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Abstract

The q-profile, also known in literature as the safety factor profile, is an important quantity because
it determines the stability as well as the performance of a fusion plasma. A strong degree of
control over this q-profile makes the operation of a tokamak fusion reactor more stable (avoidance
of plasma instabilities) and efficient (optimal q-profile shape). Control of the q-profile can be
achieved through either open-loop (feedforward) control or closed-loop (feedback) control, or a
combination of both. For the development and testing of both types of control a fast control-
oriented transport code which can simulate the evolution of the safety factor profile in time is
crucial. The RAPTOR (RApid Plasma Transport simulatOR) code was developed with this aim
in mind. The performance of the open-loop and closed-loop control system strongly depends on
the quality of the RAPTOR predictions.
During this research the predictions of RAPTOR were improved by adding a fast Neutral Beam
Injection module (NBI) and by developing a generic method to estimate the model parameters in
RAPTOR.
The NBI system is an important external heating and current drive actuator to alter the q-profile
of a fusion plasma. It is used at many existing tokamaks and will be an important actuator for
ITER. The developed fast Neutral Beam Injection module, based on a pencil beam approach,
produces results similar to more complete beam codes for an ITER-like scenario.
In RAPTOR an ad-hoc model is used, instead of a first principle physics model, to describe the
electron heat diffusivity χe in view of computational speed. The structure of the ad-hoc model is
given by the physics knowledge, and only the unknown physics of χe, which is more complicated
and less well understood, is captured in its model parameters. During this research on the one
hand the ad-hoc model was extended in order to better describe physical phenomena such as the
sawtooth instability and the degradation of transport due to higher temperature. On the other
hand a generic parameter identification method was developed to estimate RAPTOR’s model
parameters. For the TCV tokamak in Lausanne it was shown that the developed method is
capable of finding the model parameters such that the RAPTOR predictions agree within twenty
percent with measurements.
As a result of the work presented in this thesis, the RAPTOR code is now equipped with a NBI
module that allows RAPTOR to simulate a multitude of tokamaks including ITER. Benchmarks
of this fast NBI module for an ITER-like scenario showed good agreement with large scale NBI
codes, while running significantly faster. Furthermore the extension of the transport model and
a newly developed model-parameter estimation routine now results in a better description of the
physics and allows for a less ad-hoc and more automated method to implement RAPTOR on a
variety of tokamaks.
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Chapter 1

Introduction

1.1 Introduction

Fusion energy is a promising source of energy which has several advantages over the conventional
energy sources [1]:

1. Universal availability and virtually inexhaustible fuel (heavy water and lithium);

2. No emission of greenhouse gases or other combustion pollutants such as SOx and NOx;

3. No long lived or high level radioactive waste.

The fusion process involves two light nuclei, typically isotopes of hydrogen, that are merged
together to form a new set of elements. The most promising reaction to occur involves the fusion
of a deuterium nucleus (D) and a tritium nucleus (T). This reaction creates a helium nucleus and
an energetic neutron which is used to generate electricity:

D + T→4 He(3.5MeV) + n(14.1MeV), (1.1)

The fusion deuterium-tritium fuel must be heated to a high temperature so that the thermal ve-
locities of the nuclei are sufficiently high to overcome the mutual Coulomb repulsive forces and
produce the required reactions. The required temperature is about 100 million degrees C [9]. At
this temperature the fusion fuel is in the form of a plasma (a ”gas” of charged particles) and
cannot be contained by material walls.

A solution to avoid contact of the plasma with the walls is to confine the plasma magnetically.
The tokamak exploits this principle: it uses magnetic coils and plasma current which generate a
helical field that confines the hot plasma. This machine is shaped like a torus and its field lines are
”closed”, i.e. they form nested flux surfaces. Plasma particles (ions and electrons) are free to move
along the magnetic field lines but their motion across magnetic field lines is strongly inhibited. A
schematic of the tokamak configuration and its coils are shown in Figure 1.1. The TCV experiment
at the École Polytechnique Fédérale de Lausanne is one of an estimated 25 devices in the world
which exploits this concept.

The magnetic geometry determines the stability and confinement of the plasma. A key attribute
of a tokamak is that the helical field is generated by a current driven in the plasma while the shape
of the magnetic surfaces (e.g. elongation, triangularity) can be controlled with external magnets.
The radial profile of plasma current determines the q profile (In many literature also defined as the
safety factor profile). The latter represents how many toroidal periods a field line covers for one
poloidal period. In Figure 1.2 the radial q and parallel current density profiles are depicted. The
shape of the safety factor profile determines in which plasma scenario the tokamak is operating.
The different plasma scenarios mentioned in Figure 1.2 have the following features:
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Figure 1.1: A schematic of the tokamak configuration showing the major components. (Figure
reprinted from [2])

Figure 1.2: The different q profiles, which are determined by the radial distribution of the parallel
current density j, define the different tokamak operating scenarios. The normalized radial coor-
dinate ρ is zero in the center of the plasma and one at the plasma edge (Figure reprinted from
[3])

• The inductive plasma scenario (the High Confinement Mode) is the most promising scenario
for ITER to reach a fusion power output ten times higher than the input heating power of the
plasma. The inductive plasma scenario is characterized by a peaked current density profile
(most plasma current is driven inductively) and a resulting monotonic q profile. Because
q is smaller than one near the plasma center, sawtooth crashes of the plasma can occur.
This deteriorates the performance (lower energy gain) and may serve as a trigger for other
deleterious MHD modes;

• The hybrid plasma scenario is characterized by a centrally flat (zero shear) q profile which
is greater than one everywhere. This q profile is achieved by driving a significant part of
the plasma current non-inductively off-axis. The absence of a q = 1 surface means that no
sawtooth crashes occur. (More information about sawtooth crashes is given in Section 4.1);
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• In the advanced scenarios (weak reverse shear, strong reverse shear) a significant amount of
plasma current is driven off-axis and non-inductively. This causes a reversed/non-monotonic
q profile, which triggers internal transport barriers (ITB) resulting in locally reduced trans-
port and thus improved energy confinement. A disadvantage of the advanced scenarios is
that they must operate close to the ideal magnetohydrodynamics (MHD) stability limits.

It can be concluded that the q profile is an important quantity because it determines the stability
as well as the performance of a fusion plasma. A strong degree of control over this q profile makes
the operation of a tokamak more stable and efficient. The success of ITER, the world’s largest
tokamak yet to be built, strongly depends on the ability to control and shape this safety profile.
Control of the safety factor profile can be achieved through either open-loop (feedforward) control
or closed-loop (feedback) control, or a combination of both. Open-loop control is used to calculate
the trajectory that the profiles should follow during their transient evolution towards/from their
stationary state. Closed-loop control is used to maintain the desired profiles in real-time around
an operating point.
For development and testing of both types of control a fast transport code which can simulate the
temporal evolution of the safety factor profile is crucial. The RAPTOR (RApid Plasma Transport
simulatOR) code [3] was developed for this purpose. It is a fast code to calculate the coupled
electron temperature Te and q profile evolution: to calculate the safety factor profile, information
about the electron temperature is needed and vice versa. Besides the fast calculation of the Te and
q profiles, RAPTOR returns the sensitivity of the time evolution of these profiles to a set of model
or input parameters. This last feature proved to be extremely useful and makes RAPTOR unique
compared to other existing codes. In Chapter 2 the equations and assumptions used in RAPTOR
are explained. In the remaining of this section a brief introduction is given on feedforward and
feedback control and the role of RAPTOR in these control schemes. This introduction will serve
to motivate in Section 1.3 the added value and applications of the work presented in this thesis.

Feedforward control

An important task of tokamak physics operators at the different tokamak research facilities in the
world consists of the design of plasma evolution trajectories. A trajectory is the time evolution of
a tokamak actuator, e.g Electron Cyclotron Heating and Current Drive or Neutral Beam Heating
and Current Drive. The tokamak physics operator determines pre-shot (open loop) the auxiliary
heating, current drive and plasma current trajectories necessary to reach a given plasma scenario.
These plasma scenarios are determined by their q profile (See Figure 1.2). By actively shaping the
q profile, known as profile control, a desired plasma scenario can be reached. The choice of actuator
trajectories made by the tokamak physics operator to reach a plasma scenario is traditionally the
result of a substantial amount of trial-and-error attempts and his extensive experience gained
during tokamak operation. The RAPTOR code offers an alternative approach for the planning of
open loop trajectories. Coupling RAPTOR to a nonlinear optimization routine makes it possible
to calculate which actuator trajectories are necessary to reach a prescribed q profile and thus a
desired plasma scenario. This approach is sketched in Figure 1.3. The cost function defines how
much the final q profile deviates from the desired one. The nonlinear optimization routine takes
actuator constraints (e.g: maximum power of actuator and ramp rate) and physics constraints
(e.g avoiding sawtooth crashes by the constraint q > 1 everywhere at all times) into account.
RAPTOR is a light-weight, control-oriented transport code capable of calculating the safety factor
profile evolution in time as well as the profile sensitivity to a set of model parameters or input
parameters (affecting the temporal evolution of the actuator trajectories). This information can
be fed to the nonlinear optimization routine. This routine uses the profile sensitivities to compute
an improved set of actuator trajectories, iteratively converging to an optimum. If the analytic ex-
pressions for the profile sensitivities were not available they would have to be obtained numerically.
This would increase the CPU burden significantly knowing that typically hundreds of iterations
are necessary to calculate the optimal actuator trajectories and that at each iteration step the
extra amount of simulations required to calculate the numerical profile sensitivity scales with the
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RAPTOR

Nonlinear optimization routine
cost/constraints

q pro!le evolution and 

pro!le sensitivity

actuator evolution

(input trajectories)

Figure 1.3: Schematic of the approach to calculate actuator trajectories. RAPTOR, which simu-
lates the tokamak profile, is coupled to a nonlinear optimization routine to calculate the required
actuator trajectories to reach a specified q profile.

number of input parameters. Other existing fast transport codes do not provide the analytical
expressions for the profile sensitivities, which makes RAPTOR a very suitable code for designing
optimal feedforward trajectories regarding tolerable CPU times.
There are multiple advantages using the RAPTOR code for open loop trajectory planning:

1. The numerical approach can reduce the number of trial-and-error attempts. In this way
RAPTOR can provide the required actuator trajectories to reach a plasma scenario more
rapidly and at lower cost in terms of machine time;

2. The proposed method [3] is applicable to machines which are yet to be built, such as ITER. In
the ITER experiment actuator trajectories must be designed with great caution, because the
occurrence of plasma instabilities (e.g Neoclassical Tearing Modes) could seriously damage
the machine. RAPTOR can reduce the number of trial-and-error attempts, saving costly
machine operation time;

3. New and better (e.g. reach more rapidly a stationary state for the plasma q profile) trajecto-
ries could be discovered. In addition to this, the discovered unexpected actuator trajectories
could lead to new insight;

4. Since actuator and physics constraints are explicitly included in the trajectory design, the ob-
tained trajectories can be analyzed with respect to their influence on the various constraints,
and vice versa.

Feedback control

Feedback control methods differ from the feedforward method by the fact that real-time profile
measurements are used to decide the appropriate real-time actuator responses to obtain the de-
sired q and Te profiles. While with feedforward control the required actuator actions are only
determined once pre-shot, in feedback control the actuator settings are constantly adjusted during
a shot to reduce the difference between the measured profiles and the desired ones.
Instead of only using measurements which are restricted to a certain spatial resolution and mea-
suring frequency, RAPTOR can be used in the feedback control schemes. Due to its speed it
estimates the future behavior of the plasma faster than it actually happens in real-time and at
any desired spatial resolution. For this purpose RAPTOR is included as prediction model in a
state observer (e.g. a Kalman Filter). At each step in a state observer, RAPTOR is used in a time
update step to generate a predicted state estimate, from which a set of predicted measurements is
computed. This state estimate is then complemented and improved based on the discrepancy be-
tween predicted measurements and actual measurements in a measurement update step, yielding
an updated state estimate. A key advantage of this approach is that a state estimate is available
at an arbitrary spatial and temporal scale, which provides a solid framework on which various
plasma measurements can be collected and interpreted.

4



With the availability of a real-time plasma state observer, numerous state feedback control tech-
niques become feasible for use in plasma profile control. RAPTOR contains analytical expressions
to calculate the state sensitivities. A fast calculation of local linearizations is possible due to this
feature and LTI control techniques, such as LQR or H-infinity control become candidates for clos-
ing the control loop. The ability of the transport simulation code to also predict future behavior
of the plasma enables the use of another promising technique: model-predictive control. Some
promising results of this control scheme were reported in [4].

1.2 Problem formulation

RAPTOR can be used to design control systems in order to tailor the q-profile to a desired
operation regime by means of an open-loop and/or closed-loop control approach. A strong degree
of control over this q profile makes the operation of a tokamak more stable (avoidance of plasma
instabilities) and efficient (optimal q profile).
The performance of the open-loop and closed-loop control system strongly depends on the quality
of the RAPTOR predictions. RAPTOR achieves its fast computational speed by using simplified
physics and approximations. A major assumption in RAPTOR is the ad-hoc model for the heat
diffusivity term χe, as will be further discussed in Chapter 4. The structure of the model is
given by the physics knowledge, and only the unknown physics of χe which is more complicated
and less well understood is captured in the model coefficients. These model coefficients need to
be tuned for each tokamak individually in order to match the predictions for the evolution of
the radial evolution of the electron temperature Te and q profiles with experimental evidence.
The model parameters in χe cannot be computed directly with existing theory. Computationally
heavy gyrokinetic simulations could be used to calculate the heat diffusivity profile, but this would
require massive computation time. Therefore the coefficients are manually tuned to experimental
data. This approach is time consuming and lacks a systematic character. This motivates the
development of generic method to estimate the model parameters.
Besides the lack of a systematic way to estimate the model parameters, RAPTOR does not contain
a Neutral Beam Injector (NBI) model. The NBI system is an important external heating and
current drive actuator to alter the q profile shape of a fusion plasma. It is used at many existing
tokamaks and will be an important actuator for ITER. The missing NBI model in the control
oriented RAPTOR code limits its applicability to these tokamaks.

1.3 Aim of this work

The general aim is to improve RAPTOR predictions of the Te and q profile evolution. This is
achieved in particular by

1. Developing a light-weight Neutral Beam Injector (NBI) model for RAPTOR in Chapter 3
to calculate the deposited power to the electron and current drive in the plasma;

2. Adding more physics to the heat diffusivity χe and electrical conductivity σ models in Chap-
ter 4 by incorporating the effect of external heating and sawtooth crashes;

3. Developing a generic parameter identification method in Chapter 5 to make the best possible
estimates of the χe model coefficients when measured data or interpretative simulations of
the Te and q profiles are available.

With these improvements, it is expected that the RAPTOR predictions will be more accurate.
This enhances the performance of the open-loop and closed-loop control system and ultimately
makes the operation of a tokamak more stable and efficient.
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Chapter 2

The RAPTOR code

RAPTOR (RApid Plasma Transport simulatOR) is a lightweight, simplified transport code com-
plex enough to contain the most important physics and sufficiently fast to use for feedforward
and real-time feedback control. RAPTOR solves the coupled poloidal flux diffusion equation and
electron temperature transport. By using assumptions the RAPTOR code is simpler and contains
less physics than existing transport codes such as ASTRA [5] and CRONOS [6]. In [3] it is shown
that by making the right choices of which physics to simplify, results comparable to these heavier
codes have been obtained. RAPTOR has the unique feature to return not only the profile evolu-
tion but also the sensitivity of the profile evolution to a chosen set of parameters. This chapter,
which is largely based on [3], start with the main equations for the poloidal flux diffusion, energy
transport and particle transport and is followed by the reduced physics model that is solved by
RAPTOR. The main assumptions that leads to this reduced physics model are explained as well.

