
 Eindhoven University of Technology

MASTER

Model-based design of systems running software defined radios

Waqas, U.

Award date:
2012

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b03f380b-7e43-4f9d-902f-3fc00579604c

Model-based design of systems
running software defined radios

Master’s Thesis

August 2012

Author:

Umar Waqas (0758262)

Supervisors:

dr. ir. Sander Stuijk (Eindhoven University of Technology)
ir. Peter Kourzanov (NXP Semiconductors)

EINDHOVEN UNIVERSITY OF TECHNOLOGY
NXP SEMICONDUCTORS

Abstract

Wireless communication has become an integral part of our everyday life. In order to
meet the current requirements of wireless operators and technology providers, Software
Defined Radios (SDRs) are used. SDR is a form of radio that performs the signal
processing in software. The requirements include flexible design, upgrade and reuse of
radios. In this thesis, we propose a model based design approach to develop SDRs.
Specifically, we present constructs to model the digital baseband processing in an SDR.
As a case study, we model a Digital Video Broadcasting Terrestrial (DVBT) decoder
over a heterogeneous Multi Processor System-on-Chip (MPSoC) which is MARS.

A typical SDR may have data and reception dependent operations referred to as sce-
narios during its operation. These operations have varying resource requirements. We
present constructs to model scenarios. Moreover, we identify the scenarios present in a
DVBT decoder. SDRs usually have a high data rate that requires efficient implemen-
tation and dynamic memory management. In this thesis, we describe how to model
one such implementation aspect, namely, packet pools. In a MPSoC, several masters
accessing a shared slave may interfere with each other. In order to take this interference
into account, we model the AXI based interconnect present in the MARS platform.

In this thesis, we propose a technique to reduce the complexity of an FSMSADF graph.
This technique reduces the number of initial tokens and/or the number of actors present
in an FSMSADF graph while preserving the timing behavior of the graph and decreasing
the analysis time. For experimental evaluation of the constructs presented in this thesis,
we developed a tracing framework and algorithms to compare traces generated from the
models with the traces generated from the actual system. Collectively, these constructs
contribute to the model based design of SDRs which in turn allows us to meet the
requirements of wireless communication and technology providers.

Acknowledgments

This thesis describes the work performed in a graduation project conducted at NXP
Semiconductors in approximately seven months. The graduation would have been very
difficult without inspiration, guidance and support from several people. I would like to
express my gratitude to them.

The foremost, I would like to mention Sander Stuijk, my supervisor at TU/e, who
introduced me to this project at NXP Semiconductors. During the tenure of the project,
he has always been a source of motivation and guidance. His keen supervision increased
the quality of the work performed and urged me to find better solutions. He helped me
to realistically plan the project activities and make practical decisions. It has been a
privilege to work with him.

I would like to thank Peter Kourzanov, my supervisor at NXP Semiconductors for
several lengthy but fruitful discussions. I appreciate his valuable feedback on the tools
and techniques developed in the project. He motivated me to go beyond the horizon
and explore things further.

I appreciate the guidance from Artur Burchard on understanding the architecture of the
MARS platform. His explanations clarified several architectural concepts. I would like
to thank Hong Li for several discussions on the operation of a DVBT decoder. He always
answered my questions on an urgent basis providing detailed explanations. I appreciate
the support from David Riemens for explaining concepts related to the MARS SDK. I
appreciate his efforts for arranging a MARS board and for setting it up.

I appreciate the coffee break discussions with Luuk Loeffen. He always provided food for
thoughts. I appreciate suggestions from Sunil John for the tracing framework designed
in the project. I would like to thank him for providing valuable feedback on my presen-
tations. I would like to thank Ruxandra Bobiti and Salman Shafqat for proof reading
this thesis and for cooking for me in the busy times during the project. Finally, I would
like to appreciate the support from my family and friends. Without these contributions,
it would have been more difficult to achieve the current form of the project.

Contents

Contents ii

1 Introduction 1

1.1 Radio: the past, present and future . 1

1.2 Motivation . 2

1.3 Software defined radios . 3

1.3.1 DVBT decoder . 4

1.4 Bus based systems-on-chip . 6

1.4.1 Architecture of the MARS platform 6

1.5 Model based design and challenges in designing SDRs 8

1.6 Contributions . 9

1.7 Report overview . 9

2 Overview of the Design Approach 10

2.1 Goals . 10

2.2 Challenges . 11

2.3 Conclusion . 12

3 Dataflow Preliminaries 13

3.1 Synchronous DataFlow Graphs . 13

3.2 Finite State Machine based Scenario Aware DataFlow 15

3.3 Conclusion . 16

4 Modeling Software Defined Radios 17

4.1 Modeling digital baseband processing . 17

4.2 Modeling the AXI interconnect . 20

CONTENTS CONTENTS

4.3 Bounding FSMSADF statespace . 23

4.4 Related work . 23

4.5 Conclusion . 24

5 Reduction of FSMSADF Graphs 25

5.1 Motivation . 25

5.2 Reduction approach . 26

5.3 Max-Plus representation of HSDF graphs 27

5.4 Reduction . 28

5.5 Conversion to an HSDF graph . 30

5.6 Reduction of FSMSADF . 32

5.7 Related work . 32

5.8 Conclusion . 33

6 Trace Extraction 34

6.1 Motivation . 34

6.2 Challenges . 35

6.3 Architecture . 35

6.4 Tracing API . 36

6.5 Trace comparison . 37

6.6 Conclusion . 37

7 Case Study 39

7.1 SDF model of the DVBT decoder . 39

7.2 FSMSADF model of the DVBT decoder 43

7.3 Early evaluation and improvements . 45

7.4 Bottlenecks in the approach and the model 47

7.5 Upper and lower bounds for the DVBT decoder 49

7.6 Comparison of the DVBT model trace with the system trace 50

7.7 Conclusion . 50

8 Conclusion and Future Work 51

8.1 Conclusion . 51

8.2 Future work . 52

Bibliography 54

iv

CONTENTS CONTENTS

A Reduction of AXI models 57

B Modeling packet resizers in a DVBT decoder 58

v

Chapter 1

Introduction

Over the last few decades, technology has influenced how we disseminate information.
The invention of telegraph, telephone, radio and television has laid the foundations for
modern day communications. With these advances in technology, communication got
better, faster and more reliable. Modern day communication allows seamless connec-
tivity, high transfer rates, reliable and secure transmission for both short range and
distant communication.

Wired and wireless communication are two broad types of communication. In general,
wired communication is faster and more reliable than wireless communication but facili-
tates fixed point communications only. Wireless communication is suitable for nomadic,
mobile and distant communication. In the sequel, we refer to the devices that wirelessly
communicate as radios. With the evolution of wireless communication, it gradually be-
came an integral part of our everyday life. In the following section, significant inventions
during the evolution of wireless communication are described. Section 1.2 presents the
motivation behind this thesis. In Section 1.3 software defined radios are introduced.
Section 1.4 introduces bus-based systems-on-chips. The contributions of this thesis are
described in Section 1.6. In Section 1.7, the organization of this thesis is described.

1.1 Radio: the past, present and future

The photophone is considered as the first operational wireless communication device.
Articulated sounds were transmitted using photophones between two points that were
200 meters apart. Increasing the range, improving the reliability and standardization
were important objectives of the inventions succeeding the photophone. Figure 1.1
presents significant inventions during the evolution of wireless communication, focusing
on scientific, commercial and public successes.

In 1927, it became possible to wirelessly communicate between the US and Britain. This
marked a significant increase in the range of radio as well as it indicated the ease of access
to the technology. In 1962 the placement of Telstar into orbit facilitated transatlantic
reception of a television feed. From commercial to personal use, the radio was emerging
and spreading across the globe as a key enabler of the kind of wireless communication

1

1.2. Motivation

2010

CRAMENET:

First call placed

using cognitive

radio

1987

CEPT: European commission

agrees to deploy GSM

across 15

European countries

2003

Digital TV

broadcast

starts in Berlin

1993

Bell Labs launches

DSP1616 digital

signal processor

1994

PAN: Ericsson

develops Bluetooth

1946

Push-to-Talk

invented for

In-car radio

communications

1991

First GSM call

placed by Finnish

prime minister

Graham Bell invents

Photophone

251880

1927

First commercial

radio telephone

operated between

US and Britan

2009

LTE networks

deployed

in Sweden

1977

AMPS: Cellular phone

system installed in US

1962

Telstar: First communication

satellite placed into orbit

2001

BBC radio

services

digitally available

in London

2007

Apple: launches

iPhone

1996

CDMA

launched

In US

2011

ETSI:

Efforts to

standardize

SDR and CR

across Europe

1994

SpeakEasy:

First SDR
1950

TD-2: First terrestrial

microwave system connecting

2400 telephones

Figure 1.1: The evolution of radio over the last century.

man had ever dreamed of. The quality and coverage of wireless communication had
a significant impact on the (commercial) success of radios. Advanced Mobile Phone
System (APMS) was designed and deployed in US to provide better (compared to
0G systems) coverage and quality of wireless communication. GSM introduced digital
circuit switching techniques in wireless communication that led to transmission of digital
data along with articulated sounds. Eventually, in 1991, GSM became operational across
Europe.

Wireless communication incorporates several signal processing techniques which make
the connectivity possible. Different wireless communication standards perform the re-
quired signal processing differently. As the radio evolved; new standards emerged. It
became infeasible to design a new integrated circuit to perform signal processing for ev-
ery emerging standard. The SpeakEasy was the first radio in which the signal processing
was performed in software (described in Section 1.3). The British Broadcast Company
(BBC) started digital radio transmission in London in 2001. Similarly, digital TV trans-
mission started in Berlin in 2003. Digital processing techniques were now an integral
part of many wireless communication standards. Cognitive radio, a type of radio that
is intelligent, is an active research topic in the field of wireless communication. A cog-
nitive radio considers the user behavior and its environment during its operation. For
example, it is able to sense the interference, the available standards and the carrier state
in order to communicate. Software defined radios (SDRs) are key enablers of cognitive
radios. With the standardization of cognitive and software defined radios, the wireless
communication will enter an era where the radios are intelligent and efficient.

1.2 Motivation

Wireless operators and the technology providers need to cope with an increasing de-
mands for high data rates and enhanced quality of communication while reducing the
cost of consumer products. Innovations and improvements in the technology increase
the quality of wireless communication resulting in new wireless communication stan-
dards [AAG+11]. SDR brings in the flexibility to upgrade a device that implements an
existing standard and the addition of new standards to a device, by downloading im-
proved software to the device. Thus SDR enables an existing device to upgrade to a new
standard (by reconfiguration), where in case of a complete hardware implementation, it
would have been required to redesign the hardware.

2

1.3. Software defined radios

()()
()()

Transmitter

Receiver
Processing

unit
Display

SDR

Figure 1.2: An example of an SDR.

Model based design allows to evaluate the design choices without implementing the
system (completely). Model based design of SDRs will facilitate designers to analyze
implementations of SDRs during the early design phases. Moreover, for existing sys-
tems, model based design allows to identify potential improvements by early evaluation
of design decisions. For example, it allows to assess the feasibility of adding more appli-
cations to the system, analyze the resource utilization and identification of bottlenecks
present in the system. These improvements either reduce the system cost or allow effec-
tive use of the existing resources contributing to fulfillment of the requirements of the
wireless operators and the technology providers. In this thesis, we provide constructs
to model SDRs over bus based system on chips thus contributing to model based design
of SDRs.

1.3 Software defined radios

Software defined radio (SDR) is a type of wireless communication that implements all or
part of the signal processing techniques in software. Figure 1.2 presents an example of
an SDR based digital television (TV). The transmitter broadcasts the TV signal which is
received by the receiver. The receiver digitizes the signal and passes it to the processing
unit. The processing unit performs digital baseband processing which generally consists
of 1) filtration 2) (de)modulation and (de)coding. As a result of the digital baseband
processing, the TV feed is extracted and displayed.

Figure 1.2 is a primitive example of an SDR. An SDR based system usually has 3
components: 1) an analog-digital front end, 2) a processing unit and 3) an input-output
subsystem. The front end serves as an interface facilitating wireless communication. The
processing unit performs the signal processing. The type of input-output device depends
on the application for which the SDR is designed. For instance, in case of a visual feed,
the output device is a display terminal. In case of an audio feed the output device is
typically a speaker. However, the input-output subsystem can be any other application
specific system e.g a fax machine. Moreover, according to the application requirements,
the number of front ends, processing units and the input-output subsystems may vary.
In the sequel we refer to this component based model of SDRs as the conceptual model
of SDRs.

Figure 1.3 illustrates the layered processing in a typical SDR [BHM+05]. The first layer,
radio frequency - intermediate frequency (RF-IF) is a front end. The incoming signal is
converted to a stream of digitized data by the analog-to-digital converter (ADC). The
digital stream is passed to the digital baseband processing layers. The filters usually
remove unwanted frequencies and suppress noise present in the signal. The filtered
data is then demodulated by the modem. Subsequently, the data stream is decoded
by the codec and handed over to the application for further processing. In case of a
transmission, the sequence starts in the reverse order from the application layer towards

3

1.3. Software defined radios

IF
-R

F

A
D

C

F
ilt

e
rs

D
A

C

M
o

d
e

m

C
o

d
e

c
 –

 (
d

e
)

m
u

x

A
p

p
lic

a
ti
o

n

Control

Digital baseband

processing
Signal processing Application specific

processing

Figure 1.3: The architecture of a crude SDR [BHM+05].

the transceiver as is also illustrated in Figure 1.3.

1.3.1 DVBT decoder

Digital Video Broadcasting Terrestrial (DVBT) [DVBa] is an international standard for
broadcasting of digital television feeds. Since its inception, DVBT has become one of
the most widely accepted digital video broadcasting standards [DVBb]. In this section
we introduce the operation of a typical DVBT decoder. However, for theoretical details
about the DVBT standard, we refer the reader to [DVBa].

Figure 1.4 presents the block diagram of a typical DVBT decoder. The incoming signal,
that is received by the signal processing component (dashed blocks), is processed by the
Automatic Gain Control (AGC) that adjusts the signal (e.g amplitude) according to the
signal strength. This adjusted signal is then digitized by the Analog-to-Digital Converter
(ADC). The digitized signal is input to the digital baseband processing (non-dashed
blocks). FFT synchronization is the first operation performed in the digital baseband
processing layer of a typical DVBT decoder. Based on the input, this operation com-
putes the transmitter characteristics, for example, size of the FFT window, fractional
part of the Carrier Frequency Offset (CFO) (i.e. the crystal clock difference between
the transmitter and receiver) and the OFDM symbol timing. The input data along with
the estimated characteristics is used to perform a Fast Fourier Transform (FFT) that
converts the input signal from the time domain to the frequency domain. Using the
converted signal, the CFO operation computes the integer part of the CFO. A DVBT
transmitter can operate in many transmission modes [DVBa]. Moreover, due to the
possible existence of multiple paths of the signal traverses between the transmitter and
receiver, and the mobility of the transmitter or receiver, the so called Doppler compen-
sation and channel equalization needs to be performed. Collectively, these operations
are referred to as channel estimation.

In order to extract the modulation and channel coding configuration, Transmission Pa-
rameter Signaling (TPS) bits are encoded by the transmitter in the OFDM symbols.
The TPS decoding operation decodes these TPS bits. In an OFDM symbol, the data
carriers contain the data bits that are mapped using Quadrature Amplitude Modula-
tion (QAM) or Quadrature Phase-Shift Keying (QPSK). The QAM/QPSK demapping
operation demodulates these data bits which are interleaved by the transmitter in order
to support long burst error correction. The Inner deinterleaver operation deinterleaves

4

1.3. Software defined radios

FFT

synchronization
FFT

CFO

estimation

Viterbi

decoding

Outer

deinterleaving

Reed

solomon

decoding

descrambling

Channel

estimation

TPS

decoding

signal

Demapping
Inner

deinterleaving

MPEG-2

stream

AGC ADC

digitized

signal

Application

specific

processing

Figure 1.4: Block diagram of a typical DVBT decoder [YWC, DVBa].

