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“The most important thing is to keep the most important thing the most
important thing.”

— Donald P. Coduto





A B S T R A C T

Advances in solar cell technology have dropped solar energy costs
over the last 30 years. To keep this rate going solar cell manufac-
turers are required to keep reducing fabrication costs and improve
efficiency.

One of the fabrication processes is edge isolation, which separates
the active front from the rear of the cell. Small variations and faults in
the outer contour of a wafer disturb this process, leading to defective
cells. To overcome this, edge isolation takes place a fixed distance
from the outer edge, wasting effective area.

Vision-based edge tracking allows the contours of wafers to be de-
tected precisely and followed on the fly. Doing so, edge isolation can
be performed closer to the wafer’s edge and detected defaults can be
corrected for, maximizing surface area and improving cell efficiency.

In this work we provide a method for vision-based edge tracking
which reduces the distance at which isolation takes place from 1mm

to 0.1mm on a 156x156mm cell, thus increasing efficiency by 0.47%.
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Part I

I N T R O D U C T I O N

This work has been carried out at Roth & Rau, Eindhoven
(formerly OTB-Solar) as part of the Embedded Vision Ar-
chitecture (EVA) project. Roth & Rau provides solutions
for solar cell technology.

In this first part of the thesis the problem at hand is stated
and contributions are listed. Work relating to the various
parts of this thesis have been summarized as well.





1
I N T R O D U C T I O N

Solar energy currently provides only a quarter percent of the world’s
electricity supply. This is changing. Over the last 30 years the price of
capturing solar energy has dropped exponentially. This phenomenon
has been dubbed Swanson’s law (Figure 1), in imitation of Moore’s
law which suggests that transistor size halves approximately every 18

months [1, 2].

Figure 1: The Swanson effect.

There are two factors that drive this change. First, solar cell manu-
facturers are learning how to reduce the cost to fabricate cells. Second,
the efficiency of solar cells - the ratio of electrical output of a solar cell
to the incident energy in the form of sunlight - is continually improv-
ing.

Compared to conventional energy sources, solar energy is starting
to get competitive. It is expected that between 2013 and 2020 prices
for solar cell and conventional energy will match [3].

In this thesis we focus on efficiency of solar cells, specifically by
maximizing the usage of active surface area of cells.

1.1 edge isolation

In most industrial type solar cell processes the edge isolation is an
important step. During processing the active front side of the cell
becomes electrically connected to the rear, causing a shunt. Edge iso-
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4 introduction

lation provides electrical separation between these. An example is
shown in Figure 2.

Figure 2: Edge isolation example.

Several methods are used in order to perform edge isolation. A
common technique is to remove this shunt by plasma etching of the
wafer stack. Other techniques are grinding of the wafer’s edge using
sandpaper and cutting of isolation trenches by either milling or laser
[5].

All options have their pros and cons but the most important aspect
is that isolation takes place around the entire contour of the wafer.
Any gaps in the isolation will lead to a short-circuit situation and
therefore losing efficiency of the cell.

1.2 problem statement

During fabrication there is a possibility of small defects appearing in
the wafer’s edge. These defects can disturb the edge isolation process.
A notch in the edge, for example, could cross the position at which
electrical separation by laser would occur, leaving a short-circuited
wafer. Figure 3 shows a portion of a wafer’s edge (dark) on a light
background with a notch in it, possibly leading to an isolation fault.
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Figure 3: Isolation fault.

To overcome this problem edge isolation takes place at a fixed dis-
tance from the wafer’s outer edge. In most processes this fixed dis-
tance is 1mm to make sure small defects cause no shunt, wafers with
larger faults are discarded due to structural integrity issues. A disad-
vantage of this method is that it wastes a significant portion of surface
area that is perfectly useful.

The major goal of this thesis is to position the edge isolation closer to
the outer contour of the cell to maximize effective surface area and improve
efficiency.

1.3 functional requirements

Several requirements have been proposed that should be met in order
to successfully bring the project to a close.

For one, processing of wafers with dimensions of 156x156mm should
be processed within 1.5s as a typical plant has a throughput of 2400
wafers/hour.

Secondly, the current 1mm distance from the edge on which isola-
tion takes place should be reduced to 0.1mm.

The maximum edge faults that need to be corrected for are 1mm.
Wafers with larger defects are discarded due to structural integrity.

A 28µm wide line will be printed along the wafer’s edge, it may
never happen that the continuity of this line is broken, either by faults
in printing or the crossing of a fault in the cell.
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To find the maximum efficiency gain of the reduction we can con-
sider a 156x156mm wafer with no faults and 20% efficiency. The effi-
ciency gain is then given by Equation 1.

∆η =
An −Ao
Ao

∗ 20% (1)

Where η is the efficiency gain and An and Ao are the new and
old effective surface areas respectively. An and Ao are simple area
calculations given by the following equations (withw and h the wafer
width and height):

An = (w− 2 ∗ 0.1)(h− 2 ∗ 0.1)Ao = (w− 2 ∗ 1.0)(h− 2 ∗ 1.0) (2)

Filling in values we obtain an efficiency gain of 0.47%. Such gains
are considered significant in solar cell development. Figure 4 illus-
trates the area gain.

Figure 4: Area gain.

The tasks of the thesis are limited to system analysis, motion and
vision. Actual printing falls outside the scope of the project.

1.4 contributions

Time and accuracy are an important trade-off in many industrial pro-
cess. For the visual tracking of the wafer’s edge it is no different and
such a trade-off must be analyzed to find the most optimal case.

As a number of system parameters will influence the speed and
accuracy of edge tracking analysis incorporating all these parameters
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is useful. Both for current system parameters as well as an analysis
tool for future modifications.

Some system parameters are fixed, others are more flexible. It is
crucial to know what parameters will break the stated functional re-
quirements and to what extent.

The main contributions of the research conducted are then:

• Time versus accuracy trade-off in a visual tracking application.

• An analysis of visual tracking task given system parameters.

• Enumeration and quantification of system limits breaking func-
tional requirements.

