
 Eindhoven University of Technology

MASTER

Compiled simulation of a vector VLIW processor

Visscher, L.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/578a896f-0f10-4f73-b9f2-90d612be962f

Thesis

Compiled Simulation of a Vector VLIW Processor

L. Visscher

August 16, 2013

Abstract

ST-Ericsson has developed a processor architecture, called EVP, which is cur-
rently being used in cellular modems. For the next generation of products,
some changes to this architecture are necessary. The simulator that is cur-
rently being used to simulate the EVP makes architecture exploration a cum-
bersome process. In this thesis we present a new design and implementation
for a simulation system for the EVP, based on the principle of compiled simu-
lation. It facilitates rapid architecture exploration, due to the fact that it does
not require an instruction encoding, assembler, and linker to be implemented.
Yet it achieves the same accuracy as the current simulator and improves sim-
ulation speed by two orders of magnitude.

Graduation committee:
prof.dr.ir. C.H. van Berkel

prof.dr. H. Corporaal
dr. A. Turjan

0

Contents

1 Introduction 3
1.1 Goals . 3

2 Background 5
2.1 Simulation . 5

2.1.1 Abstraction levels . 5
2.1.2 Simulation techniques . 5
2.1.3 Compiled simulation . 6

2.2 Embedded Vector Processor . 8
2.2.1 Architecture . 8
2.2.2 EVP-C . 9

2.3 GNU Compiler Collection . 9
2.3.1 GCC port for the EVP . 10

2.4 Newlib . 10
2.5 SuperTest . 10

3 Design 11
3.1 Simulation compiler . 11
3.2 Registers . 12
3.3 Instructions . 13

3.3.1 Control flow changes . 13
3.3.2 Hardware loops . 14

3.4 Memory . 15
3.5 Components of a compiled simulator . 15
3.6 Libraries . 16
3.7 Instrumentation code . 17

4 Implementation 19
4.1 Compiler modifications . 19

4.1.1 Machine description . 19
4.1.2 Back end code . 20

4.2 Reuse of semantic functions . 21
4.3 Auxiliary code . 21

4.3.1 Declarations and scope . 21
4.3.2 Register types . 22
4.3.3 Delayed control flow changes . 23

5 Evaluation 27
5.1 Verification . 27

5.1.1 Functional correctness . 27
5.1.2 Simulation correctness . 27

5.2 Performance . 28

1

5.2.1 Compiled simulation versus interpretive simulation 28
5.2.2 Compiled simulation versus native execution 29

6 Conclusions and future work 31

A Example code 33
A.1 EVP-C source code . 33
A.2 EVP assembly . 33
A.3 Generated simulator code . 39

A.3.1 Header file . 39
A.3.2 Source file . 40

Bibliography 43

2

Chapter 1

Introduction

ST-Ericsson develops wireless products, which are used by other mobile device manufacturers as
part of their products. The cellular modems developed at ST-Ericsson are implemented partly
in hardware and partly in software. This design meets the performance and energy demands of a
mobile communications device, but retains enough flexibility to allow the software implementation
of a variety of communication protocols. The programmable core employed in those cellular
modems is called the Embedded Vector Processor (EVP). It is a VLIW processor capable of
launching multiple vector operations per cycle.

A simulator is available for the EVP. It can help a programmer with the debugging of an
EVP application, by eliminating the need for a physical EVP core. But it can also assist in
the verification of assembly code produced by the EVP compiler, which is developed in-house
as well. For use in early architecture exploration it is less suited. The simulator takes EVP
binaries as input, which means that an assembler and linker must also be available. Besides
that, an encoding for the instruction set has to be developed, which can be a challenging task
when dealing with a VLIW architecture. All of these have to change when a modification is
made to the instruction set architecture, something that can happen quite frequently early in the
design project. The cumbersome process that the existing simulator requires in order to perform
architecture exploration has proven to be a major drawback.

1.1 Goals

The main goal of this project will be to create a simulator for the EVP that allows rapid archi-
tecture exploration, i.e. a simulator that requires only the definition of an instruction set, not its
encoding, nor the implementation of an assembler and linker.

As a secondary goal we will aim to improve simulation speed. In this respect the existing
simulator has been disappointing. To achieve this goal, the new simulator has to operate according
to a method called compiled simulation, which will be explained in Section 2.1.3.

Furthermore, the simulator should be accurate, i.e. the cycle counts it reports should be within
a small margin of what the current simulator reports. The use of the C standard library, and
other libraries, should still be possible. Where possible, code should be reused from the existing
simulator and compiler in order to minimize the implementation effort.

3

4

Chapter 2

Background

2.1 Simulation

Simulators are a vital tool in any processor design project [1, p. 254]. They are used for a variety of
purposes, including architecture exploration and verification of designs. A simulator also allows
hardware and software designers to work in parallel; without a simulator the development of
hardware and software would be sequentially constrained. Not only does this co-development of
hardware and software shorten the time-to-market, it can also potentially lead to a better overall
system.

In order to enable such a broad scope of applications, simulators can be implemented on
several levels of abstraction. Given the level of abstraction, there is still a choice of several
techniques that can be used to implement a simulator. In general, a low-level simulation can be
more accurate, but is slower than a high-level simulator, although performance also depends very
much on the chosen simulation technique.

2.1.1 Abstraction levels

If we try to classify simulators based on their level of abstraction, we can distinguish four levels
[1, pp. 257–258]:

• instruction-level simulation

• cycle-level simulation

• gate-level simulation

• physical simulation

The bottom two levels, gate-level and physical, represent very detailed simulations of hard-
ware. Simulators that operate at these levels can be used by hardware designers in the design and
verification of (parts of) a processor. They will not be used to simulate the execution of entire
applications, simply because it would required too much time.

The top two levels provide enough abstraction from hardware details to allow the simulation
of entire applications. Cycle-level simulation still models all stages of the pipeline, hence it is able
to detect resource conflicts and could be used to verify whether a given instruction scheduling
is feasible. Instruction-level simulators operate with a granularity of single machine instructions,
which they basically treat as atomic actions. They can be employed very early in the design pro-
cess for architecture exploration, assisting in the design of an efficient instruction set architecture
(ISA).

2.1.2 Simulation techniques

The required level of abstraction partly determines the simulation technique to be used, but for
each level of abstraction there are several possibilities, and some techniques are applicable to

5

multiple abstraction levels. Here we will limit ourselves to the discussion of simulation techniques
that are applicable to instruction-level simulation. From now on we will often use the terms host
and target to refer to the machine running the simulation, and the machine being simulated,
respectively.

Interpretive simulation is arguably the most intuitive approach. An interpretive simulator is
a piece of software that reads a target binary as input data, and then decodes and executes the
target machine instructions one at a time. This approach is very flexible, but also quite slow.

Several techniques have been developed to improve simulation speed, but each of them in-
troduce one or more limitations. A common idea they all share is to reduce the overhead of
the decoding step. Both compiled simulation and direct binary translation take a two-step ap-
proach; first translate the entire program, which can then be executed natively on the host. These
techniques will be discussed more extensively in the next section.

The last technique, called source-level simulation, is relatively new. It takes a three-step
approach. The first is timing analysis, to determine for each basic block in the target binary the
number of cycles it would take to execute it on the target machine. Next, each basic block is
mapped onto a set of lines in the original source code. This step is non-trivial, since compiler
optimizations can radically change the structure of the program, but a lot of progress has been
made in this area and such a mapping seems to be feasible in most cases [6]. Finally, using this
mapping, the timing information is annotated as instrumentation code into the original source
code, which can then be compiled and run on the host machine.

2.1.3 Compiled simulation

Interpretive simulators spend a significant fraction of the time on decoding target machine in-
structions. Compiled simulation attempts to improve upon this by adopting a two-step approach;
first the entire target program is translated into a program that can run on the host, which is
then executed (natively) by the host machine. This means that instruction decoding at run-time
concerns only instructions native to the host, hence the decoding hardware of the host can be
utilized, which performs much better on this task than any software routine.

The translation process can be either directly from target machine code into host machine
code, or via an intermediate representation in a high-level language. The former strategy is known
as direct binary translation, the latter as compiled simulation. There are two advantages to using
a high-level intermediate representation. Firstly, the translation process is independent from the
host machine, since a regular compiler can be used to compile the intermediate representation
into host machine code. Secondly, the host compiler can perform optimizations which will result
in additional speedup, as compared to direct binary translation.

Traditional compiled simulation [2] takes binary executables as its input, although other
approaches have also been tried, for example using object files [4]. We will take this approach
even further, using the high-level source code of target applications as input. This circumvents
some of the problems that are encountered when trying to translate machine code into a high-level
programming language, which will be discussed shortly.

Terminology

The literature on compiled simulation does not seem to have agreed upon a standard terminology.
Different terms are used for the same concept and, even worse, the term compiled simulator is used
for completely different concepts. Therefore, before proceeding with the discussion on compiled
simulation, some terminology has to be defined.

Simulation compiler The piece of software that performs the translation process. It takes its
input from the target compiler toolchain; we do not care at which point, i.e. whether it is
source code, binary executables, or any intermediate representation.

6

Simulator code The output generated by the simulation compiler — source code in a high-level
language of choice.

Compiled simulator The end result of the compiled simulation toolchain, obtained by passing
the simulator code through a compiler for the host platform. It is a host executable that
simulates the execution of a specific application on a specific platform.

Program translation

The basic idea behind compiled simulation is to replace each machine instruction with a function
call to a so-called semantic function that implements the semantics of the machine instruction.
This idea can be applied straightforwardly to arithmetic and memory operations, but instructions
that modify the control flow of the program introduce some complications.

Branches in machine code are not easily mapped onto high-level constructs such as loops
and if-statements; in some cases it might even be impossible due to compiler optimizations [1,
pp. 263–264]. An obvious solution is to use goto statements. In order to support computed
branches, we could label each and every instruction with the address it would have had on the
target machine. Such an excessive amount of code labels severely hampers the compilers ability
to analyze control flow in the program, thereby reducing the amount of optimization that can
be performed. Furthermore, if function calls are translated into goto statements as well, the
entire program is translated into a single huge function. Since the running time of a lot of
compiler optimizations depend super-linearly on function size [4], this approach could lead to
impractically long compilation times. Still, compiled simulators are often implemented as one
huge switch statement [2].

In order to simulate the execution of instructions, we must also simulate the memory and
registers of the target machine. The simplest approach to simulating the data memory of a target
machine is to create a single large array and use the target data memory addresses as indices in
this array. However, this introduces additional address computations for each memory access. A
direct mapping between simulated target memory and host memory could be established during
the translation phase of compiled simulation, thereby increasing the performance at run-time.
Note that this may make it much harder to track target data addresses during simulation, which
might be a requirement for the simulator.

Registers can be simulated by means of a set of global variables. An optimizing compiler
should be able to map the most frequently used of these variables onto host registers, enabling very
efficient simulation. Some difficulties can arise when the target architecture contains aggregate
registers, i.e. registers that can be addressed at different granularities; the content of such a
register can either be stored in a single variable, or broken into its constituent parts and stored
in multiple variables. The former approach requires bit masking when a single part is accessed,
the latter requires multiple memory operations when the entire aggregate is accessed. Hence, it
depends on the expected usage of such a register which of the approaches is most efficient.

Performance

Compiled simulators tend to require between one and 100 host instructions in order to simulate
a single target instruction, which is up to three orders of magnitude faster than interpretive
simulators [5]. Most of the speedup can be attributed to the reduction in instruction decoding
overhead [3], but compiled simulators also make better use of instruction caching and prefetching
capabilities of the host machine [1, p. 267]. The maximal speedup that can be achieved depends
heavily on the similarity between the host and target instructions sets — on similar machines, a
nearly one-to-one mapping of instructions might be possible.

Given the fact that the speedup of compiled simulation over interpretive simulation stems
mostly from a reduction in instruction decoding overhead, the speedup that can be achieved when
simulating a vector VLIW machine is expected to be more modest than for scalar architectures,

7

since the former can do quite a lot more work per instruction than the latter. On the other hand,
the decoding of VLIW instructions is a complex task for which most general purpose processors
are not well suited [1, p. 259], hence we still expect the speedup to be significant.

