches, the sliding window method uses less memory. The
decision bits of the already decoded bits do not need to be stored in the memory. An-
other advantage is that it can process faster because of the parallel execution of trellis

44CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

Figure 5.8: The timing relation between Trellis construction and trace back of sliding
window

construction and trace back. However, the speed advantage is not obvious because the
time cost of the trace back is greatly smaller then that of the trellis construction. While
the frame based trace back method delivers a higher error correction decoding because
the multi-time trace back will inevitably cause error. In the sliding window, the trace
back path is built based on the current constructed trellis but if the unestablished trellis
are taken into consideration, a rather different path may be built.

5.2 Modification on the Viterbi decoder

Section 4.3.1 presents that the variables of the whole program are converted from 64-bit
double to 32-bit float at first. Then the Viterbi decoder function is optimized in the
ARM Cortex R4 single-core version. However, the detailed optimization steps in Viterbi
decoder are not shown. In this section, we work on the 32-bit float version program and

5.2. MODIFICATION ON THE VITERBI DECODER 45

the data type conversion and scaling process are discussed combining with the working
principle shown in section 5.1.

To decrease the execution time of the Viterbi decoder on Cortex R4, the first step is to
rewrite the function from 32-bit float to 32-bit int. As mentioned in 5.1, the relative
values of PMs decide the decoding results, therefore a type conversion on BMs from
single precision floating point type to integer will not significantly decrease the decoding
accuracy. The conversion is achieved by using Vint = floor(Vfloat + 0.5) to round the
decimals to the nearest integral number. A result can be seen in Figure 5.9 testing on
the PC version of the DRM receiver to observe the type conversion’s influence on the
receiver’s MSC outputs.

Figure 5.9: MSC frame error rate tested by three benchmarks of the single precision
floating type version program with integer Viterbi Decoder

Based on the integer Viterbi decoder version, a scaling to the soft-decisions is further
achieved to prepare porting the Viterbi decoder code on EVP. When it is implemented
on EVP, an overflow problem may occur. The range of BM should be limited to prevent
its accumulation result, namely PM over the range. In the integer conversion process,
the BMs are converted from the 32-bit float to 32-bit int. However, the soft-decision
inputs are still in 32-bit float to guarantee the precision of the decoder. It is chosen to
scale the soft-decision input before de-puncturing processing. Since BM is calculated by
soft-decision inputs, the value of BM can be controlled when the value of the soft-decision
is restricted.

Before de-puncturing, the soft-decision inputs for a single Viterbi decoding routine are

46CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

searched to find the max value Imax. If it is bigger than the Smax, the scaling factor
is calculated by Sfactor = Imax/Smax and then the scaling factor is used to scale the
input value by Iscale = I/Sfactor. Otherwise, inputs are unprocessed. Since scaling will
decrease the accuracy as shown in 5.1, it is necessary to find a proper scaling degree. A
similar testing on the MSC error rate in different Smax is finished and the result can be
seen in Table 5.2. The used benchmark is mytest2 because it is in the lowest protection,
Robustness Mode A. If this benchmark can be decoded with low error rate, others can
also be processed successfully. It can be seen when Smax is decreased to 2, the error rate
is greatly increased and the error extents to the latter frames. The calculation result for
EVP shown in 5.4 presents that when Smax is 3, the PM will not overflow in a 16-bit
register. Therefore, Smax is chosen as 3.

Table 5.2: The single precision floating type version, integer Viterbi decoding DRM
receiver’s MSC error rate in different Smax

MSC Frame ID 1 2 3 4 5 6 7 8 9 10 11

not applied (error rate %) 9 11 6 0 0 0 0 0 0 0 0

Smax 200 (error rate %) 9 11 6 0 0 0 0 0 0 0 0

Smax 100 (error rate %) 9 12 6 0 0 0 0 0 0 0 0

Smax 50 (error rate %) 8 11 4 0 0 0 0 0 0 0 0

Smax 10 (error rate %) 15 20 12 0 0 0 0 0 0 0 0

Smax 5 (error rate %) 18 31 21 0 0 0 0 0 0 0 0

Smax 3 (error rate %) 18 31 33 0 0 0 0 0 0 0 0

Smax 2 (error rate %) 25 39 47 1 5 14 10 36 0 0 11

Based on these result, we can concluded that the optimized Viterbi decoder in the ARM
Cortex R4 single-core version is accomplished and it is also well suitable for porting on
EVP.

5.3 Pareon’s analysis in the multi-core version

In the profile report of the DRM program on Cortex R4 shown in section 4.3.2, the
Viterbi decoding function takes 45% of the processing time. Therefore, this part is
suitable to port on EVP since it takes almost half of the execution time. From the section
5.1, it can be seen that the trellis construction processing has a high computational
load but the construction process is simple and repetitive. There are 128 addition
operations, 64 comparison operations and 64 store operations to generate new PMs in
each construction step. However, each PM’s generation pattern is static and simple,
which makes it easy to vectorize the processing in each trellis construction step. From
the vectorization view, the Viterbi decoding function is suitable to be rewriten in EVP-C
and be implemented on EVP.

5.3. PAREON’S ANALYSIS IN THE MULTI-CORE VERSION 47

Though it is already known that the Viterbi decoder function is suitable to be ported on
EVP, which is the same as the conclusion in [8], there are still some remaining topics of
the multi-core version needed to discuss. It remains to be see whether the EVP related
parts also have to be ported on EVP. The multi-core analysis should also consider timing
performance, communication data size, EVP-C realization efficiency.

If the DRM application is not changed and only the Viterbi decoder is ported on EVP,
there is an obvious disadvantage that it cannot achieve pipelined processing. The ARM
core has to wait until the work of the EVP is finished. Only until Viterbi decoder results
are transferred back from the EVP, the ARM core can continue do the following MLC
decoding processing, which can be seen in Figure 5.10. From the frame processing view
shown in Figure 5.11, it means that only when the current frame processing is finished,
the DRM can step into the processing of the next frame.

Figure 5.10: Non-pipelined multi-core version

If a pipelined processing is expected, a review of the DRM receiver processing data
flow in Figure 2.4 should be done. The Viterbi decoder function is in the MLC stage.
And the MLC processing is the main routine of the channel decoding and it is applied
to 3 different information channels, FAC, SDC, MSC separately. After the channel
decoding, the decoded information of the FAC and SDC have to be utilized to change
the configuration parameters of the receiver, but the MSC decoded result is not used to
alter the setting. Therefore, if the MSC channel decoding processing is totally ported
on EVP, it can achieve pipelined processing as shown in Figure 5.12. The channel
decoding includes processing stages of De-interleave, MLC decoder, De-multiplexer and
Split MSC. From the frame processing view shown in Figure 5.13, when the MSC channel
decoding task is sent to EVP, the ARM core can begin to handle the demodulation of the

48CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

Figure 5.11: Non-pipelined frame processing

next frame rather than waiting the end of the EVP task. Though the channel decoding
stage of SDC and FAC still performs on ARM, it is still expected to provide a great
improvement on the time performance since the MSC decoding workload is much higher
than FAC and SDC, for instance, in the benchmark, mytest1(MSC frame size is 6984,
SDC is 630 and FAC is 72) and the MSC channel decoding takes more than 90% of the
total channel decoding time.

Figure 5.12: Pipelined multi-core version

Porting the whole MSC channel decoding processing on EVP may deliver a high per-
formance and pipelined processing. However, if considering the practical realization, it
is not a good choice. There are a large amount of complex functions in De-interleave,
MLC decoder, De-multiplexer and Split MSC and the only vectorizable function is the
Viterbi decoding of the MLC. And in the processing stage of De-interleave and some
parts in MLC, the processing operates on floating point variables, which must be rewrite
for EVP. In summary, it is hard to rewrite the whole code in MLC channel decoding
in EVP-C to generate an efficient decoding implementation on EVP. The channel de-

5.3. PAREON’S ANALYSIS IN THE MULTI-CORE VERSION 49

Figure 5.13: Pipelined frame processing

coding’s slow execution on EVP may even eliminate the acceleration benefited by the
pipelined processing. When the ARM core finishes the works of the next frame, it may
have to wait for the EVP to finish the current frame’s decoding task.

An alternative option is to port the De-puncturing function into EVP, because this
processing function is closely related to the Viterbi decoder function. In this function,
the BMs are achieved by calculating the soft-decision inputs, combining the puncturing
table. This function only takes a small amount of execution time, just 9.2% of the Viterbi
function based on the Cortex R4 optimized program’s result. However, the EVP-porting
of the De-puncturing function will influence the size of data transferred from the ARM
to the EVP. Thus there are two versions, namely the De-puncturing, Viterbi decoder
EVP version and Viterbi decoder EVP version. We have to compare two versions in the
size of the communication data to be transferred from ARM to EVP and from EVP to
ARM.

The Vector Fabrics Tool, Pareon is used here to compare the communication of two
versions. This tool aims to help analyze the multi-core code. It is designed to find the
dependency within program functions and give a guidance in optimizing the C/C++
code on the multi-core architecture including Intel processors and ARM cores. This
tool is still under development, now it only supports the homogeneous multi-core system
with shared memory. The functionality of support for the heterogeneous multi-core
architecture and the simulation for the data transfer are not available yet. However, the
current version of Pareon can still be used to analyze the multi-core version.

