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Abstract

Nowadays, cameras are everywhere. These cameras can be used to
secure properties, as safety for road users, marketing and many other rea-
sons. To perform these tasks, it is required to have object recognition.
Object recognition is required at the camera to reduce network depend-
ability and therefore energy. Since the same camera can be used to detect
various object, it is required to have a general approach for object recog-
nition.

Convolutional Neural Networks (CNNs) offer this general approach.
The advantage of CNNs is that they can be easily learned to detect ob-
jects and are flexible to support different kind of vision tasks. Running
different CNN configurations on an embedded platform is a challenging
task. General Purpose processors can not meet the throughput require-
ment within realistic power constraints, and the known dedicated CNN
accelerators do not have the required flexibility. To overcome the limi-
tations of the current state of the art accelerators, a flexible, clustered,
Single Instruction, Multiple Data (SIMD) accelerator is designed. The
SIMD paradigm is used to efficiently exploit available parallelism in the
algorithm. A specialized memory hierarchy is used to reduce the enormous
data transfer rates to external memory. To maximize utilization for the
varying work load in a CNN, a dedicated optimizing toolflow is developed.
The evaluation shows that the proposed solution can achieve 7.4 Giga Op-
erations Per Second (GOPS) with a utilisation of 57% of the available
Processing Elements (PEs). Due to the memory hierarchy the required
external bandwidth is reduced from 97.5GB/sec to 400MB/sec, for these
benchmarks. The power consumption of mapping to the ZedBoard[1] in-
dicates a reduction of 3−30× compared with a GPU implementation, and
6 − 52× compared with a CPU implementation. The result of this work
is a very flexible platform for CNN based vision applications that achieve
state-of-the-art performance in throughput and energy.
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1 Introduction
Nowadays, cameras are everywhere. For privacy and performance reasons cam-
era’s require object recognition at camera level. Mobile devices, such as the
Google Glass, also require executing these vision tasks on the mobile platform.
Object recognition applications should be robust and fault tolerant. Many ap-
plication specific algorithms [2],[3],[4] for object recognition are created in the
literature. A more general approach to vision tasks is neural networks. Neural
networks emulate the human brain and can be used for multiple vision tasks.
The advantage of neural networks is that they can learn. When the network
is presented with enough examples, it can adapt itself to learn from the exam-
ples. Because of the limited free parameters of a neural network the network
must generalise to learn the examples, and therefore it can be used for detecting
elements that are not in the example set. The advantage of the learning capa-
bilities is that domain specific characteristics do not need to be known, only an
example set needs to be created.
Hubel and Wiesel[5] worked on the visual cortex of the brain of a cat and they
discovered that the neurons were only stimulated by a small region of the input.
Using this knowledge, Le Cun [6] generated a Convolutional Neural Network
(CNN) to recognise hand written digits. A CNN is a multilayer neural network
designed specifically for detecting 2D objects, with robustness against distortion,
scaling and skewing.
There are many other reported applications that use CNN, such as pedestrian
detection [7], face detection [8] and speed sign recognition [9]. CNNs can out-
perform and replace algorithms for vision tasks [10].

(a) Pedestrian detection (b) Face detection (c) speed sign recognition

Figure 1: Example applications of CNNs

Using CNNs for real-time object recognition on HD-video can require billions
of computations per second.
By using General-Purpose computing on Graphics Processing Units (GPGPU),
real-time object recognition is achieved [9]. This is not a feasible solution for a
mobile platform: Graphics Processing Units (GPUs) that have enough compute
power to do real-time object recognition use around 100 watts of power. A more
application specific solution is needed to reduce the energy requirement.
With a CNN it is possible to do hundreds of computations in parallel, making
it possible to operate at a lower frequency, to reduce the power requirement.
In the literature, different accelerators for CNNs are presented. NEC Labo-
ratories America [11] present a massively parallel coprocessor for accelerating
CNNs and made it dynamically configurable [12]. The New York University’s
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Computational & Biological Learning Laboratory has developed NeuFlow[13]:
A Runtime Reconfigurable Dataflow Processor for Vision. Both solutions re-
quire a large memory bandwidth, are for specific network types and require a
general purpose CPU, making it less energy efficient. A general architecture is
required that can calculate many different CNNs efficiently with the same hard-
ware. This architecture should reduce the required external memory bandwidth
to reduce the energy requirement.
In that way, the same hardware can be used for many vision tasks, which make
it cheaper to produce.
In this report I will make the following contributions:

• A scalable, flexible, data transfer efficient architecture for multiple CNNs.

• A complete toolflow to map a CNN to efficiently work on the architecture.

• Peformance and energy analysis of the new architecture with different
configurations and CNNs.

This report will start with an explanation of neural networks and the compu-
tations involved in section 2. Section 3 shows which features of CNN can be
exploited for the architecture. Section 4 describes the designed architecture.
The created toolflow is described in section 5. The experiments are described
in section 6. Ending with a conclusion in section 7 and future work in section 8

6



2 Convolutional Neural Networks
Recall that a CNN is a multilayer neural network designed specifically for de-
tecting 2D objects, with robustness against distortion, scaling and skewing. A
CNN consists of multiple artificial neurons that are connected to each other,
forming a neural network. These artificial neurons emulate biological neurons
in, for example, the human brain.

∑

×

w0

×

w1

×

wn−1

bias

φ()
output

x0

x1

xn−1

activation function

Figure 2: Model of a non-linear neuron

“A neuron is an information-processing unit that is fundamental to the oper-
ation of a neuron network” [14]. A neuron consist of the following four basic
elements:

• A set of connections to other neurons. These connections have a certain
weight associated with them

• An adder that sums up all the input signals

• A fixed bias for increasing or decreasing the net input

• An activation function φ, limiting the output value.

A graphical representation of a neuron is given in figure 2 while equation 2.1
gives a mathematical representation.

output = φ(bias +

n∑

j=1

wjxj) (2.1)

A CNN is a specific type of neural network. CNNs consists of several fea-
turemaps. A featuremap consists of a set of neurons, neurons of a featuremap
are connected to multiple neurons of other featuremaps. The featuremaps are
hierarchically divided into layers. The featuremaps in a layer only receive input
from featuremaps in the previous layer. In figure 3 a small example CNN is
depicted. The input consists of a single featuremap, depicted as a rectangle.
These rectangle consists of multiple neurons, which are represented as pixels.
The first layer consists of three featuremaps, all using the input-featuremap
as input. The second layer has two featuremaps with a different connection
pattern. The output layer of this CNN consists of only a single featuremap.

7



Since this network has only a single featuremap as output, it can only be used
to detect object and not recognize them. This is because it is only possible to
output a true/false for each location, since the output needs to be quantified.
Each connection in this network is displayed with an arrow; such a connection
has a associated kernel.

input

layer 0

layer 1

output

Figure 3: An example of a small CNN

The rest of this section talks about all the computations required to calculate the
result of a CNN. It will end with two example CNNs for recognising speed-signs
and detecting faces.

2.1 Convolutions
Each connection between featuremaps an associated kernel. The width (lkw) and
height (lkh) is constant for all connections between the same layers. The kernel-
size describes the number of neurons to which each neuron in a featuremap is
connected to. In figure 4 there are two layers with a single featuremap, showing
the individual neurons of the featuremaps. The neurons are represented as
individual pixels. To which neurons a neuron receives input from is determined
by the position in the featuremap. Each connection between two featuremaps
has an associated kernel with it, consisting of lkwlkh weights. Weight values of
a kernel are obtained by training the network with examples.

layer n
layer n+ 1

lkh

lkw

Figure 4: Example with two convolution operations, using a 3×3 kernel

To calculate the output value of featuremap of layer n + 1, the values of the
lkwlkh input values of layer n are multiplied with the associated weights and
aggregated. This form of multiplying and adding is called a discrete convolution
operation. A mathematical representation of a convolution operation is given
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in equation 2.2, with W the weights associated with the connection and X the
input values. Xi,j means the j′th colomn of the i′th row of the input featuremap
X. Wi,j means the j′th colomn of the i′th row of the weight values in the kernel.