Limitations

The speedup of compiled simulation over interpretive simulation comes at a price; compiled
simulation is much less flexible. The major restriction is that it requires static program code [3],
i.e. no run-time dynamic program code and no self-modifying program code. The latter is rare
[5], but the former is an important characteristic of operating systems [4], which are increasingly
used in the embedded domain.

Compiled simulation is best suited for statically scheduled architectures, but it is not impos-
sible to support dynamic scheduling [3]. This will, however, reduce the speedup over interpretive
simulation, since scheduling must be performed at run-time. Unfortunately, nearly all general
purpose computation systems are dynamically scheduled and this is also becoming increasingly
common in microcontrollers.

2.2 Embedded Vector Processor

The Embedded Vector Processor (EVP) is an embedded VLIW processor that is used in the
modems of mobile communication devices. Due to the large collection of communication stan-
dards that modern devices have to support, implementing such a modem fully in hardware is no
longer an attractive option. The EVP is a more flexible solution that can execute the software
implementation of many communication standards. These implementations often involve compu-
tationally intensive algorithms. The EVP provides the needed performance, and it does so within
the energy budget of a mobile device.

2.2.1 Architecture

The core of the EVP contains four major components, as can be seen in Figure 2.1: a program
control unit (PCU), an address computation unit (ACU), a scalar data computation unit (SDCU),
and a vector data computation unit (VDCU). The SDCU and VDCU each contain several func-
tional units (FUs) to support a variety of operations. Being a VLIW processor, each of these FUs
can be operated in parallel, i.e. an instruction consists of up to 13 operations.

The vectors on which the EVP operates are short and of fixed size, not long and of variable
length as is common for DSP processors. The advantage is that a complete vector operation can
be executed in a single cycle. Since the basic word size on the EVP is 16 bits, and the vectors
consists of 16 elements, a single vector is 256 bits wide.

The EVP has separate program and data memories, i.e. a Harvard architecture. The program
memory is connected only to the PCU, but the data memory can be accessed by both the SDCU
and the VDCU. To avoid a costly dual ported memory, only the VDCU has direct access to the
memory; the SDCU is connected via a scalar cache.

Control flow changes can be costly on a VLIW machine. Since each instruction can consist
of multiple operations, the pipeline can contain a large amount of work, all of which needs to be
flushed when a branch is mispredicted. To mitigate this effect, the EVP supports several features
that are commonly found on DSPs, but less often in general purpose machines: hardware loops,
and predicated execution of most operations.

Closely related to predicated execution are masked vector operations. Most vector operations
allow a vector mask to be supplied as one of the operands. In most cases the operation is then
performed only on those elements of the vector that are selected by the mask. In some cases a
vector mask is used to select between the elements of two input vectors.

8

In order to allow the efficient implementation of circular buffers, which are often used in
signal processing, the EVP has a feature called modulo pointers. A modulo pointer is basically
a triple register storing a pointer, a base, and a size. After initialization of a modulo pointer,
the programmer can simply add offsets to this pointer. All checks that are required to keep the
pointer within the bounds specified by base and size are implemented in hardware.

2.2.2 EVP-C

Programming a machine in assembly language is a cumbersome task in the case of a (super)scalar
machine, but an extremely difficult task when dealing with a VLIW machine. This is mainly due
to the fact that a VLIW machine is statically scheduled, i.e. the programmer has to determine
which operations should be executed in parallel. A better approach is to move the burden of
scheduling (and register allocation) to a compiler, and let the programmer write a sequential
program in a high-level language. To this end, EVP-C was created.

EVP-C is an extension of the C programming language. A small example program is included
in Appendix A.1. The added features can be categorized into three groups: EVP data types,
intrinsics, and compiler directives. Intrinsics are functions that the compiler is aware of, i.e. the
programmer can call such functions without providing an implementation for them, or linking to
a library that contains them. It is through such intrinsics that the programmer can utilize the
EVPs vector operations. The added compiler directives are used to provide the compiler with
additional information that it can use to generate more efficient assembly, e.g. the programmer
can specify that a loop will have a certain minimum number of iterations, which may enable its
translation into a hardware loop.

2.3 GNU Compiler Collection

The GNU Compiler Collection (GCC) is a widely used compiler system; it is the standard compiler
on most modern UNIX-based operating systems. Due to its open-source nature and modular
architecture, it can be adapted for any new machine or programming language with limited
effort. GCC consists of three major components: the front end, the middle end, and the back
end [10].

The front end parses the original source files, hence for each programming language a different

ALU MAC LSU ALU ALU MAC LSU shuffle mask vector gen.

register file

scalar data computation unit vector data computation unit

address address

address computation unit

r
register file

p
register file

vr
register file

ir
register file

vm
register file

im

register file
ptr

register file
base

register file
ofs

register file
size

program

program data
memory memory

control
unit

scalar predicatescalar scalar vector vector vector
vector

unit

vector

ALU

intra

unit unit

code

scalar

ALU

vector

ALU

Figure 2.1: Components of the EVP core.

9

front end has to be created. The only job of the front end is to convert the input into a generic
intermediate representation, which is then fed into the middle end.

The middle end performs most optimizations, which are aimed at increasing the performance
of the final program or reduce its size. This part of the compiler is both language and target
independent, which is a huge advantage when porting the compiler, since code optimization is
complex. After performing all its optimization passes, the middle end converts the program into
RTL format, which is another generic intermediate representation, but one that more closely
resembles assembly language.

The back end performs some target dependent optimizations, but its most important tasks are
register allocation and outputting the final assembly. It can be configured for a specific target by
means of a machine description, which consists of two parts [9]. The first part is a file containing
instruction patterns. Each instruction pattern contains an RTL fragment and a corresponding
piece of assembly. These patterns are used in the final translation step — the conversion of RTL
to assembly. The second part of the machine description consists of a C++ header file and a C++
source file. Together they contain all information about the target machine and the translation
steps that cannot be expressed through the instruction patterns.

2.3.1 GCC port for the EVP

GCC has been ported to the EVP [12]. This required the creation of both a new front end and
a new back end — a front end to process the EVP-C language, and a back end that performs
optimizations specific to the EVP, does the instruction scheduling and register allocation, and
finally emits EVP assembly.

Only the back end is of interest, within the scope of this thesis. And more specifically, only
the final part that emits the assembly. The existing modifications will serve as a guide in creating
the further modifications that make the compiler emit simulator code instead of assembly.

2.4 Newlib

An EVP application, when in its final form and running in a product setting, should perform its
job quietly and without direct user interaction. However, during development of such applications
the ability to output some debug messages can be a valuable tool. This is usually done through
functions contained in the C standard library, which is available on many operating systems. For
embedded systems that do not run an operating system, such as is the case with the EVP, an
implementation of this library has to be provided.

Newlib is a lightweight implementation of the C standard library, intended for use on em-
bedded systems. The only thing required to make it work on a particular architecture, is the
implementation of a few low-level functions — a set of system calls for platforms with an operating
system, or a board support package for platforms without.

Newlib has been ported to the EVP, in a way that makes it usable in conjunction with a
debugger. The debugger does not run on the EVP itself, but on a general purpose machine that
is connected to an EVP board. Every system call triggered by Newlib is caught by the debugger
and transferred to the host machine. This allows a programmer to use a regular PC to interact
with an application running on the EVP.

2.5 SuperTest

SuperTest is a commercial test and validation suite for compilers. It is used to test and validate
the correctness of the VGCC compiler. The tests cover all basic language constructs as well as
the C standard library. Additionally, all EVP intrinsics are thoroughly tested through a set of
tests that is developed in-house.

10

Chapter 3

Design

The limitations of compiled simulation, which we discussed in Section 2.1.3, can largely be avoided
when simulating the EVP. Instruction scheduling is static, which in the case of a VLIW processor
means that the compiler checks the stream of operations for dependencies and independencies,
and based on this analysis dispatches operations to FUs. This assignment does not change at
run-time, which makes the EVP architecture a very suitable candidate for compiled simulation.

Furthermore, the EVP has an exposed pipeline, i.e. no interlocks, hence the compiler must
explicitly insert nops into the instruction stream to avoid pipeline hazards. These nops will in-
crease the cycle count during simulation run-time. Hence all static pipeline effects are accounted
for, without the need for a pipeline model to be incorporated into the compiled simulators. This
means that at run-time, the simulation can operate at instruction-level, which will benefit simu-
lation speed, but its accuracy will be comparable to cycle-level simulation, due to the translation
step being performed at cycle-level.

3.1 Simulation compiler

One of the first questions to address when constructing a simulation compiler, is which format to
take as input. Most approaches described in the literature take their input from a late stage in
the compiler chain. For various reasons that we will discuss in this section, our approach takes its
input from very early in the compiler chain (see Figure 3.1). In general, using executable binaries
as input has as an advantage that simulators can be generated even if the original source code is
unavailable. However, this argument does not carry much weight in our case, since we are in the
fortunate situation to have all source code available, including system libraries.

Not only do we have access to the source code of any EVP applications, but to the source
code of the compiler as well. This leads to the interesting possibility of integrating the simulation
compiler with the ‘regular’ compiler. However, care must be taken not to disturb the compilation
process too much, since we want our compiled simulators to produce results that are identical to
what they would have been when executed on an actual EVP. To this end, we modify only the
GCC back end — instead of assembly we will make it emit the simulator code. This translation
process will be described in the next few sections.

By using high-level source code as input for the simulation compiler, it is possible to construct
compiled simulators that maintain the structure of the original program, i.e. a function in the
original program code becomes a function in the simulator code. This not only speeds up the com-
pilation process, as discussed in Section 2.1.3, but also makes the debugging of EVP applications
easier, since the simulator code will be much more readable for a human programmer.

The integration of the simulator compiler within VGCC also means we have access to a lot of
information about program structure and control flow, without the need for complicated analysis
— this is already done for us by earlier stages of the compiler. More specifically, we can easily
discern basic block boundaries, which will be of great help in the efficient handling of branches.

11

Since we are changing the compilation process at the latest possible stage, the translation
of an application into simulator code can basically be seen as a mapping from richly annotated
assembly code to C++ code. The different components of this mapping will be discussed in the
next sections.

3.2 Registers

The EVPs registers will be modelled by a set of global variables. In compiled simulation of scalar
architectures, it is very worthwhile to ensure that the variables representing target registers are
mapped onto host registers as often as possible [1, p. 263], as this will significantly increase
performance. However, given the size of the EVP vector registers, and the fact that the host
processor will most likely be a scalar general purpose processor, such a mapping is impossible.
Each simulated instruction will trigger memory operations on the host. But the most frequently
used of these simulated vector registers will most likely remain in the lowest level of the hosts
data cache, hence performance is expected not to deteriorate too much.

Most of the EVPs registers can be simulated straightforwardly with basic data types, but
there are a few exceptions. The most obvious case concerns the 40-bit integer type that the EVP
supports natively, but must be emulated on a general purpose host machine. Another case arises
due to compound registers; the contents of some of these registers are necessarily stored non-
contiguously in memory. The implementation of the different types of registers will be discussed
in Section 4.3.2.

EVP-GCC
compiler

EVP
assembler

EVP
linker

host
compiler chain

host
compiler chain

simulation
compiler

EVP-C
source code

EVP
assembly

EVP
object

EVP
executable

host C++
generated code

host
executable

host C++
generated code

host
executable

traditional approach

our approach

Figure 3.1: Workflow in traditional compiled simulation versus our approach.

12

3.3 Instructions

The basic idea of compiled simulation, as was discussed in Section 2.1.3, is to replace each target
machine instruction with a call to a semantic function that can be executed on a host machine.
Since we are simulating a VLIW architecture, each instruction is actually a bundle of operations.
It makes sense to implement semantic functions for the individual operations rather than for all
possible VLIW instructions. The simulation of a single VLIW instruction is therefore implemented
by several semantic functions, executed sequentially.

