
 Eindhoven University of Technology

MASTER

Modeling and implementation of an interface adapter between wide format printers and
finishers

Tirupalathurai Kannan, B.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d7b662f7-a11f-4f71-b56c-18cf836a4174

Department of Mathematics and Computer Science

Software Engineering and Technology Group

Modeling and Implementation of an Interface Adapter
between Wide Format Printers and Finishers

Master Thesis

Author: B. Tirupalathurai Kannan

Supervisors:

Dr. Lou Somers (TU/e)

Ing. Stephan Derks (Océ)

Venlo, August 2013

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers i

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers ii

Abstract

Interface implementation between different software components usually takes a
considerable amount of time and effort. Océ faces a similar problem in the area
of wide format printers. The wide format printers produced by Océ have to be
interfaced with finishers from Océ and other companies. Finishers are devices
which are connected to printers and perform ancillary activities like folding and
stacking of papers with sheets delivered from a printer. The project aim was to
develop a generic adapter which takes care of the electrical and functional
interface incompatibilities between Océ wide format printers and finishers. The
software adapter was designed using a model based approach which reduces the
functional interface implementation time. The main contributions of the project
are architecture and design for the adapter, design of a generic protocol
between Océ wide format printers and the adapter, selection of a modeling
approach for the adapter design and a prototype implementation of the
adapter (deployed on an interface board) to test the feasibility of the design.

Keywords: Océ wide format printers, finishers, adapter, modeling approach

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers iii

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers iv

Dedicated to my beloved parents who have always been a source of inspiration and motivation in
every step of my life.

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers v

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers vi

Preface

This thesis is a result of the graduation project as part of the curriculum for the degree MSc in
Embedded Systems at TU/e. The project was carried out within the Software Engineering and
Technology group of the Mathematics and Computer Science department of the TU/e in
collaboration with the System and Development department in the Océ-Technologies. The project
duration was from February 2013 to August 2013 at Océ-Technologies, Venlo. The project had a
preparation phase from December 2012 to February 2013 as part of the MSc curriculum.

Barath Tirupalathurai Kannan
August, 2013

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers vii

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers viii

Acknowledgments

I wish to thank the TU/e and the management of Océ-Technologies for providing me with the
scholarship to finance my studies in the Netherlands. I would like to thank the management of Océ-
Technologies for providing me opportunity to participate in a summer internship, master thesis
project and other activities related to the company. My special thanks to Lou Somers who has been
guiding me in my summer internship and my master thesis. His expertise, practical approach and risk
analysis helped me to foresee most of the risks at an earlier stage of the project. My sincere thanks
to Stephan Derks who has guided me in my master thesis. He gave me good amount of freedom to
work in the project and was willing to accept new ideas from me. I will miss my weekly meetings with
my supervisors.

The working environment in Océ has been very amicable and there are several colleagues who
helped me in my project. I thank Erik Schoenmakers for helping me with the generic protocol design
and the ASD. I thank Louis Van Gool for helping me with the ASD and interface language. I would like
to thank Henri Hunnikens, Ralph Woltering, Gert Voets, Sidney Laracker, Bart van der Meulen, Harald
Schwindt, Richard van Enckevort, Robert Jacobs, Rob Janssen, Kim Leeks and Hans Derks who
facilitated my successful completion of this work in different capacities which space will not permit
me to elaborate then.

I would like to give warm regards to Reinder J. Bril and Tom Verhoeff who gave valuable feedback
during my kickoff and midterm presentations which helped me to improve the project. I extend my
regards to Arjan Mooij from the Embedded Systems Institute who gave initial insight into several
modeling approaches using Petri nets and the ASD.

Last, but not least, I would like to thank my parents and friends. Without your support and prayers it
would not have been possible for me to succeed in life.

Barath Tirupalathurai Kannan
August, 2013

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers ix

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers x

Table of Contents

LIST OF FIGURES XII

LIST OF TABLES XIV

LIST OF ACRONYMS XV

1 INTRODUCTION 1

1.1 BACKGROUND 1
1.1.1 Wide Format Printers 2
1.1.2 Wide Format Finishers 3
1.1.3 Current Setup 3

1.2 PROBLEM DESCRIPTION 4
1.3 GOALS 5
1.4 APPROACH TAKEN 5

1.4.1 Proposed Solution 5
1.4.2 Research Challenges 7
1.4.3 Project Life Cycle 10

1.5 REPORT ORGANIZATION 11

2 DOMAIN ANALYSIS 12

2.1 FINISHER CAPABILITIES 12
2.1.1 Present Capabilities 12
2.1.2 Future Capabilities 13

2.2 FINISHER PROTOCOL ANALYSIS 14
2.2.1 Message Formats 14
2.2.2 Protocol Details 15
2.2.3 Message Categories 18
2.2.4 Message Conversion Complexities 19

2.3 CUT-SHEET PRINTER INTERFACE SOLUTIONS 20
2.4 CONCLUSION 22

3 ARCHITECTURE 23

3.1 REQUIREMENT ANALYSIS 23
3.2 CONCEPTUAL VIEW 25
3.3 LOGICAL VIEW 26
3.4 DEPLOYMENT VIEW 27
3.5 COMPONENT VIEW 29
3.6 BOUNDARIES OF THE ARCHITECTURE 31
3.7 CONCLUSION 32

4 GENERIC PROTOCOL AND MODELING APPROACH SELECTION 33

4.1 TYPICAL ADAPTER SCENARIO 33
4.2 GENERIC PROTOCOL 35

4.2.1 Domain Concepts 35
4.2.2 Analysis of Complexities in Message Conversion 37

4.3 TOOLS INVESTIGATED 38

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers xi

4.3.1 Petri nets 38
4.3.2 ASD 41
4.3.3 Event-B 43
4.3.4 Rational Rose – Real Time 43
4.3.5 Interface Language 44
4.3.6 SDL 45

4.4 SELECTION CRITERIA 45
4.5 MODELING SELECTION CHART 47
4.6 CONCLUSION AND RECOMMENDATIONS 49

5 ASD 50

5.1 MODELING USING ASD 50
5.2 DESIGN VERIFICATION USING ASD 55
5.3 CODE GENERATION AND INTEGRATION 57
5.4 CONCLUSION 59

6 PROTOTYPING 60

6.1 TEST SETUP 60
6.2 TESTING THE PROTOTYPE BOARD 61
6.3 INTERFACING WITH INTER-PROCESS COMMUNICATION LIBRARY 63
6.4 IMPLEMENTATION OF TYPICAL SCENARIOS 65
6.5 IMPLEMENTATION OF LINK HANDLING 73
6.6 CONCLUSION 74

7 CONCLUSIONS 75

7.1 MAIN CONTRIBUTIONS 75
7.2 LIMITATIONS AND FUTURE WORK 76
7.3 FINAL OUTCOME 77

REFERENCES 78

APPENDIX A: “MESSAGE LIST FOR VARIOUS FINISHERS” 80

APPENDIX B: “OCÉ PROTOTYPE BOARD SPECIFICATION” 81

APPENDIX C: “GENERIC PROTOCOL FOR ADAPTER INTERFACE” 82

APPENDIX D: “ASD SPECIFICATION FOR THE PROTOTYPES: TYPICAL ADAPTER SCENARIO AND LINK
HANDLING” 83

APPENDIX E: “INTER-PROCESS COMMUNICATION SPECIFICATION FOR THE PROTOTYPE OF TYPICAL ADAPTER
SCENARIOS” 84

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers xii

List of Figures

FIGURE 1.1.1: PRINTER CONNECTED TO A FINISHER 2
FIGURE 1.1.2: OCÉ PLOT WAVE 350 PRINTER 2
FIGURE 1.1.3: OCÉ 4311-FULLFOLD FINISHER 3
FIGURE 1.1.4: SIMPLIFIED CURRENT SETUP OF THE PRINTER-FINISHER INTERFACING 3
FIGURE 1.4.1: PROPOSED SOLUTION FOR THE PRINTER-FINISHER INTERFACING 6
FIGURE 1.4.2: PROJECT LIFE CYCLE 10
FIGURE 2.1.1: SOFTWARE DOWNLOAD FEATURE 13
FIGURE 2.1.2: MULTIPLE FINISHERS FEATURE 14
FIGURE 2.2.1: LOW LEVEL MESSAGE FORMAT TYPE 1 15
FIGURE 2.2.2: LOW LEVEL MESSAGE FORMAT TYPE 2 15
FIGURE 2.2.3: PARALLEL PAPER TASK HANDLING 16
FIGURE 2.2.4: SEQUENTIAL PAPER TASK HANDLING 17
FIGURE 2.2.5: ERROR HANDLING PROCEDURE FOR A PAPER JAM 18
FIGURE 2.3.1: COMMON INTERFACE PROTOCOL 20
FIGURE 2.3.2: PAPER HANDLING PROCEDURE IN CUT-SHEET ENVIRONMENT WITH MULTIPLE FINISHERS 22
FIGURE 3.2.1: CONCEPTUAL VIEW 25
FIGURE 3.3.1: LOGICAL VIEW 26
FIGURE 3.4.1: REAL DEPLOYMENT VIEW 28
FIGURE 3.4.2: PROTOTYPE DEPLOYMENT VIEW 28
FIGURE 3.5.1: COMPONENT STATIC VIEW 29
FIGURE 3.5.2: COMPONENT DYNAMIC VIEW 31
FIGURE 4.1.1: TYPICAL ADAPTER SCENARIO 34
FIGURE 4.1.2: STATE MACHINES FOR THE TYPICAL ADAPTER SCENARIO 34
FIGURE 4.2.1: IMPACT OF SYSTEM_DELAY IN TIMEOUT CALCULATION 37
FIGURE 4.3.1: TOOL CHAIN 39
FIGURE 4.3.2: ARCHITECTURE OF THE TOOL 40
FIGURE 4.3.3: BEHAVIORAL INPUT MODELS AND THE SYNTHESIZED ADAP_CONV MODULE 41
FIGURE 4.3.4: ASD FUNCTIONALITY 42
FIGURE 4.3.5: EVENT-B TOOLSET 43
FIGURE 4.3.6: INTERFACE LANGUAGE FUNCTIONALITY 44
FIGURE 5.1.1: ASD COMPONENTS OF AN ADAPTER 50
FIGURE 5.1.2: ASD COMPONENT INTERACTIONS 51
FIGURE 5.1.3: EXAMPLE OF AN ASD TABLE (INTERFACE MODEL) 52
FIGURE 5.1.4: EXAMPLE OF AN ASD TABLE (DESIGN MODEL) 52
FIGURE 5.1.5: EXAMPLE OF A COMPLETE ASD MODEL OF THE ADAPTER 54
FIGURE 5.2.1: EXAMPLE OF DESIGN MODEL VERIFICATION USING ASD 55
FIGURE 5.2.2: EXAMPLE OF INTERFACE MODEL VERIFICATION USING ASD 56
FIGURE 5.2.3: EXAMPLE OF AN INTERFACE VIOLATION CAPTURED BY ASD 56
FIGURE 5.3.1: EXAMPLE OF STUB GENERATION USING ASD 58
FIGURE 6.1.1: PROTOTYPE TEST SETUP 60
FIGURE 6.2.1: INITIAL TESTING OF PROTOTYPE BOARD 62
FIGURE 6.3.1: PROTOCOL STACK 63
FIGURE 6.3.2: TOOL FUNCTIONALITY 64
FIGURE 6.3.3: TESTING THE ADAPTER ARCHITECTURE USING THE INTER-PROCESS LIBRARY 64
FIGURE 6.4.1: ADAPTER SCENARIO 1 65

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers xiii

FIGURE 6.4.2: ADAPTER SCENARIO 2 66
FIGURE 6.4.3: ADAPTER SCENARIO 3 66
FIGURE 6.4.4: STATE MACHINES FOR TYPICAL ADAPTER SCENARIOS 67
FIGURE 6.4.5: COMPONENTS OF ASD FOR TYPICAL ADAPTER SCENARIOS 68
FIGURE 6.4.6: COMPLETE SOFTWARE COMPONENTS FOR TYPICAL ADAPTER SCENARIOS 69
FIGURE 6.4.7: ASD GENERATED FILES 69
FIGURE 6.4.8: CODE SNIPPET FOR THE INTERFACING OF ASD CLIENT STUBS 70
FIGURE 6.4.9: COMPILATION AND LINKING PROCEDURE FOLLOWED 71
FIGURE 6.4.10: SCREENSHOT OF THE PROTOTYPE TESTING 72
FIGURE 6.5.1: ASD COMPONENTS FOR LINK HANDLING MESSAGE CATEGORY (PARTIAL) 73

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers xiv

List of Tables

TABLE 4.5.1: MODELING SELECTION CHART 48

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers xv

List of Acronyms

CRC Cyclic Redundancy Check
PC Personal Computer
CPU Central Processing Unit
XML Extensible Markup Language
IPC Inter Process Communication
CASE Computer-aided Software Engineering
SEA Specification of Elementary Activities
SBS Sequence based Specifications
DPC Deferred Procedure Call
ASD Analytical Software Design
SDL Specification and Description Language
OS Operating System
USB Universal Serial Bus
ECB Ethernet Control Model
TFTP Trivial File Transfer Protocol
IP Internet Protocol
GUI Graphical User Interface

Introduction 1

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 1

Chapter 1

Introduction

Wide format printers operate on a continuous sheet of paper. Finishers perform ancillary activities
like folding, and stacking with sheets coming out of the printer. The wide format printers from Océ
need to interoperate with various types of finishers from Océ and other companies. The interface
specification between a printer and a finisher involves mechanical, electrical and functional
descriptions. The mechanical interface description decides upon the physical connection between
the printer and the finisher. The electrical interface description decides upon the type of
communication, communication media and electrical connectors. The functional interface
specification decides upon the functional interface protocol employed between the printer and the
finisher. The interface specification differs from one finisher to another. The interfacing of a printer
and a finisher takes a considerable amount of time and effort due to the varied interface
specification across finishers. The objective of this thesis is to find a solution for this interfacing
problem with respect to the electrical and functional interface between Océ wide format printers
and finishers.

This chapter emphasizes the aforementioned problem and related concepts in a detailed manner.
Section 1.1 explains the background domain concepts necessary to understand the problem.
Section 1.2 explains the problem description in detail. Section 1.3 explains the goals associated with
this project. Section 1.4 explains the approach taken in solving the problem. Section 1.5 explains the
organization of rest of the report.

1.1 Background

Océ is a leading player in the area of wide format printing systems. The products are primarily
printers and copiers and may consist of other modules like an external PIM (paper input module), a
scanner and a finisher. Figure 1.1.1 shows a printer connected to a finisher. The printer configures
the finisher for handling finishing jobs and signals the finisher about the arrival of the sheets to the

Introduction 2

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 2

finisher. The behavior of the system can be compared to a master and slave relationship where the
printer is the master sending commands to the finisher and the finisher is the slave responding to
the printer’s commands.

Figure 1.1.1: Printer connected to a finisher

1.1.1 Wide Format Printers

Wide-format printers are generally printers with a print width between 17" and 100". These are
used to print banners, posters, Architecture/Engineering/Construction (AEC) diagrams, computer
aided design (CAD) diagrams and geographic information system (GIS) data. These generally use a
roll of print material rather than individual sheets and may incorporate hot-air dryers to prevent
prints from sticking to themselves as they are produced [7]. An example of a wide format printer,
the Océ plot wave 350 printer is shown in Figure 1.1.2. The Océ plot wave printer produces up to six
A1 or D-size plots per minute.

Figure 1.1.2: Océ plot wave 350 printer

Printer Finisher

http://en.wikipedia.org/wiki/Printer_(computing)

Introduction 3

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 3

1.1.2 Wide Format Finishers

Wide format finishers perform post-printing actions such as folding or stacking. These are
manufactured by Océ or by other companies. These have to be connected mechanically and
electrically with a printer in order to operate. These interact with the printer through a functional
interface protocol. A printer can set finishing specification like folding length for the sheets through
the functional interface. The interfacing of finishers with printers takes a considerable amount of
time and effort due to the fact that finishers can be from other companies with different interface
requirements. Some of the finisher’s vendors do not provide complete dynamic specification of the
functional interface making it tougher for the printer integration. An example of a wide format
finisher, the Océ 4311-fullfold finisher is shown in Figure 1.1.3. The Océ 4311 finisher produces
folded copies and drawings that are accurate up to the millimeter scale.

Figure 1.1.3: Océ 4311-fullfold finisher

1.1.3 Current Setup

Figure 1.1.4 shows the simplified current setup of the printer-finisher interfacing. Printer type X,
here is any wide format printer from Océ and finisher type Y is any wide format finisher from Océ or
other companies. The term ‘type’ is mentioned here to stress the differences in the interface across
finishers. The term ‘X’ represents any number to signify an individual printer. The term ‘Y’
represents any number to signify an individual finisher. The setup is simplified because some
printers can interface with more than one type of finisher. The important point to stress here is that
the most of the current wide format printers from Océ can interface with only one type of finisher.
Currently, a printer can interface with only one finisher at a time.

Figure 1.1.4: Simplified current setup of the printer-finisher interfacing

Printer type X Finisher type Y

Introduction 4

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 4

The current generation of finishers uses RS-232 or RS-232 variants (RS-232 with an additional pin for
power control) or serial or parallel connectors for electrical connectivity. The finishers from other
vendors have their own functional interface specification which has to be used for printer-finisher
interfacing. Due to the above mentioned reasons, the printers can interoperate with only one or
two types of finishers. The problem with this approach is that the finisher usage is restricted to
some printers. The interface implementation with a new finisher involves re-work every time. Océ
wide-format printer’s electrical interface will be changed in the future to universal serial bus (USB)
connectors to bring uniformity at the level of electrical interface and to support increased data
rates. This change should be accompanied with the support for existing finishers since these are
already interfaced with the printers. The idea is that the printers should be able to interface with all
finishers. First, this demands a hardware converter for interfacing different electrical connectors. A
typical example justifying the above statement is that the converter for USB to RS-232 variants is
not readily available in the market. Second, there is a necessity for a functional interface converter
to support different functional interfaces across finishers.

1.2 Problem Description

Océ faces a challenge in interfacing their printers with finishers from Océ and other companies.
Finishers communicate with printers using specific functional and electrical interfaces. The current
printer’s software has been designed to interface a particular finisher. This approach limits the
interoperability of finishers with printers and affects the software development time needed for the
interface implementation. The approach also affects the maintainability of the printers with a
necessity to change the printer’s software for every finisher related software patches. The
requirement is that any type of Océ wide format printer must be able to communicate with any
type of finisher. The idea is to come up with a model based framework which eases the integration
(with respect to time and effort) of the existing finishers and robust enough to integrate future
generation of finishers. The approach should also improve the maintainability of the printer’s
software.

Business Motivation: Océ sells printers and finishers separately to its customers. Currently,
customers pay for the printer which includes the price for finisher’s interfacing hardware and
software. This situation is unwarranted since some customers do not require finishers but they have
to pay extra money indirectly. This affects the competitive pricing of Océ printers in the market. The
new framework must ensure that the finisher software is not part of the printer in order to conform
to this business interest. Another motivation is to reduce the additional time and effort spent in the
interface implementation which ultimately adds to the cost of the printer. The ambition is to make
the design reusable as much as possible for finisher integration thereby gaining an advantage on
the cost.