Decode

IQ

ACQ

CFOSync

Figure 1.5: FSM representing scenarios present in a typical DVBT decoder.

the data bits that are convolutionaly decoded using Viterbi decoding. The bit stream
obtained after Viterbi decoding is rearranged as bytes by the Outer deinterleaver. This
byte stream is further processed by the Reed Solomon decoding and subsequently De-
scrambled. Finally, the transport stream (multiplexed MPEG-2 stream) is handed over
to the application for application specific processing.

The DVBT decoder implemented on the MARS platform operates in five scenarios
during its execution1. Figure 1.5 presents these scenarios along with their transitions.
Initially, the decoder is in the IQ scenario. In this scenario the decoder estimates the so
called In-phase and Quadrature-phase (IQ) imbalance to obtain the channel response.
This estimation is performed by the FFT synchronization block. Note that in each
scenario, the DVBT decoder may require many OFDM symbols (depending on the
carrier state) to perform its computation and switch to the next scenario. Once the IQ
balance is estimated, the DVBT decoder switches to the ACQ scenario. In this scenario,
the Acquisition (ACQ) is performed to find the OFDM symbol boundary, the FFT
window size used by the transmitter, and the cyclic prefix length. ACQ is performed
by the FFT synchronization block. Once all parameters are found, the DVBT decoder
switches to the next scenario i.e. CFO. In this scenario, the Carrier Frequency Offset
(CFO) is computed by the CFO block. Once CFO is estimated, the DVBT decoder
switches to the SYNC scenario. In this scenario, the DVBT decoder estimates the
so called time tracking parameter e.g. common phase estimation, frequency tracking
etc. This estimation is performed by the channel estimation and TPS decoding blocks.
Once the parameter estimation is complete, the DVBT decoder switches to the decode
scenario in which the demapping and subsequent blocks start decoding the incoming
MPEG stream.

1The terms ‘scenarios’ and ‘operating modes’ are sometimes used interchangeably. However, we
reserve the term ‘operating mode’ exclusively for the set of transmission modes used in the DVBT
transceiver. The term ‘scenario’ is used to refer to the distinct execution behaviors when executing in
a particular operating mode.

5

1.4. Bus based systems-on-chip

CPU

M

memory

S

arbiter decoder

DMA

M/S

memory

controller

S

arbiter decoder

bridge

tile

I

tile

I

C

(a) (b)

Figure 1.6: An example of a bus based SoC.

1.4 Bus based systems-on-chip

A bus is a group of wires used to transfer data between several components present in
a system. Due to its simplicity and low cost, bus based communication is one of the
most widely used communication architecture in embedded systems.

Figure 1.6 (a) presents a bus based Multi Processor System-on-Chip (MPSoC) tem-
plate. This template consists of 3 components, a tile, an interface (denoted as I) and a
control component (denoted by C). The interface and the control components facilitate
connectivity between tiles. Figure 1.6 (b) provides an example of a SoC based on the
template. It consists of 4 tiles. The CPU tile consists of a central processing unit. The
CPU tile is connected to the bus through the master interface (M). A master is an
interface that initiates the transfers over the bus. On the other hand, a slave interface
(S) only responds to the incoming requests and cannot initiate transfers. For example,
the memory tile is connected to the bus through the slave interface. A hybrid interface
is a component that can act both as a master or as a slave. For example, the DMA
tile is connected through a hybrid interface (M/S). Moreover, a bridge interface compo-
nent is used to connect two buses. It acts as a hybrid interface connected on each bus.
An arbiter is a control component that decides who gets access to the bus to initiate
transfers. A decoder is a control component responsible to redirect the transfers to its
intended destination.

1.4.1 Architecture of the MARS platform

Multi Application Radio System (MARS) [MAR] is a bus based multiprocessor system-
on-chip (MPSoC). Figure 1.7 presents the hardware architecture of the MARS platform.
It consists of a digital front-end (DFE) that receives the data provided by an external
source (transmitter). In the MARS platform, there is an uplink that is capable to
transmit the data to an external receiver. Both the DFE and the uplink facilitate the
front end of the conceptual model of the SDRs (see Figure 1.3).

There are two vector digital signal processors (VDSPs) present in the MARS platform.
These processors facilitate the filtration and the modem layers of the digital baseband
processing (presented in Section 1.3). Moreover, these processors have two local mem-
ories (D0 and D1). The MARS platform contains a hardware accelerator i.e. FLORA
to accelerate the decoding layer of the digital baseband processing. The ARM proces-
sor present in the MARS platform is a general purpose processor that configures the
VDSPs and the FLORA accelerator. The ARM processor, the VDSPs and the FLORA
accelerator constitute the processing unit of the conceptual model of SDRs.

6

1.4. Bus based systems-on-chip

ARMFLORAVDSP

MARS

UPL SRAM SRAM

SDRAM
Host

USB

D0 D1

PIF2AXI

AXIs AXIm

AXIm AXIs

DFE VDSP

D0 D1

PIF2AXI

AXIs AXIm

AXIm AXIs

AXIs

AXIm

AXIs

AXIm

AHB2AXI AHB2AXI

AXIs AXIm

AXIsAXIm
Modem

interconnect

Application

interconnect

Figure 1.7: The architecture of the MARS platform.

There are two static random access memories (SRAMs) present in the MARS platform
that are used to store program instructions and data. Moreover, the MARS platform
also connects to an external synchronous dynamic random access memory (SDRAM).
The output of the MARS platform, i.e. a processed signal, is accessed by the host
system through the USB interface. In terms of the conceptual model of SDRs, the USB
interface acts as an interface to the input-output subsystem.

The components described so far were tiles. These tiles are connected using several
protocols from the Advanced Microcontroller Bus Architecture (AMBA) protocol suite
and the Processor InterFace (PIF) bus. A bus based interconnect groups several buses
together and provides standard interfaces to them. The MARS platform contains 2
64-bit Advanced Extensible Interface (AXI) bus based interconnects from the AMBA
3.0 protocol suite. One interconnect is responsible to transfer data across the modem
subsystem that comprises of the DFE, uplink, VDSPs, SRAM and the FLORA tiles.
There are 6 buses present in the modem interconnect. The VDSPs have PIF based
interfaces that connect to the modem interconnect using AXI2PIF and AXI master-
slave converters. The application subsystem consists of ARM, SRAM and USB tiles.
The application interconnect consists of 4 buses. Both ARM and USB tiles are connected
through the AHB2AXI converters. The application and the modem interconnect are
connected with each other using an AXI bridge that comprises of 2 pairs of AXI master-
slave converters.

There is only a single master present on a bus present in the application or the modem
interconnect. The master ports connected to the bus are depicted as black squares where
the slave ports are depicted as white squares. Possibly, a slave could be connected
to several buses. For example, the SRAM slave present in the modem subsystem is
connected to 5 buses which in turn requires arbitration. An AXI interconnect contains
address decoder and arbiters (one for every shared slave).

The components present in the platform influence the behavior of an application running
on the platform. For example, the communication between VDSP1 and SRAM (in the
modem subsystem) will interfere with the communication of VDSP2 with the same
SRAM. In order to consider this interference in the timing analysis, the communication
over the interconnect needs to be modeled explicitly. We model the communication over

7

1.5. Model based design and challenges in designing SDRs

the AXI interconnect in this thesis as described in Section 4.2.

1.5 Model based design and challenges in designing SDRs

Early evaluation of the choices made during the design of SDRs is a non-trivial task.
We present several such choices and motivate how model based design facilitates early
evaluation of these choices. Furthermore, we exemplify the challenges in implementing
a DVBT decoder over the MARS platform.

System complexity and abstraction. SDRs usually consist of several functional
blocks or components interacting with each other. SDRs are complex due to this in-
teraction. During early design phases, these interactions are usually not completely
known and require abstraction. Moreover, as the design proceeds, the abstractions are
elaborated allowing to incrementally decide on these design choices. Model based design
facilitates such an incremental approach by modeling relevant aspects of the system and
abstracting from irrelevant details. We exemplify such aspects present in the DVBT
decoder in the case study presented in Chapter 7.

Splitting computation. The functional blocks present in an SDR are implemented as
tasks. There exist several choices when distributing (splitting) the computation present
in the blocks over these tasks. For example, for the DVBT decoder, one possible split
is to have a task implementing the computation performed in a functional block or
another choice is to split the computation present in a functional block across multiple
tasks. Implementing each design choice is a time consuming and error prone process.
Due to the abstraction, model based design reduces the time consumed in evaluation of
these splits.

Communication choices. The split of computation influences the communication
overhead which in turn affects the timing behavior. For example, tasks mapped on
different processing units communicate through the interconnect and interfere with each
other. This interference must be considered while taking these design choices. We
present, in Chapter 4, constructs to model the AXI interconnect.

Optimizations. There are several optimizations possible while implementing SDRs. If
known at an early design phase, these optimizations must be taken into consideration.
One such optimization for the DVBT decoder is as follows.

The input to a DVBT decoder is an OFDM symbol. The size of each OFDM symbol
depends on the mode of transmission. For example, for 8K, 64QAM, 1/4 guard rate
mode the OFDM symbol size is 10240 bytes. For the same mode, approximately 872
symbols are received per second. Moreover, the input OFDM symbol is accessed by
many blocks. For example, all blocks till the demapping block in the decoder chain (see
Figure 1.4) access the input OFDM symbol as well as the outputs of the predecessor
blocks in order to generate their outputs. As soon as the demapping has been performed,
the OFDM symbol is no longer required. The large size of the OFDM symbol and high
data rate make it challenging to implement a DVBT decoder as an embedded system
and appeals for efficient (space and time) memory management.

The incoming OFDM symbols are analogous to packets of data. A packet pool is a
collection of preallocated packets that are used to fulfill the memory requirements of an
application dynamically. Many embedded kernels like OpenComRTOS [OPE], Nexos
[BR09] and SoD [BB04] offer packet pools. Packet pools fall into the category of region
based memory management [TT97]. In order to reduce the overhead of dynamic memory

8

1.6. Contributions

management, region based memory management requires that the packets are released
(freed) in the same order as they are acquired. This invariant prohibits the possibility
of producing so called holes in the memory which in turn requires defragmentation for
efficient memory management. This assumption typically holds in a DVBT decoder
implementation as the OFDM symbols are processed in the digital baseband processing
layer in FIFO order. Moreover, the overhead of copying data from block to block
is usually reduced by incorporating copy by reference i.e. sending the address of the
packet instead of copying data. Hence the memory requirements of a DVBT decoder
can be fulfilled using packet pools over low cost of dynamic memory management.

Model validation. Model validation assesses how near the model is to the actual
system. Furthermore, it identifies improvements in a model. In order to validate a model
with its implementation, execution of the system and the model needs to be compared.
Implementing such a comparison is non-trivial as it requires to record the execution of
the system. Due to scarcity of resources in embedded platforms, implementing such a
recording is difficult (see Section 6.2). In Chapter 6 we present a tracing framework
that facilitates model validation.

In this thesis, we demonstrate model based design focusing to model the aspects pre-
sented above. Moreover, Chapter 7 presents a case study that evaluates the model based
design approach presented in this thesis on a DVBT decoder which is implemented on
the MARS platform.

1.6 Contributions

We contribute the following to the model based design of SDRs:

• Constructs to model digital baseband processing in software defined radios over
bus based MPSoCs.

• Constructs to model AXI interconnect in the presence of shared slaves.

• Constructs to model packet pools.

• Implementation of a tracing framework to trace an SDR application running on
the MARS platform.

• An evaluation on the accuracy of an SDR modeled with the FSMSADF MoC
compared to an actual implementation of the application on the MARS platform.

• A technique to reduce the number of initial tokens and actors present in an FSM-
SADF graph.

1.7 Report overview

An introduction to the evolution of the wireless communication, SDRs and bus based
MPSoCs is presented in this chapter. In Chapter 2 the problem addressed in this thesis
is described. Chapter 3 presents the preliminaries to the model of computations used in
this thesis. In Chapter 4, constructs to model digital baseband processing in software
defined radios is presented. Chapter 5 presents a technique to reduce FSMSADF graphs.
Chapter 6 presents the tracing framework. In Chapter 7 the constructs presented in
this thesis are evaluated by modeling a DVBT decoder implementation over the MARS
platform. Finally, Chapter 8 concludes this thesis and proposes future work.

9

Chapter 2
Overview of the Design

Approach

Modern day wireless communication aims to provide high data rates to realize enhanced
quality while reducing the cost of consumer products. As described in Section 1.2, it
is desired to increase the quality of communication while reducing the cost and time
to market of wireless consumer products. Model based design allows to analyze these
products. Section 1.5 describes challenges faced during design of SDRs. In this chapter,
the problem addressed in this thesis is described in more detail. Section 2.1 lists the goals
of this thesis that contribute to a model based design approach for SDRs. Section 2.2
identifies the challenges involved in achieving these goals. Finally, Section 2.3 concludes
this chapter.

2.1 Goals

Model based design steers the design process. It starts with modeling the application
i.e. its functionality, modeling the underlying platform on which the application runs
and modeling the mapping of the application to the resources offered by the platform.
The results obtained from the timing analysis performed on the model facilitate making
design choices. In this thesis we contribute to model based design of SDRs as follows:

• Provide constructs to model and analyze bus based SoCs. These constructs must
model the components present in a SoC which influence the behavior of an appli-
cation running on the SoC. These constructs must model the processing as well
as the communication in the SoC.

• Model the mapping of an SDR on the resources offered by a bus-based SoC. The
analysis must capture the associated trade offs which occur in different mappings.

• Provide constructs to model and analyze SDRs using measures like throughput,
latency and operation in bounded memory. The modeling constructs must allow
to capture the (relevant) behavior and implementation details of SDRs.

10

2.2. Challenges

• Verify the outcomes of the modeling and analysis by comparing the system traces
to the model traces.

The models, analysis, mapping and trace comparison should be performed automati-
cally. This will require using an analysis toolkit, possibly extending it and implementing
trace extraction on the platform. Collectively, these goals will contribute to the model
based design of SDRs.

2.2 Challenges

Modeling SDRs and platforms which facilitate implementation of SDRs have several
challenges. Specifically, the following challenges are identified:

• The digital baseband processing layer present in an SDR typically has data and
carrier state dependent behavior leading to several scenarios. For example initial-
ization, carrier parameter extraction and decoding. Moreover, the computation
and hence the time required to perform the computation in each scenario differs.
This difference must be considered during the analysis of the temporal properties
e.g throughput. One may suggest to only consider the worst case execution sce-
nario during the analysis which turns out to be pessimistic. Explicitly considering
the scenarios will reduce this pessimism.

• Due to the high data rate and large packet sizes, the implementation of the digital
baseband processing layer is usually optimized. One such optimization is the use
of packet pools (see section 1.3.1). There are 3 properties of packet pools that
influence the behavior of the implementation. These are 1) the size of the packet
pool i.e. the number of packets present in it 2) the location where a packet pool
resides i.e. local or remote memory in a SoC and 3) the amount of bytes accessed
from each packet. Modeling these properties is a challenging task as the packet
pool might be shared among many tasks and may be located on a shared memory.
Moreover, mapping of packet pools to one of the available memories may have
several trade offs. For example, mapping a packet pool to a remote memory
(accessed over the bridge) will incur more latency than accessing the memory
directly (without using the bridge).

• In a bus based SoC, simultaneous communication between pairs of tiles may
cause interference. Modeling this interference requires modeling of the compo-
nents present in the interconnect which is a challenging task. In order to model
this interference in the MARS platform, the AXI based interconnect and the con-
verters need to be modeled. For example, the packet pool might reside on a shared
memory and two tiles accessing (same or different) packets from a packet pool will
cause interference. In addition, the interconnect model must capture the trade
offs present in accessing remote versus local memories.