1.5 organization

The remainder of this thesis is organized as follows. Chapter 2 will
describe related work. In Chapter 3 an analysis is given of the system
and its parameters. Vision algorithms used for detecting edges in im-
ages can be found in Chapter 4. Vision is a prerequisite for visual
tracking which is in Chapter 5.

Integration of developed components will be discussed in Chap-
ter 6. Results of the tracking application are then analyzed in Chap-
ter 7. Finally a conclusion and a description of future work are given
in Chapter 8.





2
R E L AT E D W O R K

To perform analyses in this thesis and develop algorithms, work re-
lated to different aspects of the project have been researched. These
are described below for three different themes: general, vision and
tracking.

2.1 general

Pearce[4] analyzes the technical, social and economic benefits and
limitations of photovoltaic energy production and how a shift from
fossil fuel consumption to solar energy will affect costs. Although not
directly related to the work in this thesis it is an interesting paper and
it shows the importance of new energy solutions.

In a case study, Ye et al.[6] show that in high speed visual servo-
ing, exposure and/or readout time can be the bottleneck in the vi-
sion pipeline, depending on the lighting condition, surface type and
image size. Moreover, they state that time predictability is a critical
requirement of visual servoing in industrial environments. Real-time
guarantees should be met on the algorithmic level, hardware imple-
mentation and camera interface. Keeping these aspects in mind we
analyze the framerate, image size and vision processing time to find
an optimal solution regarding tracking the wafer’s edge.

The details and importance of locking the memory used by real-
time processes is given in [7]. Locking memory is crucial in our ap-
plication as even small latencies from memory IO can disrupt the
control which in turn may lead to faulty wafers.

2.2 vision

Heath et al.[8] compared various edge detection algorithms. They
found that no method exists to qualify a single algorithm as perform-
ing best. Different techniques work best in different contexts. In order
to find algorithms that perform well in edge detection we keep this in
mind and analyze the images and detected images in them. Intensity
values and noise present provide a good measurement of how edge
detection should be performed.

Probably the most widely used edge detector is the one by Canny[9].
Canny’s aim was to develop an algorithm that has:

• Good detection: real edges must be marked.

9



10 related work

• Good localization: marked edges should be as close as possible
to the ones in the image.

• Minimal response: no false edges should be marked, real edges
should be marked only once.

Several steps of the Canny algorithm are used for edge detection.
In each step we try to find the most optimal parameters for our case.

Pavlidis[10] describes an algorithm for tracing contours in images.
We use this algorithm to trace detected edges in images. When doing
so we find a continuous edge segment in each image.

2.3 tracking

Hutchinson et al.[11] provide a tutorial on visual servo control. In
this work they guide the reader through the concepts involved in
visual servoing from different fields and supply references for further
reading for each subject. It is a useful work for getting a grasp of the
aspects involved in visual control.

Spong et al.[12] use polynomials to generate time-optimal trajecto-
ries. By choosing an appropriate polynomial and setting up a system
of linear equations a trajectory with bounds on time derivatives such
as velocity, acceleration and jerk can be obtained. We use their analy-
sis to estimate how our system will react when faults are detected in
the wafer’s edge and correcting motion needs to be performed.

A different approach towards planning trajectories is by filtering
techniques which alter an infeasible trajectory into a feasible one.
Bianco and Gerelli[13] use filtering to obtain feasible trajectories. Be-
cause an infeasible trajectory is obtained by edge measurement we
use filtering to create a trajectory the system is able to follow and at
an offset from the wafer’s edge.



Part II

S Y S T E M D E S I G N

The problem at hand requires careful analysis in order
to meet the goals that have been set. In this section such
analysis is performed.

System parameters influence if and to what extent goals
can be met. Algorithms for motion and vision are detailed
as well as their integration into the system.





3
S Y S T E M A N A LY S I S

In this chapter the experimental setup that is used during the the-
sis will be described. Knowing system parameters, we can analyze
crucial aspects of the project.

First an overview of the system is given, followed by a discussion of
boundary conditions regarding printing. Afterwards analysis is per-
formed varying system parameters to find limits on what is achiev-
able and how they affect the functional requirements that were set
out.

3.1 system overview

The PiXDRO LP50 Inkjet Printer is an entry level R&D inkjet system.
It is designed for evaluation and development of inkjet materials as
well as research and development of inkjet processes and applications.
Figure 5 illustrates major components of the LP50.

Figure 5: LP50 components.

An LP50 available at Roth & Rau will be used for experiments
during the thesis. Most important components are the motion system
(x- and y-directional movement), the camera (prerequisite for vision)
and the host PC (computation).

A modification was made to the motion system by replacing the
conventional motion controllers present by high-end motion controllers
from ACS. These are controllers have more features than the conven-
tional ones present in the LP50 system, allowing on-the-fly generation
of trajectories and logging of data during motion. An overview of the
entire system is given in Figure 6.

13



14 system analysis

Figure 6: LP50 overview.

An important property of the ACS subsystem is the use of Ethercat
for communication, Ethercat provides real-time guarantees which are
of importance when implementing a control system.

The host will act as a setpoint generator for the motion system. It
will do so by fetching images from the camera and computing desired
positions. These positions are fed to the ACS subsystem which will
steer the system to them. The ACS subsystem receives feedback from
the motor encoders, closing the control loop.

Table 3 gives the maximum velocity and acceleration for the axes
of the system.

axis velocity (mm/s) acceleration (mm/s2)

X 200 1200

Y 400 1500

Table 1: Axes limits.

3.2 the printing task

The LP50 system printhead and camera are mounted in a fixed posi-
tion, alongside each other. This configuration poses several boundary
conditions when trying to print a line alongside the contour of the
wafer.

Suppose the camera is located to the right of the printhead and
the camera passes over a side of the wafer in positive x-direction. In
this case the camera can fetch images, the host can compute coordi-
nates and the ACS subsystem can control the motion in order to move
around intrusions.
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When moving in negative x-direction a problem occurs. The print-
head passes over the wafer before the camera does hence potential
intrusions cannot be corrected for by the control loop. Both cases are
illustrated in Figure 7.