2.1 Poloidal flux diffusion equation

In Figure 2.1 the coordinate system which is used in this thesis is introduced. The various plasma
quantities that will be used throughout the text are indicated as well.

�

z

magnetic axis

Bp
B�

r 

d`

field line

flux surfaces

Figure 2.1: Definition of the used coordinate system and multiple plasma parameters. (Figure
reprinted from [3])

The poloidal magnetic flux is defined as

ψ = −
∫

B · dAz, (2.1)

The magnetic field B is composed out of a toroidal component (parallel to eφ) and poloidal com-
ponent (orthogonal to eφ). The poloidal magnetic flux is a measure of the flux of the magnetic
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field through a disk of radius R, perpendicular to ez.

Besides the poloidal magnetic flux, also a toroidal magnetic flux definition can be defined

Φ =

∫
B · dSφ,

The toroidal magnetic flux Φ is a measure for how many magnetic field lines cross the surface area
dSφ enclosed by a magnetic flux surface. The flux label ρ can be introduced from the definition
of the toroidal magnetic flux

ρ =

√
Φ

πB0
, (2.2)

In this equation B0 is the magnitude of the magnetic field at the magnetic axis R0. The flux label
ρ can be used to label the flux surfaces in the poloidal plane. Each flux surface has an unique
label, ranging from ρ = 0 at the magnetic axis to ρ = ρe at the plasma edge.
From Equation 2.1 it can be seen that the current density parallel to the magnetic field B is linked
to ψ, because this current density has a component in the eφ direction which creates a magnetic
field that is parallel to dAz.

The objective of the RAPTOR code is to simulate the radial evolution of the q profile in time.
The q profile is defined as

q =
∂Φ

∂ψ
,

Its reciprocal, the rotational transform, ι is

ι =
1

q
,

The q profile is determined by the current density parallel to the magnetic field B (see Figure
1.2). From Ohm’s law the expression for this current density parallel to the magnetic field B can
be formulated

j‖ = σ‖E‖ + (jbs + jcd), (2.3)

The first term in the righthand side of the equation is the inductive current drive, the two other
terms are non inductive current sources. The term jbs represents the bootstrap current. This
current arises due to the radial pressure gradient in a tokamak. The second non inductive current
source jcd is the auxiliary current drive. Examples are current driven by a neutral beam injection
system or electron cyclotron (heating) system.
Averaging Equation 2.3 over a flux surface and taking into account that σ‖ is constant on a flux
surface yields

j‖ = σ‖E‖+ < (jbs + jcd) >, (2.4)

In Equation 2.4 j‖ and E‖ are coupled and can be written as function of ψ. After some math (For
details see [3]) Equation 2.4 can be formulated as

σ‖

(∂ψ
∂t

+
ρḂ0

2B0

∂ψ

∂ρ

)
=
R0J

2

µ0ρ

∂

∂ρ

(G2

J

∂ψ

∂ρ

)
− V ′

2πρ
(jbs + jcd), (2.5)

with

Ḃ0 =
∂B0

∂t
;
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J =
RBφ
R0B0

; J reflects the diamagnetic or paramagnetic effect of the plasma

G2 =
V ′

4π2

〈 (5ρ)2

R2

〉
; Geometric quantity depending only on the fluxsurface geometry

V ′ =
∂V

∂ρ
. V is the volume enclosed by a fluxsurface

Equation 2.5 is a parabolic partial differential equation and is known in literature as the poloidal
flux diffusion equation. Due to the introduction of the ρ coordinate this equation is 1D. The
poloidal flux diffusion equation is used to calculate the spatial profile of the poloidal flux ψ evolving
in time under the influence of inductive and non-inductive current drive sources.
This spatial poloidal flux ψ profile is used together with Equation 2.2 to obtain the q profile

q =
∂Φ

∂ψ
= 2πB0ρ

∂ρ

∂ψ

2.2 Particle and energy transport

In order to calculate the conductivity σ‖, bootstrap current and auxiliary current, information
about the radial Te, Ti, ne and ni profiles is needed. The ne and ni profiles follow from the
continuity equation

∂nα
∂t

+5 · (nαuα) = sα, (2.6)

Here sα is the localized particle source and uα the local velocity of the electrons or ions (α = i or e).

The Te and Ti profiles follow from the electron and ion energy transport

3

2
(V ′)5/3

( ∂
∂t
− Ḃ

2B0

∂

∂ρ
ρ
)[

(V ′)−5/3nαTα

]
+

1

V ′
∂

∂ρ

(
qα +

5

2
TαΓα

)
= Pα, (2.7)

In this equation Pα is the net external and ohmic power (Pohmic = jE) to the species, Γα and qα
are the convective and diffusive heat fluxes respectively.

Equations 2.5, 2.6 and 2.7 form a set of five coupled differential equations which are used to solve
the radial evolution of the poloidal flux ψ in time and hence the q profile.

2.3 Reduced physics model

The aim of RAPTOR, as indicated by its name RApid Plasma Transport simulatOR, is to provide
a fast control-oriented transport physics code. This fast code opens a wide variety of application
possibilities as already discussed in the introduction of this thesis. In RAPTOR the set of five
coupled differential equations are simplified resulting in a reduced physics model. The assumptions
yielding to this reduced physics model are discussed in this section
The RAPTOR code solves the 1D profile diffusion equations 2.5 and 2.7 for ψ(ρ, t) and Te(ρ, t)
respectively. The other kinetic profiles Ti, ne and ni are kept fixed. The first motivation for
this assumption is that the most important nonlinear coupling between plasma profiles during a
tokamak discharge originates from the electron temperature-dependent conductivity σ‖, bootstrap
current jbs(ne, Te) and the q profile dependent confinement. The second motivation is that actu-
ators for temperature and current density are reasonably effective while the density profile is in
practice less well controlled during a discharge and globally follows a pre-defined evolution. By
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assuming fixed Ti, ne and ni profiles one needs to solve only two coupled differential equations
instead of five to obtain the q profile.
On top of the assumptions for the kinetic profiles four more assumptions are made to yield a
reduced model for the ψ and Te profile evolution. These will be discussed in the remaining of this
section.

Fixed equilibrium assumption

In RAPTOR a fixed equilibrium is assumed. As a result the flux surface geometry and enclosed
toroidal flux Φ (and hence the distribution of ρ) are fixed. Note that this does allow the poloidal
flux profile ψ, and hence q to change in time. As a consequence of the fixed equilibrium, the
vacuum toroidal magnetic field B0 is constant (Ḃ0 = 0) and the geometric profile quantities G1,
G2, V ′ and J are fixed in time and only need to be computed once. In [3] it is shown that the
fixed equilibrium assumption is valid for a wide range of β (= plasma pressure/magnetic pressure)
values.

Ad-hoc transport model and losses

The electron energy transport equation 2.7 depends on the convective Γα and diffusive qα heat
fluxes. In RAPTOR the convective heat flux, usually small and very hard to measure, is neglected
(Γα = 0) and for the diffusive heat flux it is assumed that the electron temperature gradient is
the only driving source. This results in

qe = −V ′G1neχe
∂Te
∂ρ

, (2.8)

For the electron heat diffusivity χe RAPTOR uses an ad-hoc model, which presently takes anoma-
lous diffusion and the q profile dependent confinement into account. This model was extended
to incorporate the effect of sawteeth and the nonlinear effect of confinement deterioration with
increasing temperature gradient, which indirectly depends on external heating. More details on
the ad-hoc model and the modifications are given in Chapter 4.

Neoclassical conductivity and bootstrap current

The neoclassical conductivity depends on the electron temperature. The expression that is used
in RAPTOR is

σ‖ = cneo(ρ)σSpitzer(Te(ρ, t)) ∝ cneo(ρ)Te[eV ]3/2,

In the above formula cneo represents the neoclassical correction, which depends on geometric effects
and collisionality [3]. In RAPTOR this term is calculated only once for an equilibrium.
For the bootstrap current in Equation 2.5 a simplified expression is obtained by assuming ne = ni
and ∂ lnTe

∂ψ = ∂ lnTi

∂ψ

jbs = −2πJ(ψ)R0

Rpe

∂ρ

∂ψ

[
ζ31

∂ne
∂ρ

Te + (ζ31 +Rpeζ32 + (1−Rpe)αζ34)
∂Te
∂ρ

ne

]
,

Here Rpe = pe/p is the ratio between electron and total pressure and the coefficients ζ31, ζ32, ζ34,
α depend on geometric effects and collisionality [3]. These coefficients are, like cneo, only evaluated
once for a given equilibrium.

Parameterized external heating and current drive sources

Presently RAPTOR has only a model for electron cyclotron current drive (ECCD) and electron
cyclotron heating (ECH). Extensive models for ECCD and ECH calculations exist (e.g. TORAY
[10] or LUKE [11]), but to reduce the computational cost RAPTOR approximates the power and
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current densities by weighted gaussian distributions. The power density to the electrons Pe is
modeled as

Pe(ρ, t) = P (t)exp
(−4(ρ− ρdep)2

w2
dep

)/∫ ρe

0

exp
(−4(ρ− ρdep)2

w2
dep

)
V ′dρ,

with ρdep the location of the peak of the deposition and wdep the deposition width.
For the current density the following heuristic expression is used

jcd(ρ, t) = ccde
ρ2/0.25 Te

ne
e−4(ρ−ρdep)2/w2

depP (t),

The factor ccd is used to calibrate this expression to a specific machine.

In many existing tokamaks not only ECH, ICRH (ion cyclotron resonant heating) and ECCD are
used for auxiliary heating and current drive but also a Neutral Beam Injection (NBI) system. For
ITER, the largest tokamak presently under construction, the NBI system will be a vital actuator
to reach a high net energy gain. In Chapter 3 a physical model for the NBI electron heating and
current drive is presented which allows RAPTOR to be used for feedback and feedforward control
at ITER and many existing tokamaks that utilize a NBI system.

Reduced physics model

By taking all the assumptions in this section into account the flux diffusion equation 2.5 reduces
to

σ‖
∂ψ

∂t
=
R0J

2

µ0ρ

∂

∂ρ

(G2

J

∂ψ

∂ρ

)
− V ′

2πρ
(jbs + jcd), (2.9)

Equation 2.7 for the spatial evolution of the electron temperature Te in time becomes

V ′
∂

∂t
[neTe] =

∂

∂ρ
G1V

′neχe
∂Te
∂ρ

+ V ′Pe,ohmic & external, (2.10)

Solving the reduced physics model

RAPTOR solves this set of two coupled nonlinear parabolic PDEs using a finite elements approach.
The continuous profiles ψ(ρ, t), Te(ρ, t) are transformed to [3]

ψ(ρ, t) =

nsp∑
α=1

Λα(ρ)ψ̂α(t) and Te(ρ, t) =

nsp∑
α=1

Λα(ρ)T̂eα(t),

in which Λα(ρ) is a basis function and ψ̂α(t) and T̂eα(t) are the coefficients. The continuous ψ(ρ, t)
and Te(ρ, t) profiles are transformed to a linear combination of nsp basis functions. A state vector

x can be introduced containing the basis functions coefficients ψ̂(t) = [ψ̂1(t), ..., ψ̂nsp
(t)]T and

T̂e(t) = [T̂e1(t), ..., T̂ensp
(t)]T

x(t) =

[
ψ̂(t)

T̂e(t)

]
, (2.11)

By the introduction of the state vector x(t), Equations 2.9 and 2.10 can be formulated as

f = f(ẋ(t), x(t), u(t)) = 0 ∀t

After discretizing the time t = [t0, ..., tk, ...tnk
], this continuous equation is discrete

fk = f(xk+1, xk, uk) = 0 ∀k (2.12)
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This equation is solved iteratively at each time step k to obtain the state xk. Once the state vector
is known, all the important ι, Te and Upl profiles in this thesis can be calculated as follows

ι(ρ, tk) = cTι (ρ)ψ̂(tk), (2.13)

Upl(ρ, tk) = cTΛ(ρ)
˙̂
ψ(tk), (2.14)

Te(ρ, tk) = cTΛ(ρ)T̂e(tk), (2.15)

where the vector elements are given by

[cι(ρ)]α =
1

2πB0ρ

∂Λα
∂ρ

,

[cTΛ(ρ)]α = Λα
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Chapter 3

Development of a lightweight NBI
module for RAPTOR

Neutral beam Injection heating (NBIH) and current drive (NBCD) are robust methods to heat
the plasma and to drive a non-inductive current. It does not depend on coupling conditions at the
edge or a resonance frequency like is the case for electron/ion cyclotron heating. In this chapter a
model is presented to calculate the neutral beam electron heating and current drive. This model
will be used in the RAPTOR code and serves as an additional actuator to influence the plasma
contained in a tokamak. Because the beam code will be coupled to RAPTOR it is required
that the code is sufficiently fast to run very rapidly, yet sufficiently complex to contain the most
important physics. Therefore a pencil beam approach was used: the neutral beam is represented
by a single line, neglecting finite beam width effects. More assumptions were made to enhance
the speed of the NBI code. To retain RAPTOR’s unique feature to provide the sensitivity of the
Te and q profile time evolution to a set of model or input parameters, effort was made during
the development of the NBI code to provide the analytical expressions of the sensitivities of the
neutral beam heating and current drive to its model and input parameters. The NBI model and
all the assumptions are explained in this chapter as well as results of the code in comparison with
other existing beam codes which contain more physics.