The program needs to be recompiled by the Vector Fabrics compiler toolchain vfcc and
vf++. Then the Pareon can analyze the code after the program’s execution. The GUI
presents a function distribution as shown in Figure 5.14 and the loop number is also
shown in the GUI. In the source code, the function CViterbiDecoder::Decode only
contains De-puncturing and Viterbi decoder and the Viterbi decoder processing is in

50CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

CViterbiDecoder::Decode’s subfunction main viterbi. Therefore, the tool, Pareon
is used to measure the data dependency between CViterbiDecoder::Decode and the
high level MLC decoder’s loop, main viterbi and the high level MLC decoder’s loop.
In the practical use of the Pareon, the high level loop Loop 20514 and CViterbiDe-
coder::Decode are dragged to the dependency task window and the memory depen-
dency is chosen. The memory dependency is divided into two kinds in Pareon, namely
inbound dependency and outbound dependency. The inbound dependency means de-
pendencies that cross the start boundary of the invocation of the target function which
can be treated as the transferring-in data. Similarly, the outbound dependency stands
for the transferring-out data. Here the inbound dependency is chosen to measure, since
it is already known that CViterbiDecoder::Decode and main viterbi’s transferring-
out data are the same, which is the decoded result bits. The Pareon uses transfer rate
to present the transferring data amount and it is in the unit of Mi reads/s. Mi means
1 × 106. read means one time access to the memory to read data. The transfer rate is
calculated by the equation 5.2 in the Pareon tool. This equation is given by the Vector
Fabrics company. Nm is the total memory load times related to the memory depen-
dency. Ni indicates the target function invocation times. Tti is the total running time
of the target function in execution. One important factor is that the transfer rate only
shows the number of access to the memory per second in average in the target function
execution period. However, every time the program accesses to the memory to fetch a
variable and the variable can be in a different size, 16-bit int, 32-bit float, 64-bit float,
etc. So the transfer rate does not show exactly the size of data to be transferred. The
result can be seen in Figure 5.15 and Figure 5.16. From the result, it can be seen that
the total transfer rate is 6.1Mi load/s. There are two main memory dependencies. One
is in Figure 5.15 4.7Mi load/s. The detailed content of the dependency is observed,
it includes the puncturing table and the outside defined vector structure and function.
In the program, the puncturing table is presented in the variable of veciTablePunc-
Pat while the vector related dependency is more complex. The variables are stored
and operated in the defined vector structure and function and these vector structures
and functions are defined outside CViterbiDecoder::Decode. The tool Pareon views
them as the memory dependency. Another memory dependency is 1.9Mi load/s, which
is related to the soft-decision input vecNewDistance.

transfer rate = Nm/Ni

Tti/Ni

= Nm
Tti

(5.2)

After finishing the data dependency analysis of CViterbiDecoder::Decode, main viterbi
is analyzed in the same way and the result can be seen in Figure 5.17. Since the scaling
processing results in the value of BM less than 12, 4 BM variables are packed into a 16-
bit int in practical communication. The packing process is also applied in the program
under analysis to help the Pareon to deliver a proper result. The total transfer rate is
2Miload/s and the main dependency shown in Figure 5.17 is 1.9Mi load/s which is the

5.3. PAREON’S ANALYSIS IN THE MULTI-CORE VERSION 51

Figure 5.14: The Pareon’s function distribution of the DRM program

BM variable inputs.

52CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

Figure 5.15: CViterbiDecoder::Decode inbound memory dependency 1

5.3. PAREON’S ANALYSIS IN THE MULTI-CORE VERSION 53

Figure 5.16: CViterbiDecoder::Decode inbound memory dependency 2

54CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

Figure 5.17: main viterbi inbound memory dependency

5.3. PAREON’S ANALYSIS IN THE MULTI-CORE VERSION 55

From the total transfer rate view, the function CViterbiDecoder::Decode has a
bigger data dependency. If the exactly communication data size needs to be ana-
lyzed, the equation 5.3 is used. #memory access per second is the so-called trans-
fer rate in the Pareon. CViterbiDecoder::Decode has a higher transfer rate than
main viterbi as it is shown before. Ttotalinvocation of CViterbiDecoder::Decode is
obviously larger than that of main viterbi. Because main viterbi is a subfunction of
CViterbiDecoder::Decode. For size of each memory access, the variable needed
to read in CViterbiDecoder::Decode is 32-bit float. However, in main viterbi
the variable size is smaller, 16-bit integer. Thus considering all the three parameters,
#memory access per second, Ttotalinvocation, and size of each memory access in the
equation, it can be concluded that the size of data needed to be transferred in CViter-
biDecoder::Decode is bigger than main viterbi.

transfer data size = #memory access per second× Ttotalinvocation × size of each memory access
(5.3)

To confirm the result obtaining from Pareon, the size of the data needed to be transferred
is calculated. For n step Viterbi decoder, the data size transferred from the ARM to EVP
in two version is presented in Table 5.3. For main viterbi, n step needs 8×n BM inputs.
4 BM variables are packed into a 16-bit int which is 2 byte. Thus n× 4 byte needs to be
transfered. In CViterbiDecoder::Decode version, the data needed to be transferred,
include soft-decision input vecNewDistance and puncturing table. The vector related
dependency is not considered here, because in the practical implementation, the vector
structure and function can also be located in the EVP. Puncturing table size calculation
is simple, n × 4 byte. However, vecNewDistance is much more complex because of
the various puncturing patterns. In different puncturing patterns, there can be 2 soft-
decision inputs, 4 soft-decision inputs, 6 soft-decision inputs or 8 soft-decision inputs
involved in calculating the BMs of one step trellis construction. Each soft-decision input
is in the variable of 32-bit float and a, b, c, d stands for number of steps punctured in
certain puncturing pattern. Thus the equation shown in 5.3 can be obtained. a × 8 +
b× 16 + c× 24 + d× 32 + n× 4 is obviously larger than n× 4, therefore transferring in
data size of main viterbi is smaller than that of CViterbiDecoder::Decode, which
is consist with result obtained from Pareon.

Thus after analyzing the results from the Pareon tool, it is apparent that porting the
De-puncturing function into EVP is not wise.

Table 5.3: Transferring in data size of two version
main viterbi CViterbiDecoder::Deocde

n× 4 byte a×8+b×16+c×24+d×32+n×4 byte(a+
b+ c+ d = n)

For other functions in MLC, they only take a smaller part of execution time and these

56CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

functions are either hard to be vectorized or are implemented using floating-point vari-
able. It is not wise to port them too.

In conclusion, it is not chosen to port the whole channel decoding process of MSC on EVP
because of its low efficiency in EVP-C realization and its possible bad time performance
on EVP which eliminates the speed’s improvement benefiting from pipelined processing.
The De-puncturing function is also not ported on EVP, since the Pareon shows that
this multi-core version leads to a larger amount of data needed to be transferred from
ARM to EVP. Finally it is determined that the Viterbi decoder function is ported on
EVP.

A coarse calculation of this multi-core version’s performance is done here. The processing
time of each frame can be obtained from Figure 4.7. The longest processing time of
generating a single service frame is 634 ms (3rd frame and 9th frame), except the first
frame. In the multi-core version, if the 3rd and 9rd frame processing time can be reduced
to less than 400 ms, thus all the frame processing time will be less than 400 ms and the
receiver can deliver a real-time service. 45% of the 634 ms processing time, is contributed
by the Viterbi decoder function, which is 289.35 ms. In the multi-core version, the
Viterbi decoder function execution time is decreased. If the processing time is expected
to be less than 400 ms, the Viterbi decoding process on EVP should be less than 46.35 ms
which is presented in Figure 5.18. Therefore, if the communication overhead is not taken
into consideration, the EVP must deliver a Viterbi decoding processing at least 6.24X
(6.24 = 289.35

46.35) faster than the ARM version in order to achieve a real-time service. The
communication overhead is discussed in section 6.1.

In the next section, the detailed Viterbi decoder function’s realization on EVP is dis-
cussed.

5.4 Achieving the Viterbi decoder on EVP

On account of the result from section 5.3, the Viterbi decoder of the DRM receiver is
ported on EVP.

In the original Viterbi decoder, the frame based trace back is used. It is reasonable since
the target platform of the Dream DRM receiver is on PC which has a fast processing
speed and a large amount of memory available. Therefore, the PC version ignores the
demands for speeding up or reduction of the memory, but mainly focuses on increasing
the accuracy. The original Viterbi decoder also ignores overflow, since the PC can use
64-bit double or 32-bit float which provides a bigger range. Considering porting on EVP,
these two mentioned settings have to be discussed whether they need to be changed when
the decoder is ported to the EVP. The EVP processor runs at 419 MHz and the parallel
processing ability (SIMD) already gives an extremely increase in processing speed, it
is not necessary to change the trace back method to speed up. For memory size, a
calculation is needed. For the max step decoder, 4206 trellis steps are achieved and

5.4. ACHIEVING THE VITERBI DECODER ON EVP 57

Figure 5.18: A coarse calculation of this multi-core version’s performance to reach the
real-time requirement

4206*64 decision bits are generated. The generating decision bits takes about 33 KB
memory while the EVP data memory is 512 KB. The only 6% usage of the memory is
acceptable. All these considered, the frame based trace back method is kept.

