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Abstract

With the advent of improving technology, advanced solutions are provided to health-
care professionals. Through combining human insights and clinical expertise, patient
outcomes are improved while lowering the burden on the healthcare system. Interven-
tional X-Ray is responsible for the development of X-Ray systems used for diagnosis
and interventional treatment of cardiac and vascular diseases. Philips Healthcare is the
market leader in this field.

In Cardiovascular minimal invasive interventions, physicians require low-latency X-Ray
imaging applications, as their actions must be directly visible on the screen. This re-
quires sufficient performance of the image-processing system while executing a plurality
of functions. Because dedicated hardware lacks flexibility, the functionality of such
systems is increasingly based on commercial technology like PC hardware, Operating
Systems(OS) and state of the art software languages. Therefore, the development of
this type of systems is performed in multidisciplinary teams where hardware, mechanics
and software come together.

A clear trend within interventional X-Ray applications is a complete integration of di-
agnostic features within X-Ray interventions, to support earlier feedback in the clinical
work-flow. Interventional image processing and other diagnostic applications are com-
bined in one system design and executed simultaneously in various combinations.

A consequence of the sketched trend is that multiple applications are executed in parallel
and that the PCs used for these systems have to offer sufficient performance under various
use-cases. The latter has to be verified for each X-Ray system that is assembled during
production. However, adequate prediction and verification of the components based on
modeling beforehand saves time and investment. They can also be given to hardware
vendors for use in the selection process.

In addition to this, models can be be used to decide the optimum combination of appli-
cations on a specific hardware platform.

The goal of the work is therefore to make models of applications that admit prediction
of their execution behaviour on a given platform. These models will be both descriptive
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and executable. More precisely, the work includes the following tasks:

• Define the technical context (assumptions, requirements, and existing work) for
this prediction and verification

• Define the particular requirements for the workstations within the X-Ray system
and relevant parameters

• Collect sufficient measurement data of the resource usage of the applications to
develop descriptive models. These models predict the application behaviour suffi-
ciently precise on a given platform

• Develop executable models, based on micro-benchmarks, to stress test PC work-
stations for their intended use, without the actual use of the medical software
application. This stress test shall verify the actual performance for a specific in-
stance of a platform. Under-performing PCs can then be excluded from the actual
assembly.
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Chapter 1

Introduction

1.1 Introduction

In today’s era of technological boom and revolution, the world has witnessed countless
number of wonders in every aspect of life. Medicine and patient health-care is one such
field which has saved millions of lives and continues to evolve with the technology. To-
day it is possible to cure several ailments related to heart, brain and vascular tissues
using angiography generated by equipments that work in cord with very efficient and
highly powerful PCs. The clinical use of X-Ray imaging for angiography is undergoing
a gradual paradigm shift from surgery to intervention. Interventional treatments use
X-Ray images during the procedure which demands eye hand co-ordination of the physi-
cian and imposes real time requirements on the image processing including low latency.
A clear trend in this aspect is therefore the integration of diagnostic and intervention
X-Ray imaging to provide earlier feedback in the clinical work-flow and possibly provide
guidance to intervention[1]. Allura X-Ray system is one such sophisticated system from
Philips Healthcare designed and developed for both diagnostic and interventional pur-
poses. Therefore, it is not only essential, but inevitable for this system to perform with
high reliability. This necessitates the use of extensive and elaborate tests during produc-
tion, assembly and release of the product. In spite of the series of tests conducted, some
systems are known to fail due to hardware failures. One goal of this project is to develop
executable models that can be run on a system and predict failures and determine its
nature. Once these models are created and shipped to the manufacturer of the PC, from
the business perspective, it achieves significant cost reduction by avoiding the shipping
costs to the manufacturer of the PC.

Allura X-Ray system uses different PCs for different functionalities. Though each of
these PCs are of immense use in their distinct ways, combining two or more PCs into
one PC is a huge capital saver. Taking this as a motivation, another goal of this project
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is to develop descriptive models that can be used to predict the performance of an
application, or many combined applications on a PC with known hardware properties.
This can be a starting point to combine two PCs into one, or predict the performance
of a PC even before the PC is available from the vendor, just based on the architectural
properties.

The outcome of this project is a set of descriptive and executable models that predict the
performance of a PC. This report gives a detailed description of the design, development
of such models and interesting observations and inferences made during the execution
of this project.

1.2 Understanding the Allura-Xray System

The development of performance models is based on the sound understanding of the
Allura X-Ray system. As a ground step, this section discusses basics related to the
Allura X-Ray system.

1.2.1 Biomedical X-Ray imaging

Biomedical X-Ray imaging has proven to be an indispensable component of many med-
ical diagnostic and treatment techniques. X-Ray has been used for biomedical imaging
ever since Roentgen X-rayed his wife’s hand in 1895 after he discovered it[2]. The speed
with which the technology was implemented in medicine is phenomenal by today’s stan-
dards. An important reason for this rapid acceptance is probably that it was the first
time that objective evaluation of an internal organ could be made (without opening the
body or surgery) to act in a meaningful way, and the other reason is probably that the
technology for making X-Rays and recording the X-Ray images were available because
they were already in wide spread use for other purposes.

An X-Ray image is created by radiating the desired part of the human body and captur-
ing the remaining radiation at the opposite side of the body part in an X-Ray detector.
Since its discovery, X-Ray has been used to detect bone fractures, gunshot wounds and is
now culminating in X-Ray radiography, computed tomography , fluoroscopy and radio-
therapy. X-rays can also be used for minimal invasive interventional treatments of heart
and brain. Minimal invasive procedures are performed through tiny incisions instead of
one large opening used in conventional open surgeries. Because the incisions are small,
patients tend to have quicker recovery times and less discomfort than with conventional
surgery.

With minimally invasive interventions, cardiologists diagnose and treat a coronary artery
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disease, using a catheter inserted into the groin and threaded through the arterial vessel
tree to reach the heart. Also, radiologists use these systems to treat aneurysms,thromboses
by inserting catheters in the veins. Treatment may be in the form of balloon angio-
plasty(compressing the plaque against the wall of the vessel), stenting (inserting a small
wire tube). A radio opaque contrast fluid which is injected shows the structure of the
lumen of the blood vessel through which the catheter passes and pinpoints to blockages
or narrowed arteries that need treatment.The contrast fluid blocks the X-Ray and cre-
ates contrast between the blood vessels and its surroundings. This principle is used in
angiography. Figure 1.1 is a good example of X-Ray angiography image

Figure 1.1: (a,b) A narrowed coronary artery of the heart. (c) A stent is inserted through
a balloon catheterization. (d) The balloon is inflated, expanding the stent and widening the
artery. (e) The stent holds the artery open (Albers, 2010)

.

1.2.2 The Allura X-Ray System

Allura X-Ray systems are interventional systems from Philips Healthcare honed to meet
precise cardiovascular, electro-physiology, radiology, neuro-radiology needs[3]. The sys-
tem has the flexibility to handle a wide range of mainstream diagnostic and interven-
tional procedures with exceptional clarity and deep insight. Figure 1.2 shows an Allura
X-Ray system used in a hospital for an interventional treatment. The Allura system
has a C-arm that rotates in a curved trajectory around the patient. One side of this
arm generates X-Rays using a generator and the other end captures the images using a
detector. Physicians perform minimal invasive interventional procedure by viewing the
X-Ray images of the patient on the monitor.
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Figure 1.2: Allura X-Ray in a hospital

Data flow

The functionalities of the system are explained in brief using a data flow representation
[4]. Figure 1.3 shows a conceptual dataflow diagram for Allura X-Ray system.

Figure 1.3: Dataflow diagram for Allura X-Ray system (Albers, 2010)

The blocks shown in Figure 1.3 are briefly described below.

• X-Ray detector: This is the module that captures the X-Ray images generated
once the radiations pass through the patient. The C-arm has both the generator
and the detector.

• Image Acquisition: The detector sends the data to the image acquisition module
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where an X-ray image is constructed. This module does preprocessing on the
acquired images before they are sent to the image processing module for further
processing.

• Image Processing: The images are acquired using 2 modes of X-Ray generation
which are, fluoroscopy run in which an extremely low dose of radiation is used
and exposure run in which higher dose of radiation is used. The image processing
module provides functionalities such as noise reduction, contrast enhancement,
image analysis, feature enhancement, motion compensation, and image subtraction
of the acquired images. These processed images are also stored on disk for future
retrievals and analyses. It is important to retain images with extremely high quality
using minimum dose of radiation. Image processing techniques ensure sufficient
image quality, clarity and resolution.

• Display Processing: Display processing is done to display the images on several
monitors adorned with menus, and other manipulation functions. It also compen-
sates for differences in monitor contrast and brightness.

• Display: This module is the display module which includes multiple small moni-
tors or a single high resolution huge monitor supported by the Flex-vision PC.

• Machine Control: This module enables the physicians to rotate the C-arm and
move the table.

• User and Service interface: This module enables the physicians to configure the
displays and manipulate images shown on the displays. The physicians can switch
images from one monitor to another for better viewing. They can, in the case of
Flex-vision, choose from a set of defined templates. The user and service interface
enables physicians to manipulate images by zooming, panning, and moving images
from one viewing port to another. This module also provides the interface for
servicing the X-Ray systems. Through the service interfaces, service engineers are
able to configure, test, and fix the product.

• User Touch Screen: This module is a touch screen that provides access to the
User and Service interface.

• Storage: The images detected using fluoroscopy and exposure runs are stored
onto a disk for future retrievals and can be used for diagnostic purposes. Picture
Archiving and Communication Systems(PACS)is used to store images in hospitals.
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Clinical setting

Figure 1.4 illustrates the clinical work-flow environment used for an Allura system. In
this figure, the control room and exam room are shown. The exam room is where the
Allura system is placed. X-Rays are generated, detected and displayed on the monitors
for physicians and used in interventions. The control room also accommodates moni-
tors for diagnoses and patient information management for physicians and technicians
respectively. The technical room (not shown in figure) is where the tier of PCs are
maintained using M-Cabinet along with the cooling system.

Figure 1.4: Clinical Setting for Allura X-Ray System, in combination with an illustration of the
transfer and viewing of applications

Allura Xper Product Series

Interventional Allura X-Ray systems include the monoplane and biplane systems. A
biplane system provides twice as much information as the monoplane system by providing
both frontal and lateral images unlike the monoplane system that provides frontal images
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alone. The series of monoplane and biplane systems come in Xper Product series. They
are shown in Figure 1.5

(a) Allura Xper FD10 (b) Allura Xper FD10/10

(c) Allura Xper FD20
(d) Allura Xper FD20 Biplane

Figure 1.5: The Allura Xper Product Series

Figure 1.5a and Figure 1.5c are monoplane systems. Figure 1.5b and Figure 1.5d are
biplane systems.

1.3 Scientific Background

As discussed, it is important for physicians to see X-ray images with very low latency
on the monitors when performing cardio-vascular minimal invasive interventions. The
Image Processing(IP) part of the system should perform extremely well to meet this
requirement. Allura X-Ray system combines powerful PCs to meet the requirements of
executing a plurality of functions and ensuring guaranteed performance. Performance
of the system depends on hardware components, OS and software used to develop the
system. Therefore, it is of critical importance to be able to test applications to be run
on PCs to predict in advance if the system could be run successfully, before shipping
it to the customer. Developing adequate models to be able to test the system will be
indeed helpful and thoughtful.

The PCs used in the X-Ray system run an array of tasks and functionalities in parallel.
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However, different PCs with exactly the same hardware specification appear to show
different levels of resource utilization for the same application. Out of these, some
systems succeed in providing the desired levels of performance and the rest, fail. Regular
tests happen not to show this. The aim is to find the distinction between these PCs
already before the production phase using a test-set derived from the application. This
amounts to developing an executable model of the application, that can be handed to
the vendor (or manufacturer of the PC).

If we vary the hardware specification, applications also behave differently, in terms of
resource usage. The aim further is to predict the execution of an application, depending
on the hardware model. This is useful, for example, for the purpose of selecting new
hardware and for predicting combining applications onto a single hardware. To that
end, descriptive models are developed in which application and hardware properties
are parameters. This idea can be used to combine two different PCs into one PC, to
determine the optimum configuration for an application and to predict whether the
application can run on a PC which is yet to be developed at the vendor’s end.

In order to determine the resource usage characteristics of an application on a PC with a
particular hardware model, performance properties are measured when the application
is being run. The measurements are done using a tool developed at Philips Healthcare
called the MeasureLoadCLI tool. The executable models are created using the Resource
Usage Modeling Measure Tool (RUMM Tool)1 designed by Ashenafi Gebreweld at Philips
Healthcare.

1.4 Problem Definition

The problem definition of this thesis revolves around two different parts discussed in
Section 1.3. They are:

1. To develop executable models using resource usage characteristics of an application
run on a PC to be able to predict the nature of the PC (good/bad2) before the
production phase

2. To develop descriptive models to predict the execution of application(s),depending
on the hardware model of the PC

1 The RUMM tool is used to generate executable models using micro-benchmark codes derived by
creating a profile of application usage and the hardware model chosen.

2A good PC is a term used to denote a PC that meets the performance requirements of the Allura
X-Ray system and a bad PC is a PC which fails to provide the desired level of performance. PCs that
fail to provide the desired level of performance fail due to one or many problems observed during testing,
such as, system crash, corrupt images, network card failure, memory problems. Note that, the models
intend not to predict easy to find failures,( e.g. defective video card) but instead try to find systems
that do not have a consistent failure pattern and seem to work on first sight(hard-to-find failures).
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1.5 Contribution

As discussed in Section 1.4, there are two distinct goals in this project. The research
questions that are addressed and the solutions to the questions are listed below.

1. What are the hardware metrics that are responsible for the failure of a PC used
in the Allura Xper Xray System?

• Intensive data analysis: Analysis of several hardware metrics, for example,
CPU usage, cache misses, cache hits, to observe unusual behaviour in the
measurements captured from the PCs.

• Creation of executable models: Creation of executable models that predict
the performance of a PC, on running it on a PC without the need to run the
actual application and extensive suite of tests.

2. What are the possible configurations of a hardware model of a PC and the appli-
cations run on that PC?

• Hardware metric analysis: Analysis of hardware metrics is done to observe
hardware resource metric usage for a particular application with distinct char-
acteristics. For example, we use an application that stresses memory buses.

• Creation of descriptive models: Creation of descriptive models that formulate
the performance of the applications on a PC. This serves as a basis to predict
the performance of the same application(s) on a different PC (different in
hardware specification, for example, change in memory configuration).

1.6 Thesis Outline

The remainder of this thesis is organised as follows. In Chapter 2,the problem definition
is elaborated to get a deeper insight into the goals of this project. In Chapter 3, the
design and development of descriptive models is discussed. It entails the details about the
experiments conducted and reflection done on the measurements collected. In Chapter 4,
the design and creation of executable models to predict the nature of the PC are discussed
in detail. It entails the details and findings during the analysis of the measurements
collected. Finally, we conclude the thesis in Chapter 5, and present the future work of
this thesis.
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Chapter 2

Problem Description

2.1 Introduction

From Chapter 1, it is known that we are interested in determining and predicting the
performance of the Allura X-Ray system. We intend to create executable and descrip-
tive models for performance prediction and evaluation. Therefore, it is important to
understand the nature of these models before delving into greater depths. This chapter
discusses the type of models, the approach used and formalises the problem definition
using mathematical notations.

2.2 Solution Approach

Performance model of the architectural instance of a PC can be used to evaluate the
performance of the PC in terms of metrics, such as, bandwidth utilisation, throughput
of the interconnection technology observed[5]. In this section, we intend to find an
approach that evaluates the performance of applications on a PC.

Performance evaluation of the applications running on any PC can be done using the
following approaches.

1. Y-Chart Approach: This is a methodology that provides designers with quantita-
tive data obtained by analysing the performance of architectures for a given set of
applications[5]. See Figure 2.1. This is described as follows:

• Architectural Instance: This can also be called Hardware Model/ Platform
model of a PC. It specifies the physical, structural and behavioural properties
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Figure 2.1: Y-Chart Approach

and the performance constraints of the platform used, for example, memory
size, bus bandwidth.

• Application Model: This describes the functional behaviour of an application
in an architecture-independent manner. It is used to study the target applica-
tion and obtain estimations of its performance needs, for example, to identify
the most expensive computation task. The application parameters are used
as input to the application models. The model correctly expresses the func-
tional behaviour, but is independent from the key parameters of architecture
constraints, such as, resource utilization or bandwidth limitations.

• Mapping : This is used to map application models on the architectural in-
stance. The mapping helps obtain performance numbers that are useful for
performance evaluation.

The light bulbs shown in Figure 2.1 indicate feedback loops for performance
optimization by changing application model, architectural instance and the
mapping. However, the object of interest of this thesis is performance eval-
uation only. Therefore, the parts indicating light bulbs are not important in
this context. Though this method provides the performance numbers, the
tight coupling of the application models to the application demands new ap-
plication model creation for every change in the application. This could be
time-consuming and expensive. Therefore, this method is not used for per-
formance evaluation.

2. Resource Usage Modeling Approach: This is a methodology that models both the
architecture and the application together by analysing the resource usage parame-
ters of the application run on the architectural instances of PCs. The methodology
uses a set of tools to measure the resource usage parameters of the application and
is used to create models that predict the execution behaviour of the application on
another architectural instance (platform). This is exactly what we intend to do.
This method eliminates the need to create new application models for modified
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applications. Therefore, resource usage modeling approach is chosen for the per-
formance evaluation of the PCs. See Fig 2.2. The star sign in Figure 2.2 indicates
that whenever an application is modified, only the resource usage measurements
change and the tight coupling between the application behaviour and the models
created as seen in the Y-Chart approach is resolved. This makes it easy to maintain
and easy to evolve with applications.