3.1 Neutral beam electron heating

3.1.1 Model

The total beam power at the plasma edge of the tokamak is defined as Pa. The power losses between
the acceleration grid and the plasma edge are taken into account in this number. The beam power
for a given energy E is related to the total beam density ntot,a simply by Pa = vbeamEntot,a. There
are three basic atomic processes leading to beam absorption: charge exchange, ionization by ions
and ionization by electrons. The absorption of the beam depends upon the cross-section for these
processes σ(E,ne, Te, Zeff ). Janev’s fitting formula provides a suitable analytic expression for
σ(E,ne, Te, Zeff ) for a single-impurity plasma [7]

σ(E,ne, Te, Zeff ) =
eS1(E,ne,Te)

E
[1 + (Zeff − 1)Sz(E,ne, Te)]10−20m2,

where

S1 =

2∑
i=1

3∑
j=1

2∑
k=1

Aijk(lnE)i−1[ln(n/n0)]j−1(lnTe)
k−1 (3.1)

Sz =

3∑
i=1

2∑
j=1

2∑
k=1

Bijk(lnE)i−1[ln(n/n0)]j−1(lnTe)
k−1, (3.2)
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with E, ne, Te expressed in units of keV/u, cm−3 and keV, respectively, and n0 = 1013 cm−3. Aijk
and Bijk are fitting coefficients depending on the plasma impurity. The values are tabled in [7].
Inspection of the behavior of the beam stopping cross-section on the parameters E, ne, Zeff and
Te shows that only the dependencies of the cross-section on E and Zeff are strong [7]. This allows
for the following assumption to make the calculation of the cross-section computationally faster:
σ(E,ne, Te, Zeff ) ≈ σ(E,Zeff ). In Equations 3.1 and 3.2 ne and Te can be set to their mean
values.
Since the injected neutrals go in a straight line, because they are not affected by the magnetic
field, the decay of the beam particle density on a straight line path ds is governed by the equation
[9]

ntot,s = ntot,ae
−

∫ s
s=a

ne(s)σ(E,Zeff ) ds,

The beam power at a location on the beamline inside the plasma is

P (s) = vbeamEntot,s = vbeamEntot,ae
−

∫ s
s=a

ne(s)σ(E,Zeff ) ds = Pae
−

∫ s
s=a

ne(s)σ(E,Zeff ) ds, (3.3)

A hydrogen neutral beam mainly produces H, H2 and H3 particles. A deuterium beam mainly
produces D, D2 and D3 particles. The particles of a hydrogen or deuterium beam have an energy
of respectively E, E/3 and E/3. The total power Pa is divided over these beam particles according
to the ratio Pfrac,1, Pfrac,2 and Pfrac,3 respectively. In order to compute the total beam power
at a location inside the plasma, a summation over the different beam particles is done

Pbeam(s) = Pa

3∑
i=1

Pfrac,ie
−

∫ s
s=a

ne(s)σ(E/i,Zeff ) ds,

The beam power deposited in the plasma per unit length is

−dPbeam(s)

ds
≈ Pbeam(s−∆s/2)− Pbeam(s+ ∆s/2)

∆s
,

which can be derived as:

− dPbeam(s)

ds
= Pane(s)

3∑
i=1

σ(E/i, Zeff )Pfrac,ie
−

∫ s
s=a

ne(s)σ(E/i,Zeff ) ds, (3.4)

This beam power deposited in the plasma per unit volume is

Pdep(s) = −dPbeam(s)

dV
= −dPbeam(s)

ds

ds

dρ

dρ

dV
, (3.5)

Once the neutral beam particles entering the plasma have become ionized, the resulting fast ions
are slowed down by Coulomb collisions. As the slowing down occurs energy is passed to the
particles of the plasma, causing heating of both electrons and ions. In the developed model it
is assumed that all the energy is deposited at the fluxsurface where the neutral particle becomes
ionized and thus diffusion of the particles is neglected. ITER beam ions typically slow down in
ts = 0.5 seconds [8]. Assuming a diffusion coefficient D = 0.1m2 · s−1 [8], yields that the beam
ions can diffuse x ≈ 20 cm before they are slowed down (x =

√
Dts). This is ten percent of the

minor radius of ITER. The beam ions diffuse inwards and outwards in the plasma, resulting in a
partial averaging-out of the effect.
At high injection velocity the electron heating is initially dominant. Then, as the beam ions slow
down, the heating is transferred to the ions. From the Fokker-Planck theory an expression can be
derived to calculate the overall heating fractions to the ions φi and electrons φe allowing for the
time dependent energy of the beam ions [9]

φe(x(E, s)) = 1− 1

x

[1

3
ln

1− x1/2 + x

(1 + x1/2)2
+

2√
3

(
tan−1 2x1/2 − 1√

3
+
π

6

)]
, (3.6)
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In this equation x = εbo(E)/Ec(E, s), with εbo(E) = 0.5mb(E)v2
b (E) the initial beam energy and

Ec(E, s) the critical beam energy at which the electron and ion heating rates are equal. The
critical beam energy is [9]

Ec(E, s) =
(3
√
π

4

)2/3(mi

me

)1/3mb

mi
Te(s),

with mi the mass of the plasma ions and mb the mass of the beam ions.

Equation 3.6 has to be evaluated for the three different neutral beam particles. Combining Equa-
tion 3.5 and 3.6 yields the electron heating by the neutral beam per unit volume

PNBI,e(s) = φe(E, s)Pdep(s)

=
ds

dρ

dρ

dV
Pane(s)

3∑
i=1

φe(x(E/i, s))σ(E/i, Zeff )Pfrac,ie
−

∫ s
s=a

ne(s)σ(E/i,Zeff ) ds (3.7)

3.1.2 Numerical implementation

Equation 3.7 gives the NBI plasma electron heating in function of the distance on the beamline,
s, from the beam source. RAPTOR computes the electron temperature profile Te and q profile
versus the toroidal flux coordinate ρ. For coupling of the developed NBI code to RAPTOR it
is required that the NBI electron heating is calculated in function of ρ. Obviously this requires
information about the plasma fluxsurface geometry and beamline geometry (modeled in Appendix
A.1): the intersection of the beamline with the fluxsurfaces determines which ρ coordinates are
crossed and how often. To illustrate this the off-axis neutral beam system of ITER (Figure 3.1) is
given as a specific example.
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Figure 3.1: Reference equilibrium for ITER and
the projection of the most off-axis NBI injection
beamline in the poloidal plane.
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Figure 3.2: From the figure in the left hand panel
the NBI code computes the evolution of the ρ
coordinate over the beamline. s = 0 starts at the
plasma edge.

The developed neutral beam code computes the NBI plasma electron heating in function of the
coordinate s. Then a mapping is done from s to ρ space on the basis of the computed information
shown in Figure 3.2. In this example ρ = 0.4 is crossed four times, so the NBI electron heating at
the four corresponding s locations is added up. The information about ds

dρ can also be extracted
from Figure 3.2. The information about the mapping from s to ρ space is stored in a matrix in the
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code in order to make a fast projection from one coordinate space to the other. To date RAPTOR
uses a fixed equilibrium assumption (see Chapter 2) which means this transformation matrix has
to be calculated only once. An overview of the algorithm is given in Appendix A.2.
A key advantage of RAPTOR is that it uses analytical expressions for the gradients instead of
finite differences making the code fast. To preserve this feature effort was made, as described
in Appendix A.3, to calculate the analytical expressions for the derivatives of the NBI electron
heating profile to the model parameters such as Pa or E. In Appendix A.4 a verification of these
analytical expressions versus the finite difference approximation is shown.

3.2 Neutral beam current drive

3.2.1 Model

The current driven by the fast beam ions as they slow down by collisions on the plasma electrons
and ions on each flux surface ρ can be derived from the uniform field solution to the Fokker-Planck
equation for the fast ions [16]. This method does not take into account the possible trapping of
the fast ions [12]

Jf (ρ) = eZbS(ρ)τsξbvbI(yc, Ẑ), (3.8)

In Equation 3.8 e is the electron charge, Zb is the charge number of the beam species and vb =√
2Eb/mb is the injection velocity of the neutral beam particles. S is the fast ion source rate per

unit volume defined as

S =
2Pdep(ρ)

mbv2
b

,

In this equation Pdep is the deposited beam power per unit volume defined by Equation 3.5.

In the equation for the fast ion current ξb is the initial pitch angle of the fast ions. A simple
analytic expression, which tends to be valid for the outer flux surfaces of the plasma, is [13]

ξb ≈ Rt/(R0 + ρ),

where R0 is the major radius of the plasma and Rt is the tangency major radius of the beam
centerline.

In Equation 3.8 τs is the Spitzer slowing down time [17]

τs = 6.27 · 108 AbT
3/2
e

Z2
bne ln Λ

,

with ln Λ the Coulomb logarithm, which is typically around 17 in tokamak plasmas. Ab, Zb are
the atomic number and charge number of the injected ions, ne is the electron density in cm−3 and
Te is the electron temperature in eV.

In Equation 3.8 the function I(yc, Ẑ) has to be evaluated at each fluxsurface ρ

I(yc, Ẑ(ρ)) = (1 + y3
c )Ẑ/3

∫ 1

0

[ y3

y3 + y3
c

] Ẑ
3 +1

dy, (3.9)

Ẑ =

∑
i ln(Λbi)ni(ρ)Z2

i /Ab∑
i ln(Λbi)ni(ρ)Z2

i /Ai
,

ln(Λbi) = 19.1 + ln[Ai/(Ai +Ab)(TeAbEb/ne20)1/2],

with y = v/vb, yc = vc/vb, vc =
√

2Ec/mb, the mass numbers Ab and Ai of the beam particles
and plasma bulk species respectively and charge numbers Zb and Zi.
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The integral in Equation 3.9 has to be computed for each fluxsurface, because Ẑ and yc change
on each fluxsurface. To increase the calculation speed of the beam code only the mean value of Ẑ
over the different fluxsurfaces is used for the computation of this integral, because the integral is
a weak function on Ẑ. The value of yc dominates the integral in the function I(yc, Ẑ). To increase
the calculation speed a fit of this integral was made for various values of yc.

The fast ions injected by the neutral beam circulate around the torus. These fast ions get slowed
down by collisions with the electrons inside the plasma. As a result the electrons circulate toroidally
in the same direction as the beam ions producing a current that partially cancels the beam ion
current. This is modified in turn, when neoclassical electron trapping effects are taken into account.
The degree of cancelation depends on the charge, Zbe, of the fast beam ions, the effective plasma
charge, Zeffe, and the number of trapped electrons. The net neutral beam driven current density,
with the summation over the three energy components of the beam, is then

JNB(ρ) =
[
1− Zb

Zeff
[1−G(Zeff , ε)]

] 3∑
i=1

Jfi(ρ), (3.10)

where G is the neoclassical trapped electron correction factor approximated by Mikkelsen and
Singer [14], which is in error by less than 1% for 1 ≤ Zeff ≤ 3 and 0 ≤ ε ≤ 0.2 [15]

G(Zeff , ε) ≈ (1.55 +
0.85

Zeff
)
√
ε− (0.20 +

1.55

Zeff
)ε, (3.11)

with ε = ρ/R.

3.2.2 Numerical implementation

The current drive profiles by fast ions Jfi(ρ) are needed to calculate the net neutral beam cur-
rent drive JNB(ρ) using Equation 3.10. These profiles can easily be computed by Equation 3.8,
because Pdep(ρ) is readily available in ρ space from calculating the NBI electron heating profile.
In Appendix A.3 the analytical expressions for the derivatives of the NBI current drive profile to
its model parameters are shown. In Appendix A.4 a verification of these analytical expressions
versus the finite difference approximation is shown.

3.3 Summary of the model

Table 3.1 summarizes the specifications of the developed NBI model. This table also gives an
overview of the physics implementations of two other codes which will be used in Section 3.5 for
a benchmark against the developed NBI model.

Table 3.1: Specifications multiple NBI codes
Specification MODEL ASTRA [5] NEMO/SPOT [6]

Neutral beam representation 1D 3D 3D

Ionization cross section Janev Janev ADAS

Fast ion solver 2D Fokker Planck 2D Fokker Planck Monte Carlo
(non-bounced averaged) (bounced averaged)

Diffusion no yes yes

Loss no Separatrix First wall

Ripple loss no First orbit yes

Electron shielding model Mikkelsen and Singer Kim Lin-Liu

The neutral beam is modeled as a single line in the model in contrast to all the other codes which
consider the full 3D geometry of the beam. The ionization cross section used in NEMO/SPOT is
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obtained from the ADAS database. The developed model and ASTRA code use Janev’s fitting
formula which takes the multistep ionization into account.
The fast ion solver simulates the slowing down of the beam ions. The NEMO/SPOT code uses
a Monte Carlo simulation. The model and ASTRA code are based on the 2D Fokker Planck
equation. ASTRA, in contrast with the model, uses the bounced averaged Fokker Planck theory
in order to include orbit effects.
All the codes mentioned in the table, except the developed model, calculate the diffusion of the
neutral beam particles once they get ionized. The model assumes the neutral beam particles are
deposited locally disregarding the diffusion of the particles.
The model assumes no loss of beam particles. NEMO/SPOT models the loss of beam particles to
the first wall. ASTRA judges a new born fast ion is immediately lost if the first orbit crosses the
separatrix.
A toroidal field ripple affects the transport of the beam ions in two ways. The particles can
be trapped in a magnetic well created by the ripple or diffused away due to stochastic banana
diffusion [18].
The electron shielding model (Mikkelsen and Singer) used in the model is an approximation of the
Start and Cordey model. The latter can be used for all aspect ratios. The different models of the
electron shielding all take into account the trapped banana electrons which disturb the motion of
circulating electrons and hence the electron current.

3.4 Benchmark of the lightweight model for NBI electron
heating and current drive

In this section the results of the benchmark to check the model’s calculation of the neutral beam
electron heating and current drive are presented. In order to calculate these two quantities the
neutral beam power deposition profile needs to be calculated. Firstly a benchmark of the model
against ALCBEAM [19], a NBI simulation code developed for ALCATOR C-MOD, is performed
to check the calculation of the neutral beam power deposition profile. Then the model is compared
with two other codes (ASTRA and NEMO/SPOT) to benchmark the calculation of the neutral
beam electron heating and current drive.

Benchmark of the power deposition profile

Figure 3.3 depicts the setup used for the benchmark of the power deposition profile calculated by
ALCBEAM and the model. This configuration simplifies the beam attenuation calculation of the
model, because the ρ coordinate corresponds with the radial tokamak coordinate through a linear
mapping. For this benchmark the full, second and third energy components of the neutral beam
are modeled.

Figure 3.3: Top view of the neutral beam configuration used for the benchmark of the model with
ALCBEAM. The neutral beam lies in the plane of paper.
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Figure 3.4 shows the beam power inside the tokamak versus the major radius. The beam attenu-
ation calculated by the model and ALCBEAM are in good agreement.
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Figure 3.4: The beam power versus the major radius.

The beam power profile is used by the model to calculate the beam power deposition inside the

tokamak. Figure 3.5 shows the beam power deposition profile (dPbeam(s)
ds ) calculated by ALCBEAM

and the model. The beamline crosses each fluxsurface twice in the configuration used in the
benchmark. The profiles calculated by the model and ALCBEAM are in good agreement.
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Figure 3.5: The beam power deposition [W/cm] versus the major radius.

Benchmark of the neutral beam electron heating and current drive

The benchmark of the model against ALCBEAM shows the calculation of the beam power deposi-
tion profile is reliable. In this section the results of a benchmark of the neutral beam electron heat-
ing and current drive calculated by the model and two other codes (ASTRA and NEMO/SPOT)
are presented. This benchmark is based on an ITER-like scenario. Only the full energy com-
ponent of the beam was simulated. This because the second and third energy components are
calculated with the same equations and a benchmark of only one energy component will allow for
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a clean comparison, because no mixing of errors of the first, second and third energy components
will occur. The results of the ASTRA and NEMO/SPOT code were obtained from a case study
performed for ITER [20]. Figure 3.6 depicts the electron temperature and density profiles that
were used in the simulation. These two profiles together with the NBI parameters shown in Table
3.2 and the magnetic equilibrium shown in Figure 3.1 are the inputs for the developed model for
the benchmark.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

ρ

 

 

T
e
 (keV)

n
e
 (1019 m−3)

Figure 3.6: The profiles of the electron temperature and density.

Table 3.2: Parameters used in the benchmark
species Deuterium

energy of the beam Eb 1 MeV
injection power 33 MW

Zeff 2.17
Eb : Eb/2 : Eb/3 1:0:0

Figure 3.7 depicts the neutral beam power transferred to the electrons. It shows the three codes
yield slightly different results with exceptions of the region close to ρ = 0.2 where the developed
code peaks and differs significantly from the two other codes. The results of the model lie close
within the solution space of the two more advanced codes. Figure 3.8 shows the neutral beam
current drive calculated by the model and the two other codes. The result of the three codes are
very similar with exception of again the region close around ρ = 0.2. The peaking of profiles is
a result of the pencil beam approach. It vanishes for a finite beam [21]. In Appendix A.5 an
comprehensive explanation is given.
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Figure 3.7: The beam power to the electrons ver-
sus ρ calculated by the developed model, ASTRA
and NEMO/SPOT.
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sus ρ calculated by the developed model, ASTRA
and NEMO/SPOT.