Ym,n =

lkw∑

i=1

lkh∑

j=1

WijXi+m,j+n (2.2)

A featuremap can be connected to multiple input featuremaps, in that case
each connection has different kernel weights associated with it. To calculate
the results, the convolution of equation 2.2 is used on all the featuremaps and
aggregated. The bias value of the featuremap is added to the results.

2.2 Subsampling
Subsampling is used to reduce the number of computations and to reduce the
sensitify of a featuremap to certain distortions. A layer in a CNN has an asso-
ciated subsample factor lss. An optimized model of subsampling [15] is used to
reduce the number of operations. This model will merge the convolution and
the subsampling into a single step. In this model, the subsampling factor is
translated to the amount of input neurons that two consecutive neurons have
between them. In figure 5 there is a lss of 2, therefore the convolution of the
second output neuron starts 2 input neurons lower than the convolution of the
first neuron.

layer n

layer n+ 1

lss

Figure 5: Example of subsampling

2.3 Activation function
When all the convolutions for a single neuron are done and aggregated, the
associated bias of the featuremap is added. The non-linear activation function
is used on this aggregated value. This is the result that neurons of the next
layer use as their input. Example activation functions using in CNNs are φ(x) =
tanh(x) or φ(x) = (1 + exp(−x))−1

2.4 Images
An image, such as a videoframe, consists of pixels. With a grayscale image, the
pixel can be described by a number 0 ≤ α ≤ 1. α determines the brightness
of the pixel. An image can be directly used in a CNN: each pixel of the image
can be modelled as a neuron with a certain output value. Therefore, there is no
preprocessing required of the image to use as input for a CNN.
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2.5 Example networks
Different vision applications require different CNNs. CNNs can have different
connection schemes, different kernel sizes and different amount of featuremaps.
To be able to demonstrate this flexibility of the architecture, two very different
CNNs will be used for analyses and testing.
The Speed-Sign Recognition Network is more computation dependant. This is
used to demonstrate performance. The Face Detection Network is more data
dependent and this is used to demonstrate how well the architecture coops with
low memory bandwidth. Both networks have a non-trivial connection scheme,
which the architecture should be able to work with.
The requires precision of the values of thesse network is as follows:

• output of the neurons of featuremaps: 1 byte

• weight values: 2 bytes

• intermediate values before using the activation function: 4 bytes

This precision is required to get reliable results out of the CNN.

2.5.1 Speed-Sign Recognition Network
This network is able to detect 8 different speed-signs in videoframes of 1280×720
pixels. The network is inspired by the digit recognition network LeNet-5 [16].
The first layer contains 6 featuremaps with a subsampling factor of 2 and a
6×6 kernel, the second layer contains 16 featuremaps with a specific connection
scheme with a 6×6 kernel and again a subsampling factor of 2. This scheme
forces the feature maps to learn specific features. The next layer has 80 fea-
turemaps with a 5×5 kernel and is connected to half of the previous featuremaps.
The last layer, with specific speed sign information, contains 9 featuremaps with
a kernel of 1×1. One featuremap detects if there is a speed-sign at a certain
location and the other featuremaps are the specific speed-sign.

Figure 6: Speed-Sign recognition network

Multiply Accumulate operations / frame (106) 1075.9
Output values / frame (106) 7.09
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2.5.2 Face Detection Network
This network is able to detect faces in videoframes of 1280×720 pixels. The
first layer consists of 4 featuremaps with a subsampling factor of 4 and a kernel
of 6×6, the second layer consists of 14 featuremaps with a specific connection
scheme with a subsampling factor of 2 and a kernel of 3×3. The third layer has
an one-on-one connection scheme with a kernel of 6×6 and the last layer consists
of one featuremap with a 1×1 kernel. This network can only detect faces, not
classify them, and is therefore much smaller than the previous network.

Figure 7: Face recognition network

Multiply Accumulate operations / frame (106) 78.95
Output values / frame (106) 2.51

2.6 Conclusion
This section described the basic elements of a CNN. The hierarchy featuremaps
and layers, the required computations with kernel values. Furthermore, sub-
sampling is explained. Two CNNs are presented to show the required number
of computations and the different kind of kernel-sizes and connection schemes.
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3 Data and computations
The goal is to design a programmable architecture that achieves high perfor-
mance for different kinds of CNNs with small energy usage.
With the same architecture, both CNNs with high computation density and
with high memory requirements should be calculated with high utilisation.
This section describes and motivates a pattern to go trough the computations.
The used pattern supports tiling, this is used to reduce the required external
memory bandwidth, and therefore the required energy usage.

3.1 Energy usage
Performing the computations in CNN requires many memory accesses. As an
illustrative example to demonstrate energy usage of the memory, assume having
a 512MB Lower-Power DRAM consisting of 4 banks and a 36864 byte SRAM
that consists of a single bank. Using CACTI of HP [17] with a technology size
of 45nm results in the following numbers:

512MB LP-DRAM 36KB SRAM
Energy per read (nJ) 0.67 0.013
Access time (ns) 13.9 1.567

Using only the large DRAM for calculating the output values of the Speed-
Sign Recognition Network, this would need around 4.9 ∗ 109 memory accesses,
resulting in an energy usage of 3.3J for the memory accesses.
If it is possible to reduce the number of accesses to the DRAM with a factor of
100, only (4.9 ∗ 107 ∗ 0.67nJ) + (4.85 ∗ 109 ∗ 0.013nJ) = 96mJ is necessary; a
reduction of 34×.
Another advantage of using a smaller memory is the reduced access time. This
means that the available bandwidth of the local memory is larger in comparison
with the large DRAM.

3.2 Reuse
To reduce the number of accesses to the DRAM, the architecture should reuse
the data in the local memory. Peemen[18] calculates the best computations
order for a given a local memory size, reusing data as much as possible. Only
a part of the input data is stored in local memory, called a tile. When these
results are generalised, it becomes clear that moving the tile in the direction of
the largest dimension of the featuremap is the most beneficial. The tile should
contain all the input feature maps needed to calculate the output featuremaps
while also maximizing the number of output featuremaps.
Consider the example in figure 8, the first layer consists of two featuremaps and
the second layer consists of three featuremaps. The second layer uses the first
layer as input for the calculations. A kernel-size of 4×4 is used for the second
layer.
The featuremap of pixel p00 is connected to both input featuremaps. To com-
pute the value of this pixel, it would require 4 ∗ 4 ∗ 2 = 32 input values from
external memory. To compute the values of p00, p01, p10, p11, p20, p21 it re-
quires 6 ∗ 32 = 192 input values from external memory.
Keeping the values within the blue square (the tile) in local memory will reduce
the number of external memory accesses. With the values currently in local
memory, p00, p10 and p20 can be calculated. If the tile moves one position to
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the right, requiring reading 8 pixels from external memory, pixels p01, p11 and
p21 can be calculated. In this case, we only require 40 input values from external
memory.

input featuremaps output featuremaps

tile

p00 p01

p10 p11

p20p21

Figure 8: Example network, with a kernel of 4x4.

It is also beneficial to make the tile higher. If the 3D tile in figure 8 would be
two pixels higher, it would be possible to calculate 3 pixels with the tile. To
calculate the next 3 pixels, 2 ∗ 6 new values are required: a total reduction of
factor 24.
Based on the relation between the tile height and the number of vertical pixels
(n) it is possible to calculate the required tile height with equation 3.1

tileheight = (n− 1)lss + lkh (3.1)

For the first output element, there are lkh pixels in the vertical direction needed.
For every new output element, lss extra pixels are needed.
Storing the weight values in the local memory is also beneficial. Every pixel in
the featuremap uses the same weights values and storing these values in local
memory reduces the number memory accesses for weight values with a factor
lwidth ∗ lheight.

However, increasing the tile over multiple layers imposes a problem. It would
create a dependency between calculating PEs on different layers. In figure 9
it is clear that there is a balancing problem: to calculate a single pixel in the
last layer requires many more calculations in the previous layers. To make this
pipeline balanced, the architecture should support control of individual PEs,
which requires much more hardware. Furthermore, the required size of the tiles
of the first layer(s) would be very large to support enough data for the final
layer.