Care must be taken when the individual operations are executed sequentially. Although the
operations within a single VLIW instruction are independent, when executing them sequentially
we might introduce dependencies. For example, if one operation reads from register r5 and
another writes to r5 (in the same cycle), then the first operation expects to consume the old
value of r5. Obviously, the read must be placed before the write. Luckily, the compiler had
already been adapted to emit the operations in an order that allows sequential execution. This
was needed for the debugger, to enable ‘sub-stepping’ — placing breakpoints within an instruction,
not only between instructions. Hence no further reordering of the operations within instructions
is required to ensure correct sequential execution.

3.3.1 Control flow changes

Most semantic functions simply perform a computation and modify the contents of registers,
which is easily dealt with by passing the correct parameters. However, those semantic functions
that modify the control flow of the program require more careful consideration. Even more so due
to the fact that the EVP utilizes delay slots, i.e. the first few instructions right after the branching
instruction are executed even if the branch is taken. This means that we have to develop some
sort of mechanism that delays the execution of control flow changes.

The VGCC compiler produces assembly code where the end of delay slots is marked by a piece
of comment (see Appendix A.2). We can adapt this feature to emit a macro instead. This macro
executes the actual control flow change in the compiled simulator, while the semantic function
corresponding to the EVPs control flow change operation only records the type and target of
the branch. The implementation of this macro is discussed in Section 4.3.3. Recording the type
of a branch is straightforward, but recording its target is a bit more involved in a high-level
programming language.

The target of a direct branch is known at compile time; VGCC always puts a label at the
target instruction and outputs the argument of the branch instruction in symbolic form, i.e. a
code label. When translating a labelled instruction, we can simply keep the code label, as this
is a feature that is supported in C++ as well. This means that the argument that the semantic
function receives is a valid code label. However, the C++ language only allows code labels to be
used in conjunction with goto statements — they are not values that can be assigned to variables.
Luckily, GCC has an extension that allows the conversion of code labels into void pointers, which
makes it possible to store the target of the direct branch in a variable.

The target of an indirect branch can in principle be any instruction and be unknown at
compile time, which would seem to require every instruction to be labelled, as was discussed in
Section 2.1.3, leading to reduced performance. However, the compiler produces indirect branches
only as a result of switch statements and indirect calls only as a result of function pointers. In
both of these cases the target is a labelled instruction and hence an approach very similar to the
one for direct branches can be employed. The only difference is that the branch is executed in
two steps: first a move instruction that puts the branch target into a simulated register, and then
the indirect branch instruction.

Although the usage of the goto statement has been debated in the past [7], the arguments are
geared towards the production and maintenance of program code by a human programmer. Since
in this case we are dealing with generated code, most of the arguments against the usage of the

13

goto statement do not apply. A compiler is perfectly capable of making sense of a goto-ridden
program.

Besides branches, function calls and returns are also executed with a delay. Since we are
preserving the functional structure of the program, both of these cases are easily dealt with. The
semantic function implementing the call instruction stores a function pointer as the branch target
— there is no need to rely on GCC extensions this time. When the control flow changing macro is
executed, the host performs a function call to this address, not a goto. This makes the semantic
function for the return instruction even simpler; the branch target is already on the host stack, so
we only need to record the correct branch type, not the branch target, and the macro can simply
perform a return statement on the host.

A further concern when dealing with functions calls is the passing of parameters and return
values. These values will be placed in the simulated registers, i.e. global variables, as part of the
simulation. Hence function calls in the compiled simulator only need to execute the control flow
change and therefore all functions in the simulator code have zero parameters and return void.

3.3.2 Hardware loops

A special type of control flow change comes in the form of hardware loops. A hardware loop
is initiated by an instruction taking three arguments — two code labels, indicating the start
and end of the loop body, and the number of iterations. Just like other control flow changes,
the loop instruction is followed by a few delay slots. When the instructions in the delays slots
have been executed, the program jumps to the start of the loop body and executes the loop the
proper number of times. After the last iteration, the program continues with the instructions
immediately after the loop body (instead of continuing with those after the loop instruction).

Producing simulator code for hardware loops would seem to be done most easily and efficiently
using while-loops, but some complications arise when this is done. The piece of the program
that is executed as a hardware loop, is not necessarily exclusive to this loop. For example, when
control flows normally into it, it should be executed just once, not iterated. However, although
such constructions are allowed by the architecture, the compiler will never produce such code —
control flow can only reach the loop body through the hardware loop operation. A more pressing
issue is the fact that the hardware loop operation and the loop body can be arbitrarily far apart.
Translating them into a single while-loop would require a reordering of the input program, and
hence a much larger modification of the compiler back end than for any other instruction — other
instructions allow a one-to-one mapping from assembly code to C++ simulator code.

Instead of using while-loops, our solution is goto based. It allows for easy translation from
assembly to simulator code; the hardware loop operation and the loop body can be translated
separately. When the loop body is being translated, there is in fact no need to know that it
will be used as such. Any sequence of basic blocks can be used as loop body, just like when the
code is executed natively. The approach is very similar to the one used for delaying branches.
The semantic function only records the proper information (start and end of the loop body, and
number of iterations), but does not change the control flow. This is done by macros; one at the
end of the delay slots, that causes the jump to the start of the loop, and one at the end of the
loop body that causes the iterating behaviour. Note that this could mean that we have to place
a macro in a piece of code that has already been translated — the loop body can in principle
be placed before the hardware loop instruction. To avoid this, a loop end macro is emitted right
before each code label. This might seem redundant and inefficient, but it can be implemented in
such a way that the unnecessary macros will be optimized away completely when the simulator
code is compiled. This will be discussed in Section 4.3.3.

14

3.4 Memory

The EVP has separate data and program memories. It has no instructions that operate on the
program memory; only the program control unit (PCU) has access to this memory. Hence, there
is no need to explicitly simulate the program memory.

The data memory could be simulated by means of a single large array, with data addresses
used as indices, but as discussed in Section 2.1.3 a more direct mapping would be more efficient.
Since we use high-level source code as a starting point, this is quite easy to achieve. For each
global variable and constant that appears in the source program we simply generate an equivalent
global variable or constant in the simulator code. These variables and constants can then be used
directly, without additional addressing overhead.

Note that this means that the compiled simulation of an application can, and probably will,
have a different memory layout than when the same application is executed natively on the EVP.
This might be problematic if, at some point in the future, there is the need to incorporate a data
cache simulator in the compiled simulations [6]. This problem cannot be solved by employing
a different technique for simulating data memory; it is inherent to the implementation of the
simulation compiler as a modified GCC back end, since the addresses of global variables and
constants are not known until the linker phase.

Having a different memory layout in simulations raises the question of what to do with point-
ers. Should they store target addresses or host addresses? The former requires an address con-
version to be computed each time the data memory is accessed. Such a conversion is non-trivial
and induces a performance penalty. The latter has several complications, each of which will be
discussed in Chapter 4, but all of them can be solved without degrading performance, hence it is
the approach we will use.

Remember that each EVP register is modelled by a global variable. This means we now
have two sources of global variables in the simulator code. This can lead to name clashes, and
hence simulator code that does not compile or, even worse, code that does compile but produces
erroneous results. To prevent this, all global variables, constants, and functions receive a prefix.

Besides global variables and constants, we also need to simulate the stack — it contains
local variables, and function parameters in those cases when they cannot be passed via registers.
Simulation of the stack is achieved by reserving a block of host memory and properly initializing
the stack pointer. The stack is accessed only through the stack pointer — the stack pointer is
a special purpose register (simulation of registers is discussed in the next section). As discussed
earlier, this simulated register will contain a host address, not a target address, hence accessing
the stack introduces no additional overhead.

This leaves only dynamically allocated memory. EVP applications intended for use in a final
product do not make use of dynamic memory. For debugging purposes the application can be
linked with a ported implementation of the standard C library (see Section 3.6), which requires
the presence of a heap. A block of host memory is reserved in which the heap can be created.
Initialization and further management of the heap is taken care of by the standard C library
itself.

3.5 Components of a compiled simulator

So far we have mostly discussed the simulation compiler and how it produces simulator code.
This simulator code by itself does not compile into a fully functioning executable, it requires
some additional components that are the same for every simulation. Figure 3.2 shows the objects
that are linked to form a compiled simulator, and the sources from which these objects are
compiled and assembled.

Besides the generated simulator code, we need an implementation for the semantic functions.
We can, with some effort, reuse their implementations from the existing interpretive simulator, as
will be discussed in Section 4.2. The semantic functions could be compiled into a library and then

15

linked with every simulator, but instead we keep them in a set of header files that is included in
each simulator source file. This increases the compilation time, but allows inlining of the semantic
functions which will result in a much faster execution of the compiled simulator. The semantic
functions operate on simulated register, i.e. global variables, the types of which are defined in an
additional header file, as are the macros that are used throughout the generated simulator code.
All these header files combined with a simulator source file compile into a simulator object. The
final executable (the compiled simulator) can be composed of several such objects; each source
file of the original EVP application will compile into a single simulator object.

The simulator objects need to be linked with an auxiliary object in order to form a fully
functional executable. This auxiliary object provides the simulation environment, i.e. the global
variables that simulate the EVPs registers and an array that can hold the simulated stack. It also
contains the main function, which first initializes the registers and then calls the EVP startup
routine (it is at this moment that compiled simulation actually starts). Furthermore it contains
some helper functions, e.g. to produce output once the simulation has finished, and to handle
system calls while the simulation is running.

Finally, the compiled simulator can be linked with libraries, as will be discussed in Section
3.6. The objects contained in these libraries are created in the same way as the simulator objects
we discussed earlier in this section. Library functions are executed as part of the simulation, and
hence add to the cycle count.

3.6 Libraries

One of the limitations of compiled simulation, which we discussed in Section 2.1.3, is the lack
of support for dynamic linking. This would seem to exclude the possibility to use libraries.
However, due to the fact that we preserve the functional structure of programs, dynamic linking
is possible with our approach. The only remaining difficulty in the usage of libraries, is the passing

simulator code
*.cs.cpp

semantic functions

*.h

macro definitions
compsim.h

registers

registers.h

simulator objects

*.cs.o

auxiliary objects

*.cs.o

libraries

*.cs.lib

simulator objects

*.cs.o

auxiliary code
*.cpp

Compiled Simulator
executable

Figure 3.2: The various parts of which a compiled simulator consists.

16

of parameters and return values. This happens through the simulated registers and simulated
stack, but an arbitrary library would expect these values on the host stack. We either need to
provide a mechanism that translates between the two calling conventions, or we could produce a
compiled simulation version of the library. The latter is only possible if the sources of the library
are available.

EVP applications in general do not make use of dynamically linked libraries, but during
debugging the C standard library is often used. To enable this, Newlib has been ported to the
EVP, as was also mentioned in Section 2.4. The creation of a compiled simulation version of this
library requires a modification to its build process, but also the handling of system calls needs
to be changed. Instead of triggering the debugger, we need to invoke a routine that passes the
system call to the host. Such a system call handler can be implemented as part of the auxiliary
code.

3.7 Instrumentation code

The construction of a simulator is not of much use if we cannot extract useful information from
it. To this end, instrumentation code will be inserted by the simulation compiler. For now we will
limit ourselves to the counting of cycles, both globally and per function. The simulation compiler
will emit a macro at the start of each function and before each bundle of semantic functions to
facilitate this.

The cycle counters will be incremented for each simulated EVP instruction. One might argue
that it is more efficient to aggregate these increments into a single addition per basic block, which
is possible since the EVP is statically scheduled. However, the instrumentation code is part
of the simulator code, which is passed through an optimizing compiler to produce a compiled
simulator. Hence the compiler will take care of this aggregation of cycle counter increments,
thereby minimizing the overhead induced by the instrumentation code.