Figure 7: Printing problem.

Similar but equally problematic things happen when moving in y-
direction, only now the printhead is always next to the camera instead
of in front of it. This case is shown in Figure 8.

Figure 8: Printing problem.

An way out of this dilemma would be to first track the wafer with
the camera and store all edge positions. When finished these positions
can be fed to the motion controller, after accounting for the offset be-
tween camera and printhead. Doing so would incur a large timing
penalty since the system would have to travel along the wafer’s con-
tour twice.

Another method would be to place two cameras on either side of
the printhead. The printhead has the ability to rotate by 100◦. When
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a corner of the wafer is reached the printhead can be rotated by 90◦,
thus always making sure there is a camera in front of the printhead.
A top-view of such a printhead with cameras is shown in Figure 9.

Figure 9: Printing problem.

This method would be attractive to use in future reseach.

3.3 framerate and fov balance

Capturing images using the camera while tracking the contour of a
cell, it must never happen that a portion of the edge is missed. The
velocity at which the side can be tracked therefore depends on the
field of view (FOV) and the framerate of the camera. The field of
view is a camera parameter that can vary between 1x1px (minimum)
and 656x492px (maximum). The framerate in turn depends on the
chosen framesize: a larger framesize means a larger transfer delay of
images to the host and therefore a lower framerate.

A balance must be found between FOV and framerate such that
boundary conditions are fulfilled. No portion of the edge can be
missed when the wafer’s edge is scanned.

Maximum velocity

To find the velocity at which an edge can be tracked in x-direction, we
keep the size of frames in y-direction at maximum (656px) and vary
the size in x-direction and velocity such that images do not overlap
nor have gaps between them. This is illustrated in Figure 10.
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Figure 10: Tracking task.

The framerate for every framesize is a statistic that can be gathered
from the camera. The width of each image is then given by:

w = n ∗ sp (3)

Where n ∈ [1, 492] is the width of the image in number of pixels
and sp is the width of a pixel in µm (3µm for our camera). The veloc-
ity at which there is no overlap between frames nor any gaps between
frames is then given by:

v = w ∗ fc (4)

Where fc is the framerate in frames per second. Figure 11 shows
the framerate of the camera as a function of image width (a), distance
per frame (Equation 3) (b) and the maximum velocity given image
width (Equation 4) (c).

Figure 11: Velocity as function of camera rate.

The maximum velocity in x-direction is 53.3mm/s, which is signif-
icantly lower than the system maximum of 200mm/s.

Maximum defect

Given the maximum framesize of 656x492px and the pixel size of
3x3µm we find that the field of view is 1.97x1.48mm. Considering
that our goal is to print a line 0.1mm from the outer wafer edge,
thus keeping the position of 0.1mm from the edge at the center of
the camera, the maximum faults we can detect is only 1.97

2 − 0.1 =
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0.88mm. This variation is smaller than outlined in the functional re-
quirements, meaning that the largest defects we are interested in can
not be tracked.

Vision rate

Finding feature points (edges) in an image streamed by the camera
must finish before the next image comes in. When this constraint is
not satisfied delays add up in the control loop and correcting for vari-
ations in the edge will not happen in time. The computation time for
the vision algorithms - discussed in Chapter 4 - is measured for vary-
ing image width. These results are shown in Figure 12 together with
the inverse computation time set out against the camera framerate.

Figure 12: Vision rate.

From these results we gather that the vision rate is always higher
than the camera rate which satisfies the constraint on vision compu-
tation time.

3.4 correction analysis

It must never happen that the outer contour of the wafer is crossed
while printing a line along it. Given the limits on velocity and accel-
eration of the system as listed in Table 3 we can analyze if and how
we are able to correct for the maximum variation of 1mm in time. In
time means that a correcting motion has completed before the print-
head reaches the point where the defect occurs. Figure 13 shows such
a defect with a correcting motion.

Correcting motion

Suppose a wafer’s edge is tracked in x-direction at some velocity and
a 1mm intrusion is detected, how far in advance does it need to be
detected? And how long does it take to execute a correcting motion
in y-direction, given the constraints on velocity and acceleration?

Figure 13 illustrates a correcting motion the y-axis could make
when a fault occurs in the edge while traversing the edge in x-direction.
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Figure 13: Correcting motion.

We can generate a trajectory for the correcting motion and perform
analysis on it to find the required data. A trajectory can be described
by a polynomial function of degree n in the form

q(t) = a0 + a1t+ a2t
2 + . . .+ ant

n, (5)

with t ∈ [tI, tf] where tI indicates the initial time instant and tf
indicates the final time instant. The n+ 1 polynomial coefficients ai
can be determined while satisfying a number of required constraints.
Coefficients can be found by solving the system of linear equations:

Ta = b, (6)

Where T is the Vandermonde matrix, a contains the unknown poly-
nomial coefficients and b the constraints the polynomial should sat-
isfy.

In order to obtain trajectories with continuous acceleration there
need to be constraints on the initial and final acceleration as well as
position and velocity. This leads to a fifth degree (quintic) polynomial
with the following constraints:

q(tI) = qI, q(tf) = qf, (7)

q̇(tI) = vI, q̇(tf) = vf, (8)

q̈(tI) = aI, q̈(tf) = af. (9)
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Solving Equation 6 with these constraints we obtain the following
coefficients:

a0 = qI

a1 = vI

a2 =
1

2
aI

a3 =
1

2t3f
[20qf − (8vf + 12vI)tf − (3aI − af)t

2
f ]

a4 =
1

2t4f
[−30qf − (14vf + 16vI)tf − (3aI − 2af)t

2
f ]

a5 =
1

2t5f
[12qf − 6(vf + vI)tf + (af − aI)t

2
f ].