Problem Statement: To propose a model based framework for interfacing Océ wide format printers
with any type of wide format finisher and to prototype a model based framework to test the
feasibility.

Introduction 5

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 5

1.3 Goals

Given the problem definition in the previous section, the goals of the projects are the following:

• Propose a solution for printer-finisher interfacing at the product level
• Identify the present and future interface requirements of finishers
• Construct an architecture that supports finisher interface requirements
• Specification and design of an interface protocol introduced due to the new architecture
• Investigate different model based approaches for the adapter software design
• Identify a suitable modeling approach for the project
• Prototype using the modeling approach to test the feasibility of the modeling approach

The scope of the thesis is limited to wide format printers and not cut-sheet printers. The cut-sheet
printers work on individual sheets of paper like A4 and A3. The cut-sheet printers have different
functional interface requirements for finisher operations.

Note: The term ‘adapter’ refers to a finisher adapter which takes care of the electrical and
functional interface incompatibilities between the printer and finishers. This terminology will be
used in rest of the document.

1.4 Approach Taken

This section explains the research approach employed in this project. The global solution for the
problem, research challenges considered in the project and the project life cycle are discussed in
detail.

1.4.1 Proposed Solution

The problem requires a hardware and software converter to translate different finisher interfaces.
The proposed solution is to deploy an adapter, a combination of hardware and software converters.
The adapter takes care of both the electrical connection incompatibilities and functional interface
differences. Figure 1.4.1 shows an adapter which can interface different types of printers with
different types of finishers (adapter can interface only one printer/finisher at a time).

The interface between the printer and the adapter remains the same irrespective of the finisher.
The interface between the adapter and the finisher is based on the specific finisher protocol. The
location of the adapter was decided from the business motivation. Hence, the plan was to run
interface software in a separate hardware board outside the printer with its own operating system.

Introduction 6

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 6

Figure 1.4.1: Proposed solution for the printer-finisher interfacing

The introduction of an adapter between printers and finishers introduces two interfaces following
different protocols which are explained below:

Generic protocol: Interface protocol that specifies the functional interface between all Océ wide
format printers and the proposed adapter. This terminology will be used in the rest of the
document for referring to the printer-adapter functional interface protocol.

Specific protocol: Interface protocol that specifies the functional interface between a finisher and
the proposed adapter. This interface protocol is the same as the finisher protocol of this finisher.
This terminology will be used in the rest of the document for referring to the finisher-adapter
functional interface protocol.

The following advantages are achieved in the proposed solution:

• There is a clear separation of concerns. The finisher interfacing software is isolated from the
printer software.

• The customer has to pay only the correct amount of money based on his/her requirements.
• The printer remains numb to the changes in the finisher. This is due to the introduction of

the generic protocol between the printer and the adapter.
• The technology and the tooling can be selected irrespective of the printer’s technology. For

example, the adapter software is aimed to be developed using a model based approach
which reduces development time and effort.

• The maintenance of the adapter software is simpler. More finisher related patches can be
delivered without changing the printer’s software.

• There is no necessity to change the printer’s hardware for finisher interfacing since the
electrical connectivity with the adapter is fixed.

Alternative Solution: The alternative solution is to run the adapter software in the printer and to
have a separate hardware converter outside the printer. The adapter software can be made as a
plug-in which can be incorporated when required. This solution conforms to the business interests

Printer type 2 Finisher type 2Adapter

Printer ty
pe N

Printer type 1 Finisher ty
pe 1

Finisher type N

.

.

.

.

.

.

Introduction 7

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 7

and tackles the problem. But the solution does not provide the same clear separation of concerns as
the proposed solution. The patches related to the finisher will be incorporated in the printer’s
software thereby not improving the maintainability of the printer’s software. But, this solution
avoids the additional marshalling/unmarshalling performed between the printer and the adapter in
the proposed solution which in turn improves the timing performance.

1.4.2 Research Challenges

The previous section shows the proposed solution and the implementation of this solution poses
research challenges at various levels in the project. The approach followed in solving these research
challenges is mentioned briefly in this section. The following research challenges were considered in
the thesis:

• Making the adapter software architecture to handle different finisher capabilities
Motivation: The purpose of making an adapter is to use it for present and future
generations of finishers. The adapter architecture should be robust enough for changes in
the finisher capabilities. For example, one of the changes expected in the future is the use
of multiple finishers. The identification of expected future capabilities is crucial in achieving
this type of architecture.
Approach: Different architectural views were created to understand the fit with the finisher
requirements. Alternative architectures were considered to check the validity of the
proposed architecture. Chapter 4 explains different architectural views of the adapter
software.

• Making the adapter software architecture suitable for model based design
Motivation: The solution is aimed at incorporating a model based design. The architecture
should provide a clear separation of concerns indicating the exact location to fit in model
based software in the architecture. This helps in the unbiased evaluation of the modeling
tools.
Approach: The focus of the model based adapter lies in the logical message conversion
ignoring bit level information. The architecture was made to provide clear separation of
marshalling/unmarshalling blocks from the message conversion block. Chapter 4 explains
different building blocks of the adapter software when it is deployed.

• Making the generic protocol design to fit with the existing finisher protocols
Motivation: The existing protocols differ from one finisher to another. The generic protocol
has to fit the existing protocols. The protocol design has to be simple since the effort spent
in the adapter state machine depends on the design of this protocol.
Approach: A top-down approach was employed where in a generic protocol was proposed
based on the domain requirements. Then, the protocol was checked for the fit with existing

Note: Marshalling is the process of gathering data and transforming it into a byte stream before it is transmitted over a network and
unmarshalling is the reverse process of converting byte stream back to the original data.

Introduction 8

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 8

finisher protocols. Appendix C: “Generic protocol for adapter interface” contains detailed
sequence diagrams showing the mapping of the generic protocol with different finisher
protocols.

• Making the generic protocol design robust for future changes in the finisher protocols
Motivation: The changes in finisher capabilities in the future will introduce changes in the
finisher protocols. The adapter software must be able to handle these changes without the
necessity to modify the generic protocol messages. This is a critical factor to consider while
coming up with a generic protocol otherwise considerable re-work has to be done on the
printer and adapter interface protocol state machines which will dilute the purpose of
having a generic adapter.
Approach: The generic protocol was classified into different categories with some sections
for the expected future capabilities. The interrelation between different sections was
considered during the protocol specification. For example, to support multi finisher
capabilities in the future requires a finisher identifier in all the messages. Chapter 4 briefly
explains the generic protocol design decisions. The complete information regarding the
generic protocol is available in the Appendix C: “Generic protocol for adapter interface”.

• Analysis of complexities for message conversion in the adapter software
Motivation: The adapter has to perform message conversion in order to interface different
type of printers and finishers. The identification of message conversion complexities is
critical in verifying the feasibility of a generic adapter.
Approach: The different types of message conversion complexities were identified before
the generic protocol specification in section 2.2.4. Then, the conversion complexity
threshold was determined in section 4.2.2 after the generic protocol specification.

• Handling of concurrency in the adapter
Motivation: The adapter has to interface with a single printer and one or more finishers at
the same time. This introduces the question of handling concurrent messages from
different components. This question has to be answered starting from the architecture to
the implementation.
Approach: The adapter has different marshalling/unmarshalling components for the printer
and finishers. The message conversion module implementation gives priority to messages
from the printer. If there is a concurrent message both from the printer and finishers, then
printer message is processed immediately and the finisher messages are placed in a queue.
Chapter 3 and chapter 6 explain the concurrency handling in the adapter.

• Verification of generic protocol consistency
Motivation: The generic protocol will be implemented as a separate state machine in the
printer and the adapter. Both the state machines have to be consistent with the protocol
state machine. This is necessary to avoid run time inconsistencies like deadlock and livelock.

Introduction 9

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 9

Approach: The modeling selection criteria in chapter 4 included this aspect before choosing
the modeling approach. The modeling tool is used to verify the generic protocol
consistency.

• Selection procedure of a modeling approach for the adapter
Motivation: Model based software is a very generic term and the project aims to find
software suitable for the design of adapter software with certain message conversion
complexities.
Approach: The selection procedure was divided into three broad categories comprising of
model based aspects, quality aspects and engineering aspects. The details are explained in
chapter 4.

• Handling incomplete dynamic behavior of the finisher protocol specification
Motivation: The finisher protocol specification especially from other vendors sometimes
has an incomplete dynamic specification. This means the adapter software should
implement a mechanism to report the inconsistent protocol behavior.
Approach: The approach employed is to have a strict finisher protocol state machine in the
adapter and to use additional component to detect the occurrence of illegal behavior.
Chapter 6 explains about the details of this additional component.

• Selection of scenarios for the prototyping of the adapter software
Motivation: The aim of the project is to test the feasibility of the model based framework
which includes the architecture, protocol and model based approach for the adapter. The
scenarios chosen for testing the feasibility must include all message conversion
complexities which make the feasibility more concrete.
Approach: The scenarios were selected based on message conversion complexities
especially to test different message conversion complexities. The scenarios which require
different threads to communicate were also tested. Chapter 6 explains about the choice of
scenarios for prototyping the adapter software.

• Testing strategy employed to test the entire setup
Motivation: The main objective of the thesis is to come up with a generic adapter. The
testing of the adapter is possible only with printer and finisher modules. The project should
also look into different possibilities of testing the adapter.
Approach: The adapter software was made to run in a prototype board with its own
operating system. The printer and the finisher run in the PC connected to the board via
USB. Ethernet over USB is used for communication between different modules. Printer and
finisher stubs were created to test the functionality of the adapter. Section 6.1 explains the
test setup used in this project.

Introduction 10

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 10

1.4.3 Project Life Cycle

The ‘Agile’ software development methodology was followed in the project. Figure 1.4.2 gives the
overall picture of the tasks involved in the project but the flow was not strictly followed. The major
activities in the project are given at the top block with internal activities at the bottom. There are
several activities carried out in parallel especially among modeling approach selection, generic
protocol design and prototyping phases in making the adapter software. This approach helped to
reduce the risks at an earlier stage in the project. For example, the testing of the prototype board
and testing of the architecture in the board was carried out before the modeling approach was
selected. This ensured that there were no setbacks at the last stage of the project due to lack of
experience in handling the hardware.

Figure 1.4.2: Project life cycle

Literature
Survey

Case Study

Analysis of
conversion

complexities

Modeling Approach
Selection

Generic Protocol

Analysis of
existing

capabilities and
protocols

Analysis of
Future

capabilities

Exploring
similar

protocols in
cut-sheet

environments

Protocol
specification

Fit with
existing
finisher

protocols

Prototyping

Testing of
prototype board

Testing the
Architecture

Learning the tool

Implementation
of a typical

example
scenario

Implementation
of the link
handling

iterative

Global Requirement Analysis/Solution

Business
Requirements

Product
Requirements

Domain Analysis

Global System

Analysis of
different finisher

protocols

Identification of
conversion

complexities

Architecture

Different views
of the

architecture with
boundaries

Fit with
requirements

iterative

Selection
Chart

Implementation

Implementation
of printer,

adapter and
finisher interface

protocols

Implementation
of printer,

finisher stubs

Feasibility Report

iterative iterative

Introduction 11

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 11

The major phases of the project are listed below:

Global Requirement Analysis/Solution: This phase is the initial phase in the project. This phase is
explained in the previous sections of this chapter.

Domain Analysis: This phase is explained in the chapter 2 in a detailed way. This phase comprises of
understanding different finisher protocols and identification of type of complexities involved in the
message conversion.

Architecture: Chapter 3 explains the details behind this phase. This phase involved identification of
a suitable architecture for the adapter software.

Generic Protocol: The generic protocol specification and design are performed in this phase.
Chapter 4 describes the various aspects involved in designing the generic protocol.

Modeling approach selection: Chapter 4 explains this phase in a detailed manner. This phase
involves comparing different modeling approaches and the identification of a suitable modeling tool
for designing the adapter software.

Prototyping: Chapter 6 describes the details of this phase. This phase involves the actual
prototyping to verify the feasibility of the solution.

1.5 Report Organization

The rest of the chapters in the report are organized as follows. Chapter 2 describes the domain
analysis carried out in the thesis. Chapter 3 construes the architecture of the adapter software in a
detailed manner. Chapter 4 describes the generic protocol and the modeling approach selection in a
detailed way. Chapter 5 explains the analytical software design (ASD) in a detailed manner. Chapter
6 describes the prototyping carried out in the project. Chapter 7 explains the conclusions derived
from the project and future possibilities. The UML diagrams shown in different chapters follow UML
2.2 standard.

Domain Analysis 12

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 12

Chapter 2

Domain Analysis

This chapter explains the different activities performed in the domain analysis phase. Finisher
protocols, both from Océ and from other companies were analyzed. The finisher protocol from
another company has an incomplete dynamic functional interface specification. The identification
of different finisher capabilities and framing of message categories is essential in understanding the
complexities involved in the adapter logic and framing the architecture of the adapter software.

Section 2.1 lists the finisher capabilities which include the present capabilities and expected
capabilities in the future. Section 2.2 explains the finisher protocol analysis carried out to
understand the nature of different finisher protocols. Section 2.3 describes the interface adapter
solutions available in the cut-sheet environment. This chapter is concluded in section 2.4 which
outlines the important findings of this chapter.

2.1 Finisher Capabilities

The finisher capabilities represent the behavior and functionalities of the finisher. The present
capabilities can be understood from the existing finisher protocols. The expected future capabilities
are obtained from discussion with the stakeholders especially architects of the Océ wide format
printers.

2.1.1 Present Capabilities

The present finishers behave like a slave to the printer and carry out jobs assigned by the printer.
Most of the finishers has their own power supply and can be turned on/off independently. For
some finishers, an additional power signal has to be received from the printer in order to turn
on/off. The establishment of a connection with the printer happens by sending link establishment
messages. Once the finisher is connected to the printer, the finisher can perform sheet related tasks

Domain Analysis 13

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 13

sent by the printer. The printer can configure the finisher differently for every job sent. The finisher
can report errors to the printer and vice-versa. The finisher can also work under the direct control
of the operator without the requirement for a printer. The tasks performed by the wide format
finishers include the following:

• Stacking – creating a pile of sheets
• Folding – bending the sheets by applying pressure
• Stickers – pasting labels in the sheets
• Turn table – changing the orientation of the sheets

2.1.2 Future Capabilities

Three future capabilities that are expected in the future were identified from discussion with the
stakeholders. The expected future capabilities are software download, power cycling and multiple
finishers.

Software Download: This is a feature by which the device can update the firmware. The device can
either download the firmware directly (internet or USB device) or get the firmware through another
device like a printer. There are two types of software downloads that needs to be incorporated. The
two types are adapter software download and finisher software download. Figure 2.1.1 shows the
process involved in the two software download features. For the adapter software download, the
adapter firmware will be downloaded by the printer from external source like a USB device or
internet and then transferred to the adapter. The finisher software download feature is currently
not available in finishers. This feature has three steps, the printer downloads the finisher’s firmware
from an external source, then transfers it to the adapter and finally the adapter transfers it to the
finisher. The generic protocol and the adapter software must ensure that this feature can be
achieved in the future.

Figure 2.1.1: Software download feature

Multiple finishers: In the multiple finishers’ environment, finishers are stacked one behind the
other allowing finishing tasks to be performed continuously on the sheets. The adapter software
should be able to communicate with all the finishers. The current generation of finishers does not
support this multiple finisher functionality. In the domain of graphical art printing, there is a
possibility of this feature being incorporated in the future. At a conceptual level, the adapter
software and the generic protocol must be able to handle multiple finishers. Figure 2.1.2 shows an
example case where three finishers are stacked one behind another in the order of their

Printer Adapter Finisher

Step 2: Finisher software download Step 3: Finisher software download

Step 2: Adapter software download

Step1: Adapter/Finisher
software download

External source

Domain Analysis 14

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 14

numbering. The adapter can communicate with all the finishers independently and there is a
communication link between the immediate finishers. The details regarding the support for the
multiple finishers will be explained in chapter 3 and chapter 4.

Figure 2.1.2: Multiple finishers feature

Power Cycling: This is a concept to save energy consumption in electrical devices. It is the concept
of changing power states based on the usage of the device in order to conserve power. Power
cycling can be done both for the finisher and the adapter. The scenarios when the finisher/adapter
must be power cycled must be identified in order to power cycle the finisher/adapter. The generic
protocol and the adapter software must ensure that this feature can be included in the future.

2.2 Finisher Protocol Analysis

This section explains different message formats, protocol details like electrical interface, message
categories and expected message conversion complexities for the adapter software.

2.2.1 Message Formats

There are two different message types available in the finisher interface protocols and they are
explained as follows:

Logical messages: Raw functional interface messages independent of the electrical channel related
information. This terminology will be used in the rest of the document. Appendix A: “Message list
for various finishers” provides a complete list of logical messages with parameters and their range
for different finishers.

Low level messages: Functional interface messages with framing details specific to the electrical
communication channel.

The logical level message format used in the analyzed finishers is shown below:

{𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟,𝐷𝑎𝑡𝑎 𝑙𝑒𝑛𝑔𝑡ℎ,𝐷𝑎𝑡𝑎 𝑎𝑟𝑟𝑎𝑦}

Printer Adapter Finisher1

Finisher2

Finisher3

Domain Analysis 15

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 15

The identifier represents the type of the message, direction of the message and expected
functionality. There are two types of messages possible: event messages and data messages. Event
messages contain only an identifier and they initiate an action in the receiver. Data messages
contain data along with the identifier. The data array has a maximum range beyond which the data
length parameter’s value cannot be set.

Examples of different low level message formats are shown below:

ID Size Data 1 Data 2 Data 3 … Data n

Figure 2.2.1: Low level message format type 1

Len ID Size Data 1 Data 2 Data 3 … Data n CRC

Figure 2.2.2: Low level message format type 2

A low level message format is shown in Figure 2.2.1. The first parameter – ID corresponds to the
identifier in the logical message format, the second parameter – size corresponds to the data length
in the logical message format and the data block corresponds to the data array in the logical
message format. Another low level message format is shown in Figure 2.2.2. The first parameter –
Len represents length of the entire message and this parameter is included since the size of a CRC
varies from one message to another. The last parameter is the cyclic redundancy checks (CRC)
which is a check sum used to verify the integrity of the message. The rest of the message
parameters are same as in the low level message format type 1.

From the message format analysis of finishers, it can be seen that there are two levels of message
conversion needed in the adapter software. First level, conversion of logical messages transferred
between the finisher and the printer. Second level, conversion of low level messages transferred
between the printer and the finisher. These two messages have to be dealt differently in the
adapter software. The number of logical messages used in the protocol ranges from 25 to 50. The
number of arguments in logical level in each message varies from 0 to 8. The one of the focus of the
thesis is to work on the logical message conversion in the adapter software.

2.2.2 Protocol Details

This section explains several aspects of the finisher protocols: electrical interface, maintenance of
connectivity, paper handling procedure, error handling procedure and incomplete dynamic
specification case.