Resource usage modeling can be done using one or both of the modeling techniques
described.

(a) Execution modeling: An executable model is a piece of executable code that
resembles the resource usage of an application (also called micro-benchmarks).
The executable models are platform dependent.

(b) Descriptive modeling: A descriptive model is a formula that describes per-
formance metrics of choice as a mathematical formula. Hardware properties
take the form of parameters in such a formula( For example, memory size,
speeds, number of processors).

In this thesis, we intend to use one or both of the above approaches. They
can be used to validate each other.

Figure 2.2: Resource Usage Modeling Approach



14 Chapter 2. Problem Description

2.2.1 System Overview

The Allura X-Ray system meets the performance requirements by using a set of compu-
tationally efficient PCs. The system has several types of PCs used for user input, image
processing, image detection, image display. Not all the PCs are described in this report
for brevity. The PCs that are of interest to this thesis are:

1. Host PC: This is the heart of the entire system and provides an interface to the
user to perform tasks, perform safety checks, conduct tests. This is the only PC
that has keyboard, mouse and monitor.

2. Image Processing (IP) PC: This is the PC used for extensive image processing.
Images are sampled at a suitable sampling rate and processed to store them for
diagnostic purposes. This can be considered as the brain of the system.

The IP PCs are more susceptible to performance issues. Tests conducted in the factory
reveal that IP PCs fail during performance testing. Also, IP PCs have a very well defined
(soft real time), and predictable behaviour, thus must show less variance in the results.
Therefore, we study IP PCs.

2.3 Formalizing the Approach

The sequence of steps followed to achieve the goals discussed in Chapter 1 is represented
using a formalized approach in this section. This approach is used to introduce the
technology and ensure precise semantic meaning of the specifications.

2.3.1 Part I

Part I of the problem definition is: To develop executable models using resource usage
characteristics of an application run on a PC to be able to predict the nature of the PC
(good/bad) before the production phase.

The set of machines is denoted by M . Each machine m ∈M is associated with a vector
of physical properties describing the details of its construction (e.g. type and make of
its graphics cards, NICs). For the purpose of this work, we focus on the amounts and
types of resources which we denote as attributes of m. Table 2.1 lists the attributes of
interest of m.

The set of programs is denoted by P . Each program p ∈ P run on m is chosen such that
it represents the Allura application.
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Table 2.1: Attributes of m

Notation of attribute of m Description

m.CPUmodel The model of CPU in m
m.CPUfreq CPU frequency in m
m.Core Number of logical cores in m
m.Socket Number of sockets in m
m.Thread Number of threads per core in m
m.L0 Size of L0 cache in m
m.L1i Size of L1 instruction cache in each core in m
m.L1d Size of L1 data cache in each core in m
m.L2 Size of L2 cache in each core in m
m.L3 Size of L3 cache in m
m.Mem The total DRAM memory in m
m.MemChannel Number of channels from each CPU to DRAM in m
m.DIMM Number of DIMMs per channel
m.MemFreq Memory Frequency in m
m.TotalMemBw Total memory bandwidth per CPU in m
m.QPIlink Number of QPI links between the CPUs in m
m.TotalQPIBw Total QPI bandwidth between the CPUs in m
m.Hub Number of IO hubs in m
m.PCIeversion Type (version) of PCIe used in m
m.DiskSAS Size of the SAS disk in m
m.DiskSATA Size of the SATA disk in m
m.GraphicCard The number of graphic cards in m
m.GpuMem Total amount of memory in the GPU in m
m.PCIeGraphicBw PCIe bandwidth to and from the Graphic card in m
m.GrabberCard Number of grabber cards in m
m.PCIeGrabberBw PCIe bandwidth to and from the Grabber card in m
m.InfiniBandCard Number of Infini-Band cards in m
m.PCIeICBw PCIe bandwidth to and from the Infini-Band card in m
m.TurboBoostversion The Turbo Boost technology version number in m
m.maxTDP Maximum Thermal Design Power (TDP) in m
m.lithography Lithography in m

The notation used is as follows:

• m1, m2, . . .∈M denote machines belonging to M

• p1, p2, . . .∈ P denote programs belonging to P

• x1, x2, . . .∈ X denote executable models belonging to X ⊆ P
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• p1 . m1 denotes execution of p1 on m1

• E is a function: E : P ×M → X that is used to create executable models

• x1 = E(p1 . m1) means that x1 is the model derived from p1 .m1

• k1, . . . kn ∈ K denote metrics belonging to K. Metrics are functions to real
numbers (For example, socket usage, socket L3 cache miss, disk read, disk writes
are metrics in the context of this thesis). k1(p1 . m1) gives a metric k1 on this
execution. Similarly, k2(p1 . m1) gives a metric k2 on this execution and so on.

• C denotes a set of classifications of machines into good/bad. C= {good, bad}

• kref1, . . . krefn ∈ Kref denote threshold (reference) values of metrics for a machine
based on its nature (good/bad) belonging to Kref

A sequence of steps are to be followed to derive useful profiles of metrics of machines,
compare the profiles with classification made earlier, create executable models and verify
their predictive quality. The steps followed are illustrated in Figure 2.3, Figure 2.4,
Figure 2.5 using the mathematical notations presented.

From Figure 2.3, it is seen that a program, p1 (which represents the application) is se-
lected. It is run on the machines, m1 and m2 classified based on their nature ((good/bad)
known from use and tests). The classification of machines done in this manner, serves
as the ground for developing an executable model and verifying its predictive quality.
The MeasureLoadCLI tool is also run in parallel with p1 to record the Resource Usage
Measurement (RUM) of the hardware parameters of interest.

Based on the RUM collected, a profile k1(p1.m1), . . . kn(p1.m1) is created for m1 and
a profile, k1(p1 . m2), . . . kn(p1 . m2) is created for m2. A profile is a set of metrics.

The profile of m1 is compared with the nature of m1 (good/bad) to check whether p1
is capable of producing a useful profile. This is done by comparing individual metrics of
the profile created for m1, k1(p1 . m1), . . . kn(p1 . m1) with the threshold values of the
metrics of m1 determined based on its nature as shown in Equation 2.1.

kref1 − k1(p1 . m1) (2.1)

∩
...

∩
krefn − kn(p1 . m1)

The qualifying condition for p1 to produce useful profile is represented using Equation
2.2. If the weighted sum of the absolute value of the difference between the reference
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Figure 2.3: Activity Diagram I,Part one out of three: Creating useful profile of metrics for
machine chosen

(threshold values) metrics and the profile of the machine is less than the offset selected,
δ, then Equation 2.2 holds.

w1.|kref1 − k1(p1 . m1)|+ . . .+ wn.|krefn − kn(p1 . m1)| ≤ δ (2.2)

• w1, . . . wn are the weights assigned to the metrics

• δ is the error offset chosen
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Figure 2.4: Activity Diagram Part I,Part two out of three: Validation

Figure 2.5: Activity Diagram Part I,Part three out of three: Modifying the tool

This step is extended to develop an executable model, x1 as seen in Figure 2.4

x1 = E(p1 . m1) (2.3)
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In order to verify the predictive quality of x1, carry out the following steps.

E(x1 . m2) = E(p1 . m2) (2.4)

k1(x1 . m1) = k1(x1 . m2) (2.5)

...

kn(x1 . m1) = kn(x1 . m2)

Equation 2.4 is used to verify the predictive quality of x1 by executing it on m2. The
equality relation holds true if the execution of x1 on m2 matches with the execution of
p1 on m2, i.e., if Equation 2.6 holds. In Equation 2.6, individual metrics obtained by
the execution of x1 on m2 is compared with the corresponding metric obtained by the
execution of p1 on m2.

k1(x1 . m2) = k1(p1 . m2) (2.6)

...

kn(x1 . m2) = kn(p1 . m2)

Equation 2.5 is used to make closer observations and comparison of individual metrics
obtained by the execution of x1 on m1 and x2 on m2. The equality relation of Equa-
tion 2.5 should hold true when m1 and m2 are of the same nature (e.g., both are good
machines) and fail if m1 and m2 are not of the same nature (e.g., m1 is good and m2
is bad). If this condition is satisfied, then it means that x1 is capable of predicting the
nature of the machine and the predictive quality of x1 has been verified.

Based on the results of verifications, x1 is formalized as an executable model to predict
the nature of a PC before production.

If Equation 2.2 fails, then an alternate program, p 6= p1 ∈ P is used to create a useful
profile for m1. If Equation 2.2 fails even after repetitive executions of this step, then the
MeasureLoadCLI tool is modified to determine measurements of additional/alternate
metrics that are to be included in the model. For example, disk access latency, QPI
bandwidth are alternate metrics that could be of use, but, not incorporated already in
the MeasureLoadCLI tool.

2.3.2 Part II

Part 2 of the problem definition is: To develop descriptive models to predict the execution
of the application(s), depending on the hardware model of the PC.

The first step in realizing this part of the assignment is to define the hardware model
of a machine which is represented as a vector of physical properties. For example, the
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Figure 2.6: Activity Diagram II, One out of two: Representing the sequence of steps to be
followed in creating and verifying the descriptive model

hardware model of m1 is specified as:

ˆHm1 =

(
m1.Core m1.Socket m1.Thread m1.L1 m1.L2 m1.L3 m1.Hub . . .

8 2 1 32KiB 256KiB 8MiB 2 . . .

)
ˆHm1 is a vectorial representation of the physical properties of m1. It is also the hardware

model of m1. Hardware model is similarly defined for m2.

The hardware model is used as a basis to create a descriptive model.
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• d1, d2, . . .∈ D denote descriptive models belonging to D

• F is a function: F : P ×M → D used to create descriptive models

• d1 = F (K1, ˆHm1) means that d1 is the model derived as a function of K1 gen-
erated on m1 using ˆHm1. Here, K1 ⊆ K is the profile created on m1 such that,
∀k ∈ K1, k : p1×m1→ K1

• Similarly, d2 = F (K2, ˆHm2) means that d2 is the model derived as a function of
K2 generated on m2 using ˆHm2. Here, K2 ⊆ K is the profile created on m2 such
that ∀k ∈ K2, k : p1×m2→ K2.

The steps taken to create and verify the predictive quality of the descriptive models is
illustrated in Figure 2.6. In order to be able to study the behaviour of the application
on m1, a program, p1, that generates the worst case of load possible on the machine is
selected. The MeasureLoadCLI Tool is run in parallel when p1 is run on m1 to capture
RUM of hardware parameters chosen and create profile, K1 for m1. The MeasureLoad-
CLI tool also captures a metric, ki(p1 . m1) /∈ K1.

Using the profile created for m1 and m2, develop descriptive models, d1 and d2.

d1 = F (K1, ˆHm1) (2.7)

d1 created using Equation 2.7 is used for prediction. d1 is used to predict ki(p1 .m1) /∈
K1 on m1.

kpi = F (d1,K1, ˆHm1) (2.8)

kpi denotes the predicted value of ki(p1 . m1) /∈ K1.

The predictive quality of d1 is verified by comparing ki(p1 . m1) /∈ K1 measured with
kpi predicted using Eqn 2.8.

|kpi − ki(p1 . m1)| ≤ e1 (2.9)

If Equation 2.9 holds, then the metric predicted is comparable with the actual value
of the metric measured. This verifies the predictive quality of the model, d1. It can
be formalized. Taking the error factors into consideration, the metric, kpi is considered
acceptable on m1 if it is comparable to ki(p1 . m1) within an error offset of e1.

If Equation 2.9 fails to hold, then, d1 is re-developed using alternate metrics measured.
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Figure 2.7: Activity Diagram II, Two out of two: Representing the sequence of steps to be
followed in validating the descriptive model

The steps taken to validate the descriptive model using another hardware platform is
illustrated in Figure 2.7. The predictive quality of the model, d1 is validated on another
machine, m2. p1 is run on machine, m2. The MeasureLoadCLI and the Perfmon tool
are run simultaneously to collect RUM of the hardware parameters which is used to
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create a profile of metrics, K2 for m2. The MeasureLoadCLI tool is also used to capture
a metric, kj(p1 . m2) /∈ K2.

kpj = F (d1,K2, ˆHm2) (2.10)

kpj denotes the predicted value of kj(p1 . m2) /∈ K2.

The predictive quality of d1 is validated by comparing kj(p1 .m2) /∈ K2 measured with
kpj predicted as shown in Equation 2.11.

|kpj − kj(p1 . m2)| ≤ e2 (2.11)

Taking the error factors into consideration, the metric, kpj is considered acceptable on
m2 if it is comparable to kj(p1.m2) within an error offset of e2. If Equation 2.11 fails to
hold, then, d1 is not not validated on m2. This means that the predictive quality of d1
is limited to machine, m1. d1 is redeveloped taking alternate metrics into consideration.
If Equation 2.11 holds true, then the predictive quality of d1 is validated on m2. d1 can
be used to predict performance metrics on different hardware platforms.

If the predictive quality of d1 is verified and validated, configurations possible are selected
and formalized. For example, plausible configurations are:

Configuration1 = 〈 ˆHm1, p1〉

Configuration2 = 〈 ˆHm2, p1〉

This implies that it is possible to execute p1 on m1 and p1 on m2 and the properties of
p1 on m1 and m2 can be predicted in terms of hardware metrics.
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Chapter 3

Descriptive models for resource
usage characteristics of
applications

3.1 Introduction

Performance prediction and measurement approaches for component-based software sys-
tems help software architects to evaluate their systems based on component performance
specifications created by component developers[6]. But, prediction methods for perfor-
mance and reliability of general software systems are still limited and seldomly used in
industry[7]. The diverse information needed for the prediction of extra functional prop-
erties of a system makes it a challenging task. But, if suitable models can be created
to reflect the changing context, such as, different components(components with different
specification), different allocation of resources or usage context, they could be used to
predict the performance of a system. This can, for example, result in significant cost
reduction in a company like Philips Healthcare if the optimum configuration of a system
with known hardware platform and usage profile can be discovered using the model cre-
ated. This chapter summarises the creation of such performance predicting descriptive
models using the resource usage profiles of a chosen application run on selected PCs.

The performance of the components in a system is influenced by its usage[7]. The
resource demand may vary depending on input parameters (for example, uploading
larger files produces a higher demand on hard disk and network). Using this as a key-
point, resource usage metrics of an application (input) are used to create models that
serve as a basis to predict the performance of the application on a different hardware
platform.
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Modeling a system using performance metrics is an abstract concept. It covers umpteen
number of metrics for an array of hardware types and specifications. It would be indeed
interesting to model the system based on several QoS metrics and exploring which metric
can be best used as a predictor. Taking the practical and environmental limitations into
consideration, we have decided to model the PC at Philips Healthcare using two cases.

1. Case 1: Compare the performance of the same PC with different memory config-
urations in terms of latency of an application

2. Case 2: Compare the performance of two PCs with different micro-architectures
in terms of latency of an application

Figure 3.1: Structure of Chapter 3

We will delve into more details of the two cases in different sections. As seen in Figure 3.1,
Section 3.2 and Section 3.3 entails the details of Case 1. Section 3.4 and 3.5 entails the
details of Case 2. Section 3.6 presents the lessons learned.
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3.2 Execution Architecture Design-I

In this section, the application characteristics and requirements to obtain accurate per-
formance estimations of the application on a selected hardware platform are presented
for case 1. The execution architecture design encompasses the application properties,
hardware model specifications and the mapping of the application on the hardware
model.

3.2.1 PC Architecture and Hardware Model

The pictorial representation of the generic hardware model of the PC with Nehalem
micro-architecture used for the study in this part of the thesis is shown in Figure 3.2.
This hardware model relates to the physical layout of the hardware resources on the
motherboard. An instantiated hardware model of a CPU is also depicted in Figure 3.3.
The available resources of the instantiated hardware model of the PC chosen, m and its
capacity are expressed in Table 3.1.

Figure 3.2: Hardware Model of the PC: Case 1

The PC architecture consists of two CPUs running at 2 GHz. Each CPU has four cores.
Each core is connected to a private L1 data and instruction cache of 32 KiB1 each and a
private L2 cache of 256 KiB. Each CPU is connected to an L3 cache of 4 MiB which is
shared among 4 cores. A pair of memory buses connect each of the 4 cores to an external
memory of upto 3 GiB. There are a total of 7 PCIe slots out of which 4 are connected
to 2 network cards and 2 Graphic cards. Each Graphic card has an external memory

1KiB 6= KB; 1KiB=1024 B whereas 1 KB= 1000 B. Memory capacity is expressed in KiB and Memory
Bus Traffic in KB. Similarly, 1MiB=1024 ∗ 1024 B and 1 GiB=1024 ∗ 1024 ∗ 1024 B
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Figure 3.3: CPU model:Case 1

Table 3.1: Attributes of the hardware model of the PC

Attribute of machine m Type/Capacity

m.CPUmodel Intel Xeon CPU E5504
m.Core 8
m.Socket 2
m.Thread 1
m.L1i(KiB) 32
m.L1d(KiB) 32
m.L2(KiB) 256
m.L3(MiB) 8
m.MemChannel 3
m.DIMM 2
m.MemFreq(MHz) 800
m.DiskSATA(GiB) 150
m.Hub 2
m.PCIeversion 2.0
m.GraphicCard 2
m.GpuMem(MiB) 512
m.PCIeGraphicBw (Gbps) 80
m.NetworkCard 2
m.PCIeNCBw(Gbps) 2.5 and 10
m.NetworkCard 2
m.InfiniBandCard 1
m.PCIeICBw(Gbps) 20
m.lithography(nm) 45

of 512 MiB. IOHub1 is connected to two SATA disks with 16 MiB cache and 150 GiB
capacity each.
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3.2.2 The Application

As presented, the aim of part II of the thesis is in principle, to create descriptive models
that admit the behaviour of the original Allura application. However, this a huge step
due to the complexities and plurality of functions implemented in Allura application.
Therefore, we go for synthetic benchmarks that provide measurements with notable
resource usage on specific hardware components. Selecting a suitable program, p1 is the
first step as seen in the activity diagram in Chapter2.