(10)

As the initial and final velocity and acceleration and initial position
are zero (correcting movement stops when target position is reached),
we can substitute for these and obtain the following non-zero coeffi-
cients:

a3 = 10
qf

t3f

a4 = −15
qf

t4f

a5 = 6
qf

t5f
.

(11)

Substituting these coefficients in the characteristic polynomial given
in Equation 5 and taking the first and second derivative we obtain
equations for position, velocity and acceleration.

q(t) = 10
qf

t3f
t3 − 15

qf

t4f
t4 + 6

qf

t5f
t5

q̇(t) = 30
qf

t3f
t2 − 60

qf

t4f
t3 + 30

qf

t5f
t4

q̈(t) = 60
qf

t3f
t− 180

qf

t4f
t2 + 120

qf

t5f
t3

(12)

There is a maximum acceleration the system can achieve. Knowing
that we want qf to be 1mm we can calculate what the maximum
value of tf is that does not break the acceleration limits. Acceleration
is maximal at the point where its derivative (Equation 13) equals zero.

...
q(t) = 60

qf
tf
t− 360

qf
tf
t+ 360

qf
tf
t2 (13)

Equating this to zero and solving for t gives the following solu-
tions:

...
q(t) = 0 ⇒ t =

1

6
(3tf ±

√
3tf) (14)
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Now substitute this solution back in the equation for acceleration
and set equal to the maximum acceleration (1500mm/s2):

1500 = 60
qf

t3f
[
1

6
(3tf−

√
3tf)]−180

qf

t4f
[
1

6
(3tf−

√
3tf)]

2+120
qf

t5f
[
1

6
(3tf−

√
3tf)]

3

(15)

Solving Equation 15 for tf finally gives the value tf = 62.0mswhich
means it takes the y-axis 62.0ms to perform a correcting motion for
a defect of 1mm. Figure 14 shows the generated trajectory graph and
accompanying velocity and acceleration.

Figure 14: Polynomial trajectory.

Using full image frames the maximum velocity the x-axis can move
at without missing edges is 52.8mm/s. Therefore the x-axis will have
traveled 0.062 ∗ 52.8 = 3.27mm. This is a larger distance than the
width of images which means that we cannot directly act on de-
tected faults. In other words: there is a lag between the vision and
motion processes. Because the printhead will be at least a couple of
centimeters behind the camera this is not necessary a problem regard-
ing printing. It does however mean that for every side of the wafer
there is an additional time cost of 62.0ms which is 0.25s in total, a
significant portion of our total processing time of 1.5s.

Taking no overhead into account (such as moving to a new position
after a corner has been passed), we can calculate the total processing
time for a wafer. Given the maximum velocity of 52.8mm/s and wafer
size of 156x156mm the total processing time is 11.8s, which is far
longer than the proposed 1.5s for a plant with a throughput of 2400
wafers per hour.

Area loss

Defects in the edge cost area. Additionally, moving around them costs
area because time and space are needed to move to the correct posi-
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tion. Exactly how much area is wasted when a maximum-size defect
occurs can be calculated from the analysis above.

First we replace the value of tf we found by the distance the x-axis
will have traveled while the correcting motion takes place (3.27mm).
This results in the correcting motion trajectory being a function of
x-displacement instead of time.

Substituting the new tf (3.27mm) and old qf (1mm) in Equation 12

and integrating we find the following result:

∫3.27

0

(0.285t3 − 0.131t4 + 0.016t5)dt = 1.61mm2 (16)

This area is actually lost twice since the opposite movement takes
place after the default. Figure 15 presents the area loss graphically.

Figure 15: Area loss.

Printing frequency

Printing a line is performed by firing droplets of ink from a printhead.
Although actual printing falls outside the thesis scope it is useful to
consider the effect of correcting motion on printing.

There can never be a gap between droplets. Therefore the frequency
at which the printhead fires droplets is determined by the displace-
ment in x- and y-directions and the size of droplets. No defects in the
edge means there is only a constant x-velocity and in turn a constant
firing frequency.

The number of drops per displacement is then given by the total
displacement divided by the diameter of a droplet:

n =

√
∆x2 +∆y2

ø
. (17)
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The time in which these n droplets need to be fired however only
depends on the x-velocity and is therefore constant:

t =
∆x

vx
. (18)

Finally, the actual printing frequency is then simply the number of
drops per second:

fprint =
n

t
. (19)

Figure 16 shows the printing frequency for a wafer side of 156mm
with a 1x1mm notch right in the center. The velocity was set to
52.8mm/s and droplet diameter to 28µm.

Figure 16: Printing frequency.

Because the slope of trajectories in the analysis given above is quite
flat the printing frequency does not vary significantly (< 1%) from
which we can conclude that printing frequency does not pose a prob-
lem and can be neglected.

3.5 conclusion

Some limitations were observed that will have an effect on the func-
tional requirements that were set out.

First of all, due to the printing limitations only one side of the
wafer can be used properly for experimentation. This is not necessar-
ily a problem because other sides will behave similarly, only hard-
ware modifications are needed before they can be verified.

Another system component that gives limitations is the camera.
The framerate is too low to be able to move at maximum velocity
without missing edge information. The field of view is also too small
to see the maximum 1mm edge variations.

The limit on acceleration induces extra processing time. This ex-
tra time eats at the already small amount of time allocated for edge
isolation.
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V I S I O N

Feature detection, a subfield of computer vision, concerns itself with
extracting features from image data such as blobs, corners and edges[14].

The features we are interested in are the points on the boundary
between the wafer and background regions, i. e.: edges. These edges
are characterized by a sharp change in brightness. An optimal edge
detector should posses the following properties:

• good detection - real edges should be marked.

• good localization - edges should be marked as closely as possible
to their real location.

• minimal response - any real edge should be marked only once,
image noise should not create false edges.

Given an input image, the goal is to obtain a one pixel thick contin-
uous edge segment that separates the outer wafer contour from the
background. Figure 17 shows an example input image on the left and
the envisioned result on the right.

Figure 17: Vision goal.

In this chapter the algorithms for obtaining the desired result will
be discussed. How this result fits in the visual tracking task is ad-
dressed in Chapter 5.