In Figure 3.9 the integrated power density deposition profile over the plasma volume is shown for
various number of ρ gridpoints. The total power deposited is nearly insensitive to the number of
gridpoints and converges, as required, to the input power of 33 MW.
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Figure 3.9: The integrated power deposition profile [W/m3] over the plasma volume for various
number of ρ gridpoints.

The occurrence of the singularity at ρ = 0.2 was removed by applying a smoothing algorithm
on the calculated NBI electron heating profile. The peaked power to the electrons was smeared
out over the user specified region of 0.1 ≤ ρ ≤ 0.2. In this way the diffusion and finite beam
width effects in this region are crudely modeled. The smoothing algorithm uses a half normal
distribution and has as constraint that the total integrated power in this region must remain
unchanged: the smoothing algorithm can not add or remove energy, but only redistribute it. In
Figure 3.10 the smoothing function is plotted. It has unit [W/m3] and the integrated power [W ]
of this function is one. The power is redistributed by multiplying the half normal distribution
with the total integrated power in the region 0.1 ≤ ρ ≤ 0.2. The developed NBI module can only
smooth one peak, in the future the option should be added to smear out several peaks in the NBI
electron heating profile. In Figures 3.11 and 3.12 the results of the benchmark are shown again,
this time with the smoothing algorithm enabled.
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Figure 3.10: The half normal distribution that is used to smooth the NBI electron heating and
current drive profiles [W/m3] in the region of 0.1 ≤ ρ ≤ 0.2.
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Figure 3.11: The beam power to the electrons
versus ρ calculated by the developed model, AS-
TRA and NEMO/SPOT. In the developed NBI
model the smoothing algorithm was enabled,
which is in a sense modeling the diffusion of the
beam ions in the region where the smoothing is
applied.
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Figure 3.12: The neutral beam current drive ver-
sus ρ calculated by the developed model, ASTRA
and NEMO/SPOT. In the developed NBI model
the smoothing algorithm was enabled. The max-
imum value of the current drive profile predicted
by the developed model is greater than the one
calculated by ASTRA and NEMO/SPOT. The
maximum varies significantly between different
NBI codes. The maximum predicted by OFMC
is 0.75 MA m−2 (published in [20]). The devel-
oped code result lies within the solution space of
the various codes.

To increase confidence in the developed NBI code, effort was payed to perform more benchmarks.
The NEMO/SPOT code was used to generate four different NBI scenarios which were used to
benchmark the developed NBI code against. In Appendix A.6 the results are reported. These
four benchmarks together with the benchmark presented in this chapter give great confidence that
the developed NBI code is able to predict NBI electron heating and current drive accurately. It
should be noted that the developed NBI code overestimates the current drive for the benchmark
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depicted in Figure A.18. This could be caused by the high value of Zeff that was used for this
benchmark. The neoclassical trapped electron correction factor G (See Equation 3.11) may not be
valid anymore in this Zeff regime. Further research should be done to explain the overestimation
of the current drive for the specific benchmark.
An important design criterion for the NBI module was that it should calculate the NBI electron
heating and current drive fast, so it will not slow down the RAPTOR calculations. On Genuine
Intel 1.83GHz CPU (2006) the NBI module is able to calculate the two profiles in 4 millisec-
onds when using 21 gridpoints. To put this number in perspective: a similar NBI run in the
NEMO/SPOT code takes around 17 seconds on a 3 GHz Intel(R) Xeon(R) CPU E5450 processor
[22]. It must be noted that for the typical runtime of the developed NBI module, the time to cal-
culate the transformation matrix that determines which ρ coordinates are crossed by the beamline
is excluded. This because this matrix has to be calculated only once, after this initialization step
the same matrix can be used during the entire shot simulation of the NBI, thanks to the fixed
equilibrium assumption in RAPTOR. Finally a typical run of an ohmic shot in RAPTOR takes
0.0465 seconds on a Genuine Intel 1.83GHz CPU when using 21 gridpoints. The information is
graphically summarized in Figure 3.13.
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Figure 3.13: The typical run times of the NBI code NEMO/SPOT, an ohmic shot in RAPTOR
and the developed NBI code.

3.5 Conclusions

The Neutral Beam Injection (NBI) system is an important external heating and current drive
actuator to alter the q-profile of a fusion plasma. It is used at many existing tokamaks and will
be an important actuator for ITER.
A NBI code was developed for the RAPTOR code which can predict the neutral beam electron
heating and current drive. There were two design criteria for the code:

1. The code had to be sufficiently fast to run very rapidly in order to not slow down RAPTOR;

2. The code had to be sufficiently complex to contain the most important physics.

The two design criteria were met. The developed fast Neutral Beam Injection module, based on
a pencil beam approach, produces results similar to more complete beam codes for an ITER-like
scenario. The execution time of the developed NBI code is approximately ten percent of the
execution time of RAPTOR.
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Chapter 4

Adaptations to the electrical
conductivity σ and heat diffusivity
χe ad-hoc model

4.1 Introduction

In this section the ad-hoc model for the electron heat diffusivity χe and the model for the neo-
classical electrical conductivity σ which are presently used in RAPTOR are discussed.
The expression for the ad-hoc model of χe, which includes the anomalous diffusion and the q
profile dependent confinement, reads

χe = χneo + canoρqF (s) + χcentrale
ρ2/δ20 , (4.1)

In this equation χneo is a small constant representing neoclassical diffusion. The much larger
anomalous diffusion is captured by cano, and the presence of q in the anomalous diffusion term
accounts for increased confinement at higher plasma currents Ip, because transport is then sup-
pressed. The term F (s) is a shear-dependent function to include the effect of improved confinement
(ic) at low and negative magnetic shear.
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Figure 4.1: Shear-dependent func-
tion F (s).

This effect makes the advanced scenarios, as shortly intro-
duced in the introduction of this thesis, possible. The expres-
sion for the function F (s) (see Figure 4.1) is

F (s) =
aic

1 + exp[wic(dic − s)]
+ (1− aic), (4.2)

The term aic accounts for the amount of reduction of trans-
port, dic is the level of the shear at which the transition takes
place. The sharpness of the transition is governed by the term
wic.
In the electron heat diffusivity equation 4.1, the term contain-
ing χcentral is an ad-hoc term representing a local confinement
decrease at the center of the plasma, used to model the ex-
perimental observation that the Te profile is relatively flat near the center.

The neoclassical electrical conductivity formula presently used in RAPTOR reads

σ‖ = cneo(ρ)σSpitzer(Te(ρ, t)) ∝ cneo(ρ)Te[eV ]3/2, (4.3)

Two physical mechanisms were added to the ad-hoc χe model during this work: the global effect
of sawtooth crashes occurring in the center of the plasma and the nonlinear effect of confinement
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deterioration with increasing temperature gradient.
The neoclassical electrical conductivity model σ‖ was extended to include the sawtooth behavior.
More information about the two physical mechanisms is given before presenting the modified
models.

• The sawtooth crash is an internal magnetohydrodynamic MHD reconnection event that
repeatedly mixes plasma from the core and outer regions of tokamaks, cools and flattens
the central temperature profile and redistributes the current by magnetic reconnection. The
instability occurs in the region where the safety factor q is below unity [23]. The periodic
character of the sawtooth crash and hence its name can be understood as follows: In a
tokamak plasma the temperature, and therefore the current density, is peaked in the center.
As soon as the current density in the center reaches a certain level, the safety factor q drops
below unity and a sawtooth crash occurs. After the occurrence of this instability q is again
at or above one. Now the process starts over, the temperature profile peaks and hence the
current density profile until q drops below unity and the instability resets the profiles again.
The periodic increase of the temperature followed by a sharp decrease plotted versus time
looks like the teeth of a saw;

• Confinement deterioration is observed when temperature gradients are increased, due to a
multitude of effects including 3D turbulence [24].

4.2 Modified models for the electrical conductivity σ and
heat diffusivity χe

To include the two described complex physical mechanisms, the choice was made not to use (first
principle) physics models as it would slow down RAPTOR significantly. This level of accuracy is
also not required, because RAPTOR already computes an approximate solution due to the used
simplifications and approximations. Instead, the global effect of the sawtooth behavior on the
electrical conductivity and heat diffusivity equations was modeled as well as a global scaling effect
of the thermal confinement deterioration with increasing temperature.

The modified model for the heat diffusivity is

χe = χneo + cχsawG(q) + canoρqF (s)
(Te0 [eV ]

1000

)cTe

+ χcentrale
ρ2/δ20 , (4.4)

In this equation the part in black was the original heat diffusivity equation, the two terms in red
were added to include on the one hand sawtooth crashes and on the other hand the confinement
deterioration with increasing temperature and temperature gradient . The latter physical process is
represented by the red term with the cTe

coefficient. The numerator Te0 is the electron temperature
in the core of the plasma, making the total term dimensionless.
The sawtooth crashes, which are responsible for lower heat confinement in the core of the plasma,
are modeled by the second term in the χe equation. The term G(q) is a q profile dependent function
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Figure 4.2: Function G(q).

G(q) =
1

1 + exp[wχsaw(q − 0.95)]
, (4.5)

For q values smaller and around 0.95 the plasma ex-
hibits sawtooth behavior and the G(q) function is nonzero.
In this regime the heat conductivity is enhanced by the
cχsawG(q) term to mimic lower confinement. The sharp-
ness of the transition around q equals 0.95 is determined by
wχsaw. Note that by assuming constant values for wχsaw
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and cχsaw a ”time-averaged” effect of the sawteeth is mod-
eled.

The neoclassical electrical conductivity formula in RAPTOR was extended by the red sawtooth
term.

σ‖ = cneo(ρ) W (q) σSpitzer(Te), (4.6)

A sawtooth crash redistributes the current by magnetic reconnection. As a result the current
density profile is flattened after a sawtooth crash.
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Figure 4.3: Function W (q).

To push enough current to the edge of the plasma after a
sawtooth crash, the electrical conductivity is reduced in the
center of the plasma by multiplication with W (q). This func-
tion (see Figure 4.2) reads

W (q) =
cσsaw

1 + exp[wσsaw(0.95− q)] + (1− cσsaw),

In this equation wσsaw represents the sharpness of the transi-
tion around q equals 0.95, the term 0 ≤ cσsaw ≤ 1 accounts for
the amount of reduction of the electrical conductivity. Note
that by assuming constant values for wσsaw and cσsaw a ”time-
averaged” effect of the sawteeth is modeled.

4.3 Determination of the model parameters

The neoclassical electrical conductivity and heat diffusivity can be calculated with first principle
physics models. The results could be used to tune the ten model coefficients of χe in RAPTOR.

χneo, cχsaw, wχsaw, cano, χcentral, δ0, aic, wic, dic and cTe
,

and the two σ‖ model parameters

cσsaw and wσsaw,

This approach is time consuming and not desired because the aim of RAPTOR is to make reliable
Te and ι predictions. Due to all the simplifications and assumptions, systematic errors in the
calculated Te and ι profiles can be captured in the model parameters of the χe and σ‖ models.
This could result in χe and σ‖ profiles that differ from the first principle calculations, but Te and
ι profiles that agree with experimental evidence.
The model parameters are presently tuned by hand to yield reasonable q and Te profiles that
match experimental observations. During this research a method was developed to estimate in a
generic way the model coefficients to quantitatively reproduce existing experiments. More details
can be found in Chapter 5.
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Chapter 5

Estimation of the model
parameters in the RAPTOR code

5.1 Introduction

RAPTOR uses an ad-hoc model to describe the heat diffusivity χe (see Equation 4.1) and a
sawteeth correction term in the electrical conductivity σ‖ equation (see Equation 4.6). In this
chapter a generic method is presented which estimates the optimal χe and σ‖ model parameters in
order to quantitatively match RAPTOR with measurements or results from more complete codes.
The chapter starts with the theory of parameter estimation for dynamical systems, followed by
a explanation of the used method. Before presenting the results of the parameter estimation for
RAPTOR at the TCV tokamak in Lausanne, a demonstration of the algorithm is given.

5.2 Theory

5.2.1 Nonlinear Least Squares

Let yk be a set of measurements, at given times k, of profiles of a dynamical system excited with
inputs trace u(t) and let ŷk(p) be the simulated measurements obtained by simulating a nonlinear
model with parameter set p. The difference between the measured and simulated values can be
defined as the residual

rk(p) = yk − ŷk(p), (5.1)

The problem of determining the model parameters p can be formulated as the minimization of the
cost function

J(p) =
∑
k

‖r2
k(p)‖1, (5.2)

where the 1-norm is taken over the radial grid at time k. A local minimum dJ/dp = 0 can be
found by gradient descent. The cost function, in literature also known as the objective function,
is often weighted because [27]:

• The measured quantities may have different physical dimensions, or may be measured on
different scales. For example, some of the measurements in the measurement vector yk may
represent voltages, falling into the range zero to hundred. Other measurements, however,
may be temperature measured in electronvolt with values in a much higher range. Without
weighting, the cost function will be dominated by the temperature residuals, and only the
model parameters p which minimize this residual and not the voltage residual are found;
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• Some measurements may be known to be less reliable than others. Thus, weighting is needed
to make sure that the parameter estimates are less influenced by these measurements relative
to the more accurate ones.

The weighted objective function is

J(p) =
∑
k

‖νkr2
k(p)‖1 (5.3)

5.2.2 Statistical Background

Let p̂ denote the estimated parameter vector. To investigate the reliability and precision of the
estimated model parameters one needs to compute the covariance matrix for the parameters. This
matrix can be approximated as follows [27]

cov(p̂) = C ≈ 2σ2
(
H(p̂)

)−1

, (5.4)

in which H(p̂) = ∂2J/∂p2 denotes the Hessian matrix of the cost function evaluated at p̂. The
standard deviations of the measurements errors σ can be estimated from the residuals, assuming
that the measurement errors are independent and normally distributed with expected value 0 [27]

σ2 =
1

nk − np
∑
k

‖νkr2
k(p̂)‖1 =

1

k − np
J(p̂), (5.5)

with np the number of model parameters and nk the number of measurements.
The diagonal elements of the covariance matrix contain the variance of the parameters p̂

var(p̂i) = Cii, (5.6)

The off-diagonal elements give information about the covariance between the parameters. The
Correlation Matrix R, with elements Rij , can be computed from the Covariance Matrix C

Rij =
Cij√
CiiCjj

, (5.7)

A 100(1− α)% marginal confidence interval for the ith parameter is given by [27]:

p̂± tα/2k−np

√
var(p̂i), (5.8)

in which t
α/2
k−np

denotes a quantile of the t-distribution with k−np degrees of freedom. The relative

100(1− α)% marginal confidence interval for the ith parameter is

1±
t
α/2
k−np

√
var(p̂i)

p̂
, (5.9)

The confidence interval should be interpreted as follows: there is a 100(1− α)% probability that
the calculated confidence intervals will contain the true parameters p. This is different from the
statement that there is a 100(1− α)% probability that the true parameters are in the confidence
intervals.

5.2.3 Parameter Identifiability

Model identifiability is the problem of determining whether the parameters of a given mathematical
model can be uniquely recovered from data. The parameter estimation problem raises the two
following questions which are closely related:
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• Identifiability of the parameterized model, i.e., the question whether there are two distinct
choices of the unknown parameters p that produce the same input-output relationship. A
mathematical model is said to be identifiable at p̂ if there exists an input signal u∗ such that
ŷ(p̂, u∗) = ŷ(p, u∗)→ p̂ = p. If such u∗ does not exist, the model is said to be fundamentally
unidentifiable at that choice of parameters;

• Richness of the input, i.e., the problem of generating an input such that the above rela-
tion holds. Such an input u∗, if it exists, is called persistently exciting with respect to
mathematical model at p̂.