Electrical interface: The finisher interface protocol specification contains electrical and functional
details. There is a dedicated communication channel between the printer and the finisher. The
current finishers communicate using RS-232, RS-232 variants, serial connector and parallel
connector. The baud rate, number of data bits, parity bit availability, stop bit value and other
parameters depend on the type of the connector used. The communication links are expected to

Domain Analysis 16

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 16

work without disturbances and there is no retry mechanism is available in the communication
protocol (low level protocol specific to the connector RS-232).

Maintenance of connectivity: The communication request can be started by the printer or finisher
depending on the protocol. Once the link has been established between the printer and the
finisher, the maintenance of the link would be done by using one of the two methods mentioned
below:

• Link check messages: These messages are transferred continuously between the printer and
the finisher in order to ensure the working of the link. Once the link is broken, it can be
understood from the non-arrival of these messages.

• Timeout for every reply message: For every message sent from the printer and finisher, a
timer is started and the reply is expected to arrive within a certain time period. If the timer
expires, then the link is assumed to be broken.

Both the methods have their advantages and disadvantages. In the link check method, there would
be overcrowding of messages in the channel during peak traffic time. But the loss of link can be
detected immediately once the link has been broken. In the timeout method, the loss of link can be
detected only after a message has been sent but there would be no overcrowding of messages in
the channel.

Paper handling: Every sheet of paper is identified by a unique identifier present in the message.
There are two methods to handle paper related messages in the finisher protocols.

Parallel paper task handling: Figure 2.2.3 illustrates the parallel paper task handling feature
in finishers. The finishers are informed in advance about the sheets with their finishing
procedure that they are going to handle before the sheets actually arrive.

Figure 2.2.3: Parallel paper task handling

Printer Finisher

SheetHandle(Id1)

SheetHandle(Id2)

 SheetTrigger(Id1)

 SheetTrigger(Id2)

SheetDelivered(Id1)

SheetDelivered(Id2)

Domain Analysis 17

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 17

There is a maximum limit on the number of such handle messages that can be sent to the
finisher before the sheets are delivered by the finisher. The actual arrival of sheets is
indicated by the printer through a sheet trigger message. Several such triggers can be sent
for which the handle message has been sent already. The finisher replies to the printer once
the sheet has been delivered.

Sequential paper task handling: Some finishers do not have the above feature. Figure 2.2.4
illustrates the sequential paper task handling feature in such finishers. They expect the
sheet trigger message about the arrival of a sheet immediately after the handle message
(indicating the finishing procedure). The finisher completes the particular sheet and sends
delivered message back to the printer. Then, finisher gets ready to receive another handle
message from the printer.

Figure 2.2.4: Sequential paper task handling

Error handling: In case of communication hardware errors (framing, parity bit violation), size check
failures and identifier failures, the finisher reports a communication error and tries to re-establish
the connection. The range checks for incoming messages are performed in the functional interface
software and if there are interface violations then these errors are reported to the printer. Errors
related to a paper jam are reported by the finisher when it occurs, the procedure to resolve the
paper jam is sent to the printer, the operator gets notification about the error from the printer and
finally, when the paper jam gets cleared it is sent to the printer. The errors related to the paper jam
in the printer are sent to the finisher.

Figure 2.2.5 shows an example error handling procedure followed in case of a paper jam. The
finisher tells the printer to inform the operator that an error has occurred and the type of the error

Printer Finisher

SheetHandle(Id1)

 SheetTrigger(Id1)

SheetDelivered(Id1)

SheetHandle(Id2)

 SheetTrigger(Id2)

SheetDelivered(Id2)

Domain Analysis 18

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 18

is a paper jam. Then, the finisher informs the printer to open the door1. Once the jammed paper
has been removed from the finisher by the operator, the finisher informs the printer to close the
door1. Finally, the finisher informs that the error has been cleared.

Figure 2.2.5: Error handling procedure for a paper jam

Incomplete dynamic specification: A finisher which has to be integrated with an Océ printer via
adapter in the future is a finisher from another company. The dynamic behavior of its interface was
not captured completely in the protocol specification, and logging of messages is not possible from
the finisher side. There is a difference in working of the finisher with the serial interface and parallel
interface. The adapter must be able to incorporate a parallel interface if required. This shows the
necessity to design the adapter software keeping in mind that the finisher protocol specification is
incomplete in nature.

2.2.3 Message Categories

The message category refers to the purpose of a message. Each message will fit into one message
category. The rationale behind fitting each message to one category is that the isolation of
scenarios becomes simpler providing separation of concerns. The categories are framed based on
the activities happening in the finisher and they are inclusive of the expected future capabilities.
The message category list is shown below:

• Link handling: This refers to the messages responsible for establishing connection,
maintaining the connection and termination of the connection between the printer and the
finisher.

Printer Finisher

ErrorDetected(PaperJam)

DoorAction(OpenDoor1)

DoorAction(CloseDoor1)

Paper
removed.

ErrorCleared

Domain Analysis 19

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 19

• Paper handling: This refers to the messages responsible for fetching details of the finisher,
configuring finishing properties for every paper and sending triggers for arrival of jobs to
the finisher.

• Operational state management: This refers to the messages responsible for the
maintenance of operational states of the finisher. For example, the online state where the
printer can send finishing jobs and the offline state where the operator has direct control
over the finisher and the finisher are decoupled from the printer.

• Error handling: This refers to the messages responsible for reporting errors both from the
finisher and the printer and messages sent to resolve these errors.

• Power state management: This refers to the messages responsible for the maintenance of
the power states in the finisher. These messages can be used to get/set the power state of
the finisher and messages sent to initiate the sending of power signals to start the finisher.

• Diagnostics management: This refers to the messages responsible for testing performed by
a service engineer to test the behavior of a finisher. These messages are sent from the
printer and the reply is sent from the finisher.

• Software download management: This refers to the messages that are sent to update the
firmware of the finisher and adapter.

• Multiple finishers’ mode management: This refers to the messages that are used to
configure the printer and finishers to operate in multiple finishers’ mode.

2.2.4 Message Conversion Complexities

The finisher protocol reveals the expected complexities in message conversion of the adapter
software. The exact complexity can be understood only after designing the generic protocol and
mapping it to specific finisher protocols. The complexity classification was done to understand
different complexities possible in the message conversion of the adapter software. The three
different complexities expected in the adapter software are the following:

• Data: This type of complexity is the complexity involved in the parameter or data
conversion from generic protocol messages to specific protocol messages and vice-versa.
This will not be complicated and the reason is that the parameters in the finisher protocol
messages include commands, status information, and configuration information. The
parameters do not include information with a large amount of data, like for example a JPEG
image. There is no interrelation between parameters present in several messages for the
same message type, for example video streaming.

• Control: This type of complexity is the complexity involved in the number and type of
messages during message conversion from generic protocol messages to specific protocol
messages and vice-versa. The challenge in designing the adapter software lies mostly in the
control part. For example, a specific combination of messages from the printer to the
adapter may be converted to another combination for a finisher. The most complex
scenario would be identified after the specification of the generic protocol.

Domain Analysis 20

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 20

• Timing: This type of complexity is the complexity involved in the adapter software in
handling the timing requirements from both the software modules for message
conversions. The timing related messages usually occur not in the happy case scenarios for
finisher protocols. Hence, the normal operation of the adapter will not require much timing
information make it simple. The timing information has to be incorporated as timeouts to
handle unexpected behaviors in the protocol for example loss of a communication link.

2.3 Cut-sheet Printer Interface Solutions

The cut-sheet printer environment comes under the category of a related domain for wide-format
printers. The printer-finisher interface implementation in the cut-sheet printer environment was
investigated to find suitable techniques that can be applied in the wide format environment. The
important fact is that the concept of an interface adapter is well established in the cut-sheet
environment. The solution is not applicable straightaway since the finisher capabilities, electrical
interface and the functional interface protocols are different.

Common interface protocol: One of the techniques used in the cut-sheet environment related to
the interface adapter is the usage of the common interface protocol. The protocol is used for the
communication interface specification of the printer with other devices. If some external device is
not following the protocol but needs to communicate with the printer, then the device is connected
to the interface adapter. The printer addresses the device as a normal device following the common
interface protocol. The printer’s commands will be sent to the interface adapter and the adapter
translates the message and then sends it to the external device. An example of the common
interface protocol usage is shown in Figure 2.3.1.

Figure 2.3.1: Common interface protocol

<<device>>
:Device C

<<Execution environment>>
:Device software

Interface
module

<<device>>
:Device A

<<Execution environment>>
:Device software

<<device>>
:Printer

<<Execution environment>>
:Printer software

Common interface protocol Interface
conversion

module

Interface
module

Specific interface
protocol

Interface
module

Domain Analysis 21

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 21

The printer can communicate with device A and device C directly using the interface protocol. There
is a specific protocol interface between device A and device C. The messages sent to the device C
are received by device A and converted before reaching the destination. In this way, the printer can
communicate with the device C as if the device was following the common interface protocol. The
example explained here is a proxy pattern, a software design pattern.

Logical message format: The common interface protocol uses a similar type of logical message
format as that of the wide format finisher protocols. An example of the logical message format used
in the common interface protocol is shown below:

{𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑆𝑢𝑏 − 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑠,𝐶𝑜𝑚𝑚𝑎𝑛𝑑,𝑀𝑜𝑑𝑒,𝑁𝑜𝑑𝑒 𝐼𝑑,𝐷𝑎𝑡𝑎 𝑎𝑟𝑟𝑎𝑦}

‘Priority’ tells whether the message has high or low priority, ‘Direction’ tells whether the message is
from the printer to the finisher or vice-versa, ‘Sub-protocols’ tells the message category of the
message and this is applicable only in application mode, ‘Command’ is the identifier used to map
the functionality of the message, ‘Mode’ describes whether the device operation is in download or
application mode, ‘Node Id’ describes the node identity of the printer or the finisher, ‘Data Array’ is
the fixed data array which is the data transferred from printer to devices and vice-versa. The
concept of ‘Node-Id’ is to incorporate multiple finishers.

Message Categories: These helps to identify messages for the generic protocol since the common
interface protocol use similar type of messages. An example message category list in the cut-sheet
environment is shown below:

• System: Messages to set up and maintain communication with the finisher.
• Status: Messages related to controlling the operational status of the finisher.
• Action: Messages related to the handling of sheets. This does not include the sheet trigger

messages.
• Trigger: Indicates the (non-) arrival of sheets. These messages are used for timing of sheets.
• Error: Messages related to reporting and handling of errors.
• Information: Messages related to information exchange between the printer and the

finisher.
• Diagnostics: Messages related to the execution of diagnostic tests.

• Development Support: Messages to support development and analysis.

Working of multiple finishers: The cut-sheet printers handle multiple finishers and the common
interface protocol can support them. Figure 2.3.2 shows the paper handling procedure in the cut-
sheet environment with multiple finishers. There are two types of messages: a ‘prepare’ message to
inform the finisher about the type of action required on a specified sheet and a ‘trigger’ message to
inform the finisher about the actual arrival of a sheet. Prepare message is sent from the printer to
all the finishers informing the finishing details and the trigger message is sent only to the immediate
node in the paper path. Here, the paper path is follows: printer, finisher1, finisher2 and finisher3.
Hence, the finishers have to implement part of the common interface protocol related to the
‘trigger’ message.

Domain Analysis 22

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 22

Figure 2.3.2: Paper handling procedure in cut-sheet environment with multiple finishers

2.4 Conclusion

In this chapter, a domain analysis was performed to understand the finisher capabilities and
different finisher protocols. The printer-finisher behavior reflects a master and slave relationship.
The expected future capabilities of the wide format finishers include software download, multiple
finishers and power cycling. The finisher protocols comprise mostly of a query and reply based
messages. The message conversion of the adapter will be limited to logical messages of finishers to
test the feasibility of the adapter design. The number of logical messages in the protocol is limited
to around 50 and the number of parameters in each message is limited to around 8. The finisher
protocol messages can be grouped into eight different categories. This shows that the generic
protocol messages will be grouped into these eight categories. The message conversion complexity
for the adapter is expected to be in the control part. This chapter also discusses an example
interface adapter solution in the cut-sheet printer environment. The common interface protocol is
used by the printer to communicate with different devices. The implication is that the common
interface control can be used as a reference for designing the generic protocol in the wide format
environment. The multiple finishers’ support using the common interface protocol would help in
framing a working procedure for wide format printers.

Printer Finisher1

Finisher2

Finisher3

Prepare(sheet1)

Prepare(sheet1)

Prepare(sheet1)

Trigger(sheet1)

Trigger(sheet1)

Trigger(sheet1)

Architecture 23

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 23

Chapter 3

Architecture

This chapter explains different architectural views of the proposed adapter. The different
architectural views (naming and scope) were framed based on the architecture specification
procedure followed in Océ. The first step was to identify different stakeholders of the project and
the project requirements which are explained in section 3.1. The next step was to create different
architectural views in order to map different requirements. The conceptual view of the adapter is
explained in section 3.1. Section 3.2 explains the logical view. The component view of the adapter is
explained in section 3.5. The deployment view of the adapter is described in section 3.4. The
boundaries of the adapter architecture are explained in section 3.6. Section 3.7 concludes the
chapter with important details from different sections. The specification of the architecture is not
done in an extensive manner since the idea is to identify the different software blocks and their
responsibilities. This activity can be taken up as future work.

3.1 Requirement Analysis

The requirements are classified into four categories: functional, platform, process and non-
functional requirements. The important requirements are functional and process requirements
since the idea is to test the feasibility of the adapter software. The MoSCoW1 prioritization scheme
was followed in order to assign priorities on the requirements.

Main Stakeholders:

• Software Architects (SA) are interested in the architecture, the modeling approach applied
for designing the software and the business aspects of the adapter.

Note: MoSCoW1 “is a prioritization technique used in business analysis and software development to reach a common understanding
with stakeholders on the importance they place on the delivery of each requirement - also known as MoSCoW prioritization or MoSCoW
analysis” (see http://en.wikipedia.org/wiki/MoSCoW_Method)

Architecture 24

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 24

• Print System Architects (PSA) whose focus points are the product evolution and the
roadmap of printers are interested in the impact of the adapter on mechanical interfaces.

• Software integrators (SI) are interested in the integration aspects of the adapter software
with printers and finishers.

• Software developers (SM) are interested in the design of the adapter software and modeling
tools used in the project.

Functional Requirements:

FR_1 The adapter software must be able to communicate with the printer using the generic
protocol [input/output]

FR_2 The adapter software must be able to communicate with different finishers using their
specific protocol [input/output]

FR_3 The adapter software must be able to perform message conversions based on the state
machine/state machines [processing]

FR_4 The adapter software must be able to handle timing issues for messages based on the
state machine/state machines [timing/synchronization]

FR_5 The adapter software should be able to implement power cycling feature in the future
[general]

FR_6 The adapter software should be able to incorporate multiple finishers in the future
[general]

FR_7 The adapter software should maintain a file regarding the finisher capabilities. The
details of the file can be provided online or offline [data]

Platform Requirements:

The prototype board and the test step were chosen to enable rapid prototyping of the adapter
software. Hence, the adapter software was implemented in a prototype board with CPU capability
which is overkill for running the adapter software. Driver software for electrical interfacing and
transport layer stack were provided by Océ. The details of the prototype board are given in the
Appendix B: “Océ prototype board specification”.

Process Requirements:

These were the procedures followed like tools, programming languages in realization of the
software. The one of the focus point of the thesis is the selection of the modeling approach.
Section 4.4 contains the selection criteria for the modeling approach that explain the process
requirements in a detailed manner.

Non-functional Requirements:

NFR_1 Maintainability: The adapter software should be able to implement software
 download feature in the future.

Architecture 25

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 25

NFR_2 Robustness: The adapter software should be able to implement link check
 mechanism feature to maintain the link between a printer and the adapter.

NFR_3 Extensibility: The architecture should give guidelines on handling different versions
 of the adapter software in the adapter and the printer interface software in the
 printer.

3.2 Conceptual View

This view represents the black box view of the adapter software describing its context and the
user’s view. Figure 3.2.1 shows the conceptual of the adapter with its interfaces. The adapter
interfaces a single printer with one or more finishers.

Figure 3.2.1: Conceptual view

The components and their interfaces are defined as follows:

Components:

Printer:
• Printers are Océ wide format printers.

• The printer behaves like master sending instructions to finisher/finishers.

Adapter:
• Adapter should support present and future wide format printers and finishers.
• Adapter converts the generic protocol to the specific protocol of the finisher connected

to the adapter and vice-versa.
• As a design constraint, the adapter should not have any functional requirement for

printer-finisher operations. The adapter behaves like a transparent device performing
message conversions and does not tries to emulate the printer behavior.

Finisher:
• Finishers are Océ developed wide format finishers and wide format finishers from other

companies.

Interfaces:

Printer-Adapter: Generic interface between an Océ wide format printer and the adapter.
Adapter-Finisher: Specific interface between the adapter and finisher/finishers.

Printer Adapter Finisher
1 1..*1 1

Architecture 26

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 26

3.3 Logical View

This view represents the white box view of the adapter software describing the top level design.
Figure 3.3.1 shows the different packages with its interfaces and also classes within these packages.
The dotted boundary shown in the figure is done to indicate the focus area of the architecture in
the thesis.

Figure 3.3.1: Logical view

The different blocks: packages and classes are explained below:

Packages/Classes:

Printer Control:
• This module interacts with the printer interface module.
• This module decides a printer action based on the message from the printer interface

module. This module acts as a proxy class interfacing printer interface with other
modules of the printer.

Printer Interface:
• This module connects the printer with the adapter.

• This module handles exceptions made by the adapter.

Router:
• This module is present to support multiple finishers.
• This module performs routing of messages from the printer to a specific message

converter or adapter manager based on the identifier present in the message.

Adapter Manager:
• This module interacts with the adapter hardware
• This module takes care of the non-functional adapter requirements like software

download and link maintenance

Adapter

Message
Converter

Printer

Printer
Control

Printer
Interface Router

State
machines

Adap_Conv

Finisher

1 1...* 1...* 1...*1 1
1 1

Adapter
Manager

1...*

1

1

1

Architecture 27

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 27

Message Converter:
• Adap_Conv module converts generic messages from the printer to specific messages of

the finisher and vice-versa.
• The conversion is based on the state machine or state machines available
• Adap_Conv module handles exceptions made by the finisher
• Adap_Conv module handles interface versioning

• Each message converter is independent of other message converters

Finisher:

• Finisher is viewed as a black box.

Interfaces:

Printer control-printer interface:
• This interface represents the commands received from the printer control and response

send to the printer control.

• This definition is not part of the thesis.

Printer interface-router:
• This interface carries the generic protocol messages which can be for the adapter

manager or a message converter

Router-adapter manager:

• This interface carries the software download and link maintenance messages

Message converter-adapter manager:
• This interface represents interaction between the adapter manager and message

converters carrying messages to indicate loss of link, start of download or hardware
failures

Router-Message converter:

• This interface carries the generic protocol messages for a specific finisher

Message converter-finisher:
• There are one or more interfaces available between the message converter of the

adapter and finishers which carries specific protocol messages. In other words, the
number of message converters running is same as the number of finishers.