17

18

Chapter 4

Implementation

4.1 Compiler modifications

The design of our compiled simulation system is such that we do not have to make very invasive
modifications to the compiler in order to make it generate simulator code instead of assembly. It
is at the latest possible stage that we intervene; wherever the compiler emits a piece of assembly,
we modify the output statement to emit a corresponding piece of simulator code instead. To
be more precise, we include a conditional that selects between the two possible outputs, based
on a new command-line option that we added to VGCC. The addition of the new command-
line option required only the addition of a single entry to the option definition file of GCC [9].
The addition of the command-line option means that the same compiler that is used for regular
EVP compilation jobs can be used for compiled simulation, simply by adding a single flag to the
command-line. The remaining modifications can be categorized into two groups: modifications
to the machine description files, and modifications to the C code of the compiler back end. We
will discuss both categories in the next two sections.

4.1.1 Machine description

The mapping from RTL, the final internal representation used by the compiler, to assembly code
is governed in a large part by the instruction patterns defined in so-called machine description
files. Such instruction patterns consist of four or five parts:

1. An optional name.

2. An RTL template. The compiler will try to match this template with parts of the program
that is being compiled. If a match is found, the instruction pattern may be applicable.

3. A condition, in the form of a small piece of C code. When the RTL template matches, this
condition has to be passed as well in order for the instruction pattern to be applied.

4. An output template. Either in the form of string or a small piece of C code, this determines
what should be emitted to the assembly file.

5. An optional attribute vector, which is basically used to contain any additional information
that is needed in the compilation process.

Only the output template is of interest to us. These used to be simple strings, e.g. "vadd32
%0, %1, %2, %3 %#" in the complete example below, but those were replaced by small pieces
of C code selecting between two strings. One of the strings being the original assembly output,
the other the semantic function call. The naming of semantic functions is slighly different from
the assembly instructions, as will be explained in more detail in Section 4.2. Predication is han-
dled differently in compiled simulation; instead of passing a predicate argument to the semantic
function, an if-statement is put in front of the function call. This can lead to a more efficient

19

simulator, since in cases where the predicate is false a function call is eliminated, but it also
simplifies the implementation of the semantic functions.

(d e f i n e i n s n ”INSN BUILTIN po vadd 32”
[

(s e t
(match operand :EV1 0 ” v r r e g i s t e r o p e r and ” ”=REG VR ”)
(unspec :EV1
[

(match operand :EV1 1 ” v r r e g i s t e r o p e r and ” ”REG VR ”)
(match operand :EV1 2 ” v r r e g i s t e r o p e r and ” ”REG VR ”)
(match operand : BI 3 ” p r e d i c a t e r e g i s t e r o p e r a nd ” ”REG P ”)
(match operand :EV1 4 ” v r r e g i s t e r o p e r and ” ”0”)

] UNSPEC BUILTIN po vadd 32)
)

]
””
”∗{ r e turn (evp f lag comp s im ? \” i f (%3) vadd32 vrD1 vrA1 vrB1 (%0, %1, %2) ; %#\”

: \”vadd32 %0, %1, %2, %3 %#\”); }”
[
(s e t a t t r a l t e r n a t i v e ” c o r e b i t s ” [(c o n s t i n t coreb i t s vadd32 vrD1 vrA1 vrB1)])
(s e t a t t r a l t e r n a t i v e ” ioshape ” [(c o n s t i n t ioshape vadd32 vrD1 vrA1 vrB1)])
(s e t a t t r a l t e r n a t i v e ”mpvar” [(c o n s t i n t mpvar P)])
(s e t a t t r ” opcodes i z e ” ”3”)
(s e t a t t r ” p r ed i c ab l e ” ”no”)
(s e t a t t r a l t e r n a t i v e ” shape” [(c o n s t i n t shape vadd32 vrD1 vrA1 vrB1)])

]
)

There are a great number of these instruction patterns, but luckily not many of them are
written by hand. Most of them are generated from a database by means of a Perl script. This
script was modified to produce output as shown in the example above.

4.1.2 Back end code

The outputting of all assembly constructs besides machine instructions, e.g. data sections or
labels, is dealt with by GCC via a set of macros and hooks. Many of them were changed, some
were added, but all of it comes down to producing conditional output very similar to what we
did with the instruction patterns. The only change required to mainline GCC concerned the
assembling of the contents of variables and constants, i.e. initialization. For some reason there
were no macros or hooks available to modify the behaviour of this procedure.

The modifications discussed so far cover the entire mapping from assembly to simulator code,
but there remains one final modification to be discussed.

Secondary output file

In the previous chapter we discussed the translation of EVP-C programs into simulator code in
terms of a mapping from EVP assembly to equivalent C++ code. This mapping has been designed
in such a way that we did not have to reorder or duplicate instructions, which worked perfectly
fine when translating the program text. However, assembly code can also contain data sections,
which have to be translated into global variables in the simulator code. In C++, variables (and
functions) have to be declared before they are used, but in assembly code one can refer to a label
that appears later in the code.

An initial solution was to modify some parts of mainline GCC, and the call graph module
[11] in particular, in order to emit all variables and constants before functions and to disable the
reordering of functions. The idea behind this was to completely eliminate the need for forward
declarations. However, problems could still arise when the initializer of a variable referred to a
variable coming after it. And at a later stage it also turned out that GCC emits import directives,
used to import external symbols when the program consists of more than one compilation unit,
at the very end of the assembly file and that this was very difficult to change. Hence this initial
solution was discarded in favor of a more elegant one.

20

A limited, but sufficient, form of reordering can be achieved through modification of the back
end code alone. Instead of writing output to a single file, the simulation compiler produces two
files; one source file that contains function definitions and variable initializations, and a header file
that contains declarations for all of them. This approach introduced a new problem, caused by
the fact that forward declarations of static variables are not possible in C++.1 This problem was
solved using anonymous namespaces, as will be discussed in Section 4.3.1. Using this approach it
is again possible to produce simulator code that closely matches the assembly code, and without
requiring modifications to mainline GCC.

4.2 Reuse of semantic functions

One of the major components of a compiled simulator, besides the generated simulator code, are
the semantic functions. We need about 1500 of them; starting from scratch and implement all
of them is not feasible within the time constraints of this project. The pre-existing interpretive
simulator obviously contains an implementation of all the semantics required to simulate the EVP.
Reusing those has two benefits: it can save us a lot of time, and we know this implementation to
be correct. Unfortunately, it has some downsides as well. The interpretive simulator contains a
reduced set of more generic semantic functions. We will need to provide a mapping between all
possible EVP operations and this set of semantic functions. Furthermore, we must ensure that
we simulate the EVPs registers in a way that is compatible with how it is done in the interpretive
simulator. Even so, reusing the semantic functions is preferable to implementing them from
scratch.

The reduction in the number of required semantic functions was achieved in two ways. Firstly,
many vector operations can be described as the application of scalar semantics to each element
of the vector, e.g. vector addition. Semantic functions for such vector operations are left out.
Secondly, some operations are the composition of two or more simpler operations, e.g. load/store
operations that also update the address operand. Such operations also do not need to be explicitly
present in the set of semantic functions. But then we need a mapping from EVP operations to
semantic functions that can express the iteration or composition of these basic functions. Such a
mapping was already available, in the form of a set of wrapper functions. These wrappers were
originally intended for verification purposes, they allow the semantic functions to be tested in
isolation. Unfortunately, they were not created with efficiency in mind, and even worse, they were
untested. Hence they proved to be a rich source of bugs. Debugging these wrappers and improving
their efficiency was, in all likelihood, less time-consuming than implementing the semantics from
scratch.

4.3 Auxiliary code

So far we have discussed the modifications made to the VGCC compiler to make it produce
simulator code, and how we provided implementations for the semantic functions. What remains
to be discussed is the implementation of the auxiliary code, i.e. the code that implements the
simulation environment and the macros that were discussed in Chapter 3.

4.3.1 Declarations and scope

In C++ we have functions, variables, and constants. In assembly we only have labels — the type of
section in which the label occurs determines what kind of object we are dealing with. In C++ the
scope of a variable is known from the moment it is declared. In assembly a label can be exported
by a later export directive. These labels can be used as operands of instructions, and their values

1A forward declaration is only possible by using the extern keyword, implying that the forward declared object
has external linkage. The static keyword implies internal linkage. Combining the two leads to a contradiction.

21

can be stored in registers, since each label represents an address, either in instruction memory
or data memory. Their counterparts in C++, however, are of different types, i.e. straightforward
assignment would produce compiler errors. All in all there are a few difficulties in the translation
process that need to be overcome.

The homogeneity of assembly labels is emulated by introducing an additional variable along
with each function, variable, or constant. This companion variable is a plain integer and stores a
typecast pointer to its associated object. It is this integer companion that will be used as operand
of instructions, i.e. as parameter of semantic functions.

A label in assembly that is not exported, is local to the compilation unit. The most obvious
way to model this in C++ is to make the variable or function static. However, a forward
declaration is not possible for static variables, and we needed forward declarations to avoid the
need for reordering variables and functions. The problem is solved by putting every function,
variable, and constant in an anonymous namespace, which has the same effect as making them
static,2 but allows forward declarations. We can later change their scope, i.e. make them
externally visible, by introducing an additional variable outside the anonymous namespace that
is a copy of the integer companion. They assembly import directive is now also easy to implement
by means of a macro that creates an integer companion inside the anonymous namespace and
initializes it with the value of the externally visible copy. Note that the underlying variables are
always local and are only accessed through pointers. This form of indirect memory access might
seem inefficient, but the pointers used to access them never change after initialization, hence the
compiler should be able to optimize them away in many cases.

What we have discussed so far holds true for global variables, i.e. objects that will be allocated
on the heap. The translation of variables local to a function, i.e. the ones that will be put on
the stack, is a different story. The translation of them is the easiest of all, since we have to do
absolutely nothing at all in this case. They are represented by a numeric offset with respect to
the stack pointer, not by a symbolic label. As long as the stack pointer is properly initialized to
the base of the array that holds the simulated stack, all address computations on the stack will
yield valid host addresses.

4.3.2 Register types

Scalars

The variables that simulate the EVPs registers will be used frequently, hence the efficiency of their
implementation is an important factor in achieving a fast simulator. For example, the predicate
register file can modelled using the basic data type bool. Combined with the inlining of semantic
functions, this allows most operations on predicates to be translated into a single host machine
instruction.

Similarly, we would like to represent the scalar register file with ints. However, already with
this simple case there are a few complications. The scalar register file consists of 32 registers,
each 16 bits wide, but it can also hold 32-bit values, stored in a pair of adjacent registers with the
constraint that the first register is an even numbered register. This means that we can simulate
this register file efficiently by means of a union construct.

union r e g f i l e s c a l a r {
u in t 16 t h i [3 2] ;
u i n t 32 t s i [1 6] ;
u i n t 64 t d i [8] ;

} ;

extern r e g f i l e s c a l a r r ;

2Before C++11, names in an anonymous namespace actually had external linkage, but were given a unique
prefix at compile time, achieving the same effect. Since C++11 names in an anonymous have internal linkage by
default.

22

stat ic u in t 16 t& r0 = r . h i [0] ;
. . .
stat ic u in t 32 t& r1r0 = r . s i [0] ;
. . .
stat ic u in t 40 t r2 r1 r0 (r . d i [0]) ;
. . .

The scalar register file can also store 40-bit values in three adjacent registers, where the number
of the first register must be a multiple of four. So as long as we take care not to modify the upper
bits, the union approach can still be used by adding an array of 64-bit integers. The protection
of the upper bits is guaranteed by means of a small wrapper class, that stores a reference to the
64-bit integer and overloads the assignment operator and typecast operator.

Vectors

EVP vector registers have a fixed width of 256 bits, but they can be used as a vector of 32 elements
of 8 bits, 16 elements of 16 bits, or 8 elements of 32 bits. This behaviour can be simulated in
the exact same way as we did with the scalar register file. A more complicated situation arises
when we consider compound vectors — the combination of two or three adjacent vector registers,
much like in the scalar register file. The layout of for example a double vector, that stores 16
elements of 32 bits each, is such that the lower bits of each element are stored in the first vector
and the upper bits in the second vector. Hence, the value of a single element of the vector is
not contiguously stored in memory, but is split into two parts, that are exactly one vector length
apart.