Taking the performance metrics required for Case 1 into consideration, programs that
stress the memory buses and generate significant data traffic to the memory are required.
The applications used to generate load on the PC were:

• Prime95 Test: Prime95[8] is an application software that has a feature called
Torture Test that allows maximum stress testing on the CPU and RAM. There
are several options allowing the stress test to focus on the memory, processor, or
a balance of both. This test was initially used and the memory bus traffic was
observed. As the application fails to generate sufficient traffic on the memory bus,
it is not used as a benchmark for creating the model.

• STREAM Benchmark: The STREAM benchmark[9] is a simple synthetic bench-
mark program that measures sustainable memory bandwidth (in MB/s) and the
corresponding computation rate for simple vector kernels. This application gener-
ates sufficient traffic on the memory bus by working on datasets much larger than
the available cache on any system. Therefore, we chose STREAM benchmark.

STREAM

• STREAM is intended to measure the bandwidth from main memory. It measures
the performance of four long vector operations. These operations are listed in
Table 3.2.

• The operations in Table 3.2 are representative of the building blocks of long vector
operations. The array sizes are defined so that each array is larger than the cache
of the machine to be tested, and the code is structured so that data re-use is not
possible.

• Each of the four tests adds independent information to the results:

– Copy measures transfer rates in the absence of arithmetic.

– Scale adds a simple arithmetic operation.
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– Sum adds a third operand to allow multiple load/store ports on vector ma-
chines to be tested.

– Triad allows chained/overlapped/fused multiply/add operations.

• The general rule[10] for STREAM is that each array must be at least 4 times the
size of the sum of all the last-level caches used in the run, or 1 Million elements,
whichever is larger. For example, on the dual socket PC with 8 MiB L3 cache we
used, each array needs to be of max (4 ∗ 8 MiB/8B, 106) elements which is equal
to 4 million elements.

Table 3.2: STREAM vector kernel operations

name Vector Kernel

COPY a(i)=b(i)
SCALE a(i)=q ∗ b(i)
SUM a(i)= b(i)+c(i)
TRIAD a(i)= b(i)+q ∗ c(i)

STREAM Application steps
The application traverses the specified usage scenario (array size and offset) from the
start action to the stop action for specified number of times. The steps for one vector
kernel operation (COPY) are summarized in Figure 3.4.

In Figure 3.4, the steps traversed from the start action to the stop action are depicted.
Sum, Add and Triad vector kernel operations are also performed in the same fashion.
The peak memory bandwidth for every vector kernel operation is calculated. Note
that STREAM uses 8 threads (same as the number of cores on the PC chosen) in
parallel for memory allocation and vector kernel operations. STREAM is a command-
line application software and can be tuned to accept user input for N, NTIMES and
OFFSET where,

• N indicates array size (number of elements in the array)

• NTIMES indicates the number of trials to be performed

• OFFSET is the parameter used to achieve peak bandwidth value by adjusting
N(not used in the context of this project)

As we are interested in performance modeling of the PC with different memory config-
urations, STREAM is used to measure memory bus traffic by choosing the array size
carefully.
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Figure 3.4: STREAM Flowchart

3.2.3 Assumptions and Decisions

There are several assumptions used and decisions made in the course of model creation
and the use of accompanying tools. The most important ones are listed below.

• Number of Sockets: The analysis makes use of a dual socket machine (IP PC).
Metrics such as QPI traffic which are required for creating the model (will be seen
later) can be captured only when both the sockets are identified by the OS. For
this, it is required to turn the Non Uniform Memory Access(NUMA) on in the
BIOS setting of the PC.
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• Measurement Tool:

– The MeasureLoadCLI tool is used to capture resource usage metrics such as
core usage, core L3 cache miss, core IPC, network bytes sent and received. The
RUMM Tool can also be used to measure metrics such as socket usage, QPI
traffic, memory bus traffic. But, it only gives coarse level measurements of
metrics without including low level metrics such as the core usage, cache hits
and misses. Moreover, the timer used in RUMM Tool supports a granularity
of 1s. MeasureLoadCLI can support a granularity of 1ms. Taking these
factors into consideration, the MeasureLoadCLI tool is chosen for RUM.

– Perfmon: Perfmon[11]is used to collect windows performance metrics such as
hard page faults, page reads, disk queue length that are relevant to the model
creation.

Refer to the activity diagram in Chapter 2 to see the stages in which the tools
are used.

3.2.4 Model for latency

This section presents the details of the creation of descriptive models which can be
used to predict/estimate the latency of an application . The latency of the selected
application in this context is the total running time of the application. It can be defined
as the total time spent on all the steps traversed between the start and the stop action.
It is estimated in terms of the cache, memory and disk access time (if any). The part
of the hardware model studied is highlighted in Figure 3.5 using a red dotted box. The
parts highlighted in green are those metrics which are measurable2. Note that there are
many other metrics measured using Perfmon and MeasureLoadCLI tool which are not
significant in the context of this part of the thesis.

The hardware and processor models are adopted from Figure 3.2 and Figure 3.3.The
hardware specification of the PC is listed in Table 3.1

The hardware model shown in Figure 3.5 can be studied from a high level using a
redefined simplified representation. This includes the processors, L1, L2, L3, Memory
and Disk. See Figure 3.6.

The metrics that are captured using MeasureLoadCLI are obtained using the Intel PCM
2.3. If M(i, j) represents the number of j level cache misses in the core i, H(i, j)
represents the number of j level cache hits in the core i, M(p, j) indicates the number of
j level cache misses in a processor(CPU) p and H(p, j) indicates the number of j level

2Only the incoming QPI metrics are measurable on a Nehalem PC
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Figure 3.5: Hardware Model used for Study

Figure 3.6: Hardware Model used for Study

cache hits in a processor p, then intuitively, the interpretation of some terms of interest
are presented in Table 3.3.

The interpretation of the terms is based on the fact, that intuitively we assume the
caches to be exclusive3. However, the actual definitions of the counters according to the
Intel counters used in the PCM differ from those presented in Table 3.3. This difference
can be explained because of the cache organisation on a Nehalem PC.

L1 Cache : At Level 1, separate instruction and data caches are part of the Nehalem
core. The instruction and the data cache are each 32 KiB in size. The instruction
and the data caches have 4-way and 8-way set associative organization, respectively.

L2 Cache : Each core also contains a private, 256 KiB, 8-way set associative, unified
level 2 cache (for both instructions and data). The write policy is write-back and
the cache is non-inclusive.

L3 Cache: The Level 3 cache is a unified, 16-way set associative, 8 MiB inclusive cache
shared by all four cores on the chip.

3In exclusive cache, data is guaranteed to be in utmost one of the cache levels
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Table 3.3: Interpreting Cache terminology: p = 1, 2 and i = 1, . . . 8 on the PC selected

Term Formula Interpretation

L3misses
∑2

p=1 M(p, 3) Number of L3 cache requests that results in a miss in
the L3 cache only

L2misses
∑8

i=1 M(i, 2) Number of L2 cache requests that results in a miss in
the L2 cache only

L1miss
∑8

i=1 M(i, 1) Number of L1cache requests that results in a miss in
the L1 cache only

L3hits
∑2

p=1 H(p, 3) Number of requests to L3 cache that result in a hit in
the L3 cache only

L2hits
∑8

i=1 H(i, 2) Number of requests to L2 cache that result in a hit in
the L2 cache only

L1hits
∑8

i=1 H(i, 1) number of requests to L1 cache that result in a hit in
the L1 cache only

In order to understand the definitions used by Intel PCM, we need to distinguish between
the nature of the cache used. Contrary to the assumption, the L3 cache is inclusive(unlike
L1 and L2), meaning that a cache line that exists in either L1 data or instruction, or
the L2 unified caches, also exists in L3 cache. The L3 is designed to use the inclusive
nature to minimize[12] snoop6 traffic between processor cores and processor sockets. A
cache block in use by a core in a socket is cached by its L3 cache which can respond to
snoop requests by other chips, without disturbing (snooping into) L2 or L1 caches on
the same chip.

From Figure 3.7, it can be seen that if the cache is exclusive, then a miss in the L3 cache
needs a check in the other core’s L2 cache as L3 does not duplicate the contents of L2

caches of individual cores[12, 13]. On the contrary, L3 cache miss on an inclusive cache
guarantees that the data is not on the die because the contents of L2 are duplicated in
L3. Note that non-inclusive7 and exclusive do not imply the same meaning.

See Table 3.4 for the definitions from PCM.

The Intel PCM does not provide counters that measure L1 cache metrics. As L1 cache
metrics are significant in the context of creating models, they are used in the model.
L1HitRatio is assumed and L1Hit, L1Miss are estimated. The definitions of L1 cache
metrics used in the model are listed in Table 3.5.

4For any core, sibling core is a core on the same die or socket
5i=1, . . . , 4 indicates number of cores in a processor; p=1, 2 indicates the number of physical processors
6The processors have the ability to eavesdrop the address bus for other processor’s accesses to system

memory and to their internal caches called snooping. They use this snooping ability to keep their internal
caches consistent both with system memory and with the caches in other interconnected processors.

7In a non-inclusive cache, there is no enforcement of cache inclusion or exclusion. A cache line in an
inner cache may or may not be in the outer cache
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Table 3.4: Hardware Counters from Intel PCM

Counter Formula Definition

L2HitM for p=1, 2 { for i = 1 . . . 4 {
∑

k 6=i

H(k,2) } }
Total number of L2 cache requests to
every core that result in a hit in a sib-
ling 4 core’s L2 cache in every proces-
sor. 5(L3 being inclusive, includes this
hit)

L3UnsharedHit - Number of L3 cache requests that re-
sult in a hit in the L3 cache with no
snooping required

L2Hit L2hits Number of L2 cache requests that re-
sult in a hit in the L2 cache only

L3Hit L2HitM + L3UnsharedHit Sum of the total number of L2 cache
misses that result in a hit in a sibling
core’s L2 cache (L3 being inclusive,
has a copy) and the number of hits
in L3 cache that requires no snooping

L3Miss L3misses Number of L3 cache requests that do
not result in a hit in the L3 cache

L2Miss L2HitM + L3UnsharedHit +
L3Miss

Total Number of L2 cache requests to
every core that do not result in a hit
in the same core’s L2 cache. L2Miss
6= L2misses

L2HitRatio
L2Hit

L2Hit+ L2Miss
Ratio of the total number of requests
to the L2 cache that result in a hit in
the L2 cache to the total number of
requests to the L2 cache

L3HitRatio
L3Hit

L3Hit+ L3Miss
Ratio of the total number of the re-
quests that result in a hit in the L3 to
the total number of requests to the L3

cache

The Venn diagram representation of the metrics relevant to the model (and used in PCM)
is shown in Figure 3.8. Note that the diameter of the circles are just an indication of
the relative numbers of the metrics obtained from STREAM. (It could be different for
different applications.)

In order to estimate the latency of the application, it is important to determine the
access times to the cache and memory organisation. The access times to caches are not
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Figure 3.7: Exclusive versus Inclusive cache (Semin, 2009)

Table 3.5: L1 cache metrics

Metric Formula Interpretation

L1Hit L1hits Number of L1cache requests that result in a
hit in the L1 cache only

L1Miss L2Hit+ L2Miss Total Number of L1 cache requests that do
not result in a hit in the L1 cache

L1HitRatio
L1Hit

L1Hit+ L1Miss
Ratio of the total number of L1 cache hits to
the total number of requests to the L1 cache

Figure 3.8: Metrics used in the model represented using Venn Diagram

constant values [14, 12, 15]. They depend on various factors such as, core, un-core fre-
quencies, type of access (remote/local, with snooping/without snooping). The following
observations and study[14] form the basis for creating this model. See Figure 3.9

Local Memory Access: The steps to access the local memory block are as follows:
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1. Proc0 requests a cache line which is not in its L1, L2, L3 cache.

• Proc0 requests data from its DRAM

• Proc0 snoops Proc1 to check if data is present there.

2. Response

• local DRAM returns data

• Proc1 returns snoop response

• Proc0 installs block in its L3, L2, L1 cache and retrieves target memory
word.

Remote Memory Access: The steps to access the remote memory block are the fol-
lowing:

1. Proc0 requests a cache line which is in not in Proc0’s L1, L2, L3 cache

2. Request sent over QPI to Proc1

3. Proc1’s probes for cache line

• Proc1 makes requests to its own DRAM

• Proc1 snoops internal caches

4. Response

• Data block returns to Proc0 via the QPI

• Proc0 installs cache block in L3, L2, L1

(a) Local Memory Access Event Sequence (b) Remote Memory Access Event Sequence

Figure 3.9: Nehalem Memory Access Sequence (Thomakadis, 2011)

From the steps mentioned, it can be inferred that the access latency is a function of QPI
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latency and the number of local and remote accesses to memory and caches. The cache
coherency protocol messages (snooping) among the multiple sockets are exchanged over
the QPI. We have taken these factors into consideration and modelled the cache and
memory access times as a function of QPI traffic, local and remote memory access.

The access times to L2, L3 and memory are calculated and denoted as thit2, thit3, tmem.
Looking back at Figure 2.6, using STREAM as p1, descriptive models are created as a
function of the profile of metrics created on the machine and the hardware model of the
machine. The set of models d1, . . . d4 ∈ D are presented.

d1 = F ({QPIsock,Mr,Mw} , Ĥm) :

RemoteAccessRatio(RAR) =
QPIsock
Mr +Mw

(3.1)

d2 = F ({RAR, t2remote, t2local} , Ĥm) :

thit2 = RAR ∗ t2remote+ (1−RAR) ∗ t2local (3.2)

d3 = F ({RAR, t3remote, t3local} , Ĥm) :

thit3 = RAR ∗ t3remote+ (1−RAR) ∗ t3local (3.3)

d4 = F ({RAR, tmemremote, tmemlocal} , Ĥm) :

tmem = RAR ∗ tmemremote+ (1−RAR) ∗ tmemlocal (3.4)

where ,

• t2remote , t3remote, tmemremote are the access times to remote L2, L3, DRAM
respectively

• t2local , t3local, tmemlocal are the access times to local L2, L3, DRAM respectively.

• Mr indicates the total amount of traffic read from the local and the remote DRAM
by the system.

• Mw indicates the total amount of traffic written into the local and the remote
DRAM by the system.

• QPIsock indicates the total traffic between the sockets (CPUs) via the QPI link.

The RAR is estimated using the principle that all remote accesses happen via the QPI.

A cache miss in L3 in one socket finds the data in another socket’s L3 cache (inclusive)
or DRAM (local or remote). We have also considered the worst case scenario in which
the L2 cache lines are modified and also requires snooping and thus included remote
access latency for L2 cache. The access time to L1 is assumed to be constant[15] as L3

being inclusive accounts for the snooping requests of L1 cache. The access time to disk
(in ms) is extremely high when compared to the QPI latencies (in ns). So, we ignore the
QPI latencies when determining the disk latency.
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The access times to L1 and disk are denoted by thit1 and tdisk respectively.
Taking the metrics presented in Table 3.5 and Table 3.4 and the models d1, . . . d4 into
consideration, the model used to calculate the total latency of the application on a PC
with a hardware model , Ĥm is d10 ∈ D and represented using Equation 3.5.

d10 = F (d1, . . . d9, Ĥm) :

Ttot = thit1 ∗ L1Hit+ thit2 ∗ L2Hit+ thit3 ∗ L3Hit+ tmem ∗MemHit+ tdisk ∗DiskHit
(3.5)

where, d5, . . . d9 ∈ D are presented using the following Equations.

d5 = F (PageReads, Ĥm) :

DiskHit = PageReads (3.6)

d6 = F (L3Miss, Ĥm) :

MemHit = L3Miss (3.7)

d7 = F ({L3HitRatio, L3Miss} , Ĥm) :

L3Hit =
L3HitRatio ∗ L3Miss

1− L3HitRatio
(3.8)

d9 = F ({L2HitRatio, L2Miss} , Ĥm) :

L2Hit =
L2HitRatio ∗ L2Miss

1− L2HitRatio
(3.9)

d8 = F ({L1HitRatio, L1Miss} , Ĥm) :

L1Hit =
L1HitRatio ∗ L1Miss

1− L1HitRatio
(3.10)

DiskHit: This represents the number of disk accesses. This can be estimated using the
number of Page Reads/s[16]. Page Reads/s is a memory counter measured using
Perfmon. This counter indicates the number of read operations that were required
to be done by the disk to retrieve faulted pages (One of the possible scenarios
where this is most likely to happen is when the system runs out of memory and
accesses the disk).

MemHit: This represents the number of accesses that find data in memory. It is
assumed that all L3Miss result in memory hits.