3.4 Deployment View

This view describes the mapping of the adapter implementation on processing nodes. There are
two types of deployment views discussed: real deployment view which corresponds to the actual
set up and prototype deployment view which corresponds to the prototype set up.

Architecture 28

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 28

Real deployment view: Figure 3.4.1 shows the real deployment view. The components related to
the printer software: printer control, printer interface and printer generic run in the printer
hardware. The components related to the adapter: adapter manager, adap_pri, router, message
converter and adap_fini run in the adapter hardware. The finisher components run in the finisher
hardware. The electrical interface between the printer and the finisher will be USB and the
electrical interface between the adapter and the finishers can be any serial communication based
electrical media. The printer generic component takes care of marshalling/unmarshalling for the
printer with respect to generic messages. The new software modules added in the adapter due to
the deployment will be explained in the next section.

Figure 3.4.1: Real deployment view

Prototype deployment view: Figure 3.4.2 shows the prototype deployment view. The adapter was
deployed in a prototype board. The printer and the finisher modules were deployed in a personal
computer (PC). The deployment was chosen to ease the process of prototyping and testing. The
electrical interface between the PC and the prototype board is USB with support for Ethernet. The
exact test up used in the project will be discussed in section 6.1.

Figure 3.4.2: Prototype deployment view

<<device>>
:Adapter

<<device>>
:Printer

<<device>>
:Finisher

Printer
Control

Printer
 Interface

Printer
Generic Adap_Pri Router

 Message
 Converter

State
Machines

Adap_Conv Adap_Fini

Adapter
Manager

11 1 1 1

1

1

1 1

1

1

1 1..*
1..* 1..*

Adap_Conv Queuing
module1 1

1..*

1

1

Deployment View

<<device>>
:PC

 Printer

Printer
Control

Printer
 Interface

Printer
Generic1 1 1 1

 Finisher

USB (ethernet over USB)

<<device>>
:Prototype board(Adapter)

Adap_Pri Router

 Message
 Converter

State
Machines

Adap_Conv Adap_Fini

Adapter
Manager

1

1

1 1

1

1

1 1..*
1..* 1..*

Adap_Conv Queuing
module1

1

1

Architecture 29

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 29

3.5 Component View

This view describes the adapter software in terms of its implementation components for the real
deployment discussed in the previous section. The component view is split into two views: static
view which shows the composition of adapter software in terms of compile time organization of its
components and dynamic view which shows the composition of adapter software in terms of
threads when it is running.

Static view: Figure 3.5.1 shows the component static view of the adapter software. The adapter
software executable is composed of the following components: adap_pri, adapter manager, router,
message converter and adap_fini.

Figure 3.5.1: Component static view

The components which are added due to the deployment are explained below:

Adap_pri:
• This component performs marshalling and unmarshalling of generic protocol messages
• This component is responsible for interfacing the printer with the adapter at a low level
• This component is composed of printer communication stack necessary to perform

electrical communication and interfacing module necessary to interact with the router

Adap_fini:
• This component performs marshalling and unmarshalling of specific protocol messages
• This component is responsible for interfacing the specific message converter with the

finisher at a low level
• This component is composed of finisher communication stack necessary to perform

electrical communication and interfacing module necessary to interact with the
message converter

Queuing module: This module takes care of the queuing of messages from the finisher side.

Adapter

Router Message
ConverterAdap_pri

Adap_Fini

Adap_pri
Interfacing

Adap_Fini
 Interfacing

Finisher
Communication

stack
Printer

Communication
stack

Queuing
module

Adap_Conv

1

1
1

1

1

1 1 1 1 1 1

11
1 1..*

1

1 1 1

1..*

Adapter
Manager

1

1

Architecture 30

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 30

Reason for queuing: The adap_pri and adap_fini components are simple marshalling/unmarshalling
components without any queuing. The message converter is expected to handle concurrent
messages from both the printer and the finisher. The introduction of queue in the message
converter solves the problem of handling concurrent messages. The queue has been introduced in
the finisher side which implicitly means that the priority is given to printer messages when there are
concurrent messages. Thus, making the message converter to handle messages in a sequential
manner.

Alternative architecture: The alternate architecture that has been analyzed was to split the
adap_conv into two modules adap_pri_conv and adap_fini_conv running in different threads
realized from a common state machine. The adap_pri_conv takes care of converting the generic
messages to specific messages. The adap_fini_conv takes of converting the specific messages to
generic messages. The rationale behind this approach is to differentiate the two types of message
conversions happening inside the adapter. The advantage is that the sequential message converter
would be converted to a concurrent one but still there would be synchronization required between
these threads. The handling of messages in real time would be more difficult due to this additional
synchronization. The actual implementation of this message converter would be more complicated
since the effort required would be twice the effort needed for the previous adapter during
specification. Hence, the previous adapter architecture has been chosen for the design.

Dynamic view: Figure 3.5.2 shows the component dynamic view of the adapter. The adapter
process is composed of the following threads: adapter manager, router, message converter, finisher
queuing, adap_fini and adap_pri. The individual threads are explained below:

• Adapter manager: Thread responsible for handling jobs related to the hardware, link
handling procedure with the printer and adapter software download

• Router: Thread responsible for handling routing of generic messages
• Message converter: Thread responsible for handling generic protocol to specific protocol

message conversion and vice-versa
• Finisher queuing: Thread responsible for handling queuing of finisher messages before

sending it to the message converter
• Adap_pri: Thread which listens for incoming messages from the printer and performing

unmarshalling of these messages
• Adap_fini: Thread which listens for incoming messages from the finisher and performing

unmarshalling of these messages

Architecture 31

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 31

Figure 3.5.2: Component dynamic view

3.6 Boundaries of the Architecture

The boundaries of the architecture represent the scenarios for which the architecture is applicable
for the adapter software. The various scenarios are listed below:

• The basic premise behind the architecture is that the printer-finisher relationship is similar
to master and slave relationship. The decision on queuing at the finisher side of the adapter
is based on this premise. When there is a concurrent message at the adapter from both the
printer and the finisher, the priority is given to handling the printer message and the
finisher message has to wait in the queue. If this master-slave relationship is changed then
the decision on queuing has to be checked again for the new system.

<< Process >>
Adapter

<< thread >>
Router

<< thread >>
Message Converter

Router

Message Converter

<< thread >>
Adap_Pri

<< thread >>
Adap_Fini

Adap_Pri

Adap_Fini

1

1 1..*

1

11

1

1..*

11

11

<< thread >>
Finisher Queueing

1..*

1

<< thread >>
Adapter Manager

Adapter Manager1

1

1..*

1..*

1..*
1..*

1..*1..*

1 1

Architecture 32

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 32

• The realization of state machines to adap_conv component can be done at time of
compilation or execution. This is a design choice which can be taken based on the
constraints of the design tool.

• The selection of a single state machine or set of state machines for the realization of
adap_conv module is a design choice.

• There is a clear separation between message converter and other components. Only the
message converter and adapter manager is intended to be generated by a modeling
approach.

• The current architecture considers the adapter as a separate entity (hardware and
software) receiving commands from the printer and the finisher. If the adapter has to
become part of another device, then separate feasibility analysis has to be carried out to
verify the validness of the architecture. For example, if the adapter has to interact with a
controller of mechanical paper flow device between the printer and a finisher.

3.7 Conclusion

This chapter describes different architectural views for the adapter based on the requirements of
the adapter software. First, the main stakeholders of the project were identified and the
requirements were framed. The functional and the process requirements are important to test the
feasibility of the adapter software. The architectural views give stage by stage transformations,
starting from a conceptual model to the final deployment of the adapter software. The initial
framing of the adapter architecture in the project was important because the modeling approach fit
can be checked with the architecture. Otherwise, there might be a tendency to frame the
architecture based on the modeling approach which might result in less efficient architecture with
poor separation of concerns. This fit was considered as a selection criteria in section 4.4 before
selecting a modeling tool. The one of the scope of the project involves realization of a message
converter using a suitable modeling approach, the low level marshalling or unmarshalling
components can be realized using pre-existing communication stack to ease the prototyping
procedure which will be discussed in section 6.3.

Generic Protocol and Modeling Approach Selection 33

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 33

Chapter 4

Generic Protocol and Modeling
Approach Selection

This chapter discusses the generic protocol and modeling approach selection. These belong to the
generic protocol phase and modeling approach selection phase of the project respectively. Section
4.1 describes a typical adapter scenario for the adapter. Section 4.2 briefly explains the concepts
involved in the generic protocol specification. Section 4.3 lists the tools investigated for modeling
the adapter. The selection criteria used to evaluate various modeling tools are explained in section
4.4. Section 4.5 explains the modeling selection chart used to choose the modeling approach for
designing the adapter software. Section 4.6 gives the conclusions derived from the chapter and
recommendations to Océ regarding modeling tools.

4.1 Typical Adapter Scenario

Section 2.2.4 explains the complexities expected in the adapter software. In order to explore the
modeling tools and perform case studies, a concrete example is required involving these
complexities. The typical scenario includes a combination of all the complexities expected in the
adapter. The adapter is expected to handle several such scenarios in reality. The typical adapter
scenario designed is shown in Figure 4.1.1. The printer sends a 𝑋(𝑖) message; the adapter converts
the message to 𝐴(𝑖 + 1) and sends it to the finisher. The finisher replies with message 𝐵 and the
adapter sends a 𝐶(𝑖) message and the finisher replies with a 𝐷 message. Finally, the adapter
converts 𝐷 to 𝑌 and sends 𝑌 to the printer.

Generic Protocol and Modeling Approach Selection 34

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 34

Figure 4.1.1: Typical adapter scenario

State machines: Figure 4.1.2 shows the state machines for the typical adapter scenario given above.
The center state machine is the design state machine for the adapter, the left state machine is the
interface state machine corresponding to the printer-adapter interface and the right state machine
is the interface state machine corresponding to the adapter-finisher interface. These state machines
completely describe the typical adapter scenario for the adapter and the above sequence diagram is
a trace of these state machines.

Figure 4.1.2: State machines for the typical adapter scenario

Message complexities: The control complexity is the transformation from a simple 𝑋(𝑖), 𝑌 message
pair to 𝑋(𝑖), 𝐴,𝐵,𝐶(𝑖), 𝐷, 𝑌 messages. The data complexity is the parameter transformation

Printer Adapter Finisher

X(i)

A(i+1)

B

C(i)

D
Y

1 2

3

X(n)
/A(n+1)

B
 /C(n)

Start

D
/Y

1

2

X(i) Y

Start

1

2

A(z)

3

4

B

C(f)

/D

Start

Generic Protocol and Modeling Approach Selection 35

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 35

happening in the message 𝑋(𝑖) to 𝐴(𝑖 + 1). There is also memory required in the adapter for
remembering the value of 𝑖. The timing complexity is not included in this scenario but can be
included by incorporating timeouts for each reply message. For example, if the intended reply is not
obtained in the specified time interval then an alternate message will be sent.

4.2 Generic Protocol

In this section, the proposed generic protocol is explained briefly. The complete details of this
protocol are available in the Appendix C: “Generic protocol for adapter interface”. The message
categories for the generic protocol are same as the finisher protocol message categories defined in
section 2.2.3. The protocol specification contains list of messages under each category, message
parameter details, timeout behavior of messages, sequence diagrams capturing various scenarios,
sequence diagrams showing mapping of the generic protocol with specific finisher protocols and
state machines required for the implementation. The sequence diagrams and state machines that
are described for the complete system involving the printer interface, adapter and the finisher
interface.

4.2.1 Domain Concepts

This section explains the domain concepts involved in the protocol. This comprises node identifiers
present in the message, protocol state naming and its context, timeout behavior for messages,
delay calculation carried out for timeouts, design decision on clocks and starting procedure involved
in some finishers. These concepts explain the top level design decisions taken in the protocol.

Node_Id: In the multiple finisher’s environment there is more than one finisher connected to the
adapter. The finishers are usually connected back to back with one another. The adapter has to
interface the printer with all the finishers. Node_Id (present in all messages) uniquely identifies a
device in the multiple finishers’ environment. The value starts from 0 which represents the adapter
and it is incremented by 1 for every finisher addition.

 Consider a paper flow path given in order {𝑝𝑟𝑖𝑛𝑡𝑒𝑟, 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑟1,𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑟2,𝑎𝑛𝑑 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑟3}.
The electrical connectivity is as follows: the printer is connected to the adapter, the adapter is
connected to all the finishers, finisher1 is connected to finisher2 and finisher2 is connected to
finisher3. ‘Node_Id=0’ represents the adapter, ‘Node_Id=1’ represents the ‘finisher1’, ‘Node_Id=2’
represents the ‘finisher2’ and ‘Node_Id=3’ represents the ‘finisher3’.

Protocol States: The generic interface protocol has to be implemented as separate machines in the
printer and the adapter. States were divided into two categories: stable states and transition states.
Stable state is one in which the protocol remains unless there is a trigger received from external
actors like printer control module or adapter manager module. Transition states are temporary
states when moving from one stable state to another state. States can be also composite states.
Every state corresponds to a mode in the printer or adapter. There are three modes in the printer
or adapter: ‘APPLICATION’ mode in which normal messages related to finishing are transferred,

Generic Protocol and Modeling Approach Selection 36

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 36

‘DOWNLOAD’ mode in which the adapters’ firmware is updated and ‘F_DOWNLOAD’ in which the
finisher’s firmware is updated.

The stable states were divided into operational states and power states which are explained below:

Operational states: There are eleven operational states in the proposed state machine of the
printer/adapter.

• Started: In this state, printer/adapter has been powered ON.
• Idle: In this state, connection has been established between the printer and the adapter.
• Link check: This state is a parallel state to all other operational states except the ‘started’

state. This state is responsible for the maintenance of the link between the printer and the
adapter.

• Connected: In this state, a connection has been established between the printer, adapter
and finisher.

• Standby: In this state, the adapter is waiting for commands from the printer and it is ready
to move to other states like ‘online’ and ‘offline’.

• Online: In this state, the finisher can receive commands for paper handling.
• Offline: In this state, the finisher is in manual mode executing instructions directly from the

operator. The connectivity between the adapter and the finisher remains.
• Error: This state is entered whenever an error occurs in the adapter or printer or finisher

and it has been reported to the printer. Once the error has been cleared, the printer and
the adapter returns back to their original state.

• Download: The firmware of the adapter is updated in this state.
• F_Download: The firmware of the finisher is updated in this state.
• Multi-Mode: The connection topology for multiple finishers’ environment is set in this state.

Power States: There are two power states in the proposed state machine of the printer/adapter.

• Normal Power: In this state, the device operates in the normal power.
• Low Power: In this state, the device enters low power mode in order to conserve power

using the concept of power cycling.

Message Timeout Behavior: After sending/receiving some messages, a timer is started. Timeout
refers to a specified time period that will be allowed to elapse in a device (printer or adapter) after
which a specified action takes place. The action can be cancelled by occurrence of another event
before the timer expiry. There are some terms involved in specifying the timeout behavior which is
listed below:

• Start trigger: The sending or reception of this message starts the timer.
• Time period: This represents the time duration after which some action (state change or

sending a message) will happen due to an expiry of the timer.
• Stop event: This is an incoming message which stops the timer expiry caused by the start

trigger.

Generic Protocol and Modeling Approach Selection 37

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 37

• Elapsed action: This represents a state change or sending of messages when the time period
value of the timer has elapsed.

Delay Calculation: Timeout for various messages have to adhere to the delay introduced by the
transmission media and marshalling/unmarshalling software components. Suppose, the printer
sends a message to the adapter and expects a reply in T1 sec then the adapter has to reply back
within T1-delay sec as shown in Figure 4.2.1. This scenario is equally valid when the adapter sends a
message to the printer. This delay from now on will be called as system_delay and is calculated by
the formula given below. The formula has two times the sum of various delays considering the
delays incurred in both directions. The unit of system_delay is milliseconds.

𝑠𝑦𝑠𝑡𝑒𝑚_𝑑𝑒𝑙𝑎𝑦 = 2 ∗ (𝑚𝑎𝑥(𝑚𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦) + 𝑚𝑎𝑥(𝑢𝑛𝑚𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦)
+ 𝑚𝑎𝑥(𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦))

Figure 4.2.1: Impact of system_delay in timeout calculation

Design decision on clocks: The clocks present in the printer and the adapter will not be
synchronized. The rationale behind this decision was to avoid the additional complexity of
synchronization thereby making the design simple. Moreover, there is no rationale to synchronize
both of these clocks.

Starting finishers: Usually, finishers are started without any signaling from the printer. But for some
finishers there is a requirement for power signaling from the printer in order to turn on the relay
present in the finisher. The procedure employed was to send power signals from the adapter to
finishers based on the detection of a hardware link. This procedure was specified as part of the
protocol in the power handling message category.

4.2.2 Analysis of Complexities in Message Conversion

The two message categories link handling and paper handling have been defined completely with
state machines in the protocol specification. The other categories like error handling, operational
state management and multiple finishers’ mode management were partially defined in the protocol
specification. The rest of the protocol definition can be taken up as future work. The reasons for the
selection of categories are as follows:

Printer Adapter

query

reply

T1 sec (T1 – System_delay) sec

Generic Protocol and Modeling Approach Selection 38

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 38

• The link handling category state machine contains several state transitions and transitions
to states responsible for other categories like software download, involves parallel states
like link check, interaction with other actors like adapter manager and printer control,
contains control complexity in message conversions, contains time complexity for
unexpected failure scenarios, and contains limited data complexity. This category is the
basic category which needs to work in the adapter before moving to other categories in
real-time.

• The paper handling category represents the most important feature in the finisher’s
functionality. This category enables the finisher to accept sheets from the printer and
perform finishing operations on them. The state machine implementation poses challenges
in the handling of multiple instances based on message parameters and contains a higher
level of data complexity than other categories.

• The other categories primarily involves state machine specification with control complexity,
restricted number of transitions to other states, timing complexity for unexpected scenarios
and limited data complexity.

These two categories will ensure that the finisher can perform paper related operations provided
there are no errors. These categories include most of the complex scenarios possible in the adapter
operation and would ensure the feasibility of the generic protocol. Thus, these two categories were
selected for complete specification for verifying the feasibility of the generic protocol.

4.3 Tools Investigated

This section explains the different modeling tools explored in the project. There was an initial scan
made in the project and the following six tools were identified: Petri nets, ASD, Event-B, Rational
Rose – Real Time, interface language and specification description language (SDL). The SDL tool was
not considered further after the scan since the approach was very domain specific. The other tools
were evaluated based on selection criteria. There was a small case study done in Petri nets and ASD
to understand them in detail.

4.3.1 Petri nets

This modeling approach [1] involves specification (drawing) of Petri nets in order to synthesize an
adapter (Petri nets). This approach has been applied for real world problems with good results [8].
The specification involves the following steps:

• Behavioral interface models: Petri net models of software modules that needs to be
integrated

• Transformation rules: Elementary operations that the adapter can perform. This is the high
level message conversion specification.

• Behavioral property: Properties (like absence of deadlocks) that are required in the
integrated system.

Generic Protocol and Modeling Approach Selection 39

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 39

Tool chain: Figure 4.3.1 shows the tool chain used in the Petri nets approach.