• Validation of the designed model is a must. The model must be compared to
the implementation in order to access the precision of the model1. This might
require extensions to the analysis toolkit and to the SDR itself. For example, for

1The mentioned approach requires implementation of the system to be available (which is usually
not available in early design phases). Model based design does not require the implementation to be
available. However, in presence of such a implementation, it is desired to evaluate the model with the
implementation

11

2.3. Conclusion

the DVBT decoder and the MARS platform it is required to record the events
occurring in the system in order to compare them with the events present in the
model. This recording and comparison will allow validation and be performed by
development of a tracing framework. Efficient (space and time) design of such a
tracing framework for an embedded system is a challenging task.

2.3 Conclusion

The problem addressed in this thesis was described in this chapter. The first problem
addressed is to provide constructs to model SDRs. There are several challenges present
in providing such constructs like modeling the scenarios and the memory managers used
in the platform. Moreover, the communication architecture needs to be modeled in order
to analyze the communication overhead. Finally, once the models are developed; their
accuracy must be verified.

12

Chapter 3

Dataflow Preliminaries

The dataflow model of computation is often used to model digital baseband processing
and other types of streaming applications [Gei09, SGB06, Stu07, SGM+11]. A com-
parison of dataflow MoCs is described in [PRE] and is not repeated in this thesis. In
this chapter, we formally introduce two dataflow model of computations, namely, Syn-
chronous DataFlow (SDF) [LM87], which is introduced in Section 3.1 and Finite State
Machine based Scenario Aware DataFlow (FSM-SADF) [SGTB11], which is introduced
in Section 3.2.

3.1 Synchronous DataFlow Graphs

SDF is a dataflow model of computation [LM87]. It consists of actors connected through
dependency edges. The actors models atomic execution of computation. The edges
model data or control dependencies between actors. Let the set A denote the set of
actors present in the SDF graph. Let the set D denote the set of dependencies between
the actors in the SDF graph. Let N denote the set of natural numbers and N0 denote
the set of natural numbers including 0. For illustration, we use the example SDF graph
shown in Figure 3.1.

There are three actors present in Figure 3.1(a), namely, a, b and c. An actor is repre-
sented as a circle with its name inside the circle. For the example SDF graph the set
of actors A = {a, b, c}.

Definition 3.1: (DEPENDENCY EDGE) A dependency edge d ∈ D is a tuple (srcActor,
destActor, srcRate, dstRate, initialTokens) where srcActor ∈ A is the source ac-
tor of d denoted by srcActor(d), dstActor ∈ A is the destination actor of d denoted
by dstActor(d), srcRate ∈ N is the number of data items (tokens) produced by the
srcActor(d) after an execution, dstRate ∈ N is the number of data items (tokens) re-
quired by the dstActor(d) in order to execute and initialTokens ∈ N0 is the number of
tokens denoted by initialTokens(d) initially present on d. �

There are four dependencies present in the SDF graph specified in Figure 3.1 (a). A
dependency is pictorially represented as a directed edge from a source actor to a des-

13

Dataflow Preliminaries 3.1. Synchronous DataFlow Graphs

a,2 b,3

●

●

c,4

2
2

2

(a)

2 a,2

●

c,4

(b)

b0,3

●

●

b1,3

Figure 3.1: An example of an SDF graph (a) and its HSDF graph (b).

tination actor. For example, actor c is dependent on actor b which is denoted by
a directed edge from b to c. Actor a produces two tokens, on the dependency edge
from a to b upon completion of its execution (source rate) which is denoted by the
number on the start of the edge. Actor c requires one token in order to fire (desti-
nation rate). Initial tokens are presented as a dot on a directed edge. For example,
there are two initial tokens present on the directed edge from b to a. Notice that
rates and initial token counts equal to one are omitted for clarity and we follow this
convention in the sequel. The set of dependencies D for the example SDF graph is
D = {(a, a, 1, 1, 1), (a, b, 2, 1, 0), (b, a, 1, 2, 2), (b, c, 6, 1, 0)}. Each actor in an SDF graph
has an execution time written next to its name (after a comma inside the circle). For
example, in Figure 3.1 (a) , actor a has execution time of two time units, b has three
time units and c has 4 time units.

Definition 3.2: (SDF) A synchronous dataflow (SDF) graph G is tuple (A,D,Υ) where
A is the set of actors present in the SDF, D is the set of dependencies between actors
present in the SDF graph and Υ : A→ N0 is a function that determines the execution
time e ∈ N0 for a given actor a ∈ A. �

Definition 3.3: (HSDF) A homogeneous synchronous dataflow (HSDF) graph is an
SDF graph (A,D,Υ) in which all dependencies d ∈ D have unit source and destination
rates i.e. srcRate(d) = dstRate(d) = 1. �

Figure 3.1(b) shows an equivalent HSDF graph [LM87] for the SDF graph shown in
Figure 3.1(a). This graph has been obtained using the conversion algorithm presented
in [LM87]. It consists of four actors, namely, a, b0, b1 and c. There are 7 dependencies
present in the HSDF graph. As specified in Definition 3.3, the source and destination
rates of the dependencies are one. Algorithms to convert an SDF graph to an equivalent
HSDF graph are presented in [SB09] and [Gei09]. We discuss the pros and cons of each
algorithm in detail in the following chapter. As compared to the SDF shown in Figure
3.1(a), the number of actors and dependencies has increased in the HSDF. This increase
is exponential in worst-case.

Definition 3.4: (REPETITION VECTORAND CONSISTENCY) A repetition vector
γ of an SDF graph G(A,D) is a function γ : A → N0 such that for every dependency
d = (s, d, p, q, n) ∈ D it holds that γ(s)× p = γ(q)× q. An SDF graph G is consistent
if it holds that ∀a ∈ A γ(a) > 0. �

The repetition vector for the actors [a,b,c] present in the SDF graph shown in Figure
3.1(a) is [1, 2, 1]. A non-consistent SDF graph is not useful in practice as it either
deadlocks (due to insufficient tokens in a cyclic dependency) or it needs an infinite
amount of memory. In this thesis, we verify that every proposed SDF graph is consistent.

Definition 3.5: (ITERATION) An iteration I of an SDF graph G(A,D) is a collection
of actor executions of the SDF graph in which an actor a ∈ A fires exactly γ(a) times.�

14

3.2. Finite State Machine based Scenario Aware DataFlow

a,2 b,3

●

●

c,4

2
2

62 a,1 b,3

●

●
2

(a) (b) (c)

s1,x s2,y

x y

Figure 3.2: An example FSMSADF graph with SDF graphs (a) and (b) correspond-
ing to each scenario and an FSM (c).

Intuitively, the repetition vector specifies when an iteration of the graph is completed.
An iteration for the example SDF graph completes when the actor a fires one time,
actor b fires two times and actor c fires one time.

3.2 Finite State Machine based Scenario Aware DataFlow

The Finite State Machine based Scenario Aware Dataflow (FSMSADF) [SGTB11] is a
dataflow model of commutation. Figure 3.2 presents an example FSMSADF. It consists
of two scenarios x and y. Each scenario in an FSMSADF graph contains a corresponding
SDF graph. The SDF graphs for the scenarios x and y are shown in Figure 3.2 (a)
and (b) respectively. Moreover, the transitions between the scenarios are specified in
the FSM Figure 3.2(c). In many cases the name of a scenario and the name of a
corresponding state is same. Due to this similarity, the scenario name may not be
shown in the FSM. In the sequel this convention is followed.

Definition 3.6: (SCENARIO FSM) A scenario FSM F on a set of scenarios S is a
tuple (Q,q0,δ,Σ) where Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ Q×Q is
a transition relation between the states present in the FSM and Σ : Q→ S is a function
that maps a state to its corresponding scenario. �

The FSM specified in Figure 3.2 consists of a set of states Q = {s1, s2} with initial
state q0 = s1. There are four transitions present in the FSM. The transition relation
δ = {(s1, s1), (s1, s2), (s2, s1), (s2, s2)}. The function Σ maps s1→ x and s2→ y.

Definition 3.7: (FSMSADF) An FSMSADF graph GF is a tuple (S, F) where S is set
of SDF graphs corresponding to each scenario and F is a scenario FSM. �

Figure 3.2 presents an FSMSADF with 2 scenarios, namely, x and y and a scenario
FSM with two states s1 and s2. The SDF graphs corresponding to scenario x and y are
specified in Figure 3.2 (a) and (b) respectively. Note that the number of initial tokens
present in the scenario graphs must be equal. In the sequel we only present the tokens
required to model an application. However, the number of initial tokens in the SDF
graphs is made same as follows. First the maximum number of initial tokens present
in the SDF graphs in an FSMSADF is computed. Secondly, to each SDF graph the
difference between the number of initial tokens in the SDF graph and the maximum
computed in the first step is computed. Finally, initial tokens, equal to the difference
computed in the second step, are added to a self edge on a dummy actor. This dummy
actor has an execution time equal to 0 and is connected to an arbitrary actor.

15

3.3. Conclusion

3.3 Conclusion

An introduction to SDF and FSMSADF MoCs is presented in this chapter. The actors
and dependencies between them are formally defined in this chapter. In Chapter 4 the
streaming tasks present in the digital baseband processing layer are modeled as actors
and data passing across different functional blocks is modeled as dependencies. The
FSMSADF MoC facilitates modeling of dynamism present in an SDR. In Chapter 7,
the dynamism present in the DVBT decoder is modeled using the FSMSADF MoC.

16

Chapter 4
Modeling Software Defined

Radios

Software defined radios (SDRs) were introduced in Section 1.3. This chapter describes
constructs to model SDRs. Section 4.1 describes generic constructs to model the compu-
tation present in the digital baseband processing layer of an SDR. Once the computation
is modeled, usually in the next design phase, the communication is taken into account.
Section 4.2 presents constructs to model an AXI-based interconnect. The FSMSADF
MoC facilitates scenarios which model the dynamism present in an SDR. The states-
pace of an FSMSADF graph [SGTB11] can be large leading to long run times of the
analysis algorithms. In Section 4.3 we present a technique to limit the statespace of an
FSMSADF graph (which may potentially introduce inaccuracies in the analysis result).
Section 4.4 discusses the work related to modeling SDRs. Finally, Section 4.5 concludes
this chapter.

4.1 Modeling digital baseband processing

The digital baseband processing layer is implemented as a set of streaming tasks that
process data in a chained fashion. We model each task present in the system as an SDF
actor. The streamed operation of these tasks give rise to data dependencies. The tasks
and dependencies in the implementation of the DVBT decoder are presented in Chapter
7. In this section we present generic constructs to model operations usually performed
in SDRs.

Modeling a periodic source and sink. The incoming signal is periodically broad-
casted by a transmitter in the form of a symbol. This symbol is received by the front
end. In Figure 4.1, a construct to model a periodic arrival of symbols is shown. The
actor Source models the periodic arrival of incoming data. Each firing of this actor
produces a symbol (i.e. a token in SDF terminology). The execution time of this actor
is equal to the period of the incoming symbol. Every input symbol is processed by the
digital baseband processing layer of an SDR (shown as a block in Figure 4.1). The signal
processing layer processes the input data and the output is handed over to the applica-
tion for application specific processing (see Section 1.3 for details of layered processing).

17

Modeling Software Defined Radios 4.1. Modeling digital baseband processing

Source,

x

●

Digital

basedband

processing

●

Sink, y

Figure 4.1: Modeling periodic source and sink typically present in SDRs.

packet

n o

Packet pool

request release

n o

●

(a) (b)

8

Figure 4.2: Operations supported on a packet pool (a) and a construct to model
the size of the packet pool (b).

We model this hand over with a Sink actor. Note that the size of the output symbol is
usually different from the size of the input symbol. For example, in the DVBT decoder,
the size of the input symbol is equal to the size of the OFDM symbol specified by the
DVBT specification [DVBa] and the size of the output packet is 16 KB1. Moreover, the
processed data is typically handed over to the application through an USB interface
and in that case the execution time of the Sink actor is equal to the time required by
the USB interface to transmit a single packet of data.

Modeling packet pools. Packet pools facilitate copy by reference which optimizes
the sharing of incoming symbols across tasks in an SDR. In this section we present
constructs to model packet pools. There are 3 properties of a packet pool which influence
the execution of task that manipulates packets from a packet pool. These properties are
1) number of packets in the packet pool, 2) the size of each packet and 3) the memory
where the packet pool resides. In this section we present SDF constructs to model the
first property. The constructs to model second and third property are presented in
Section 4.2.

Figure 4.2(a) illustrates possible operations on a packet pool. The two operations
allowed on a packet pool are 1) request a packet and 2) release a packet. Figure 4.2(b)
presents a construct to model the size of the packet pool. Note that we assume that
the requester and releaser tasks are known at design time and are fixed in a scenario of
an application. Moreover, we assume that there is only one requester and releaser task
for a packet pool. Modeling multiple requester and releaser tasks for a packet pool is
proposed as future work.

Modeling the packet resizer. During processing, a symbol is processed by several
1The output of the DVBT decoder is a MPEG stream transmitted in the form of packets. On the

MARS platform, the MPEG stream is transmitted over USB where the size of a USB packet is 16 KB.
However, this size may vary from one platform to another platform.

18

Modeling Software Defined Radios 4.1. Modeling digital baseband processing

R

●

a R b

x-u y-v

m n

(a)

a b

d

m×x

y

y

x
●
u

n

●
v

n

(b)

R

●

a b

up

m

y

x●
u

y×n

●
v

n

(c)

x

mm

Figure 4.3: Modeling packet resizers present in the system.

tasks present in the digital baseband processing layer. The input/output sizes of these
intermediate symbols typically vary. For example, in case of a DVBT decoder, the size
of the output of Viterbi decoding equals to 4536 bytes (for 64QAM, 8K FFT window
size and 1/4 guard interval [DVBa]). This output is processed by the Reed Solomon
decoder that needs the size of the input packet to be equal to 208 bytes. This size
conversion requires packet resizers.

Figure 4.3 presents constructs to model packet resizers when region based memory
management is used. Figure 4.3 (a) presents a task graph consisting of 3 tasks (shown
in dashed circles), namely, a,b and R and 2 packet pools (shown in dotted rectangles).
Task a requests m packet(s), where m ≥ 1, from the packet pool x-u where x is the
size of each packet and u is the number of packets present in the packet pool. Once
task a gets m packet(s), it fills the data into them and passes them to the resizer R.
The resizer is responsible to resize the packets from size of x to y. For that purpose,
task R requests n packet(s), where n ≥ 1, from the packet pool y-v. After resizing the
packet(s), task R passes the packets to task b.

Modeling the packet resizers becomes non-trivial when the resizers use packet pools
which have less packets than required. It either blocks the sender or the receiver task.
For example, assume that the resizer R in Figure 4.3(a) resizes from x to y where x
equals 1, u equals 6, y equals 2 and v equals 2. In this case task a blocks after sending
the first packet. The resizer needs 3 packets to resize and send the data to b, however,
there are only 2 packets present in packet pool y-v. The resizer holds the incoming
packet from a (and a remains blocked) until task b returns a packet packet back to
the pool. The constructs which model packet resizers must take this blocking due to
unavailability of packets into account.

Packet resizers can resize for both cases i.e. when x > y and when y > x. Figure
4.3(b) presents an SDF model for the resizer when x > y. It models the packet resizing
between actor a and b. The actors R and d collectively model the packet resizing and
requests to the packet pool. The actor a fires m × x tokens (analogous to m packets
having size x). The resizer reads in y tokens and passes them to actor b. The task R in
(a) buffers the additional data. This buffering is modeled in (b) by the dependency from
actor a to R. The actor d models the requests from a packet pool x-u. The dependency
from d to a models the packets present in the packet pool. Initially, there are u packets
in the packet pool. Afterwards, for each x bytes received from R, one token is added
to the dependency which is analogous to one packet. Similarly, the dependency from
actor b to actor R models the packets in the packet pool y-v.