Identifiability properties are global properties holding for the full parameter space. However, for
highly nonlinear systems restricting attention to a local analysis is often the only situation that is
feasible in terms of computational complexity [25]. Only the question about local identifiability
is addressed in this thesis. The unknown parameters p of a mathematical model are locally
identifiable from data corresponding to given an input u if

ŷ(p̂, u) = ŷ(p, u)→ p̂ = p, (5.10)

Note that this identifiability condition applies to a given experiment defined by a fixed input. It
is therefore equivalent to the question whether the given input u is persistently exciting at p̂. The
necessary condition for p̂ being an isolated minimum of the cost function J is that the Hessian is
positive definite at the solution p̂. This is equivalent to requiring that the Hessian matrix has full
rank. This rank test can be performed by applying the Singular Value Decomposition (SVD):

H(p̂) =
∂2J

∂p2
= UΣV T , (5.11)

In this equation Σ contains the singular values, and the columns of U are basis functions in
the parameter space determining the linear combinations of the original parameters that will be
identifiable from the measurements. When Σ contains one or more singular values significantly
smaller than the rest the Singular Value Decomposition can be formulated as

H(p̂) =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T1
V T2

]
, (5.12)

where the singular values in Σ2 are considerably smaller than those in Σ1. The columns U2 contain
(combinations of) parameters which are poorly identifiable.
A quantitative measure of the parameter identifiability can be obtained by analyzing the width of
the confidence intervals (Equation 5.8) of the estimated parameter set. A large confidence inter-
val for an estimated parameter p̂ means that the cost function J does not vary much when this
parameter is perturbed. This allows for a quantitative measure of the identifiability of the param-
eters. Finally, the correlation between parameters, obtained from R (Equation 5.7), indicates that
insufficient information is available in the data to estimate the model parameters uniquely, hence
that either the model structure should be reconsidered or further experiments with different input
sequence performed.

5.2.4 Parameter scaling in identifiability

Scaling of the model parameters is important for proper convergence in nonlinear optimization
and for the Singular Value Decomposition of the Hessian. If parameters have vastly different
magnitudes, then the singular values are not directly comparable [27]. To overcome this problem,
the relative variance of parameters is used in the nonlinear least squares optimization [25]

p̄ = Γ−1p, (5.13)
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where Γ−1 = diag(|p1|, ..., |pn|)
This parameter scaling results in a scaled Hessian [25]

H(p̄) = Γ
∂2J

∂p2
Γ = ΓH(p)Γ, (5.14)

The singular value decomposition of the scaled Hessian yields singular values that are directly
comparable. This makes a proper analysis of the parameter space that is identifiable possible.
A scaled Hessian yields a scaled Covariance matrix, and hence a scaled variance

var(p̄) = var(Γ−1p), (5.15)

The statistical analysis presented in Section 5.2.2 can still be applied using the scaled parameters p̄.
To transform the variance of the scaled model parameters to the variance of the ”real” parameters,
the following relation holds

var(p̄) = var(Γ−1p) = Γ−2var(p)→ var(p) = Γ2var(p̄), (5.16)

When using scaled parameters in the nonlinear least squares optimization, the 100(1 − α)%
marginal confidence interval for the ith unscaled parameter can still be computed after using
the transformation presented in Equation 5.16.

5.3 Implementation

5.3.1 Definition of the cost function

The cost function J for model parameter estimation of RAPTOR is defined such that the calculated
radial Te(ρ) and ι(ρ) profiles match the measurements. The loop voltage Upl(ρ) at the final time
k, which can be measured fairly accurately, was also included to this cost function as a constraint
to the parameter estimation problem. In this work a constant weighting ν was chosen such that
the contribution of Upl [V] (O(1−10)), Te [eV] (O(1000)) and ι [-] (O(1)) is of the same order and
that only the more reliable measurements in the ρ region between 0.1 and 0.9 were used. Lastly,
also parameter scaling was applied with Γ−1 containing the initial guess of the model parameters.
The cost function defined in Equation 5.3 becomes

J(p̄) =

nk∑
k=1

‖νTer
2
Te,k(p̄)‖1 +

nk∑
k=1

‖νιr2
ι,k(p̄)‖1 + ‖νUpl

r2
Upl,nk

(p̄)‖1 = νTeJTe + νιJι + νUpl
JUpl

,

(5.17)

the weighting factors that will be used in this thesis are defined as follows

νTe
=

{
0 if ρ < 0.1 ∨ ρ > 0.9,

1
1000nk

if 0.1 ≤ ρ ≤ 0.9.

νι =

{
0 if ρ < 0.1 ∨ ρ > 0.9,
1
nk

if 0.1 ≤ ρ ≤ 0.9.

νUpl
=

{
0 if ρ < 0.1 ∨ ρ > 0.9,
1
10 if 0.1 ≤ ρ ≤ 0.9.

The optimal model parameters in RAPTOR to describe a dataset containing the Upl, Te and ι
radial profiles evolving in time can now be estimated by minimizing the cost function in Equation
5.17. An additional feature was added to find the optimal model parameters for multiple datasets,
nd, at once. For this purpose the cost function definition is

J(p̄) =
∑
nd

νTeJTe + νιJι + νUpl
JUpl

, (5.18)

where nd is the number of datasets.
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5.3.2 Overview of the parameter estimation algorithm

In Figure 5.1 the flow diagram of the developed algorithm to estimate the model parameters is
shown. To start the parameter optimization routine, an initial guess of the model parameters p
must be specified. The user can choose to optimize the (sub)set of ten χe model parameters in
Equation 4.4

χneo, cχsaw, wχsaw, cano, χcentral, δ0, aic, wic, dic and cTe
,

and/or the (sub)set of two σ‖ model parameters in Equation 4.6

cσsaw and wσsaw,

RAPTOR uses the initial guess of the model parameters to solve the nonlinear poloidal flux
diffusion equation and nonlinear electron energy transport equation to obtain the state vector
x(t), defined in Equation 2.11. This state vector is used to compute the profiles Te(ρ), ι(ρ) and
Upl (see Equation 2.13). The model predictions are compared to measured data by computing the
cost function J . The cost function, is minimized with an optimization routine. The Sequential
Quadratic Programming (SQP) algorithm [26], which is readily available in MATLAB, was used
for this purpose. The SQP algorithm finds the minimum of the cost function by changing the
model parameters p. If the objective function is not at its minimum the algorithm computes a
new set of parameters p for which the cost function is expected to be lower. When the objective
function is in its minimum the optimal parameters are found for which the ι, Upl and Te profiles
of RAPTOR match the experimental data best.

Initial guess of model parameters p

RAPTOR solves flux diffusion and 

transport   x = [Ψ, Te] and ∂x/∂p

Objective function at 

minimum

Use optimisation routine to 

calculate new p

Routine complete,

optimal parameters p found

yes

no

Calculation of objective function J
Experimental 

      data

p

J 

∂

∂ ∂J  ∂x

∂x  ∂p

Figure 5.1: Algorithm to estimate model parameters. The cost function gradient dJ/dp is com-
puted analytically using the ψ and Te profiles sensitivities, dx/dp. More information is given in
Section 5.3.3.

5.3.3 Computation of the cost function gradient

The performance of the Sequential Quadratic Programming algorithm critically depends on the
derivative of the cost function to the model parameters dJ/dp. This cost function gradient gives
information about in which direction in parameter space the cost function decreases. The choice
was made to describe dJ/dp analytically. This has two major advantages. The first one is that
the SQP algorithm converges faster to the optimal model parameters because no finite difference
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approximation is needed to approximate the derivative of the cost function to the model parame-
ters. The second advantage is that the analytical solution is exact in contrast with the numerical
approximation, which enhances the performance of the SQP algorithm. The analytical expression
for dJ/dp is computed as follows

dJ

dp
=
∂J

∂x

∂x

∂p

The term ∂J/∂x can easily be obtained from direct differentiation of the cost function. The term
∂x/∂p is obtained from the forward sensitivity equation.
To obtain the state vector x, RAPTOR solves Equation 2.12 (which contains the flux diffusion
equation and electron energy transport) at discrete-time points k [3]

fk = f(xk+1, xk, uk) = 0 ∀k

Differentiating this equation to a vector of model parameters p results in the forward sensitivity
equation

0 =
dfk
dp

=
∂fk
∂xk+1

∂xk+1

∂p
+
∂fk
∂xk

∂xk
∂p

+
∂fk
∂uk

∂uk
∂p

+
∂fk
∂p

(5.19)

This equation is recursively solved starting from the initial condition ∂x0/∂p, yielding ∂xk/∂p, for
k ∈ [1, ..., nk]. Below, more details about the terms in the forward sensitivity equation are given

• The first two terms on the right hand side contain the Jacobians ∂fk/∂xk+1 and ∂fk/∂xk.
These are already computed by RAPTOR [3];

• The third term depends on the model parameters of the input actuators. In our case where
only the model parameters in χe and σ are optimized, this term is equal to zero;

• The last term is nonzero for model parameters, i.e. parameters that affect the model directly
by altering the equations. In our case the parameters in χe and σ are model parameters.
Presently the term ∂fk/∂p was not computed in RAPTOR, because the code was not used
for model parameter estimation yet. During this research the term was added to the code.
To compute the term ∂fk/∂p the analytical derivatives of χe and σ with respect to the model
parameters p were computed. These expressions can be found in Appendix B.1.

Now every term in the sensitivity equation is known, the state sensitivities ∂xk/∂p can be computed
by solving the ODE (Equation 5.19) for each parameter in the parameter vector p. Once the state
sensitivities are known, the cost function gradient with respect to the model parameters dJ/dp
can be computed.
A check was made between the analytical calculation of the cost function gradient dJ/dp and the
numerical approximation. A typical result is shown in figure 5.2, the analytical and numerical
gradient agree.
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Figure 5.2: A perturbation δp was added to the parameters χneo(1), cano(2),aic(3), wic(4), dic(5),
cχsaw(6), wχsaw(7), cTe(8), cσsaw(9) and wσsaw(10). The variation of the cost function J was
calculated numerically dJ = J(p + δp) − J(p) and with the analytical gradient: dJ = dJ

dp δp. dJ
was nonzero for all parameter perturbations and its numerical and analytical calculated values
agree well, as can be seen from the relative difference between them.

5.4 Demonstration: Finding known model parameters from
simulated data

A numerical experiment was performed to demonstrate that the developed algorithm is able to
find the optimal model parameters in χe and σ‖. The algorithm that was used is shown in Figure
5.1. For this experiment the block with experimental data in this figure contains data of the Te,
q and Upl profiles generated by RAPTOR itself without any artificial noise. A plasma shot of
0.3 seconds with reversed shear and sawteeth was simulated. A time step of 1ms was used in the
simulation and eleven ρ gridpoints equally distributed from 0 to 1. In Figure 5.3 the typical profile
evolutions during this experiment are shown.
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Figure 5.3: Time traces of key quantities for the simulated experiment.

The numerical experiment was performed to show that the algorithm is capable to find the model
parameters χneo = 0.5, cano = 7, aic = 0.5, wic = 3, cχsaw = 10, wχsaw = 10, cTe = 0.8,
cσsaw = 0.5 and wσsaw = 10 which were used to simulate the data.
In Figure 5.4 the cost function is plotted versus the number of iteration steps. The cost function
reduces as the number of iterations increase. This is because the estimated model parameters
converge to the true model parameters. At the final iteration step, the estimated model parameters
are converged to the exact solution as is shown in Figure 5.5.
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Figure 5.4: The cost function versus the iteration steps of the numerical experiment to demonstrate
the parameter estimation algorithm. The definition of the cost function J and weighting factors
ν were introduced in Section 5.3.1.
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Figure 5.5: An numerical experiment was designed in which sawteeth and reversed shear are
present. No noise was added. The developed algorithm is able to find back the parameters
χneo(1), cano(2), aic(3), wic(4), cχsaw(5), wχsaw(6), cTe

(7), cσsaw(8) and wσsaw(9) that were
used to generate the data. This figure shows that the relative difference between the estimated
parameters and the exact parameters is negligible at the final iteration step.

In Figure 5.6 the relative error of ι versus time and iteration step is depicted. In Figure 5.7, the
relative error of Te versus time and iteration step is plotted, and in Figure 5.8 the relative error
of the loop voltage Upl at the final time point (0.3s) is shown versus iteration step. The relative
errors reduce with increasing number of iterations as the estimated model parameters converge to
the model parameters which were used to generate the data.
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Figure 5.6: The relative error of ι versus time and
iteration step.

0 0.05 0.1 0.15 0.2 0.25 0.3
10

−15

10
−10

10
−5

10
0

10
5

time [s]

re
la
ti
v
e
 e
rr
o
r 
T
e
 [
%
]

 

 

iteration step 1

iteration step 38

iteration step 76

iteration step 113

Figure 5.7: The relative error of Te versus time
and iteration step.
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Figure 5.8: The relative error of loop voltage Upl at the final time point (0.3s) versus iteration
step.

This numerical experiment shows that the developed parameter estimation algorithm is able to
find the optimal parameters which describe the experimental data best.

5.4.1 Adding noise to numerical experiment

It is not sufficient to compute the optimal parameters and to state that this is the estimated value
of the unknown model parameters in χe and σ‖. It must also be investigated what the reliability
and precision of the estimated parameters is. A parameter is ill-determined if its estimated value
can be affected strongly by seemingly insignificant variations in the data. In essence, then, it is
attempted to answer the question ’If the series of experiments were repeated many times, how
would the estimates differ from one replication to the next’. Therefore a new numerical experi-
ment was performed. The algorithm that was used is shown in Figure 5.1. For this experiment
the block with experimental data in this figure contains the synthetic data of the Te, q and Upl
profiles generated by RAPTOR contaminated with an artificial white noise source with a standard
deviation of 0.01. This numerical experiment also reflects reality: an experiment with measured
Te, q and Upl is never clean but always contaminated with noise.
A 50ms seconds plasma with reversed shear but no (!) sawteeth was simulated. In the numerical
experiment the algorithm was used to find back the model parameters χneo, cano, χcentral, δ0,
aic, wic, dic, cχsaw, wχsaw and cTe

which were used to generate the synthetic dataset. Indeed,
one expects that the model parameters cχsaw, wχsaw cannot be found back, because the dataset
reflects a plasma condition without sawteeth crashes.
In Table 5.1 the results of this numerical experiment are presented. The first thing that should be
noted is the large difference between the estimated and exact values of cχsaw and wχsaw. During
the parameter optimization process the values of cχsaw and wχsaw remained at their initial val-
ues. The changes in the two model parameters cannot be observed in the model’s input-output
mapping, which means the two parameters are not identifiable. This is expected because a plasma
condition without sawteeth crashes was simulated: the safety profile q is at all time at every lo-
cation greater than one, making the Equation 4.5 equal to zero everywhere. The same conclusion
could be drawn by analyzing the singular value decomposition (SVD) of the Hessian matrix at
the estimated model parameters p̂ plotted in Figure 5.9. The plot shows two Hessian singular
values that are very small. This corresponds to directions in parameter space that have only very
small influence on the cost function J . In this example the two columns of U that correspond
to the small singular values are a linear combination of only cχsaw and wχsaw. Thus, without
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even knowing the plasma conditions of the experiment the conclusion that the cχsaw and wχsaw
parameters are unobservable can again be drawn from the SVD analysis.
The information from the singular value decomposition of the Hessian model can be used for model
reduction. The subspace corresponding to the cχsaw and wχsaw parameters can be removed. This
subspace has only very small influence on the cost function J . For the reduced model the standard
deviations of the estimated parameters p̂ and the 95% confidence intervals are tabled in Table 5.1.