Figure 4.3.1: Tool chain

The steps involved in the adapter synthesis using the tool chain are explained below:

• Specify the Petri models to be integrated using Yasper [11] tool.
• Convert them to open Petri net models [13] [14] (an extension of the Petri net model) using

Prom tool [12].
• Specify the transformation rules using a text editor
• Open Petri net models, transformation rules and behavioral properties are the inputs

needed for the Marlene tool [9] to generate an adapter which is again an open Petri model
• The Marlene tool can be specified to generate either a synchronous or an asynchronous

adapter

Architecture of the Marlene tool: Figure 4.3.2 shows the architecture [9] of Marlene tool which is
the core adapter. Paper [1] introduces a modeling approach using the Marlene tool. The modeling
approach comprises of front ends which are hand written modules which can perform low level
message transformations and a core adapter. The core adapter comprises of an engine and a
controller [2] [3]. The engine converts the transformation rules and the controller satisfies the
expected behavioral properties. The controller synthesis is carried out using a tool called ‘WENDY’
[10]. The engine and the controller together constitute the adapter in the tool. The procedure
followed in the adapter (Petri net model) synthesis using this tool: a Petri model for the engine was
generated for the adapter and a Petri net model for the controller was generated for the adapter.

Generic Protocol and Modeling Approach Selection 40

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 40

The final adapter is again a Petri model obtained by combining these two Petri net models. The tool
and the model it produces have the same components (controller and engine).

This architecture resembles the proposed architecture of the adapter shown in section 3.4. The
front ends can be modeled as adap_pri and adap_fini and the core adapter can be modeled as
adap_conv module.

Adapter

Front Front

Controller

Engine

Core
Adapter

Figure 4.3.2: Architecture of the tool

Related work: In the past, there was an internal case study done at Océ using ‘MARLENE’ to
generate an adapter between printers and finishers based on Petri nets. Two types of
incompatibilities (optional acknowledgement message from the finisher and reset/cancel request
handling messages) have been considered in this case study. There were issues related to timing
and multiple pages which resulted in no or unstable adapters from the tool. From the analysis, it
was observed that the practical usage of the tool seems to be limited due to the above mentioned
reasons for this specific case study.

Case study: The case study performed was to synthesize the adapter (adap_conv) for a typical
adapter scenario given in section 4.1 without the parameter conversions in order to simplify the
case study. The case study was not a direct evaluation using the tool but understanding the
behavior of the tool. The case study results were produced using a drawing tool. The behavioral
input models for the printer and the finisher and the synthesized adapter are shown in Figure 4.3.3.
The behavioral models were specified using Petri nets for the printer and the finisher modules. The
behavioral property for the adapter is the absence of deadlocks. The intermediate open net models
were not included in Figure 4.3.3 and only the final model of the adapter adap_conv is shown. The
transformation rules specified for the adapter were the following:

𝑋 → 𝐴,𝐵 → 𝐶,𝐷 → 𝑌

Generic Protocol and Modeling Approach Selection 41

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 41

Figure 4.3.3: Behavioral input models and the synthesized adap_conv module

In this modeling approach, interface messages are places in the boundary. The Petri net contains
places which are represented by circles and transitions which are represented by rectangles. The
arrows denote the pre-condition or post-conditions for the transitions. There are tokens which can
occupy a place. A token moves from one place to the other due to the trigger of a transition. A
transition is triggered whenever there is a token in each of these places with an incoming arrow and
no token in all the places with an outgoing arrow. The result is that the token is moved to places
with all the outgoing arrows from the transition.

4.3.2 ASD

The Analytical Software Design [5] software abbreviated as ‘ASD: Suite’ is a design tool from Verum
Software Technologies. The suite enables the software designer to draw system level state
diagrams and verify the consistency between these diagrams using formal method analysis. The
ASD top level functionality can be understood from the Figure 4.3.4. The ideas behind the
functionality diagram are that the model verification is performed through iterations and the
generated code and the model are equivalent as claimed by ASD. The ASD allows design errors to
be corrected in an iterative manner. Once the design has been found to be error free according to
ASD, the code can be generated using the ASD suite. The paper [6] argues that the ASD reduces
design errors but the tool has performance issues. The paper has proposed a discrete-event
simulator for the performance evaluation of the ASD like structured software. The verification
engine used by ASD is FDR2 (Failures-Divergences Refinement) which is a refinement checking
software tool [15].

Printer

X

Y

Finisher

B

C

D

Adap_Conv

X

B

A

A

C

D

Y

Generic Protocol and Modeling Approach Selection 42

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 42

Figure 4.3.4: ASD functionality

The ASD tool comprises two components: a front end component (GUI provided by ASD) and a back
end component. The input specification for the software design is done from the front end
component which runs on the Windows platform. The verification of the design and code
generation is done in the back end servers connected via VPN to the frontend. The design is
specified through a front end interface called ‘ModelBuilder’ using two model types: interface
model and design model. The models are basically state machines of the software represented in
the form of a table in separate files. The design model is analogous to a software component with
internal behavior and the interface model is analogous to an interface definition between different
software components. The interface model takes care of the coupling between two design models
and coupling between a design model and a foreign component. The detailed explanation of the
two model types and its usage will be discussed in section 5.1.

The basic verification that the tool performs is to check whether a design model and its associated
interface model are consistent with one another. The verification is done separately for an interface
model. For a design model, it is checked how the design model fits with other interface models. The
verification is an iterative process where the designer tries to correct the error scenarios by
updating the model. The tool aids in this aspect by providing information highlighting the cause of
the error using sequence diagrams. The detailed explanation about the model verification will be
discussed in section 5.2.

The code can be generated once the verification has been successful with ASD. It is possible to
generate code in the following programming languages: C, C++, Java, C# and TinyC. There are two
thread model types available for generating code: single threaded model and multi-threaded
model. In order to interface foreign components with the ASD generated code, there are stubs

ASD Model

Formal model and
verification

Source code
• C
• C++
• Java
• C#

ASD guarantees
equivalence

Generate formal model
Generate defect free

source code from
Verified model

Design Errors

Generic Protocol and Modeling Approach Selection 43

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 43

which can be generated. These stubs provide an interface to integrate the ASD code with foreign
code. The detailed explanation about the model verification will be discussed in section 5.3.

There was a case study done using ASD for the typical adapter scenario shown in 4.1. The case study
is not explained here since the section 6.4 contains implementation of three typical adapter
scenarios and one of them is the case study. The case study was not a direct evaluation using the
tool but understanding the behavior of the tool. This means that the case study results were ASD
tables but specified without using ASD.

4.3.3 Event-B

The Event-B approach uses set theory as a modeling notation. This modeling approach uses formal
methods for system-level modeling and analysis [16]. This method uses refinement procedure to
split the system into different abstraction levels and uses mathematical proof to verify consistency
between different refinement levels [16]. Rodin platform [20] which is based on eclipse is the IDE
used for the toolset implementation and various tools can be incorporated as plug-ins in the
framework. The toolset aims at developing a model based software from capturing software
requirements till the implementation of the software. Pro-B is a model checker and animator that
can be used with the Rodin tool [19]. There are formal methods based code generation tools that
are proposed for this approach [17] [18]. Figure 4.3.5 shows the various plug-ins of Rodin toolset
with example tool implementation given in brackets (please refer to [22] for more details regarding
individual tools).

Figure 4.3.5: Event-B toolset

The tool was identified at a later stage in the project and due to time constraints there was no case
study performed using this tool.

4.3.4 Rational Rose – Real Time

The Rational Rose-RealTime (RoseRT) is a UML-based computer-aided software engineering (CASE)
tool developed by IBM corporation that supports the development of real-time embedded
software. It uses real-time object-oriented modeling methodology [21]. Software is built using a

 Rodin platform

Modeling
(UML-B)

Model Checking
(PRO-B)

Code
Generation
(EB2ALL)

Requirements
specification

(PRO-R)

Test case
generation

(MBT)

Generic Protocol and Modeling Approach Selection 44

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 44

combination of active entities called capsules and passive entities. Capsules communicate with each
other by message passing via ports. The behavior of a capsule is modeled by means of a state
diagram. Passive entities correspond to regular data classes in object-oriented languages like C++.
RoseRT also performs automatic code generation for different target platforms. RoseRT supports
code generation for C, C++ and Java programming languages.

The tool is the commonly used software development tool at Océ. There was no case study
performed using this tool since the tools’ functionality was known and it would not be an
interesting option for Océ.

4.3.5 Interface Language

The Interface Language shown in Figure 4.3.6 is an internal tool (prototype) developed at Océ. The
tool is used for specifying interface state machines using XML format and generating the code for
interface verification. The tool can be fed with sequence diagrams in order to verify their
consistency with the state machine. This feature helps in improving the specification of the state
machine. If the generated state machine is integrated with the interface implementation
environment, then the tool can perform runtime verification. The runtime verification represents
identification of the type of an error and the module responsible for causing the error. The run time
traces can be verified with the interface state machine model. This tool uses IPC mechanism to
generate logs which in turn is used for sequence diagrams’ verification and runtime verification.

Figure 4.3.6: Interface language functionality

The functionality of the tool is summarized as follows:

• To refine input state machine specification using an iterative procedure for automated
generation of class diagrams and state diagrams and sequence diagram verification

• To generate sequence diagrams from a given failure interface runtime trace with indication of
the failing transition

The tool cannot be used for designing the adapter software but it can be used for designing the
adapter interface protocols. The advantage would be verification of the interface state machines
during design time and runtime. This requires an IPC mechanism to be implemented as a

XML specification of
state machine

Check execution
traces

State machine Tool 1 Tool 2

Check sequence
diagrams

Generate code

IPC mechanism

Generic Protocol and Modeling Approach Selection 45

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 45

communication stack for interfacing the printer and the adapter. If other communication stack is
used, then the integration of this tool with the communication stack is required. Due to the above
mentioned reasons, there was no case study done using this tool.

4.3.6 SDL

The approach using specification and description language (SDL) is explained in this section. The
paper [4] explains the method to design highly reusable protocol software for software defined
radios. The paper identifies the commonalities among different wireless communication systems. A
generic protocol software stack was created from the commonalities. Then another software stack
called standard-specific supplements was added to incorporate the new system specific features.
The software specification was carried out using the SDL. A common state machine was drawn
incorporating the common flow and the system specific flow. This method has an advantage of
software reusability. But the paper is highly specific to the software defined radios and does not
give any recommendations for other systems in identifying the commonalities. Hence, the approach
was not considered further and there was no case study performed using this tool.

4.4 Selection Criteria

The selection criteria [27] [28] were used to analyze different modeling tools and to select the
modeling tool for designing the adapter software. These were grouped into three categories: model
based criteria, quality metrics and engineering methods. An additional category would be business
interests of Océ. These categories will give clear focus areas for the selection of a tool. Some of the
criteria might belong to more than one category, and then the criteria are placed in the most
suitable category. The idea behind the custom tool which is mentioned in the chart is to generate
code based on the specification of state machine of the adapter software.

Model based criteria: These denote the modeling concepts supported in various tools.
• Adapter synthesis: This criterion tells whether a tool can synthesize the adapter state

machine based on high level specification of the input models with transformation rules.
The synthesized adapters’ state machine can be directly used for implementation.

• Adapter modeling/System modeling: This criterion tells whether a tool fits the proposed
architecture for designing the adapter software. The tool should accept system level state
machines or Petri nets or other models as inputs in order to design the adapter.

• Interface modeling: This criterion tells whether a tool can be used to model the interfaces
of the adapter. The tool accepts interface state machines or Petri nets or other models as
inputs in order to model the adapter interfaces.

• Code generation: This criterion tells whether a tool can generate code from the design
specification.

• Model checking: This criterion tells whether a tool can verify system invariants. An invariant
is a condition that can be relied upon to be true for a given system. This feature helps to
verify the design for unexpected behaviors.

Generic Protocol and Modeling Approach Selection 46

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 46

• Test case generation: This criterion tells that the tool can generate test cases based on the
system model. The tool should have provisions to update the test cases when the system
model is changed.

Quality metrics: These determine the quality of the outputs produced by a modeling tool.
• Sequence trace verification: This criterion tells whether a tool has a provision to accept

example sequences as inputs and validate them with the global state machine. This feature
will help the software designer to test the system boundary conditions.

• Design verification: This criterion tells whether a tool can verify the design for interface
violations and runtime inconsistencies like deadlocks and livelocks. This verification helps to
identify design errors at an earlier stage in the software life cycle.

• Interface protocol consistency: The interface protocol is implemented as different software
components. This criterion tells whether a tool can check the interface protocol
implementation for consistency. This will ensure the protocol implementation is without
runtime inconsistencies like race conditions.

• Dynamic foreign interface error isolation: This criterion isolates the source of the interface
error and the type of protocol violation that has occurred during runtime. For example, if
the finisher is from other companies then the interface between the adapter and the
finisher is a foreign interface.

• Consistency between design and code: This criterion tells whether a tool can give guarantee
that the design and the code are consistent. The code should reflect the design for both
static and dynamic specifications.

• Nature of input specification: This criterion explains the nature of the input specification
required for the tool. If the criterion is ‘detailed’ then it covers all the dynamic scenarios of
the input specification and if the criterion is ‘not detailed’ then it does not cover all the
dynamic scenarios of the input specification.

• Counter example generation: This criterion explains whether a tool can generate example
scenarios for indicating a design failure with its type and reason for their occurrence.

• Counter example visualization: This criterion explains whether a tool can display counter
examples using some visualization technique. This helps the designer to understand the
error scenario in a better way.

Engineering methods: These criteria tells whether a tool can fit into the Océ tool chain, cost issues,
support for a tool and documentation.

• Documentation: This criterion tells whether a tool has sufficient documentation.
• Development environment: This criterion describes the development environment (tools)

used for the specification and execution of the tool.
• Target environment: This criterion describes the target environments (operating system)

supported for the generated code.
• Input specification method: This criterion describes the input specification procedure like

file format.

Generic Protocol and Modeling Approach Selection 47

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 47

• Requirements specification: This criterion tells whether a tool provides support for
capturing the requirements. This may help to map the design and requirements in a single
tool.

• Tool licensing: This criterion explains whether there is licensing required for the tool and if it
is required then the type of licensing necessary.

• Tool availability: This criterion tells whether a tool would be available for the next 3 years.
The availability is predicted based on the organization delivering the tool. If the tool is
obtained from a University then the availability is marked as ‘Not Sure’ and if the tool is
obtained from Océ or from other companies then the availability is marked as ‘Available’.

• Tool support: This criterion tells about the technical support available for the tool. If the
item is mentioned as ‘Internal’ then the tool is developed in Océ. If the item is mentioned as
‘External’ then the support is available from other company. If the item is mentioned as
‘University’ then the support is available from University.

4.5 Modeling Selection Chart

Table 4.5.1 shows the modeling selection chart used to compare different modeling tools. The
important outcomes of this comparison are the following: custom tool can be made for a specific
purpose with code generation feature but it will be of limited usage for future possibilities, interface
language tool can be used for the interface verification and not for designing the adapter, Petri nets
based tool provide adapter synthesis possibility but the synthesis to code transformation has to be
done manually and also the synthesis for this adapter is not needed since the mapping can be done
manually and Event-B tool provides several possibilities on the modeling front but the tool needs
knowledge of set theory and the tool is still in the phase of development with support from various
Universities. Considering the above factors, ASD and Rose can be considered for the adapter
implementation. ASD has an edge in the model verification where it verifies detailed dynamic
scenarios unlike Rose. Rose has been used in other projects in Océ and testing ASD for the adapter
software was interesting to Océ. Thus, ASD was selected for modeling the adapter software.

Selection
Criteria
Type

Selection
Criteria

Petri nets ASD Interface
language

Rational
Rose – RT

Custom
Tool

Event-B
toolset

Model
Based

Criteria

Adapter synthesis Yes No No No No No

Adapter modeling/
System Modeling

Yes Yes No Yes Yes Yes
(PRO-B)

Interface modeling Yes Yes Yes Yes No Yes
(PRO-B)

Code generation No Yes (C, C++,
C#, Java)

Yes Yes (Java, C++,
C#, Pascal)

Yes Yes (C, C++,
Java And C#)
(EB2ALL)

Model checking No No No No No

Yes
(PRO-B)

Test case
generation

No No No No No Yes
(MBT)

Quality
Sequence trace
verification

No

No

Yes No No Yes
(PRO-B)

Generic Protocol and Modeling Approach Selection 48

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 48

Metrics Design verification Yes Yes Yes Yes

No Yes
(PRO-B)

Interface protocol
consistency

Yes Yes Yes No No Yes
(PRO-B)

Dynamic foreign
interface error
isolation

No No Yes No No No

Consistency
between design
and code

No Yes Yes Yes

No Yes
(EB2ALL)

Nature of input
specification

Detailed Detailed Detailed Not detailed - Detailed +
Requires
knowledge of
set theory

Counter example
generation

No Yes No No No Yes
(MBT)

Counter example
visualization

No Yes
(Sequence
diagrams)

No No No Yes
(MBT)

Engineering
Methods

Documentation Yes Yes Yes Yes Yes Yes + not
complete

Development
environment

Yasper (Petri
net models),
Prom (Open
Petri net
models),
Marlene
(Adapter
generation)

ASD
Environment

XML (for input
specification),
Python
(verification
tool)

Rose
environment

- Rodin -Eclipse
based

Target
environment

- Windows,
LINUX,
Vxworks

Windows,
LINUX
requires IPC

UNIX,
Windows
NT/2000, and
real-time
operating
system

- Not sufficient
information
available

Input specification
method

Input models
using Petri nets
and
transformation
rules

State
machine in a
table format

State machine
in a XML
format

State machine
diagrams

- System
behavior
using set
theory

Requirements
Specification

No No No No No Yes (Pro-R)

Tool licensing Not required Usage based
licensing

Not required Required Not
required

Not required

Tool availability Not sure Available Available Available Available Not sure

Tool support University External
Company
(Verum)

Internal External
Company
(IBM)

Internal University +
External
Company
(Formal Mind
for Pro-B,
Pro-R)

Table 4.5.1: Modeling selection chart

Generic Protocol and Modeling Approach Selection 49

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 49

4.6 Conclusion and Recommendations

This chapter explains two important aspects of the thesis: generic protocol and modeling approach
selection. The link handling and paper handling categories were selected for the detailed
specification since these were identified as the complex message categories. The final outcome of
the generic protocol phase was that the design of a generic protocol for wide format finishers is
feasible. The analysis of various modeling tools were done to select a tool for designing the adapter
software. The selection chart shows comparison of different tools for the selection criteria. ASD tool
was chosen for designing the adapter software. There were technical and business reasons behind
this selection. One of the reasons behind the selection is that the Océ had interests in
understanding the tool. The other reason is that the tool requires complete specification of
dynamic scenarios initially during design phase which will result in fewer errors at the time of
implementation. The generated software can also be integrated into Océ development
environment. The recommendations to Océ are as follows: Event-B in the future may come up with
an input specification procedure which may not require knowledge of set theory for input
specification and there has been continuous development on various tools used in this toolset.
Event-B development looks promising and Océ can keep track on the changes happening in this
tool. The integration of interface language with inter-process library can be taken as a separate task
within Océ.