An obvious way to simulate the memory layout of vectors would be to implement them as
a class with getter and setter methods for the vector elements. However, due to the reuse of
the semantic functions, our implementation of the vector registers must be compatible with the
one used in the interpretive simulator. This means that the vector class is expected to have a
getter method for vector elements that returns an object. This object should behave as if it is a
regular scalar value. Hence we need implementations of the compound versions of each integer
type, i.e. 16-bit, 32-bit, 40-bit, and 64-bit. The classes that implement this are very similar to
the one implementing the 40-bit integer that was needed for the scalar register file. Each class
stores two pointers and overloads the assignment operator and the typecast operator.

struct u in t 16 c t // compound 16 b i t unsigned i n t e g e r
{

u i n t 8 t ∗ lsw , ∗msw;

u i n t 16 c t (u i n t 8 t ∗ lo , u i n t 8 t ∗ hi) : lsw (l o) , msw(h i) {}

void operator=(const u in t 16 t& va l) const {
∗ l sw = u in t 8 t (va l & 0xFF) ;
∗msw = u in t 8 t (va l >> 8 & 0xFF) ;

}
operator u in t 16 t () const {

return u in t 16 t (∗ l sw) | u in t 16 t (∗msw) << 8 ;
}

} ;

4.3.3 Delayed control flow changes

As was discussed in Section 3.3.1, we need a macro that can execute control flow changes. Two
global variables are introduced to store the type and target of a control flow change; these variables
are set by the semantic functions. The macro can then be implemented with a switch statement,
each case executing a different type of control flow change. In most cases the value of cfc type
can be determined at compile time, due to the fact that the semantic functions are inlined. This
means that the compiler can optimize away the switch statement, leaving only a single control
flow changing instruction. All but one of these instructions are very simple; only the case of

23

function calls looks complicated, but it is just the variable cfc target being cast to a function
pointer and then immediately called.

stat ic enum {JUMP, RETURN, CALL, CONTINUE} c f c t yp e = CONTINUE;
stat ic void∗ c f c t a r g e t ;

#define DELAY SLOT END \
switch (c f c t yp e) \
{ \

case JUMP: c f c t yp e = CONTINUE; goto ∗ c f c t a r g e t ; \
case RETURN: c f c t yp e = CONTINUE; return ; \
case CALL: c f c t yp e = CONTINUE; (∗ ((void (∗) ()) c f c t a r g e t)) () ; \
default : /∗CONTINUE∗/ ; \

}

Note that this mechanism for delayed control flow changes is only correct if branching instruc-
tions do not occur within the delay slots of a previous branching instruction; the macro belonging
to the first branch would execute the control flow change specified by the second branch. The
instruction set architecture allows a branch to be placed in a delay slot of a previous branch if
and only if the two branches are predicated and those predicates are mutually exclusive [8, p. 52],
but it is possible nonetheless. However, the VGCC compiler currently never produces such code,
hence support for this was not (yet) needed. If future modifications of the compiler make the
generation of such code possible, then the situation could be remedied by not keeping the cfc
type and target as single variables, but as queues instead.

Hardware loops

When we discussed hardware loops in Section 3.3.2 we came to the conclusion that we needed
two macros, besides the semantic functions of course. The first macro to jump to the start of the
loop body, and a second macro at the end of the loop body to control the iterating behaviour.
The jump to the start of the loop body can be implemented by reusing the mechanism created
for regular branches. Hence, we only need to implement the second macro.

When we are translating a piece of code, we do not know whether or not it will be used as a
loop body. An easy way to deal with this is by treating the end of every basic block as a possible
loop end, i.e. placing the loop macro before every label in the program. This sounds a lot more
inefficient than it actually is; when implemented correctly, the compiler optimizations can remove
most of the unnecessary checks.

As was the case with branches and function calls, the semantic functions for hardware loops
just store some information in global variables. In this case they store number of iterations and
the begin and end of the loop body, but also update a variable that keeps track of the loop depth,
which is needed since nested hardware loops are possible. By making these variables static,
i.e. contain there scope to a single compilation unit, the compiler should be able to deduce the
value of loop depth at compile time, since it only depends on program structure, not on any
input values. This implies that, at labels that are not part of a loop, the outermost if-statement
of the loop check macro can be statically resolved to False, leading to the entire macro being
optimized away.

#define MAX LOOP DEPTH 3

stat ic int l oop depth = −1;
stat ic u in t 32 t l oop counte r [MAX LOOP DEPTH] ;
stat ic void∗ l o op beg in [MAX LOOP DEPTH] ;
stat ic void∗ l oop end [MAX LOOP DEPTH] ;

#define LOOP CHECK(LABEL) \
i f (loop depth >= 0 && loop end [loop depth] == &&LABEL) \
{ \

i f (−− l o op counte r [loop depth] != 0) \
goto ∗ ((void ∗) l oop beg in [loop depth]) ; \

else \

24

−−l oop depth ; \
}

#define LABEL(NAME) \
LOOP CHECK(NAME) ; \
NAME: \

Having the loop status variables as static (local) variables, means that we can exceed the
specified maximum loop depth by nesting loops that are in different compilation units, e.g. create
a loop around a function call to a function that is defined in a different C++ file and also contains
a loop nest. Since the compiled simulator will most likely be used for architecture exploration
purposes, not verification, this is not seen as much of a problem. However, if needed the situation
could easily be remedied by, for example, introducing an additional loop depth counter that is
truly global.

Jump tables

A switch statement is often compiled into assembly code that utilizes a so called jump table —
a small read-only data section that contains the instruction address of each case label. There are
several difficulties when translating this construct into simulator code. First of all, the variable
that represents the jump table must necessarily be a local variable inside a function, since its
initializer will contain code labels, which are not valid outside the scope of the function. C++
does not support forward declarations of local variables, but in the assembly code the jump table
is placed after the instruction that uses it, so it would seem that some reordering is unavoidable
in this case.

Instead a solution was found that eliminates the need for a variable representing the jump
table; it can be passed as a literal to the semantic function. The jump table itself is output to the
header file as a macro definition, making it irrelevant if it is placed before or after the instruction
using it. For example, a jump table with label L9 generates the following entry in the header file:

#define L9 JUMP TABLE { &&L3 , &&L4 , &&L5 , &&L6 , &&L7 , &&L8 , }

In the simulator source file it can then be used like this:

move slsu ptrD DMADDR32 (ptr0 , L9) ;

The little helper macro JUMP TABLE is introduced for readability purposes. It ensures that
the list of labels that follows it is interpreted as an ‘array of void pointers’-literal. The pointer to
this construct is then cast to a plain integer, to avoid warnings when storing this value in one of
the simulated registers.

#define JUMP TABLE (int) (const void∗const [])

25

26

Chapter 5

Evaluation

5.1 Verification

Before a simulator can be used to verify the correctness of programs, it must first be proven correct
itself. Correctness of a simulator can be decomposed into two parts: functional correctness and
simulation correctness. Obviously, the simulated program should produce identical output for
any given input as the native execution of the program would have produced. On top of that the
simulator should keep track of (some of) the internals of the simulated architecture, and these
values must be correct as well.

5.1.1 Functional correctness

Having SuperTest available greatly simplified the verification of the compiled simulators produced
by our simulation compiler, but it also made the testing very thorough. Configuration of the test
suite involved not much more than adapting the build process of the test programs. Once this
was accomplished, the entire batch of tests could be started with a single command, producing
an overview of the results a while later.

Our compiled simulators successfully passed all the tests in the entire C suite, and most
of the EVP intrinsics tests. The tests that failed either had their validation depend on the
produced assembly code, in which case the reason for failure is obvious, or their source code
contained assembly code, which is not supported by the simulation compiler, as was discussed
earlier. Although even a test suite as comprehensive as SuperTest cannot guarantee with absolute
certainty that our simulation compiler produces a functionally correct result in each and every
case, the fact that we passed all the tests still inspires a high degree of confidence.

5.1.2 Simulation correctness

A simulator should correctly keep track of the internals of the simulated architecture, which in our
case culminates in an accurate cycle count being reported. Verification of the cycle count was done
by comparing the reports of the compiled simulator with that of the interpretive simulator, which
is known to be accurate. The interpretive simulator was used with its data cache simulation turned
off, since compiled simulation does not (yet) support this feature. In general the two simulators
seem to agree, but there are two exceptions. First, there always seems to be a difference of six
cycles, no matter how large or small the total cycle count. A first hypothesis to explain this was
that maybe one simulator counts the delay slots after the last return and the other one does not.
Later we found that all Newlib functions introduce deviations in the cycle count, which is most
likely due to different optimization flags being used during the build of Newlib. This then might
also explain the off-by-six error, since the exit routine, which is part of Newlib, is always called
after the return of the main function. So, if we rebuild the compiled simulation version of Newlib

27

with the exact same optimization flags as were used for the native EVP version, both simulators
will agree on the cycle count, down to the last cycle.

5.2 Performance

One of our goals was to improve simulation speed. It is time to see how well we did in this
area. The most obvious way to evaluate this is by comparing compiled simulation with its direct
competitor, the pre-existing interpretive simulator. The latter has shown some disappointing
performance and due to this a revised version has been created, called fast-sim, that sacrifices
most validation checks and introduces cached instruction decoding in order to achieve a more
reasonable simulation speed. We will determine the speedup of compiled simulation with respect
to this quicker version of the interpretive simulator. All reported simulation times are the medians
of five runs of the simulator, on an Intel R© Xeon R© X5260 processor at 3.33 GHz.

5.2.1 Compiled simulation versus interpretive simulation

The EVP can execute several vector operations in parallel, but it can also run scalar-only pro-
grams, and anything in between. Scalar EVP instructions can often be mapped onto a single host
instruction, and like we argued in Section 2.1.3, this yields a large performance benefit over inter-
pretive simulation. However, as the amount of work per instruction increases, the performance
of compiled simulation is expected to converge towards that of interpretive simulation. In order
to test this hypothesis, two small benchmark programs were created. One purely scalar, and one
consisting mostly of parallel vector operations.

The scalar program, when simulated with both simulators, showed a speedup of roughly
100 times in favor of compiled simulation, as can be seen in Table 5.1. This two orders of
magnitude improvement is what is generally expected from compiled simulation. The second
program, performing two vector additions per instruction, showed a speedup of only 5.6 over the
interpretive simulator. This supports our earlier hypothesis.

The workload per instruction can be increased even further by means of a small adaptation
to the parallel vector addition benchmark: switching from integers to the EVPs native 16-bit
floating point format. This floating point format is not supported by the host machine, hence it
has to be emulated. This reduced the speedup even further to only 2.4 times, which is the worst
performance that has been observed.

Given this two orders of magnitude difference in speedup, depending on the nature of the
program being simulated, one might wonder how well compiled simulation performs when offered
an application that is a more realistic representation of the kinds of workloads that the EVP will
actually have to deal with, instead of small artificial benchmarks that show the extreme cases.
To this end, another two benchmark applications were simulated. The first a collection of FFT
kernels, and the second a complete W-CDMA stack.

The FFT benchmark consists largely of vector operations with a fair amount of parallel

Simulation time Simulation speed

Benchmark Size Cycles fast-sim compsim fast-sim compsim Speedup

scalar sorting 19 kB 8.8 · 107 9.572 s 0.094 s 9 MHz 931 MHz 101.8×
parallel vector addition 10 kB 8.1 · 107 24.957 s 4.305 s 3 MHz 19 MHz 5.8×

float16 vectors 10 kB 8.1 · 107 24.076 s 10.065 s 3 MHz 8 MHz 2.4×
FFT 244 kB 1.2 · 108 22.609 s 4.878 s 5 MHz 24 MHz 4.6×
W-CDMA 589 kB 9.8 · 107 10.144 s 0.085 s 10 MHz 1149 MHz 119.3×

Table 5.1: A comparison of the simulation speed of compiled simulation versus the quickest
version of the interpretive simulator.