Figure 4.3(c) presents an SDF model for the resizer when x < y. The dependency from
actor R to a models the packet requests to the packet pool x-u. The dependency from
actor b to up models the packet requests from the packet pool y-v. While resizing, the
task R buffers the additional data. This buffering is modeled by the dependency from

19

4.2. Modeling the AXI interconnect

write

●

●

●α

α

α

α

α

α

address

write

response

(a) (b)

read

● ●

αα

α
α

address

write

(c) (d)

Figure 4.4: AXI write burst (a) with its signal waveform (b) and read burst (c) with
its signal waveform (d).

actor R to b. Note that these SDF models will deadlock in case when m > u or n > v.
This means that the packet pools have less packets than the actors request. Clearly,
the system is not operational in that case.

4.2 Modeling the AXI interconnect

The SDF and the FSMSADF MoC assume that there is no communication overhead.
In a real system there is however an overhead when communicating data between pro-
cessors and/or memories. This overhead is due to the time taken by the interconnect
to transfer data. We explicitly model this communication overhead. In an MPSoC,
multiple masters accessing a shared slave interfere with each other. This interference
influences the execution of a task. In this section, we present constructs to model the
communication overhead and the interference over the AXI interconnect. In addition,
these constructs will model the two properties of the packet pool (see Section 4.1) that
are 1) size of a packet present and 2) the location where the packets reside. We model
the communication between two tasks (read and write) and insert the model between
them according to the interconnects that are accessed and the memory mapping. In
particular, we model an AMBA3 AXI interconnect [AXI].

AXI interconnect facilitates read and write bursts for communication. Figure 4.4 illus-
trates the operation of read/write bursts (for a detailed discussion of AXI interconnect
the reader is referred to [AXI]). An AXI write operation (Figure 4.4 (b)) is initiated by
the master by writing the address on the AWADDR register followed by transmission
of data in the form of burst (burst length of size 4). The slave confirms the reception
of the burst by sending an acknowledge response. This is done by putting the BRESP
signal high. Note that the address, data and acknowledgment transmission are governed

20

4.2. Modeling the AXI interconnect

a

bi

x

c

yb

●

●

●

β×r

α×δ

α×δ

α×δα×δ

a

bi

x

c1

yb

●

●

●

α×δ

α×δ

α×δ
α×δ

c3

●
ϕ

r

m

β×m

β×m

β×m

ϕ●

β×r
β

β×m
β×m

c2

β×m
β

a

bi c

yb

●
●

β×r

α×δα×δ

a

bi

c1

yb

● ●

α×δ
α×δ

c3

●
ϕ

r

m

β×m

β×m

β×m

ϕ●

β×r
β

β×m
β×m

c2

β×m
β

a x

b

●

β×r

α×δ

α×δ
a x

c1

b

●

α×δ

α×δ

c2

r

m

β×m

ϕ●

β×r
β

β

ϕ

β×m

●

(a) (b)

(c) (d)

(e) (f)

r

m

r

m

r

m

Figure 4.5: AXI read-write model (a), read-write model with initial tokens (b), write
only model (c), write only model with initial tokens (d), read only model

(e) and read only model with initial tokens (f).

by VALID and READY handshakes. Figure 4.4(a) presents an SDF construct to model
an AXI write operation (dotted arrows indicate dependencies to source and destina-
tion actors). It consists of 3 actors, namely, address write, write and response. The
parameter α denotes the burst length with which the AXI interconnect is configured (4
in our examples). Moreover, for the MARS platform, the execution times for address
write, write and response actors is, in worst case, 8 ns (as each operation requires 2
clock cycles in worst case2). Similarly, the AXI read burst is presented in Figure 4.4
(d). The read burst does not have a response when the burst ends. The SDF graph to
model an AXI read is presented in Figure 4.4 (c). The AXI read model has one actor
less compared to the AXI write model as there is no acknowledgment in the read burst
but it has VALID/READY handshakes (see Figure 4.4(b) and Figure 4.4(d)).

Assume an SDF graph in which an actor a is connected to an actor b through a depen-
dency edge. Actor a is the source of this edge and has a production rate of r tokens.
Actor b, the destination of the edge, has a consumption rate of m tokens. Assume
further that the memory used to implement the edge between a and b is located in
separate memory which the processors on which a and b are running need to access
using the AXI interconnect. This situation models the case in which a source task
writes to a memory and a destination task reads it. Figure 4.5 presents parametrized

2In the MARS platform, the interconnect is clocked at 300MHz with each tick 3.333ns apart. For
worst case analysis, we round the ticks to 4ns. However, the models are generic and the time taken for
an operation can be specified according to the clock in an arbitrary system.

21

4.2. Modeling the AXI interconnect

SDF constructs to model such a transmission of data. The actors colored gray are
which model the communication between the source and the destination actors. These
constructs are obtained by combining the AXI read/write models shown in Figure 4.4.
The number of initial tokens in the combined model was reduced using the reduction
technique described in Chapter 5. For instance, the combined (but not reduced model)
contains 2 × α + 3 initial tokens. The reduced model (Figure 4.5 (a)) contains only 3
initial tokens.

The parameters used in the model are listed in Table 4.1. The parameter r denotes the
rate of the source actor. Similarly, m denotes the read rate of the destination actor. φ
denotes the number of initial tokens present on a dependency edge between a source
and a destination actor. The burst length of an AXI interconnect is denoted by α.
The sharing degree determines, in worst case, the number of masters accessing a shared
slave simultaneously and is denoted by κ. This sharing degree is computed for each
dependency by analyzing the memory mappings. This degree is used to compute the
execution times of actors. β denotes the size of a packet used to communicate. The
word size of the interconnect is denoted by δ. The parameter tc determines the time
taken by 2 clock cycles.

Parameter Description
r source write rate
m destination read rate
α AXI burst length
β packet size
δ word size of the interconnect
φ number of initial tokens
tc time for 2 clock cycles
κ sharing degree

Table 4.1: Parameters in the AXI read-write models.

Figure 4.5(a) presents an AXI read-write model. It assumes that the source writes
the data (modeled by actor x) to the memory and the destination reads the data from
this memory (modeled with actor y). This assumption generally holds for SDF actors.
Actor c models the completion of transmission of data. Actor bi models the read request
from the destination actor to the memory controller to initiate the memory transfer. It
ensures that the task which is modeled by actor b is ready to receive incoming data.
The execution times of actors bi and c are 0. The execution time of x is computed
as Υ(x) = 2 × tc × κ + tc × α × κ. The 2 × tc × κ represents the time required for
address write and the acknowledgments. This formula assumes that in worst case all
masters interfere in the transmission. The tc×α×κ represents the time required by the
interconnect to perform the write burst. Note that if the write operation is using the
bridge then the execution time for the actor x is Υ(x) = 2× tc × κ+ 2× tc × α× κ. In
a write burst over the bridge the data is written twice during the transmission between
the master and the memory slave. Thus the time required to perform a write over the
bridge doubles.

Similarly, the execution time for the read actor y is computed as Υ(y) = tc×κ+tc×α×κ.
In case the read is over the bridge then the execution time is Υ(y) = tc×κ+2×tc×α×κ.
Figure 4.5(b) presents a variant of the model presented in 4.5(a) which models the initial
tokens present on the elaborated buffer (shown in dotted arrows). The actors c1, c2
and c3 model the initiation of a read request from the task modeled by actor b. These
actors have an execution time equal to 0. Note that it is possible to model the initiation

22

4.3. Bounding FSMSADF statespace

(a) (b)

s1 s2

s1,1

s1,2

s1,3

s2

Figure 4.6: Bounding scenario transitions in an FSMSADF graph.

with a single actor (instead of three) but this will make the number of initial tokens
present in the construct dependent on other construct parameters. We will show during
the case study that reducing the initial tokens reduces the time required by the analysis
algorithms. Therefore we prefer to have a model with fewer tokens instead of a model
with fewer actors.

Figure 4.5 (c) and (e) presents models for situations when the transmission is write or
read only respectively with their variants modeling initial tokens presented in 4.5(d)
and (f). The execution times of the tasks present are computed in the similar way as
described for 4.5(a) and (b). Note that the read only and write only constructs model
the incoming stream from the DFE (write only) and the outgoing stream over the USB
interface (read only).

4.3 Bounding FSMSADF statespace

The FSM present in an FSMSADF models the scenario transitions in an application.
In the FSMSADF MoC, it is allowed to infinitely stay in a state. Figure 4.6(a) presents
an FSM in which the graph can stay in state s1 infinitely. It is often desired to limit
the stay of a state in itself. For example, to incorporate designer feedback to the
model. Moreover, the FSMSADF statespace may be too large due to store the complete
statespace in the memory (which is required by the analysis algorithms). We bound the
transitions by expanding the FSM and removing the self loops on the bounded state.
For example, Figure 4.6(b) presents an FSM in which the number of times the FSM
stays in state s1, denoted by x, is bounded by 2 ≤ x ≤ 3. This bounding is performed
by replacing s1 with 3 states, s1,1, s1,2 and s1,3 and allowing transitions from s1,i to
s2 only when a ≤ i ≤ b where a and b are the lower and upper bounds respectively.
The bounding of transitions for each state increases the number of states in the FSM
to b − a + 1. We define depth as the number of states expanded when removing a self
edge. For example, the depth for s1 in Figure 4.6(b) is 2. The effect of bounding the
statespace for the DVBT model is described in Section 7.4.

4.4 Related work

Modeling SDRs using dataflow MoCs is studied in [Yan09, BBL08, SGM+11]. A Mode
Controlled DataFlow (MCDF) graph is used to model a DVBT decoder in [Yan09].
The modeling in [Yan09] aims to find a feasible schedule for an MCDF graph satisfying
the real time requirements of a DVBT decoder. An FSMSADF based model of the
Long Term Evolution (LTE) SDR is presented in [SGM+11]. It models the dynamism

23

4.5. Conclusion

present in an LTE baseband processing tasks. However, [Yan09, BBL08, SGM+11]
do not provide constructs to model typical operations like periodic sources and sinks,
packet pools and the communication over an interconnect. These constructs are essen-
tial to model the system level operation of an SDR. Analysis of suitable MoCs to model
SDRs is described in [BBL08]. It concludes that statically scheduled dataflow graphs
pessimistically model SDRs. This conclusion coincides with the results of our experi-
ments performed in Chapter 7. Moreover, it discusses applicability of other MoCs to
model SDRs. A detailed comparison of dataflow MoCs is described in [PRE], based on
which, the FSMSADF MoC is proposed in this thesis to model the dynamism present
in an SDR.

The Fractional Rate Dataflow (FRDF) extension to SDF is described in [OH04]. This
extension allows to have fractional read and write rates on a dependency. FRDF closely
relates to the packet resizers described in Section 4.1. However, FRDF requires an
extension to model packet pools. As shown in an example in Section 4.1, the packet
resizers may block actors in the case when the number of packets in a packet pool is
less than the required number of packets. This blocking influences the timing analysis,
thus is essential to be modeled.

The AXI models described in Section 4.2 are inspired from the interconnect models
discussed in [JSS+11, ASSG08, Stu07]. [JSS+11] describes a parametrized SDF graph
to model communication between two tiles present in an MPSoC. It models buffering,
serialization and deserialization of packets in the interconnect present in the MAMPS
platform [Kum09]. However, [JSS+11] assumes homogeneous interconnect i.e. the com-
munication overhead is the same for all tiles3. The AXI models described in Section 4.2
facilitate different models for different types of communications in an MPSoC i.e. when
the communication is heterogeneous. An SDF graph to model bi-rate communication
service provided by an interconnect is presented in [ASSG08]. Using bi-rate communi-
cation model provides tighter estimates for timing requirements. However, [ASSG08]
does not specify how to combine multiple bi-rate SDF graphs to model multiple masters
present in an MPSoC.

4.5 Conclusion

In this chapter, constructs to model SDRs were presented. The tasks present in the
digital baseband processing layer are modeled as actors and the data passing between the
tasks are modeled as dependencies between the actors. Usually, SDRs consist of periodic
source/sinks, packet resizers and packet pools. Constructs to model such operations in
an SDR were presented. Moreover, constructs to model the AXI interconnect were
presented in this chapter. These constructs are evaluated in Chapter 7.

3The communication model can be used with different parameters for different types of communi-
cation. In order to estimate the interference caused by multiple masters (to compute parameters) the
models require extensions.

24

Chapter 5

Reduction of FSMSADF Graphs

The Finite State Machine based Scenario Aware DataFlow (FSMSADF) model of com-
putation (MoC) was introduced in Chapter 3. A dependency edge between actors is
redundant if removing the edge does not change the start times of the actors present in
an application. In this chapter we focus on reducing an FSMSADF graph by removing
redundant dependencies and actors present in an FSMSADF. Removal of redundant
dependencies may lead to removal of initial tokens which in turn reduces time taken by
the analysis algorithms (see Section 7.4 for details).

In the following section, we motivate the reduction of FSMSADF graphs. Section 5.2 de-
scribes the reduction approach. Section 5.3 introduces the Max-Plus algebra [BCOQ92]
which is used in the reduction technique. In Section 5.4 the reduction approach itself is
described. Section 5.5 presents an algorithm to convert the simplified Max-Plus matrix
to an HSDF graph. In Section 5.6 the reduction approach is extended to reduce FSM-
SADF graphs. Section 5.7 describes work related to the reduction technique. Finally,
Section 5.8 concludes this chapter.

5.1 Motivation

It is desirable to have intuitive and simple dataflow models. Models near to the concept
are intuitive. Simpler models capture the same behavior but require less analysis time
and effort. The technique proposed in this chapter reduces the number of initial tokens
present in an FSMSADF graph while preserving the timing behavior of an application.

Figure 5.1 presents examples of a model with the same throughput but varying number
of initial tokens and actors. In Figure 5.1(a) an SDF model for an AXI write burst
is described (this model is discussed in detail in Section 4.2). The actor a models the
address write, c models a write and b models the write response sent back by the slave.
α models the burst length of the AXI interconnect.

Figure 5.1(b) presents an equivalent model, in terms of throughput, to Figure 5.1(a)
but it has two actors a and v compared to three actors in Figure 5.1(a). The number of
dependencies and initial tokens has also reduced from five to two and from three to one

25

5.2. Reduction approach

SDFGs

FSM-SADF

HSDFGs

simplify

FSMSADF

●

●
α

α

α

α

● u, (a) +

α (c)+
(b)

●

(d)(a) (c)

●

v,

α (c)+
 (b)

(b)

a, (a) c, (c)

b, (b)

a, (a)

Figure 5.1: The reduction approach (d) and illustrative SDF graphs (a, b, c).

a b c

● ●

●

t1

t2

t3

t4

t5

Figure 5.2: An illustrative HSDF graph.

respectively. The SDG graph shown in Figure 5.1(b) abstracts from the AXI write and
just account for the time required to perform writes (hence the throughput is equal) or
in other words it clusters α writes and groups the time needed with the time required
to write the response. To ensure that the timing behavior of the actors in the resulting
graph is identical to the original graph, v has an execution time equal to α×Υ(c)+Υ(b)
where Υ(b) and Υ(c) denotes the execution times of actors b and c in Figure 5.1(a).
The SDF graph presented in Figure 5.1(c) has equal throughput as Figure 5.1(a) and
Figure 5.1(b). It has only one actor with a dependency to itself. The execution time
of this actor is equal to Υ(a) + α×Υ(c) + Υ(b) where Υ(a), Υ(b) and Υ(c) denote the
execution times of actors a, b and c in Figure 5.1(a).