Looking back at Figure 2.6, the next step is to collect measurements of hardware metrics
on selected hardware platforms by conducting experiments. These metrics are used to
predict relevant (e.g, runtime) parameters based on just the application properties.
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3.3 Experiments and Results-I

Ralph Waldo Emerson quoted,

“ All life is an experiment. The more experiments you make, the better ”

The experiments are conducted to collect measurements of hardware metrics to create
the models presented in Section 3.2.4 and verify its correctness. In this Section, the
experiments conducted for case 1 are described which is: Series of experiments for
different memory configurations, which are, 1GiB, 2GiB, 4GiB, 6GiB.

The generic sequence of steps followed from creating the models to verifying them are
illustrated in Figure 3.10.

Figure 3.10: Creating models to verifying models: Sequence of steps. The notes (in green) is the
name of the action completed in each step.

An instantiation of the sequence of steps is done for model, d10.
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Figure 3.11: Creating model to verifying model, d10: Steps

The rest of this section is organised to present individual actions performed in Fig-
ure 3.10.

3.3.1 Measurements

The models d1, . . . d10 are created using the measurements from experiments and analysis
done in incremental steps. Therefore, the action, model creation shown in Figure 3.10
is not a single step action, but includes a number of steps within itself. The models
created are presented in Section 3.2.4. s

The next step in Figure 3.10 is collecting measurements of hardware metrics using the
MeasureLoadCLI and Perfmon Tools. The application chosen is STREAM for reasons
mentioned in Section 3.2.2.

The experiments are conducted on an IP PC with hardware specifications presented in
Table 3.1. STREAM application is run for various array sizes ranging from 1 million
elements to 80 million elements. The Measurement Tools, MeasureLoadCLI and Perf-
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mon are run concurrently when STREAM is launched. The parameters used in the
experiments are listed in Table 3.6. The OS used on the PC is Windows XP.

Table 3.6: Application and Measurement Tool specifications: These are the user input values
chosen during the experiments to obtain sufficient samples for creating the model.

Parameter Value

NTIMES 100
OFFSET 0

Time interval between samples during measurement (s) 1

The list of metrics measured for the series of experiments conducted are tabulated in
Table 3.7. The measured values of metrics are tabulated in Tables 3.21, 3.22, 3.23,
3.24.

Table 3.7: Measured Metrics from the tools

Parameter

L2HitRatio
L3HitRatio
L3Miss
L2Miss
DiskHit
MemHit
Mr

Mw

QPIsock

3.3.2 Assumptions and Calculations

This section entails the description of metrics assumed and metrics calculated from
assumed metrics and measured metrics. It also describes the rationale behind the choice
of important metrics assumed.

The access times to the local and remote caches and memory for a PC with specifications
mentioned in Table 3.1 are shown in Table 3.8. The values of the access latencies chosen
are based on Intel and Nehalem literature sources[14, 12, 15]. Although, these values
are assumed, they are constant for all array sizes chosen.

Access time to remote memory by a processor is approximately 1.6 to 1.7 times the access
time to local memory[14]. The latency to remote caches is due to the QPI latency and
this is approximately equal to 40 ns[14, 12]. This is used to calculate the access times to
remote caches, L2, L3 and memory. (∴, t3remote=t3local + QPI latency=20+40=60 ns;
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Table 3.8: Access Times to Cache and Memory

Cache Level /Memory Local Remote

L1(ns) thit1 thit1
2 2

L2(ns) t2local t2remote
6 46

L3(ns) t3local t3remote
20 60

DRAM(ns) tmemlocal tmemremote
65 120

tdisk tdisk
Disk(ms) 2 2

Similarly for L2). The access times to local caches and memory chosen and the access
times to remote caches and memory calculated are used to calculate the total access
times to L2, L3 caches and memory, thit2, thit3, tmem for all array sizes chosen. The
values of the access times are tabulated for all array sizes in Tables 3.21, 3.22, 3.23,
3.24.

The value of L1HitRatio is not measured by the tools used. However, the value chosen
is not a constant value and ranges from 0.95 to 0.99 depending on the array size. The
value chosen is greater than 0.95 because, generally on any PC, the L1HitRatio is
close to 1. A very low L1HitRatio indicates that the application does not use the cache
effectively. The value chosen for different array sizes gives the best regression fit for every
experiment. Looking back at Figure 3.11, the value of L1HitRatio chosen becomes a
part of curve fitting for models created.

The choice of L1HitRatio for various array sizes is shown in Figure 3.12. From Fig-
ure 3.12, it is seen that value chosen shows variations for larger array sizes. Larger the
array size, more the memory required. The memory required is calculated as:
(Maximum number of operands required for the vector kernel operation ∗ Array Size
(N) ∗ Number of Bytes per array element)
For example, for an ADD operation with array size of one million elements, the memory
required is = 3 ∗ 106 ∗ 8=22.9 MiB.

The access time to disk ranges from (1 ms-100 ms). We chose 2 ms because this value
gives the best regression fit in the model for all possible memory configurations chosen.

RAR is calculated as using the formula represented by model, d1.

The metrics assumed and calculated and used in models, d1, . . . d10 are listed in Ta-
ble 3.9.
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Figure 3.12: L1HitRatio chosen for Nehalem plotted against the memory required

Table 3.9: Measured Metrics from the tools

Assumed Metrics Calculated Metrics

thit1 L1Hit
t2local L2Hit
t3local L3Hit
tmemlocal t2remote
tmemremote t3remote
tdisk RAR

thit2
thit3
tmem

3.3.3 Prediction and Verification

This section entails the details about the prediction of a metric on selected hardware
models and the verification of the models.

The hardware models for four selected memory configurations are denoted as ˆHm1 ,
ˆHm2, ˆHm3, ˆHm4 for 1 GiB, 2 GiB, 4 GiB and 6 GiB memory configurations respectively

on machine m selected.

The metrics measured (listed in Table 3.7), and metrics assumed and calculated (listed
in Table 3.9) are used to create profiles, K1, K2, K3, K4 for hardware models. The
profiles are used to predict the metric, Ttot for all the hardware models.
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Ttot = F (K1, ˆHm1)

Ttot = F (K2, ˆHm2)

Ttot = F (K3, ˆHm3)

Ttot = F (K4, ˆHm4)

The mathematical correctness of the predicted metric for every hardware model is verified
by comparing it with the metric, tapp measured. tapp is the time duration between
the start and the stop action of the application measured using a timer used in the
MeasureLoadCLI tool. The predicted value of Ttot estimated using Equation 3.5 is
compared with tapp /∈ K1,K2,K3,K4 for all hardware models using 3.11.

|Ttot − tapp| ≤ error (3.11)

In order to determine if the predicted (Ttot) and measured (tapp) values of latencies are
comparable, the error percentage is calculated as follows:

error(%) =
Ttot − tapp

tapp
∗ 100 (3.12)

Looking back at Figure 3.11, the step, prediction and verification are done as described
in this section.

Reflection

The predicted value of the metric, Ttot and the error percentages calculated after com-
paring Ttot with tapp for all array sizes is tabulated in Tables 3.21, 3.22, 3.23, 3.24.
These values depend on a number of useful observations and analysis done by comparing
different memory configurations. They are discussed in detail in this section.

In Table 3.10, for ˆHm1,

• m.MemBw is calculated as (Memory Frequency ∗ Number of bytes/transfer ∗
Number of channels)=( 800 ∗ 8 ∗ 1=6.4 GB/s). This is the theoretical bandwidth
for one socket. m.Sock1Mem and m.Sock2Mem indicate the amount of mem-
ory available to node 1 (socket 1) and node 2 (socket 2) respectively. These are
represented separately because of NUMA.

Similarly, metrics for other hardware models are also specified in Table 3.10.
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Table 3.10: Hardware models selected: The metrics are calculated from the specification sheet
of the PC, and using a software, SiSoftware Sandra

Hardware Model Parameter Value

ˆHm1 m.Mem (GiB) 1
m.MemChannel 1
m.MemBw(GB/s) 6.4
m.Sock1Mem(MiB) 537
m.Sock2Mem(MiB) 0
m.QPIBw(between sockets)(GB/s) 9.6

ˆHm2 m.Mem (GiB) 2
m.MemChannel 1
m.MemBw(GB/s) 6.4
m.Sock1Mem(MiB) 582
m.Sock2Mem(MiB) 861
m.QPIBw(between sockets)(GB/s) 9.6

ˆHm3 m.Mem (GiB) 4
m.MemChannel 2
m.MemBw(GB/s) 12.8
m.Sock1Mem(MiB) 1760
m.Sock2Mem(MiB) 410
m.QPIBw(between sockets)(GB/s) 9.6

ˆHm4 m.Mem (GiB) 6
m.MemChannel 3
m.MemBw(GB/s) 19.2
m.Sock1Mem(MiB) 2130
m.Sock2Mem(MiB) 0
m.QPIBw(between sockets)(GB/s) 9.6

An important observation from Table 3.10 is that the memory available is always less
than the total physical memory physically installed on a system. The m.Sock2Mem for

ˆHm1 is zero because no RAM card was installed on socket 2. However, m.Sock2Mem
for ˆHm4 is surprisingly found to be zero even though 3 GiB of RAM is installed on
socket 2. This can be explained using the nature of the OS. A 32 bit Windows OS
can use only a maximum of 232 = 4GiB of memory. Therefore, even though ˆHm4

has 6 GiB of memory installed, the OS only uses the memory installed on socket 1(3
GiB). This is also proved using the measurements from the MeasureLoadCLI tool. The
metrics, Mr and Mw for individual sockets are measured and plotted in Figure 3.13.
It can be seen that the socket 2 does not record any traffic to the memory as it has no
memory allocated.
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(a) Memory Bus traffic in ˆHm1
(b) Memory Bus traffic in ˆHm4

Figure 3.13: Individual socket reads and writes in ˆHm1 and ˆHm4: Shows that Socket 2 does
not record any memory bus traffic

(a) Using the counters in the MeasureLoadCLI tool: tapp

(b) Estimated (predicted) using the model:Ttot

Figure 3.14: Latency of STREAM application for ˆHm1, ˆHm2, ˆHm3, ˆHm4:The y-axis is the log
of the values measured and predicted

tapp and Ttot tabulated in Table 3.21, Table 3.22, Table 3.23,Table 3.24 are graphically
represented in Figure 3.14.In Figure 3.14a and Figure 3.14b, the latencies are plotted
against the memory required for the vector kernel operations listed in Table 3.2.

From Figure 3.14, it can be seen that the estimated latency compares very well with
the measured latency. There is a drastic increase in the latency of the application
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Figure 3.15: Estimated Latency of STREAM versus % of memory required

when the memory required is greater than 80% of the total memory deployed on every
hardware model. This can be demonstrated using Figure 3.15. In Figure 3.15, the
estimated latency of the application is plotted against the % of memory required. The
% of memory required is Total memory required/Total memory as seen by the OS. For
example, for ˆHm1, the % of memory required for 1 million elements is 22.9 MiB/1
GiB=2.24%. It is seen that the percentage of memory used for the same memory
requirements is higher for ˆHm4 than that of ˆHm3. This factor is important from the
point of view of performance comparison discussed in the later section. For ˆHm4, the
total amount of memory seen by the OS is less than 3 GiB. This accounts for higher
percentage of memory required for this hardware model than that required by ˆHm3.
See from Figure 3.15 that the % of memory required is never greater than 45% for

ˆHm3(4 GiB)and is greater than 80% for ˆHm4(6 GiB) for experiments with same array
size chosen.

From Table 3.21,Table 3.22,Table 3.23,Table 3.23, the rows highlighted in pink show
that the modeling is valid only for those array sizes where the % of memory required is
less than 80 %. The absolute value of the error percentages for valid experiments is less
than 1 %. This satisfies Equation 3.11, because Ttot and tapp are comparable to each
other within an absolute error of 1 %. This verifies the predictive quality of the models,
d1, . . . d10 for all hardware models selected. Looking back at Figure 3.11, all the steps
shown are completed and the predictive quality of d10 is verified. d10 and thus, d1, . . . d9
can now be formalized. The set of models can be validated using an entirely different
machine, or architecture as illustrated in Figure 2.7.
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3.3.4 Performance Evaluation using models

As the predictive quality of the models created are verified, we use the models to compare
the performance of the PC with different memory configurations. When the memory
installed on m is increased in steps of 2 GiB, we intuitively expect to see performance
improvement. In terms of latency, we expect a decrease in the latency of all the exper-
iments for every step increase in the installed memory. However, when the system was
modelled using Equation 3.5, the results obtained were quite contradictory for hardware
model, ˆHm4. This can be demonstrated using a state diagram shown in Figure 3.16.
The performance improvement/degradation % is calculated as the average of the ratios
of the difference between the estimated latencies of the application between two hard-
ware models to the estimated latency of the application of one hardware model for all8

the array sizes chosen.

Figure 3.16: Performance Improvement in terms of Latency: The circles represent the hardware
models of m; The text in green indicates performance improvement and the text in red (and
minus sign) indicates performance degradation.

Here, if the latency estimated decreases for every step increase in the memory installed,
then there is performance improvement. If the latency of the application increases, it
implies performance degradation.

A performance improvement/degradation of x % from ˆHmi to ˆHmj means
that the value of a metric kv for ˆHmj=(1-(x/100))∗ kv for ˆHmi.

The performance improvement/degradation shown in Figure 3.16 can be explained using
the metrics used in d10 ∈ D.

From Figure 3.17a, it can be seen that the number of L1Miss decreases by 77 % from
ˆHm1 to ˆHm2. The number of L2Miss and L3Miss also decrease by 63 % and 61 %

respectively as seen in Figure 3.17b and Figure 3.17c . However, the number of disk
accesses is extremely high as seen from Figure 3.17d. We still see an overall performance
improvement of 48 % from ˆHm1 to ˆHm2 in Figure 3.16. An improvement of 48 % means
that Ttot for ˆHm2 =0.52 ∗ Ttot for ˆHm1.

8All here refers to those array sizes for which the % of memory required is less than 80 %
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(a) L1Miss for hardware models (b) L2Miss for hardware models

(c) L3Miss for hardware models (d) DiskHit for hardware models

Figure 3.17: Performance Evaluation of the estimated latencies using the model, d10 using the
metrics: The circles represent the hardware models. Performance improvement is indicated using
green text and performance degradation is indicated using red text

Table 3.11: Average of the access times to cache and memory for hardware models: The values
are rounded to the nearest integers. They are the average of all the values estimated for all array
sizes. The access times are not constant values, but instead are functions of RAR

Hardware Model thit2 thit3 tmem

ˆHm1 21 41 94
ˆHm2 12 26 74
ˆHm3 17 36 66
ˆHm4 29 43 96

Table 3.12: QPI, Remote access and Memory traffic ratios: The values are approximate and not
exact values. They are the average of all the values estimated for all array sizes.

Hardware Model
QPIsock2
QPIsock1

RAR
Mr

Mw
ˆHm1 2.5 0.5 2.5
ˆHm2 1.4 0.2 2.5
ˆHm3 1.5 0.2 2.5
ˆHm4 2.5 0.5 2.5

An important inference here is that the performance improvement gained by an increase
of 1 GiB in the memory configuration is not only due to the increase in the memory,
but also, due to the way in which the memory is installed into the DIMMs in every
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socket. In Table 3.10, and Figure 3.13, we have seen that no memory is allotted to
socket 2. However, from Table 3.12, we can see that the traffic to socket 2 is 2.5 times
the traffic to socket 1 and the RAR is approximately 0.5 for ˆHm1. It is also seen that

the snooping traffic is equal to the ratio of
Mr

Mw
(which is 2.5). So, it can be inferred

that the traffic via the QPI bus is only due to snooping. This increases the average
thit2, thit3 and tmem access times to 21 ns , 41 ns and 94 ns as shown in Table 3.11.
This is higher than the local cache and memory access times discussed in Table 3.8.
Refer Table 3.21 and Table 3.22 to see the access times to the cache and memory and
RAR for all the array sizes. From Table 3.12, it can also be seen that for ˆHm2, the
traffic to socket 2 is 1.5 times the traffic to socket 1 via the QPI bus. The RAR is
also close to 0.20. The QPI and RAR indicate that the number of remote accesses and
snooping traffic is reduced. This decreases the average thit2, thit3 and tmem access
times to 12 ns, 26 ns, 74 ns from ˆHm1 to ˆHm2. The overall performance improvement
in terms of latency can be seen in Figure 3.14.

From Figure 3.17a, it can be seen that the number of L1Miss decreases by 9 % from
ˆHm2 to ˆHm3. The number of L2Miss and L3Miss also decrease by 23 % as seen in

Figure 3.17b and Figure 3.17c . The number of disk accesses is reduced by 99 % as seen
from Figure 3.17d. We see an overall performance improvement of 27 % from ˆHm2 to

ˆHm3.

The performance improvement gained from ˆHm2 to ˆHm3 (a step of 2GiB) is only 27 %
unlike a performance improvement of 48 % from ˆHm1 to ˆHm2 as seen in Figure 3.16.
The traffic to socket 2 is 1.5 times the traffic to socket 1 and RAR is close to 0.20 as
seen from Table 3.12. The average access times, thit2, thit3 and tmem estimated are
17 ns, 36 ns and 66 ns. The thit2, thit3 are higher than those estimated for ˆHm2.
Nevertheless, the number of L1Miss, L2Miss, L3Miss and DiskHit are lesser in ˆHm2.
The overall performance improvement in terms of latency can be seen in Figure 3.14.