3.3 Tiling
Is it possible to tile the complete layer, thus making it possible to calculate the
complete layer without partial results?
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4×4 kernel with subsampling

4×4 kernel with subsampling

Figure 9: Example of propagation problem with two layers

To calculate the required memory size, the size of the tile and the weight data
need to be aggregated. Every layer is solved independently from the other layer,
so the required memory is based on the layer that requires the most memory,
as described in section 3.2.
Multiplying the tileheight of equation 3.1 with the kernelwidth gives the re-
quiredv size of the input-tile: (((n− 1)× lss + kh)× kw). The weight values of
the kernels should also be kept in local memory. The size of the weight values
of a single featuremap is 2 bytes for the bias value, together with all the kernel
values. The values of a single kernel consists of kh × kw × 2 bytes, multiply-
ing this with the number of connections of this featuremap fmconn results in
the following size for the weight values:

∑
fm∈l 2 + (fmconn × kh × kw × 2).

Combining this results in equation 5.6.

max
l∈L


(((n− 1)× lss + kh)× kw) +

∑

fm∈l
2 + (fmconn × kh × kw × 2)


 (3.2)

Using equation 5.6 for the required local memory size on both the example
networks with different n results in the plots as shown in figure 10. Most of the
data of the Speed-Sign Recognition Network comes from the weight data while
most of the data from the Face Detection Network comes from the inputtile.
Even with large n, every layer of both networks can be completely tiled with
a local memory of 50 kilobyte. This means that all output featuremaps can
be calculated with the tile. This is a feasible memory size for an embedded
environment.
To calculate the number of external data requests to fetch input data can be
calculated. The number of times the tile shifts down is equal to dlheight/ne. For
each shift down, the number of bytes required is equal to (lwidth − 1) ∗ lss +
(lkw). For the total network, the number of external data requests is given by
equation 3.3

∑

l∈L
(dlheight/ne × ((n− 1)× lss + kh)× ((lwidth − 1)× lss + lkw)) (3.3)
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(a) Speed-Sign Recognition Network (b) Face Detection Network

Figure 10: Memory footprint for both networks.

Figure 11: Tile height and external data requested, the lowerbound is calculated
with infinite n

Plotting equation 3.3 for both networks is shown in figure 11. As expected,
increasing n will decrease the external memory requests. But the cost of the
memory footprint will make the reduction of accesses neglectable.

3.4 Parallelism
Due to the data dependencies between two consecutive layers of the network, it
is hard to exploit parallelism in that case. There is no data dependency between
featuremaps within a layer.
Calculating a single pixel can require multiple convolutions on multiple fea-
turemaps. All these convolutions can be calculated in parallel, and then aggre-
gated. Both the massive parallel coprocessor of NAC Laboratories America [11]
and the NeuFlow [13] exploit this parallelism.
A kernel-size independent solution is to let a single PE sequential work on pixels.
During every cycle, each PE will execute the same Multiply Accumulate (MACC)
operation y = y + w ∗ x of the convolution(s).
The way of computing has two advantages:

• support for a range of kernel sizes with good utilisation
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• multiple PEs can share the weight (w) values

3.5 Limitations
When the complete input tile combined with the weight values (the memory
footprint as shown in figure 10) of a certain layer does not fit into local memory,
the network can not currently be solved with this architecture. In section 8.2 I
purpose a solution for this problem by adding an extra hardware piece in the
memory controller. Then clusters can work on partial answers, storing partial
answers in the off-chip memory.
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4 Stream oriented SIMD architecture
In the previous section, the tiling order is determined. This section outlines
the architecture that supports this order, while keeping the constraints in mind.
Each section will describe a different part of the architecture. A graphical
overview of the architecture is shown in figure 12 together with the correspond-
ing section numbers. The presented architecture has MACC-units, called PEs
divided into clusters, where each cluster consisting of a local memory, a number
of PEs.
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Figure 12: Overview of architecture

The memory controller puts data with a deterministic order in the input fifo.
This data is put on the bus and the input sequencer routes the data to the
correct clusters. Clusters will calculate pixels and put these on the bus. To
ensure the deterministic order, the output sequencer determines which cluster
can write on the bus. A single activator is used to do the non-linear activation
function on the values.

4.1 Deterministic order
Calculating the result of a CNN is completely deterministic; the input does not
change anything about the order and dependencies of the computations. This
fact is used to determine an offline calculated and optimized schedule for the
complete network. When fixing the order in which data comes from the memory
controller into the accelerator, there is no need to check what kind of data it
is. The input sequencer it knows the position in the offline calculate schedule
and therefore knows where the data needs to go. The order of the output of the
accelerator is also fixed. In that way all the memory locations can be calculated
and optimized offline, reducing hardware and energy requirements.

4.2 Memory Controller
The memory controller should maximize the external bandwidth by aggregating
data requests. The complete data schedule is known, so the memory controller
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should exploit this as much as possible to maximize the read and write band-
width.

4.3 Shared bus
To efficiently communicate data to the clusters, a bus is used that is connected
to all clusters. With most connection schemes, input featuremaps are used in
multiple clusters. Broadcasting this data over a bus is therefore usefull, because
it reduces the number of reads and writes.
The bus is also used to communicate individual cluster information such as
control data and weight values. The individual cluster information of all the
layers of the network is on no account more than 0.5% of all the data that need
to be transferred to the clusters in the two example networks. Therefore it is
unnecessary to create an individual data connection to every cluster.
The communication between the shared bus and the memory controller is done
via a fifo. In this fifo it is possible to buffer input data from the memory
controller.

4.4 Input sequencer
The order that data appears on the bus is determined offline by the compiler.
Since clusters do not always need the same input data, a data router is required
to offer the data only to the clusters that need this data.
The input sequencer has a memory with an offline calculated sequence file. The
file contains a sequence of when which cluster needs to read from the input bus.
Further details about the sequence file can be found in section 5.2.2.

4.5 Clusters
It is not feasible to make a single local storage and connect dozens of PEs with it.
A more hierarchical model is needed to make this possible. PEs will be grouped
in clusters with a smaller local memory. Each cluster works on certain parts
of the network, so not all the weight data and possibly not all the input tiles
are needed in the local memory. Each cluster will calculate a number of output
featuremaps, requiring a number of input featuremaps. Which convolutions
needs to be calculated for every output featuremap is described in a connection
matrix within the cluster. This connection matrix describes the connection
scheme of the part of the network that the cluster is working on.
The architecture consists of multiple clusters where each cluster consist of a
local memory, a number of PEs and control hardware.

4.5.1 Cluster Memory
The memory of the cluster is used for three things:

• Connection Matrix

• Weight values

• Input featuremaps

At the beginning of calculating a layer, the connection matrix and weight values
are loaded into the cluster. This data does not change throughout the complete
layer. The input featuremaps part of the memory is not constant throughout
the calculation of a layer. Figure 13 shows the pattern of the first three rounds.
The part for the input tiles of the memory is used as a circular buffer.
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Figure 13: Read pattern of the cluster

The example network in figure 13 shows a small network where 3 featuremaps are
connected to a single featuremap with a 2×2 kernel. To compute output pixels,
it is required to have two consecutive colomns of the three input featuremaps.
While these pixels are being calculated, the next colomns of the featuremaps
can be written.
This parallel reading and writing reduces the calculation time of pixels of an
output featuremap. In stead of waiting calculation time + write time, this
is reduced to min(calculation time, write time), with only a small increase in
memory requirement.