25
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4.1 background considerations

Wafers are placed on a substrate carrier. As we are interested in the
contours of wafers the contrast between the wafers edge and the car-
rier itself is of importance.

Figure 18 shows a portion of the wafers edge (dark) on a bare sub-
strate carrier. It can be seen from this image that the background is
not uniform in colour and shows a lot of image intensity variations.
These might disturb the measurement of the actual edge.

Figure 18: Carrier background.

To prevent this, different surfaces have been placed underneath the
wafer. Figure 19 shows the same portion of the edge with a white
paper background (left) and an aluminum background (right). This
figure also shows the intensity plots for a single horizontal line.
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Figure 19: Background alternatives.

The step in intensity between wafer and background is much higher
for the aluminum background than for the paper background. An-
other thing of note is the dropping off of intensity after the step in
the paper background. The light source used is non-uniform across
the image. This is not an issue for the aluminum background due to
its high reflectivity. In fact, the intensity is saturated at its maximum
value where no wafer is present. This means there is too illumination.
Lowering illumination however results in small streaks of the alu-
minum tape becoming visible, because this might lead to detection of
false images we choose to over-illuminate instead.

An reflective aluminum background has the best properties for
edge detection and is therefore used throughout the rest of this thesis.

4.2 input filtering

In image processing an input image is treated as a two-dimensional
signal on which standard signal-processing techniques are applied. A
common processing technique is noise reduction. Electronic record-
ing devices such as cameras are subject to various sources of noise.
This noise can cause sudden intensity deviations which leads to de-
tection of false edges.

A Gaussian smoothing is a well-known method for reducing high-
frequency components in signals. Figure 20 shows an artificially gen-
erated one-dimensional signal of a step function with added noise.
By convolving this input with the Gaussian bell curve shown in the
middle of this figure the output (bottom) is a smoother version of the
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input signal. A side-effect is that the step is also slightly smoothed
out.

Figure 20: 1D Gaussian filter.

For the input images from the camera we can use a two-dimensional
Gaussian function for convolution:

G(x,y) =
1√
2πσ2

e
− x2+y2

2σ2 (20)

In Equation 20 x and y are the distance from the origin pixel in
the horizontal and vertical axis respectively and σ is the standard
deviation of the distribution.

In general, more smoothing improves detection of edges, while it
hurts localization. Given that pixels are 8-bit grayscale values there
is a range of [0, 255] which is also the maximum intensity step. By
experimentation a σ of 1.5 preserves the edge while filtering out the
disturbing high-frequency components. Because at a distance of more
than 3σ from the origin the contribution of pixels becomes negligible,
the (square) radius of the filter has been set to 5. This gives the fol-
lowing Gaussian convolution kernel:

1

271



4 8 9 8 4

8 15 18 15 8

9 18 23 18 9

8 15 18 15 8

4 8 9 8 4


(21)

Convolving the sample input image on the left of Figure 21 with
this kernel results in the output on the right.
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Figure 21: Gaussian blur.

With noise reduced the next step in edge detection can take place.

4.3 image gradient

Figure 22 again shows an intensity plot with intensity step. In or-
der to find where the edge (step) is exactly located we can take the
derivative of this signal. The result is shown at the bottom of the same
figure.

Figure 22: 1D derivative.

Images represent a signal in two dimensions and we are interested
in finding edges in both these directions. Using the Sobel operator
we can find horizontal and vertical derivatives and combine them to
obtain the image gradient.
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The Sobel operator is a discrete differentiation operator. To find
the derivatives convolution takes place with the input image and the
Sobel kernels (Equation 22 and Equation 23) for the two dimensions.

Gx =


+1 0 −1

+2 0 −2

+1 0 −1

 ∗A (22)

Gy =


+1 +2 +1

0 0 0

−1 −2 −1

 ∗A (23)

Where ∗ denotes the two-dimensional convolution operation and
A is the input image.

The image gradient consists of both a magnitude (G) and a direc-
tion (Θ), these are computed using the following equations:

G =
√
G2x +G

2
y (24)

Θ = arctan(
Gy

Gx
) (25)

For every pixel in the image these represent the strength of the edge
at the pixel’s position and the direction in which the edge is oriented
at that point.

Figure 23 shows the horizontal and vertical gradients (Gx and Gy)
at the top and the image gradient magnitude (G) at the bottom.
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Figure 23: Image gradient.

In this figure we can clearly see the edge we meant to locate.

4.4 edge thinning

By thresholding the image gradient the strongest edges are filtered
out and a binary image is obtained. Figure 24 shows the image gradi-
ent (left) and the result of thresholding (right).
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Figure 24: Thresholded gradient.

This result does not meet the goal: a one-pixel thick continuous
edge.

To meet our goal, contour tracing is used. Finding a start point in
the image (black pixel) and using Pavlidis’ contour tracing algorithm
we can find consecutive points until we have a complete trace of the
edge segment.

In order to find a starting point for tracing it is useful to obtain
some information about the nature of the edge segment that is being
traced. By looking at the colours of the corners of images we know
in what way the edge runs through an image. E.g.: a white top-left
and bottom-left corner and black top-right and bottom-right corner
means the edge runs from top to bottom. We can distinguish ten such
cases. In case 0 the image is entirely white and there are no edges. The
other nine cases are illustrated in Figure 25.

Figure 25: Edge image cases.

Knowing the case of the current image a starting point can be
found. E.g.: in case four the search is started at the top-left pixel. We
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advance through pixels in x-direction until a black pixel is located
which is a starting point.

From a starting point and an initial direction in which to search
for the next edgel the Pavlidis’ contour tracing algorithm works as
follows: look at the three pixels in front from the current direction.
If the right pixel (priority 1) is black take a step forward and a step
to the right (thus changing direction 90 degrees clockwise) and mark
the new edgel. If the right pixel is not black but the middle one is
then take a step forward and mark the new edgel. When only the
left pixel is black then take a step to the left and then to the right
(direction is not changed) and mark the new edgel. When none of
the three pixels is black then change direction 90 degrees counter-
clockwise and continue the search. These four cases are illustrated in
Figure 26.