Table 5.1: Results parameter estimation for the numerical experiment contaminated with white noise.

χneo cano χcentral δ0 aic dic wic cχsaw wχsaw cTe

true p 0.5 4 20 0.25 0.5 0.1 3 3 10 0.5
estimated p̂ 0.4634 4 19.9809 0.2491 0.5049 0.0686 2.9661 6 7 0.5015

relative error [%] 7.3186 0 0.0956 0.3603 0.9830 31.38 1.1301 - - 0.3005
95 % conf. int. p̂ [%] 61.425 1.4737 14.8212 6.2319 11.094 126.533 19.0764 - - 1.7242
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Figure 5.9: The Singular values of the Hessian matrix.

The true parameters are all covered by the 95% confidence intervals. However, there is a large
degree of uncertainty for the model parameters χneo and dic. The Correlation Matrix provides
some insight into the nature of the ill conditioning. For the optimal solution, the Correlation
Matrix is

R(p̂) =



1.0000 −0.8511 0.3485 −0.6226 0.4664 −0.3813 −0.6329 0.5384
−0.8511 1.0000 −0.1916 0.4673 −0.2901 0.2072 0.4193 −0.8623
0.3485 −0.1916 1.0000 −0.9331 −0.1367 −0.2785 0.0806 −0.0106
−0.6226 0.4673 −0.9331 1.0000 0.0065 0.3643 0.1063 −0.1868

0.4664 −0.2901 −0.1367 0.0065 1.0000 −0.7936 −0.9297 0.2508
−0.3813 0.2072 −0.2785 0.3643 −0.7936 1.0000 0.7154 −0.1102
−0.6329 0.4193 0.0806 0.1063 −0.9297 0.7154 1.0000 −0.3246
0.5384 −0.8623 −0.0106 −0.1868 0.2508 −0.1102 −0.3246 1.0000


Note the strong positive and negative correlations between pairs of parameters. For example, the
strong negative correlation between χneo (R(p̂)21) and cano (R(p̂)22) tells us that by increasing
χneo and simultaneously decreasing cano we can obtain a solution that is very nearly as good as
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our optimal solution.
Parameter dic (R(p̂)66) has a strong negative correlation with aic (R(p̂)65). This can be understood
by looking at Figure 4.1: the value of the shear function F (s), and thus the cost function J , remains
the same when dic is slightly increased and aic decreased.

5.4.2 Conclusions numerical experiment

The developed algorithm for parameter estimation successfully retrieves model parameters and a
statistical approach was used to gain more insight in the reliability and precision of the estimated
parameters. The remaining of this chapter will present the results for the parameter estimation
of RAPTOR for TCV shots.

5.5 Parameter estimation for TCV

The Tokamak à Configuration Variable (TCV) is an experimental tokamak at the École Polytech-
nique Fédérale de Lausanne, Switzerland. The medium size TCV tokamak was designed to study
confinement and stability for a wide variety of plasma shapes. This is made possible by a set of
sixteen independently controlled poloidal field coils, as well as a vacuum vessel that can accommo-
date highly elongated plasmas. TCV is equipped with an electron cyclotron heating (ECH) and
current drive (ECCD) system.
During a two week visit to TCV, data from the extensive transport code ASTRA [5] was gathered.
The ASTRA code simulated five TCV shots constrained with the diagnostics information at TCV:

1. A steady state Ohmic shot;

2. A steady state shot with constant ECH;

3. A shot with time-varying ECH;

4. Shot 46712 with time-varying ECCD and ECH;

5. Shot 46715 with time-varying ECCD and ECH.

The free model parameters of χe and σ in RAPTOR were tuned to match ASTRA’s q, Te and
Upl profiles for each shot specific and for all shots together. The goal of this research at TCV was
to demonstrate the developed parameter estimation method and to tune RAPTOR for the TCV
tokamak. This enhances the TCV closed-loop and open-loop control schemes that make use of
the RAPTOR predictions.

5.5.1 All shots simultaneously

RAPTOR uses simplifications and assumptions. The unknown physics of χe and σ which is more
complicated and less well understood is captured in its model parameters. This unmodeled physics
is different for each of the five shots. Therefore it is expected that the estimated model parameters
will differ for each shot.
In this section the optimal model parameters for not one specific shot, but the five shots simulta-
neous are estimated. In the remainder of this chapter it will be investigated if the estimated model
parameter of the several shots simultaneously are ”universally” applicable, i.e do they describe
each specific shot well?
The cost function which was minimized for the five shots simultaneous is given by Equation 5.18.
The choice was made to optimize the following model parameters in σ‖ and χe

χneo, cano, cχsaw, wχsaw, cTe
, cσsaw and wσsaw,

The model parameters which describe sawteeth are listed, because sawtooth crashes are present
in the TCV shots. However, the model parameters aic, wic, dic were not estimated. This because
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the TCV shots do not represent advanced plasma scenarios characterized by a very low (s ≤ 0.01)
or negative magnetic shear s for which the function F (s) (Equation 4.2) is nonzero. This can be
seen from the figures in Appendix B.2 which show that the temporal evolution of the minimum
magnetic shear in the ρ interval between 0.05 and 1 largely exceeds 0.01.
As a result, the ASTRA simulation data does not contain information about the aic, wic, dic model
parameters, i.e the given datasets are not persistently exciting at these model parameters, which
means they are unidentifiable. The default values aic = 1, wic = 3, dic = 0.01 were used throughout
the parameter estimation procedure for the TCV shots.
In Table 5.2 the estimated parameters are given when using all shots simultaneously, later in this
chapter the properties of the estimated parameters are investigated by discussing the corresponding
95 % confidence intervals. In the remainder of this chapter the model parameters are estimated
for each shot specific. Each time a comparison with the optimal model parameters obtained from
optimizing for all the five shots simultaneous is made.

Table 5.2: Estimated parameters all shots.
χneo cano cχsaw wχsaw cTe cσsaw wσsaw

estimated p∗ 0.4705 2.5743 13.4097 25.9812 0.9247 0.6673 1.0000
95 % conf. int. p∗ [%] 8.76 6.227 16.7834 23.92 6.39 1.843 23.4811

5.5.2 Ohmic shot

The model parameters aic, wic, dic are not identifiable from the steady state Ohmic dataset, be-
cause the magnetic shear is positive as already explained in the previous section. During the sim-
ulation of the steady state Ohmic shot with the ASTRA code, the sawtooth module was turned
off. Therefore only the model parameters χneo, cano and cTe

in the RAPTOR code remained to be
optimized in order to match the Te, q and Upl profiles with ASTRA. The heat diffusivity equation
(Equation 4.4) reduces in this case to

χe = χneo + canoρq
(Te0 [eV ]

1000

)cTe

,

The neoclassical electrical conductivity formula does not contain model parameters to estimate.
The cost function which was minimized to obtain the optimal model parameters was introduced
in Section 5.3.1. In this case only one time slice of the ASTRA data was used for the optimization,
since the steady state shot has time constant Te, ι and Upl profiles. The cost function minimizes the
difference between the Te, ι and Upl profiles calculated by ASTRA and RAPTOR. The evolution
of the cost function versus the iteration steps is depicted in Figure 5.10. The estimated parameters
at the final iteration step are shown in Table 5.3. Figures 5.11, 5.12 and 5.13 show that the Te,
ι and Upl profiles of RAPTOR and ASTRA agree well for the shot-specific optimal parameters.
The discrepancy becomes larger when using the model parameters obtained from optimizing the
five TCV shots at once. The 95 % confidence intervals of the estimated model parameters, shown
in Table 5.3, are large. This is of three reasons

1. The Ohmic shot is in steady state. The plasma profile dynamics are not sufficiently excited,
making the parameters poorly identifiable. This is reflected by the large confidence intervals;

2. Analyzing the Correlation Matrix R(p̂) learns that cano and cTe
are strongly negatively

correlated: the effect of increasing cano on χe can be compensated by reducing cTe
;

R(p̂) =

 1.0000 0.8384 −0.8364
0.8384 1.0000 −0.9996
−0.8364 −0.9996 1.0000


3. The extremely large confidence interval of cTe

is caused by the fraction Te0 [eV ]/1000 ≈ 1.
The exponent cTe has very little influence on the fraction.
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Figure 5.10: Cost function versus iteration step for the shot specific optimization. The definition
of the cost function J and weighting factors ν were introduced in Section 5.3.1.
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tion is only defined for the region 0.1 ≤ ρ ≤ 0.9.
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Figure 5.13: The Upl profiles of ASTRA and RAPTOR. The difference between the profiles in the
grey zones was disregarded during the cost function minimization. This because the cost function
is only defined for the region 0.1 ≤ ρ ≤ 0.9.

Table 5.3: Estimated model parameters in RAPTOR for the Ohmic shot
χneo cano cTe

estimated p∗ 0.6093 4.7880 0.1049
95 % conf. int. p∗ [%] 6.5218 114.4873 1.2876e+ 05

5.5.3 ECH constant shot

ASTRA simulated a steady state shot with constant ECH power. In this shot sawteeth were
present. The χneo, cano, cχsaw, wχsaw, cTe

, cσsaw and wσsaw model parameters in RAPTOR were
estimated. The evolution of the cost function versus the iteration steps is depicted in Figure 5.14.
Like for the Ohmic shot, only one time slice of the ASTRA data was used for the optimization,
since the steady state ECH shot has time constant Te, ι and Upl profiles. The estimated parameters
at the final iteration step are shown in Table 5.4. The Te, ι and Upl profiles of RAPTOR and
ASTRA agree well for the shot-specific optimal parameters (See Figures 5.15, 5.16 and 5.17). The
discrepancy becomes larger when using the model parameters obtained from optimizing the five
TCV shots at once. The 95 % confidence intervals of the estimated model parameters, shown in
Table 5.4, are large. Just like with the Ohmic shot of the previous section, the large confidence
intervals are a consequence of the lack of time evolution of the profiles. The constant Te, ι and
Upl profiles can be approximated by RAPTOR by using different parameter combinations. This
is reflected by the Correlation Matrix

R(p̂) =



1.0000 −0.8005 −0.9743 −0.9861 −0.9805 −0.2456 0.0423
−0.8005 1.0000 0.6746 0.8686 0.8457 0.2895 −0.0318
−0.9743 0.6746 1.0000 0.9240 0.9478 0.1585 −0.0817
−0.9861 0.8686 0.9240 1.0000 0.9777 0.2739 −0.0417
−0.9805 0.8457 0.9478 0.9777 1.0000 0.0959 −0.2069
−0.2456 0.2895 0.1585 0.2739 0.0959 1.0000 0.9391
0.0423 −0.0318 −0.0817 −0.0417 −0.2069 0.9391 1.0000


The Correlation Matrix shows strong correlations between the parameters, meaning that insuffi-
cient information is available in the data to estimate the model parameters uniquely. This results
in the large confidence intervals. As an intermediate conclusion -as already explained in Section
5.2.3- it can be stated that the model parameters can only be uniquely estimated if the data is
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sufficiently rich. In the remainder of this chapter, shots are therefore used which are not in steady
state.
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Figure 5.14: Cost function versus iteration step for the shot specific optimization. The definition
of the cost function J and weighting factors ν were introduced in Section 5.3.1.
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Table 5.4: Estimated model parameters in RAPTOR for the ECH constant shot.
χneo cano cχsaw wχsaw cTe cσsaw wσsaw

estimated p∗ 0.1097 6.7700 40.3061 24.2333 0.1079 0.4007 25.7524
95 % conf. int. p∗ [%] 614.8452 31.5018 597.0649 399.5239 35.1810 163.2638 370.6626

5.5.4 ECH varying shot

ASTRA simulated a shot with varying electron cyclotron heating. In the middle of the shot (at
t = 0.9s) the ECH power was changed. This shot contains sawteeth. Time traces of key quantities
of the shot are depicted in Figure 5.18. The simulated dataset is richer compared to the two
previous discussed shots, because it contains Te, ι and Upl profile dynamics due to the change in
ECH power. In Table 5.5 the estimated parameters for this shot are listed. Firstly, the RAPTOR
predictions are compared with ASTRA before analyzing the identifiability of the parameters. In
Figure 5.19 the decrease of the cost function is plotted with increasing iteration steps for the
shot specific estimated parameters. The cost function is dominated by the electron temperature
residue. This can also be concluded from analyzing Figures 5.20 and 5.21: the relative error of
Te is larger than the relative error of the two other profiles. From this figure it can also be seen
that the relative error of the Te profile is smaller when using the estimated parameters for all the
five shots simultaneously than when using the shot specific parameters. However, the shot specific
parameters result in a better total solution: the sum of the weighted relative errors of the Te, ι
and Upl profiles is lower than when using the estimated parameters for all shots at once.
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Figure 5.18: Time traces of key quantities for the ECH varying shot.
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Figure 5.19: Cost function versus iteration step for the shot specific optimization. The definition
of the cost function J and weighting factors ν were introduced in Section 5.3.1.
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norm is taken over the radial ρ grid. The plot
shows the results of the RAPTOR profiles gen-
erated with shot optimized parameters and ”all
shots” optimal parameters.
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Figure 5.21: The relative difference between the
ι profile of ASTRA and RAPTOR defined by
100
nrho
‖ ∆ι(t)
ιASTRA(t)‖1. The 1-norm is taken over the

radial ρ grid. The plot shows the results of the
RAPTOR profiles generated with shot optimized
parameters and ”all shots” optimal parameters.

Table 5.5 shows that the 95 % confidence intervals become smaller compared to the steady state
ohmic shot and the steady state shot with constant ECH. The shot with varying ECH shot is a
richer dataset because it contains time-varying profiles. The confidence interval of χneo is large.
This can be understood by considering the relative contribution of χneo to the χe profile. A
typical χe profile for this shot is depicted in Figure 5.22. The relative contribution of χneo to the
χe profile is very small. Perturbing the value of χneo will have little influence on χe and thus
the cost function. It can be concluded that the model parameter χneo is poorly observable in
the data. Lastly, the large confidence intervals of the model parameters cχsaw, wχsaw, cσsaw and
wσsaw can be understood by analyzing the contribution of the sawteeth to the cost function. The
cost function which was minimized is shown in Equation 5.17. The 1-norm of the profile differences
of ASTRA and RAPTOR is taken over the ρ interval from 0.1 to 0.9. The sawteeth occur in the
region 0 ≤ ρ ≤ 0.2. As a results the contribution of the sawteeth region to the 1-norm is little
and hence the cost function. Variations of the cχsaw, wχsaw, cσsaw and wσsaw model parameters
therefore do not change the cost function as much as the model parameters that have influence
on the full ρ interval (e.g cano or cTe

).
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Figure 5.22: Typical χe profile for the shot with ECH varying power.