28

operations. Hence it is computationally intensive, but at a more realistic level than our worst-
case artificial benchmark, which did little else other than adding floating point vectors. When
simulating the FFT kernel, compiled simulation showed a speedup of nearly five times over
the interpretive simulator. Remember that we are comparing an early prototype of compiled
simulation with a heavily optimized interpretive simulator. It is not unreasonable to expect
that the speedup can reach a full order of magnitude with some improvements to the compiled
simulator (more on this in Chapter 6) — and that for an application that, for all intends and
purposes, can be considered worst-case.

The benchmark applications that we simulated so far were all very small. The speedup of
compiled simulation is most interesting when simulating much larger applications, e.g. complete
protocol stacks. To this end we ran simulations of the W-CDMA stack. Surprisingly, it showed
a speedup of 119 times — more than for the scalar-only benchmark. The W-CDMA benchmark
does contain some scalar parts, but also plenty of parallelism and vector operations. So how
can this larger speedup be explained? The answer lies mostly within the interpretive simulator,
not compiled simulation. The very small scalar benchmark offers a nearly best-case scenario for
the instruction decoding cache in fast-sim. A very limited number of instructions have to be
decoded and stored in the cache, after which all decoding is reduced to cache access. This in
contrast with the W-CDMA stack, which is a fairly large body of code. This hypothesis can be
tested by simulating the W-CDMA stack on the original version of the interpretive simulator,
which does not have an instruction decoding cache. When comparing these results with compiled
simulation, we see a speedup of about 1800 times for the scalar-only benchmark and about 1400
times for the W-CDMA stack, which seems to support our hypothesis.

From this it also follows that we have not yet seen the best-case speedup of compiled simu-
lation. Such behaviour should be elicited by a large, scalar-only application. However, the EVP
was never intended for such applications, hence the best-case scenario could only arise under very
artificial circumstances. All in all, a speedup of around two orders of magnitude can be expected,
when simulating realistic workloads.

5.2.2 Compiled simulation versus native execution

In the previous section we judged the performance of compiled simulation by means of a com-
parison with another simulator. This clearly showed the benefits of compiled simulation over
the current approach, but it tells us nothing about the remaining potential for improvement. We
compared the speed of compiled simulation with that of native execution on the host. This should
give us an idea of the overhead introduced by compiled simulation. All benchmarks with vector
operations are of course excluded, since these cannot be executed natively on the host machine,
leaving only the scalar sorting benchmark. Two new benchmarks were created as well, for reasons
that will be explained later.

The scalar sorting benchmark, when compiled directly for the host, ran only slightly faster
than when executed as compiled simulation. This spells good news for the efficiency of compiled
simulation, or so it seems. With a little thought one can conclude that a sorting algorithm is
constrained by memory bandwidth, since it consists of little else other than loads, stores, compar-
isons, and loop control. The added computational overhead introduced by compiled simulation

Execution time

Benchmark native compsim Slowdown

scalar sorting 0.082 s 0.094 s 1.1 ×
binomial coefficients 0.388 s 0.658 s 1.7 ×
Lucas-Lehmer 0.068 s 0.585 s 8.6 ×

Table 5.2: Scalar benchmarks compiled directly for the host, and as compiled simulations. The
differences in execution times are an indication of the overhead introduced by compiled simulation.

29

is hidden by the time it takes to perform all the memory operations. What we need is a compu-
tationally intensive benchmark.

To this end we implemented a Mersenne prime tester, the Lucas-Lehmer algorithm. This
showed a slowdown of nearly an order of magnitude. Inspection of the code quickly led to the
conclusion that the 32-bit integer division contained in the algorithm is not supported natively
on the EVP, instead a software routine is invoked. This software division will thus also be part of
compiled simulation, whilst the direct compilation allowed usage of the hardware divider in the
host. Here we can clearly see that differences in the instruction sets of host and target machine
can lead to inefficient simulation (we already discussed this in Section 2.1.3).

Finally we created a benchmark that computes a great number of binomial coefficients, using
16-bit integers. This required only instructions available on both architectures, but also contained
both function calls and loops in its main workload — such constructs are a potential source of
slowdown within compiled simulation, as was discussed in Section 3.3.1. With this benchmark we
saw that the execution time of the compiled simulator was about 1.7 times longer than that of the
native binary, i.e. compiled simulation overhead accounted for about 41% of the total execution
time of the compiled simulator.

30

Chapter 6

Conclusions and future work

We have created a compiled simulation system for the EVP and verified the simulators it produces.
Besides the implicit requirement of correctness, we had set ourselves two goals. The first goal,
quick and easy adaptation to changes in the architecture, was met by the design of the simulation
system. A change in the instruction set or the hardware architecture no longer requires the
modification of the instruction encoding, the assembler, and the linker. Only the compiler will
have to be modified, and possibly some new semantic functions have to be created. This makes it
much easier to experiment with, for example, changing the size of a register file, or the addition
or removal of a functional unit.

The second goal, better simulation performance, has been under investigation in Section 5.2.
We observed a speedup of two orders of magnitude over a highly optimized interpretive simulator,
which is what can generally be expected according to the literature. Furthermore, we evaluated
the efficiency of our approach by comparing the execution times of a compiled simulator with
a native execution of the original program, and saw that the overhead of compiled simulation
comprised less than half of the total execution time. It seems safe to conclude that both goals
were achieved.

Of course we might seek to further improve the performance of compiled simulation. Trying
to improve the efficiency of the auxiliary code, i.e. all the macros, instrumentation, and register
types, will meet with limited success. The performance gain for scalar programs will be less than
a factor of two, from what we saw in Section 5.2.2. For vector programs the gain is suspected
to be even less, since simulation overhead comprises a smaller fraction of the workload in those
cases. Hence we could better seek improvement in other areas.

The implementation of the semantic functions, and in particular the wrappers, could be
improved, especially in the case of vector operations. The code on which our wrappers are based,
was created for verification purposes, to test semantic functions in isolation; it was not written
with performance in mind, and worst of all it was untested and was a rich source of bugs. Although
we have come a long way in debugging and improving the wrappers, some work still remains to
be done.

The underlying semantic functions assume that all operands are distinct, i.e. if we provide the
same register as destination operand and as one of the input operands, then in some cases the
semantic function will not execute the semantics of its associated EVP operation correctly. This is
the case for vector operations that do not produce elements of the output vector in the same order
as they are consumed from the input vectors. The issue is resolved in the wrappers, by introducing
temporary variables for all the operands. Since each vector is 256 bits wide, this easily adds up to
a kilobyte of data transfer for each call to a semantic function, i.e. several kilobytes per simulated
instruction. This might make memory bandwidth the bottleneck in simulator performance (this
effect may be visible in Table 5.1; the switch from integer vectors to 16-bit float vectors caused
no additional delay with the interpretive simulator). We improved the wrappers by removing
all but the temporary variables for the destination vectors. Even those are superfluous in most
cases, but those cases need to be identified. Once they have been identified, it is a simple matter

31

to remove the redundant ones, thereby increasing simulation speed.
Another inefficiency has to do with unmasked vector operations. The semantic functions and

wrappers treat every operation as being masked, a default value of all ones being used in cases
where no mask is supplied explicitly. In practice, a significant fraction of vector operations will
be executed without a vector mask. Having a separate implementation for the unmasked version
of a vector operation can be of benefit in many cases. Many vector semantics are implemented
as a loop containing a conditional call to a scalar semantic function. There is no need for this
conditional in an unmasked version of a vector semantic function. If the loop is unrolled as well,
the semantic function would become completely branch-free, which tends to enhance performance.

A completely different approach to improving simulation speed would be to exploit the paral-
lelism present in EVP applications. There seems to be plenty of it; not only can each instruction
consist of up to 13 independent operations, but also each vector operation in itself has a similar
degree of parallelism. It would seem that another two orders of magnitude of speedup are possi-
ble, by introducing multi-threading in the compiled simulators. However, exploiting the available
parallelism in a multi-threaded fashion on a general purpose host would require very fine-grained
synchronization. The parallelism in a VLIW machine is implicitly synchronized every clock cycle
— no FU can run faster than any of the others. This synchronization has to be made explicit in a
multi-threaded model. The added overhead of thread synchronization could diminish the perfor-
mance gains of parallel execution, or even make the simulator run slower than the single-threaded
version. In fact, some early attempts with OpenMP showed just this. Possibly we can reduce
the granularity of synchronization by means of a data flow analysis; two successive instructions
that are independent do not require any synchronization between them. Another way to tackle
the problem could be to choose a platform where thread synchronization is cheaper. For example
GPUs have a lightweight barrier sync mechanism that is ideal for our situation, i.e. a Cuda or
OpenCL version of compiled simulation may be a viable option. In any case, parallelizing com-
piled simulation is a topic that needs much further investigation, but it is the direction in which
the largest possible gains in simulation speed lie.

32

Appendix A

Example code

A.1 EVP-C source code

#include <evp vpr in t . h>

extern v t vec1 ;
extern int op ;

v t vec2 = evp v i n i t 1 6 (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 1 5) ;
int n = 100 ;

int main ()
{

LoopIterMin (10)
for (int i = 0 ; i < n ; i++)
{

op += i ;
op %= 5 ;

}

switch (op)
{

case 0 : vec1 = vec2 ; break ;
case 1 : vec1 = evp vadd 16 (vec1 , vec2) ; break ;
case 2 : vec2 = evp vadd 16 (vec1 , vec1) ; break ;
case 3 : e vp v p r i n t f 1 6 (” %5d” , vec1) ; break ;
case 4 : e vp v p r i n t f 1 6 (” %5d” , vec2) ; break ;
default : return −1;

}

return 0 ;
}

A.2 EVP assembly

//
// EVP Compiler r42d1 : vcc1 v4 .2 rev15 (gcc 4 . 5 . 0) − vd32042 − May 29 2013 14:48:08
//

. data ” readonly ”

.LC0 :
. byte ” %5d\000”

. t ex t ”program”

/////////////////////////
// func t ion main
//
// Local Frame (32 by t e s) :
// ptr15 [28] = regsave ‘ ra ‘ (4)
//
// Parameters :

33

/////////////////////////

. prg main :
. export @main
. entry @main ;

main :
// [1]

load r1 , @n // − IMM+SLSU example . c :12 in sn i d :116
| | vptr update ptr15 , −32 // f VLSU example . c :10 in sn i d :139
| | move r2 , 0 // − SALU example . c :12 in sn i d :9
// [2]

load r3 , @op // − IMM+SLSU example . c :12 in sn i d :21
// [3]

s t o r e o f s ptr15 , 28 , ra // f IMM+SLSU example . c :10 in sn i d :140
// [4]

do r1 , . L3 , . L15−1 // − IMM+PCU example . c :? i n sn i d :583
//DELAY SLOT END