Clearly, we preserve the throughput of the SDF graphs shown in Figure 5.1(a), Figure
5.1(b) and Figure 5.1(c) but we lose the buffer requirements and the applicable analysis
techniques (buffer throughput trade off [Stu07]). The technique proposed in this chapter
preserves the throughput as well as the timing behavior of an application. The technique
aims to reduce the number of initial tokens present in an FSMSADF graph preserving
the start times of actors present in the FSMSADF graph. In the sequel, we refer to this
technique as reduction.

5.2 Reduction approach

The overall approach of the reduction technique is presented in Figure 5.1(d). An
FSMSADF is composed of an FSM which models the transitions of the system between
scenarios and an SDF graph for each scenario. We simplify the SDF graphs present
in the FSMSADF by converting the SDF graphs to equivalent HSDF graphs and then
simplifying the HSDF graphs while preserving the schedule of the SDF graphs (In case
an actor is removed, the remaining actors have the same schedule which may have
different execution times). We focus to reduce the number of initial tokens present in
the model in order to reduce the analysis time. The reduced HSDF graphs are used to
create a reduced FSMSADF graph.

The reduction technique described in this chapter requires the SDF graphs present
in a FSMSADF to be converted to an equivalent HSDF. Any arbitrary SDF can be

26

5.3. Max-Plus representation of HSDF graphs

A B●

Figure 5.3: An illustrative HSDF graph showing redundant dependencies.

converted to an equivalent HSDF as specified in [LM87, SB09]. However, the conversion
may lead to an exponential increase in the number of actors present in the HSDF
graph compared to the SDF graph. Moreover, [Gei09] presents a Max-Plus based SDF
to HSDF conversion technique, which, in many cases shows a smaller increase in the
number of actors present in the HSDF. For our reduction technique, any SDF to HSDF
conversion technique suffices. In this chapter, we assume that the SDF graph to HSDF
is converted using any of the well known methods [LM87, Gei09]. The HSDF graph is
converted to its Max-Plus representation as described in the following section.

5.3 Max-Plus representation of HSDF graphs

In this section an algorithm to generate a Max-Plus representation for an arbitrary
HSDF graph is described. Let A be the set of actors present in an HSDF graph.
Moreover, we define a Max-Plus term to be of the form max(α1, .., αn) + θ where αi is
an arbitrary Max-Plus term and θ is a constant. The reduction method is illustrated
on the HSDF graph shown in Figure 5.21. For reference, the tokens produced on the
channels are labeled as t1, ..., t5. It is possible to convert an arbitrary actor present in
an HSDF graph to such a form. An actor has a set of input channels and a certain
amount of time delay incurred due to the atomic execution of the actor. The input
channels become parameters to the max operator and the delay is added as a constant
in the corresponding equation of the form max(α1, .., αn) + θ. We use this property
while generating the Max-Plus terms using Algorithm 1.

Each term characterizes the production of a token by an actor as described in [Gei11].
Algorithm 1 describes a procedure to construct Max-plus terms for an arbitrary HSDF
graph. The algorithm iterates over all actors present in the graph and generates a Max-
Plus term for each actor (which corresponds to each token produced by the actor). The
term consists of the max operator applied to the tokens over the incoming channels
to the actor and added by the execution time of the actor2. Using Algorithm 1, the
following Max-Plus terms are generated for the HSDF graph presented in Figure 5.2.

t2 = max(t̄1, t̄5) + Υ(a)
t1 = t4 = max(t̄3, t2) + Υ(b)
t3 = t5 = max(t4) + Υ(c)

We denote the initial tokens present in an HSDF graph by a bar over the token name.
For example, initial token t̄1. We need the non-initial tokens to be present to analyze
redundant dependencies with non zero initial tokens. Figure 5.3 shows an HSDF graph.
In the graph, one of the dependencies from B to A is redundant as removing one of them
will not change the timing behavior of the HSDF graph. Note that this redundancy

1We assume any arbitrary execution times for the actors and do not specify them in the figure.
2The inverted commas indicate that the term is an output string rather than a statement in the

algorithm itself.

27

5.4. Reduction

cannot be identified by only having Max-Plus terms with initial tokens. In the following
section we present the simplification steps performed to reduce the HSDF.

Algorithm 1 Generate Max-Plus terms for an HSDF graph
Input: Set of actors A and the set of dependencies D present in the HSDF graph
Output: Set of Max-Plus terms terms
1: terms = φ
2: for all a ∈ A do
3: inDep = getIncomingDependencies(a,D)
4: tokens = getTokens(inDep)
5: t =‘max(tokens) + Υ(a)’
6: terms = terms ∪ t
7: end for
8: return terms

5.4 Reduction

In this section we present the definitions that are used in reducing the Max-Plus repre-
sentation of an HSDF graph. Applying the reduction steps may remove terms from the
Max-plus representation. The usage of these steps is illustrated on the terms generated
in Section 5.3.

Definition 5.1: (SEMIFIELD) Let κ = {x|x ∈ R ∪ {−∞}} be a semifield endowed
with the following two operations:

• max : κ× κ → κ is a binary operator such that max(α, β) determines the maxi-
mum of α, β ∈ κ. The max operator is associative, commutative and has a zero
element −∞ such that max(−∞, α) = α.

• The operator + forms a group on κ∗ = κ\{−∞}. It is a commutative, distributive
with respect to the max operator and has an identity element 0 such that α+0 =
0 + α = α.

For the proof of associativity, commutativity of the max operator and the distributivity
of the + operators we refer the reader to [BCOQ92].

Definition 5.2: (UNARY) The max operator has no effect over a single operand i.e.
max(a) = a, ∀a ∈ κ. �

By definition, the max operator is a binary operator. In case of SDFGs its is possible
to obtain a representation where max is applied to a single operand. In such a case, the
max operator can be omitted. Intuitively, the maximum element out of a list containing
a single element is the only element present in the list.

Definition 5.3: (IDEMPOTENT) The max operator is idempotent i.e. max(a,a) =
a, ∀a ∈ κ. �

Multiple applications of the max operator to the same operand are idempotent i.e. the
multiple applications have no effect. For a formal proof of idempotency of the max
operator we refer the reader to [BCOQ92].

28

5.4. Reduction

Definition 5.4: For any arbitrary Max-plus terms α, β, ε, if it holds that α ≤ β + θ
then max(α,max(β, ε) + θ) = max(β, ε) + θ. �

The intuition behind Definition 5.4 is if α ≤ β then the expression depends on the result
of the inner max thus the outer max operator could be omitted. Formally, the proof for
the definition is as follows:

L.H.S = max(α,max(β, ε) + θ)
= max(α,max(β + θ, ε+ θ)) by distributivity of + over max

= max(max(α, β + θ), ε+ θ) by associativity of max

= max(β + θ, ε+ θ) as α ≤ β + θ holds

= max(β, ε) + θ by distributivity of plus

= R.H.S

In order to simplify Max-Plus terms using Definition 5.4, it is required to identify and
verify the condition whether α ≤ β + θ holds. The following definition allows to do so.

Definition 5.5: For an arbitrary Max-Plus term α and constants θ, λ,max(α)+θ+λ ≥
max(α) + θ where θ ≥ 0 and λ ≥ 0. �

In case of SDFGs, θ and λ are always non-negative as, by definition, the actor execution
times in SDFGs are non-negative.

Definition 5.6: For any arbitrary Max-Plus terms α, β, ε if it holds that α ≤ β then
max(α, β) = max(β) and max(α, β, ..., ε) = max(β, ..., ε). �

The max operator applied to the terms for which the inequality could be determined
from the terms itself, for example, using Definition 5.5 then the max operator can be
reduced. Consider the following terms generated in the previous section for the HSDF
presented in Figure 5.2.

t2 = max(t̄1, t̄5) + Υ(a)
t1 = t4 = max(t̄3, t2) + Υ(b)
t3 = t5 = max(t4) + Υ(c)

Reducing the above equations yields the following equations:

t2 = max(t̄1, t̄5) + Υ(a)
t1 = t4 = max(t̄3,max(t̄1, t̄5) + Υ(a)) + Υ(b) substitute t2

t3 = t5 = t4 + Υ(c) by definition 5.2
= max(t̄3,max(t̄1, t̄5) + Υ(a)) + Υ(b) + Υ(c) substitute t4

Using Definition 5.5, t5 ≥ t1, the reduction results in the following set of equations:

29

5.5. Conversion to an HSDF graph

t2 = max(t̄5) + Υ(a) by definition 5.6
= t̄5 + Υ(a) by definition 5.2

t1 = t4 = max(t̄3,max(t̄5) + Υ(a)) + Υ(b)
t3 = t5 = max(t̄3,max(t̄5) + Υ(a)) + Υ(b) + Υ(c)

The reduction technique can be automated by using an existing Term Rewrite System
(TRS) implementation [GTSKF03, CDE+02]. Definitions 5.1-5.6 can be formulated as
rewrite rules and an HSDF can be formulated as terms. The formulated terms and
rewrite rules can then be used to compute the normal forms of the rules. These normal
forms are the simplified terms, from which, it is possible to construct the simplified
HSDF graphs as specified in Section 5.5. The automation of the reduction technique is
proposed as a future work.

5.5 Conversion to an HSDF graph

In this section we construct an HSDF graph from the simplified Max-Plus expressions
described in the previous section. The simplified terms from the previous section are as
follows:

t2 = t̄5 + Υ(a)
t1 = t4 = max(t̄3, t2) + Υ(b)
t3 = t5 = t4 + Υ(c)

The simplified terms could be of the form max(max(...), ...,max(...)) + θ1 + ...+ θn. In
order to convert the simplified terms to back to an HSDF graph, we first convert the
terms to the form max(t1, ..., tn) + θ. Algorithm 2 performs such a conversion. The
notation used in Algorithm 2 and Algorithm 3 are as follows. Let Φ denote the set of
tokens present in an HSDF graph. Let the set of terms be T where a term denoted by
τ is of the form max(t1, ..., tn) + θ. Let constant(τ) denote the θ of the term τ and
let tokens(τ) return the set of tokens {t1, ..., tn} ⊆ Φ present in the max operator of
the term τ . Similarly, let operands(τ) provide the set of operands of the max operator
present in the term τ . Let λ : T → A be function that provides an actor a ∈ A for a
term τ ∈ T . Let δ : Φ → T be a function that provides the term τ ∈ T which defines
the token t ∈ Φ where every token present in a simplified HSDF is defined by a term.
Let the function κ : T → Φ be function that provides a token t ∈ Φ defined by the term
τ ∈ T . Let the function isToken(t) determine whether t is a token or not.

Algorithm 2 converts the simplified terms to the form max(α1, .., αn) + θ. The input to
the algorithm is the set of Max-Plus terms. The for loop between lines 2-6 conditionally
introduces the max operator to a term if it is not present. The for loop between lines
8-18 ensures that each max operator present in the simplified terms must only contain
tokens. If a max operator has another max operator as an operand then the operand
max is replaced by the token it defines. Finally, the last for loop between lines 20-24
sums up the constants present in a Max Plus term. As a result, the simplified terms,
of the form max(α1, .., αn) + θ, are output of the algorithm. For example, the output
of the Algorithm 2 for the simplified equations is as follows:

30

5.5. Conversion to an HSDF graph

a b c

●

●

t2

t3

t4

t5

Figure 5.4: The reduced HSDF.

t2 = max(t̄5) + Υ(a)
t1 = t4 = max(t̄3, t2) + Υ(b)
t3 = t5 = max(t4) + Υ(c)

Algorithm 2 Simplify to get terms of the form max(t1, ..., tn) + θ

Input: Set of terms T0
Output: Set of terms T such that all terms are of the form max(t1, ..., tn) + θ
1: T1 = φ
2: for all τ ∈ T0 do
3: if τ is of the form tα + θ then
4: T1 = T1 ∪ {max(tα) + θ}
5: end if
6: end for
7: T2 = φ
8: for all τ ∈ T1 do
9: On = φ
10: for all O ∈ operands(τ) do
11: if isToken(O) then
12: On = On ∪ {O}
13: else
14: On = On ∪ {κ(O)}
15: end if
16: end for
17: T2 = T2 ∪ {max(On) + constants(τ)}
18: end for
19: T = φ
20: for all τ ∈ T2 do
21: if τ is of the form max(...) + θ1 + ...+ θn then
22: T = T ∪ {max(...) + θ} such that θ = θ1 + ...+ θn
23: end if
24: end for
25: return T

Algorithm 3 constructs an HSDF graph from the simplified terms. It converts the input
terms to the formmax(α1, .., αn)+θ by using Algorithm 2. The for loop between lines 4-
9 creates a set of actors and a set of dependencies from the terms and returns the HSDF
graph as a result. For each equation an HSDF actor is created. For example, there are
three actors in Figure 5.4, one for each simplified equation. The dependencies between
actors are computed by analyzing the parameters to a max operator. For example, a
dependency exists between actor a and c as t5 and is defined by corresponding equation

31

5.6. Reduction of FSMSADF

of c used in the max operator of equation defining t2. The HSDF graph corresponding
to the simplified terms is presented in Figure 5.4. The simplification resulted in removal
of a redundant dependency in the SDFG which had an initial token. Both the original
and the reduced SDFGs have same throughput (i.e 1/3) but the reduced SDFG has
two initial tokens instead of three. Moreover the timing behavior of both SDF graphs
remains the same. This can be verified by extending the trace comparison algorithm
presented in Section 6.5.

Algorithm 3 Construct simplified HSDF graph
Input: Set of terms T0
Output: Simplified HSDF graph GHSDF
1: T = SimplifyTerms(T0)
2: AG = φ
3: DG = φ
4: for all τ ∈ T do
5: AG = AG ∪ (τ, θτ)
6: for all t ∈ tokens(τ) do
7: DG = DG ∪ (λ(δ(t)), λ(τ), 1, 1, 0)
8: end for
9: for all t̄ ∈ tokens(τ) do
10: DG = DG ∪ (λ(δ(t)), λ(τ), 1, 1, 1)
11: end for
12: end for
13: return GHSDF (AG, DG)

5.6 Reduction of FSMSADF

The FSMSADF model of computation is introduced in Chapter 3. It consists of an FSM,
which models scenario transitions and a set SDF graphs. Previous sections describe a
technique to reduce HSDF graphs. In this section we extend the reduction technique
to FSMSADF graphs.

Algorithm 4 describes a technique to reduce FSMSADF graphs. This reduction is per-
formed in two steps. The first step is compute the set of redundant initial tokens. A
token in an FSMSADF graph is only redundant if it is redundant in all SDF graphs in
the FSMSADF graph. In the second step, the tokens redundant in all HSDF graphs are
removed. The algorithm accepts an FSMSADF graph GF as the input and produces
a reduced FSMSADF graph GFr as the output. The for loop between lines 3-7 com-
putes reduced HSDF graphs for the SDF graphs present in the FSMSADF. At line 8,
tokens removed from all HSDF graphs are computed. The for loop between lines 11-16
computes the reduced HSDF by only removing the tokens which are redundant in all
scenarios. Finally, at line 17, the reduced FSMSADF graph is returned.

5.7 Related work

Reduction techniques for SDF graphs are specified in [Gei09]. These techniques aim
to reduce large SDF graphs into SDF graphs which can be analyzed in less time. The
reduced graph is a conservative estimate of the original graph as the reduction tech-
nique specified in [Gei09] is an approximation. The technique presented in this chapter

32

5.8. Conclusion

Algorithm 4 Reduce an FSMSADF graph
Input: An FSMSADF graph GF (S, F)
Output: A reduced FSMSADF graph GFr
1: states = Q(F)
2: Σ = map(F)
3: diff = []
4: for all s ∈ states do
5: h = ConvertToHSDF (SDF (Σ(s)))
6: hreduced = ReduceHSDF (h)
7: diff [s] = removedTokens(h, hreduced)
8: end for
9: S =

⋂
s∈states diff [s]

10: newHSDFs = φ
11: Σnew = []
12: for all s ∈ states do
13: h = ConvertToHSDF (SDF (Σ(s)))
14: hreduced = ReduceHSDFBounded(h, S)
15: newHSDFs = newHSDFs ∪ hreduced
16: Σnew[Σ(s)] = hreduced
17: end for
18: return GFr(Fnew(Q(F), q0(F), δ(F),Σnew),newHSDFs)

reduces FSMSADF graphs. Moreover, it preserves the schedule of an FSMSADF graph.
However our aim coincides with the aim of the reduction technique described in [Gei09].
i.e. to reduce the analysis time.