Focusing on overflow, an observation of BM and trellis steps in 3 benchmarks has been
done on the original DRM program and the result can be seen in Table 5.4. From Table
5.4, an estimation of the pessimistic maximum value of PM can be achieved, benchmark1:
342.8×3501 = 1200142.8, benchmark2: 451.4×4206 = 1898588.4, benchmark3: 610.5×
2456 = 1499388. In EVP, the common use variable is 16-bit int. The width can be
widened to 40 bits and floating point is also supported. However, the 40 bits floating
point variable is not easy to be stored in vector and it is slower than the integer on EVP.
Therefore, the 16 bits unsigned integer variable is chosen to store the PM and the range
is from 0 to 65535. It is obvious to see that the overflow problem may occur.

Table 5.4: The observation results of BM and trellis steps in 3 benchmarks
benchmark BM range trellis step range

mytest1 0-342.8 78-3501

mytest2 0-451.4 78-4206

mytest3 0-610.5 78-2456

The scaling of BM is chosen to prevent overflow rather than normalization. If applying
normalization to the Viterbi decoder on EVP, a frequently judgment of overflow has to

58CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

be used and it is not easy to realize the judgment by EVP-C without decreasing the
execution efficiency. Based on the register range 65535 and max trellis steps 4206, it can
be calculated that the max BM value is 65535 ÷ 4206 = 15.58. Considering the most
pessimistic situation, the puncturing pattern is dummy, therefore BM equals the sum
of 4 soft-decision inputs. The peak value of the soft-decision input should be less than
15.58 ÷ 4 = 3.89. Combing the error ratio testing in Table 5.2, the soft-decision input
should be scaled to 3.

The Viterbi decoder on EVP is realized based on the Viterbi decoder source code pro-
vided by Ericsson. The given code achieves a Viterbi decoding function with a decoding
rate of 1/2 , constraint length of 7 and without puncturing process. In order to deliver
a Viterbi decoder for the DRM according to the discussion before, these factors have to
be discussed.

In the provided decoder, the input of the function is soft-decision. Since de-puncturing
function is not used here, soft-decision inputs are easily calculated to generate BM. How-
ever, the needed Viterbi decoder’s input should be BM. Therefore, the BM generating
part is removed. An additional process has been done to store the BM in vector by EVP
broadcast and shuffle operations.

The provided code is designed and implemented using the sliding window trace back. It
has to be modified to frame-based trace back.

Another important change is that the given decoder can only process a frame with a
constant bit size which is an integer multiple of four. The expected Viterbi decoder
should process the frame with any size.

Based on those factors, the Viterbi decoder is adapted. The decoder suitable for the
DRM receiver is achieved and the detailed vectorized work is discussed below.

In the trellis construction, the computation is built based on a basic butterfly which is
shown in Figure 5.19. The length 7 decoder has 64 states grouping into 32 butterflies.
In order to achieve the vectorization conversion of the construction process, 8 basic
butterflies are combined to form a super butterfly shown in Figure 5.20. Thus one trellis
construction step consists of 4 super butterfly. In a super butterfly, there are 16 PMs
in the type of 16 bit integer and they are just enough to be stored in a 256 bit vector.
Considering BM in a basic butterfly, there are 4 branches but every two branch values
are the same. Therefore a super butterfly contains 32 BMs in 16 bit integer, however it
only needs to store 16 BMs in the 256 bit vector.

Figure 5.19: The basic butterfly in the trellis construction

5.4. ACHIEVING THE VITERBI DECODER ON EVP 59

Figure 5.20: The super butterfly in the trellis construction

60CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

Thus BMs and PMs are stored in vector and thevectors can be programmed to perform
the super butterfly computation action. The detailed realization of one time super
butterfly computation action is presented in Figure 5.21. All the possible BMs are
firstly calculated. The BM vector of the latter computation is generated based on the
former BM vector by the EVP vector shuffle operation. Then two possible PM vectors
are compared to decide PMs and the decision bits are also produced at the same time.
One super butterfly generates 16 decision bits occupying 16 bits. Therefore 4 steps
of construction produces 256 bit decision bits and they are stored in a 256 bit vector.
However, this also results in a problem when the step number is not a multiple of four.
Then a separated processing has to be done to the last few steps of construction based
on its remainder by dividing 4.

Figure 5.21: Vector computation of the super butterfly

In the trace back part, the start point is chosen as the state 000000 which is the decision
bit for PM0 and the backward path is built. In the detailed process, the decision bits
are stored in vector, however the build path routine is not vectorization. A 32 bit integer
type point is applied here to load the decision bits in vector. Then according to the state
in the path, the output bits can be decoded and exported.

5.4. ACHIEVING THE VITERBI DECODER ON EVP 61

The achieved EVP Viterbi decoder can deliver a high timing performance. The detailed
timing results can be seen in Table 5.5. In the table, it shows the timing performance of
the n step Viterbi decoder function including the integer version Viterbi decoder running
on the Cortex R4 model, rhe EVP version Viterbi decoder’s cycle number obtained from
the Vdebug simulator, the estimated execution time based on the cycle number and the
working frequency 416 Mhz and the execution time of the EVP Viterbi decoder on the
EVP model of the System-C platform model.

It can be seen from the table that the estimated execution time is slightly longer than
the actual execution time on the EVP System-C model. In the estimation, the cycle
number is obtained from the Vdebug + Vsim simulator. The Vdebug simulates a full
memory model including the memory access penalty. The cache is also simulated in the
Vdebug. The cache coherence and cache miss problems are also considered. However,
in the System-C model, the cache is not modeled and the memory access penalty is also
ignored. Thus the overhead in fetching data from the memory is smaller in the system-C
model. This is the reason for the shorter execution time in the System-C model than
the estimated result.

From the results, it can be summarized that the execution cycle is approximate 31 ×
n cycle and the execution time is about n×7.5×10−5 ms. The EVP version is more than
one hundred times faster than the ARM version, which is much higher then the 6.24x
speed up requirement. Thus a time period of about 45 ms is left for the communication
latency and other overheads of a frame processing.

Table 5.5: Viterbi decoder’s timing performance
Decoder Step n Cortex R4

(ms)
Vdebug +
Vsim Simula-
tor (cycle)

estimation
(ms)

EVP
model(ms)

78 1.657 2705 0.007 0.007
216 3.003 6971 0.017 0.017
1171 16.001 37177 0.089 0.086
2337 25.007 73839 0.177 0.170

In this chapter, the DRM program’s multi-core version is analyzed with the help of the
tool Pareon and finally it is determined to port the Viterbi decoder function on EVP.
The detail of the realization of the Viterbi decoder on EVP is also presented. The
timing performance of the Viterbi decoder on EVP is outstanding and leaves a time of
about 45 ms for the communication latency. In next chapter, the development of the
communication between the EVP and ARM processors is discussed.

62CHAPTER 5. ANALYSIS AND REALIZATION OF THE MULTI-CORE VERSION

Chapter 6

Communication between the
ARM and the EVP

In this chapter, the working principle of the DMA controller and its detailed configura-
tion is introduced in Section 6.1. Afterwards, the design of the communication between
the EVP core and the ARM processor is presented in Section 6.2.

6.1 Programming on the DMA

The DMA controller on the target platform is AXI DMAC CORE V2. It is an AXI bus
controller with three 64-bit master ports and one 32-bit slave port which efficiently moves
data from one location to another. Since the DMA launches communications instead
of the processor, the control task is offloaded from the processor and the processor can
operate other tasks in parallel with DMA’s communication tasks.

The architecture of the DMA implementation on the target platform is presented in Fig-
ure 6.1. The EVP and ARM processors can access the DMA parameter register through
the slave port to control the configuration of the transfer including source address, des-
tination address, transferring data size, etc. According to the setting, the 3 master ports
can access the source and destination components to execute the data transfer. From
Figure 6.1, it can be seen that the slave port is connected to the APB bus rather than
AXI bus. As it is discussed in section 3.3, the AXI bus delivers a burst-based, pipelined
data transfer. However, the written transfer to the DMA register is simple data transfer
rather than the burst transfer because scalar variables needs to be transferred to various
registers in scattering addresses in the DMA configuration. Thus APB is a suitable
bus which reduces interface complexity and lowers power consumption and provides a
non-pipelined data transfer. A bridge is located between the APB and AXI to serve as
a frequency and transfer protocol convertor. For the purpose of energy saving, the APB
bus works at a much lower frequency than AXI. Since the DMA configuration registers

64 CHAPTER 6. COMMUNICATION BETWEEN THE ARM AND THE EVP

are in the data width of 32 bits, a data width conversion from 64 bits to 32 bits is
necessary.

Figure 6.1: The architecture of DMA implementation on the target platform

The DMA controller can handle 4 kinds of transfer classified by source and destina-
tion type, namely memory-to-memory, peripheral-to-memory, memory-to-peripheral and
peripheral-to-peripheral. In this DRM implementation, the DMA only involves in the
memory-to-memory transfer to achieve the communication between the EVP and ARM
processor. The memory of the EVP is embedded in the EVP processor and memory of
the Cortex R4 processor is external DDR RAM0 and RAM1. The DMA launches the
data transfer between the EVP memory and the DDR RAM.

The data flow of DMA memory-to-memory data transfer can be seen in Figure 6.2. The
master read port0 reads data from the memory through AXI bus. The data is stored in
the FIFO buffer of DMA. When the data stored in the FIFO is enough to start a transfer
task launched by the master write port, the data in the buffer is written to the destination
memory through the AXI bus. The byte size of a single transfer task is decided by the
value in PLEN (Packet Length) register which indicates the maximum number of bytes
that will be transferred per task. When the transfer task ends, the DMA processes an
arbiter operation to choose the next processing channel. If the same channel is chosen
to continue processing, a similar transfer process is repeated. However, the arbitration
process between transfer tasks will add an additional overhead to the transfer. Thus
the data in the size of Packet Length is transferred from one memory to another. This
process is called a transfer task and multi transfer tasks compose a DMA transferring
job. The max data size of a DMA transferring job is 0.5 MB.