4.5.2 Registers
Local memories are expensive in area and energy, therefore the number of local
memories should be small. Peemen proposed an architecture[18] that needs 6
local memories to supply data to 8 PEs, 4 memories for the input values and 2
for weight values. That system has two disadvantages. First of all, there is a
memory limit on both weight values and input values that reduces the flexibility.
Secondly, more local memories imply more energy and area usage.
I will propose a system that will make it is possible to supply data to multi-
ple PEs with a single local memory. This solution does not result in a 100%
utilisation of the PEs, but it will reduce the energy usage and increase flexibility.
The local memory is used for both input values and for weight values. The
flexibility of the architecture will be increased by putting the data in the same
memory and by not placing a limit on only weight values or input values.
Since one port needs to be used for writing, there is only one read port, therefore
a shift register for input values is used to increase memory bandwidth. This is
because values read from the memory can be used multiple times.
Figure 14 depicts a module with 4 PEs that supports subsampling up to factor
2. The pixel shift registers are numbers from 0 to 11. There are two weight
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cycle port a port b port c port d port e shift/calc enable
0 x
1 x
2 x
3 x x
4 x
5 x x
6 x
7 x x

Table 1: Port usage of the module for the first 5 calculations

shift registers w0 and w1 for storing the weight values. To start calculations,
data is loaded into the shift registers 0 to 7, and extra data is added in registers
8 to 11. When no subsampling is used, after every MACC-operation the pixel
data is shifted using the green lines, while with a subsampling factor of 2 the
red lines are used.
Assume calculating a 5×5 convolution on a single input featuremap with a
subsampling factor of 2. Table 1 shows that in 8 cycles, 5 computations are
performed, achieving a utilisation of 63% for the first column with only a single
memory. During each cycle, the following pattern is used: load data, (compute
data, shift data). When using double buffering, in cycle 4 and 6 you can already
load data on port a and port b, achieving 83% utilisation rate for the next
colomn. For the complete 5×5 convolution, this will cost 8 + (4∗6) = 32 cycles,
resulting in an overall utilisation of 78%.
Table 2 shows that for larger kernel-sizes, higher utilisation is obtained. Smaller
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kernel no subsampling subsampling
1×1 50% not applicable
2×2 50% 44%
4×4 88% 72%
5×5 92% 78%

Table 2: PE utilisation for different kernel sizes

kernel-sizes are mostly memory bound and not computation bound, thus the
bottleneck will not be within the clusters.

This model is implemented using Verilog HDL with 8 PEs. At 100MHz, simu-
lated with Xilinx XPower, the power distribution is shown in table 3. In these
results there is a factor 3.5 reduction in power using shift registers. With only
a small reduction in performance, a substantial energy reduction is achieved, in
addition it increases the flexibility of the memory.

Solution Block RAM Shift registers Total
Shift registers 0.00167 W 0.00121 W 0.00288 W
Block RAMs 0.01002 W - 0.01002 W

Table 3: Power division in different solutions

4.5.3 Convolution operations
Each PE within a cluster works on convolution operations until the pixel of the
featuremap is ready to go trough the activation function. The problem with this
approach is that all the corresponding featuremaps needed for the calculation
of that pixel have to be in local memory. This approach has two advantages:
finished pixels go trough an activation function, reducing the size of the data
with a factor 4, and in addition intermediate values do not have to be stored in
the memory.
To compute a pixel, a PE requires input values and weight values. All the PEs in
a cluster calculate the same part of the convolution in parallel, thus sharing the
weight values. Sharing the weight values will reduce the bandwidth requirement
on the local memory.

4.6 Output bus
The clusters are also connected to the same output bus. At any time, only one
cluster will write results on this bus. In this way, it can guarantee a deterministic
output order. Subsequently, only a single module can be used for doing the
activation function.

4.7 Output sequencer
The output sequencer is the bus-controller for the output bus. Similarly to
the input-sequencer, the output sequencer has an offline calculated sequence file
that contains a sequence of when which cluster may write on the bus.
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4.8 Activator
This activator uses a Look-up Tables (LUTs) to perform the non-linear activa-
tion function on the given input values. The LUT does not change throughout
the calculations of the network. This single activator is sufficient since the num-
ber of activations required in a network is two or three orders of magnitude
lower than the number of calculations. Furthermore, the activator sends data
directly, via a fifo, to the memory controller. The activator can not work faster
than the available bandwidth to the memory controller.
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5 Optimizing Toolflow
Running a CNN on this new architecture has a lot of free parameters. Such as
the question which cluster is to calculate which output featuremap or what order
they are going to calculate them in. Furthermore, sequence files are required
for the different components. Finding good schedules and creating the sequence
files is manually impossible, so this requires a toolflow. The toolflow consists
of two main parts: the scheduler determines which cluster is going to calculate
which output featuremap, and determines the output order. The compiler uses
the result for the scheduler to generate all the sequence files and datastreams
needed for the different hardware elements.

5.1 Scheduling

Figure 15: Connection scheme
of the second layer of the Speed
Sign Detection Network of sec-
tion 2.5.1

To demonstrate the problems with schedul-
ing, consider scheduling the second layer of
the Speed Sign Detected network as depicted
in figure 15 and table 4. A mapping between
featuremaps and clusters must be determined.

output FMs input FMs
fm0 0,1,2
fm1 1,2,3
fm2 2,3,4
fm3 3,4,5
fm4 0,4,5
fm5 0,1,5
fm6 0,1,2,3
fm7 1,2,3,4
fm8 2,3,4,5
fm9 0,3,4,5
fm10 0,1,4,5
fm11 0,1,2,5
fm12 0,1,3,4
fm13 1,2,4,5
fm14 0,2,3,5
fm15 0,1,2,3,4,5
total 0,1,2,3,4,5

Table 4: Input FM required for each output FM

A mapping is valid when the total data requirement of the featuremaps mapped
to a certain cluster fits into local memory.
Assuming that a cluster i will work on calculating fm0, fm5 and fm11. The
required input featuremaps are described as a set of sets:
Si = {{0, 1, 2}, {0, 1, 5}, {0, 1, 2, 5}}. For each ouput featuremap a bias value
may be required. The following equation shows the total amount of weight
data:

biasdata = h ∗ |Si| (5.1)

Where h is the amount of bytes of a bias value.
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Each output featuremap requires the number of input featuremaps on kernel
weights. The total weight data is given in the next equation:

weightdata = i ∗
∑

e∈Si

|e| (5.2)

Where i is the amount of bytes of a weights values.
Since tiles of the input featuremaps can be used for all the featuremaps, it only
requires the number of unique input featuremaps. The total input data is given
in the next equation:

inputdata = j ∗ |
⋃

e∈Si

e| (5.3)

Where j is the amount of bytes of a featuremap tile.
The size of the connection matrix is the number of output featuremaps × the
number of input featuremaps. For a certain assignment, this is equal to:

connection matrix = k ∗ |Si| ∗ |
⋃

e∈Si

e| (5.4)

Where k is the size of an entry in the connection matrix in bytes.
Combining these requirements result into the following equation for a valid
mapping:

valid mapping = (biasdata+weightdata+inputdata+connection matrix) ≤ mem
(5.5)

Where mem is the size of the cluster memory
A mapping of S is a when S is partioned into m sets S1, S2, ..., Sm, where m is
the number of clusters. For this partition, the following equation must hold:

∀1≤x≤n
((

h ∗ |Sx|+ i ∗
∑

e∈Sx

|e|+ j ∗ |
⋃

e∈Sx

e|+ k ∗ |Sx| ∗ |
⋃

e∈Sx

e|
)
≤ mem

)

(5.6)
If such a division exists, the current layer can be solved with the memory size
m.

5.1.1 Complexity of scheduling
Consider an algorithm CLUSTER-DIVISION(S,h,i,j,k,mem,n) that returns true
iff there exists a partition into S1, S2, .., Sn such that equation 5.6 holds for this
partition.

5.1.2 NP-completeness
To show NP-completeness of the CLUSTER-DIVISION problem, it is required
to show that CLUSTER-DIVISION is at least as hard (notation: ≤p) as a known
NP-complete problem. 3-PARTITION is a known NP-complete problem. [19]
The following theorem shows that CLUSTER-DIVISION is at least as hard as
3-PARTITION:

Theorem 5.1 3-PARTITION ≤p CLUSTER-DIVISION
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Proof Consider the instance I for 3-PARTITION consisting of a set A of 3m
elements (a1, a2, .., a3m), a bound B ∈ Z+, and a size s(a) ∈ Z+ for each a ∈ A
such that l(a) is bound by a polynomial in m and such that

∑
a∈A l(a) =

mB [19]. This bound on l(a) makes 3-PARTITION still NP-hard since 3-
PARTITION is strongly NP-complete.
Define the function f that builds a set S = s1, . . . , s3n such that ∀1≤i≤3m (|si| = l(ai)).
f can be executed in polynominal time because it holds that ∀s∈S s is bounded
by a polynomial in m.
Now call CLUSTER-DIVISION(S=S,h=0,i=1,j=0,k=0,mem=B,n=m). Using
lemma 5.2, this results that 3-PARTITION is at least as hard as CLUSTER-
DIVISION. �

Lemma 5.2 F can be 3-partitioned ⇐⇒ f(F ) can be cluster divided

Proof ⇒ Assume instance 〈A,B, s〉 can be 3-partitioned. So there exists an
assignment such that A can be partitioned into m disjoint sets A1, A2, ...Am

such that ∀1≤i≤m
∑

a∈Ai
l(a) = B S can be partitioned into disjoined sets

S1, S2, ..., Sm with ∀1≤i≤m (∀s′∈Si
(|s′| ∈ Ai)). This is possible since

∀1≤i≤3m (|si| = l(ai)).