ASD 50

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 50

Chapter 5

ASD

This chapter explains the software design procedure using ASD and related concepts. Section 5.1
explains the modeling procedure followed in the ASD. Section 5.2 explains the design verification
done by ASD. Section 5.3 explains code generation and integration aspects of ASD. Section 5.4
describes the conclusion drawn out from various sections in the chapter. Please read section 4.3.2
before reading this chapter in order to understand this chapter in a better way. For a detailed
understanding of the ASD, please refer to ASD documentation [24].

5.1 Modeling using ASD

ASD enables the software designer to draw system level state diagrams and verify the consistency
between these state diagrams using mathematical analysis. ASD is a component-based technology
encompassing a mixture of ASD components and foreign components [24]. ASD component
includes design model and interface model. Foreign components are third party software which
needs to be integrated with ASD. An example for ASD components in an adapter is shown in the
Figure 5.1.1.

Figure 5.1.1: ASD components of an adapter

adap_conv
✔

adap_conv

adap_fini

ASD 51

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 51

This model comprises one design model (adap_conv) at the center and two interface models
namely adap_conv and adap_fini at the top and bottom respectively. An interface model is used to
capture the external visible behavior of an ASD component. A design model is used to capture the
internal behavior of an ASD component. Here, the design model represents message conversion
happening in the adapter, adap_conv interface represents the generic interface of the adapter with
the printer and adap_fini interface model represents the specific interface of the adapter with a
finisher.

Component interactions: An important aspect about ASD modeling is that the ASD model is
asymmetric with hierarchical layers. The messages that flow from top layer to bottom layer are
executed synchronously and messages that flow from bottom layer to top layer are executed
asynchronously (using queue). Figure 5.1.2 shows the interactions between two components where
component 1 is at a higher layer and component 2 is at a lower layer [23]. Component 1 can make a
synchronous function call to component 2 and get a synchronous reply for that function call.
Component 2 can also send messages via queue to component 1. Components at the same level
should not interact with each other. This mechanism prevents the occurrence of deadlocks in ASD
model. This concept shows there is a difference between interfaces at the top of a design model
and interfaces below the design model. The design model implements one interface model at a
layer above it and can use several interface models that are at a bottom level. For example,
adap_conv design model implements the adap_conv interface model and uses the adap_fini
interface model.

Figure 5.1.2: ASD component interactions

Input specification: The input specification is done through front end software (GUI provided by
ASD). Interface models and design models in ASD contain state machines described in a table
format. Figure 5.1.3 shows an example of ASD interface model (adap_conv) input specification.
Figure 5.1.4 shows an example of ASD design model (adap_conv) input specification table (table is
not shown completely). The contents of the ASD table (interface model and design model) are the
following: sequence based specifications (SBS), various states in the model, state variables and state

Component 1

Component 2

ca
ll

re
pl

y

no
tif

ic
at

io
n

ASD 52

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 52

diagram (which is generated by ASD for graphical visualization of the SBS). SBS is a table which is
used for defining the state machine of the model. The interface model additionally contains
interface definitions. The design model additionally contains the implemented service (interface
model) and list of used services (interface models).

Figure 5.1.3: Example of an ASD table (interface model)

Figure 5.1.4: Example of an ASD table (design model)

The SBS contains the following fields which have to be filled by a software designer:

Interface: This field shows the interface corresponding to an event in the next column. The interface
model and design model both use the interfaces defined in an interface model. There are three
types of interfaces that can be used by an interface model: application interface, notification
interface and modeling interface. There are two types of interfaces that can be used by a design
model: application interface and notification interface. The different interfaces are explained below:

ASD 53

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 53

• Application interface: This interface contains client requests and reply events for a
component. The client requests are synchronous messages coming from a higher layer to
the model and the reply events are synchronous messages sent as a reply to call events.

• Notification interface: This interface contains notification events for a component. The
notification events are asynchronous messages coming from a lower layer to the model.
These messages are stored in a queue present in design model before reaching the model.

• Modeling interface: This interface contains modeling events for a component. The modeling
events are used for model verification and these events do not occur in real-time. The
trigger messages coming from lower layers in an interface model are modeled using
modeling events.

Event: This field contains the set of incoming events that can occur in a state.

Guard: This field contains a guard expression which must be evaluated as true for an action to
happen for a received event. The guard expression can contain only state variables and constants
with mathematical operators. The guard field can be empty.

Actions: This field comprises of a list of outgoing actions which can be client requests, notification
events and other actions. The other actions include ‘illegal’ which denotes the event is not allowed,
‘NoOp’ which denotes that no action will be performed on receiving an event and ‘Disabled’ which
is similar to ‘illegal’ but it is used for modeling events.

State variable updates: The value of a state variable is changed in this field. This field can be empty.

Target state: This field specifies to which state a transition will take place.

Designing complete software: In order to design the complete software using ASD, the various
components present in the software have to be identified first. The various components are ASD
components and foreign components. The next step is to create and describe interface models
using SBS. The final step is to create and describe design models using SBS. The foreign components
can be interfaced with ASD through an interface model. Figure 5.1.5 shows an example of a
complete adapter model for the typical adapter scenario described in section 4.1. The top level
component acts as a client and uses the services of a lower component since synchronous requests
can be made by the top level component. The lower level component acts as a server and provides
a service to the top level component since low level components send only reply events and
asynchronous notification events. The software used for marshalling/unmarshalling can be
interfaced via adap_conv and adap_fini models, the code for message processing can be interfaced
via message_proc interface model and ASD timer runtime code can be interfaced with ITimer
interface.

ASD 54

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 54

Figure 5.1.5: Example of a complete ASD model of the adapter

Handling of message parameters: Messages comprising of events and actions can have parameters
except modeling events. The parameter type, initial value and range are specified based on the
programming language for which the code has to be generated. The reply event can have only a
single reply value or void reply as parameter. The passing of parameters from events to actions and
across rule cases (rule case denotes a single row in SBS) is possible in ASD. In real-time, the passing
of parameters across rule cases represent a memory capability of the software. The processing of
message parameters cannot be done in design models and it has to be performed in a foreign
component. This means that if there are decisions based on message parameters in a state
machine, then these decisions are made in foreign components and communicated to a design
model as notification events.

Timers: ASD provides built-in timers for interfacing with an ASD model and the timer provided is a
one shot timer. The one shot timer executes a timeout only once after the set time period value of
the timer has expired. ASD allows usage of multiple timers simultaneously based on the design
requirements. Timer events can be incorporated in the ASD model using the built-in ITimer
interface. There is a cancel event available in the interface model which cancels the expiry of the
timer and ensures that the expiry does not occur after cancellation.

Yoking: This is an approximation made by ASD in order to avoid queue buffer size violations for the
queues present in the design model. This refers to restricting the number of notification events that
can arrive in a queue. The yoking value is specified per notification event if required and the value
should be specified based on the analysis of timing behavior of the system and arrival and service
rates of the queue as claimed by ASD. Improper usage of this concept may lead to run-time
complications.

 inter-process library
<<foreign>>

Adap_conv

provides
Adap_conv
<<asd>>

uses

uses

provides

Message
processing

<<foreign>>

provides

inter-process
library

<<foreign>>

Adap_fini Message_proc
uses

Timer runtime
<<asd>>

ITimer

uses

provides

ASD 55

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 55

5.2 Design Verification using ASD

Verification procedure: The model verification (deadlocks, livelocks and modeling error check) of an
interface model is performed independently. For the verification of a design model, ASD first
verifies all the associated interface models and then the design is verified. This procedure ensures
that a design model is compliant to rules imposed by all the associated interface models. Figure
5.2.1 shows an example of design model (adap_conv) verification checks performed by ASD. Figure
5.2.2 shows an example of interface model (adap_conv) verification checks performed by ASD. If
the model verification for the complete software is successful then design models are shown with a
green color tick mark in the frontend software otherwise with a red color cross mark in the GUI. The
ASD indicates the error scenario using sequence diagrams. Figure 5.2.3 shows an interface violation
captured by ASD. If the error is clicked in a sequence diagram then the software shows a
corresponding rule-case in SBS. The error is caused since the adap_conv design model did not
expect the convert_done message in that state but the message_proc interface model is allowed to
send the message in that state. The design model does not follow the conditions set by the
interface model. This feature in ASD helps to debug error scenarios in a faster way.

Figure 5.2.1: Example of design model verification using ASD

ASD 56

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 56

Figure 5.2.2: Example of interface model verification using ASD

Figure 5.2.3: Example of an interface violation captured by ASD

Types of errors: This describes the different errors identified by the ASD during model verification.
ASD does not verify the contents of parameters present in messages and is transparent to them.
The types of errors verified by ASD are explained below:

Presence of deadlocks: A deadlock is a condition where both the components interacting
with each other do not perform any action since they expect an event from one another.
ASD checks for the presence of deadlocks in interface models and design models.

adap_conv
Internal

Used Services

 adap_conv DPC+Q Inst_message_proc

Illegal action performed

 1: Inst_message_proc:Internal.iconvert_done

 2: Inst_message_proc:imessage_proc_NI.

 3: Inst_message_proc:imessage_proc_NI.convert_done

ASD 57

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 57

Presence of livelocks: A livelock is a condition where in a component is busy with its internal
behavior and does not respond to external triggers. ASD checks for the presence of livelocks
in interface models and design models.

Interface compliance: The ASD checks whether a design model complies with all the
associated interface models.

The rest of the error verifications can be grouped under modeling error checks:

• Determinism: The ASD expects a design model to be deterministic without possible
happening of concurrent events by definition. In SBS, only one rule case should be
selected every time during state transitions.

• Guard completeness: The ASD checks whether all the cases of a guard expression
evaluation are present in a state. The guard expressions include arithmetic (addition
and subtraction), logical and comparison operators. For example, if a rule-case has
𝑓𝑙𝑎𝑔 > 1 as guard expression for an event named ‘checking’ then another rule-case
must have 𝑓𝑙𝑎𝑔 ≤ 1 as guard expression in the same state for the same event. This
ensures all the alternate flows are captured by the ASD.

• Range violations: The ASD expects the designer to specify a range for every state
variable used and it checks whether the range of the variable is maintained
correctly in the SBS.

• State invariant violations: State invariants are expressions that can be used at the
beginning of a state and have to be evaluated as true whenever the state occurs in
the state machine. The ASD checks this behavior.

• Queue buffer violations: The ASD checks that the queue buffer size is not violated
due to notification events.

5.3 Code Generation and Integration

This section explains code generation and integration aspects of the ASD. Code should be generated
once the design has been verified.

Code generation: Code can be generated for an ASD model in different programming languages like
C, C++, Java or TinyC. The ASD generates one header file for every interface model and one header
file and one source file for every design model.

Stub generation: Figure 5.3.1 shows an example of stub code generation using ASD. Stubs are
skeleton code (source file) which contain routines to interface with a foreign interface (interface
model).

ASD 58

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 58

Figure 5.3.1: Example of stub generation using ASD

There are two types of stubs based on the location stub with respect to the interface from which it
is generated from: client stubs which are at a higher level to the interface model and used
component stubs which are at a lower level to the interface model. In Figure 5.1.5, adap_pri
interface model can be interfaced through a client stub with inter-process library and adap_fini
interface model can be interfaced through a used component stub with inter-process library.

ITimer integration: The interface model of the ITimer is provided by ASD. But the design model is
not available to the designer. The code for the ITimer model (design + interface) can be downloaded
directly from ASD.

Compilation: The building of an executable requires the following components: ASD files, foreign
component files, runtime files, boost libraries in case of C++ and a thread library. The run-time files
are downloaded from ASD which includes ITimer files.

Threads: There are two types of thread models, a multi-threaded model and a single-threaded
model which can be specified during the code generation for design models. In the multi-threaded
model, there is a separate thread for every design model instance created by a client. The thread
implements a deferred procedure call (DPC) server for performing queuing mechanism in order to
handle notification events. In the single threaded model, the client thread is reused for handling
notification events.

Run-time issues: The ASD expects a foreign component to adhere strictly to the interface definition.
If there are run-time violations of the interface then the generated ASD software will crash. The ASD
code has an in-built logging facility which can be used for verifying the reason for a crash. If the

ASD 59

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 59

foreign is bound to produce interface errors then an ‘armour’ component can be used to protect
the generated ASD software as claimed by ASD [25]. The ‘armour’ component acts as a middle layer
isolating the foreign component from the generated ASD software. If there are non-compliant
interface messages, then these are filtered and logged by the ‘armour’ component and not sent to
the generated ASD software. The ‘armour’ component has to be created by the software designer
like any other ASD component.

5.4 Conclusion

This chapter contains three aspects of ASD: modeling, verification and integration of the generated
code. The important concept to remember is that the ASD model is asymmetric. A modeling of an
adapter software using ASD will first involve identifying the hierarchical levels in the software. In
adapter model using ASD, printer interface was placed at the top of the message converter and
finisher interface was placed at the bottom of the message converter giving priority to printer
messages. ASD is transparent to contents of message parameters and does not verify them. The use
of foreign components for parameter processing will introduce additional messages in the state
machine. The important verification that the ASD performs is to check consistency between design
model and its associated interface models. This forces the designer to think of all the dynamic
scenarios during the design phase. In the GUI, sequence diagrams are not shown during the normal
design but only when there is a verification error which is less helpful for a software designer. The
next chapter contains more information on the experience with ASD for scenarios used for
prototyping.

Prototyping 60

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 60

Chapter 6

Prototyping

This chapter describes the activities performed in the prototyping phase. Section 6.1 shows the test
setup used for testing the prototype. Section 6.2 describes the initial testing performed to
understand the prototype board. Section 6.3 describes the testing carried out to understand the
adapter architecture with interfacing through inter-process software. Section 6.4 explains the
implementation of a typical scenario using ASD. Section 6.5 explains the implementation of link
handling section of the generic protocol using ASD.

6.1 Test Setup

Figure 6.1.1 shows the prototype set up used in the project. The adapter software was deployed
separately in an existing Océ prototype board. The printer software and finisher software were
deployed in a PC. The PC and the board were connected by an USB cable. The idea behind running
printer software and finisher software in the same device was to ease the prototyping with respect
to networking issues since the finisher is viewed as a black box in reality and the purpose of finisher
software inclusion was to test the adapter software.

Figure 6.1.1: Prototype test setup

<<device>>
:PC

<<Execution environment>>
:Vmware Ubuntu

Printer
software

<<device>>
:Prototype board

<<Execution environment>>
:LINUX

Adapter
software

Finisher
software

Ethernet over USB

Prototyping 61

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 61

Prototype board: The details of the prototype board are given in Appendix B: “Océ prototype board
specification”. The board has an ARM based microprocessor. The board runs a custom version of
the LINUX operating system (OS) and the boot loader takes the operating system image from an
USB drive connected to the board. The operating system image, other software and other files were
placed in a specific directory structure inside the USB flash drive in order to enable the boot loader
to understand the structure. Files placed in the USB flash drive can be read during execution. There
is a serial connector in the board which enables the programmer to log in to the terminal of the
board. The board has another USB slot for connecting a USB cable which was used as the physical
communication channel for adapter, printer and finisher.

Virtual machine: The printer software and finisher software were deployed in a Vmware virtual
machine installed in the PC. The PC had a Windows 7 operating system and Vmware had an Ubuntu
operating system. The idea behind this deployment was that the real deployment will use LINUX OS
and the compilation environment for both types of deployment would be similar. Another reason is
that there were different software packages (inter-process library, ASD) used in the project and the
integration time would be faster if both the deployments use same type of operating system. The
finisher software and printer software runs as a separate executable connected by the adapter
software.

Connectivity: There was only one physical connection and two logical connections present in the
prototype set up. The physical connection was between the PC and the prototype board was
established using USB. In the Windows operating system, Ethernet support over USB was provided
by installing a Theyscon USB Ethernet control model (ECM) device driver. This step was necessary to
incorporate socket based communication between software components in a network. The two
logical connections were a socket connection between the printer software and the adapter
software and a socket connection between the adapter software and the finisher software.

Programming language: The C++ programming language was selected for implementing the
software components. This programming language is the de-facto programming language used in
Océ for implementing printer software and offers the benefits of object oriented techniques.

Compilation environment: There was no pre-defined compilation environment required for
Vmware Ubuntu since the operating system is LINUX based and the code can be directly compiled
on the host (Ubuntu). The target (board) environment has no direct compilation environment.
Hence, an Océ cross-compiler environment (based on MinGW) was setup for compiling the code
from Windows to LINUX running in ARM.

6.2 Testing the Prototype Board

The initial testing performed was to compile a simple program and execute it in the target. The
executable was kept in the USB drive and the execution was performed using a serial interface.
There was also a trivial file transfer protocol (TFTP) connection established between PC and board
in order to update adapter software without physically removing the USB drive.

Prototyping 62

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 62

Ping test: The next step was to test the connectivity between the host and the target. There were
fixed IP addresses configured for all the devices. The connectivity was checked by sending a ping
request. There was an initial problem with ping tests from the host to the target. The Vmware had
to be set in bridged mode in order to make the ping work correctly.

Polling server: The testing procedure followed was to perform emulation of the printer software
and finisher software using test stubs. The test stubs were connected to a client which uses socket
based communication. Initially, there was a client established in the host and a server was
established in the target. The client and the server communicated via sockets (SOCK_DGRAM
based). The server implemented a chat functionality receiving datagram messages and sending
them back to the client. The next procedure was to test the complete set up of the adapter where
in the adapter is expected to handle asynchronous messages from the printer and the finisher.
Hence, a polling server was established in the adapter which polls for messages from two clients
based on port numbers. There were two port numbers defined: one for the printer and other for
the finisher. The socket used here was based on ‘SOCK_STREAM’ and the adapter does translation
of messages. Figure 6.2.1 shows the initial testing of the prototype board and this testing procedure
helped to clear most of the hardware issues and networking issues.

Figure 6.2.1: Initial testing of prototype board

<<device>>
:Prototype board

<<Execution environment>>
:LINUX

Adapter

<<device>>
:PC

<<device>>
:Vmware UBUNTU

 Printer

Application
(Test stubs)

Client
 (Socket 1)

1 1

 Finisher

USB (ethernet over USB)

Polling
Server

(Socket1,
Socket2)

1

Application
(Test stubs)

1 1

Client
(Socket 2)

Message
Translation 1 1

1

Prototyping 63

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 63

6.3 Interfacing with Inter-process Communication
 Library

The one of the focus points of the project was verification of the adapter software for logical
messages. The proof of concept could be achieved only with marshalling and unmarshalling
components. The low level conversion software was an open choice in the thesis and an existing
internal inter-process communication library from Océ was selected in order to implement the low
level software. The inter-process library is used for providing asynchronous socket based
communication across peers in a network. The reason behind the selection was to aid the
prototyping phase since low level socket implementation will take additional time.

Protocol stack: Figure 6.3.1 shows the protocol stack of the complete system comprising of printer,
adapter and finisher. The protocol stack for the printer was meant only for finisher interfacing. The
application layer contains different message categories which were defined in the generic protocol
and specific protocols. The inter-process library acts a middle layer enabling application messages
to travel in a network and reach other devices through lower layers. The lower layers contain driver
software for the communication channel. There are two types of scenarios possible: the real
scenario in which inter-process stack used only in the printer and the adapter since finisher is
considered as a black box and the prototype scenario wherein the finisher also contains inter-
process stack layer since this facilitates the speed of prototyping.