. L3 :
// [1]

move r7 , 5 // − SALU example . c :15 in sn i d :26
// [2]

add r3 , r2 , r3 // − SALU example . c :14 in sn i d :25
// [3]

c lb r4 , r7 // − SALU example . c :15 in sn i d :27
| | move smac r6 , r3 // − SMAC example . c :15 in sn i d :134
// [4]

asrm r5 , r7 , r4 // − SALU example . c :15 in sn i d :28
// [5]

div r6 , r5 , r4 , 16 // − SALU example . c :15 in sn i d :29
// [6]

nop
// [7]

add r2 , r2 , 1 // − SALU example . c :12 in sn i d :32
// [8]

nop
// [9]

nop
// [1 0]

nop
// [1 1]

nop
// [1 2]

nop
// [1 3]

nop
// [1 4]

nop
// [1 5]

macni r3 , r6 , 5 // − SMAC example . c :15 in sn i d :31
. L15 :
// [1]

move r0 , −1 // − SALU example . c :25 in sn i d :11
// [2]

cmpgtui p1 , r3 , 4 // − SALU example . c :18 in sn i d :41
| | s t o r e @op , r3 // − IMM+SLSU example . c :12 in sn i d :39
// [3]

br . L4 , p1 // − IMM+PCU example . c :18 in sn i d :237
// [4]

nop
// [5]

nop
// [6]

nop
// [7]

nop
// [8]

nop
// [9]

nop
// [1 0]

nop
//DELAY SLOT END

// [1]
move r1r0 , 0 // − SALU example . c :18 in sn i d :136

34

| | move s lsu ptr0 , . L10 // − IMM+SLSU example . c :18 in sn i d :132
// [2]

move r0 , r3 // − SALU example . c :18 in sn i d :137
// [3]

move ptr8 , r1 r0 // − SALU example . c :18 in sn i d :44
// [4]

nop
// [5]

move r9r8 , ptr8 // − SALU example . c :18 in sn i d :46
// [6]

asrm r3r2 , r9r8 , −2 // − SALU example . c :18 in sn i d :47
// [7]

move ofs0 , r3 r2 // − SALU example . c :18 in sn i d :48
// [8]

nop
// [9]

l o a d o f s r1r0 , ptr0 , o f s 0 // − SLSU example . c :18 in sn i d :50
// [1 0]

nop
// [1 1]

nop
// [1 2]

br r1r0 // − PCU example . c :18 in sn i d :238
// [1 3]

nop
// [1 4]

nop
// [1 5]

nop
// [1 6]

nop
// [1 7]

nop
// [1 8]

nop
// [1 9]

nop
//DELAY SLOT END

. data ” readonly ”
. a l i g n 4
. a l i g n 4

. STATIC10 :

. L10 :
. byte4 . L5
. byte4 . L6
. byte4 . L7
. byte4 . L8
. byte4 . L9

. t ex t ”program”

. L5 :
// [1]

vload vr0 , @vec2 // − IMM+VLSU example . c :20 in sn i d :131
| | move r0 , 0 // − SALU example . c :28 in sn i d :13
// [2]

nop
// [3]

nop
// [4]

vs to r e @vec1 , vr0 // − IMM+VLSU example . c :20 in sn i d :59
//DELAY SLOT END

. L4 :
// [1]

l o a d o f s ra , ptr15 , 28 // f IMM+SLSU example . c :29 in sn i d :144
// [2]

ptr update ptr15 , 32 // f SLSU example . c :29 in sn i d :145
// [3]

nop
// [4]

nop
// [5]

br ra // − PCU example . c :29 in sn i d :239
// [6]

35

nop
// [7]

nop
// [8]

nop
// [9]

nop
// [1 0]

nop
// [1 1]

nop
// [1 2]

nop
//DELAY SLOT END

. L8 :
// [1]

c a l l a u @evp v fp r i n t f 16 // − IMM+PCU example . c :23 in sn i d :574
// [2]

load ptr0 , @ impure data+8 // − IMM+SLSU example . c :23 in sn i d :82
// [3]

vload vr0 , @vec1 // − IMM+VLSU example . c :23 in sn i d :84
// [4]

move s lsu ptr8 , . LC0 // − IMM+SLSU example . c :23 in sn i d :83
// [5]

nop
// [6]

nop
//DELAY SLOT END

// [7]
move r0 , 0 // − SALU example . c :28 in sn i d :15

| | brau . L4 // − IMM+PCU example . c :23 in sn i d :241
// [8]

nop
// [9]

nop
// [1 0]

nop
// [1 1]

nop
// [1 2]

nop
//DELAY SLOT END

. L9 :
// [1]

c a l l a u @evp v fp r i n t f 16 // − IMM+PCU example . c :24 in sn i d :578
// [2]

load ptr0 , @ impure data+8 // − IMM+SLSU example . c :24 in sn i d :92
// [3]

vload vr0 , @vec2 // − IMM+VLSU example . c :24 in sn i d :94
// [4]

move s lsu ptr8 , . LC0 // − IMM+SLSU example . c :24 in sn i d :93
// [5]

nop
// [6]

nop
//DELAY SLOT END

// [7]
move r0 , 0 // − SALU example . c :28 in sn i d :14

| | brau . L4 // − IMM+PCU example . c :24 in sn i d :243
// [8]

nop
// [9]

nop
// [1 0]

nop
// [1 1]

nop
// [1 2]

nop
//DELAY SLOT END

. L6 :
// [1]

vload vr2 , @vec1 // − IMM+VLSU example . c :21 in sn i d :130
| | move r0 , 0 // − SALU example . c :28 in sn i d :12

36

// [2]
brau . L4 // − IMM+PCU example . c :21 in sn i d :244

// [3]
vload vr3 , @vec2 // − IMM+VLSU example . c :21 in sn i d :65

// [4]
nop

// [5]
nop

// [6]
vadd16 vr1 , vr2 , vr3 // − VALU example . c :21 in sn i d :66

// [7]
vs to r e @vec1 , vr1 // − IMM+VLSU example . c :21 in sn i d :67
//DELAY SLOT END

. L7 :
// [1]

move r0 , 0 // − SALU example . c :28 in sn i d :16
| | brau . L4 // − IMM+PCU example . c :22 in sn i d :245
// [2]

vload vr5 , @vec1 // − IMM+VLSU example . c :22 in sn i d :72
// [3]

nop
// [4]

nop
// [5]

vadd16 vr4 , vr5 , vr5 // − VALU example . c :22 in sn i d :74
// [6]

vs to r e @vec2 , vr4 // − IMM+VLSU example . c :22 in sn i d :75
//DELAY SLOT END

.LPROCEND main :
. s i z e @main , .LPROCEND main−@main

. s e c t i o n ” . debug in fo ” , ” r ”

.PRGINFO0:

. s e c t i o n ” . p rg i n f o ” , ” r ”

.PRGINFO1:
. byte4 .PRGINFO2−.PRGINFO1 // s i z e
. byte2 0x1 // TAG PRGINFO UNIT
. byte4 .PRGINFO0 // d e b u g i n f o o f f s e t
. byte 0x1 // major ver s ion
. byte 0x0 // minor ver s ion

.PRGINFO3:
. byte4 .PRGINFO4−.PRGINFO3 // s i z e
. byte2 0x2 // TAG PRGINFO FUNC
. byte4 dbg index (@main)
. byte4 @main // beg in l a b e l
. byte4 .LPROCEND main // end l a b e l

.PRGINFO5:
. byte4 .PRGINFO6−.PRGINFO5 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [0] // s t a r t addr
. byte4 . prg main [4] // end addr
. byte4 0 x3f800000 // weight (1 .000)

.PRGINFO6:

.PRGINFO7:
. byte4 .PRGINFO8−.PRGINFO7 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [1 9] // s t a r t addr
. byte4 . prg main [2 9] // end addr
. byte4 0 x3f800000 // weight (1 .000)

.PRGINFO8:

.PRGINFO9:
. byte4 .PRGINFO10−.PRGINFO9 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [2 9] // s t a r t addr
. byte4 . prg main [4 8] // end addr
. byte4 0 x3f000000 // weight (0 .500)

.PRGINFO10 :

.PRGINFO11 :
. byte4 .PRGINFO12−.PRGINFO11 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [4 8] // s t a r t addr
. byte4 . prg main [5 2] // end addr
. byte4 0x3e2aaaab // weight (0 .167)

.PRGINFO12 :

37

.PRGINFO13 :
. byte4 .PRGINFO14−.PRGINFO13 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [5 2] // s t a r t addr
. byte4 . prg main [6 4] // end addr
. byte4 0 x3f800000 // weight (1 .000)

.PRGINFO14 :

.PRGINFO15 :
. byte4 .PRGINFO16−.PRGINFO15 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [6 4] // s t a r t addr
. byte4 . prg main [7 0] // end addr
. byte4 0x3e2aaaab // weight (0 .167)

.PRGINFO16 :

.PRGINFO17 :
. byte4 .PRGINFO18−.PRGINFO17 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [7 0] // s t a r t addr
. byte4 . prg main [7 6] // end addr
. byte4 0x3e2aaaab // weight (0 .167)

.PRGINFO18 :

.PRGINFO19 :
. byte4 .PRGINFO20−.PRGINFO19 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [7 6] // s t a r t addr
. byte4 . prg main [8 2] // end addr
. byte4 0x3e2aaaab // weight (0 .167)

.PRGINFO20 :

.PRGINFO21 :
. byte4 .PRGINFO22−.PRGINFO21 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [8 2] // s t a r t addr
. byte4 . prg main [8 8] // end addr
. byte4 0x3e2aaaab // weight (0 .167)

.PRGINFO22 :

.PRGINFO23 :
. byte4 .PRGINFO24−.PRGINFO23 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [8 8] // s t a r t addr
. byte4 . prg main [9 5] // end addr
. byte4 0x3e2aaaab // weight (0 .167)

.PRGINFO24 :

.PRGINFO25 :
. byte4 .PRGINFO26−.PRGINFO25 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [9 5] // s t a r t addr
. byte4 . prg main [1 0 1] // end addr
. byte4 0x3e2aaaab // weight (0 .167)

.PRGINFO26 :

.PRGINFO27 :
. byte4 .PRGINFO28−.PRGINFO27 // s i z e
. byte2 0x3 // TAG PRGINFO LOOP
. byte4 . prg main [4] // entry addr
. byte4 . prg main [1 9] // e x i t addr
. byte4 0 x3f800000 // weight (dummy)

.PRGINFO29 :
. byte4 .PRGINFO30−.PRGINFO29 // s i z e
. byte2 0x4 // TAG PRGINFO BB
. byte4 . prg main [4] // s t a r t addr
. byte4 . prg main [1 9] // end addr
. byte4 0x4121c71c // weight (10.111)

.PRGINFO30 :

.PRGINFO28 :

.PRGINFO4:

. t ex t ”program”
. export @vec2

. data ” readwr i t e ”
. a l i g n 32

vec2 :
. s i z e @vec2 , 32
. byte 0
. byte 0

38

. byte 1

. byte 0

. byte 2

. byte 0

. byte 3

. byte 0

. byte 4

. byte 0

. byte 5

. byte 0

. byte 6

. byte 0

. byte 7

. byte 0

. byte 8

. byte 0

. byte 9

. byte 0

. byte 10

. byte 0

. byte 11

. byte 0

. byte 12

. byte 0

. byte 13

. byte 0

. byte 14

. byte 0

. byte 15

. byte 0

. export @n

. a l i g n 2
n :

. s i z e @n, 2

. byte2 100

. import @ impure data

. import @evp v fp r i n t f 16

. import @vec1

. import @op
. s e c t i o n ” . p rg i n f o ” , ” r ”
.PRGINFO2:

A.3 Generated simulator code

A.3.1 Header file

namespace {

DECLARE CONSTANT(LC0) ;
DECLARE FUNCTION(main) ;
#define L10 JUMP TABLE { &&L5 , &&L6 , &&L7 , &&L8 , &&L9 , }
DECLARE OBJECT(vec2 , 3 2) ;
DECLARE OBJECT(n , 2) ;
IMPORT(impure data) ;
IMPORT(e vp v f p r i n t f 1 6) ;
IMPORT(vec1) ;
IMPORT(op) ;

}

39

A.3.2 Source file

//
// EVP Compiler r42d1 : vcc1 v4 .2 rev15 (gcc 4 . 5 . 0) − vd32042 − May 29 2013 14:48:08
//

#include ”compsim . h”
#include ”example . c s . h”

namespace {

CONSTANT(LC0) { ’ ’ , ’%’ , ’ 5 ’ , ’ d ’ , ’ \0 ’ , } ;

/////////////////////////
// func t ion main
//
// Local Frame (32 by t e s) :
// ptr15 [28] = regsave ‘ ra ‘ (4)
//
// Parameters :
/////////////////////////

EXPORT(main)
FUNCTION(main)
CYCLE load rD1 DMADDR32(r1 , evp n) ; // − IMM+SLSU example . c :12 in sn i d :116

vptr update ptrA VLSIMMN(ptr15 , −32) ; // f VLSU example . c :10 in sn i d :139
move rD1 IMM5(r2 , 0) ; // − SALU example . c :12 in sn i d :9