From Figure 3.17a, it can be seen that the number of L1Miss increases by 116 % from
ˆHm3 to ˆHm4. Similarly, the number of L2Miss and L3Miss also increase by 41 % and

44 % as seen in Figure 3.17b and Figure 3.17c . The number of disk accesses increases
by 18 % as seen from Figure 3.17d. We see an overall performance degradation of 19 %
from ˆHm3 to ˆHm4.

From Figure 3.17a, it can be seen that the number of L1Miss increases by 134 % from
ˆHm2 to ˆHm4 Similarly the number of L2Miss and L3Miss also increase by 22 % and

26 % as seen in Figure 3.17b and Figure 3.17c. But, the number of disk accesses reduces
by 99 % as seen from Figure 3.17d. We see an overall performance improvement of 8 %
from ˆHm2 to ˆHm4.
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The performance degradation seen from ˆHm3 to ˆHm4 can be explained based on the
amount of memory seen by the OS. As discussed and demonstrated earlier through
Table 3.10 and Figure 3.13, the memory installed on socket 2 is not available. This is
similar to ˆHm1 in exhibiting huge QPI traffic for snooping and leading to increased
access times to cache and memory. From Table 3.11 and Table 3.12, it can be seen
that the access latencies are 29ns, 43 ns and 96 ns and the RAR is approximately
equal to 0.50 which are higher than the access latencies and RAR of ˆHm3. The overall
performance degradation in terms of latency can be seen in Figure 3.14

The most interesting, yet, explanatory meagre performance improvement of 8 % from
ˆHm2 to ˆHm4 is solely due to the decrease in the number of disk accesses. It can be

inferred that a step of 4 GiB increase (from 2 GiB to 6 GiB) does not do the intuitive
expected performance improvement. This is seen in Figure 3.14.

Note from Figure 3.16,

• The performance improvement gained from ˆHm2 to ˆHm4 is 8% which is = 27 %
- 19%=8%

• The performance improvement gained from ˆHm2 to ˆHm3 is 27 % which is ≈ (48
%- 19%)=29%.

From this, it can be inferred that the performance degradation that happens when the
memory is installed on only one processor(socket) or memory is available on one socket
in a multiprocessor PC is ≈ 20 %.

From Figure 3.17a, it is seen that the number of L1Miss decreases by 82 % from ˆHm1

to ˆHm3. The number of L2Miss and L3Miss also decrease by 72 % and 70 % as seen
in Figure 3.17b and Figure 3.17c . The number of disk accesses is reduced by 97 % as
seen from Figure 3.17d. We see an overall performance improvement of 63 % from ˆHm1

to ˆHm3.

From Figure 3.17a, it is seen that the number of L1Miss decreases by 47 % from ˆHm1

to ˆHm4. The number of L2Miss and L3Miss also decrease by 53 % and 49 % as seen
in Figure 3.17b and Figure 3.17c . The number of disk accesses is reduced by 96 % as
seen from Figure 3.17d. We see an overall performance improvement of 52 % from ˆHm1

to ˆHm4.

The performance improvement gained from ˆHm1 to ˆHm3 and ˆHm1 to ˆHm4 are 63 %
and 52 % respectively. The performance gain from ˆHm1 to ˆHm4 is lesser than the
performance gain from ˆHm1 to ˆHm3 due to the way the memory is seen by the OS in

ˆHm4. This is explained in earlier observations.
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If A > B indicates that, the performance of A is better than the performance of B, then,
from Figure 3.16 and Figure 3.14, performance evaluation done can be summarized as:

ˆHm3 > ˆHm4 > ˆHm2 > ˆHm1 (3.13)

3.3.5 Performance Evaluation using STREAM

Looking back at Figure 3.4, it was discussed that STREAM calculates the time required
for vector kernel operations and the memory bandwidth. This is used to verify the
results of performance evaluation done. As shown in Figure 3.4, STREAM calculates
the minimum, maximum , average times and the optimum memory bandwidth for all the
vector kernel operations. Note that we already have Ttot predicted and tapp measured
using MeasureLoadCLI tool and the time recorded by STREAM is different from these
metrics and is displayed on the command-line interface of STREAM after computations.

Figure 3.18: Latency recorded by STREAM application: The latency is expressed in log scale:
Lower the latency, better the performance

• From Figure 3.18 it can be inferred from the latencies observed that,

ˆHm3 > ˆHm4 > ˆHm2 > ˆHm1 (3.14)

• From Figure 3.19, it can be inferred from the memory bandwidth that,

ˆHm3 > ˆHm4 > ˆHm2 > ˆHm1 (3.15)

Equations 3.15, 3.14 concur with Equation 3.13. This supports the performance evalu-
ation done on different hardware models.
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Figure 3.19: Memory Bandwidth recorded by STREAM application: The bandwidth is calculated
as (Memory Required/Min Time required for vector kernel operations). Higher the bandwidth,
better the performance

3.4 Execution Architecture Design-II

Intel’s tick tock approach[17] moves into a new manufacturing technology every two
years (called tick), the cadence Moore’s law dictates. On the years in between, Intel
updates the chip architecture but leaves the manufacturing process unchanged (called
tock). From Figure 3.20, it can be seen that Intel roadmap has witnessed Nehalem,
Sandy Bridge and Haswell micro-architectures. Each micro-architecture evolved includes
enhancements in terms of power optimization, performance and many other properties
from its former micro-architectures. The Allura system evolves with the Intel roadmap
of processors. PCs with newer micro-architectures are integrated into the system. This
motivates the comparison of PCs with different micro-architectures. Therefore, we com-
pare the performance of two different micro-architectures, Nehalem and its successor,
Sandy Bridge.

Figure 3.20: Intel Roadmap: Shows Intel’s tick tock development model. Following this model,
Intel commits to and delivers continued innovations in manufacturing process technology and
processor architecture in alternating tick tock cycles.(Intel)
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3.4.1 PC Architecture and Hardware Model

The two PCs used for study are of the type, Nehalem-EP9 and Sandy Bridge-EP10. The
hardware model and the physical attributes of the PC with Nehalem micro-architecture
is described in Section 3.2. In this section, the hardware model and physical attributes
of the PC with Sandy Bridge micro-architecture are presented.

The PC architecture consists of two CPUs running at 2 GHz. Each processor has 8 cores.
Each core is connected to a private L1 data and instruction cache of 32 KiB each and
a private L2 cache of 256 KiB. Each CPU is connected to an L3 cache of 20 MiB which
is shared among 8 cores. Every CPU supports upto 4 memory channels (bidirectional)
and connects each of the 8 cores to an external memory of 32 GiB. Each Graphic card
has an external memory of 2 GiB. Each socket has 40 lanes of integrated PCIe 3.0. The
system is connected to 3 Graphic cards, 2 network cards and 15 grabber cards via PCIe.
CPU 1 is connected to a SAS disk with a maximum capacity of 160 GiB (and 20000
rpm) via SAS LSI controller. CPU 1 is also connected to a SATA disk with a maximum
capacity of 600 GiB (and 15000 rpm) via PCH. The maximum theoretical bandwidth
to network card, graphic card, grabber card, SATA disk and SAS disk are tabulated
in Table 3.13. This table also re-presents the hardware attributes of the Nehalem PC
used for comparison. The hardware model[18] of the PC with Sandy Bridge micro-
architecture chosen is shown in Figure 3.21. An instantiated CPU representation is
shown in Figure 3.22.

The application used for study is STREAM. The detailed description of STREAM is
already presented in Section 3.2.2

The latency of STREAM on the PC is calculated using the model developed in Section
3.2.4.The assumptions and decisions made in Section 3.2 are adopted in this section.
The definition of hardware metrics used for Nehalem hold good even for Sandy Bridge.
Therefore, we use the set of models (d1, . . . d10 ∈ D) to evaluate the performance of this
PC.

3.4.2 Comparison and Reflection

From the hardware models and hardware attributes described for Nehalem and Sandy
Bridge, it can seen that there are many architectural differences. Nearly every aspect

9Intel makes two categories of processor sockets for servers: Expandable capacity (EX) and Efficient
Performance(EP)processor technology. The EP processors can run on servers with a maximum capacity
of 1 or 2 sockets per server. The EX processors can run on servers with 1, 2, 4, 8 , or more sockets per
server

10Intel makes three categories of processors for Sandy Bridge: E with a maximum capacity of 1 socket
(used in Desktop chips), EN with a capacity of 1 or 2 sockets per server and EP with a capacity of 1, 2,
or 4 sockets per server.
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Figure 3.21: Hardware Model of the PC: Sandy Bridge

Figure 3.22: CPU: Sandy Bridge (Kanter, 2011)

of the Sandy Bridge micro-architecture has been redesigned to improve per-core per-
formance and power efficiency[20]. It has improved CPU arithmetic, CPU multimedia,
cryptography, power efficiency, media transcoding , memory controller speed and L3

cache performances. However, this section presents major architectural advancements[21,
22, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 18, 34, 35, 36] and highlights the most
important architectural differences in the context of determining the performance of the
PC in terms of the latency of the application chosen.

1. The Die: The major architectural changes on the die are described here. See
Figure 3.22. Intel has devised innovative techniques not found on its predecessor,
Nehalem. This includes:
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Table 3.13: Hardware Attributes of the PCs: The hardware attributes in Table are from the
device specification sheet[19, 18], BIOS settings and Si-Software Sandra.

Attribute of machine m Sandy Bridge-EP Nehalem-EP

m.CPUmodel Intel Xeon CPU E5-2650 Intel Xeon CPU E5504
m.Socket 2 2
m.CPUfreq(GHz) 2 2
m.Core 16 8
m.Thread 1 1

m.L0(KiB) 5.25 -
m.L1i(KiB) 32 32
m.L1d(KiB) 32 32
m.L2(KiB) 256 256
m.L3(MiB) 40 8

m.MemChannel 4 3
m.DIMM 2 2
m.Mem(GiB) 64 6
m.MemFreq(MHz) 1600 800
m.TotalMemBw(GB/s) 51.2 19.2

m.QPIlink 2 1
m.TotalQPIBw(GB/s) 32 19.6

m.PCIeversion 3.0 2.0

m.DiskSAS(GiB) 160 -
m.DiskSATA(GiB) 600 150

m.GraphicCard 3 2
m.GpuMem(MiB) 2048 512
m.PCIeGraphicBw (Gbps) 40 80

m.NetworkCard 2 2
m.PCIeNCBw(Gbps) 2.5 2.5 or 10

m.GrabberCard 15 -
m.PCIeGrabberBw(Gbps) 10 -

m.InfiniBandCard - 1
m.PCIeICBw(Gbps) - 20

m.TurboBoostversion 2.0 -
m.maxTDP (W) 95 80

m.lithography(nm) 32 45

(a) Number of cores: There are 8 cores in each CPU in the Sandy Bridge PC and
4 cores in each CPU in the Nehalem PC. The number of cores was increased
by Intel to be able to deliver improved performance for CPU intensive appli-
cations. As the application we chose is not CPU intensive, but hungry for
memory, cache and their bandwidths, increasing the number of cores has an
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adverse effect on the performance of the Sandy Bridge PC. This is explained
in detail, later, in this section.

(b) L0 cache: One of the most novel features of the Sandy Bridge micro-architecture
is that, it includes a level 0 cache. This is also known as the micro-op cache.
It is a subset of the L1 instruction cache that contains fixed length decoded
micro-ops, rather than raw bytes of variable length instructions. The key aims
of this cache are to improve the performance of CPU intensive applications by
improving the bandwidth available at the front-end of the CPU and remove
decoding from the critical path. It also decreases the power consumption.

The size of L0 cache is 5.25 KiB. The L0 has a hit rate of about 80 %.

(c) L1 cache: The L1 data cache in Sandy Bridge micro-architecture is redesigned
to increase the bandwidth. It can sustain two 128 bit loads and one 128 bit
store every cycle, unlike Nehalem which can sustain only one 128 bit load
and one 128 bit store. This doubles the the bandwidth available to the cache
directly connected to the load and store buffers, L1 cache.

(d) L3 cache:

i. Location: Unlike the L3 cache located in the un-core11 domain in the
Nehalem PC, L3 cache is directly connected to the cores in the processor
clock domain on the Sandy Bridge PC.

ii. Capacity: The capacity of L3 cache is 20 MiB which is 2.5 times the
capacity of L3 cache in the Nehalem PC. Another important difference
between the two L3 caches is that in Sandy Bridge micro-architecture, the
L3 cache is divided into 8 equally sized physical blocks(logically, there is
one L3 cache). This allows each block to service requests simultaneously
making its bandwidth approximately 8 times larger.

(e) System Agent: Sandy Bridge contains a new component, the System Agent,
that controls the memory controller, PCI Express, display interfaces,and the
DMI connection to the external south-bridge chip (PCH). The un-core domain
in the Nehalem micro-architecture is replaced by the system agent. The effect
of System Agent is not significant in this context.

(f) Ring Interconnect:The Sandy Bridge micro-architecture employs a ring inter-
connect between the cores, graphics, L3 cache and system agent (including the
display/media engine) which replaces the internal buses used in the Nehalem

11The uncore is a term used by Intel to describe the functions of a microprocessor that are not in
the Core, but which are essential for Core performance, such as, L3 cache, power control unit, on die
memory controller, QPI controller. Un-core frequency is lower than the core frequency
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micro-architecture. The coherent bidirectional ring is composed of four differ-
ent rings: request, snoop, acknowledge and a 32 B wide data ring. Together
these four rings are responsible for a distributed communication protocol that
enforces coherency and ordering. The rings are fully pipelined and run at the
core clock and voltage. The L3 cache and the data rings in the system fab-
ric run at the core frequency providing upto 844 GB/s of fabric bandwidth.
However, the L3 cache in Sandy Bridge is shared by the cores, the integrated
GPU and the system agent. Each of these agents accesses the L3 cache via
the ring. The bandwidth scales with the agents. But, the scaling is not neces-
sarily perfect though, because of the topology. As messages travel across the
ring, they can block access to other agents, reducing the available bandwidth
as the average hop count (e.g, number of cores) increases. Therefore, L3 cache
is no longer a single unified entity as in Nehalem, but is instead distributed
and partitioned for higher bandwidth and associativity.

From the factors mentioned, it can be summarised that, first, each slice of
the L3 (20 MiB/8=2.5 MiB)cache in the Sandy Bridge micro-architecture is
much smaller ( ≈ 3 times) than Nehalem’s 8 MiB L3 cache, so the latency to
access the tags and data arrays has decreased. Second, the ring and L3 now
reside in the same clock and voltage domain as the cores (and the core clock
is certainly faster than the un-core clock in Nehalem). In Nehalem micro-
architecture, there is a latency penalty for signals crossing to a new voltage
and clock domain. This penalty is determined by the ratio between the two
frequencies and can be several cycles. Placing the caches and ring in the same
domain reduces this latency.

Note that the latency of the ring will increase as more agents are attached;
each hop on the ring takes 1 cycle, so the latency actually depends on the
relative position of the requesting core and the receiving cache slice. The
bandwidth available also depends on the blocking caused due to other agents.
Nevertheless, the access time to L3 cache is reduced by 25 % (40 clock cycles
in Nehalem to 30 clock cycles in Sandy Bridge).

(g) GPU on the die: GPU is directly connected to the die in the Sandy Bridge
PC. This improves the speed of the components used in GPU. The GPU
functionalities are enhanced and redesigned for better performance. As this
is beyond the scope of this thesis, it is not discussed in detail.

(h) Other changes: As discussed earlier, every aspect of Sandy Bridge PC is re-
designed to improve the performance. Some of the changes are: improved
branch prediction, increased number of load and store buffers, efficient tech-
niques for tracking and renaming micro-ops in flight, introduction of the AVX
instruction set for improved floating point performance. As these finer details
cannot be measured using the tools we use, they are not discussed in detail.
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2. Memory: The memory outlay, frequency and configuration in Sandy Bridge are
the most important factors affecting the performance in this context.

(a) Frequency: The memory frequency doubles (from 800 MHz in Nehalem to
1600 MHz in Sandy Bridge) improving the access time to memory by 100 %.

(b) Memory Channels: The number of memory channels increases ( maximum
of 3 channels in Nehalem to 4 channels in Sandy Bridge), thereby increasing
the memory bandwidth by 33 % . However, we consider the best possible
configuration supported on the Nehalem PC with 4 GiB of memory configured
and 2 memory channels used for our study. Therefore the memory bandwidth
available on a Sandy Bridge PC is twice of that available on the Nehalem PC.

(c) Capacity: The maximum memory configuration used in the Nehalem PC is
6 GiB. On the other hand, Sandy Bridge has a total of 64 GiB of memory
installed in the system. This makes the number of disk accesses very low.

3. QPI links:

(a) Number of QPI links: The number of QPI links between the sockets is doubled
(From 1 bidirectional link in Nehalem to 2 bidirectional link in Sandy Bridge).
The number of QPI links in Sandy Bridge micro-architecture is increased to
ensure scalability in servers that support many sockets. However, the PC
we used for study supports two sockets only. Also, from the experiments
conducted on the Nehalem PC, it was seen that the % of QPI bandwidth
used ranges from 10 % to 30 %. Therefore, we ignore the effect of increased
number of QPI links in our study.

(b) QPI bandwidth : The bandwidth of each QPI link in the Sandy Bridge PC
is 16 GB/s which is approximately 1.6 times the QPI bandwidth supported
in the Nehalem PC (9.8 GB/s). This plays a significant role in improving the
performance of the system.