⇐ Assume instance 〈S, h = 0, i = 1, j = 0,mem = B,n = m〉 can be cluster-
divided into disjoined sets S1, S2, ..., Sm such that ∀1≤i≤m

∑
e∈|Si| ≤ B. Since

∀1≤i≤3m (|si| = l(ai)) and
∑

a∈A l(a) = mB,
∑

s∈S mB, dividing S into m dis-
joined sets can only mean that ∀1≤i≤m

∑
e∈Si
|e| = B. If there would exists an

1 ≤ i ≤ m such that
∑

e∈Si
|e| < B, by the Pigeonhole principle, there must

also be an 1 ≤ i ≤ m such that
∑

e∈Si
|e| > B and that would mean that S

is not cluster-divided. Since ∀1≤i≤3m (|si| = l(ai)), we could divide A into dis-
joined sets A1, A2, ...Am with ∀1≤i≤m∀e∈Ai

∃e′∈Si
|e′| = e. And thus it can be

3-PARTITIONED.

Theorem 5.3 CLUSTER-DIVISION has a polynomial-time verification algo-
rithm

Proof CLUSTER-DIVISION verifier V(〈S, h, i, j,mem〉, 〈S′〉)
The verifier only accepts the instance if all the following criteria are true:

• ∀s∈S (∃s′∈S′ (s ∈ s′))
• ∀s′∈S′ (∀e′∈s′ (e′ ∈ S))

• |S| = ∑s′∈S′ |s′|
• equation 5.6 holds for S’

Since V can be executed in polynomial time, CLUSTER-DIVISION has a poly-
nomial time verification algorithm. �

Theorem 5.4 CLUSTER-DIVISION is NP-complete

Proof Combining lemma 5.1 and lemma 5.3, result that CLUSTER-DIVISION
is NP-complete �
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5.1.3 Polynomial time greedy scheduling
In addition to find a solution that meets the memory constraint, a solution
that also minimize the execution time is required. Since finding a solution is
already NP-complete, finding the best solution is thus also NP-complete. So
unless P=NP it is not possible to find an algorithm that runs in polynomial
time.
It is possible that certain layers consists of a 100 featuremaps. If the toolflow
will use an algorithm that is exponential in this parameters, it can take months
before it is possible to program this architecture.
As a consequence of this, finding an approximation algorithm is the best solu-
tion. If this algorithm does not find a solution where the memory constraint
is met, you can execute a search on the full statespace, change the network, or
need to use more local memory.

5.1.4 Cluster division
Computing a featuremap takes a certain amount of cycles. This workload should
be evenly defined over the clusters, in such a way the makespan of all the clusters
is minimized.
In the best case, all the jobs of featuremaps can be spread evenly over the
clusters. The execution time can not be lower than the largest job, since this
jobs needs to be scheduled at a cluster. These results are combined in the
following equation for the lowerbound.

max(
1

|FMs|
∑

fm∈FMs

fmsize, maxfm∈FMsfmsize) (5.7)

Where |FMs| is the number of featuremaps and fmsize is the number of cycles
it takes to compute the result of featuremap fm.
To combine these two dimensions of memory constraint and reducing the makespan,
the following score for cluster i is used:

βi =
M(i)

memlimit
+

T (i)

lowerbound
(5.8)

WhereM(i) is the current memory requirement and T (i) is the current makespan.
Beta needs to be reduced for all clusters. When there is a very large memory
limit, β is more dependant on the makespan and therefore will be optimised for
makespan. It would be possible to, in stead of add, multiply the two different
components of β. This is not considered since the current algorithm gave very
good performance, as will be shown in section 5.1.6
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Algorithm Greedy-ClusterDivison(FMs, n)
B sort FMs on decreasing execution time
B determine lowerbound
Initialize M(i)← 0, T (i)← 0 for 1 ≤ i ≤ n
for all fm ∈ FMs do

for i = 1→ n do
determine M ′(i) and T ′(i) if fm would be added to cluster i
if M ′(i) ≤ memlimit then

βi = M(i)
memlimit + T (i)

lowerbound
else

βi =∞
end if

end for
determine k such that βk = min1≤i≤n βi
if βk =∞ then

return no solution
else

add fm to cluster k, calculate T (k)← T ′(k) and M(k)←M ′(k).
end if

end for
The algorithm sorts all the featuremap on decreasing execution time. This
is because on the end of the algorithm, only small changes are allowed. The
featuremap are considered one by one and added to the cluster where beta is
the lowest, thus decreasing the makespan and the memory usage.

Theorem 5.5 Greedy-ClusterDivison runs in O(m logm+mnl) with l the num-
ber of input featuremaps, m the number of output featuremaps and n the number
of clusters.

Proof Sorting m featuremaps can be done in O(m log (m)) using quick-sort.
To determine the lowerbound, it is necessary to find the largest featuremap
and to aggregate all the feautremaps. This is done in O(m). For each output
featuremap fm, and for each cluster i, the following is done: determine M(i)
and T (i) if fm would be added to cluster i. Determining M ′(i) is checking
which input featuremaps are not already used in cluster i. Using a boolean
array of size l to keep track of these featuremaps, this operation can be done
in O(l). Determining T ′(i) is done by adding fmsize to T (i), which takes
O(1). Determening βi is done in O(1). To keep track of the local minimum,
determening k is done inside the loop with an O(1) operation. In total the
runningtime of Greedy-ClusterDivison is O(m logm+mnl) �

Theorem 5.6 On a fully connected layer, Greedy-ClusterDivison produces the
optimal solution for memory usage and makespan

Proof When scheduling m featuremaps on n clusters by using the pidgeon hole
principle, there is a cluster that has at least dn/me jobs. If a cluster would
compute > dn/me featuremaps, the makespan of this solution would be larger
than if all the clusters calculate ≤ dn/me featuremaps. So the optimal solution
is when all clusters calculate ≤ dn/me featuremaps.
On a fully connected layer, all the featuremaps have equal execution time and
impose the same memory increase when they are added to a cluster. The greedy
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algorithm will add the featuremaps where βi remains the lowest, which is equal
to the cluster with the lowest number of featuremaps. This results that no
cluster will calculate more than ≤ dn/me and thus results in the lowest memory
and lowest makespan. �

5.1.5 Output bus
From the given cluster divison, the sequence of when clusters can write on
the bus has to be determined. Recall that this sequence is required to ensure
deterministic output order.
Given a certain set of jobs for each cluster, the order in which clusters need the
bus needs to be determined. In figure 16 there is an execution timeline of 3
rounds (green,white,green) of 9 jobs, with red meaning writing on the bus.

Figure 16: Execution timeline of 3 rounds of 9 jobs

A greedy approach to reduce idle time is determines the first come first serve
order. This order can be computed with the following algorithm:

Algorithm Create-Bus-Order(C)
Initialize empty list L
for all c ∈ C do

t← 0
for all fm ∈ c do

t← t+ fmtime

L← L ∪ (t, c)
end for

end for
B sort L increasing
return second(L)

Theorem 5.7 The running time of Create-Bus-Order is O(m log(m)), with m
the number of output featuremaps

Proof Every fm is added to a single cluster. For every fm there is a calculation
that can be done on O(1), and adding an item to a list that can be done in O(1).
The size of list L is equal to Ω(m). Sorting L can be done in O(m log(m)) using
quick-sort.