5.8 Conclusion

In this chapter a method of reducing an FSMSADF graph is proposed. It is shown by an
example that the method can reduce the number of channels and initial tokens present
in an HSDF graph. The reduction technique removes non-critical dependencies while
preserving the schedule of an HSDF graph. Furthermore, the technique was extended to
reduce an FSMSADF graph. Automation of the reduction technique can be performed
by using an existing TRS system and is proposed as a future work.

33

Chapter 6

Trace Extraction

Tracing is a form of software logging useful for validation. A trace records system events
in the order of their occurrence. This chapter describes the design and implementation
of a tracing framework developed to trace applications running over the MARS plat-
form. In the next section, the motivation behind the development of such a framework
is discussed. Section 6.2 presents the challenges present in implementing such a frame-
work over the MARS platform. Section 6.3 describes the architecture of the tracing
framework. Section 6.4 describes the API provided by the tracing framework. Section
6.5 describes an algorithm to compare two traces to validate a model. Finally, Section
6.6 concludes this chapter.

6.1 Motivation

Digital baseband processing is typically implemented as a set of streaming tasks that
share data in a pipelined fashion in which a task present in the pipeline may depend on a
number of previous tasks. Tracing provides insight into the behavior of these tasks and
can be used to validate a model. The tracing framework is used to validate the DVBT
model described in Chapter 7. Validation of such an execution sequence requires logging
of relevant events that occur during the execution of these tasks. In most cases, the
order of occurrence of these events is of interest to validate an execution. For example,
Figure 6.1(a) shows the task graph of an application1. It consists of three tasks that
have dependencies as specified in the task graph. The execution trace of the task graph
is shown in Figure 6.1(b). Figure 6.1(c) presents an FSMSADF graph that models
the application shown in Figure 6.1(a). It has three scenarios, namely, s1, s2 and s3.
The execution times of all actors is 25 ms except for actor A, in scenario s2, has an
execution time of 26 ms. The additional 1 ms accounts for initialization delay over the
ARM processor. The trace generated from this FSMSADF graph is shown in Figure
6.1(d) (shaded executions of task A indicate that there are simultaneous executions
from task C). All buffers in the application, at maximum, accommodate a single token.
The dependencies with initial tokens model the size of buffers. Trace comparison allows
to assess tightness (see Section 6.5) of a model. Section 6.5 describes an algorithm to

1A dashed circle represents a task present in the application.

34

6.2. Challenges

A B C

(a) (b)

VDSP1 VDSP2 ARM

(d)

A B

●2
2

2

s1

A

●
2

2

2

A B

s3

C● ●

s2

s1 s2 s3

(c)

Figure 6.1: Sample application (a), its execution trace (b), an FSMSADF graph
modeling the sample application (c) and the model trace of the FSM-

SADF graph (d).

compare two traces. Using the algorithm, the model trace presented in Figure 6.1(d)
was found to be tight with respect to the trace presented in Figure 6.1(b).

6.2 Challenges

Implementation of the tracing framework is a challenging task. Tracing large number
of events in a short period of time requires large bandwidth. Bandwidth is usually
scarce on embedded platforms. In case of the DVBT decoder, there are approximately
100,000 relevant events per second. Assuming each event requires two words (one word
is 4 bytes) a bandwidth of 800 KB/s is needed. In case of MPSoCs, events occur in
parallel which further increases the bandwidth requirement. Similarly, the number of
events influences the memory requirements. For example, for the DVBT decoder, 1 MB
of RAM facilitates storage of a maximum trace of 1.5 seconds. Moreover, the selection
of events to trace is non-trivial (especially when a large number of events exist) and
mostly data dependent. The tracing application should facilitate application designers
to specify events of interest.

The tracing framework should use minimal resources to avoid interference with the
application being traced. Moreover, the tracing framework must operate in residual
resources which are typically scarce in embedded systems. Furthermore, a trace is
analogous to a series of events happening in time. Browsing the events in textual form
is tedious for the designer and therefore a trace visualizer is needed.

6.3 Architecture

The architecture of the tracing framework is presented in Figure 6.2. It was designed us-
ing the Sea-of-DSP (SoD) and SoD+ API [BB04] on the MARS platform. The rounded
rectangles represent processing cores. The squares inside each core represent set of tasks
(which are traced) executing on each core (tasks are shown as circles inside the squares).

35

6.4. Tracing API

stream1

stream2

stream3

USB

Ta Tb

...

ARM

VDSP2

VDSP1

T1

Tn

T2

...

Tx Ty

...

Host

Figure 6.2: The architecture of the tracing framework.

Figure 6.3: A sample task logging execution trace using the tracing framework.

The circles, outside the squares, denote virtual tasks accessed through the SoD External
API. The external API allows any task to write to the input of a virtual task using the
handle to the task (instead of having a buffer for communication). Using the external
API reduces the number of buffers needed and facilitates a generic architecture (inde-
pendent of the traced tasks). The dotted arrows represent the transmission of data
using the SoD external API. The arrows represent SoD buffers. The circles outside the
squares are SoD tasks that multiplex the streams of traces from the processing cores
over the USB interface to the host. The tracing framework is designed to stream the
traces out of the MARS using a separate USB pipe platform thus facilitating generation
of theoretically infinite stream of traces.

6.4 Tracing API

The tasks to be traced are specified by the designer by using the tracing API which
consists of three macros 1) logStart(ID) 2) logEnd(ID) and 3) logEvent(ID). Each task
is assigned a unique ID which is provided in the macros. Moreover, each log-event must
be committed (before logging the end-event) by the designer in order to ensure that the
event is logged. This allows designers to control logging of events. Once the events are
logged, the tracing framework transmits the stream out of the MARS platform. Figure

36

6.5. Trace comparison

6.1(b) shows the traces of application shown in Figure 6.1(a) (while executing over the
MARS platform). Figure 6.3 presents an example task that logs its execution events
using the API provided by the tracing framework.

6.5 Trace comparison

Large traces are difficult to compare. The comparison described in this section aims to
validate a system trace generated from a system by comparing it with a model trace
generated from a model. This comparison allows the designers to verify that a model
is conservative. In the sequel an FSMSADF graph is considered tight if its model trace
is conservative to a system trace.

The intuition behind trace comparison is as follows. An execution of a task is defined as
a set of instructions executed atomically. A task present in a digital baseband processing
layer typically has many executions. The start time and the end time of an execution
of a task must not be larger than its corresponding execution in the model trace. If this
holds for all executions present in a system trace then the model is considered to be tight.
Algorithm 5 describes a procedure to verify tightness of a model trace with respect to a
system trace that it models. Let getTasks(T) return all tasks present in a trace T . At
line 1, the tasks common to the system trace and the model trace are computed. Algo-
rithm 5 assumes that only the tasks common to the model trace and to the system trace
are of interest to verify tightness. The function getExecutionSequence(t, T) returns the
sorted sequence of executions of task t in trace T . The function count(s) counts the
number of executions in a sequence s. The getExecution(s, i) gets the ith execution
of a task in a sequence s. For each task, the algorithm checks whether the number of
executions of a task are the same as its number of executions in the model trace. This
check is performed between lines 5-7. For each execution of a task the algorithm checks
whether the start time and the end time of an execution in the system trace is greater
than the corresponding execution in the model trace. If so, the algorithm returns false.
If not, true is returned indicating that the model is tight.

6.6 Conclusion

Tracing provides insight into the operation of an application. It is useful in validation.
In this chapter the design details for the tracing framework were presented. This tracing
framework allows tracing of SoD applications on the MARS platform. Moreover, the
tracing framework allows to compare two traces in order to assess the tightness of a
model. We use the tracing framework to assess the tightness of the DVBT model
presented in Chapter 7.

37

6.6. Conclusion

Algorithm 5 Compare a system trace with a model trace to assess tightness.
Input: A system trace Ts and a model trace Tm
Output: Boolean indicating whether the model trace is tight with respect to the system

trace.
1: tasks = getTasks(Ts) ∪ getTasks(Tm)
2: for all t ∈ tasks do
3: seqs = getExecutionSequence(t, Ts)
4: seqm = getExecutionSequence(t, Tm)
5: if count(seqs) 6= count(seqm) then
6: return false
7: end if
8: for i = 1→ count(seqs) do
9: es = getExecution(seqs, i)
10: em = getExecution(seqm, i)
11: if start(es) > start(em) or end(es) > end(em) then
12: return false
13: end if
14: end for
15: end for
16: return true

38

Chapter 7

Case Study

Constructs to model digital baseband processing are discussed in Chapter 4. Using
them, we model the digital baseband processing in a DVBT decoder which is imple-
mented on the MARS platform. The decoder operates with the following operational
parameters, 8K, 1/4 guard rate and 64QAM1. The required throughput for this mode
is 893 symbols/s. In this case study, the SDF3 dataflow analysis toolkit [SGB06] is used
to analyze the models presented in this chapter.

An SDF model of the DVBT decoder is described in Section 7.1. Section 7.2 presents
an FSMSADF model of the DVBT decoder and compares it with the SDF model.
Section 7.3 uses the FSMSADF model to evaluate whether DVBT Diversity can be
implemented over a single VDSP. In the same section, bottlenecks present in the DVBT
decoder are identified. Section 7.4 describes the bottlenecks in the approach and the
models presented in this chapter. Section 7.5 describes the upper and lower bounds
used to bound the FSMSADF statespace of the DVBT decoder. Using these bounds
the model trace for an FSMSADF graph presented in this chapter is generated. Section
7.6 describes the results of the comparison of a system trace with a model trace of an
FSMSADF graph. Finally, we conclude this chapter in Section 7.7.

7.1 SDF model of the DVBT decoder

Streaming tasks present in a DVBT decoder execute atomically. In SDF, an actor
models an atomic computation. We model the tasks present in the DVBT decoder as
SDF actors. The passing of data between these tasks (see Section 1.3.1) is modeled
as dependencies between actors. Figure 7.1 presents an SDF graph that models the
DVBT decoder implementation over the MARS platform. The src actor models the
periodic arrival of OFDM symbols. The sink actor models the periodic transmission of
the MPEG stream for application specific processing over the USB interface. The dfe
isr actor models the interrupt service routine that receives the data from the src and
passes it to the acquisition actor. The dependency edges with initial tokens on them
model the size of the buffers used to pass pointers to packets except the edges with

1DVBT feed is broadcasted with these parameters in Eindhoven, The Netherlands.

39

Case Study 7.1. SDF model of the DVBT decoder

name time (ns) name time (ns)
src 1120000 dfe isr 12017

acquisition 42471 agc 188280
fft 801934 tps sync 238631

equalization 453411 upl 168
deqam 140782 flora t1 24920

packet resizer 1 6720 desc sync 11000
flora t2 18240 ts filter 20480

packet resizer 2 6680 usb out 22120
sink 267000

Table 7.1: Execution times of actors in the DVBT SDF graph.

dfe isr fft
tps

sync

deqam

flora

t1

packet

resizer1

desc-

sync
flora t2

ts

filter

packet

resizer

2

usb

out

agc

●

upl

●

2

1 1

src

sink

●
●

●1 1

● ●

●

●

●

●
●

●

●

●

2

16

6

3

2

2

2 1

2

2 2

2●

2

●

acquisition equalization

Figure 7.1: An SDF graph modeling the digital baseband processing in the MARS
DVBT decoder.

initial tokens over the periodic source and sink. This passing continues in a similar way
in the remainder of the DVBT pipeline. Finally, the data reaches the usb out actor
which models the transmission of USB packets. The execution times of the actors in
the SDF graph are presented in Table 7.1. The execution times of the actors are the
worst case observed times during the operation of the DVBT decoder2. The execution
time of src is exactly the period between the arrival of two consecutive OFDM symbols
[DVBa]. The execution time of sink is computed as follows:

Bandwidth available = 480Mb/s = 60MB/s ≈ 60× 106B/s

Max packets transmitted = bandwidth

packet size
= 60× 106

16× 103 = 3.75× 103

Time for one packet = 1
3.75× 103 = 0.266× 10−3s/packet ≈ 267000ns

2The execution times are the worst case observed times over the VDSPs and ARM processors. Note
that these times are specific to the MARS platform.

40

Case Study 7.1. SDF model of the DVBT decoder

dfe isr fft
tps

sync

deqam

flora

t1

packet

resizer1

desc-

sync
flora t2

ts

filter

packet

resizer

2

usb

out

agc

●

upl

●

2

src

sink

●
●

●

● ●

●

●

●

●
●

●

●

●

2

16

6

3

2

2

2

2

2 2

2●

2

●

acquisition equalization

●

packets(dfe_buffer2)

●
packets(flora_inputBuffer)

●
packets(slot1_output)

●
packets(slot2_input)

●

packets(filter_outputBuffer)

packets(usb_buffer)

● ●

packets(flora_outputBuffer)

Figure 7.2: An SDF graph to model the packet pools and the digital baseband
processing in the MARS DVBT decoder implementation.

name size name size
dfe_buffer2 2 flora_inputBuffer 2
slot1_output 2 slot2_input 2

flora_outputBuffer 3 filter_outputBuffer 6
dfe_buffer2 2 flora_inputBuffer 2
usb_buffer 32

Table 7.2: Number of packets present in the packet pools.

The maximum throughput3 of the SDF model shown in Figure 7.1 is 961 symbols/s
meeting the throughput constraint of 893 symbols/s. The SDF graph shown in Figure
7.1 does not model the packet pools.

The SDF graph shown in Figure 7.2 models the packet pools used in the DVBT decoder.
The dashed arrows model the size of the packet pools. The number of initial tokens
present on the dashed dependencies is equal to the number of packets in the packet
pool (packets(n) denotes the number of packets present in the packet pool n). Table
7.2 lists the number of packets present in a packet pool. The throughput of the SDFG
shown in Figure 7.2 is 961 symbols/s. Note that the throughput remains the same as
the SDF graph shown in Figure 7.1 even if the packet pools are modeled. It is due to
the fact that the number of packets present in the packet pool is sufficient not to reduce
the throughput of the application. However, the SDF graph shown in Figure 7.2 does
not model the communication overhead over the AXI interconnect.

The constructs to model communication over the AXI interconnect are described in
Section 4.2. In order to model the communication overhead between two actors, an
AXI model is inserted between the actors. The type of the AXI model depends on the
mapping of the communicating actors and the mapping of the packet pool. Figure 7.3 (a)
describes a graph to compute the type of AXI interconnect when two tasks read/write

3The maximum throughput is reported assuming that the period of the src can be reduced.