Figure 6.3.1: Protocol stack

Functionality: Figure 6.3.2 shows the code generation process of inter-process tool. The parser is
fed with interface specification file in XML format and existing input style-sheet files. The
specification of interfaces using the library for the typical adapter scenario is given in Appendix E:
“Inter-process communication specification for the prototype of typical adapter scenarios”. The
interface specification comprises of signals which are interface messages and parameter type

Link
Handling

Error
Handling

Operational
State Mgmt.

Paper
Handling

Power State
Mgmt.

Diagnostics
Mgmt.

Software Download
Mgmt.

Multiple Finishers’
Mode Mgmt.

Application layer

Transport layer

Inter-process library

Lower Layers

Link
Handling

Error
Handling

Operational
State Mgmt.

Paper
Handling

Power State
Mgmt.

Diagnostics
Mgmt.

Software Download
Mgmt.

Multiple Finishers’
Mode Mgmt.

Application layer

Transport layerLower Layers

Physical link

Printer Adapter

Link
Handling

Error
Handling

Operational
State Mgmt.

Paper
Handling

Power State
Mgmt.

Diagnostics
Mgmt.

Software Download
Mgmt.

Multiple Finishers’
Mode Mgmt.

Application layer

Transport layerLower Layers

Finisher

Physical link

Real scenario

Prototype

Inter-process library Inter-process library

Prototyping 64

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 64

definitions. There is only one parameter allowed per message but multiple parameters can be
composed as a structure. The output files from the parser are a source C++ file and a header C++
file. These files contain classes for server and client implementation.

Figure 6.3.2: Tool functionality

Compilation: After the generation of files, client and server parts of the code can be integrated to
an application. The client or server code needs the inter-process library for compilation. An
application developed using inter-process tool would require inter-process tool generated files, the
inter-process library, inter-process library header files and application files for the compilation.

Execution: The execution of an application using the inter-process library required a network
topology file as an input during run-time. This file contained name of the application, name of the
peer, interface identifier, transport layer details like transport identifier, IP address and port
number. The library creates an additional thread in order to listen to incoming messages from an
interface.

Interfacing: Figure 6.3.3 shows the testing of adapter architecture performed using the inter-
process library.

Figure 6.3.3: Testing the adapter architecture using the inter-process library

Source file
<<output>>

Header file
<<output>>

Parser

Input style-sheet files
<<input>>Input style-sheet files

<<input>>

Interface specification
XML file

<<input>>

<<device>>
:Prototype board

<<Execution environment>>
:LINUX

Adapter

<<device>>
:PC

<<device>>
:Vmware UBUNTU

 Printer

Application
(Test stubs)

Client1
(Inter-process

library) 1 1

 Finisher

USB (ethernet over USB)

Server1
(Inter-process

library)

1

Application
(Test stubs)

1 1

Client2
(Inter-process

library)

Message
Translation 1 1

1

Server2
(Inter-process

library) 1 1

Prototyping 65

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 65

This procedure was followed to test the adapter architecture using the library but without model
based components. This procedure was used to evade any risks due to the integration of the library.
The testing was the same as that of the testing performed using the polling server except that there
were two servers handling printer and finisher messages separately enabling concurrent reception
of messages.

6.4 Implementation of Typical Scenarios

In order to test the feasibility of the adapter, it was necessary to prototype a design which had all
the message conversion complexities present. The typical adapter scenario mentioned in Section
4.1 contains such complexities. This adapter scenario with inclusion of timeouts was chosen for
prototyping. There were three scenarios: adapter scenario 1, adapter scenario 2 and adapter
scenario 3.

Adapter scenario 1: Figure 6.4.1 shows the first adapter scenario which is same as the typical
adapter scenario shown in Figure 4.1.1 but with more details and a minor change. The additional
details were that this sequence diagram contains all the components of the adapter and printer and
the parameter conversion was changed to ′𝑖 + 100’ from ′𝑖 + 1′ from the typical adapter scenario
given in Figure 4.1.1.

Figure 6.4.1: Adapter scenario 1

Adapter scenario 2: This adapter scenario 2 is shown in Figure 6.4.2 represents an alternate flow
happening in the adapter state machine for error cases. This scenario incorporates timer module
which makes the state machine more complex than the previous scenario. If the adapter does not
receive 𝐵 message as reply for a 𝐴(𝑥) message sent to the finisher, then the adap_conv does a
timeout after 300ms in order to send a 𝑌(𝐹𝐴𝐼𝐿) to the printer and sends a 𝑅𝑒𝑠𝑒𝑡 message to the
finisher. The printer interface module converts 𝑌(𝐹𝐴𝐼𝐿) message to 𝐷𝑜𝑛𝑒(𝐹𝐴𝐼𝐿) and sends it to
the printer control module. Initially, the 𝑅𝑒𝑠𝑒𝑡 message was not present and it was added to tackle
an ‘interface violation’ error captured by the ASD verification procedure. The interface violation
error occurs since 𝐵 message might be received in another state after some delay and the message

Adapter

Adap_Pri Adap_Conv Adap_Fini

X(i)

A(i+100)

B

C(i)

DY(OK)

Printer
Generic

X(i)b

Yb(OK)

Finisher

A(i+100)b

Bb

C(i)b

Db

Printer_
Interface

X(i)

Y(OK)

Trigger(i)

Done(OK)

Printer_
Control

Prototyping 66

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 66

is not expected in that state. The 𝑅𝑒𝑠𝑒𝑡 message is used to bring the interface state machines in the
adapter and finisher to the initial state where in 𝐵 message is ignored.

Figure 6.4.2: Adapter scenario 2

Adapter scenario 3: This scenario shown in Figure 6.4.3 is the same as the previous scenario except
that timeout happens for the 𝐶(𝑖) message. If the adapter does not receive a 𝐷 message as reply
for a 𝐶(𝑖) message sent to the finisher, then the adap_conv does a timeout after 200ms in order to
send a 𝑌(𝐹𝐴𝐼𝐿) message to the printer and send a 𝑅𝑒𝑠𝑒𝑡 message to the finisher. The printer
interface module converts 𝑌(𝐹𝐴𝐼𝐿) message to 𝐷𝑜𝑛𝑒(𝐹𝐴𝐼𝐿) and sends it to the printer control
module.

Figure 6.4.3: Adapter scenario 3

State machines: Figure 6.4.4 represents the required state machines for designing the prototype
using ASD. Please note that the name given in parenthesis for each state machine is same as the
ASD model naming. The three scenarios shown above are a trace of these state machines and the
state machines capture the complete expected functionality of the printer, adapter and finisher.

Adapter

Adap_Pri Adap_Conv Adap_Fini

X(i)

A(i+100)

Y(FAIL)

Printer
Generic

X(i)b

Yb(FAIL)

Finisher

A(i+100)b

Printer_
Interface

X(i)

Y(FAIL)

Trigger(i)

Done(FAIL)

Printer_
Control

Tm(300ms)

Reset
Resetb

Adapter

Adap_Pri Adap_Conv Adap_Fini

X(i)

A(i+100)

B
C(i)

Y(FAIL)

Printer
Genric

X(i)b

Yb(FAIL)

Finisher

A(i+100)b

Bb

C(i)b

Printer_
Interface

X(i)

Y(FAIL)

Trigger(i)

Done(FAIL)

Printer_
Control

Tm(200ms)

Reset

 Reset

Prototyping 67

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 67

Figure 6.4.4: State machines for typical adapter scenarios

Mapping with deployment view: The components present in the sequence diagrams can be
mapped to components in the prototype deployment view shown in Figure 3.4.2. The components
such as router and adapter manager were absent in this prototype. The reason behind the removal
was to test the basic functionality of the adapter with a message converter. The adapter manager is
used for performing non-functional adapter activities like software download and interaction with
the hardware. Hence, testing these features was less critical than testing a message converter. The
router performs splitting of messages based on message identifiers in an environment with multiple
finishers. Since there was only one finisher in the prototype this component was also removed.

ASD components: Figure 6.4.5 shows the ASD components used for designing the prototype. The
square boxes with a green color tick mark represent design models and other blocks represent
interface models. Printer related components are in the top layer, adapter related components are
in the middle layer and finisher related components are in the bottom layer. Please find the
detailed ASD state machines (SBS) for typical adapter scenarios in the Appendix D: “ASD
specification for the prototypes: typical adapter scenario and link handling”. The explanation of
these components (since different naming procedure was used for modeling using ASD) with
respect to the prototype deployment view in Figure 3.4.2 is given below:

• Adap_pri interface model: This represents the interface between printer control module
and printer interface module.

• Adap_pri design model: This represents the internal behavior of printer interface module.

State 1

State 2

Trigger(i)Done(j)

Start

Interface state machine
Printer control-Printer Interface
(adap_pri interface model)

State 1

State 2

Trigger(m)
/X(m)

Y(n)
/Done(n)

Start

Design state machine
Printer Interface module
(adap_pri design model)

State 1

State 2

X(l)Y(m)

Start

Interface state machine
Printer Interface-adap_conv Interface
(adap_conv interface model)

State 1

State 2

Start

Interface state machine
Adap_conv-Finisher module
(adap_fini interface model)

State 3 State 4

Reset

A(y)

B C(n)

Reset ResetReset

D

State 1

State 2

Start

Design state machine
Adap_conv module
(adap_conv design model)

State 3

B

X(i)
/A(i+100)

B
/C(i)

D
/Y(OK)

D

Tm(300ms)
/(Reset, Y(FAIL))

B
/C(i)

Tm(200ms)
/(Reset, Y(FAIL))

D

State 1

State 2 error

Design state machine
Finisher module
(adap_fini design model)

A(m)
/B

C(n)
/D

Reset

Reset

Reset

Start

A(m)
/B

Prototyping 68

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 68

• Adap_conv interface model: This represents the interface between printer interface module
and adap_conv module.

• Adap_conv design model: This represents the internal behavior of adap_conv module.
• Adap_fini interface model: This represents the interface between adap_conv module and

finisher module.
• Adap_fini design model: This represents the internal behavior of finisher module.
• Message_proc interface model: This represents the interface between adap_conv module

and message processing foreign component. This model is included since ASD performs
message conversion in foreign components.

• ITimer interface model: This is the built-in interface model provided by ASD for
incorporating timer functionality in the design.

Figure 6.4.5: Components of ASD for typical adapter scenarios

Verification and integration procedure: The ASD models for the prototype were verified and the
model was found to be error free by ASD. The verification was done as a complete model
incorporating printer, adapter and finisher. The implementation required different state machines
in different files. Figure 6.4.6 shows all software components for typical adapter scenarios. Here,
printer, adapter and finisher components are split-up and contain their foreign components. Figure
6.4.7 shows the different files generated by ASD.

ITimer

adap_conv
✔

adap_conv

adap_fini message_proc

adap_fini
✔

adap_pri
✔

adap_pri

Printer

Adapter

Finisher

Prototyping 69

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 69

Figure 6.4.6: Complete software components for typical adapter scenarios

Figure 6.4.7: ASD generated files

Integration with inter-process library: The input files ‘interface_generic.xml’ and
‘interface_specific.xml’ specifies the generic interface messages and specific interface messages for
the prototype respectively. These files are available in the Appendix E: “Inter-process
communication specification for the prototype of typical adapter scenarios”. The parser produced
the following output files: ‘interface_generic.cpp’ and ‘interface_generic.h’ for
‘interface_generic.xml’ input file. The parser produces the following output files:

 inter-process library
<<foreign>>

Adap_conv

provides
Adap_conv
<<asd>>

uses

uses

provides

Message
processing

<<foreign>>

provides

inter-process
library

<<foreign>>

Adap_fini Message_proc
uses

Timer runtime
<<asd>>

ITimer

uses

provides

Printer control
<<foreign>>

Adap_pri

provides

Adap_pri
<<asd>>

uses

provides

 inter-process
library

<<foreign>>

Adap_conv

uses

 inter-process library
<<foreign>>

Adap_fini

provides

Adap_fini
<<asd>>

uses

 Printer
Generated ASD files: adap_convInterface.h, adap_priComponent.cpp, adap_priComponent.h,

adap_priInterface.h
Handwritten stub files: printer_control.cpp, printer_control.h, printer_genericComponent.cpp,

printer_genericComponent.h

Adapter
Generated ASD files: adap_convComponent.cpp, adap_convComponent.h,

adap_convInterface.h, adap_finiInterface.h, message_procInterface.h
Handwritten stub files: adap_finiComponent.cpp, adap_finiComponent.h, adap_generic.cpp,

adap_generic.h, message_procComponent.cpp, message_procComponent.h

Finisher
Generated ASD files:adap_finiComponent.cpp, dap_finiComponent.h, adap_finiInterface.h

Handwritten stub files: finisher_specific.cpp, finisher_specific.h

Common
Runtime files:channels.h, configurator.h, context.h, diagnostics.cpp, diagnostics.h, dpc.cpp,

dpc.h, passbyvalue.h, trace.h,ucv.h

Prototyping 70

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 70

‘interface_specific.cpp’ and ‘interface_specific.h’ for ‘interface_specific.xml’ input file. These output
files contain server and client C++ classes necessary for interfacing with ASD handwritten stubs.

With client stubs: The inter-process library can invoke member functions of the client stub
(foreign component) class and the client stub can invoke member functions of the library
class through shared static objects. The same logic is equally valid for interfacing any other
application code with ASD client stubs. Figure 6.4.8 shows an example code snippet for the
interfacing of ASD client stubs.

Figure 6.4.8: Code snippet for the interfacing of ASD client stubs

With used component stubs: The integration of inter-process library or any other
application with ASD used component stubs for application interface messages can be done
in the same manner as with client stubs using shared static objects. The notification events
have to be integrated little differently for used component stubs. The notification function
calls can be made only from an ASD stub member function and not from outside. Since ASD
expects client requests and notification events to be handled in a single thread for used
component stubs. For the inter-process library, this is not an option since the library
executes in a separate thread for handling incoming messages and has to send notification
events to ASD.

The procedure followed to send notification events from the inter-process software to ASD
are as follows:

• Callback functions were created for every notification message that needs to be
send to ASD

 //adap_pri.cpp
//ASD client stub - Message sent from the adapter client to the inter-process library

void iadap_conv_NIProxy::y(const asd::value< bool >::type& i)
{
 // Start custom code section
 std::cout<<"Adapter client: Received Y message from the adapter ASD module: "<<i<<std::endl;
 Interface_Generic.Y(Result(i));
 std::cout<<" Adapter client: Sending Y message to the inert-process library : "<<i<<std::endl;
 // End custom code section
}

//AdapterServerImp.cpp
//Inter-process library code - Message sent from the printer to the adapter client

int AdapterServerImpl::X(const interface_generic::Data& a_Arg)
{
 std::cout<< "Inter-process: Received X message from the printer : " << a_Arg.DataValue << endl;
 pri_c.x(a_Arg.DataValue);
 std::cout<< " Inter-process: Sending X message to the adapter : " << a_Arg.DataValue << endl;
 return 1;
}

Prototyping 71

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 71

• These callback functions were declared as pure virtual functions in a separate class
(‘control class’) which were inherited by ASD and inter-process library classes

• The implementation of the callback functions were made in an ASD class
• A shared static object of the inter-process library class was created in the

constructor of ASD and this constructor invoked an inter-process library member
function with ‘this’ pointer as parameter. In this member function, the received
parameter was stored in a shared static object (‘control object’) of type ‘control
class’. This step was done to enable dynamic binding of ‘control class’ member
functions

• This ‘control object’ was used to invoke callback functions whenever inter-process
library needed to send notification events to ASD

• Then the ‘control class’ implementation in ASD was invoked due to dynamic binding

• These call back functions present in ASD in turn send notification events to ASD

Compilation: Figure 6.4.9 shows the compilation and linking procedure followed for creating an
executable.

Figure 6.4.9: Compilation and linking procedure followed

The compilation of C++ files generated by ASD requires boost libraries [26] for compilation and
linking. The source and header files necessary for boost libraries can be downloaded from the boost
organization website [26]. These files have to be compiled using a procedure specified in their

ASD generated
files

ASD
handwritten

stubs

Inter-process
tool generated

files

Boost library

ASD runtime
files

Inter-process
library filesBoost library

header files

Compilation

Thread library

Object files

Linking

Executable

Handwritten
files

Prototyping 72

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 72

website. The documentation was available for Windows and LINUX. The cross-compilation
procedure using ‘MinGW’ was not available in their documentation. The information available is
that the compilation may or may not be successful. The cross-compilation to target was set up from
the Windows environment. This cross-compilation of boost library files posed some challenges since
it was supported by the documentation. The version of boost library used was boost_1_47_0.

Mapping with component static view: Please refer to component static view shown in Figure 3.5.1
in chapter 3 for understanding this comparison for the adapter. The ASD generated files contain
code for implementing the message converter component and the queuing component. Hand
written stub files together with inter-process library contain code for implementing the adap_pri
and adap_fini components.

Testing: There were three different executable files (printer, adapter and finisher) created. Figure
6.4.10 shows a screenshot of the prototype testing. The prototype was tested by making the printer
control module to send 𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝑖) messages for every 2 sec and other values like 1 sec, 100 ms.
The prototype was tested for various scenarios by executing only the printer module and adapter
module, by executing printer module only, by executing the complete system involving printer,
adapter and finisher modules, by disconnecting USB cable and then reconnecting it and by stopping
one of the modules. The prototype produced expected results for all the test cases. Thus the
prototype proved the feasibility for the adapter software using a modeling approach.

Figure 6.4.10: Screenshot of the prototype testing

Prototyping 73

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 73

Mapping with component dynamic view: Please refer to component dynamic view shown in Figure
3.5.2 in chapter 3 for understanding this comparison for the adapter. There were four threads
running in the adapter module: hrtimer_nanosleep, futex_wait_queue_me and two sk_wait_data
threads. Thread ‘hrtimer_nanosleep’ corresponds to adap_conv thread, the two threads for
‘sk_wait_data’ corresponds to adap_pri and adap_fini threads and thread ‘futex_wait_queue_me’
corresponds to queuing thread present in message converter module.

6.5 Implementation of Link Handling

For the link handling message category, detailed state machines for printer, adapter and finisher
components are available in the Appendix C: “Generic protocol for adapter interface”. The idea
behind the implementation of these state machines was to explore ASD in a more detailed way. The
complexities present in this message category can be understood from section 4.2.2. The ASD
modeling could not be completed due to time constraints. But the modeling helped to understand
more concepts involved in making ASD. Figure 6.5.1 shows a partial ASD model created for the link
handling message category.

Figure 6.5.1: ASD components for link handling message category (Partial)

The following observations were made during this partial implementation:

The asymmetric nature of ASD has impact on the design. If the system behavior is not asymmetric
then modeling becomes tricky. For example in an interface model, if there are only notification
events in a state then one of these have to be kept as ‘inevitable’ event with a yoking value to avoid
deadlock conditions. Still, there would be problems related to the interface violations because
‘inevitable’ event overruled the occurrence of other ‘optional’ events. The best practice employed
was to incorporate an additional application interface event when there were more than one
notification event in a state. This changed the original design.