In the example networks, the output bus does not impose a sizeable problem:
the computation time is much larger than the required bus time and this results
in a high probability that the bus can be directly used.
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speed-sign round-robin greedy solution brute force
layer 1 50 50 50
layer 2 500 450 450
layer 3 - 2400 2400
layer 4 800 800 800
face round-robin greedy solution brute force
layer 1 50 50 50
layer 2 84 84 84
layer 3 - 80 80
layer 4 75 75 75

Table 5: Execution time in cycles of different scheduling algorithms, with the
bus, with 8 PEs, 8 Clusters, and miminum memory size

5.1.6 Algorithm results
Results from comparing the polynominal time algorithm to two different al-
gorithm is shown in table 5. The round-robin algorithm schedules the first
featuremap on the first cluster, the second on the second, etc. The brute force
solution tries all the possibilities.
The greedy solution works better than the round-robin schedule: the round-
robin schedule does not find a schedule for layer 3 of both networks. This is
because the round robin schedule does not take the memory constraint into
account. In layer 3 of Speed-Sign Recognition Network, the mapping generated
by round-robin will require that all clusters require all the input featuremaps,
while the greedy solution maps it in such a way that the clusters require only
half the input featuremaps.
Comparing with the brute-force solution, it shows that the greedy algorithm
finds the best solution in all cases for the example network. That the algorithm
finds a solution for all layers with the minimum memory size is because the
minimum memory size is due to the fully connected layers. Using theorem 5.6,
these layers can be solved with the minimum memory size. Other layers require
less memory than these layers, making it easier to find a solution that fits.
The conclusion that can be drawn from these results is that the greedy solution
is better than a round-robin schedule and it produces results comparable with
a brute-force approach.

29



5.2 Compiler
This architecture should work without a general purpose processing unit. This
allows for the energy requirement of the whole system to be reduced. To support
this, control data is needed for different components of the architecture.
Depicted in figure 17 is a graphical overview of all the data that the compiler
produces.
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Figure 17: Overview of the toolflow of the compiler

5.2.1 Memory controller sequencer
The sequence files for the memory controller consist of a list of precomputed
memory addresses where data needs to be read from and stored. Research on
optimising the memory controller is done independently from this report.

5.2.2 Input sequencer
The input sequencer has the task to route the input to the correct cluster(s).
Each layer starts with data for all the clusters (kernel size, input size, etc.),
followed by individual cluster data (weight data, etc.). After this start-up phase,
colomns of featuremaps are presented on the bus. The order in which the data
data appears on the bus is deterministic and therefore the input sequencer is
also deterministic.
A graphical overview of the content of the sequence file is depicted in figure 18.
Every layer is converted to two sequences: one sequence for the startup phase
and a sequence for the input data. A sequence consists of several sequence ele-
ments: a sequence element consists of a repeat count (how many data elements
use this sequence element) and a cluster activation (which clusters need this
data). A complete sequence can be repeated multiple times.
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number of seqs length of seq repeat count repeat count cluster act.

seq element

repeat count cluster act. length of seq

sequence

...

seq element

...

Figure 18: Content of the sequence file

Lemma 5.8 The size of the input data for the input-sequencer is O(layers*(clusters*
(clusters + input featuremaps))

Proof Each layer has two sequences. The first sequence consists of 1 se-
quence element for every cluster. The second sequence consist of 1 sequence
element for every input feature map. A sequence element consist of a con-
stant size number and clusters bits. In total, the input data is equal to
O(layers*(clusters*clusters + clusters*input featuremaps)) �

5.2.3 Output sequencer
The output sequencer is the bus controller for the output bus. It tells which
cluster can write on the bus. This order is determined by the scheduler. The
output sequencer uses the same sequence file structure as the Input sequencer.

Lemma 5.9 The size of the input data for the output-sequencer is O(layers *
(clusters * output featuremaps))

Proof For every layer the output sequencer has an order in which clusters can
write on the bus. Since the output order is fixed, the sequence can be repeated
multiple times. A single sequence spans all the output featuremaps. And thus
results in a filesize of O(layers * (clusters * output feauturemaps)). �

5.2.4 Weights and cluster information
All the clusters need the following shared information:

• input height

• input width

• subsampling factor

• kernel height

• kernel width

• colomn height (this is for optimization, can be calculated from previous
values)

An individual cluster requires the following unique parameters:

• a connection matrix

• number of input featuremaps

• number of output featuremaps

• size of the weight data

• all the weight values
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The compiler generates this data in a single stream of data for every layer. By
using the startup sequence of the input sequencer, this single stream of data is
routed so that every cluster gets the correct individual cluster information.

5.2.5 Activation Function
The compiler will make a static Look-Up Table for calculating the activation
function. Quantisation of the activation function is used to generate the LUT
for the activator.

Figure 19: Example of an activation function φ(x) = 1/(e−x + 1) with LUT-
values in shown red
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6 Experimental results
To understand performance characteristics, it is required to do performance
analysis. To do this analysis of the new architecture, a cycle-based model is
used. This model is used to determine bandwidth requirement and to measure
throughput performance. The architecture is then compared with recent CNN
accelerators known in literature and with a consumer CPU and GPU.

6.1 Experimental setup
The number of cycles a certain convolution with a kernel size lkw ∗ lkh, subsam-
pling factor lss and n PEs, and a memory where it is possible to read ramwidth

bytes per cycle is modelled with the following equations:
Before the module can start on a new column, enough data needs to be loaded
into the shift registers, together with 1 weight value.
The required pixels to load is equal to n ∗ lss, since we have n PEs working on
the pixels with a subsample factor lss. The number of clockcycles it takes to
load this amount of data is equal to:

startUp0 = 1 + d(n ∗ lss)/bramwidthe (6.1)

Now data is loaded into the shift registers, the computations can start. To
compute the rest of the colomn, an additional lkh − 1 bytes are needed to load
into the pixel shift registers. In a single clockcycle, it already loaded bramwidth

2

weight values (since a weight value is two bytes). So still (lkh − bramwidth

2 ) ∗ 2)
bytes of weight values is required for the complete colomn. This results in the
following equation for the number of cycles of computing a colomn.

colT ime = d(lkh − 1)/ramwidthe+ d(lkh −
bramwidth

2
) ∗ 2)/bramwidthe (6.2)

With use of double buffering, idle cycles of the previous round can be used to
load data for the next column. So the number of startUp cycles it takes for the
next colomn is given by:

startUpn = max(0, (startUp− (lkh)) (6.3)

Combining all the previous results, results in the following formula that com-
putes the number of cycles is take to do a convolution on a module:

startUp0 + ((lkw − 1) ∗ startUpn) + (lkw ∗max(colT ime, lkh)) (6.4)

First of all it is determined how many cycles it takes before every cluster can
start with the convolution, based on the required individual cluster information.
The model assumes that clusters can buffer the number of values from the
connection matrix that can be read in a single clock cycle.
Then the number of cycles it takes to calculate all the convolutions and put the
results on the bus is determined by simulation of a timeline, assuming a MACC
operation can be done in a single clockcycle. This process is repeated for all the
layers. The model assumes that the memory controller can read and write data
from the fifo’s every clockcycle.
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6.2 Scalability
In this section the behaviour of the architecture is analysed with different mem-
ory bandwidths and with different configurations. This will show the character-
istics of the architecture.

6.2.1 Memory bandwidth
To understand the memory bandwidth requirements of the new architecture,
scalability with respect to the width of the input bus is tested. Latencies of
the memory controller are neglected, every clock cycle new input data can be
read from the input fifo. Using an architecture with 16 clusters with 8 PEs, the
execution time of both example networks is given in figure 20.

Figure 20: with 16 clusters with 8 PEs

The simulation shows that the Face Detection Network requires a higher memory
bandwidth in comparison with the Speed-Sign Recognition Network. While the
speed-sign network achieves maximum performance with an input bus width
of 2 bytes, the face detect network requires an input bus width of at least 4
bytes to achieve maximum performance. The required memory bandwidth is
dependent on the number of clusters and PEs. With only 8 clusters of 2 PEs,
a bus width of 1 byte is already sufficient to obtain maximum performance for
the Face Detection Network.