(c) QPI protocol: QPI 1.1 used in Sandy Bridge is different from QPI 1.0 link
used in Nehalem, both, on the physical organisation level and the proto-
col implementation. The primary change is that QPI 1.1 uses home based
snooping technique unlike Nehalem which uses source based snooping tech-
nique. In source snooping, the requesting processor that missed in the L3

cache broadcasts a snoop request to the entire system. Other caching agents
(i.e., anything with a cache, such as another processor) may fulfil the snoop
request if they hold a cached copy of the data. The home agent (i.e., the
memory controller that owns the data) will respond to the snoop with a clean
copy of the cache line if necessary. The home node still receives all of the ac-
knowledgements from the caching agents and if a conflict occurs, will resolve
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transactions in the correct order. In home snooping, the requesting processor
sends a request to the home agent. Second, the home agent will send snoop
requests only to the caching agents that have a copy of the data (filtering)
and possibly begin reading the cache line from memory. Lastly, the home
node and (or) any caching agents will send data to the original requester.

The coherency management resides with the home agent in home snooping,
which makes it simpler. Source snooping results in lower latency, especially
when the requested cache line is held in remote memory and remote cache.
However, home snooping is a more natural fit for inter-socket snoop filtering
in servers with many sockets. We focus on two socket systems only. Therefore,
we ignore the benefits of home snooping protocol.

4. IO Hubs: One of the most notable, and interesting changes in the hardware models
of the two types of PCs presented is the removal of IO Hubs in the Sandy Bridge
micro-architecture. The PCIe slots are directly connected to the die providing
faster access and improved scalability. The system agent provides a direct connec-
tion from the CPU1 to the PCH that connects to the SATA disks, USB devices,
network cards and grabber cards. A direct interface from CPU1 to SAS ports is
supported by SAS LSI.

These features are remarkably different in Nehalem micro-architecture, where, the
IO Hubs connect the PCIe slots, network, graphic cards to the CPUs. An ICH is
connected to the IO Hub 1 which provides interface to the SATA disks used. The
QPI links are used to connect the CPUs to the IO hubs.

Though the changes are notable, they do not contribute to performance improve-
ment in the context of this project because the application we chose does not
exercise the network card, graphic card and their links. As the memory installed
is 64 GiB and the OS used is Windows 7 (64 bit), all of the memory is available
to the OS and accounts for no disk accesses.

5. PCIe: The Sandy Bridge PC integrates PCI-Express 3.0 unlike Nehalem which uses
PCI-Express 2.0. PCIe 3.0 provides higher bandwidth and better data encoding
techniques. The application we chose does not exercise the PCIe. Therefore, we
do not delve into further details.

6. Turbo Boost 12: The Sandy Bridge PC we used for study uses Turbo Boost 2.0 as
against the Nehalem PC which does not use this technology. In the Sandy Bridge
PC, the processor and its thermal system cools down when the CPU is idle. It
uses these thermal reserves and dynamically ramps the frequency and the supply

12Intel Turbo Boost is a technology implemented by Intel in certain processors that enables the pro-
cessor to run above its base operating frequency via dynamic control of the CPU’s clock rate. It is
activated when the operating system requests the highest performance state of the processor.
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voltage to operate above its rated TDP13(for about 25 seconds according to Intel)
until the thermal system heats up again in a situation dependent manner.

Note that the Turbo Boost feature can be disabled / enabled using the BIOS
settings in a PC. In our study, the Turbo Boost technology is enabled on the
Sandy Bridge PC.

The hardware attributes of both the PCs are listed in Table 3.13. It entails the similar-
ities and differences between the two PCs using numerical values.

To summarize this, the differences observed and the performance improvement or degra-
dation expected (when using STREAM) due to these differences in the two PCs are
presented in Table 3.14, Table 3.15, Table 3.16, Table 3.17.

Table 3.14: Effect on the Performance due to L1 cache

Changing Factor Nehalem Sandy Bridge Effect on the Performance of Sandy
Bridge

Bandwidth 1 load and 1 store 2 load and 1 store Bandwidth improvement

Total Effect thit1=
1

2
∗ thit1 for Nehalem =

2ns

2
= 1 ns.

Table 3.15: Effect on the Performance due to L3 cache

Changing Factor Nehalem Sandy Bridge Effect on the Performance of Sandy
Bridge

L3 cache
Capacity per
core(MiB)

8 2.5

Location In the un-core domain In the processor clock
domain

Connection to other
agents

Internal Bus Ring Interconnect in
the processor clock do-
main

Total Effect t3local reduces by 25 %. ∴ t3local= t3local
in Nehalem -( t3local in Nehalem)/4= 20-
(20/4)=15 ns

Table 3.16: Effect on the Performance due to Memory

Changing
Factor

Nehalem Sandy
Bridge

Effect on the Performance of Sandy Bridge

Memory
Fre-
quency(MHz)

800 1600 tmem reduces

Memory
Channels

2 4 tmem reduces

Total
Effect

(m.MemChannels/m.Cores) ∗ m.MemFreqforSandyBridge

m.MemChannels/m.Cores ∗ m.MemFreqforNehalem
=

(4/8) ∗ 1600

(2/4) ∗ 800
=2. ∴, tmemlocal=

1

2
∗ tmemlocal in Nehalem .

tmemlocal=
65

2
=32.5 ns

13The thermal design power (TDP), sometimes called thermal design point, refers to the maximum
amount of power the cooling system in a computer is required to dissipate. It is typically the maximum
power that it would draw when running real applications. The lower it is, the better.
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Table 3.17: Effect on the Performance due to QPI

Changing
Factor

Nehalem Sandy
Bridge

Effect on the Performance of Sandy Bridge

QPI Bandwidth
per link(GB/s)

9.8 16 Bandwidth increases

Total Effect
m.QPIBwforSandyBridge

m.QPIBwforNehalem
=

16

9.8
=1.63. ∴ QPI la-

tency reduces to
40ns

1.63
=25 ns .

3.5 Experiments and Results-II

This section gives a detailed description of the experiments conducted on the Sandy
Bridge PC. It describes Series of experiments done to compare Nehalem and Sandy
Bridge micro-architectures. In Section 3.3, the experiments done on the Nehalem PC
are presented. The models, d1, . . . d10 , notations and the experimental results presented
in Table 3.21, Table 3.22, Table 3.23, Table 3.24 are used in this section for comparison.

The series of steps illustrated in Figure 3.10 are adopted in this section. The hard-
ware specifications of the PC on which the experiments are conducted are tabulated in
Table 3.13 and the parameters chosen for STREAM are presented in Table 3.6. The
procedure of conducting experiments are adopted from Section 3.3.1. The OS used on
the Sandy Bridge PC is Windows 7. The list of measured metrics are also the same on
the Sandy Bridge PC as listed in Table 3.7, except for QPIsock. The QPI traffic between
the sockets cannot be measured on the Sandy Bridge PC using the Intel PCM.

3.5.1 Assumptions and Calculations

The effect on the metrics due to the change in the micro-architecture that are relevant
to the model presented in Table 3.14, Table 3.15,Table 3.16, Table 3.17 are used to
calculate the local and remote access times to L1, L2, L3 caches, memory and disk. This
is tabulated in Table 3.18. This in turn, is used to calculate the total access times to
the caches and memory for different array sizes. All these are tabulated in Table 3.20.

The hardware model of the PC with Sandy Bridge micro-architecture is denoted as
ˆHm5. The metric, RAR represented by d1 in Section 3.2.4 is assumed to be 0.20. This

assumption is required because the Intel PCM does not capture QPI metrics on the
PCs with Sandy Bridge micro-architecture. However, the total memory is symmetri-
cally distributed between the two sockets and the OS used is Windows 7 (64 bit). In
Section 3.3.3 and Table 3.12, we have seen that for hardware models with symmetric
memory configuration on both sockets, the average RAR is approximately 0.20. This is
demonstrated using Figure 3.23. It can be seen that for ˆHm2 and ˆHm3 the RAR is ap-
proximately 0.20 and for ˆHm1 and ˆHm4 (asymmetric memory configuration), the value



64 Chapter 3. Descriptive models for resource usage characteristics of applications

Table 3.18: Access Times to Cache and Memory

Cache Level /Memory Local Remote

L1(ns) thit1 thit1
1 1

L2(ns) t2local t2remote
6 6+25=31

L3(ns) t3local t3remote
15 15+25=40

DRAM(ns) tmemlocal tmemremote
32.5 32.5 + 25=57.5

tdisk tdisk
Disk(ms) 2 2

of RAR is approximately 0.50. Intel also uses this principle to define various metrics in
PCM[37]. Therefore, we chose RAR=0.20 for all experiments conducted on the PC with
Sandy Bridge micro-architecture. This value remains constant for all array sizes.

The L1hitRatio cannot be measured using the tools selected (same like Nehalem). There-
fore, we chose L1HitRatio=0.94 for the experiments. The values chosen for L1HitRatio
gives the best regression fit for every experiment. All these are tabulated in Table 3.20.
Looking back at Figure 3.10, L1HitRatio is a part of the curve fitting.

Figure 3.23: Remote Access Ratio for Nehalem and Sandy Bridge micro-architecture: The RAR
of all the hardware models of the PC with Nehalem micro-architecture and the PC with Sandy
Bridge micro-architecture

The metrics assumed and calculated are summarised in Table 3.19.
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Table 3.19: Measured Metrics from the tools

Assumed Metrics Calculated Metrics

t2local thit1
RAR L1Hit
tdisk t3local

L2Hit
L3Hit
tmemlocal
tmemremote
t2remote
t3remote
thit2
thit3
tmem

3.5.2 Prediction and Verification

From the metrics captured using the tools, metrics assumed and metrics calculated,
a profile, K5 is created for ˆHm5. This is used to predict a metric, Ttot for all the
experiments. Ttot is predicted as follows:

Ttot = F (K5, ˆHm5)

The estimated (predicted) latency, Ttot is verified by using tapp /∈ K5. This is done as
follows.

|Ttot − tapp| ≤ error (3.16)

In order to determine if the predicted (Ttot) and measured (tapp) values of latencies are
comparable, the error percentage is calculated as follows:

error(%) =
Ttot − tapp

tapp
∗ 100 (3.17)

From Table 3.20, it is seen that Ttot is compared with tapp. The average absolute value
of the error percentage of all array sizes is 15 %. This verifies the predictive quality
of d1, . . . d10 for ˆHm5 and subsequently, verifies the choice of access times and RAR
metrics assumed.

From Figure 3.24, it is seen that the measured and estimated latencies are coherent with
respect to each other for all array sizes chosen during experiments.
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Figure 3.24: Estimated and Measured Latency of STREAM for Sandy Bridge micro-architecture:
Estimated latency is the latency predicted using the models. Measured latency is from the tools.

From Figure 3.10, models d1, . . . d10 can be formalized. Also, Looking back at Figure 2.7,
the models are validated on a machine with entirely different micro-architecture.

Although the latencies predicted and measured are comparable, they do not follow a
smooth path, but instead show noticeable variations. On increasing the array size, the
latency of the application is expected to increase. However, from Figure 3.24, it can be
seen that, not all array sizes show this behaviour. This can be explained using the Active
Relative Frequency (ARF) metric for the system captured using the MeasureLoadCLI
tool. ARF is defined as the ratio of the frequency at which the system runs to the
base clock frequency of the system. An ARF value greater than 1 indicates that the
Turbo Boost technology is enabled on the system. In Figure 3.25,the estimated latency
of the application for all experiments conducted is plotted against the ARF of all the
processors captured (expressed as percentage). It can be seen that the ARF varies
from 110 % to 119 %. The green blocks indicate performance boost achieved due to
the ramping up of the processors’ frequency. Performance boost in this context means
that the latency of the application does not increase when the array size is increased.
It remains constant or decreases with respect to its former experiments (where smaller
array sizes were chosen). From the first green box, it can be seen that the latency
estimated does not increase when the array size is increased from 1 million elements
to 2 million elements, but instead remains to be 3 s. This is because the ARF changes
from 110 % to 114 %. The ramping up of the frequency of the processors in the system
accounts for this performance boost observed. With increased frequency, processors are
faster and this explains lower latencies for higher array sizes14. Similarly, note that for
every occurrence of performance boost, there is a corresponding increase in the ARF.

In STREAM, the highest array size that can be chosen is about 80 million elements. It is a memory
bound application
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Figure 3.25: Effect of Processor Frequency on the performance of STREAM application

3.5.3 Performance Evaluation using models

The performance of the hardware model with Sandy Bridge micro-architecture, ˆHm5

is compared with all the hardware models with Nehalem micro-architecture. From Fig-
ure 3.26, it is seen that the latency of STREAM estimated on the PC with Sandy Bridge
micro-architecture is lower than the latencies estimated for all hardware models of the PC
with Nehalem micro-architecture. Sandy Bridge definitely exhibits higher performance
than Nehalem.

Figure 3.26: Estimated Latency of STREAM for all hardware models of Nehalem and Sandy
Bridge micro-architecture: The estimated latency is plotted against the memory required for
experiments with different array sizes

The performance gain of ˆHm5 is estimated with respect to ˆHm1, ˆHm2, ˆHm3, ˆHm4 and
shown using a state diagram representation.

From Figure 3.27, it is seen that the PC with Sandy Bridge micro-architecture shows
a performance improvement of 26 % from the hardware model that exhibits the best
performance on the PC with Nehalem micro-architecture, ˆHm3(4GiB memory configu-
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Figure 3.27: Performance Evaluation: The average value of ratios of the difference between the
latencies of two micro-architectures to the latency of one micro-architecture for all array sizes is
shown. The text highlighted in green indicates performance improvement.

ration). It shows a performance improvement of 36 % from the hardware model, ˆHm4

(6 GiB), a performance improvement of 41 % from ˆHm2 and 63 % from ˆHm1. From
equation 3.13, we already expect that the performance improvement of ˆHm5 is the high-
est with respect to ˆHm1 and then followed by ˆHm2, ˆHm4 and ˆHm3 in the same order
as stated. This can also be seen in Figure 3.26.

From Figure 3.26 and Figure 3.27, it can be inferred that :

ˆHm5 > ˆHm3 > ˆHm4 > ˆHm2 > ˆHm1 (3.18)

3.5.4 Performance Evaluation using STREAM

The latency of the vector kernel operations and the memory bandwidth recorded by
STREAM shown in Figure 3.28 and Figure 3.29 is used to support the performance
evaluation done on the Sandy Bridge and Nehalem PCs. This is done as discussed in
Section 3.3.5.

From Figure 3.28, the performance of the all hardware models can be summarized as:

ˆHm5 > ˆHm3 > ˆHm4 > ˆHm2 > ˆHm1 (3.19)

From Figure 3.29, the performance of the PCs for all hardware models in terms of
memory bandwidth can be summarized as:

ˆHm5 > ˆHm3 > ˆHm4 > ˆHm2 > ˆHm1 (3.20)

The memory bandwidth recorded for ˆHm5 is twice as much the memory bandwidth
recorded for ˆHm3. This can be explained using the analysis done in Table 3.16. The
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Figure 3.28: Latency of the vector kernel operations recorded by STREAM: The latency for
all hardware models selected are plotted against the memory required for different array sizes
chosen.

Figure 3.29: The Memory Bandwidth for vector kernel operations in STREAM: The total band-
width is calculated according to the method shown in Figure 3.4. Memory Bandwidth for various
array sizes chosen is shown.

peaks seen for the first few experiments in ˆHm5 is due to the size and bandwidth of
L3 cache on the PC with Sandy Bridge micro-architecture. The total size of the L3

cache is 40 MiB. For those experiments that do not meet the general rule of STREAM
discussed in Section 3.2.2, array size chosen is small and fits in the L3 cache and the
memory bandwidth shown in Figure 3.29 also includes the bandwidth contributed by L3

cache. Once the array size chosen does not fit in the L3 cache, the memory bandwidth
stabilizes.

Equation 3.18 derived from modeling concurs with Equation 3.20 and Equation 3.19
derived from STREAM.

From the analysis done so far, for the PCs chosen, and models created, Sandy Bridge
micro-architecture out-performs Nehalem micro-architecture.
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3.6 Lessons Learned

This section lists some of the most important observations made when creating the
models. They are:

1. Effect of Interleaved memory access: When the number of memory channels are
increased in the architecture of a PC, the performance increases because of inter-
leaved memory access principle used in accessing the data from the memory. In
interleaved memory, memory addresses are allotted to alternate memory banks.
For example, in a processor with 4 memory channels, the first 64 bytes is allot-
ted to memory bank connected to channel 1, the next 64 bytes is allotted to the
memory bank connected to channel 2 and so on. Memory access, which accord-
ing to the locality principle mainly happens in adjacent memory areas, is thus
distributed across all channels. When the data is accessed in parallel through all
the memory channels, there is a definite performance gain. Therefore, the mem-
ory bandwidth increases and latency decreases with the increase in the number of
memory channels.

2. Verification of models: The models, d1, . . . d10 created by using the Nehalem micro-
architecture is verified using a measured metric not used in the model. The error
percentage calculated between the predicted and measured metric is less than 1 %
for the cases when the model is valid.

3. Cost Reduction: From the performance evaluation done on the PC with Nehalem
micro-architecture, if the OS used is Windows XP, then the performance of the PC
with 4 GiB memory is better than the performance of the same PC with 6 GiB of
memory. Unused memory can be removed from the PC to achieve cost reduction.

4. Validation of models: The models, d1, . . . d10 are validated by testing the predictive
quality of the models on an entirely different machine, with a different micro-
architecture. The average value of the absolute error percentages for all array
sizes in the experiments is 15 %. It is also to be noted that the machines have to
be physically available for the purpose of validation for the models created. Being
able to predict the performance of the machines which are not available, but whose
specifications are known is the next step. This is future work.