In the practical use of the DMA controller, the ARM Cortex R4 processor is programmed

6.1. PROGRAMMING ON THE DMA 65

Figure 6.2: memory to memory DMA data transfer

to write to the registers of the DMA controller to configure the transfer. At the start
of the program, the DMA transfer is initialized. The detailed register configuration is
shown in Table 6.1. The Packet length is set to the max value 128 bytes in order to
decrease the arbitration overhead. Since the bandwidth is 64 bits along the whole bus
of the system, the Source Bus Size and Destination Bus Size are assigned as 64 bits.
Furthermore, the source address and destination address is configured to auto increment
with the transfer.

Once the transfer is initialized, the Cortex R4 can set specific transfer parameters to the
DMA controller to launch a transfer. The specific parameter is set as in Table 6.2. The
transfer data size, source address as well as destination address are set according to the
transfer’s detail. Once all the parameters have been sent to DMA registers, the channel
enable filed is assigned to 1 to launch the transfer. With the data transfer, the value
of the register Transfer Count Value decreases until zero which indicates that the data
transfer is ended. Thus one time data transfer has been finished.

In the target platform system-C model, it uses Transaction Level Modeling 2.0 (TLM

66 CHAPTER 6. COMMUNICATION BETWEEN THE ARM AND THE EVP

Table 6.1: The detailed register configuration of DMA transfer initialization
Field name Setting

Request Mode Memory to Memory

Master Mode master 0 read, master 1 write

Packet Length 128 byte

Source Bus Size 64 bit

Destination Bus Size 64 bit

Source Address Increment Increment by Source Bus Size

Destination Address In-
crement

Increment by Destination Bus Size

Table 6.2: The detailed register configuration of a specific transfer
Field name Setting

Transfer Count Value communication data size in byte

Transfer Count Enable count down

Source Address source address in the global memory map

Destination Address destination address in the global memory map

Channel Enable for chan-
nel 1

enable

2.0) to model the communication. However in order to reduce the model’s complexity,
the model does not simulate the burst transfer time of the communication controlled by
DMA. In the DMA model-C code, the function MasterReadFormatTLM2 is called
to process the master port’s reading from the source component. In the function, the
blocking transport call’s delay is set zero. It is the same case in the function Mas-
terWriteFormatTLM2 which process the master port’s writing to the destination
component. Thus the latency in the burst transfer is zero in the model. An additional
transfer latency should be taken into consideration in the profile report in the multi-core
DRM software on the target model.

6.2 Communication between the ARM and EVP with the
DMA

In the last section, the data transfer controlled by the DMA controller has been achieved.
Based on the DMA data transfer, the communication protocol between the EVP and
ARM cores implementing in the DRM receiver multi-core version, is presented in this
section.

Since the EVP core is idle during most of the execution time, it is set in the low power
mode when it is not waked up by the external interrupt sent by the ARM core. Once

6.2. COMMUNICATION BETWEEN THE ARM AND EVP WITH THE DMA 67

the EVP task is finished, the EVP will interrupt itself to turn to the low power sleep
mode.

The detailed EVP code of the state switching and response to the interrupt is based on
the EVP example implementation Sound Machine. Three interrupt requests, namely
WakeUp, Sleep and Exit and one semaphore event, CONTINUE are defined to
realize the state switching and they are presented in Figure 6.3. In the run state, it
processes the decoding task and switches into the sleep mode if it receives a Sleep IRQ.
In the sleep mode, it uses the EVP function evp wait() to wait for a semaphore event.
Once WakeUp IRQ occurs, it calls for the semaphores event, CONTINUE to trigger
the EVP into the run state. The state, run and sleep both can switch into the exit state
to completely end the EVP’s execution.

Figure 6.3: The design of EVP state switching

However, in the practical implementation of the sleep mode on the EVP model, we have
to prevent an error occurring that the EVP core stalls forever when it steps into the
sleep mode. When there is a load started before a wait instruction, the stall can happen
that the read data is returned after the core clock has been switched off by the wait
instruction. It can be solved by adding a evp dsb() function before evp wait() to
insert a data synchronization boundary instruction that forces the memory read to be
finished before the wait instruction is executed.

The components, ARM, EVP and DMA involved in the communication need to syn-
chronize with each other to inform their own working progress. The detail of the com-
munication design is presented in Figure 6.4.

From the sequence diagram, it can be seen that the ARM core firstly initiates a DMA
transfer to send the Viterbi decoding input data to the EVP. After configuration, the
DMA starts the burst transfer. The ARM core is informed of the transfer’s ending by
checking the transfer status register of the DMA. When the transfer ends, the ARM core
sends request to the DMA to clear the transfer status register to prepare for the next

68 CHAPTER 6. COMMUNICATION BETWEEN THE ARM AND THE EVP

time transfer.

Once the Viterbi decoding input data is already available in the EVP memory, the ARM
core can send the interrupt to the EVP to wake it up. Then the EVP starts the decoding
task. When the task is finished, it changes the flag to show that and turns into the sleep
mode. At the same time, the ARM core checks for the EVP’s flag to obtain the progress
of the EVP task . Once being informed of the finish of the decoding task , the ARM core
initiates a DMA transfer to read the Viterbi decoding results into the ARM’s memory
in the same way as the write to the EVP memory.

There is also a pack work implemented in the data needed to be transferred to decrease
the communication data size. As it is mentioned in Section 5.3, the data transferred
from the ARM core to the EVP can be packed. Each variable’s value is less than 12
which can be presented by a register of 4 bits, therefore, four variables can be packed in
a 16-bit short int. The decoding result which need to be transferred from the EVP to
the ARM is binary bit and each only occupies 1 bit. Thus 16 variables can be packed
in a 2-byte int. There are unpacking routines in both the ARM and EVP sides in order
to use the data.

6.2. COMMUNICATION BETWEEN THE ARM AND EVP WITH THE DMA 69

Figure 6.4: The design of the communication between the ARM and EVP

70 CHAPTER 6. COMMUNICATION BETWEEN THE ARM AND THE EVP

After finishing the detailed development of communication, the Multicore Communica-
tions API (MCAPI) is used to modularize the multi-core communication. The detailed
MCAPI design is presented in Appendix B.

In this chapter, the development and design of the communication between the EVP an
ARM processors is presented. A estimation of the multi-core performance can be done
based on the communication design and the timing performance on EVP. The process
of the estimation can be seen in next chapter.

Chapter 7

Multi-core version Performance’s
Estimation and Verification

This chapter consists of two parts. One is to estimate the multi-core timing performance
in section 7.1. Another in section 7.2 is to present the profile report on the platform
model and the actual performance is compared with the estimation.

7.1 Estimation of the Multi-core version Performance

Combining the design of the multi-core software and communication settings in previous
chapters, a multi-core version performance can be estimated here. The processing time
of each frame in benchmark1 is estimated using equation 7.1. The estimation does not
involve in the first frame, since it will not influence the real-time service. TDRM is the
execution time of the DRM other code on ARM. TDMA indicates the time spent in the
DMA configuration for a specific transfer . The time resulted from synchronization is
in Tsynchronization. The burst transfer latency is Tcommunication. At last, TEV P is the
Viterbi decoding processing time on EVP.

Tframe = TDRM + TDMA + Tsynchronization + Tcommunication + TEV P (7.1)

TDRM is easy to obtain by using the Cortex R4 results in Figure 4.7 and the Viterbi
decoder’s 45% contribution. The processing time of each frame is multiplied by 55% to
get the DRM other processing’s execution time and the result is in Table 7.1

For the calculation of TDMA, Tsynchronization, Tcommunication and TEV P , the frame decod-
ing workload should be known in each frame. In the bechmark1, the 3-level MLC decoder
is applied for the MSC in the transmitter. And the number of source information bits in
each stream are 1171, 2337 and 3501 respectively. Since the iterative parameter is 2 in

72
CHAPTER 7. MULTI-CORE VERSION PERFORMANCE’S ESTIMATION AND

VERIFICATION

Table 7.1: TDRM from frame2 to frame 11 in benchmark1
Frame
ID

2 3 4 5 6 7 8 9 10 11

TDRM ms 310.2 348.7 306.9 305.8 345.4 306.35 308.55 348.7 305.8 306.9

the MLC decoder of the receiver, thus there are two 1171-step, two 2237-step and two
3501-step Viterbi decoding routines in the process of decoding a MSC frame. The 2-level
MLC is applied to the SDC frame and the number of source bits in each stream are 216,
426 respectively. Thus there are two 216-step, two 426-step Viterbi decoding routines in
the process of decoding a SDC frame. In FAC, the 1-level MLC is used and the number
of source bits in the stream is 78. Though the iterative loop is 2, it is not suitable for the
1-level MLC decoder. There is only one 78-step Viterbi decoding routine in the decoding
one FAC frame. In a super frame, the first frame contains one MSC, one SDC frame and
one FAC frame and the other two frame only contain one MSC and one FAC frame. For
a larger decoding workload of the frame, the work consists of two 1171-step, two 2337-
step and two 3501-step, two 216-step, two 426-step and one 78-step Viterbi decoding
routines. For a smaller workload of the frame, there are two 1171-step, two 2337-step
and two 3501-step and one 78-step Viterbi decoding works. The detailed workload in
each frame can be seen in Table 7.2. The number of Viterbi decoding routines in one
frame is shown in 7.1. The trends of TDMA, Tsynchronization, Tcommunication and TEV P
are the same as that of #V iterbi routines in each frame.