Table 5.5: Estimated model parameters in RAPTOR for the ECH varying shot
χneo cano cχsaw wχsaw cTe cσsaw wσsaw

estimated p∗ 0.1014 4.2582 55.0000 32.1570 0.4313 0.3426 25.6677
95 % conf. int. p∗ [%] 220.63 3.5773 25.5445 15.2315 9.1555 44.0934 104.2817

5.5.5 ECCD/ECH shot 46712

ASTRA simulated TCV shot 46712 with varying ECCD and ECH. The total power of the electron
cyclotron was changed four times during the shot. In this shot sawtooth crashes were present.
Time traces of key quantities of the shot are depicted in Figure 5.23. The evolution of the cost
function versus the iteration steps is depicted in Figure 5.24. The estimated parameters at the
final iteration step are shown in Table 5.6.
The Te, ι and Upl profiles of RAPTOR and ASTRA agree well for the shot-specific optimal
parameters. This can be see from Figures 5.25 and 5.26 which show that the temporal evolution
of the relative errors between the ASTRA and RAPTOR profiles are small. The discrepancy
becomes larger when using the model parameters obtained from optimizing the five TCV shots
at once. In Figure 5.27 the temporal evolution of the relative profile errors is plotted again, but
this time the Te and ι profiles are plotted that correspond to a given error at specific time point.
The 95 % confidence intervals of the estimated model parameters, shown in Table 5.6, are smaller
compared to the two previously discussed steady state shots and the shot with the one time only
changing ECH power. In this case the ECH and ECCD powers are changed four times during the
shot, leading to a more informative dataset from which the model parameters can be estimated.
The Correlation Matrix for this shot is

R(p̂) =



1.0000 −0.3566 −0.4965 −0.9987 −0.0817 0.1176 0.9862
−0.3566 1.0000 0.2101 0.3925 −0.8705 0.0594 −0.2160
−0.4965 0.2101 1.0000 0.4878 −0.1254 −0.4249 −0.5017
−0.9987 0.3925 0.4878 1.0000 0.0476 −0.0814 −0.9767
−0.0817 −0.8705 −0.1254 0.0476 1.0000 0.0387 −0.2149
0.1176 0.0594 −0.4249 −0.0814 0.0387 1.0000 0.2046
0.9862 −0.2160 −0.5017 −0.9767 −0.2149 0.2046 1.0000


The Correlation matrix shows strong cross correlation between parameters. The model parameters
can not be determined uniquely. (e.g cano and cTe are strongly negatively correlated: the effect of
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increasing cano on the cost function can be compensated by reducing cTe).
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Figure 5.23: Time traces of key quantities for the ECCD/ECH shot 46712.

0 5 10 15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

n
iter

J

 

 

ν
T
e

 J
T
e

ν
ι
 J
ι

ν
U
pl

 J
U
pl

 J
tot

Figure 5.24: Cost function versus iteration step for the shot specific optimization. The definition
of the cost function J and weighting factors ν were introduced in Section 5.3.1.
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Figure 5.25: The relative difference between
the Te and Upl profiles of ASTRA and

RAPTOR defined by 100
nrho
‖ ∆Te(t)
Te,ASTRA(t)‖1 and

100
nrho
‖ ∆Upl(tfinal)
Upl,ASTRA(tfinal)

‖1 respectively. The 1-

norm is taken over the radial ρ grid. The plot
shows the results of the RAPTOR profiles gen-
erated with shot optimized parameters and ”all
shots” optimal parameters.
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Figure 5.26: The relative difference between the
ι profile of ASTRA and RAPTOR defined by
100
nrho
‖ ∆ι(t)
ιASTRA(t)‖1. The 1-norm is taken over the

radial ρ grid. The plot shows the results of the
RAPTOR profiles generated with shot optimized
parameters and ”all shots” optimal parameters.
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Figure 5.27: Relative error plots for the shot-optimized model parameters and the corresponding
Te and ι profiles. The difference between the profiles in the grey zones was disregarded during
the cost function minimization. This because the cost function is only defined for the region
0.1 ≤ ρ ≤ 0.9.

Table 5.6: Estimated model parameters in RAPTOR for the ECCD/ECH 46712 shot
χneo cano cχsaw wχsaw cTe cσsaw wσsaw

estimated p∗ 0.1302 4.1753 4.1977 17.0948 0.1071 0.2098 46.1202
95 % conf. int. p∗ [%] 21.89 4.9592 6.70 23.7394 39.2445 11.0186 5.0968

5.5.6 ECCD/ECH shot 46715

TCV shot 46715 contains sawteeth and has varying ECH and ECCD. Like in shot 46712, the
electron cyclotron power was changed four times during the shot. Time traces of key quantities of
the shot are depicted in Figure 5.28. The evolution of the cost function versus the iteration steps
is depicted in Figure 5.29. The estimated parameters at the final iteration step are listed in Table
5.7.
Figures 5.30 and 5.31 show that the temporal evolution of the relative errors between the ASTRA
and RAPTOR profiles are small when using the shot-specific optimal parameters. From these
two figures it can also be seen that the relative errors of the Te and Upl profiles are larger when
using the estimated model parameters for all the five shots simultaneously than when using the
shot specific parameters. The difference between the ι profile of ASTRA and RAPTOR decreases
when using the model parameters for all the five shots at once. The cost function was constructed
such that the ι, Te and Upl profiles have equal importance to be minimized. The shot-specific
parameters, which yield better estimates for two of the three profiles (Te and Upl), result therefore
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in a lower costfunction.
In Figure 5.27 the temporal evolution of the relative profile errors is plotted again, but this time
the Te and ι profiles are plotted that correspond to a given error at specific time point

0.182

0.184

0.186

0.188
I
p

 [MA]

0

0.5

1

P
in

 [MW]

0 1 2

time [s]

0

1

2

3

q
0

,q
min

2

4

6

8

10
q

edge

0 1 2

time [s]

0

2

4

6
T

e0
 [keV]

0 0.5 1 1.5

3

3.5

4
<Z

e!
>

time [s]

Figure 5.28: Time traces of key quantities for the ECCD/ECH shot 46715.
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Figure 5.29: Cost function versus iteration step for the shot specific optimization. The definition
of the cost function J and weighting factors ν were introduced in Section 5.3.1.
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Figure 5.30: The relative difference between
the Te and Upl profiles of ASTRA and

RAPTOR defined by 100
nrho
‖ ∆Te(t)
Te,ASTRA(t)‖1 and

100
nrho
‖ ∆Upl(tfinal)
Upl,ASTRA(tfinal)

‖1 respectively. The 1-

norm is taken over the radial ρ grid. The plot
shows the results of the RAPTOR profiles gen-
erated with shot optimized parameters and ”all
shots” optimal parameters.
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Figure 5.31: The relative difference between the
ι profile of ASTRA and RAPTOR defined by
100
nrho
‖ ∆ι(t)
ιASTRA(t)‖1. The 1-norm is taken over the

radial ρ grid. The plot shows the results of the
RAPTOR profiles generated with shot optimized
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Figure 5.32: Relative error plots for the shot-optimized model parameters and the corresponding
Te and ι profiles. The difference between the profiles in the grey zones was disregarded during
the cost function minimization. This because the cost function is only defined for the region
0.1 ≤ ρ ≤ 0.9.

Table 5.7: Estimated model parameters in RAPTOR for the ECCD/ECH 46715 shot
χneo cano cχsaw wχsaw cTe cσsaw wσsaw

estimated p∗ 0.1553 7.1550 10.5143 22.2398 0.1519 0.2182 20.1452
95 % conf. int. p∗ [%] 176.29 6.6971 6.5384 23.9578 26.4807 10.3758 36.9827

5.6 Overview of the estimated model parameters

In Table 5.8 an overview is given of the estimated model parameters for each shot specific and all
shots simultaneous.
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Table 5.8: Estimated parameters
Ohmic shot

χneo cano cχsaw wχsaw cTe cσsaw wσsaw
estimated p∗ 0.6093 4.7880 00.0000 00.0000 0.1049 00.0000 00.0000

95 % conf. int. p∗ [%] 6.5218 114.4873 00.0000 00.0000 1.2876e+ 05 00.0000 00.0000
ECCD/ECCH shot 46712

χneo cano cχsaw wχsaw cTe cσsaw wσsaw
estimated p∗ 0.1302 4.1753 4.1977 17.0948 0.1071 0.2098 46.1202

95 % conf. int. p∗ [%] 21.89 4.9592 6.70 23.7394 39.2445 11.0186 5.0968
ECCD/ECCH shot 46715

χneo cano cχsaw wχsaw cTe cσsaw wσsaw
estimated p∗ 0.1553 7.1550 10.5143 22.2398 0.1519 0.2182 20.1452

95 % conf. int. p∗ [%] 176.29 6.6971 6.5384 23.9578 26.4807 10.3758 36.9827
ECH constant shot

χneo cano cχsaw wχsaw cTe cσsaw wσsaw
estimated p∗ 0.1097 6.7700 40.3061 24.2333 0.1079 0.4007 25.7524

95 % conf. int. p∗ [%] 614.8452 31.5018 597.0649 399.5239 35.1810 163.2638 370.6626
ECH varying shot

χneo cano cχsaw wχsaw cTe cσsaw wσsaw
estimated p∗ 0.1014 4.2582 55.0000 32.1570 0.4313 0.3426 25.6677

95 % conf. int. p∗ [%] 220.63 3.5773 25.5445 15.2315 9.1555 44.0934 104.2817
All shots

χneo cano cχsaw wχsaw cTe cσsaw wσsaw
estimated p∗ 0.4705 2.5743 13.4097 25.9812 0.9247 0.6673 1.0000

95 % conf. int. p∗ [%] 8.76 6.227 16.7834 23.92 6.39 1.843 23.4811

The model parameters differ for each shot. The model parameters for all shots at once yield Te
and ι predictions that differ at most 20 percent from the profiles of ASTRA for the shots

• ECCD/ECH shot 46712 (see Figures 5.25 and 5.26);

• ECCD/ECH shot 46715 (see Figures 5.30 and 5.31);

• ECH shot with varying ECH (see Figures 5.20 and 5.21).

5.7 Conclusions

A systematic method was developed to estimate the model parameters of χe and σ in RAPTOR.
The results presented in this chapter show that the method is able to find the model parameters
such that RAPTOR agrees with the results of the more complete ASTRA code for the TCV
tokamak. The identifiability of the model parameters increases when the dataset contains more
time-variation in the profiles. The analysis of the Correlation Matrix shows that, occasionally,
model parameters can not be estimated independently: the effect of a specific model parameter
can be compensated by an other model parameter.
The shot-specific estimated model parameters differ from each other. This is the result of the sim-
plifications and assumptions used in RAPTOR. The unmodeled physics is captured in the model
parameters. This results in the variation of the model parameters for different plasma conditions,
because the unmodeled physics changes. Therefore the model parameters were estimated such
that the RAPTOR predictions are reliable for a variety of plasma conditions. For this purpose the
estimation of the model parameters was done for a dataset containing five different TCV plasma
conditions. Model parameters were found for which the maximum relative error of the predicted
Te and ι profiles were below 20 %.
With these model parameters RAPTOR can be used to within an accuracy of 20 % to enhance
the TCV closed-loop and open-loop control schemes that make use of the RAPTOR predictions.
For better accuracy, extensive runs of the proposed method should be run on many different shots,
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such that classes of shots with similar physics properties - and hence model parameters - can be
identified and subsequently modeled more accurately with RAPTOR.
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Chapter 6

Conclusions

RAPTOR can be used in open-loop and closed-loop control schemes. These control schemes can
be used to tailor the q-profile to a desired operation regime. A strong degree of control over this
q profile makes the operation of a tokamak more stable (avoidance of plasma instabilities) and
efficient (optimal q profile). The performance of the open-loop and closed-loop control system
strongly depends on the quality of the RAPTOR predictions.
In this thesis a fast Neutral Beam Injection (NBI) module was developed for RAPTOR. This
allows RAPTOR to simulate a multitude of tokamaks including ITER. Benchmarks of this fast
NBI module for an ITER-like scenario showed good agreement with large scale NBI codes, while
running significantly faster. The more extensive conclusions about this part can be found in
Section 3.5.
During this research, the RAPTOR predictions were improved by the extension of the transport
model and a newly developed model-parameter estimation routine. This resulted in a better
description of the physics and allows for a less ad-hoc and more automated method to implement
RAPTOR on a variety of tokamaks.
The model-parameter estimation routine was developed to estimate RAPTOR’s model parameters
in a systematic way. The model parameters of RAPTOR were estimated for the TCV tokamak.
Model parameters were found for which the maximum relative error of the predicted Te and ι
profiles were below 20 % for each specific shot. The estimated model parameters of RAPTOR
can be used to enhance the TCV closed-loop and open-loop control schemes that make use of the
RAPTOR predictions. The more extensive conclusions about this second part of research can be
found in Section 5.7.
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Chapter 7

Recommendations for further
research

Based on the results and considerations in this thesis, the following list of actions are suggested
for future work:

Recommendations for further research for the neutral beam module:

• The developed NBI module can only smooth one peak occurring in the calculated electron
heating profile. In the future, the option to smear out several peaks should be added;

• More research is needed to investigate the effect of Zeff on the NBI results of the code. A
benchmark in this thesis showed that for a high number of Zeff , the NBI module overesti-
mates the neutral beam current drive;

• The developed NBI code was benchmarked for an ITER-like scenario. More benchmarks for
different tokamaks and plasma scenarios should be performed to increase confidence in the
developed NBI module.

Recommendations for further research for the developed model-parameter estimation routine:

• The model-parameter estimation routine should be run for a multitude of initial guesses
of the model parameters. The nonlinear parameter estimation problem has multiple local
minima. By using a shooting method the global minimum could be identified;

• The RAPTOR predictions could be improved by using electron heat diffusivity models χe
which capture more physics. In the following papers [28], [29] and [30], models for χe
are presented which are verified with experiments. These χe models are relative simple
and hence suitable candidates for the fast RAPTOR code. A beneficial feature of the χe
models mentioned in the papers could be that its model parameters can be estimated more
independently compared to the currently used model of χe in RAPTOR. The identifiability of
the parameters in the proposed χe models should be investigated with the methods discussed
in this thesis;

• More shots should be investigated for the TCV tokamak to give reliable model parameters
estimates. The shots should contain advanced scenarios in order to estimate the model
parameters aic, wic, dic;

• Instead of using simulation data from more complete codes, the developed method could
also use direct profile measurements (Te, Upl and ι) to optimize the model parameters.
More research should be conducted to investigate the performance of the model-parameter
estimation routine in case real profile measurements are used.
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Appendix A

Neutral beam code

A.1 Model of the beamline geometry

Figure A.1 shows a sketch of a tokamak. The machine coordinate system has its origin at the center
of the tokamak. In this appendix a parametrization of the beamline in the machine coordinate
system is calculated. This parametrization will be used in combination with an equilibrium to
calculate the fluxcoordinate ρ at each point on the beamline. RAPTOR calculates the electron
density and temperature profile as function of ρ. Knowing the fluxcoordinate ρ at each point on
the beamline thus gives information about the electron temperature and density profile along the
beamline. With this information the beam attenuation along the beamline can be calculated and
hence the neutral beam power deposition profile.

x
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z

x
y

z

S

Q

Figure A.1: Sketch of a tokamak and the neu-
tral beam line (red). At the source of the neutral
beam S a coordinate system is defined which co-
incides with the machine coordinate system.

x

z

y

Q

S

φ

θ

Figure A.2: Zoom of the source of the neutral
beam. When the machine coordinates of point
S, the horizontal angle φ and vertical angle θ are
known, the equation of the beamline in the ma-
chine coordinate system can be calculated.