5. Usefulness of STREAM: The STREAM benchmark program generates huge amount
of traffic on the memory buses. Though the ultimate aim of modeling is being able
to use it in real time applications, STREAM represents memory intensive opera-
tions. As a next step, the models created can be tested on a machine with real
time memory intensive operations.
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Table 3.20: Experimental results of ˆHm5: Sandy Bridge micro-architecture
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Table 3.21: Experimental results with 1 GiB Memory Configuration ( ˆHm1): Nehalem micro-
architecture

h
h
h

h
h
h

h
h
h
h

M
e
t
r
ic

s

N
(
m

il
li

o
n
s
)

1
2

4
8

1
6

2
0

2
4

2
8

3
0

3
2

3
4

3
5

3
6

3
7

L
2
H

it
R
a
ti
o

0
.4

2
7
3

0
.4

6
4
1

0
.5

0
2
6

0
.4

7
8
7

0
.5

0
9
9

0
.5

1
4
8

0
.5

1
6
3

0
.5

1
7
9

0
.5

2
1
9

0
.5

3
0
0

0
.5

2
5
1

0
.4

7
3
5

0
.4

3
6
8

0
.3

1
1
0

L
3
H

it
R
a
ti
o

0
.1

8
0
3

0
.1

7
9
9

0
.1

4
4
5

0
.1

3
2
5

0
.1

0
7
2

0
.1

0
9
9

0
.1

0
3
5

0
.1

0
8
3

0
.1

1
3
6

0
.1

1
5
8

0
.1

1
0
3

0
.1

3
3
9

0
.1

4
8
2

0
.1

9
5
6

L
2
M

is
s
(
1
0
6
)

9
.3

1
7
.2

2
1
.0

4
6
.3

6
2
.5

7
4
.1

1
0
0
.2

1
2
6
.8

1
2
5
.1

1
7
2
.0

1
4
4
.3

1
9
1
.1

2
9
3
.7

1
8
0
0

L
3
M

is
s
(
1
0
6
)

7
.7

1
4
.0

1
7
.9

3
9
.7

5
5
.1

6
4
.8

8
8

1
1
1

1
0
8
.4

1
5
0
.5

1
2
4

1
5
9
.4

2
4
7
.1

1
4
0
0

M
r
e
a
d
s

+
M

w
r
it
e
s
(1

0
9
B

)
9
.2

2
2
.1

3
6
.1

7
7
.4

1
3
4
.7

1
4
8

1
9
8
.8

2
4
5
.3

2
3
5

3
3
9
.4

2
6
2
.5

2
8
0
.1

4
9
1

1
1
0
0

Q
P
I
s
o
c
k
e
t
(1

0
9
B

)
4
.3

1
0

1
6
.9

3
4
.6

6
0
.1

6
5
.7

8
8
.6

1
4
1
.1

1
0
2
.6

3
9
2
.3

1
1
4
.3

1
2
2

2
9
7
.1

2
3
7
.1

L
1
H

it
R
a
ti
o

0
.9

8
3
0

0
.9

8
4
5

0
.9

8
7
2

0
.9

8
6
6

0
.9

8
8
9

0
.9

8
7
9

0
.9

8
7
7

0
.9

8
6
5

0
.9

8
6
5

0
.9

7
1
0

0
.9

8
5
4

0
.9

6
0
0

0
.9

6
0
0

0
.9

6
0
0

D
is

k
H

it
1
0
3
.4

1
0
4
.1

1
0
2
.8

1
0
4
.2

1
9
7
.9

1
0
6
.5

9
8
.7

9
5
.4

9
4
.8

9
5
.1

1
1
0
0

1
7
6
0
0

5
8
4
0
0

1
1
0
0
0
0
0

M
e
m

H
it

(
1
0
6
)

7
.7

1
4
.0

1
7
.9

3
9
.7

5
5
.1

6
4
.8

8
8

1
1
1

1
0
8
.4

1
5
0
.5

1
2
4

1
5
9
.4

2
4
7
.1

1
4
0
0

L
3
H

it
(
1
0
6
)

1
.7

3
.1

3
6

6
.6

8
.0

1
0
.2

1
3
.5

1
3
.9

1
9
.7

1
5
.4

2
4
.7

4
3
.0

3
4
5
.5

L
2
H

it
(
1
0
6
)

7
.0

1
4
.9

2
1
.2

4
2
.5

6
5
.1

7
8
.7

1
0
7

1
3
6

1
3
6
.5

1
9
3
.9

1
5
9
.5

1
7
1
.8

2
2
7
.8

8
0
1
.3

L
1
H

it
(
1
0
6
)

9
4
2
.3

2
0
0
0

3
3
0
0

6
5
0
0

1
1
4
0
0

1
2
5
0
0

1
6
6
0
0

1
9
2
0
0

1
9
1
0
0

1
2
3
0
0

2
0
5
0
0

8
7
0
0

1
2
5
0
0

6
1
8
0
0

R
e
m

o
te

A
c
c
e
s
s
R
a
ti
o

0
.4

6
8
6

0
.4

5
4
8

0
.4

6
8
2

0
.4

4
7
0

0
.4

4
6
1

0
.4

4
3
7

0
.4

4
5
7

0
.5

7
5
0

0
.4

3
6
5

1
.1

5
5
9

0
.4

3
5
2

0
.4

3
5
6

0
.6

0
5
0

0
.2

0
9
9

t h
i
t
2
(n

s
)

2
4
.7

2
4
.2

2
4
.7

2
3
.9

2
3
.8

2
3
.7

2
3
.8

2
9
.0

2
3
.5

5
2
.2

2
3
.4

2
3
.4

3
0
.2

1
4
.4

t h
i
t
3
(n

s
)

3
8
.7

3
8
.2

3
8
.7

3
7
.9

3
7
.8

3
7
.7

3
7
.8

4
3
.0

3
7
.5

6
6
.2

3
7
.4

3
7
.4

4
4
.2

2
8
.4

t m
e
m

(n
s
)

9
0
.8

9
0
.0

9
0
.8

8
9
.6

8
9
.5

8
9
.4

8
9
.5

9
6
.6

8
9
.0

1
2
8
.6

8
8
.9

8
9
.0

9
8
.3

7
6
.5

T
t
o
t
(s

)
3
.0

3
6
.0

3
8
.9

8
1
8
.1

0
2
9
.8

7
3
3
.1

3
4
4
.3

0
5
3
.8

9
5
1
.7

8
5
5
.4

8
5
8
.5

1
7
1
.8

0
1
7
4
.8

9
2
3
8
6
.5

0
t a

p
p
(s

)
3

6
9

1
8

3
0

3
3

4
4

5
4

5
2

5
6

5
9

7
2

9
0

7
1
6

%
o
f

M
e
m

o
ry

R
e
q
u
ir

e
d

2
.2

4
4
.4

7
8
.9

4
1
7
.8

8
3
5
.7

6
4
4
.7

0
5
3
.6

4
6
2
.5

8
6
7
.0

6
7
1
.5

3
7
6
.0

0
7
8
.2

3
8
0
.4

7
8
2
.7

0
e
r
r
o
r
(%

)
-0

.8
5

-0
.4

2
0
.2

6
-0

.5
4

0
.4

2
-0

.3
9

-0
.6

7
0
.2

1
0
.4

2
0
.9

3
0
.8

3
0
.2

8
-9

4
.3

3
-2

3
3
.3

1



3.6. Lessons Learned 73

Table 3.22: Experimental results with 2 GiB Memory Configuration( ˆHm2): Nehalem micro-
architecture
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Table 3.23: Experimental results with 4 GiB Memory Configuration( ˆHm3): Nehalem micro-
architecture
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Table 3.24: Experimental results with 6 GiB Memory Configuration( ˆHm4): Nehalem micro-
architecture
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Chapter 4

Executable models for
interventional X-Ray

4.1 Introduction

Designed for interventional cardiac, brain and vascular procedures, Allura X-Ray sys-
tem provides angiography that is extremely reliable and displays images of very high
clarity. Diagnosis and treatments based on angiography provided by this equipment
plays a gigantic role in saving lives. This makes Allura X-Ray system an extremely
sophisticated and important equipment for critical medical decisions. In order to ensure
that the system meets the expectations of customers, a series of comprehensive tests are
conducted at Philips Healthcare before the system is delivered to the customer. Though
these tests unearth several failures before product delivery to the customer, a failure rate
of 6 % is still observed. The failures encompass system software, application software
and hardware failures. Unlike a PC used by a layman, a deviation in the performance of
the PC used in Allura system can result in loss of critical information required to make
important medical decisions. Therefore, identifying these failures and removing under-
performing PCs from the system assembly has been a research area of prime importance.
This chapter presents the investigation done in this area and a brief description of the
executable models that can be used to predict failure of the PCs based on the hardware
resource usage metrics of the chosen application on the system.
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4.2 The Failures

In the context of discovering the reason behind the failure of the PCs in the factory
during the execution of Allura application, the rationale is :

• Software Failure: The application software performs according to the requirements
on most of the PCs. The probability of failures due to all software problems
encountered in the system and application software is about 3 %.

• Hardware Failure: This kind of failure could lead to corrupt images, data loss in the
network and complete breakdown of the system. Extensive set of tests conducted
in the factory(night batch tests) indicate that parts of the test fail when PCs
are tested for performance. The parts that fail are indicators of problems in the
hardware. For example, disk and ethernet connection check tests. Hardware failure
rate is reported to be 3%.

We are not concentrating on the software failures because this is not important to the
production process. The production process ensures that the hardware components
delivered to the customer are reliable. The R & D investigates the software bugs and
failures. This narrows down the object of interest of this thesis to hardware failures.

The architectural instances of the PCs that fail and those of the PCs that perform well
are exactly the same. This motivates the comparison of PCs through quantitative data
obtained from performance measurements.

4.3 Test Suite Description

Allura X-Ray system components are assembled and tested using a comprehensive suite
of tests designed specifically for testing the hardware components. The tests emulate the
behaviour of the Allura application. They are conducted all night repetitively for several
days to stress the PCs used in the system. Though each of these tests conducted exercise
specific functionalities of the PCs, we are interested in an application that stresses the
PC and makes it fail if it is found to have hardware problem. Verify Image Processor
Test (VIPT) fits this criteria. However, this test cannot be shipped to the manufacturer
because of the sophisticated environmental set-up required and the need to run the tests
repetitively for several days. Nevertheless, it can be used as an application that we want
to model by recording its resource usage behaviour. Therefore, we choose VIPT as the
application (application and program are used interchangeably hereafter) we want to
model.
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Figure 4.1: VIPT:Phase I

4.3.1 VIPT:

The purpose of VIPT is to test the Image Processing(IP) functionality of the IP subsys-
tem (the IP software stack in combination with the IP hardware) without the hardware
and software of other subsystems (e.g: Image Detection).

The test consists of a sequence of sub-tests. The result of each subset influences which
subset will be run next, for example, if the test discovers disk problems, automatically
disk tests are run.

The VIPT basically consists of two phases:

1. Phase I: In this phase, the system is stressed to use all its functionality. It also
constantly listens to a fault-finding component in the system to detect abnormal-
ities, if any. See Figure 4.1 for the tests conducted in Phase I. The tests use Field
Service Component IP (FSCIP) which basically forms a user interface to the Field
Service Engineer to start the VIPT. It also consists of a module, Performance
Monitoring and Routing (PMR) that implements different functionalities required
by the interfaces of the VIPT.

2. Phase II: In this phase, the VIPT runs tests needed to analyse the errors found (if
any) during the first phase.

The series of tests, called Image Channel (IC) tests conducted during Phase I are as
follows:
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1. Init : This is used to start all required graphs and a special acquisition procedure
that gets images from the disk. It shows monitor ID, PC Name, port details on all
the monitors connected to the system and serves as a visual check of the monitor
connections. These can be visualized in Figure 4.2. It then starts a test that listens
to the system to find errors. If no errors are found, it continues with the sub-tests.

Figure 4.2: Init

2. Check System Test (IC1): This test checks a few hardware resources in the system
which are easily diagnosable which are:

• SMART data check for all disks

• Quick ethernet check

• Firewall check

If problems are detected, diagnostic tests are scheduled to run during the
second phase of the test.

3. Disk Performance Test(IC2): This step measures the write speed of the IP PC
disks. The speed should be atleast 80 MB/s. The threshold of 80 MB/s is a trade-
of between the expected write performance (which is specified as over 100 MB/s)
and the minimally needed performance of at least 60 MB/s. The disk performance
test tries to detect disk problems before they impact the functioning of the system.

4. Image Channel IP Host(IC3): In this step, 100 images are displayed on all the
monitors( Reference, Exam, View) of the system. The test starts by setting up the
correct networks and enabling full blown image processing on the used modules.The
frame speed is set to 30 Frames per Second(FPS) and then 100 images are shown
on the monitors. These steps are shown in Figure 4.3. When all images have been
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shown, the Cyclic Redundancy Check 1(CRC) of all the images is checked against
the expected value. This test is repeated for every monitor.

Figure 4.3: Image Channel IP Host

5. Image Channel Image Recording(IC4): In this step, a repository, Recorded Image
List (RIL) is created and image processing is enabled. The frame speed is set to
30 FPS and then 100 images are recorded to the repository. If no errors occur, the
test is successful. The steps can be visualised in Figure 4.4.

6. Image Channel Image Playback(IC5): The test starts by setting up the correct
network (e.g, host to IP PC connection, Infini-Band cable connection, ethernet)
using the PMR module and enables image processing. The repository which was
recorded by the previous scenario is played on all the IP PC monitors(100 images).

1A cyclic redundancy check is an error-detecting code commonly used in digital networks and storage
devices to detect accidental changes to raw data
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Figure 4.4: Image Recording

See Figure 4.5. The CRC of all images are checked against the expected values
and if all the images are displayed correctly, the test is considered successful.

Figure 4.5: Image Playback

7. Analyse System (IC6):In this step all the errors from the system which have been
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collected in the previous test steps are analysed and specific diagnostic tests are
scheduled for suspicious hardware parts.

8. Image Channel Performance(IC7): If all previous steps have passed, the perfor-
mance test is run. This test is not run when any error has been detected by the
previous test, since we cannot be sure what we are testing in that case.

Tests are conducted with a frame rate from 30-33 FPS. Once a frame rate of 33
FPS is reached, the test increases the frame rate (upto a maximum of 50 FPS)
until the test fails. This is done to have an informal performance indicator of the
system.

The series of tests run during Phase II are:

1. Disk Analysis Test: This is a self test run on the disks with problems. The tests
are run on these disks in parallel.

2. Firewall Analysis Test: The firewall settings are checked on the host and the IP
PC. It should be turned ON and a list of applications should be added to the
exception list.

3. Infini-Band Analysis Test: When an Infini-Band(image link) problem has been
detected during Phase I,this analysis test is run. It tries to determine the problem
in the hardware by means of a loop-back connector which the service engineer has
to place manually.

4. Ethernet Analysis Test: When an Ethernet problem has been detected during
Phase I, this analysis test is scheduled to run. It tries to determine a problem with
the Ethernet hardware by means of a field-service cable which the service engineer
has to place manually.

Note that we have collected measurements only for Phase I of the VIPT.

4.4 Creation and Execution of Executable Models

As discussed in Chapter 1, the purpose of executable models is to predict the nature of
the PC before production. The steps taken in this direction are listed below.

• Choosing the program p1 : A program that can stress the PC and pave the way
to finding the indicators of hardware problems had to be chosen. For the reasons
presented in section 4.3 and the type of tests described in Section 4.3.1, VIPT is
chosen as the program (application to be modelled), p1.
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• Include required metrics in the tool: The MeasureLoadCLI is used to measure
the RUM for the VIPT program using Intel PCM. It measures a rich set (more
than hundred) of hardware metrics with finer details such as L2, L3 cache hits for
individual cores along with the high level metrics such as system and socket metrics.
However,we found that the QPI traffic was not included as one of the metrics. The
tool is enhanced by including the incoming QPI traffic to the sockets. Note that
Intel does not provide support for measuring the outgoing QPI traffic in Nehalem
micro-architecture and any QPI traffic on Sandy Bridge micro-architecture.

• Include the MeasureLoadCLI tool in the factory tool-set: The tool was included in
the factory tool-set using a script that concurrently runs the tool along with the
VIPT. The metrics measured are logged into a text file for analysis.

The measurements are done for every one second. Some of the most important metrics
measured are listed in Table 4.1.

Table 4.1: Hardware metrics from MeasureLoadCLI tool

core socket system

m.CoreiUsage m.SocketjUsage m.Usage

m.CoreiL3Miss m.SocketjL3Miss m.L3Miss

m.CoreiL2Miss m.SocketjL2Miss m.L2Miss

m.CoreiL3HitRatio m.SocketjL3HitRatio m.L3HitRatio

m.CoreiL2HitRatio m.SocketjL2HitRatio m.L2HitRatio

- m.SocketjMr m.Mr

- m.SocketjMw m.Mw

- m.SocketjQPI m.QPI

As seen from Table 4.1, the metrics are measured for core, socket and the system. The
subscript i = 1 . . . 8 for the core and j = 1, 2 for the socket. The definitions of the
metrics are adopted from Chapter 3. The core, socket and system usage can be defined
as:

Usage =
Instructionsretired ∗ Threadspercore

Activecycles ∗maxIPC
∗ 100 (4.1)

where,

• Instructions retired: The total number of instructions executed in the measurement
interval

• Threads per core: This is an indication of whether Simultaneous Multi-Threading
(SMT) is ON or OFF in the PC. If SMT is ON, the value of threads per core is
2. If SMT is OFF or not supported at all, the value of threads per core is 1. It is
equal to 1 for the PCs used for our study.
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• Maximum Instruction Per Cycle(maxIPC): The maximum number of instructions
that can be executed per cycle. It is equal to 4 in Nehalem and Westmere micro-
architectures.