Table 7.2: Workload from frame2 to frame 11 in benchmark1
Frame
ID

2 3 4 5 6 7 8 9 10 11

Frame
Work
Load

FAC
+
MSC

FAC
+
SDC
+
MSC

FAC
+
MSC

FAC
+
MSC

FAC
+
SDC
+
MSC

FAC
+
MSC

FAC
+
MSC

FAC
+
SDC
+
MSC

FAC
+
MSC

FAC
+
MSC

In TDMA, the ARM core sends source address, destination address, transfer size as well
as enable signal to the DMA controller. These values are firstly calculated in the ARM
program and then copied to the DMA address by memcpy. Each memcpy instruction
takes 0.0002 ms. It is measured by the analysis function of the Synopsys tool. Four
memcpys are called in the configuration. Thus one DMA configuration takes about
0.0008 ms. The DMA register has to be configured twice in each Viterbi process on
EVP for data transferring in and data transferring out. For 2nd frame, it has to decode
one MSC, one FAC and seven Viterbi decoder functions are called. Therefore, TDMA

equals 0.0008 × 2 × 7 ms. The rest frames can be calculated in the same way and the
result can be seen in Table 7.3.

Tsynchronization indicates the time spent in the synchronization between different compo-

7.1. ESTIMATION OF THE MULTI-CORE VERSION PERFORMANCE 73

Figure 7.1: The number of Viterbi decoding routines in each frame

Table 7.3: TDMA from frame2 to frame 11 in benchmark1
Frame
ID

2 3 4 5 6 7 8 9 10 11

TDMA ms 0.011 0.018 0.011 0.011 0.018 0.011 0.011 0.018 0.011 0.011

nents. The DMA has to inform the ARM core of the data transfer’s ending or the status
register’s clear. The ARM processor requests the EVP to start work and the EVP has
to inform the ARM core that the Viterbi processing is finished. It is hard to predict on
this value, here we assume that each synchronization process takes 0.001 ms which is
about 400 ARM cycles. There are 6 synchronization processes in each Viterbi decoding.
Thus Tsynchronization can be calculated and the results are in Table 7.4.

Table 7.4: Tsynchronization from frame2 to frame 11 in benchmark1

Frame
ID

2 3 4 5 6 7 8 9 10 11

Tsyn ms 0.042 0.066 0.042 0.042 0.066 0.042 0.042 0.066 0.042 0.042

Based on the Viterbi decoding input and output data size and hardware details, the
communication latency Tcommunication is estimated as following.

Firstly, a coarse calculation excluding the burst transfer’s details and the DMA control, is
achieved to measure the communication time. For a n step Viterbi decoding, combining
with the data package condition, the data size from the ARM core to the EVP core is
n × 4 byte and from the EVP core to the ARM core is d n16e × 2 byte. For instance,
the processing of the 2nd frame, contains two 1171-step, two 2337-step and two 3501-
step and one 78-step Viterbi decoding and each Viterbi processing’s transferring in and

74
CHAPTER 7. MULTI-CORE VERSION PERFORMANCE’S ESTIMATION AND

VERIFICATION

transferring out data can be calculated, then the results are accumulated. Thus the total
data transfer from the ARM core to the EVP core and from the EVP core to the ARM
core is calculated in Table 7.5.

Table 7.5: Data transfer calculation in each frame in beanchmark1
Frame
ID

2 3 4 5 6 7 8 9 10 11

ARM
to EVP
byte

56384 61520 56384 56384 61520 56384 56384 61520 56384 56384

EVP to
ARM
byte

1762 1926 1762 1762 1926 1762 1762 1926 1762 1762

Total
byte

58146 63446 58146 58146 63446 58146 58146 63446 58146 58146

The bus’s theoretic highest throughput is calculated by the formula 7.2. For the AXI
bus, widthbus is 64bit and frequencybus is 104Mhz, thus throughputbus is 793Mb/s. The
transferring data first is read by the DMA master port and then is written to the target
memory. These two time periods have to be added in calculation the latency.

Combing the transferring data size and the AXI bus throughput, a rough Tcommunication
in frame can be calculated in Table 7.6.

Table 7.6: The theoretic Tcommunication estimation from frame2 to frame 11 in bench-
mark1
Frame
ID

2 3 4 5 6 7 8 9 10 11

Tcom ms 0.140 0.153 0.140 0.140 0.153 0.140 0.140 0.153 0.140 0.140

Secondly, a more accurate communication latency is discussed. The DMA controller’s
working frequency fDMA is 104Mhz. In the DMA controlling burst transfer as shown
in Figure 7.2, one communication consists of multi tasks. The DMA controller needs
an arbitration operation to choose the next process communication task. According to
the DMAC V2 user reference, the arbitration cycle cta is about 20 cycle. The maximum
number of bytes transferred for each task is programmed in the PLEN register (up to
a max of 128 bytes). As mentioned in 6.1, the PLEN of the DMA is configured as 128
bytes to decrease the arbitration overhead. One task has serval bursts. When one burst
transfer is finished, a burst synchronization cbs is needed. There is no detailed value
of this synchronization cycle in the reference, We assume cbs is 1 cycle. Each burst
contains some beats. According to the AXI bus protocol setting, each burst can contain
1 beat, 4 beats, 8 beats and 16 beats and transferring one beat needs 1 cycle. Here it is
assumed that 16-beat burst is chosen. The number of byte per beat depends on the bus
bandwidth. Therefore, the beat size is 8 byte on the 64-bit AXI bus. One burst send

7.1. ESTIMATION OF THE MULTI-CORE VERSION PERFORMANCE 75

data of 128 byte, so a communication task consists of 1 burst. Furthermore, a initial
latency cil has to be added before launch one communication job and it is 25 cycles
according to the user reference.

throughputbus = widthbus × frequencybus (7.2)

Figure 7.2: The structure of the DMA burst communication job

Based on the DMAC V2 controlling burst transfer detail and the assumption, it can esti-
mate the communication latency in equation 7.3. The communication latency consists of
3 parts, DMA control latency, read master port’s burst transfer latency as well as write
master port’s burst transfer latency. DMA control latency includes the initialization
latency cil, arbitration cycle between two tasks and synchronization cycle between two
burst. According to the PLEN and burst setting, one task only has one burst. Since n is
the transferring data size in byte and burst number is d n

128e, the total arbitration cycle
is (d n

128e− 1)× cta and total burst synchronization cycle is d n
128e× cbs. The master read

latency equals to the master write latency. It can be calculated by burst number multi-
plied by the number of cycles for each burst transfer. Since it is a 16-beat burst, cburst
is 16 cycle. α is used to present the utilization of the bus. Only when multiple DMA
channels are being serviced simultaneously, the DMA can achieve the bus’s theoretical
max throughput. However, since only one DMA channel is used, it cannot achieve the
theoretical max throughput. Based on the experimental data in the user reference, the
one DMA channel can reach 50% usage. Thus α is set as 50%.

76
CHAPTER 7. MULTI-CORE VERSION PERFORMANCE’S ESTIMATION AND

VERIFICATION

Tlatency = TDMA overhead + Tmaster reading + Tmaster writing

= [cil + (d n
128e − 1)× cta + d n

128e × cbs]× TDMA +
d n
128
e×cburst×Tbus

α +
d n
128
e×cburst×Tbus

α
(7.3)

In summary, the equation 7.3 can be used to give a more accurate estimation of the
communication latency. However, the estimation ignores the cache’s influence in the
communication. In the actual hardware’s communication, data to be transmitted is
firstly read from the memory to the cache. Then the cache data is transferred into the
AXI bus. The cache controller reaches the optimal performance when it receives AXI
transactions that target full cache lines. Since the access latency of the cache is much less
than the latency of the memory, it decreases the fetch overhead. However an additional
overhead occurs for reading the data from memory to cache and it also raises a cache
coherence referring to the consistency problem of data stored in local caches of a shared
resource. In the system-C model, the access penalty for all type of memorys is zero.
Therefore, the cache is useless in this way. The model ignores the cache to decrease the
model complexity to increase the simulation speed. The AXI bus reads data directly
from the memory.

Using equation 7.3, the latency of each transfer can be calculated and Tcommunication is
achieved by adding every transfer time in each frame and the result can be seen in Table
7.7. Comparing with the coarse estimation, the Tcommunication value is two times larger.
The accurate Tcommunication is used in the following calculation.

Table 7.7: The accurate Tcommunication estimation from frame2 to frame 11 in bench-
mark1
Frame
ID

2 3 4 5 6 7 8 9 10 11

Tcom ms 0.380 0.418 0.380 0.380 0.418 0.380 0.380 0.418 0.380 0.380

TEV P is achieved using the equation n× 7.5× 10−5 ms from section 5.4 and the result
can be seen in Table 7.8.

Table 7.8: TEV P estimation from frame2 to frame 11 in benchmark1
Frame
ID

2 3 4 5 6 7 8 9 10 11

Tcom ms 1.057 1.154 1.057 1.057 1.154 1.057 1.057 1.154 1.057 1.057

Finally, TDRM , TDMA, Tsynchronization, Tcommunication, TEV P are accumulated to get
Tframe and the result can be seen in Table 7.9. From the estimation, all the frame’s
processing time is less than 400 ms. Therefore, it is expected that the multi-core version
of DRM receiver can deliver a real-time service before the actual porting work.