Figure 26: Edge image cases.

The search is ended when a trace has been found throughout the
image. Taking case four again as example, the algorithm stops when
the bottom row of pixels is reached.

It can happen that the starting point is a pixel belonging to a false
edge. In such a case the trace will end up at the starting point, in
which case tracing is stopped and from the previous starting point a
new search is carried out to find a new starting point.

The end result of the contour tracing is a one-pixel thick continuous
edge segment that has been illustrated in Figure 17.
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M O T I O N P L A N N I N G

Having developed the required vision algorithms for detecting obsta-
cles in the wafer’s edge, we can now plan motion for avoiding them.
The vision results give a description of the complete wafer contour.
This description can be transformed to generate a trajectory the sys-
tem must follow. Constraints on velocity and acceleration as well as
the fact that the wafer’s edge must never be crossed are taken into
account while generating the trajectory.

This chapter will describe how world coordinates are obtained from
images and how they are used to plan required motion. The chapter
ends with a proof on guarantees that constraints are met.

Integration of motion and vision in the system will be discussed in
Chapter 6.

5.1 coordinate estimation

Edgels (commonly used term for referring to edge pixels) that have
been marked in camera images have a x- and y-value, referring to
their position in the image. As the ACS motion system accepts world
coordinates for steering towards any position a transformation is
needed.

Figure 27 illustrates a portion of the wafer being imaged by the cam-
era. As an image is fetched, the current carrier position is requested.
The green dot in the image on the right is located at the center of the
image. This point is the current carrier position.

Figure 27: Image position.

35
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By calculating the offset of an edgel from the center and knowing
the carrier position as well as pixel size we can find the exact position
of each edgel:

xe = (xi − xc)sp + xw

ye = (yi − yc)sp + yw
(26)

In Equation 26 xe and ye are the world coordinates of an edgel with
a position in the image given by xi and yi. xc and yc are the center
position of the image in pixels. sp is the size of a pixel (assuming
width and height are the same). xw and yw are the current carrier
position in world coordinates.

5.2 trajectory generation

Having obtained world coordinates from detected edge segments we
can generate a trajectory the system is able to follow. The objective is
to create a smooth trajectory that complies with the maximum accel-
eration of the system and never intersects the detected edge.

The approach used for trajectory generation is by filtering. By ap-
plying appropriate filters we can alter the infeasible trajectory ob-
tained by edge detection into one that is feasible.

The edge can be shaped in such a way that for a given x-position
there exist multiple y-values. Moving then at a constant velocity in
x-direction it’s not possible to correct for such shapes. Therefore we
create a bijective mapping of the input. For any x-position we take the
maximum y-value belonging to it as we require the largest intrusion
to be tracked. An example for a single image is shown in Figure 28.

Figure 28: Bijective mapping.

A filter is used to widen detected edge intrusions. By widening
intrusions correcting motion can start before the real intrusion is en-
countered thus giving enough time to reach the height of the intru-
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sion before the printhead has reached that position. Figure 29 shows
the filter used.

The difference equation for this filter is given by Equation 27. This
filter simply takes the maximum value of a number of previous and
future inputs as well as the current input. Because the goal is to print
a line 0.1mm from the edge this value is added as well.

Figure 29: Thickening filter.

The size of the filter, given by m and k determines how much intru-
sions are widened and therefore how much time correcting motion
has so the edge will never be intersected. Note that this filter uses
future inputs which is possible since a portion of the edge is known
in advance.

y[n] = 0.1+max(x[n−m], . . . , x[n−2], x[n−1], x[n], x[n+1], x[n+2], . . . , x[n+k])

(27)

Figure 30 plots the response of the filter to a 1mm intrusion.

Figure 30: Thickening filter.



38 motion planning

To attain a smooth trajectory, the thickened edge can be low-pass
filtered. Using Equation 28 results in the response to the thickened
edge as shown in Figure 31.

y[n] = (1−α)y[n− 1] +αx[n] (28)

The term α in this equation determines the weights of the previous
output and current input. Lowering this value attenuates the slope of
the response to a step whereas increasing it steepens the slope.

Figure 31: Low-pass filter.

This filters output still shows sharp changes in the bottom left-hand
and top-right hand corners of the intrusion. For a smooth trajectory
the output of the first low-pass filter is again filtered, but this time
starting from the right. Equation 29 is the filter used, where yd is the
output of the double-sided filter and yl the output of the one-sided
filter.

yd[n] = (1−α)yd[n+ 1] +αyl[n] (29)

The output of this filter, together with the original input and thick-
ened edges, are shown in Figure 32.

Figure 32: Double-sided filter.

This is a smooth trajectory that can be fed to the motion system.
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5.3 filter guarantees

As stated before, the trajectory is subject to constraints. We now take
a look at what is required to meet these constraints.

First we take a look at how the left-sided filter from Equation 28

reacts to the Heaviside step function.
Knowing the equation we can calculate the following output as

response to the Heaviside function:

h(x) f(x)

H(0) 0

H(1) α

H(2) α+α(1−α)

H(...) ...

Table 2: Filter response.

This series can be formulated given the following summation:

F(x) =

∞∑
i=0

α ∗ (1−αi) (30)

Using the rules of summation we can solve this to be:

F(x) = 1−αn (31)

The output of this equation is plotted in Figure 33. Note that this is
the same response as the left-sided equation from Equation 28.
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Figure 33: Left-sided response.

In a similar manner we can now find a response from the right-
sided filter of Equation 29 with the left-sided equation as input. Only
now we need to start in the future.