The allowance of single interface model to capture all the messages for a design model from the top
layer breaks the communication protocol verification when the protocol state machines would be

ITimer

adap_fini
✔

adap_fini

standby_process

inter_process
✔

inter_process

link_handling_adap

link_handling_adap
✔

link_handling_client_pri

link_handling_pri
✔

link_handling_pri

value_check

printer_client

printer_interface
✘

printer_interface

Finisher

Adapter

Printer

Prototyping 74

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 74

implemented in separate devices. For example, in order to check whether an interface model fits
two design models (one at the top and another at the bottom), there should be a single interface
model used. In reality, the interface model has to contain messages from other actors apart from
the primary actors involved in the interface protocol. This forces the interface model to be split in
two different interface models with different state machines breaking the verification of interface
protocol.

The absence of parameter processing within an ASD design model increases the size of state
machines. For example, link handling state machines contain decision making blocks and these have
to be processed in foreign components and introduced back as notification events in the design
model. This causes the design model to grow in size.

Application interface events execute in the context of the client. Link check functionality needs to
be implemented (maintenance of link) as a separate thread. The link check module was modeled as
a design model. This would create a DPC server thread since there were notification events to this
module. In order to make application interface events to execute in a separate thread, the client
connected to the interface model must implement a separate thread. This changed the architecture
by introducing an additional DPC thread whenever a component has to execute in a separate
thread.

Communication between different threads (design models at a same level) can be done using
broadcast messages. For example, in the link handling category the link check module reports ‘link
failure’ which needs to reach other modules running in different threads. This can be modeled using
a separate interface model and design model dedicated to receive the ‘link failure’ message and
broadcasting it as notification events to all design models connected to the interface. In order to
read a broadcast message, the design model should have subscribed for broadcast messages
arriving from an interface. The summary is that there is no peer-to-peer type of communication in
ASD.

6.6 Conclusion

This chapter explains the steps involved in developing a prototype in order to check the feasibility of
the adapter software using a modeling approach. The test set up was selected to aid the process of
prototyping and to test the concept. The selection of an existing inter-process library was a design
choice which can be replaced with other software package if required. The integration process
involved several challenges especially in integrating boost library files. The prototype
implementation showed that having a model based adapter is feasible for the proposed
architecture. The prototype implementation also proved the feasibility of the generic protocol. The
partial implementation of link handling revealed some design constraints while using ASD. The ASD
indeed verifies consistency between interface model and design model which improves the
generated software. There was considerable amount of time spent to understand the modeling
approach followed in ASD and the type of verifications done by it.

Conclusions 75

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 75

Chapter 7

Conclusions

The problem statement of the master thesis is revisited to understand the match between the given
problem and the results attained.

Problem statement: To propose a model based framework for interfacing Océ wide format
printers with any type of wide format finisher and to prototype a model based framework to
test the feasibility.

In the next sections, the main contributions made in the project, limitations and future work, and
final outcome of the thesis are discussed.

7.1 Main Contributions

Generic Protocol: The thesis involved a domain analysis to understand existing finisher interface
protocols and finisher capabilities. This was done to understand the different complexities in the
finisher protocols. The generic protocol was designed to tackle present and future changes in the
finisher protocols. Two message categories with maximum message conversion complexities were
identified for the complete protocol specification. For these categories, the specification was done
in an extensive manner with message details, sequence diagrams capturing various scenarios,
interface state machines for printer and finishers, adapter state machine and mapping of different
finisher protocols with the generic protocol. This proved the feasibility of having a generic protocol
for finisher interfacing.

Adapter architecture: In the thesis, adapter architecture has been proposed to handle different
capabilities of finishers and to support a model based approach. Then, different architectural views
were framed to understand the fit with stakeholders. The prototype implementation was done
based on the architecture and reflections were made to check if the actual implementation meets

Conclusions 76

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 76

the expectations from the architecture. The prototype implementation showed the feasibility of the
adapter architecture.

Modeling approach selection: In the thesis, there was an initial survey done to understand different
modeling approaches for designing the adapter software. There was a case study performed using
Petri nets and ASD to understand these tools in details. Then, there were selection criteria framed
to analyze different modeling tools. The selection criteria comprised of model based concepts,
quality metrics, engineering methods and business interests. Finally, a selection chart was created
to compare different modeling tools based on these selection criteria in order to select a modeling
tool for designing the adapter software. The ASD tool was selected based on this chart. The
business reason behind the selection is that the Océ had interests in understanding the tool. The
technical reason behind the selection is that the tool requires complete specification of dynamic
scenarios initially during design phase which will result in fewer errors at the time of the
implementation.

Prototyping: The prototype implementation of the adapter software was done using the ASD. The
prototype was made based on the adapter architecture. The prototype was used to test the
feasibility of the generic protocol, adapter architecture and actual handling of message conversions.
The prototype implementation was done for typical adapter scenarios comprising of all message
complexities. The prototype was tested for different scenarios and the prototype behavior followed
the model specification. The prototype testing proved the feasibility for using the ASD to model the
adapter software.

7.2 Limitations and Future Work

The selection of the modeling approach was not done in a strict way. The reason behind was that
Océ had interests in understanding the ASD. There might be other tools available that are more
suitable for making adapter software. This can be viewed as a limitation in the thesis.

The modeling of adapter software with the ASD requires changes in the original design. The
important aspects of ASD include its asymmetric nature, transparency to message parameters, lack
of peer-to-peer communication, thread creation procedure and usage of single interface model for
a design model at a top level. These attributes are discussed in detail in section 6.5 which impacts
the original design of the adapter. This can be a limitation factor which requires consideration
before modeling the software using ASD.

The prototype that was created using ASD had strict interface specifications. This means that the
foreign components were expected to adhere to these interface specifications. If during runtime,
foreign components send faulty messages then it would lead to software crashes. This problem can
be solved conceptually by using an ‘armour’ component. The current prototype can be extended
with ‘armour’ component and tested with erroneous foreign components. This would give a clear
view about deploying the adapter software in reality.

Conclusions 77

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 77

The generic protocol was designed considering different existing finishers and future possibilities.
The completion and extension of the generic protocol can have a clear roadmap in five years to
make it as an industrial standard for finisher interfacing. This would remove the requirement of a
finisher adapter for future finishers.

The Event-B modeling approach seems to be a promising one among the investigated tools since it
can be used from the requirement specification to the code generation. There was no case study
performed using the tool due to time constraints since the tool was identified at a later stage in the
project. A case study could be performed to understand the tool functionality for making the
adapter software.

The scope of the project was restricted to wide format printers. The scope can be widened to
incorporate cut-sheet printers in the future. This would demand additions in the generic protocol
specification. But the architecture for adapter software in principle should remain the same for a
possible cut-sheet adapter and other similar devices.

The finisher adapter was envisioned as a separate unit interacting only with printer and finishers.
The impact of interaction with other devices like a paper flow controller can be checked in the
future to test the applicability of the architecture for handling instructions from other devices.

7.3 Final Outcome

The usage of the generic protocol for interfacing wide format printers and finishers is feasible. The
two message categories used for protocol specification were the most complex categories. The
specification of other message categories should be also feasible.

The modeling of an adapter software using ASD is feasible. The prototype implementation testifies
the previous statement.

The usage of a generic adapter architecture which supports model based software is feasible. The
prototype implementation was checked with different architectural views in order to come to this
conclusion.

The modeling and verification of an interface protocol using ASD is feasible in some cases. The
feasible case is for the prototype implementation of typical adapter scenarios that was modeled
and verified using ASD. The difficult case is for the partial ASD implementation of link handling that
had problems in the design for having a common interface model.

References 78

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 78

References

[1] Christian Gierds, Arjan Mooij and Karsten Wolf, “Reducing adapter synthesis to
 controller synthesis,” IEEE transactions on services computing, vol. 5, no. 1, pages 72-84,
 january-march 2012.

[2] Wil van der Aalst, Arjan Mooij, Christian Stahl and Karsten Wolf, “Service interaction:
 patterns, formalization, and analysis,” In advanced lectures of the 9th international school
 on Formal Methods for Web Services (SFM-09: WS), LNCS 5569, pages 42-88, Springer-
 Verlag, 2009.

[3] Christian Gierds, Arjan Mooij and Karsten Wolf, “Specifying and generating behavioral
 service adapters based on transformation rules,” Preprints CS-02-08, Institut für Informatik,
 Universität Rostock, Germany, 2008.

[4] M.Siebert, B.Walke, “Design of Generic and Adaptive Protocol Software (DGAPS),”
 Proceedings of the Third Generation Wireless and Beyond, 3Gwireless '01, San Francisco,
 Calif, USA, June 2001.

[5] ASD: Suite. Online. Accessed 8th January 2013.
 http://www.verum.com/product/Verification-is-the-Difference.aspx

[6] Ramin Sadre et. al, “Simulative and Analytical Evaluation for ASD-Based Embedded
 Software,” Measurement, Modeling, and Evaluation of Computing Systems and
 Dependability and Fault Tolerance Lecture Notes in Computer Science Volume 7201,
 2012, pp 166-181.

[7] Wide format printers. Online. Accessed 12th February 2013.
 http://en.wikipedia.org/wiki/Wide-format_printer

[8] Arjan J. Mooij, Voorhoeve M. “Specification and Generation of Adapters for System
 Integration” Chapter in the book titled "Situation Awareness with Systems of Systems.",
 Piërre van de Laar et. al, ISBN: 978-1-4614-6229-3.

[9] Tool MARLENE. Online. Accessed 13th February 2013.
 http://service-technology.org/tools/Marlene

[10] Tool WENDY. Online. Accessed 13th February 2013.
 http://service-technology.org/tools/wendy

[11] Tool Yasper. Online. Accessed 14th February 2013. http://www.yasper.org/

http://www.verum.com/product/Verification-is-the-Difference.aspx
http://service-technology.org/tools/wendy
http://service-technology.org/tools/marlene

References 79

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 79

[12] Tool Prom 5.2. Online. Accessed 14th February 2013. http://prom.win.tue.nl/tools/prom/
[13] E. Kindler, “A compositional partial order semantics for Petri net components,” in

 ATPN, ser. LNCS, vol. 1248, 1997, pp. 235–252.
[14] P. Massuthe, W. Reisig, and K. Schmidt, “An Operating Guideline Approach to the

 SOA,” Annals of Mathematics, Computing & Teleinformatics, vol. 1, no. 3, pp. 35–43,
 2005.

[15] Philip Armstrong, Michael Goldsmith, Gavin Lowe, Joël Ouaknine, Hristina Palikareva,
 A. W. Roscoe, and James Worrell, “Recent developments in FDR,” Proceedings of CAV 12,
 LNCS 7358, 6 pages, Springer-Verlag, 2012.

[16] Butler, Michael. "Mastering System Analysis and Design through Abstraction and
 Refinement." (2012).

[17] Edmunds, Andy, and Michael Butler, "Code Generation for Event-B with
 Intermediate Specification," Rodin User and Developers Workshop. 2009.

[18] Méry, Dominique, and Neeraj Kumar Singh, "Automatic code generation from Event- B
 models," In Proceedings of the second symposium on information and communication
 technology, pp. 179-188. ACM, 2011.

[19] Leuschel, Michael, and Michael Butler, "ProB: A model checker for B," In FME 2003:
 Formal Methods, pp. 855-874. Springer Berlin Heidelberg, 2003.

[20] Abrial, Jean-Raymond, et al. "Rodin: an open toolset for modelling and reasoning in
 Event-B," International journal on software tools for technology transfer 12.6, (2010): 447-
 466.

[21] B Selic, "Tutorial: real-time object-oriented modeling (ROOM)," Real-Time Technology and
 Applications Symposium, 1996. Proceedings., pages 214 - 217, 1996 IEEE

[22] Rodin plug-ins for Event-B. Online. Accessed 29th July 2013.
 http://wiki.event-b.org/index.php/Rodin_Plug-ins

[23] Hooman, Jozef, Arjan J. Mooij, and Hans van Wezep. "Early fault detection in industry using
 models at various abstraction levels," Integrated Formal Methods. Springer Berlin
 Heidelberg, pages 268-282, 2012.

[24] ASD documentation. Online. Accessed 30th July 2013.
 http://community.verum.com/documentation/user_manual.aspx/9.1.0/overview

[25] Armour component in ASD. Online. Accessed 30th July 2013.
 http://community.verum.com/Files/Armour_pattern/ForeignClientArmourPattern.pdf

[26] Boost libraries for C++. Online. Accessed 30th July 2013.
 http://www.boost.org/

[27] Gulati, Ms Samridhi, and Ms Sarita Singh," Analysis of Three Formal Methods-Z, B and
VDM," International Journal of Engineering 1, no. 4 (2012).

[28] Frappier, Marc, Benoît Fraikin, Romain Chossart, Raphaël Chane-Yack-Fa, and Mohammed
 Ouenzar, "Comparison of model checking tools for information systems," In Formal
 Methods and Software Engineering, pp. 581-596. Springer Berlin Heidelberg, 2010.

http://prom.win.tue.nl/tools/prom/

Appendix A: “Message list for various finishers” 80

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 80

Appendix A: “Message list for various
finishers”

This is provided as a separate document.

Appendix B: “Océ prototype board specification” 81

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 81

Appendix B: “Océ prototype board
specification”

This is provided as a separate document.

Appendix C: “Generic protocol for adapter interface” 82

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 82

Appendix C: “Generic protocol for
adapter interface”

This is provided as a separate document.

Appendix D: “ASD specification for the prototypes: typical adapter scenario and link handling” 83

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 83

Appendix D: “ASD specification for the
prototypes: typical adapter scenario and
link handling”

This is provided as a separate document.

Appendix E: “Inter-process communication specification for the prototype of typical adapter scenarios” 84

Modeling and Implementation of an Interface Adapter between Wide Format Printers and Finishers 84

Appendix E: “Inter-process
communication specification for the
prototype of typical adapter scenarios”

This is provided as a separate document.

	Department of Mathematics and Computer Science
	Software Engineering and Technology Group
	Abstract
	Preface
	Barath Tirupalathurai Kannan
	Acknowledgments
	Barath Tirupalathurai Kannan
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	1.1 Background
	1.1.1 Wide Format Printers
	1.1.2 Wide Format Finishers
	1.1.3 Current Setup

	1.2 Problem Description
	1.3 Goals
	1.4 Approach Taken
	1.4.1 Proposed Solution
	1.4.2 Research Challenges
	1.4.3 Project Life Cycle

	1.5 Report Organization

	Domain Analysis
	2
	2.1 Finisher Capabilities
	2.1.1 Present Capabilities
	2.1.2 Future Capabilities

	2.2 Finisher Protocol Analysis
	2.2.1 Message Formats
	2.2.2 Protocol Details
	2.2.3 Message Categories
	2.2.4 Message Conversion Complexities

	2.3 Cut-sheet Printer Interface Solutions
	2.4 Conclusion

	Architecture
	3
	3.1 Requirement Analysis

	FR_1 The adapter software must be able to communicate with the printer using the generic protocol [input/output]
	3.2 Conceptual View
	3.3 Logical View
	3.4 Deployment View
	3.5 Component View
	3.6 Boundaries of the Architecture
	3.7 Conclusion
	4

	Generic Protocol and Modeling Approach Selection
	4.1 Typical Adapter Scenario
	4.2 Generic Protocol
	4.2.1 Domain Concepts
	4.2.2 Analysis of Complexities in Message Conversion

	4.3 Tools Investigated
	4.3.1 Petri nets
	4.3.2 ASD
	4.3.3 Event-B
	4.3.4 Rational Rose – Real Time
	4.3.5 Interface Language
	4.3.6 SDL

	4.4 Selection Criteria
	4.5 Modeling Selection Chart
	4.6 Conclusion and Recommendations

	ASD
	5
	5.1 Modeling using ASD
	5.2 Design Verification using ASD
	5.3 Code Generation and Integration
	5.4 Conclusion

	Prototyping
	6
	6.1 Test Setup
	6.2 Testing the Prototype Board
	6.3 Interfacing with Inter-process Communication Library
	6.4 Implementation of Typical Scenarios
	6.5 Implementation of Link Handling
	6.6 Conclusion

	Conclusions
	7
	7.1 Main Contributions
	7.2 Limitations and Future Work
	7.3 Final Outcome

	References
	[15] Philip Armstrong, Michael Goldsmith, Gavin Lowe, Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell, “Recent developments in FDR,” Proceedings of CAV 12, LNCS 7358, 6 pages, Springer-Verlag, 2012.
	[16] Butler, Michael. "Mastering System Analysis and Design through Abstraction and Refinement." (2012).
	[17] Edmunds, Andy, and Michael Butler, "Code Generation for Event-B with Intermediate Specification," Rodin User and Developers Workshop. 2009.
	[18] Méry, Dominique, and Neeraj Kumar Singh, "Automatic code generation from Event- B models," In Proceedings of the second symposium on information and communication technology, pp. 179-188. ACM, 2011.
	[19] Leuschel, Michael, and Michael Butler, "ProB: A model checker for B," In FME 2003: Formal Methods, pp. 855-874. Springer Berlin Heidelberg, 2003.
	[20] Abrial, Jean-Raymond, et al. "Rodin: an open toolset for modelling and reasoning in Event-B," International journal on software tools for technology transfer 12.6, (2010): 447- 466.
	[21] B Selic, "Tutorial: real-time object-oriented modeling (ROOM)," Real-Time Technology and Applications Symposium, 1996. Proceedings., pages 214 - 217, 1996 IEEE
	[22] Rodin plug-ins for Event-B. Online. Accessed 29th July 2013.
	http://wiki.event-b.org/index.php/Rodin_Plug-ins
	[23] Hooman, Jozef, Arjan J. Mooij, and Hans van Wezep. "Early fault detection in industry using models at various abstraction levels," Integrated Formal Methods. Springer Berlin Heidelberg, pages 268-282, 2012.
	[24] ASD documentation. Online. Accessed 30th July 2013.
	http://community.verum.com/documentation/user_manual.aspx/9.1.0/overview
	[25] Armour component in ASD. Online. Accessed 30th July 2013.
	http://community.verum.com/Files/Armour_pattern/ForeignClientArmourPattern.pdf
	[26] Boost libraries for C++. Online. Accessed 30th July 2013.
	http://www.boost.org/
	[27] Gulati, Ms Samridhi, and Ms Sarita Singh," Analysis of Three Formal Methods-Z, B and
	VDM," International Journal of Engineering 1, no. 4 (2012).
	[28] Frappier, Marc, Benoît Fraikin, Romain Chossart, Raphaël Chane-Yack-Fa, and Mohammed
	Ouenzar, "Comparison of model checking tools for information systems," In Formal
	Methods and Software Engineering, pp. 581-596. Springer Berlin Heidelberg, 2010.
	Appendix A: “Message list for various finishers”
	Appendix B: “Océ prototype board specification”
	Appendix C: “Generic protocol for adapter interface”
	Appendix D: “ASD specification for the prototypes: typical adapter scenario and link handling”
	Appendix E: “Inter-process communication specification for the prototype of typical adapter scenarios”