7.2. PROFILE RESULTS ON THE M7400 PLATFORM 77

Table 7.9: Tframe from frame2 to frame 11 in benchmark1

Frame
ID

2 3 4 5 6 7 8 9 10 11

TDRM ms 310.2 348.7 306.9 305.8 345.4 306.35 308.55 348.7 305.8 306.9

TDMA ms 0.011 0.018 0.011 0.011 0.018 0.011 0.011 0.018 0.011 0.011

Tsyn ms 0.042 0.066 0.042 0.042 0.066 0.042 0.042 0.066 0.042 0.042

Tcom ms 0.380 0.418 0.380 0.380 0.418 0.380 0.380 0.418 0.380 0.380

TEV P ms 1.057 1.154 1.057 1.057 1.154 1.057 1.057 1.154 1.057 1.057

Tframe ms 311.690 350.356 308.390 307.290 347.056 307.840 310.040 350.356 307.290 308.390

7.2 Profile results on the M7400 platform

For the actual porting of the multi-core DRM program on the M7400 platform System-C
model, A functional check is done firstly. Since the multi-core version demodulate and
decode the signal in exactly the same way and in the same precision as the single-core
version, the error rate of three benchmarks is completely the same as Figure 4.6 in
Section 4.3.2, which shows the error rate of the modified DRM program running on the
Cortex R4 model.

Before discussing the timing performance, it has to mention the platform model’s setting.
Above all, the burst transfer latency on the AXI is set as zero and the cache is also not
modeled. The ARM’s code, data are stored in the RAM memory, but the access time to
the RAM memory and the cache are all zero. Therefore, if the DRM receiver is ported
on the real hardware, the transfer latency, the access penalty to the RAM and the time
spent in loading data from RAM to cache will be added to the execution time.

A similar timing performance measurement is done as before, using the benchmark 1.
The time of generating each MSC frame is presented in Figure 7.3. It can be seen that all
the frame’s processing time are below 400 ms, therefore, it provides a real-time service.
As it is known that the data transfer time is zero, even though the transfer latency
is taken into consideration using Tcommunication, all the processing time are still below
400 ms.

Profile reports based on benchmark 1 are achieved as before to research on the function
distribution on generating 1st MSC frame and generating 2nd frame to 11th frame
respectively and the results are presented in Figure 7.4 and Figure 7.5. The function
contribution in the first frame is similar with the Cortex R4 single core version and the
Time synchronization routine takes more than 70% of the execution time. However,
in the 2nd frame to 11th frame processing, it is rather different from the Cortex R4
single core version. With the help of the EVP, the Viterbi decoding time is significantly
decreased, thus its belonging processing stage, MLC’s portion is reduced from 58% to
25%. And the Viterbi decoder processing including the EVP processing time and DMA
configuration time, synchronization overhead and other latency, only takes 3.5% of the

78
CHAPTER 7. MULTI-CORE VERSION PERFORMANCE’S ESTIMATION AND

VERIFICATION

Figure 7.3: MSC frame’s processing time on multi-core

whole time, but the burst transfer latency is ignored in the model. Now the most time
expensive part is the Channel Estimation stage, and it takes 44% of the execution time.

Figure 7.4: Profile report of processing the first frame on multi-core

Comparing the actual timing performance with the estimation shown in Table 7.9 of
last section, it can be observed that the estimation gives an optimistic prediction in
execution time though the model already ignores the communication time. It is because
that it delivers a much bigger Tsyn in the model than the estimation. It is observed in
the running of the model that the ARM processor sends the interrupt to the EVP to
wake it up from the sleep mode and this process takes about 1.5 ms which is extremely

7.2. PROFILE RESULTS ON THE M7400 PLATFORM 79

Figure 7.5: Profile report of processing the 2nd to 11th frame on multi-core

high. And it happens in every EVP Viterbi processing and the time is various. Thus
in a frame, for instance in Frame4, about 1.5 × 7 = 10.5 ms synchronization spent in
wake-up, will occur. Normally, the EVP’s response to an interrupt will not takes such a
long time. It is the System-C model’s simulation process that leads to this.

We run the System-C model in the speed optimized mode. In the speed optimized mode,
the two core models’ execution timing synchronization results in this high response and
this synchronization problem is called quantum effect. The ARM core and the EVP core
are modeled separately and each core emulates its execution time respectively. Using
the Synopsys Virtual Prototype Analyzer, the execution time in each core is observed.
When the ARM core sends the interrupt, it is in the time of 1, 432, 948, 100 ps and the
EVP core which is in the sleep mode, is in the time of 2, 999, 114, 365 ps. Then the
model starts the two core’s synchronization, the EVP core’s time is kept and it does
not execute instructions until the ARM core’s time reaches 2, 999, 114, 365 ps. Then
the EVP core wakes up and starts the Viterbi decoding processing. Thus an additional
1.567 ms response overhead appears. This model synchronization problem only appears
in the model and the program does not need to undergo this additional overhead in the
real hardware.

However, in the full optimized mode of the System-C model, this model’s time synchro-
nization problem does not appear. The two core’s execution time is always synchronized.
This full simulation mode also results in an about 500 times slower simulation speed com-
paring with the optimized mode. In one second simulation time (the real word time on
watch), the speed optimized mode simulates 41 ms time of one EVP and one ARM
core’s running. However, the full simulation mode just simulates 0.074 ms running.
This mode is in a extremely slow simulation speed. So the full simulation mode is not
suitable for simulating big and complex programs like DRM, though it does not have

80
CHAPTER 7. MULTI-CORE VERSION PERFORMANCE’S ESTIMATION AND

VERIFICATION

the synchronization problem.

Another reason for the inaccurate estimation, is the error in the estimation of TDRM .
It is calculated by using the function distribution in the whole process from 2nd frame
to 11th frame and applying the distribution in each frame. However, in each frame,
the distribution is approximately but not exactly the same as it is shown in section 4.1.
Therefore, the achieving TDRM is not accurate.

In conclusion, the multi-core version DRM receiver’s processing speed can guarantee a
real-time service based on the timing performance on the model which approximately
accords with the performance estimation in the last section. Compare with the single-
core version on the Cortex R4, the multi-core version has a speed up of 1.7X and each
frame’s processing time is 339 ms in average as it is shown in Table 7.10.

Table 7.10: The multi-core version DRM’s speed up
Frame
ID

2 3 4 5 6 7 8 9 10 11 AVG

Single
Core
ms

564 634 558 556 628 557 561 634 556 558 581

Multi
Core
ms

309 384 316 331 379 304 324 378 339 325 338.9

Speed
Up

1.8 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.6 1.7 1.7

Chapter 8

Conclusion

8.1 Conclusion

This project’s main purpose is to accomplish a multi-core version of the DRM receiver
program on the Ericsson M7400 platform. There are ARM Cortex R4 processor and
EVP processor connected with the AXI bus on the platform. In the analysis of the
multi-core version, the tool, Pareon is used to help to determine the communication
data size in various versions.

The source code of the DRM receiver implementation is from the Dream DRM project.
The code and its related libraries are analyzed and isolated to obtain an independent,
compatible and minimal program only containing the main DRM receiving process. The
corresponding benchmarks are also created to test the DRM’s functional correctness
and execution time. Before directly porting on the ARM core of the target platform, an
intermediate porting step is achieved to port the DRM program on a simulation Cortex-
A8 RTSM with a fast simulation speed. Based on the profile report, the DRM program is
optimized to increase the execution speed. After that, the modified code is ported on the
Cortex R4 model of the Ericsson platform. From the timing performance on the Cortex
R4 model, it can be seen that the frame processing time in average is 581 ms which
is far away from the real-time requirement. In order to further improve the processing
speed, the Viterbi decoder taking 45% of the execution time, is a candidate to port on
EVP. An investigation is done to check if the Viterbi related code also should be ported
to the EVP. The tool, Pareon is used here to analysis the data needed to be transferred
in various multi-core versions. Through the analysis, it is chosen that only the Viterbi
decoder function is chosen to port on EVP considering the improvement of the time
performance , communication data size, EVP-C realization efficiency. Then the Viterbi
decoding process on EVP as well as the communication controlled by DMA between
the ARM core and the EVP, are realized. Based on the multi-core distribution and
communication design, the timing performance of the multi-core version DRM receiver

82 CHAPTER 8. CONCLUSION

is estimated and it is compared with the actual profile report on the multi-core platform
model. It can be seen from the profile report that the multi-core DRM receiver delivers a
real-time service with a frame processing time of 339 ms in average which is 1.7X faster
than the Cortex R4 single-core version.

In summary, the cooperating architecture of ARM and EVP on the M7400 MSS is
a suitable architecture to handle wireless communication’s demodulation and decoding
process. Even a complex receiving implementation like DRM receiver can reach the real-
time requirement on the M7400 platform, if a proper multi-core version of the program is
chosen. The tool, Pareon is an appropriate tool in the analysis of the multi-core version.
The tool is still under development, the future version of Pareon will deeply benefit the
analysis or even give a multi-core version performance estimation automatically as it is
artificially done in Section 7.1.