For some number of samples in the future (n) we know the output
of F(x) is:

α ∗ (1−αn) (32)

Knowing the equation for the filter we also know the output one
sample before (n− 1):

α ∗ (1−αn−1) +α ∗ (α ∗ (1−αn)) (33)

And again for n− 2:

α ∗ (1−αn−2) +α ∗ (α ∗ (1−αn−1) +α ∗ (α ∗ (1−αn))) (34)

By simplifying these equations we can see a pattern which is again
a summation:

∞∑
i=1

αi(1−αi) (35)

To continue we take as an example α to be 0.5. For this value the
summation above converges to 2

3 .
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This value is the response of the filter to the Heaviside function at
H(0). Or in other words: where the step from 0 to 1 takes place.

On the left of H(0) the value of H(x) is always 0 and from our filter
equations, with α set to 0.5 we know the value keeps halving every
sample as we move farther to the left. This side can then be expressed
as:

L(x) =
2

3
2x for x 6 0 (36)

Taking the left-hand limit we find that it converges to 0:

lim
x→−∞L(x) = 0 (37)

Which means that on the left-hand side of H(0) the filter always
converges to 0.

On the right side we again look at how the filter behaves using the
known difference equations with α = 0.5:

h(x) g(x)

H(0) 2
3

H(1) 0.5 ∗ 23 + 0.5 ∗ 1

H(2) 0.5 ∗ (0.5 ∗ 23 + 0.5) + 0.5 ∗ 1

H(...) ...

Table 3: Filter response.

Looking at this series we find it can be expressed as:

R(x) =
2

3
0.5x +

x∑
i=1

0.5i (38)

Which can be simplified to:

R(x) =
2

3
0.5x + (1− 0.5x) (39)

Again we can find limits:

lim
x→+∞R(x) = lim

x→+∞ 230.5x + lim
x→+∞(1− 0.5x) = 1 (40)

So on the right of H(0) we find that the filter converges to 1. Fig-
ure 34 plots the response of our filter to the Heaviside function.



42 motion planning

Figure 34: Filter response.

As the filter converges to 0 on the left and to 1 on the right we
know it reacts as expected. Knowing this, proper values for m, k and
α can be chosen in equations Equation 27 and Equation 28 such that
convergence to position 1 happens before the printhead arrives at that
location.
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I N T E G R AT I O N

Having finished the required algorithms for both vision and motion
it is time to look at implementation issues. First software design is
discussed. Then real-time aspects of the developed system are dis-
cussed.

Motion blur is an effect that occurs when imaging while moving
which can disrupt the process and is discussed as well.

Finally verification takes place on a sample input. Detailed analysis
of results can be found in Chapter 7.

6.1 software design

The developed system consists of three independent subsystems. They
are:

• Camera: supplies the host with images to be processed.

• Host: computational unit that calculates the edge positions from
images and provides setpoints to the motion controller.

• Motion controller: receives setpoints from the host and steers the
axes towards these positions.

These subsystems are interconnected by ethernet. The host acts as
master and interfaces with the motion controller and camera to gen-
erate the required motion for edge tracking.

Figure 35 illustrates the system using a class diagram with Ed-
geTracker and Vision being the parts running on the host. Although
the components in this diagram are not necessarily classes it serves
to illustrate the system.

43
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Figure 35: Class diagram.

The sequence diagram in Figure 36 illustrates the interfacing that
takes place when tracking an edge. First the host starts the camera
streaming function. Then two processes take place in parallel:

• x-movement: the host asks the motion controller to start moving
in the x-direction at a constant velocity.

• Correcting movement: the camera streams images to the host. The
host calculates edges and generates a trajectory from them. This
trajectory is fed to the motion controller which controls the re-
quested correcting motion in y-direction as not to cross the de-
tected edge.
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Figure 36: Sequence diagram.

When the motion controller notifies the host that x-movement is
finished the host can finish the control loop at which point tracking a
wafer edge is finished.

6.2 real-time aspects

To successfully track the wafer’s edge, some hard real-time constraints
must be met. First of all, the vision process must finish before the
next frame arrives from the camera. If this does not happen, delays
will add up and the motion controller will react too late on inputs.

Secondly, the motion controller must always have a new setpoint
ready. The host must always have supplied a new setpoint to the mo-
tion controller before the system has arrived at the previous setpoint.

The host system runs Linux with real-time patch applied. To ensure
that the host process will always run when in ready state the priority
is set to the highest level.

Page faults incur unwanted delays in the process. When a page is
not present in memory IO activity takes place which cause additional
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latency. Therefore, prior to performing the edge tracking all memory
the process will use is pre-allocated. After allocation the real-time
system call mlockall() is executed. This call locks all pages mapped to
the address space of the calling process into main memory. Shared
libraries the process utilizes are also entirely locked into memory.

Another cause of latency is hard-disk usage. Reading from or writ-
ing to disk can cause latencies of 20ms or more. As a new setpoint is
generated every 28ms this latency is unacceptable. Any output thats
needs to be written to disk is therefore stored in main memory and
only written when the tracking task has finished.

6.3 motion blur

Motion blur is the smearing of moving objects in a still image. It
results when the image being shot changes during recording either
due to rapid movement or motion during long exposure.

This streaking is unwanted, the vision process requires a proper
step in intensity for edges to be detected. A significant blur attenuates
this intensity step thus hurting edge detection.

The amount of blur present in an image is then a function of the
velocity (v) at which the substrate carrier under the camera is moving
and the exposure time of the camera (te):

b = v ∗ te (41)

To verify this, the calibration plate in Figure 37 is placed on the
carrier.
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Figure 37: Calibration plate.

First an image is taken when the system is stationary. Then the
system moves with a constant velocity and another image is taken.
Figure 38 shows both images.

Figure 38: Motion blur.

With an exposure time of 1ms and a velocity of 50mm/s the blur
should then be 0.05mm. Knowing the pixel size and counting them
we find that this is indeed correct.

By reducing the exposure time the effect of motion blur can be
reduced. When doing so, care must be taken that there is still enough
light to exposure the area being captured. If not, the cameras CCD
gain can be increased to strengthen present light. This will add noise
to the image which can also disrupt the vision process. Figure 39

gives an example with very low exposure (25µs) and high CCD gain
(18dB).
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Figure 39: CCD gain.