At 100MHz an input bus width of 1 bytes results in a bandwidth of 100 MB/s.
This is not exactly the same as the required bandwidth from the external mem-
ory: To route the date correctly to the clusters, data from at most a single
feature map can be send. If the height of the column can not be exactly divided
by the bus width, padding is used.
Without reuse of data, the Speed-Sign Recognition Network would require
52GB/frame and the Face Detection Network would require 2.7GB/frame. To
be able to solve the Face Detection Network at the same speed, this would
impose a memory bandwidth of 97.5GB/sec.
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(a) Speed-Sign Recognition Network (b) Face Detection Network

Figure 21: Scalability results of both networks

Layer 16 clusters 32 clusters Reduction
layer 1 6.628.072 6.628.072 0%
layer 2 9.776.265 9.776.265 0%
layer 3 45.516.888 27.322.827 40%
layer 4 13.00.789 13.009.789 0%

Table 6: Comparison of 16 and 32 clusters with a single PE per cluster

6.2.2 Computational performance
To test if the architecture scales well with more PEs and clusters simulations
are performed. Numerous configurations of PEs, clusters and PEs per cluster
are tested. Results from these test are shown in figure 21. In this test, the input
bus was sufficiently large and the local memories have a width of 4 bytes.
From the results Speed-Sign Recognition Network in figure 21a show that the
performance increment between 8 and 16 clusters is much larger than from 16
to 32 clusters. To determine the cause of this, the cycle-count is split op per
layer in table 6. Only layer 3 has an advantage of increasing the number of
clusters to 32 because layer 3 is the only layer with more than 16 featuremaps.
This same problem occurs in the results of Face Detection Network in figure
21b. There is increase in performance going from 16 clusters to 32 clusters.
Since a featuremaps can only be computed by a single cluster, with the 32
cluster configuration more than half of the clusters are idle. A solution to
increase parallelism when there are more clusters than featuremaps is described
in section 8.1.
Overall, increasing the number of clusters and the number of PEs per cluster,
decreases the number of cycles. For the Speed-Sign Recognition Network going
from a configuration with a single cluster with a single PE to a configuration
with 4 clusters with 4 PEs increases the performance with a factor 14.5 with
16× the number of PEs. For the Face Detection Network this increase of PEs
results in an increase in performance of factor 12. For more clusters and PEs the
increment decreases, because of the limited featuremap parallelism and because
it is harder to evenly divide the work over multiple clusters.
Increasing the number of PEs per cluster does not scale completely linear; the
PEs use the same BRAM, which has a limited bandwidth.
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6.3 Design Space Exploration
In figures 22 and 23 results are shown with sorted execution time with different
configurations, all with a bus width of 4 bytes. The configurations where no
other solution exists with less or equal number of PEs but with a lower execution
time (so called Pareto points) are circled gray. These pareto points are depicted
in table 7. An interesting trend in this data is that the pareto points of the
Speed-Sign Recognition Network has more clusters, while the Face Detection
Network pareto points have more PEs per cluster. This is because the Face
Detection Network has less featuremap parallelism. The first layer consists of
only 4 featuremaps. Increasing performance on this layer can only be achieved
by adding more PEs per cluster when 4 clusters are used.

Figure 22: Different configurations for the speed sign network

Figure 23: Different configurations for the face detection network
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PEs SS Config Face Config
1 1C, 1P 1C, 1P
2 2C, 1P 1C, 2P
4 2C, 2P 1C, 4P
8 4C, 2P 2C, 4P
16 4C, 4P 4C, 4P
32 8C, 4P 4C, 8P
64 16C, 4P 4C, 16P
128 16C, 8P 8C, 16P
256 16C, 16P 8C, 32P
512 32C, 16P 16C, 32P
1024 32C, 32P 32C, 32P

Table 7: Parato points of different number of PEs

To show flexibility of the configurations, PE utilisation with multiple configu-
rations is calculated for both example networks, this is depicted in figure 24.
Results show that the utilisation for both network stay in the same order of
magnitude, mostly differing less than a factor of 2. With less then 4 clusters,
they defer less than 25%.
Overall, it is clear that the same configuration can be used for both networks,
showing the flexibility of the architecture.

Figure 24: Utilisation with different configurations
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6.4 Comparison with other CNN accelerators
There are two CNN accelerators that support multiple networks known in lit-
erature. It was not possible to obtain an implementation for both accelerators.
To compare the performance of their implementation, the required bandwidth
and number of computations is modelled.

6.4.1 NeuFlow
The New York University’s Computational & Biological Learning Laboratory
has developed NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vi-
sion. [13].
The NeuFlow consists of a grid of processing tiles (PTs), a “Smart DMA” and
a controller. Between the PTs there is a runtime reconfigurable communication
network.
LuaFlow is the compiler for neuFlow, which parses the input, extracts different
levels of parallelism and generates the configuration for the system.
In their experimental result they achieve a rate of 147 GMACS, around 92% of
the maximum performance with a 9×9 kernel. This result is somewhat biased,
normally networks have various kernel sizes.

Figure 25: Running a part of the network on the neuflow

To make the Speed-Sign Recognition Network work on the NeuFlow processor[13],
the graph needs to be divided into subgraphs that fit on the grid. Each Pro-
cessing Tile of the grid can do a single convolution. To be able to solve the
convolutions of the network, each Processing Tile must consists of at least 25
PEs to be make the convolutions of kernel sizes of 5×5 possible.
Synthesizing NeuFlow on the ZedBoard results in a maximum of d 22025 e = 8
Processing Tiles. With one tile needed for adding results and one for doing the
activation function, it is possible to do a maximum of 6 convolutions in parallel.
If the NeuFlow can not store intermediate values, at least 80 processing tiles
are needed to do the convolutions, since there is a layer with 80 featuremaps,

38



computations (106) data (106 bytes) cycles (106) bandwidth (MB/s)
layer 1 137 0.9 0.91 98
subsampling 0.91 21.9 0.04 54700
layer 2 331 13.47 2.21 610
subsampling 14.3 57.4 0.59 9729
layer 3 866 53.8 5.77 932
layer 4 40 79 6.67 1184
total 1389 265 16.19 54700

Table 8: Results of running Speed-Sign Recognition Network on the NeuFlow

so I assume it can store intermediate result in the off-chip memory. Further-
more, their subsampling technique requires more computations by splitting the
subsampling and the convolution in to two separate layers.
Table 8 8 shows the results of running the Speed-Sign Recognition Network on
the NeuFlow. In the third layer and fourth layer, all featuremap have too many
input featuremaps, this can not b edirectly solved, and it therefore requires
storing intermediate values on the external memory. Only reading this interme-
diate values from the memory is considered in the table. Overall, the reuse is
much less because NeuFlow requires that the convolutions need to be calculated
completely parallel, making in only possible to reuse data for a maximum of 5
convolutions.
Layer 4 has a kernel of size 1×1, resulting in a maximum utilisation of 1

25 of
the PEs. Therefore the computations of layer 4 takes even longer than the
computations of layer 3.
The NeuFlow can calculated the Speed-Sign Recognition Network in 161ms at
100MHz, almost equally fast as the new architecture (146ms). But to be able
to achieve this number, a bandwidth of 54.7GB/s is required. In comparison,
my architecture only requires 9.9MB of data from the external memory from
this network, a reduction of 26×. The highly required memory bandwidth is
not feasible on a mobile platform. When this is used on a mobile platform, a
memory with a lower bandwidth is used. This will increase the computation
time.

6.4.2 Massively Parallel Coprocessor
NEC Laboratories America presents a massively parallel coprocessor for acceler-
ating Convolutional Neural Networks [11] and make it dynamically configurable
[12].
The coprocessor consists of computational elements that consists of programmable
units that can perform sub-sampling, non-linear functions and convolution prim-
itives (convolvers). The number of convolvers per computational element and
the number of computational elements is dynamical configured per layer. If
all output images do not require the same number of convolutions, there will
be disabled convolvers. If not enough convolvers are available computational
elements will produce partial results that need to be stored on off-chip memory.
The k×k convolvers primitive has a fixed k across the coprocessor, and fixed at
the hardware level. This result in not fully utilized PEs, when computing for
kernel sizes smaller than k. Computational elements can simultaneously use the
same input image, resulting in less off-chip memory requests.
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Figure 26: The design of the convolution-hardware of the Massively Parallel
Coprocessor

layer config computations (106) data (106 bytes) cycles (106) bandwidth (MB/s)
layer 1 2×4 137 0.9 0.68 132
layer 2 2×4 331 8.2 2.0 410
layer 3 1×8 866 34.6 5.77 599
layer 4 1×8 40 56.5 6.67 847
total 1374 132.2 15.12 847

Table 9: Results of computing Speed-Sign Recognition Network on the Massive Parralel Coprocessor
.