8.2 Future Work

In Section 6.2, it discusses the synchronization between the ARM core and the EVP core.
It can be seen that when the EVP is working, the ARM core is not involved in any work,
but just waits for the finish of the EVP task. For instance, a 2337-step Viterbi decoding’s
execution time is 0.17 ms, thus there are 0.017 ms which is 70720 cycle wasted in the
ARM. The ARM is set to sleep in the WFI (Wait for Interrupt) state, when the EVP
core is working. An interrupt is sent to the ARM core as soon as the EVP’s work is
finished and the ARM core continues its work. Thus the energy of the ARM is saved in
some degree. Since this project is mainly focused on the timing performance, this design
is not applied. However this implementation of the ARM sleep mode can be chosen as an
improvement of the power performance in the practical porting on the hardware.

In the analysis of the multi-core version program in Section 5.3, the pipelined processing
option of porting the whole MSC channel decoding task on EVP is declined, because
most of the code in this part are not vectorizable and difficult to realize in efficient
EVP-C. It can be solved by using another Cortex R4 processor on the platform. The
whole MSC channel decoding task can be ported on the ARM core B and the Viterbi
decoder is still on EVP as it is shown in Figure 8.1. The performance of this 3-core
pipeline processing can be estimated combining with the profile report of 2-core version
in Figure 7.5 of Section 7.2. We assume that the processing time of a frame in the
2-core version is Tf . The execution time of MSC channel decoding task on the ARM
core B and EVP is about 0.25Tf and other tasks on ARM core A takes 0.75Tf . It can
be calculated that in the 3-core version, processing time of a single frame is 0.75Tf as
show in Figure 8.2. Therefore, it is expected that the 3-core version can deliver a speed
up of 1.3X when ignoring the communication overhead and other latency. This 3-core
version can be implemented in the future work and it still needs to discuss if it is worth
to gain a 1.3X acceleration with adding the energy consumption of an additional ARM
core.

8.2. FUTURE WORK 83

Figure 8.1: The pipelined 3-core version

In this project, we focuse on the main DRM processing including demodulation, de-
mapping and channel decoding. However, the complete DRM receiver should also include
the source decoding stage. It can be implemented in a Codec (coder-decoder) processor
outside the platform to perform the audio decoding task. What’s more, it can be seen
that the processing of the first frame takes a large amount of time, for instance, it is
about 7 s in the benchmark 1. The antenna continuously receives the radio signal, but
the received data cannot be processed immediately. Thus based on the latency of the
first frame, a corresponding size of the memory is needed to store the received signals
which cannot be handled in time.

84 CHAPTER 8. CONCLUSION

Figure 8.2: The pipelined frame processing in 3-core version

Appendix A.

ARM Linker configuration on
Cortex R4

This part discusses the ARM linker configuration on Cortex R4 model. The ARM linker
combines the contents of one or more object files with selected parts of one or more object
libraries to produce an ARM ELF image [34]. For the library, the link can automatically
select the appropriate standard C or C++ library variants to link with, based on the
build attributes of the objects it is linking [34]. Therefore, it is not necessary to indicate
which library has to be linked.

The ELF image structure is divided into 3 parts, namely RO section, RW section and ZI
section. The RO section contains code and Read-Only (RO) data. The RO data includes
the addresses of variables that are accessed by the code, floating-point immediate values,
immediate values that cannot be loaded directly into a register and so on. Read-Write
(RW) data stores in RW section and the Read-Write data which is zero-initialized at
image startup is called Zero-Initialized (ZI) data is in the ZI section. [35]

The image is firstly load into memory before execution. In the load view, the RW
section and RO section are loaded into the ROM. When starting execution, the ZI
section is created and loaded into RAM together with RW section. The load view and
the execution view are presented in Figure A..1. The loading address of each section can
be defined.

Except the RW section and ZI section, there are stack and heap in RAM. Stack is used to
handle processor exceptions. There are 7 kinds of exceptions including Reset, Undefined
Instruction, Software Interrupt (SWI), Pre-fetch Abort, Data Abort, IRQ as well as FIQ
[35]. The stack is used to store the contents of any registers if an exception occurs and
re-store them when returning. Heap defines dynamically-allocated read-write memory.
It is used to create new variables, for instance, when the C/C++ language function
malloc() is called, it will create a space in the heap memory. The address and size of
heap and stack also can be configured.

86 APPENDIX A.. ARM LINKER CONFIGURATION ON CORTEX R4

Figure A..1: The load view and the execution view of the memory structure

The boot file is written based on the provided CoWare example program’s boot file.
The compile option -info totals is used in Makefile to observe the DRM receiver image
information. The information can be seen in Table A..1. The ARM core on the platform
is connected to 2 DDR RAMs with the size of 256 MB and 128 MB respectively. These
two RAMs are assigned in a unified memory map, when programming on the ARM
core, it does not need to pay special attention to the two physical-separated memories.
The memory is divided into ROM, RAM parts and works as the memory for the ARM
core to load image. In Makefile, the compile options –ro base 0x00000000 and –rw base
0x002fffff are used to define the image load address. The base address of RO region
starts at 0x00000000 and this region covers about 2 MB leaving 3 MB memory space
before the RW region. The RW region address starts at 0x002fffff. These two regions
cannot overlap and the empty memory space between two region is left for the possible
change of the source code resulting in a larger RO region. The heap memory is located
between the end of the RW region and the start of the stack space. The DRM source code
requires a large heap memory. If not enough heap memory is assigned, a hardware error
will occur while running. Unlike the RO, RW region and heap memory, the stack memory
address grows downwards from the base address. In the boot file, the base address and
stack size of 7 stack spaces corresponding 7 processor exceptions are assigned. 7 stacks’
limit addresses are calculated to find the lowest stack end address which is allocated as
the end of heap memory. To leave a big enough space for heap, the stack limit addresses
is assigned at 0x09ffffff. Thus considering RW base address and RW size, a space of
314 MB is assigned to heap. Based on these configurations , a memory structure in the
execution view can be seen in Figure A..2.

87

Table A..1: The DRM receiver ELF image information
RO Size RW Size ROM Size

Equation Code+RO Data RW Data+ZI Data Code+RO Data+RW Data

Value (Kb) 630.65 1768.89 2385.68

Figure A..2: The execution view of the configured memory structure

88 APPENDIX A.. ARM LINKER CONFIGURATION ON CORTEX R4

Appendix B.

Multicore Communications API’s
implementation

In order to modularize the multi-core communication achieved between the EVP and
ARM processors, and help the further analysis of the Pareon software, the Multicore
Communications API (MCAPI) is applied to design the communication interfaces in the
DRM two-core version.

The MCAPI defines an API and a semantic for communication and synchronization
between cores in embedded system [36]. However, it is a high level application and
does not involve the lower level definition including protocol, hardware model and other
detailed settings.

MCAPI consists of these major concepts. An MCAPI domain could be a single chip
with multiple cores or multiple processor chips on a board and it stands for one or more
MCAPI nodes in a multicore topology. The MCAPI node is an independent thread
of control, such as a process, thread, processor, hardware accelerator, or instance of
an operating system [36]. MCAPI endpoints are socket-like communication-termination
points. A node can have multiple endpoints. Thus, an endpoint contains a topology-
global unique identifier < domain id, node id, port id >.

MCAPI [36] delivers three fundamental communications types, namely Message, Packet
Channel as well as Scalar Channel. The latter two types are chosen in our design.
Packet Channel transmits connection-oriented, unidirectional, FIFO packet streams and
connection-oriented, single-word, unidirectional, FIFO scalar streams are sent by Scalar
Channel [36]. Channels are set up at initialization. Once built, the channel can achieve
the data transfer with little overhead. When the data reaches the destination endpoint,
it is added to an endpoint receive queue. The data typically remains in the endpoint’s
receive queue until it is received by the application that owns the endpoint.

The design is based on the two-core architecture platform. The platform is defined as

90 APPENDIX B.. MULTICORE COMMUNICATIONS API’S IMPLEMENTATION

domain 0. The core for the DRM main processing is assigned as node 0 and another
for the Viterbi decoder is node 1. Each node contains 4 endpoints to set 4 channels
for communication. 2 Packet Channels are implemented to perform the Viterbi input
data transfer and Viterbi output data transfer respectively. Scalar Channels are used
to acknowledge the finish of the Viterbi decoding and realize the synchronization of the
communication. The detailed design is presented in Figure B..1.

The Multicore communication API Working Group provides some head files containing
communication functions to help detailed design. The head files used here are mca.h,
mcapi.h, mca impl spec.h as well as mcapi impl spec.h.

The first step is to initialize nodes and bind the channel in Figure B..2. Once set up, two
nodes can communicate with the binding channel. mcapi node init attributes is used to
initialize the data type defining the node attribute. Then mcapi initialize is implemented
to apply the node attribute to initialize the node. Thus the initialization of the node has
been done. The function mcapi endpoint create is applied to create an endpoint. The
endpoint is created dynamically which means a global variable MCAPI PORT ANY
is involved to indicate the next available endpoint on the local node. The endpoint
is statically created using the static ID in the remote node and obtained in the local
node by mcapi endpoint get. mcapi endpoint get is a blocking function. It blocks until
the specified remote endpoint has been created or a timeout is reached. After that,
mcapi pktchan connect i is located to bind the a Packet Channel and the behavior of
open a local send port is achieved by mcapi pktchan send open i. While the open func-
tion mcapi pktchan recv open i is used in the remote node to synchronize and initialize
the local packet receive port. Thus a Packet Channel is bound. The Scalar Channel is
created in the same way.