41

Case Study 7.1. SDF model of the DVBT decoder

MSHRAM

appmodem

appmodem

WO WOB

RO ROB

ASHRAM

appmodem

appmodem

WOB WO

ROB RO

DRAM

VDSPB

WO

VDSPA

WO

ARM

WOB
FLORA

WO

DFE

WO

VDSPB

RO

VDSPA

RO

ARM

ROB
FLORA

RO

USB

ROB

(a) (b) (c)

WO-RO →read-write

WO-ROB →read*-write

WOB-RO →read-write*

WOB-ROB →read*-write*

L-ROB →read only*

L-WOB →write only*

L-RO →read only

L-WO →write only

L-L →read-write β = 1

(d)

Figure 7.3: Graphs used to determine appropriate constructs to model communica-
tion over the AXI interconnect.

to MSHRAM. The VDSPA, VDSPB and FLORA are present in the modem section of
the MARS platform. The app (abbreviation of application) section contains ARM and
USB DMA. A source task mapped onto a processor in modem section writes data to
MSHRAM that is read by a task in the app section then the communication type is
WO-ROB. Note that, for the DRAMs either in VDSPA or VDSPB, the communication
type is determined based on the processor and hence the processor names are explicitly
specified in Figure 7.3 (c). Figure 7.3 (d) shows the type of the interconnect model for
each communication type. For WO-ROB, read*-write models the communication4. The
parameters for the AXI models (see Section 4.2) are as follows. The source write rate r
and the destination read rate m are determined from the source and destination actors
respectively. The AXI burst length α for the MARS platform is 4 bytes. The word size
γ is 8 bytes for the MARS platform. The time needed for an AXI operation tc is 8 ns.
The number of initial tokens φ is determined from the dependency between the source
and the destination actor. The sharing degree for each slave β is computed by counting
the number of actors writing to the slave. Each dependency, except the dependencies
from src and to the sink actor, is replaced by an AXI model in the SDF graph based
on the type computed using the graphs shown in Figure 7.3. In the sequel we refer to
this replacement as elaboration. The throughput after elaboration of the SDF graph
presented in Figure 7.2 is 958 symbols/s.

The tasks present in the DVBT decoder share the processors in a round-robin fashion.
The VDSPA is shared between dfe isr, acquisition, fft, tps sync, equalization, upl and
deqam tasks. Figure 7.4 shows an SDF graph that models the packet pools and the
processor sharing among the tasks present in the DVBT decoder. The dependency
(shown as a bold edge) from deqam to dfe isr models the sharing of VDSPA. Adding
this dependency enforces a round-robin scheduling order over the tasks that share the
processor. Similarly, the ARM processor is shared between flora t1, packet resizer1,
desc-sync, flora t2, ts filter, packet resizer2 and usb out. A dependency is added from
usb out to flora t1. This dependency models the sharing of the ARM processor. The
ARM processor also executes several interrupt service routines. These routines increase
the execution times of the tasks they interrupt. Thus the overhead of the routines is
included in the task execution times and in not modeled explicitly. In case more than
one applications share the processors, the approach used to model processor sharing
in this thesis requires an extension. After elaboration, the throughput of the SDF
graph shown in Figure 7.4 is 558 symbols/s. The cyclic dependency between dfe isr,
acquisition, fft, tps sync, equalization, upl and deqam has MCM and is the bottleneck
in the system. It prohibits to meet the throughput constraint of the DVBT decoder.

The throughputs of the SDF models presented in this section are summarized in Table
4A * indicates doubling the time of read and/or the write actor. For example, read* indicates to

double the execution time of the actor modeling the read in the AXI model.

42

7.2. FSMSADF model of the DVBT decoder

dfe isr fft
tps

sync

deqam

flora

t1

packet

resizer1

desc-

sync
flora t2

ts

filter

packet

resizer

2

usb

out

agc

●

upl

●

2

src

sink

●
●

●

● ●

●

●

●

●
●

●

●

●

2

16

6

3

2

2

2

2

2 2

2●

2

●

acquisition equalization

●
packets(dfe_buffer2)

●
packets(flora_inputBuffer)

●
packets(slot1_output)

●
packets(slot2_input)

●

packets(filter_outputBuffer)

packets(usb_buffer)

● ●

packets(flora_outputBuffer)

●

●

Figure 7.4: An SDF graph to model the packet pools, processor sharing and the
digital baseband processing in the MARS DVBT decoder implementa-

tion.

model SDF FSMSADF Improvement(%)
DVBT 961 1216 26

Packet pool 961 1216 26
AXI 958 1211 26

Processors 558 939 68

Table 7.3: Throughputs (symbols/s) of different models used in the case study.

7.3. The cycle between dfe isr, acquisition, fft, tps sync, equalization, upl and deqam is
the bottleneck. Note that packet resizers are not modeled in the case study described in
this chapter. See Appendix B for details. The SDF graphs described in this chapter do
not model the varying resource requirements of the DVBT decoder. They are modeled
as specified in the following section.

7.2 FSMSADF model of the DVBT decoder

A DVBT decoder has varying resource requirements. In this thesis these requirements
are modeled using the FSMSADF MoC. The FSMSADF MoC facilitates scenarios.

Actor / Scenario Demod Sync CFO ACQ IQ
acquisition 20474 20474 20474 20474 42471

fft 96374 96374 801934 - -
tps sync 238631 17742 - - -

Table 7.4: Varying actor execution times (in ns) in the DVBT decoder.

43

7.2. FSMSADF model of the DVBT decoder

dfe isr fft
tps

sync

deqam

flora t1

packet

resizer

1

desc-

sync

flora

t2

ts

filter

packet

resizer

2

usb

out

agc

●

upl

●

2

src

sink

●
●

●

● ●

●

●

●

●
●

●

●

●

2

16

6

3

2

2

2

2

2 2

2●

2

●

acquisition equalization

Figure 7.5: An FSMSADF graph modeling the digital baseband processing in the
MARS DVBT decoder.

Decode

IQ

ACQ

CFOSync

Figure 7.6: The FSM corresponding to the FSMSADF graph presented in Figure
7.5.

The varying resource requirements are split into a set of scenarios (this split is evalu-
ated in Section 7.4). Each scenario has a corresponding SDF graph. Figure 7.5 presents
an FSMSADF graph that models the DVBT decoder implementation over the MARS
platform, with its FSM shown in Figure 7.6. The FSM consists of five states, namely,
IQ, ACQ, CFO, Sync and Decode. Initially, the decoder is in the IQ state. The actors
active in a state have the same shading scheme as their associated FSM state5. When
the decoder switches to a next state, functional blocks become active incrementally.
Similarly, an SDF graph corresponding to a scenario consists of additional actors com-
pared to its previous scenario. For example, all actors after equalization are only present
in the SDF graph corresponding to the Demod scenario. The actors that have varying
execution times are presented in Table 7.4 (remaining actors have the same execution
times as specified in Table 7.1).

The maximum achievable throughput of the FSMSADF graph presented in Figure 7.5
is 1216 symbols/s. It meets the throughput constraint of 893 symbols/s. However, it
does not model the packet pools in the DVBT decoder. The FSMSADF graph shown

5We present the SDF graphs corresponding to each scenario with shades. Each SDF graph consists
of actors with the same shade and all previous actors in the DVBT pipeline. Thus when scenario switch
occurs, the actors become active incrementally.

44

7.3. Early evaluation and improvements

dfe isr fft
tps

sync

deqam

flora t1

packet

resizer

1

desc-

sync

flora

t2

ts

filter

packet

resizer

2

usb

out

agc

●

upl

●

2

src

sink

●
●

●

● ●

●

●

●

●
●

●

●

●

2

16

6

3

2

2

2

2

2 2

2●

2

●

acquisition equalization

●

packets(dfe_buffer2)

●
packets(flora_inputBuffer)

●
packets(slot1_output)

●
packets(slot2_input)

●
packets(filter_outputBuffer)

packets(usb_buffer)
● ●

packets(flora_outputBuffer)

Figure 7.7: An FSMSADF graph to model the packet pools and the digital baseband
processing in the MARS DVBT decoder implementation.

in Figure 7.7 models packet pools (details of modeling packet pools are the same as in
Section 7.1). The FSM of this FSMSADF graph is the same as shown in Figure 7.6.
The throughput of the FSMSADF graph that models the packet pool is 1216 symbols/s.

The throughput of the FSMSADF graph shown in Figure 7.7 reduces to 1211 symbols
when it is elaborated. The method of elaboration is same as specified in Section 7.1.
Figure 7.8 shows an FSMSADF graph that models the packet pools, processor sharing
and the digital baseband processing in the MARS DVBT decoder. The throughput of
this graph after AXI elaboration is 939 symbols/s. It meets the throughput constraint
of the DVBT decoder. Table 7.3 lists the throughputs of the SDF and the FSMSADF
graphs discussed in this section and in Section 7.1. The improvement column shows
the percent improvement in throughput when using an FSMSADF graph instead of
an SDF graph. Clearly, the FSMSADF graphs have a higher throughput than their
corresponding SDF models. This concludes that the FSMSADF models presented in
this chapter facilitate tighter estimations of the resource requirements of the decoder.
An advantage of having tighter estimates is the fact that it avoids over allocation of
resources.

7.3 Early evaluation and improvements

Early evaluation and bottleneck detection are promises of model based design. An
FSMSADF based DVBT model is used to evaluate whether DVBT Diversity, a variant
of DVBT, can be implemented using a single VDSP. Secondly, we identify bottlenecks
present in the MARS DVBT decoder. The SDF3[SGB06] dataflow analysis toolkit is
used to perform analysis on our models. The details of each experiment are as follows.

Diversity on a single VDSP. DVBT Diversity is a type of DVBT in which two
input streams (from two antennas) are processed by a decoder to increase the quality
of the output MPEG stream. The FSMSADF model presented in Figure 7.7 that
models the digital baseband processing and the packet pools is used to investigate

45

7.3. Early evaluation and improvements

dfe isr fft
tps

sync

deqam

flora t1

packet

resizer

1

desc-

sync

flora

t2

ts

filter

packet

resizer

2

usb

out

agc

●

upl

●

2

src

sink

●
●

●

● ●

●

●

●

●
●

●

●

●

2

16

6

3

2

2

2

2

2 2

2●

2

●

acquisition equalization

●

packets(dfe_buffer2)

●
packets(flora_inputBuffer)

●
packets(slot1_output)

●
packets(slot2_input)

●
packets(filter_outputBuffer)

packets(usb_buffer)
● ●

packets(flora_outputBuffer)

●

●

Figure 7.8: An FSMSADF graph to model the packet pools, the processor shar-
ing and the digital baseband processing in the MARS DVBT decoder

implementation.

whether it is possible to implement DVBT Diversity decoder over a single VDSP. In
a DVBT Diversity decoder, all tasks running on the VDSPs process information from
two OFDM symbols. In order to verify the implementation of DVBT Diversity, the
execution times of the acquisition, fft, tps, equalization and deqam actors is doubled.
The FSMSADF graph (that models DVBT and packet pools), shown in Figure 7.7,
with doubled execution has a maximum achievable throughput of 722 symbols/s. It
does not meet the throughput constraint of the DVBT decoder i.e. 893 symbols/s. It
is concluded that it is not possible to implement a DVBT Diversity decoder on a single
VDSP using the current implementation of the task running on the VDSPs.

Bottlenecks and improvements. The maximum achievable throughput of the DVBT
decoder is limited by the critical scenario sequence and the critical actor firings in
the sequence. Finding the critical scenario sequences and the critical actors firings
will identify the bottlenecks present in the system. These bottlenecks are candidates
for improvement. The critical scenario sequence in the DVBT decoder is when the
decoder stays in the Decode scenario. The tasks executing over the VDSP, namely,
dfe isr, acquisition, fft, tps sync, equalization, upl and deqam are bottlenecks in the
implementation of the DVBT decoder. Thus, any task running over the VDSP is a
candidate for improvement. Moreover, equalization has the maximum execution time
among the tasks causing the bottleneck. Note that the improvement is needed only
when the tasks are decoding the input OFDM symbols. Thus only the functionality
executed in the Demod scenario requires optimization.

46

7.4. Bottlenecks in the approach and the model

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

FFTS
IQ

FFTS
ACQ

FFTS
Other

FFT
CFO

FFT
Other

TPS
Sync

TPS
Other

Ti
m

e
(u

s)

Block-Scenario

wcot
average

Figure 7.9: Comparison of execution times of several blocks in different scenarios.

7.4 Bottlenecks in the approach and the model

The approach followed in this thesis is evaluated in this section. It is evaluated whether
the identified scenarios are sufficient to capture varying resource requirements. More-
over, we identify which factors affect the time complexity of the analysis algorithms.

Identified scenarios. The switching between scenarios is data and carrier state depen-
dent leading to different execution times of blocks across scenarios. Figure 7.9 illustrates
this by a comparison. It presents the Worst Case Observed Time (WCOT) and the av-
erage case execution times of the functional blocks present in the DVBT decoder. Only
the execution times of FFT-synchronization (FFTS), FFT and TPS decoding (TPS)
vary during the operation of the decoder. In Figure 7.9, the blocks are arranged on the
x-axis in block-scenario format, where block is the name of a block and scenario is the
name of the scenario it is in. Notice the fluctuation of the execution times of the FFTS
block across the IQ, ACQ and Other 6 scenarios. Considering the maximum WCOT
of a block during the analysis will be too pessimistic and it appeals to explicitly model
the data and the state dependent behavior. For the DVBT decoder, this behavior (sce-
narios) is observable during its operation. The set of possible transitions between these
behaviors can be statically determined. Moreover, there exists a significant difference
between the average and the WCOT of FFTS block in the ACQ scenario and the FFT
block in the CFO scenario due to the internal dynamism present in these blocks. This
difference appeals to model this dynamism as scenarios and is proposed as a future
work.

Factors contributing to the time complexity. The time complexity of the analysis
algorithms is influenced by the FSMSADF graph. In this section, the effect of the
number of initial tokens and depth (see Section 4.3) of an FSMSADF graph on the
runtime of some analysis algorithms is discussed. The depth of an FSM present in an
FSMSADF graph influences the number of states present in the FSMSADF statespace.
Figure 7.10 shows the result of an experiment which analyzes the influence of the depth
of an FSM over the FSMSADF statespace. In this experiment, the depth of the DVBT

6Other indicates, for a functional block, the rest of the scenarios which are not shown in the figure.

47

7.4. Bottlenecks in the approach and the model

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70 80 90 100

st
a
te

s

depth

Figure 7.10: The influence of the depth of an FSM over the FSMSADF statespace.

a1

●

b

●

a2

●

an

●

...

Figure 7.11: An FSMSADF graph used to analyze the influence of the number of
initial tokens on the analysis algorithms.

FSM was varied between 1-100 for the Demod scenario. Initially, the states in the
FSMSADF statespace increase exponentially with respect to the depth of the FSM
until they reach the saturation point. This saturation occurs due to the fact the new
time stamp vectors explored by the statespace generation algorithm are dominated by
the previously explored time stamps. However, in a case when not all self edges are
removed from the FSM, the saturation point may never be reached and the exponential
growth in the number of states may continue.

Secondly, the number of initial tokens present in an FSMSADF graph influences the time
complexity of the analysis algorithms. In order to analyze this influence we increase
the number of initial tokens in the FSMSADF graph specified in Figure 7.11. The
number of initial tokens is varied between 0-16000. Figure 7.12 shows the results of
the experiment. While selecting an FSMSADF graph for this experiment, the aim is to
be as general as possible i.e. the experiment should only consider the increase in the
number of initial tokens into account. Clearly, the analysis time increases quadratically
with respect to the number of initial tokens. It is quadratic because the size of a Max-
Plus matrix increases quadratically with the number of initial tokens in an FSMSADF
graph.

48

7.5. Upper and lower bounds for the DVBT decoder

Type IQ ACQ CFO Sync
Lower bound 11 21 5 75
Upper bound 11 21 5 130

Table 7.5: Upper and lower bounds for expanding the DVBT FSM.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 2000 4000 6000 8000 10000 12000 14000 16000

tim
e

(m
s)

iTokens

Figure 7.12: The influence of the number of initial tokens over the analysis time.

7.5 Upper and lower bounds for the DVBT decoder

An approach to expand an FSM in an FSMSADF graph is described in Section 4.3. The
expansion is required in order to limit the statespace of an FSMSADF graph [SGTB11].
Expansion allows to compute the statespace in limited memory7. If not expanded, it is
not possible to load the FSMSADF statespace even in 150GB of memory. Computing
the FSMSADF statespace is required to perform the worst case performance analysis
[SGTB11] and to generate a model trace [PRE].