Equation of the beamline in the machine coordinate system

Figure A.2 depicts the beamline and its source S. The coordinate system in this figure coincides
with the machine coordinate system. The parametrization of the beamline in the machine coordi-
nate system can be calculated, when the coordinates of the source of the neutral beam are known
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in the machine coordinate system together with the horizontal angle φ and vertical angle θ . Point
Q on the beamline (see Figure A.1) is

−→
Q =

−→
SQ+

−→
S

From Figure A.2 the equation of
−→
SQ is obtained

−→
SQ = cos(θ) sin(φ)|−→SQ|~x− cos(θ) cos(φ)|−→SQ|~y − sin(θ)|−→SQ|~z

The parametrization of point Q on the beamline in the machine coordinate system becomes

−→
Q =

(
Sx + cos(θ) sin(φ)|−→SQ|

)
~x+

(
Sy − cos(θ) cos(φ)|−→SQ|

)
~y +

(
Sz − sin(θ)|−→SQ|

)
~z

The machine coordinate system can be transformed from cartesian to cylindrical. The R,Z coor-
dinates of point Q in this coordinate system are

RQ =

√(
Sx + cos(θ) sin(φ)|−→SQ|

)2

+
(
Sy − cos(θ) cos(φ)|−→SQ|

)2

(A.1)

ZQ = Sz − sin(θ)|−→SQ| (A.2)

A.2 Algorithm to calculate NBCD and NBEH

The algorithm used to calculate the neutral beam current drive and electron heating is described
below.
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Algorithm 1 A global description of the algorithm to calculate the neutral beam current drive
(NBCD) and electron heating (NBEH).

for Start up of the beam module calculate once only do
STEP 1
Use Equation A.1 and A.2 to calculate (R,Z) coordinates of points on the beamline
STEP 2
Load in the (ρ,V) profile from RAPTOR to calculate dρ

dV at gridpoints.
STEP 3
Load in the equilibrium (R,Z,ρ) used in RAPTOR.
for R < Rplasma do

Map (R,Z) coordinates on the beamline to ρ coordinates using the equilibrium and inter-
polation.

end for
Final result: the evolution of ρ on the beamline is known. This (s,ρ) profile is used to compute
ds
dρ
STEP 4
Load in the grid of ρ values which is used in RAPTOR. At these gridpoints the NBCD and
NBEH need to be calculated.
for i < length(grid) do

Calculate how many times the beamline crosses the specific ρ coordinate.
end for
The final result of STEP 4 is that the number of intersections of the beamline with a specific
fluxcoordinate is known.

end for

for each time step t do
STEP 5
RAPTOR gives the Te(t) and ne(t) profiles versus the ρ values of the grid. Because STEP 3
gives the evolution of the ρ coordinates along the beamline, the evolution of Te and ne along
the beamline in function of s is known at each time step. This together with the ds

dρ and dρ
dV

profiles and the information on how many times the beamline crosses a certain fluxcoordinate
is used to calculate:
⇒ The neutral beam power deposition per volume (Equation 3.5) versus s. The information
in STEP 1 to STEP 5 is used to map the neutral beam power deposition per volume to ρ
space.
⇒ The neutral beam electron heating per volume (Equation 3.7). The information in STEP
1 to STEP 5 is used to map the neutral beam electron heating per volume to ρ space.
⇒ The neutral beam current drive per volume (Equation 3.10). The information in STEP 1
to STEP 5 is used to map the neutral beam current drive per volume to ρ space.

end for
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A.3 Calculation Sensitivities

Neutral Beam focussing

The divergence of the neutral beam is governed by its perveance number. The perveance number
is determined by the beam current and energy. During neutral beam operation the perveance is
held constant by the operator, making the beam current and energy coupled and hence the beam
power and energy. The perveance is defined as:

Perv =
I

E3/2

The relation between the beam energy E and beam power Pa becomes:

Pa = EI = E Perv E3/2 = Perv E5/2

Neutral Beam Electron Heating

• dPNBI,e
dPfrac,1

=
ds

dρ

dρ

dV
Pane(s)φe(x(E, s))σ(E,Zeff )e−

∫ s
s=a

ne(s)σ(E,Zeff ) ds

• dPNBI,e
dPfrac,2

=
ds

dρ

dρ

dV
Pane(s)φe(x(E/2, s))σ(E/2, Zeff )e−

∫ s
s=a

ne(s)σ(E/2,Zeff ) ds

• dPNBI,e
dPfrac,3

=
ds

dρ

dρ

dV
Pane(s)φe(x(E/3, s))σ(E/3, Zeff )e−

∫ s
s=a

ne(s)σ(E/3,Zeff ) ds

• dPNBI,e
dZeff

=
ds

dρ

dρ

dV
Pane(s)

3∑
i=1

φe(x(E/i, s))Pfrac,i
dσ(E/i, Zeff )

dZeff
∗ ...

e−
∫ s
s=a

ne(s)σ(E/i,Zeff ) ds
[
1−

∫ s

s=a

ne(s)σ(E/i, Zeff ) ds
]

, with

dσ(E/i, Zeff )

dZeff
=
eS1(E/i,ne,Te)

E/i
Sz(E/i, ne, Te)10−20

• dPNBI,e
dTe

=
dφe
dx

dx

dTe
Pdep =(

x−2φe − x−1
[1

2

−x−1/2 + 1

(1− x1/2 + x)(1 + x1/2)
+

6x−1/2

9 + (2x1/2 − 1)2

])(
− εboε−2

c

(3
√
π

4

)2/3(mi

me

)1/3mb

mi

)
Pdep

• dPNBI,e
dE

=
PNBI,e
Pa

dPa
dE

+
ds

dρ

dρ

dV
Pane(s)

( 3∑
i=1

dφe,i
dE

Pfrac,iσie
−

∫ s
s=a

ne(s)σi ds + ...

3∑
i=1

φe,iPfrac,i
dσi
dE

e−
∫ s
s=a

ne(s)σi ds
[
1−

∫ s

s=a

ne(s)σi ds
])

, with

dφe,i
dE

=
dφe,i
dx

dx

dE
=

dφe,i
dx

e

Ec
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dσi
dE

= − σi
Ei

+
dS1

dEi
σi +mu10−17 e

S1

Ei
(Zeff − 1)

dSz
dEi

dPa
dE

= Perv
5

2
E3/2

• dPNBI,e
dPa

=
dPNBI,e

dE

dE

dPa

, with

dE

dPa
= (Perv

5

2
E3/2)−1

Neutral Beam Current Drive

• dJNB
dE

=
[
1− Zb

Zeff
[1−G(Zeff , ε)]

] 3∑
i=1

dJfi(ρ)

dE

, with

dJfi(ρ)

dE
= eZbτsξb

(
vb,iIi

dSi
dE

+ SiIi
dvb,i
dE

+ Sivb,i
dIi
dE

)
, in which

dIi
dE

=
dIi
dyc

dyc
dvb

dvb
dE

dvb
dE

=
e

mb,1vb

dyc
dvb

= −yc
vb

• dJNB
dPa

=
dJNB

dE

dE

dPa

• dJNB
dPfrac,1

=
[
1− Zb

Zeff
[1−G(Zeff , ε)]

] Jf1

Pfrac,1

• dJNB
dPfrac,2

=
[
1− Zb

Zeff
[1−G(Zeff , ε)]

] Jf1

Pfrac,2

• dJNB
dPfrac,3

=
[
1− Zb

Zeff
[1−G(Zeff , ε)]

] Jf1

Pfrac,3

• dJNB
dTe

=
[
1− Zb

Zeff
[1−G(Zeff , ε)]

] 3∑
i=1

dJfi(ρ)

dTe
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, with

dJfi(ρ)

dTe
= eZbτsξbSivbi

( dIi
dTe

+
3Ii
2Te

)
, in which

dIi
dTe

=
dIi
dyc

dyc
dvc

dvc
dEc

dyc
dvc

=
1

vb

dvc
dEc

=

√
e

2mbEc

dEc
dTe

=
(3
√
π

4

)2/3(mi

me

)1/3mb

mi

• dJNB
dZeff

=
(
ZbZ

−2
eff [1−G] + Zb(−0.85Z−3

eff

√
ε+ 1.55Z−3

eff ε)
) 3∑
i=1

Jfi(ρ) + ...

(
1− ZbZ−1

eff [1−G]
)d
∑3
i=1 Jfi(ρ)

dZeff

A.4 Implementation of the beam code in RAPTOR

Verification of the implementation of the beam code in RAPTOR

The beam code presented in this thesis, was first developed as a stand alone version. In this
appendix the results of the benchmark of this stand-alone version with the beam code implemented
in RAPTOR are presented.
For this benchmark the same ρ grid, temperature and density profiles were used in both codes as
well as the same plasma 2D equilibrium. Attention was paid to use the same plasma parameters
and beam parameters in both versions of the code. In Figures A.3 and A.4 the neutral beam
electron heating profile and neutral beam current drive profile are shown respectively. The stand-
alone version of the beam code yield the same results as the implemented beam code in RAPTOR,
which demonstrates the correct implementation in RAPTOR.

Verification of the analytic expressions of the sensitivities

In Appendix A.3 the analytical expressions of the sensitivity of the neutral beam electron heating
and current drive profile to changes in electron temperature, beam power, electron density,...
are derived. The beam code implemented in RAPTOR was used to check these expressions. In
this section the sensitivity of the neutral beam electron heating and current drive profile to a
perturbation of the electron temperature profile and beam power Pa at the plasma edge was
checked. The following two expressions should converge for an infinitesimal change of for instance
the temperature profile:

δPNBI,e = PNBI,e(Te + δTe)− PNBI,e(Te) (A.3)

δPNBI,e =
dPNBI,e

dTe
δTe (A.4)
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Figure A.3: The beam power to the electrons ver-
sus ρ calculated by the stand-alone version and
the version implemented in RAPTOR.
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Figure A.4: The neutral beam current drive ver-
sus ρ calculated by the stand-alone version and
the version implemented in RAPTOR.

The first expression is obtained from subtracting the results of two RAPTOR simulations, the
second expression is based on the analytical expression derived in Appendix A.3.
The sensitivity of the neutral beam electron heating and current drive profile to an infinitesimal
change in the temperature profile and power at the plasma edge are checked in the figures below.
The difference between the numerical (Equation A.3) and analytical (Equation A.4) obtained
δPNBI,e and δJNB are shown. From these figures it becomes clear that both approaches converge
if the perturbation becomes smaller.
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Figure A.5: The difference between δPNBI,e ob-
tained from two simulations (Equation A.3) and
the analytical approach (Equation A.4). When
the perturbation δTe becomes smaller the two
methods converge.
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Figure A.6: The difference between δJNB ob-
tained from two simulations and the analytical
approach. When the perturbation δTe becomes
smaller the two methods converge.
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Figure A.7: The difference between δPNBI,e ob-
tained from two simulations (Equation A.3) and
the analytical approach (Equation A.4). When
the perturbation δPa becomes smaller the two
methods converge.
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Figure A.8: The difference between δJNB ob-
tained from two simulations and the analytical
approach. When the perturbation δPa becomes
smaller the two methods converge.

A.5 Explanation of the origin of singularities in the devel-
oped NBI code

y

x

s

ρ
0

ρ

Figure A.9: Poloidal cross-section for a plasma equilibrium.

In Figure A.9 the poloidal cross-section of a typical plasma equilibrium is given together with a
neutral beam line path (red line). In this appendix the origin of the singularities that arise in the
developed NBI code are explained. Formula 3.5 is used in the NBI code to calculate the neutral

beam power deposition per unit volume in the plasma. The first term in this equation dPbeam(s)
ds

contains no singularities, because it is a continuous function (See Equation 3.4). The cause of the
singularities must therefore lie in the calculations of ds

dρ and dρ
dV . Let’s address the two functions

in the remainder of this section. The volume enclosed by a flux surface can be approximated by

V ≈ 2π2R0ρ
2
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From this equation it follows that

dρ

dV
=

1

4π2R0ρ

At the magnetic axis, where ρ = 0 a singularity occurs because the volume enclosed by a flux
surface goes to zero. This is not the only type of singularity that can occur. The coordinate along
the beamline s can be written as

s =
√
ρ2 − ρ2

0

The term ds
dρ becomes

ds

dρ
=

2ρ

2
√
ρ2 − ρ2

0

This gives rise to a singularity at ρ = ρ0.

A.6 Additional benchmarks results of the developed NBI
code

For the benchmarks shown in this section the same settings as for the benchmark presented in
Chapter 3.5 were used as starting point. In each benchmark one profile was changed (ne, Te or
Zeff ) each time. The last benchmarks shown in this section uses three different profiles of ne, Te
or Zeff at once.

Benchmark 1: ne variation
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Figure A.10: The profiles of the electron temperature, density and Zeff .
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Figure A.11: The beam power to the electrons
versus ρ calculated by the developed model and
NEMO/SPOT (NBI module in the CRONOS
code).
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Figure A.12: The neutral beam current drive
versus ρ calculated by the developed model and
NEMO/SPOT (NBI module in the CRONOS
code).

Benchmark 2: Te variation
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Figure A.13: The profiles of the electron temperature, density and Zeff .
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Figure A.14: The beam power to the electrons
versus ρ calculated by the developed model and
NEMO/SPOT (NBI module in the CRONOS
code).
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Figure A.15: The neutral beam current drive
versus ρ calculated by the developed model and
NEMO/SPOT (NBI module in the CRONOS
code).

Benchmark 3: Zeff variation
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Figure A.16: The profiles of the electron temperature, density and Zeff .
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Figure A.17: The beam power to the electrons
versus ρ calculated by the developed model and
NEMO/SPOT (NBI module in the CRONOS
code).
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Figure A.18: The neutral beam current drive
versus ρ calculated by the developed model and
NEMO/SPOT (NBI module in the CRONOS
code).

Benchmark 4: ne, Te and Zeff variation
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Figure A.19: The profiles of the electron temperature, density and Zeff .
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Figure A.20: The beam power to the electrons
versus ρ calculated by the developed model and
NEMO/SPOT (NBI module in the CRONOS
code).
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Figure A.21: The neutral beam current drive
versus ρ calculated by the developed model and
NEMO/SPOT (NBI module in the CRONOS
code).
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Appendix B

Model parameter optimization

B.1 Derivatives of χe and σ to its model parameters

∂χe
∂χneo

= 1

∂χe
∂cano

= ρqF (s)
(Te0 [eV ]

1000

)cTe

∂χe
∂χcentral

= eρ
2/δ20 ,

∂χe
∂cχsaw

= G(q)

∂χe
∂cTe

= canoρqF (s)
(Te0 [eV ]

1000

)cTe

ln
Te0 [eV ]

1000

∂χe
∂δ0

= 2ρ2δ−3
0 χcentrale

ρ2/δ20

∂χe
∂wχsaw

= cχsaw
∂G(q)

∂wχsaw

∂χe
∂aic

= canoρq
∂F (s)

∂aic

(Te0 [eV ]

1000

)cTe

∂χe
∂wic

= canoρq
∂F (s)

∂wic

(Te0 [eV ]

1000

)cTe

∂χe
∂dic

= canoρq
∂F (s)

∂dic

(Te0 [eV ]

1000

)cTe
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B.2 Magnetic shear of TCV shots

In the figures below, the minimum magnetic shear s in the ρ interval from 0.05 to 1 is plotted versus
the time evolution of the shot. These plots make clear that the shots don’t represent advanced
scenarios characterized by reverse shear. (Low (s ≤ 0.01) or negative magnetic shear)
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Figure B.1: Minimum magnetic shear s versus
time for the ECCD/ECCH shot 46712.
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Figure B.2: Minimum magnetic shear s versus
time for the ECCD/ECCH shot 46715.
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Figure B.3: Minimum magnetic shear s versus
time for the shot with constant ECH.
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Figure B.4: Minimum magnetic shear s versus
time for the shot with ECH varying power.
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Figure B.5: Magnetic shear s versus time for the Ohmic shot.
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