With the dynamically configurable coprocessor[12], the number of convolutions
per featuremap and the number of featuremaps in parallel can be configured.
To be able to solve the Speed-Sign Recognition Network on this implementation,
convolvers should support kernel sizes up to 5×5, making 8 convolvers possible
at the ZedBoard.
Since there is a sub-sampling primitive, sub-sampling can be done on the fly.
Results of computing the Speed-Sign Recognition Network on the Massive Par-
allel Coprocessor are depicted in table 9. The coprocessor requires a factor of
13 on data, resulting in a required memory bandwidth of 847 MB/s to achieve
maximum performance. The coprocessor requires 151ms to compute the result.
The massive parallel coprocessor shows some flexibility, but still require a large
bandwidth. If we would run two applications on the Massive Parallel Coproces-
sor, where the second application uses a 8×8 kernel, only 3 convolvers would be
possible on the ZedBoard, reducing the total performance and reuse possibilities
of the system.
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6.5 Comparison with consumer hardware
In this section a comparison will be made between the new architecture on a
FPGA, with a CPU and CPU implementation. The Speed-Sign Recognition
Network will be calculated, and the execution time and power usage will be
measured.

6.5.1 FPGA implementation
To be able to determine energy usage of the new architecture, I have imple-
mented parts of this architecture. The bus and the connection matrix parser
are left out of this analyses.
I have synthesized 16 clusters with 8 PEs on the ZedBoard, consisting of a Zynq-
7000 SoC XC7Z020-CLG484-1. The estimated execution time of the speedsign
recognition network or this configuration at 100MHz is equal to 146ms per
frame (achieving 57% utilisation of the PEs with 7.4 GOPSs). The hardware
requirements of the synthesation are give in table 10.

BRAM slice Registers Slice LUTs DSPs
Input sequencer 1 97 390 0
Output sequencer 1 97 390 0
Clusters 32 2592 5808 128
total 34 (24%) 2786 (3%) 6588 (12%) 128 (58%)

Table 10: Different parts and their hardware requirement

Using Xilinx XPower Analyzer to model the power usage of different compo-
nents, table 11 is obtained.

Part Power
Block RAM (16x) 0.02672 W
Shift registers (16x) 0.01936 W
PEs (256x) 0.13056 W
Input sequencer 0.08046 W
Output sequencer 0.08046 W
Total 0.3376 W

Table 11: Power distribution of different components

Parts of the architecture are not modelled, so the resulting power requirement
of 0.34 Watt of table 11 is optimistic. The total specified operating power of the
XC7Z020 is equal to 3 Watt. [20]. That estimated operation power also include
the ARM CPU, which is not used with this architecture.
Using the pessimistic number, the required energy for calculating for a single
videoframe is equal to:

3 Watt ∗ 0.146 seconds = 0.438Joule (6.5)

Using the optimistic power usage, it will require 0.049 Joule. The energy re-
quirement will lie between these numbers.
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6.5.2 CPU implementations
A fully optimized, with SSE and multithreading, implementation has been
made. With 8 threads this implementation requires 0.081 seconds per frame
on the Intel Core i7 3610QM, 2.3GHz. Using Intel Power Gadget[21] it is mea-
sured that the core dissipates a total 31.6 Watt when running calculations. The
power usage of the DRAM is not calculated, so it is a bit optimistic.

31.6 Watt ∗ 0.081 seconds = 2.5596 Joule (6.6)

6.5.3 GPU implementation
A fully optimized GPU implementation is made in nVidia CUDA. Running this
implementation on the GTX460 results in a execution time of 0.0106 seconds
per frame. The GTX460 uses 138 watt[22] under full load. The total energy
usage per frame is equal to:

138 Watt ∗ 0.0106 seconds = 1.47J

6.5.4 Comparison overview

Power Usage Energy Usage Speed
GPU 138 W 1.47J 94.3 fps
CPU 31.6 W 2.56J 12.3 fps
Accelerator (pessimistic) 3 W 0.44J 6.8 fps
Accelerator (optimistic) 0.34 W 0.049 J 6.8 fps

The power consumption of mapping to the zedboard indicates a reduction of
3− 30× compared with a GPU implementation, and 6− 52× compared with a
CPU implementation. Because of the lower power usage, the accelerator can be
used in an embedded environment.
The accelerator achieves 6.8 fps, because the number of calculations is very large
due to the usage of HD video. The ZedBoard is a small FPGA; using a larger
FPGA with more DSPs increases the speed, With the same order of energy
usage per frame, the quality of the videa can also be downscaled to VGA by
decreasing the number of computations by a factor 4.
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7 Conclusion
This study shows that it is possible to achieve good compute throughput with
a flexible SIMD architecture on CNNs. To overcome external bandwidth lim-
itations, iteration reordering is used in combination with a dedicated memory
hierarchy that reduces the transfer bandwidth substantially. The complicated
scheduling, which requires to map a network on the architecture, is handled
by an optimizing toolflow. As a result, high utilisation rates are achieved for
different network configurations, in contrast to other designs that are specific
for particular network configurations. This claim is verified with two very dif-
ferent network configurations. Although this architecture is more flexible, the
energy efficiency the same. This is achieved by a substantial reduction of exter-
nal memory transfers and doing the scheduling offline. The results of this study
make it possible to map a CNN based vision application to low cost devices.
As a result many vision applications that require object recognition can be per-
formed on these low cost embedded platforms. This can improve the use of
smart vision systems in daily life, which increases safety, efficiency and comfort
during various tasks.
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8 Future work
Due to time pressure, there is some research left to be done. This section consists
of two key ideas improving the performance and flexibility of the architecture.

8.1 Network splitting
When the number of clusters is more than the maximum number of featuremaps
in a layer, there will be idle clusters. This reduces the utilisation and therefor
the performance. A solution to this is to split the network into two networks.
One network working on the top half of the CNN, the second network working on
the bottom half CNN. This solution increases the amount of cluster parallelism,
but it does come at a price:

• double the amount of weight values are needed

• the amount of work and data increase because of the boundary problems

• the input must be splitted

• the output must be merged

Using this technique on the Face Detection Network yiels the following increases
in calculations:
normal splitted increase
1x720x1280 2x378x1280 5.0%
4x358x638 4x2x186x638 3.9%
14x177x317 14x2x91x317 2.8%
14x173x313 14x2x87x313 0.5%
1x173x313 2x87x313 0.5%

With more layers, the amount of input data required will increase even more.
In future work this approach can be added to the toolflow.

Figure 27: Splitting the network to increase parallelism

8.2 Memory adder
To support larger networks that do not fit into local memory, layers of the
network can be split up into two (or even more) sublayers. The resulting pixels
from the featuremaps can not be ready to go trough the activation fuction.
In that case, intermediate values with large precision are transferred from the
clusters to the memory controller. When all the partial results of a featuremap
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are available in the global memory, an extra piece of hardware in the memory
controller will combine the partial answers and will do the activation function.
An example of this flow is depicted in figure 28.

split

+

=

add

Figure 28: Splitting the network to decrease local memory requirement

This solution should be compared with the more trivial solution: copying inter-
mediate values back to the clusters.

8.3 Hardware implementation
A complete hardware implementation is left to be made. By using this hard-
ware implementation real power usage can be measured. This implementation
requires engineering and can be done using the research of this report.
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List of nomenclature
lss the subsampling factor of layer l

lwidth the width of the output featuremaps of layer l

lheight the height of the output featuremaps of layer l

lkw width of the kernel of the convolution of layer l

lkh height of the kernel of the convolution of layer l

fmconn the number of incoming connections of featuremap fm
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