The upper and lower bounds used for the expansion of the FSM of the DVBT decoder
are specified in Table 7.5. These bounds are computed by performing a series of ex-
periments. In these experiments, we vary the intensity of the signal transmitted to the
DVBT decoder. The variation of the signal was between the minimum intensity on
which the decoder remains operational and the maximum intensity. It is evident from
the bounds that varying the signal intensity only affects the number of iterations the
decoder stays in sync scenario. The expansion limits the FSMSADF statespace but, on
the other hand, increases the number of states (and scenarios) present in an FSMSADF
graph. Moreover, the expansion modifies the application behavior and should not be
considered as a reduction technique for the FSMSADF statespace.

7The expansion performed to the FSM for the DVBT decoder fits in 4 GB of memory.

49

7.6. Comparison of the DVBT model trace with the system trace

7.6 Comparison of the DVBT model trace with the system trace

The bounds presented in the previous section were used to limit the statespace (see Sec-
tion 4.3) of the DVBT FSMSADF graph presented in Figure 7.7. It models the packet
pools and the digital baseband processing in the DVBT decoder. The FSM in the
FSMSADF was expanded to limit the FSMSADF statespace. Limiting the FSMSADF
statespace is required to generate the model trace (without limiting the statespace it
does not fit into the memory). The model trace of the DVBT decoder was generated by
the algorithms specified in [PRE]. The system trace for the DVBT decoder implemen-
tation on the MARS platform was generated using the tracing framework described in
Chapter 6. The traces were compared using Algorithm 5 specified in Chapter 6. The
model trace is not tight with respect to the system trace, as the algorithm returned false.
This is because the acquisition task in ACQ scenario, in the system trace, has a worst
case execution time of 1720000 ns whereas in the model the worst case execution time
is 20474 ns. This leads to the failure of the tightness condition verified by Algorithm
5. Using 1720000 ns as the worst case execution time for the acquisition task in ACQ
scenario would be too pessimistic. The acquisition task takes 1720000 ns to align the
boundary of the incoming OFDM symbol. The acquisition task (in worst case) performs
busy wait8 for 1120000 ns). The additional 600000 ns account for the processing after
the symbol boundary is aligned, thus, leading to an execution time of 1120000 + 600000
= 1720000 ns. Using 1720000 ns as a worst case, the execution time of the acquisition
task is greater than the OFDM symbol period. Moreover, this happens once during the
ACQ scenario. Modeling this behavior will be reported (by the FSMSADF timing anal-
ysis algorithms) as a violation of the throughput constraint. Therefore, in this thesis,
we ignore modeling the alignment. An approximation to model this behavior is to add
a separate scenario with a relaxed throughput constraint, in which the DVBT decoder
aligns the OFDM symbol boundary.

7.7 Conclusion

This chapter presents several SDF and FSMSADF models for the MARS DVBT de-
coder. These models differ on the types of behavior they model. The SDF model of the
DVBT decoder failed to fulfill the throughput constraint when it models the processors
present in the MARS platform, because the SDF model is not able to model the varying
resource requirements of the DVBT decoder and it is pessimistic. The FSMSADF model
of the DVBT decoder (which models processors, AXI interconnect, packet pools and
the digital baseband processing) fulfills the throughput constraint. In this chapter, we
identified bottlenecks and improvements in the current implementation. Improving any
task running on the VDSP will increase the throughput of the system (or the resources
can be shared with other applications). Furthermore, we analyzed the bottlenecks in
the modeling approach used in this thesis. Our experiments indicate that an increase in
the number of initial tokens present in an FSMSADF graph may increase the runtime
of the analysis algorithms quadratically.

8A while(1) loop with a condition to check whether the OFDM symbol boundary is aligned.

50

Chapter 8

Conclusion and Future Work

Model based design of SDRs is proposed as a solution to the requirements of wireless
operators and technology providers. In this thesis, an approach to model SDRs is
proposed. Section 8.1 concludes this thesis. However, several extensions to the approach
are possible. These extensions are discussed in Section 8.2.

8.1 Conclusion

Model based design of SDRs is proposed as a solution to the requirements of wireless
operators and technology providers. Radios incorporate several signal processing oper-
ations. These operations, according to the conceptual model of SDRs, are categorized
as signal processing, digital baseband processing and application specific processing. This
thesis describes constructs to model digital baseband processing.

An application consists of computation and communication. In this thesis constructs to
model both the computation and communication are described. Namely, constructs to
model atomic execution of tasks, periodic sources and sinks, packet pools, and packet
resizers are described. Moreover, constructs to model the AXI interconnect are de-
scribed in this thesis. Using these constructs, as a case study, the DVBT decoder
implementation over the MARS platform is modeled.

In the case study, the FSMSADF MoC is used to model the varying resource require-
ments of a DVBT decoder. The results indicate that SDF MoC pessimistically models
the varying resource requirements, thus, limiting the maximum achievable through-
put. In the case study, using the designed model, it was concluded that the DVBT
Diversity cannot be implemented on a single VDSP without optimizing the current
implementation. The tasks to optimize are identified by finding the bottleneck in the
implementation. The approach described in this is assessed in the case study. This
assessment revealed that the dynamism present inside the scenarios is a candidate to be
modeled as sub-scenarios. Futhermore, increasing the number of initial tokens present
in an FSMSADF graph may increase the analysis time quadratically. Thus, it is desired
to reduce the number of initial tokens present in an FSMSADF graph. In this thesis,
a technique to reduce the number of initial tokens in an FSMSADF graph is proposed.

51

8.2. Future work

This technique removes the redundant dependencies from an FSMSADF graph. In or-
der to validate the constructs described in this thesis, a tracing framework is designed.
The constructs, the reduction technique and the tracing framework are contributions of
this thesis to the model based design of SDRs.

8.2 Future work

Several extensions are possible to the approach described in this thesis. We propose
these extensions as future work and they are as follows.

Modeling dynamism. The tasks present in a DVBT decoder have dynamic execution
times. Figure 7.9 presents the average and worst case observed execution times of the
blocks present in the DVBT decoder. The FFTS block in the ACQ scenario and the
FFT block in the CFO scenario still have dynamism as the average and worst case
observed time show a significant difference. An approach to model this dynamism is
to add scenarios to the existing scenarios. Adding scenarios will lead to tighter timing
analysis.

Modeling Out-of-Order command execution over the AXI interconnect. The
AXI protocol offers advanced features like Out-of-Order command execution. The AXI
models presented in Section 4.2 assume that a master does not issue a new command
when an existing command is pending. For the DVBT decoder implementation over the
MARS platform, this assumption is valid. However, it is of interest to model Out-of-
Order command execution, for other applications executing over the MARS platform,
because it influences the timing behavior of an application. For example, Out-of-Order
execution may delay a command, compared to a later command, issued by the same
master influencing the time required to communicate over the interconnect.

Model extraction from a trace. The trace extraction framework designed in this
thesis traces an application. Given a trace, it is of interest to come up with a model
which has a similar or detailed trace. In the presence of a system implementation, the
extracted model may help in improving the existing model. It is a challenging task to
extract a model which models the system completely as not all possible behaviors of a
system might be observable during an execution.

Model multiple applications on the MARS platform. A DVBT decoder imple-
mentation is modeled in this thesis. The experiments conducted in Section 7.3 indi-
cate that the throughput of the DVBT decoder exceeds the throughput constraint by
1445− 825 = 620 symbols/s. The excess resources can be used to execute an additional
application on the MARS platform. An additional application can be modeled by ex-
tending the approach presented in this thesis. As a first step, the resources present
in the MARS platform must be specified in the model. The SDF3 toolkit allows such
a specification. The second step is to model the applications that run on the MARS
platform. Once modeled, multiple applications can be analyzed using the FSMSADF
analysis techniques.

Reduction of FSMSADF graphs. It is of interest to automate the FSMSADF
reduction technique. The automation can be performed using an existing Term Rewrite
System (TRS) and by proving confluence. The definitions presented in Chapter 5 are
analogous to term-rewrite rules. The terms corresponding to an HSDF graph can be
simplified using a TRS, for example, by using Maude [CDE+02]. The rewrite rules can
be proved confluent using APPROVE [GTSKF03]. Confluent rewrite rules always lead
to same normal form (one and only one HSDF graph).

52

8.2. Future work

Identification of transient and periodic execution. The tracing framework facil-
itates comparison of a model trace with a system trace. In case of SDRs, estimation
of parameters (transient regime) may have completely different behavior compared to
its normal operation (periodic regime) which is periodic. It is of interest to identify the
start of periodic regime of an SDR by analyzing the system trace.

53

Bibliography

[AAG+11] O. Anjum, T. Ahonen, F. Garzia, J. Nurmi, C. Brunelli, and H. Berg.
State of the art baseband DSP platforms for Software Defined Radio: A
survey. EURASIP Journal on Wireless Communications and Networking,
2011(1):5, 2011.

[ASSG08] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-time schedul-
ing using credit-controlled static-priority arbitration. In Embedded and
Real-Time Computing Systems and Applications, 2008. RTCSA’08. 14th
IEEE International Conference on, pages 3–14. IEEE, 2008.

[AXI] AMBA3 AXI Protocol Specification v1.0 [Online accessed 15-07-
12]. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.ihi0022d/index.html.

[BB04] R.V.D. Berg and H.S. Bhullar. Next generation Phillips digital car radios,
based on a sea-of-dsp concept. IEEE ISPC GSPx, 2004.

[BBL08] H. Berg, C. Brunelli, and U. Lucking. Analyzing models of computation for
software defined radio applications. In System-on-Chip, 2008. SOC 2008.
International Symposium on, pages 1–4. IEEE, 2008.

[BCOQ92] F.L. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization
and linearity, volume 2. Wiley New York, 1992.

[BHM+05] K.V. Berkel, F. Heinle, P.P.E. Meuwissen, K. Moerman, and M. Weiss.
Vector processing as an enabler for software-defined radio in handheld de-
vices. EURASIP Journal on Applied Signal Processing, 2005:2613–2625,
2005.

[BR09] D. Brylow and B. Ramamurthy. Nexos: A next generation embedded
systems laboratory. ACM SIGBED Review, 6(1):7, 2009.

[CDE+02] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
J.F. Quesada. Maude: Specification and programming in rewriting logic.
Theoretical Computer Science, 285(2):187–243, 2002.

[DVBa] DVB - EN 300 744 [Online accessed 4-02-12]. http://www.etsi.org/
WebSite/Technologies/DVB.aspx.

54

Bibliography Bibliography

[DVBb] DVBT - Wikipedia, the free encyclopedia [Online accessed 4-02-12]. http:
//en.wikipedia.org/wiki/DVB-T.

[Gei09] M. Geilen. Reduction techniques for synchronous dataflow graphs. In
Proceedings of the 46th Annual Design Automation Conference, pages 911–
916. ACM, 2009.

[Gei11] Marc Geilen. Synchronous dataflow scenarios. ACM Trans. Embed. Com-
put. Syst., 10(2):16:1–16:31, January 2011.

[GTSKF03] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Aprove: A system
for proving termination. Rubio [Rub03], pages 68–70, 2003.

[JSS+11] R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal. An au-
tomated flow to map throughput constrained applications to a MPSoC.
Bringing Theory to Practice: Predictability and Performance in Embedded
Systems, 18:47–58, 2011.

[Kum09] A. Kumar. Analysis, design and management of multimedia multiprocessor
systems. PhD thesis, Eindhoven University of Technology, Eindhoven (The
Netherlands), 2009.

[LM87] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235–1245, 1987.

[MAR] DSRC mobile WLAN component. http://www.nxp.com/campaigns/
connected-mobility/pdf/whitepaper_mk3_v05.pdf.

[OH04] H. Oh and S. Ha. Fractional rate dataflow model for efficient code synthesis.
The Journal of VLSI Signal Processing, 37(1):41–51, 2004.

[OPE] OpenComRTOS [Online accessed 14-04-12]. http://www.altreonic.com/
content/product-overview.

[PRE] Preparation report of this thesis.

[SB09] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling
and Synchronization. CRC Press, Inc., Boca Raton, FL, USA, 2nd edition,
2009.

[SGB06] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF for free. In Application
of Concurrency to System Design, 2006. ACSD 2006. Sixth International
Conference on, pages 276–278, 2006.

[SGM+11] F. Siyoum, M. Geilen, O. Moreira, R. Nas, and H. Corporaal. Analyzing
synchronous dataflow scenarios for dynamic software-defined radio applica-
tions. In System on Chip (SoC), 2011 International Symposium on, pages
14–21. IEEE, 2011.

[SGTB11] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware dataflow:
modeling, analysis and implementation of dynamic applications. In Em-
bedded Computer Systems (SAMOS), 2011 International Conference on,
pages 404 –411, 2011.

[Stu07] S. Stuijk. Predictable Mapping of Streaming Applications on Multiproces-
sors. PhD thesis, Technical University Eindhoven, 2007.

55

Bibliography

[TT97] M. Tofte and J.P. Talpin. Region-based memory management. Information
and Computation, 132(2):109–176, 1997.

[Yan09] F. Yang, 2009. Masters thesis: Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio Applications.

[YWC] J. Yong, X. Wen, and G. Cyprian. Implementing a DVB-T/H Receiver
on a Software-Defined Radio Platform. International Journal of Digital
Multimedia Broadcasting, 2009.

56

Appendix A

Reduction of AXI models

a
β

α×δ

b
β×η

s1
aw

1

w1

r1
aw

2

w2

r2

d1

c

s2
aw

3

d2

d3

r3

●

●

●

●

●

●

●

η
α α

η

α α

α×δ

β×η

β

α×δ

η

α

α

η

δ

●

a s

w

aw r

c

β

α×δ

η

αα

α×δ

β×η

saw

d2

rb

●

β

α×δηα

● ●

α

δ

β×η

●

d1●
η

d3 ●
η

(a) (b)

Figure A.1: Unoptimized AXI read-write model (a) and AXI read-write model over
bridge (b).

The optimized AXI models were presented in Section 4.2. They were optimized from
the models presented in Figure A.1 using the reduction approach presented in Chapter
5. This reduced the number of initial tokens present in the read-write model shown in
Figure A.1(a) from six initial tokens to three initial tokens in the model presented in
Figure 4.5(a). This reduces the initial tokens significantly in the automatically generated
binding aware models. Similarly, Figure A.1(b) presents the unoptimized read-write
model over the bridge. The reduction approach reduced the number of initial tokens
from eight initial tokens to three initial tokens. However, the unoptimized models
are more intuitive and near to the behavioral models of the AXI read-write bursts
presented in Figure 4.4. It is of interest to specify intuitive models and the analysis
tools automatically simplify the models using the reduction approach.

57

Appendix B
Modeling packet resizers in a

DVBT decoder

name count name count
src 17408 dfe isr 17408

acquisition 17408 agc 17408
fft 17408 tps sync 17408

equalization 17408 upl 17408
deqam 17408 flora t1 17408

packet resizer 1 193536 desc sync 193536
flora t2 193536 ts filter 193536

packet resizer 2 387072 usb out 8883
sink 8883

Table B.1: The repetitions of the actors present in a DVBT decoder when packet
resizers are modeled.

A construct to model packet resizers in an SDR is described in Section 4.1. It models
resizing a of packet between two tasks when the tasks use packet pools. However, the
models described in Chapter 7 do not model packet resizers. It is because the decoder
requires several OFDM symbols to flush out the data buffered in a packet resizer. The
SDF graph shown in Figure 7.1 was extended to model packet resizers. In order to model
the packet resizers, the packet resizer 1 and packet resizer 2 actors were replaced by the
packet resizer constructs as specified in Section 4.1. Table B.1 presents the repetition
vector of the extended SDF graph. The repetition vector indicates that 17408 OFDM
symbols are required to complete one iteration of the SDF graph. However, the approach
used in this thesis provides guarantees for a single OFDM symbol. It requires an SDF
graph iteration to complete with a single OFDM symbol. This limits modeling the
packet resizers present in a DVBT decoder. In order to model the resizers, standard
definition of throughput constraint requires an extension.

58