• Active cycles: The total amount of clock ticks in the measurement interval.

4.4.1 Hardware model of the PC

Allura X-Ray system evolves along with the Intel roadmap of processor micro-architectures
as discussed in Chapter3. The Allura system incorporates processors with newer micro-
architectures. Not all the hardware models of these processors can be discussed here for
brevity. For measurements and metrics, we use the hardware model representation used
in Chapter 3. Refer to Figure3.2.

4.4.2 Decisions and Limitations

To design and execute executable models it was necessary to make valid assumptions
and decisions. They are:

The Tools used : The MeasureLoadCLI tool is used to measure the hardware met-
rics and the RUMM tool is used to create and execute executable models. Note
that the timers used in both the tools are different and this has to be taken into
consideration if the measurements from both the tools are to be compared.

Filter Background Noise :It is important to filter the metrics measured from the
background noise resulting from the tools used. For this purpose, measurements
were done on an idle IP PC using MeasureloadCLI and RUMM tool. This has
to be considered before deciding the threshold values of metrics used in creating
executable models and the analysis that follows.

Hardware setting : The RUMM tool supports the creation and execution of exe-
cutable models only on a dual socket PC. It was also required to turn the Non
Uniform Memory Access(NUMA) on in the BIOS setting of the PC. In Section 4.6,
there is a detailed explanation of the rationale behind this decision.

Data Availability : The factory environment setting for collecting the measurements
from the PCs requires several rounds of testing to ensure it does not disrupt the
system set-up. So, the data required for creating executable models is available
only after the testing phase is completed. The executable models that can be used
to predict hardware failures can be created and validated only when such PCs are
made available.
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4.4.3 RUMM Tool

As discussed in Chapter 2 , micro-benchmark codes are used to create executable models.
The term micro-benchmark in this context refers to a piece of code which is designed to
create a certain amount of load on a hardware resource. The amount of load is variable
from zero (no load) to 100% (full load). The process of increasing or decreasing load on
a hardware resource through a micro-benchmark is referred to as tuning.

The RUMM tool[4] created by Gebreweld uses micro-benchmark codes to create exe-
cutable models. It is a dashboard tool that can be used for the following purposes:

1. Make measurements on a single/ dual socket PC

2. Analyse measurements using a Chart Tool

3. Create executable models for a two socket PC

4. Generate load on a PC by running the executable model created

We are interested in the functionalities of the RUMM tool listed in the steps 3 and 4.

4.5 Experiments and Results

In Chapter 2, we presented the activity diagram for creating and validating the exe-
cutable models in Figures2.3,2.4,2.5. The first step is collecting the RUM of the program,
p1 on any machine, m.

Quantitative analysis of data is a prerequisite to creating executable model,x1. This
requires measurements from several PCs. This serves as a basis to classify the machine
m into good/bad.

We collected measurements from 6 PCs denoted as m1, . . .m6. Based on the results of
several tests conducted on machines, m1,m2,m3,m4, they are classified as good PCs,
which means that the machines show no signs of failure during night batch tests. They
exhibit high performance. This is used as the ground to verify the models created. m5
and m6 are classified as bad PCs. m5 is a machine whose disk was found to be missing
to the application software and m6 is a machine which showed failures during the night
batch tests conducted. m6 is a machine which has hard-to-find hardware problem.

The profiling of m1, . . .m4 is based on the measurements of p1 and is used as a reference
to decide the threshold values of the metrics on any good PC. Although m5 is a bad
PC, the reason of failure is known (missing disk). The ultimate aim of this part of
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Figure 4.6: VIPT steps

thesis is to predict hard-to-find failures. m5 is still used in the study to compare the
behaviour of two bad PCs, one with known reason (m5) and the other, with unknown
reason (m6). The breakdown of the program, p1 chosen (VIPT) into steps described
in the Section 4.3.1 is shown in Figure 4.6. Figure 4.6 shows the socket usage (%) for
about 200 samples of measurement on m1.

The profiling of the machines m1, . . .m4 is compared with machines, m5 and m6. p1
is run 25 times and 200 samples are collected, each time m1, . . .m5 are tested and 300
samples of measurement are collected, each time m6 is tested. Figure 4.7, Figure 4.8
are plotted after taking the average of each sample from every trial for all the samples
collected.

(a) Socket 1 Usage

(b) Socket 2 Usage

Figure 4.7: Hardware metrics: ∈ K. Usage(%) for both CPUs is plotted against the samples of
measurement(time series). The steps of p1(VIPT) are also separately shown using dash-dotted
lines.
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The hardware metrics, socket(CPU) usages as shown in Figure 4.7 are denoted as
k1, k2 ∈ K for every machine selected. From Figure 4.7, it can be seen that m5 (in
blue) and m6 (in cyan) exhibit change in the behaviour. They exhibit time shift in the
values plotted along the x-axis and show significant changes in the behaviour during
IC7. This is because, the performance of m5 is affected due to the missing disk;the
system becomes slower and exhibits a time shifted pattern when compared to machines,
m1, . . .m4. m5 shows little or no performance metric numbers (predictable due to miss-
ing disk). m6, on the other hand, shows performance numbers during IC7, but are lower
than the numbers of the set of good PCs. m1, . . .m4 exhibit a similar pattern for all met-
rics observed along the x-axis. However, m2 (in pink) exhibits magnified performance
numbers on socket 1 and reduced performance numbers on socket 2 when compared
with machines, m1,m3,m4 along the y-axis. This suggests that machines which are
classified as good PCs exhibit similar pattern, but admit small variations in the peak
values along the y-axis. This has to be taken into account when deciding the threshold
value of metrics when creating executable models. We can draw similar inferences from
Figures 4.8.

(a) Socket 1 Mread (b) Socket 1 Mwrite

(c) Socket 2 Mread (d) Socket 2 Mwrite

Figure 4.8: Hardware metrics: ∈ K: The total amount of bytes read from(Mr) and written
into (Mw) the memory (in GB/s) for both CPUs is plotted against the time series.They are
represented as k3, k4, k5, k6 ∈ K for every machine selected.

For all the hardware metrics plotted, we can see that the IC7 test distinguishes the
behaviour of m1, . . .m4 from m5 and m6. Therefore, p1 (VIPT) is a good indicator
of hardware failures in a PC. Reflecting back to Figure 2.3, in Chapter 2, this can be
verified using Equation 2.2.

The part of the thesis where the executable models are to be created and validated
remains unfulfilled because the quantitative data from several PCs, good and bad was
not available in time during the execution of the project. However, a suitable program
that identifies difference in the pattern of the behaviour of PCs is identified and some
metrics that exhibit difference in terms of time shift in performance numbers are demon-
strated. It is also found that deciding a threshold value for metrics that are indicators
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to failures need to take a range of values into consideration, considering the variations
in performance numbers on good PCs. Quantitative data from many more PCs can be
used to create reliable models that take the dynamics of behaviour of distinct PCs into
consideration. Taking these factors into consideration, this work can be carried forward
to achieve the intended goals. This is future work.

4.6 Lessons Learned

The experiments were conducted on a dual socket PC for reasons mentioned in the
section 4.4.2. Since the PCs used had two physical sockets, we expected to see measure-
ments for both the sockets. However, what we could see is that the PCM counters only
displayed 1 physical socket and the measurements were also done for one socket only.
After exploring the BIOS settings of the PCs used, it was seen that the NUMA feature
was disabled for performance reasons known to Philips Healthcare.

When a separate DRAM is associated with every IMC and chip, platforms with more
than one chip are NUMA. NUMA organisations have distinct performance advantages
and disadvantages. As they are not a part of this project, they are not discussed in detail.
But, it is important to understand that one can choose to populate all the memory banks
by turning NUMA on or populate only one memory bank by tuning NUMA off. For
applications that function only in the presence of two sockets, NUMA has to be turned
on in the BIOS settings. Metrics such as QPI measurements can be measured only when
NUMA is enabled. Therefore, we enabled NUMA.
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Chapter 5

Conclusions and Future Work

In Cardiovascular minimal invasive interventions, physicians require low-latency X-ray
imaging applications. This requires sufficient performance of the image-processing sys-
tem while executing a plurality of functions. Multiple applications are executed in
parallel and the PCs used for these systems have to offer sufficient performance under
various use-cases. Adequate prediction and verification of the components used in the
system based on modeling beforehand saves time and investment. They can also be
given to hardware vendors for use in the selection process. In addition to this, models
can be used to decide the optimum combination of applications on a specific hardware
platform. This thesis proposes the creation of descriptive and executable models to be
able to predict the performance of the system. More precisely, it consists of two different
parts which are:

1. To develop executable models using resource usage characteristics of an application
run on a PC to be able to predict the nature of the PC (good/bad) before the
production phase

2. To develop descriptive models to predict the execution of application(s),depending
on the hardware model of the PC

In the context of part I of the thesis, the aim is to create executable models that emulate
the behaviour of the Allura application (or of any application that shows that the PC
is faulty). These models unearth the causes of unexpected and hard-to-find failures in
the PCs used in the Allura system. Executable models can be created using micro-
benchmark codes. On running these models on a PC, from the measurements of the
hardware metrics on that PC, the nature of the PC should be deduce-able. This kind
of prediction offers significant cost reduction by avoiding shipping charges, that would
otherwise happen due to the failure of the PCs, saves time by manufacturing PCs that
meet the required specifications if the models are shipped to the manufacturer of the
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PCs.

Creating executable models relies on the availability of measurements of various suspi-
cious hardware metrics that are most likely to cause failures. A thorough analysis of
the quantitative measurements from several PCs is definitely required to discover the
agents of failure and create models that stress the hardware components that are to
point to the agents of failure. However, for a sophisticated system like Allura X-ray sys-
tem, collecting such measurements involves several steps such that they do not impair
the functioning of the working system. The tools that are used to collect measurements
need to be integrated to the already existing tool-set framework of the Allura System
and this procedure requires rigorous and repetitive execution of tests to ensure reliability.
This was one of the major challenges encountered during the execution of this project.
The failure rate of the PCs used in the Allura system is less than 6 %. In order to be
able to create executable models, it is required to be able to test and take measurements
from PCs that are known to have hard-to-find hardware problems. This was one other
major challenge encountered. We were able to test only one such PC. The Allura Sys-
tem executes a plurality of functions by the integration of several distinct PCs. The
system functions with Allura application successfully only after careful integration of all
the system components. Therefore, testing an IP PC with Allura application inevitably
requires the successful set up of the entire cabinet of PCs used in the system. This task
is complex and is another major challenge encountered in this project.

Due to the challenges discussed, it was not possible to complete the creation of executable
models that predict the nature of the PC. However, some very useful and interesting
observations were made that are useful for the future course of this part of the thesis.
They are:

1. Effect of NUMA: The IP PCs used for study have two sockets ( and so, two
CPUs). The executable models use micro-benchmark codes that stress specific
hardware components. The OS should be able to recognize both the sockets and
their respective memory banks to be able to create and execute models. Also,
metrics like QPI traffic are only captured for a two socket machine in Intel PCM.
The OS distinguishes the two sockets physically only when the NUMA is enabled.
For Allura X-ray systems, the NUMA feature is disabled because it is known to
exhibit better performance with this feature tuned OFF using the BIOS settings
of the PC. Therefore, to be able to create models and capture QPI metrics, it is
necessary to enable NUMA.

2. Choice of the application: The creation of useful executable models that can actu-
ally predict failures depends on the correct choice of the application that, not only
emulates the Allura application, but stresses the hardware components of interest
specifically to observe unusual behaviour. After certain experiments and expert
suggestions, it was found that VIPT, a part of the testing framework used for Al-
lura systems can be used as the application (program) for which the measurements
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can be collected.

3. Data Analysis: Data was successfully collected from four PCs with no hardware
problems with the required settings. Several metrics such as the socket usages,
socket cache misses, socket reads and writes from and to the memory were analysed
to able to draw conclusions about the pattern of the behaviour of PCs with no
problems. This step led to the inference that PCs with no hardware problems show
high levels of performance during all the phases of VIPT (application chosen).
They also demonstrate comparable level of numbers for hardware metrics that
could be used to decide the threshold values of relevant metrics for all good PCs.
The measurements collected from one PC with hard-to-find problems and one PC
with missing disk measurements led to a definite observation that the PCs that are
known to have hardware flaws exhibit drastic change in the performance numbers
during IC7 of VIPT. They are also slower and show a time shift in the pattern
when compared to the pattern of a set of good PCs. From the metrics observed
it can also be seen that IC7 is the test that distinguishes the PCs based on their
nature. Therefore, the data from this test only can be used for future analysis and
observations.

These observations can be used to create executable models. Philips Healthcare has a
toolset, RUMM that can be used to create executable models. However, these models
can only create models for worst case resource usage scenario. This tool-set can be
enhanced to be able to create executable models by considering all the measurement
samples. The metrics such as QPI, cache hit ratios, cache misses are not a part of the
modeling suite in RUMM. These fine level metrics, if included in the tool-set, can predict
the nature of the PC along with the coarse level metrics already measurable and tunable
in the tool-set. With these ideas and suggestions, this part of the thesis can be executed
further to achieve the first goal of the thesis.

In the context of part 2 of the thesis, due to the challenges mentioned, it is not easy to
incorporate the Allura application on an IP PC. However, as an initial step, descriptive
models can be created using other featured applications such as STREAM. Descriptive
models are created using the measurements collected on IP PCs using MeasureLoadCLI
tool and Perfmon utility that capture several fine level metrics extremely useful for this
part of the assignment. The contribution of this part of the thesis are:

1. Performance models that are used to predict the performance of the same PC
with different memory configurations: The performance models created is used
to predict the latency of an application on a PC with a certain hardware model.
These models use the resource usage characteristics of the application on hardware
platforms. Using this as the key principle, the resource usage characteristics of the
same application on a slightly modified hardware model is predicted. We have
chosen the same IP PC with different memory configurations as hardware models
to predict the performance of STREAM. These models can not only predict the
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performance, but also give performance numbers that can be used to compare
different hardware configurations for an application. In the due course of this part
of the thesis, other observations were also made, the most important among them
being:

(a) Effect of Asymmetric Memory Distribution: It is seen and proved using the
models created and measurements collected from tools and STREAM that the
performance of a two socket PC with asymmetric memory configurations is
found to be lower than the performance of the same PC with lesser memory
capacity, but, distributed equally among the memory banks of the CPUs.
Quantitatively, the performance degradation that happens due to asymmetric
memory distribution is approximately equal to 20 %.

(b) Effect of the OS: It is also noted that the utilisation of the total memory
installed and thus, the performance of the application on the PC used depends
on the OS used. A 32 bit OS can only support a maximum of 232 =4 GiB of
memory. Therefore if a 32 bit OS is installed on a PC with 6 GiB memory
configuration, cost reduction can be achieved by removing the unused memory
(3 GiB) memory installed. Additionally, the performance of STREAM on
the PC with 4 GiB of memory installed is also found to be better than the
performance of the same PC with 6 GiB of memory installed because the OS
does not recognise 3 GiB of memory installed on socket 2.

2. Performance models that are used to predict the performance of PCs with differ-
ent micro-architectures: The performance models created are used to predict the
latency of an application on a PC with entirely different hardware model. This
can be put to use to evaluate the performance of the Allura system that evolves
with the Intel processor roadmap. If the performance of the PC with new micro-
architecture can be predicted, it can be used as a performance forecast before
evolving into newer micro-architectures. This can be used to study the pros and
cons of every micro-architecture before incorporating it as a part of the Allura
system. During the execution of this part of the thesis, it was found that the PC
with Sandy Bridge micro-architecture exhibits better performance than the PC
with Nehalem micro-architecture. The models can also be used to compare the
performances of PCs with different micro-architectures. The PC with the Sandy
Bridge micro-architecture shows a performance improvement of 26 % over the best
possible configuration of the PC with Nehalem micro-architecture(4 GiB memory
configuration). This is also validated using the measurements from STREAM. The
most interesting inferences made during the course of this part of the thesis are :

(a) Differences in the micro-architecture: It was seen that every aspect of the
Sandy Bridge processor was redesigned by Intel to achieve better perfor-
mance. The most important architectural enhancements were the inclusion of
L0 cache, L3 cache on die, increased number of memory channels, increase in
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the memory frequency, increase in the number of QPI links and its frequency,
change in the snooping protocol and introduction of Turbo Boost technology.
The performance improvements due to these architectural changes are pre-
dicted and incorporated in the models. The models created are validated on
the PC with Sandy Bridge micro-architecture.

(b) Effect Of Turbo Boost: It was seen that the processor frequency ramps up to
provide increased level of performance and then tunes down to create thermal
reserves in the PC with Sandy Bridge micro-architecture. This affects the
performance of the application.

The descriptive models created for both objectives can be used to predict the perfor-
mance of the PCs for real time applications such as Allura. The set of descriptive
models can be extended and enriched to study other performance properties such as
throughput, bandwidth for network, graphic cards as well. This broadens the scope of
comparison and results in better performance evaluation of systems with higher work-
loads and real time constraints. The enriched set of descriptive models created can be
used to achieve significant cost reduction by combining two or more PCs into one PC
for a multi-functional system with several PCs such as the Allura system.
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