91

Figure B..1: MCAPI design

92 APPENDIX B.. MULTICORE COMMUNICATIONS API’S IMPLEMENTATION

Figure B..2: MCAPI implementation in node initialization and binding channel

93

The communication is designed on the established channel in Figure B..3. The Viterbi
decoding input data waited to send is wrapped into packets and stored in the endpoint
buffer. The function get next packet is applied to judge whether the next package is
available. If so, the package is delivered to the remote end point by mcapi pktchan send
through the Packet Channel. Otherwise, it sends a scalar signal through the Scalar
Channel, to the remote end to inform the end of transfer. While in the remote end,
mcapi pktchan recv receives the package from the channel. After finishing one time
receiving, a judgment should be done by mcapi sclchan available to detect the inform-
ing signal. Once it detects that the transferring has ended, the remote end invokes
mcapi pktchan release to return the packet buffers to the system, thus the received data
is available to use and the Viterbi decoding routine can be called. Afterwards, the de-
coded data is packaged and sent back the acknowledge signal to the local end to tell
that the work has been finished. Then a similar transfer as before is launched to send
the output data back to the local end by package.

Once the MCAPI design is finished, these API communication functions can be instanti-
ated combing the real hardware. For instance, if it is implemented in the Ericsson M7400
platform, the packet sending function mcapi pktchan send is written to launch a DMA
transfer. After the MCAPI design and instantiation, these API communications can
be called in the program to realize the communication design. And the modularization
communication is also easy to apply in the various multi-core versions.

For example, if the pipelined multi-core version mentioned in section 5.3 is expected
to implemented, the whole MSC channel decoding processing stage is ported on EVP
and the communication between the ARM and EVP needs to redesign using the API
functions as it is presented in Figure B..4. It is different from the former design because
it does not need synchronization. When the ARM’s task is finished, it packs the data
and stores the packets in the buffer of the endpoint. Then the non-blocking function
mcapi pktchan send i is called. This function returns immediately and the node does
not have to wait the transmit to finish. Once the transfer request is sent, the ARM
can continue to do the processing of the next frame. When the packet reaches the
destination endpoint, it is added to an endpoint receive queue. In the EVP end, once
the EVP finishes the current task, it uses mcapi pktchan recv to receive the packet from
the queue and store in the buffer. When enough data is gained for one time routine, it
calls the function mcapi pktchan release to obtain the data from the buffer and process
the routine.

94 APPENDIX B.. MULTICORE COMMUNICATIONS API’S IMPLEMENTATION

Figure B..3: MCAPI implementation in communication

95

Figure B..4: MCAPI implementation in communication of the pipeline processing pro-
gram

96 APPENDIX B.. MULTICORE COMMUNICATIONS API’S IMPLEMENTATION

Bibliography

[1] Hyunseok Lee, Yuan Lin, Yoav Harel, Mark Woh, Scott Mahlke, Trevor Mudge, and
Krisztian Flautner. Software defined radio–a high performance embedded challenge.
High Performance Embedded Architectures and Compilers, pages 6–26, 2005.

[2] Markus Dillinger, Kambiz Madani, and Nancy Alonistioti. Software defined radio:
Architectures, systems and functions. Wiley. com, 2005.

[3] Mathew NO Sadiku and Cajetan M Akujuobi. Software-defined radio: a brief
overview. Potentials, IEEE, 23(4):14–15, 2004.

[4] Friedrich K Jondral. Software-defined radio: basics and evolution to cognitive radio.
EURASIP Journal on Wireless Communications and Networking, 2005(3):275–283,
2005.

[5] Joe Mitola. The software radio architecture. Communications Magazine, IEEE,
33(5):26–38, 1995.

[6] Drm introduction and implementation guide. http://www.drm.org/.

[7] TS ETSI. 101980.digital radio mondiale (drm): System specification, 2001.
http://www.etsi.org/.

[8] AndrTavares Coutinho. Drm analysis using a simulator of multiprocessor embedded
system, 2008. http://ria.ua.pt/bitstream/10773/1950/1/2009000406.pdf.

[9] Lodewijk T Smit, Johann L Hurink, and Gerard JM Smit. Run-time mapping of
applications to a heterogeneous soc. In System-on-Chip, 2005. Proceedings. 2005
International Symposium on, pages 78–81. IEEE, 2005.

[10] Vector fabrics offical website http://www.vectorfabrics.com/.

[11] AF Kurpiers and Volker Fischer. Open-source implementation of a digital radio
mondiale (drm) receiver. In HF Radio Systems and Techniques, 2003. Ninth Inter-
national Conference on (Conf. Publ. No. 493), pages 86–90. IET, 2003.

[12] Fftw offical website http://www.fftw.org/.

[13] Digital radio mondiale (drm): Mw simulcast tests in mexico, http://www.drm.org/.

98 BIBLIOGRAPHY

[14] Arm offical website http://www.arm.com/.

[15] Katie Roberts-Hoffman and Pawankumar Hegde. Arm cortex-a8 vs. intel atom:
Architectural and benchmark comparisons. Dallas: University of Texas at Dallas,
2009.

[16] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. A detailed anal-
ysis of contemporary arm and x86 architectures. Technical report, Technical report,
UW-Madison, 2013.

[17] Danilo Beuche, Abdelaziz Guerrouat, Holger Papajewski, Wolfgang Schroder-
Preikschat, Olaf Spinczyk, and Ute Spinczyk. The pure family of object-oriented
operating systems for deeply embedded systems. In Object-Oriented Real-Time Dis-
tributed Computing, 1999.(ISORC’99) Proceedings. 2nd IEEE International Sym-
posium on, pages 45–53. IEEE, 1999.

[18] Arm architecture reference manual armv7-a and armv7-r edition errata markup.
http://infocenter.arm.com/.

[19] Cortex-r4 white paper http://infocenter.arm.com/.

[20] Cortex-r4 and cortex-r4f revision: r1p3 technical reference manual
http://infocenter.arm.com/.

[21] Kees van Berkel, Anteneh Abbo, Srinivasan Balakrishnan, Richard Kleihorst,
Patrick PE Meuwissen, and Rick Nas. Vector processing as an enabler for ambi-
ent intelligence. In AmIware Hardware Technology Drivers of Ambient Intelligence,
pages 223–243. Springer, 2006.

[22] Akash Kumar and Kees van Berkel. Vectorization of reed solomon decoding and
mapping on the evp. In Proceedings of the conference on Design, automation and
test in Europe, pages 450–455. ACM, 2008.

[23] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge,
Chaitali Chakrabarti, and Krisztian Flautner. Soda: A low-power architecture for
software radio. In ACM SIGARCH Computer Architecture News, volume 34, pages
89–101. IEEE Computer Society, 2006.

[24] Sudeep Pasricha and Nikil Dutt. On-chip communication architectures: system on
chip interconnect. Morgan Kaufmann, 2010.

[25] Arm ds-5 version 5.13 eb rtsm reference guide. http://infocenter.arm.com/.

[26] Gcc online documentation. http://gcc.gnu.org/.

[27] Dhrystone benchmark http://www.roylongbottom.org.uk/.

[28] Whetstone benchmark http://netlib.org/benchmark/whetstone.c.

[29] Cortex-a8 revision: r1p1 technical reference manual http://infocenter.arm.com/.

BIBLIOGRAPHY 99

[30] Assessing cortex-r4 and cortex-a8 signal and media processing performance
http://www.bdti.com/.

[31] Realview compilation tools version 2.2 compiler and libraries guide
http://infocenter.arm.com/.

[32] Kelvin Yi-Tse Lai. An efficient metric normalization architecture for high-speed
low-power viterbi decoder. In TENCON 2007-2007 IEEE Region 10 Conference,
pages 1–4. IEEE, 2007.

[33] John Davis, Andrew Lin, and Ayodele Thomas Njuguna Njoroge. Viterbi algorithms
as a stream application. ”signal”, 1:2, 2002.

[34] Realview compilation tools linker user guide http://infocenter.arm.com/.

[35] Arm developer suite version 1.2 developer guide http://infocenter.arm.com/.

[36] Mcapi api specification v2.015. http://www.multicore-association.org/.

	Introduction
	Background of the Project
	Introduction of the Dream DRM Receiver
	Introduction of the Ericsson M7400 platform
	Problem Description
	Outline of the thesis

	Analysis of the DRM Receiver
	DRM Receiver Outline
	Analysis and Isolation of the DRM receiver processing flow
	DRM receiver's benchmark

	Background of the M7400 platform hardware
	ARM
	 EVP
	On-Chip Communication

	Porting the DRM Receiver program on ARM
	Porting the DRM receiver program on Cortex A8
	Comparison of Cortex A8 and Cortex R4
	Porting the DRM receiver program on Cortex R4
	Modifications of the DRM receiver program
	Profile results on Cortex R4

	Analysis and Realization of the multi-core version
	MLC and Viterbi Decoder's working principles
	MLC encoder and decoder
	Viterbi Decoder

	Modification on the Viterbi decoder
	Pareon's analysis in the multi-core version
	Achieving the Viterbi decoder on EVP

	Communication between the ARM and the EVP
	Programming on the DMA
	Communication between the ARM and EVP with the DMA

	Multi-core version Performance's Estimation and Verification
	Estimation of the Multi-core version Performance
	Profile results on the M7400 platform

	Conclusion
	Conclusion
	Future Work

	Appendix ARM Linker configuration on Cortex R4
	Appendix Multicore Communications API's implementation