This is an exaggerated case but it does clearly show this image has
a lot of noise present.



Part III

R E S U LT S

Having discussed relevant algorithms for the visual track-
ing application, it is time to evaluate the developed system
and look at the results.

An experiment performed with the system supplies data
to be analyzed. After discussing results a conclusion is
given as well as future work.
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R E S U LT S

analyze results in terms of accuracy and speed, what kinds of errors
and where do they originate

To find out how the developed algorithms perform an experiment
is performed. A 156mm long piece of paper with a small notch cut
out is placed on the substrate carrier with aluminum tape underneath
it (see Figure 40). Paper is used as it allows for cutting out small
pieces for verification of the system whereas removing a small piece
of a solar cell wafer is more difficult. Both paper and wafers look the
same when imaged with the camera.

Figure 40: Detected edge.

The system is then moved in a starting position such that the cam-
era is placed on the right hand side of the paper, aligned with the
bottom-right corner. Tracking is performed in negative x-direction be-
cause in our system the printhead will be placed on the right-hand
side of the camera.

The vision process measures the edge in every frame it shoots and
results in a single position per frame (the highest intrusion in each
frame). When no paper is in view and no edges are detected, the y-
value is set to 0. Figure 41 shows the output of the vision algorithm
when the paper edge is tracked. As the process is started on the right
hand side of the paper the initial value is zero. When the paper comes
into view edges are detected and their exact locations stored. When
movement has passed the left-hand corner there are no longer any
edges and the y-values becomes zero again.
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Figure 41: Detected edge.

Note that in this figure the scale of the x-axis is far larger than the
y-axis scale. The notch might seem quite large but is actually quite
small.

Now we take a look at the output of the thickening filter. This is
plotted alongside the detected edge in Figure 42. As required, the
thickened output is 0.1mm from the detected edge. On the very right
there is a section where the output is zero. Because we don’t know in
advance where the next detected edge will be located we make sure
the y-axis is pulled to position zero before correcting motion takes
place.

Figure 42: Thickened edge.

Having thickened the input, the trajectory for the correcting motion
can be generated. Every time the vision process supplies a new point
a new trajectory is generated on the fly resulting in one new setpoint
for the motion controller. The output shown in Figure 43 are all the
points that were fed to the motion controller.
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Figure 43: Generated trajectory.

As discussed in previous chapters, due to acceleration constraints
the correcting motion can not be steep. The trajectory shown looks
very steep but is actually quite flat because x- and y-position are
scaled differently in the figure. Using equal scales, we would barely
see a bump in the straight edge.

The motion controller can log performed motion. After a side of
the wafer is tracked and both vision and correcting motion have fin-
ished this log can be retrieved. A plot of recorded motion is shown
alongside the trajectory and tracked edge in Figure 44.

Figure 44: Performed motion.

The performed motion in this figure is shifted by 40mm. There
is a lag between when the camera images a section and when the
printhead will arrive at the same section which is why this lag is
included in the process.

By shifting back the performed motion by 40mm and plotting it
alongside the trajectory (Figure 45) we observe the controller follows
the provided trajectory very well.
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Figure 45: Shifted motion.

Again we see here the zeroing action at the start of the process. At
the time the process started the y-axis position was at 0.1mm. After
it is pulled back to zero, correcting motion starts.

We can conclude that the algorithms developed perform well on
realistic input data. The trajectory generated is followed closely and
no edge segment is intersected during the correcting motion.
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C O N C L U S I O N A N D F U T U R E W O R K

8.1 conclusion

In this thesis a method for vision-based edge tracking was devel-
oped. Vision and motion algorithms were developed, implemented
and tested using the LP50 platform available at Roth & Rau.

From the results we can conclude that these algorithms perform
according to the analysis given before implementation. A hard re-
quirement is not crossing any part of the edge, we have developed
algorithms and analyzed them in order to prove that the wafer’s edge
is indeed never crossed.

Despite the successful creation and testing of the system and fulfill-
ing the requirement that the edge is never intersected, not all goals
set out at the start of this project were met.

The field of view of the camera in the current system is too small
to be able to see the full 1mm variation. Therefore variations of this
size are also not trackable in the current setup.

The required processing time given a plant with a throughput of
2400 wafers per hour is 1.5s. Given that our maximum tracking ve-
locity of a wafer’s edge is 52.8mm/s and wafers are 156x156mm we
have a processing time of 11.8s, not taking into account any overhead.

Although these goals are not met, the analysis provided in this
thesis is used to obtain system parameters that will meet these goals.
This means that the developed motion and vision algorithms are still
valid, but hardware changes are a requirement to meet the final goals.

8.2 future work

In the first chapter of this thesis a number of functional requirements
were stated. After analysis it was found that these requirements could
not be met given the current system parameters.

A method was developed to find the most optimal solution given
the system parameters and from the analysis and experiment devel-
oped it is possible to find modifications that meet the requirements.

The architecture of the LP50 system allows us to only track one side
of the wafer. A possible solution was provided in Section 3.2 wherein
two cameras are placed on both sides of the printhead. This solution
looks promising and is a good candidate for future research.

As the field of view poses two problems, a new camera or modifi-
cation of the camera is a must. In Section 3.3 we’ve shown that due
to the limited field of view the full 1mm can not be detected and
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tracked. Increasing the field of view would allow this. The second
problem lies in the balance between framerate and field of view. As
no edge points can be missed during scanning of the wafer’s edge,
the maximum velocity is limited. By either increasing the framerate
or the field of view this velocity can be increased. The analysis in Sec-
tion 3.3 can be used to find a camera that satisfies the requirements.

Acceleration is a major constraint. It is a must to start a correcting
motion well in advance of a detected default in the wafer’s edge,
resulting in loss of area. The analysis in Section 3.4 can be used to find
how much area is wasted given a maximum acceleration. Because
infinite acceleration does not exist it will always be a constraint.

Finally, the analysis on filter guarantees in Section 5.3 should be
extended to a general proof independent of parameter α.
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