CYCLE load rD1 DMADDR32(r3 , evp op) ; // − IMM+SLSU example . c :12 in sn i d :21
CYCLE store ofs ptrA DMOFS16 gr1XC (ptr15 , 28 , ra) ; // f IMM+SLSU example . c :10 in sn i d :140
CYCLE do rR1 l oop s t a r t l o op end (r1 , &&L3 , &&L15) ; // − IMM+PCU example . c :? i n sn i d :583

DELAY SLOT END

LABEL(L3)

CYCLE move rD1 IMM5(r7 , 5) ; // − SALU example . c :15 in sn i d :26
CYCLE add rD1 rA1 rB1 (r3 , r2 , r3) ; // − SALU example . c :14 in sn i d :25
CYCLE clb rD1 rA1 (r4 , r7) ; // − SALU example . c :15 in sn i d :27

move smac rD1 rA1 (r6 , r3) ; // − SMAC example . c :15 in sn i d :134
CYCLE asrm rD1 rA1 rB1 (r5 , r7 , r4) ; // − SALU example . c :15 in sn i d :28
CYCLE div rD1 rA1 rB1 DIVPRECMAX16(r6 , r5 , r4 , 16) ; // − SALU example . c :15 in sn i d :29
CYCLE // nop
CYCLE add rD1 rA1 IMM5 (r2 , r2 , 1) ; // − SALU example . c :12 in sn i d :32
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE macni rD1 rA1 IMM4 (r3 , r6 , 5) ; // − SMAC example . c :15 in sn i d :31

LABEL(L15)

CYCLE move rD1 IMM5(r0 , −1) ; // − SALU example . c :25 in sn i d :11
CYCLE cmpgtui pD rA1 UIMM5(p1 , r3 , 4) ; // − SALU example . c :18 in sn i d :41

store DMADDR32 rB1 (evp op , r3) ; // − IMM+SLSU example . c :12 in sn i d :39
CYCLE br PMADDR delay3 7 5 1 (&&L4 , p1) ; // − IMM+PCU example . c :18 in sn i d :237
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop

DELAY SLOT END
CYCLE move rD2 IMM5(r1r0 , 0) ; // − SALU example . c :18 in sn i d :136

move slsu ptrD DMADDR32 (ptr0 , L10) ; // − IMM+SLSU example . c :18 in sn i d :132
CYCLE move rD1 rA1 (r0 , r3) ; // − SALU example . c :18 in sn i d :137
CYCLE move gr2D rA2 (ptr8 , r1r0) ; // − SALU example . c :18 in sn i d :44
CYCLE // nop
CYCLE move rD2 gr2A (r9r8 , ptr8) ; // − SALU example . c :18 in sn i d :46

40

CYCLE asrm rD2 rA2 IMM5 (r3r2 , r9r8 , −2) ; // − SALU example . c :18 in sn i d :47
CYCLE move gr2D rA2 (ofs0 , r3 r2) ; // − SALU example . c :18 in sn i d :48
CYCLE // nop
CYCLE load o f s rD2 pt rA o f sB (r1r0 , ptr0 , o f s 0) ; // − SLSU example . c :18 in sn i d :50
CYCLE // nop
CYCLE // nop
CYCLE br rR2 de l ay3 7 5 1 (r1r0) ; // − PCU example . c :18 in sn i d :238
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop

DELAY SLOT END

// jump t a b l e L10

LABEL(L5)

CYCLE vload vrD1 DMADDR32(vr0 , evp vec2) ; // − IMM+VLSU example . c :20 in sn i d :131
move rD1 IMM5(r0 , 0) ; // − SALU example . c :28 in sn i d :13

CYCLE // nop
CYCLE // nop
CYCLE vstore DMADDR32 vrB1 (evp vec1 , vr0) ; // − IMM+VLSU example . c :20 in sn i d :59

DELAY SLOT END

LABEL(L4)

CYCLE load ofs gr1XD ptrA DMOFS16 (ra , ptr15 , 28) ; // f IMM+SLSU example . c :29 in sn i d :144
CYCLE ptr update ptrA LSIMMP (ptr15 , 32) ; // f SLSU example . c :29 in sn i d :145
CYCLE // nop
CYCLE // nop
CYCLE br r a d e l a y 3 7 5 1 (ra) ; // − PCU example . c :29 in sn i d :239
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop

DELAY SLOT END

LABEL(L8)

CYCLE callau PMADDR delay7 5 1 1 (e vp e vp v f p r i n t f 1 6) ; // − IMM+PCU example . c :23 in sn i d :574
CYCLE load gr1D DMADDR32(ptr0 , evp impure data+8) ; // − IMM+SLSU example . c :23 in sn i d :82
CYCLE vload vrD1 DMADDR32(vr0 , evp vec1) ; // − IMM+VLSU example . c :23 in sn i d :84
CYCLE move slsu ptrD DMADDR32 (ptr8 , evp LC0) ; // − IMM+SLSU example . c :23 in sn i d :83
CYCLE // nop
CYCLE // nop

DELAY SLOT END
CYCLE move rD1 IMM5(r0 , 0) ; // − SALU example . c :28 in sn i d :15

brau PMADDR delay3 5 5 1 (&&L4) ; // − IMM+PCU example . c :23 in sn i d :241
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop
CYCLE // nop

DELAY SLOT END

LABEL(L9)

CYCLE callau PMADDR delay7 5 1 1 (e vp e vp v f p r i n t f 1 6) ; // − IMM+PCU example . c :24 in sn i d :578
CYCLE load gr1D DMADDR32(ptr0 , evp impure data+8) ; // − IMM+SLSU example . c :24 in sn i d :92
CYCLE vload vrD1 DMADDR32(vr0 , evp vec2) ; // − IMM+VLSU example . c :24 in sn i d :94
CYCLE move slsu ptrD DMADDR32 (ptr8 , evp LC0) ; // − IMM+SLSU example . c :24 in sn i d :93
CYCLE // nop
CYCLE // nop

DELAY SLOT END
CYCLE move rD1 IMM5(r0 , 0) ; // − SALU example . c :28 in sn i d :14

brau PMADDR delay3 5 5 1 (&&L4) ; // − IMM+PCU example . c :24 in sn i d :243
CYCLE // nop
CYCLE // nop

41

CYCLE // nop
CYCLE // nop
CYCLE // nop

DELAY SLOT END

LABEL(L6)

CYCLE vload vrD1 DMADDR32(vr2 , evp vec1) ; // − IMM+VLSU example . c :21 in sn i d :130
move rD1 IMM5(r0 , 0) ; // − SALU example . c :28 in sn i d :12

CYCLE brau PMADDR delay3 5 5 1 (&&L4) ; // − IMM+PCU example . c :21 in sn i d :244
CYCLE vload vrD1 DMADDR32(vr3 , evp vec2) ; // − IMM+VLSU example . c :21 in sn i d :65
CYCLE // nop
CYCLE // nop
CYCLE vadd16 vrD1 vrA1 vrB1 (vr1 , vr2 , vr3) ; // − VALU example . c :21 in sn i d :66
CYCLE vstore DMADDR32 vrB1 (evp vec1 , vr1) ; // − IMM+VLSU example . c :21 in sn i d :67

DELAY SLOT END

LABEL(L7)

CYCLE move rD1 IMM5(r0 , 0) ; // − SALU example . c :28 in sn i d :16
brau PMADDR delay3 5 5 1 (&&L4) ; // − IMM+PCU example . c :22 in sn i d :245

CYCLE vload vrD1 DMADDR32(vr5 , evp vec1) ; // − IMM+VLSU example . c :22 in sn i d :72
CYCLE // nop
CYCLE // nop
CYCLE vadd16 vrD1 vrA1 vrB1 (vr4 , vr5 , vr5) ; // − VALU example . c :22 in sn i d :74
CYCLE vstore DMADDR32 vrB1 (evp vec2 , vr4) ; // − IMM+VLSU example . c :22 in sn i d :75

DELAY SLOT END
END FUNCTION(main)

EXPORT(vec2)

INITIALIZE(vec2 , 3 2) { BYTE(0) , BYTE(0) , BYTE(1) , BYTE(0) , BYTE(2) , BYTE(0) , BYTE(3) , BYTE(0) ,
BYTE(4) , BYTE(0) , BYTE(5) , BYTE(0) , BYTE(6) , BYTE(0) , BYTE(7) , BYTE(0) ,
BYTE(8) , BYTE(0) , BYTE(9) , BYTE(0) , BYTE(10) , BYTE(0) , BYTE(11) , BYTE(0) ,
BYTE(12) , BYTE(0) , BYTE(13) , BYTE(0) , BYTE(14) , BYTE(0) , BYTE(15) , BYTE(0) ,

} ;

EXPORT(n)
INITIALIZE(n , 2) { BYTE2(100) , } ;

}

42

Bibliography

[1] Joseph A. Fisher, Paolo Faraboschi, Cliff Young, Embedded computing: A VLIW approach
to architecture, compilers and tools. Elsevier, 2005.

[2] Christopher Mills, Stanley C. Ahalt, Jim Fowler, Compiled Instruction Set Simulation. Soft-
ware — Practice and Experience, vol. 21 (8), pp. 877–889, 1991.

[3] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich Meyr, Andreas
Hoffmann, A Universal Technique for Fast and Flexible Instruction-Set Architecture Sim-
ulation. Proceedings of the 39th annual Design Automation Conference, pp. 22–27, ACM,
2002.

[4] Moo-Kyoung Chung, Chong-Min Kyung, Improvement of Compiled Instruction Set Simu-
lator by Increasing Flexibility and Reducing Compile Time. Proceedings of the 15th IEEE
International Workshop on Rapid System Prototyping, 2004.

[5] Zivojnovi, Vojin, Steven Tjiang, Heinrich Meyr, Compiled simulation of programmable DSP
architectures. Journal of VLSI signal processing systems for signal, image and video technol-
ogy 16.1, pp. 73–80, 1997.

[6] Zhonglei Wang, Jörg Henkel, HyCoS: Hybrid Compiled Simulation of Embedded Software with
Target Dependent Code. Proceedings of the 8th IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, pp. 133–142, 2012.

[7] Edsger W. Dijkstra, Go To Statement Considered Harmful. Communications of the ACM,
Vol. 11, No. 3, pp. 147–148, 1968.

[8] Instruction Set Manual — Instruction set for VD32042. ST-Ericsson, 2011.

[9] Richard M. Stallman, GNU compiler collection internals: for GCC version 4.5.0. Free Soft-
ware Foundation (2010).

[10] Diego Novillo, From source to binary: The inner workings of GCC. Red Hat Magazine
(www.redhat.com/magazine/002dec04/features/gcc), 2004.

[11] Jan Hubička, The GCC call graph module: a framework for inter-procedural optimization.
Proceedings of the 2004 GCC Developers’ Summit, pp. 65–78, 2004.

[12] Alex Turjan, Dmitry Cheresiz, Claudiu Zissulescu, Wim Kloosterhuis, VGCC: the GCC port
for the EVP architecture. ST-Ericsson, 2012.

43

www.redhat.com/magazine/002dec04/features/gcc

	Introduction
	Goals

	Background
	Simulation
	Abstraction levels
	Simulation techniques
	Compiled simulation

	Embedded Vector Processor
	Architecture
	EVP-C

	GNU Compiler Collection
	GCC port for the EVP

	Newlib
	SuperTest

	Design
	Simulation compiler
	Registers
	Instructions
	Control flow changes
	Hardware loops

	Memory
	Components of a compiled simulator
	Libraries
	Instrumentation code

	Implementation
	Compiler modifications
	Machine description
	Back end code

	Reuse of semantic functions
	Auxiliary code
	Declarations and scope
	Register types
	Delayed control flow changes

	Evaluation
	Verification
	Functional correctness
	Simulation correctness

	Performance
	Compiled simulation versus interpretive simulation
	Compiled simulation versus native execution

	Conclusions and future work
	Example code
	EVP-C source code
	EVP assembly
	Generated simulator code
	Header file
	Source file

	Bibliography

