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Abstract

The force coefficients of the hand (and forearm) of a human swimmer have been deter-
mined in several experimental studies and direct numerical simulations (DNS) before.
In the present study the flow around a swimmer’s hand and forearm is simulated at dif-
ferent velocities and angles of attack using an immersed boundary code. The force co-
efficients were calculated and compared with previous studies. Before undertaking the
study of the swimmer’s hand, simulations of the flow around a sphere were performed
to validate the code. The drag coefficient fitted the expected curve quite well, except for
data around the critical Reynolds number where the boundary layer should have become
turbulent. Also the distinct flow regimes in the wake of the sphere were consistent with
results of previous studies. Furthermore, the additional force on an accelerating sphere
seems to agree quite well with the added mass theory. It can be concluded from the
study of the hand that under steady flow conditions the drag- and lift coefficients were
constant throughout the range of swimming speeds tested, which is consistent with pre-
vious research. The drag force for the particular hand model in this study peaked at
an angle of attack of θ = 0◦, which corresponds with the orientation of the hand palm
exactly facing the flow. Throughout the whole range of angles tested, the drag force
was by far dominant. The trend of both the drag- and lift coefficients as a function of
angle of attack was consistent with the expectations. The resultant force of drag and lift
(a vector addition) peaked at an angle of attack of α = 0◦. It was found that pulling the
arms ∼ 3◦ diagonally backward, with an angle of attack of 0◦ could gain 0.08N more
propulsive force (propulsive force 54.76N). This is not a significant result. For a hand
under accelerating conditions it was found that the added mass was approximately∼ 7

10
of the total mass of the hand.
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Introduction

Swimming is one of the major athletic sports and many efforts are being made to set new
records. Swimming is a special sport, since the medium from which a swimmer can get
its propulsion is also the medium which accounts for a fair amount of resistance. To
succeed in swimming faster, thrust should be increased even further and the resistance
should be decreased. It is not just about having the biggest muscular power, it is about
applying the largest propulsive force to the water and having the smallest drag forces.
This kind of studies concern minor improvements, which make the difference between
a golden or silver medal on the Olympics or no medal at all.

The explanation of swimming requires the measurement of the fluid forces acting on
the body of the swimmer. Especially the body parts responsible for the propulsion or
body parts causing the largest resistance will be of interest. Research on swimmers
is often difficult since they are constantly moving and rolling in all directions. And
especially the measurement of the forces, power and pressure distributions are difficult
due to restrictions of existing measurement devices. Nowadays, an increased number
of studies is done numerically as an alternative to complex and costly experiments.
Simulations of the flow around a human swimmer also pose numerical challenges, in
particular because of the complex body shapes and movements.

This study is part of a swim project started by the Turbulence and Vortex Dynamics
group (department of Applied Physics from the University of Technology in Eindhoven)
in collaboration with InnoSportLab. InnoSportLab is located at the national training
center for swimming in Eindhoven, where professional swimmers and a new genera-
tion of future elite swimmers train to improve their performances. At InnoSportLab
research is performed on professional swimmers. With this swim project the human
swimmer will be studied from a more physical point of view to gain more fundamental
insight. Hopefully this leads to better understanding of the propulsive and drag forces
of a swimmer in the end.

Swimming propulsion is a phenomenon not fully understood. The hand and fore-
arm mainly provide drag-based propulsion, but for decades the discussion is going
on whether lift-based propulsion must be included in the arm stroke to obtain optimal
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Introduction

propulsion. Several studies, both experimental and numerical, have been done to under-
stand the hydrodynamics of the swimmer’s hand (+ forearm) and hence elucidate the
optimal way to propel. A selection of some studies is briefly mentioned below. Exper-
imental results in a towing tank on the hydrodynamic drag and lift forces as a function
of angle of attack and sweep back angle of a human hand/arm models were obtained by
Berger et al. [1]. Numerical studies on the drag- and lift forces on a swimmer’s hand/arm
as a function of angle of attack have previously been performed by Bixler et al. [2] and
Sato et al. [3]. Bixler performed simulations on a 3D hand and forearm. Sato performed
a series of simulations at a range of angles of attack, did a number of simulations on the
drag coefficient of the swimmer’s hand under accelerating conditions and furthermore
simulated a complete crawl stroke of the hand. Rouboa et al. [4] concentrated on the
effect of acceleration on propulsive forces by doing simulations on different 2D hand
models. It was reported that under accelerating flow conditions the propulsive force
was approximately 22.5% higher. Steady state results by Rouboa in the same study
were consistent with previous experimental studies. Other studies on the effect of finger
spreading on swimming propulsion are performed numerically by Marinho et al. [5] and
Minetti et al. [6]. An experimental study was performed by Sidelnik and Young [7]. It
can be concluded from all these studies that a small finger spread (10◦− 12◦) creates
significantly more propulsion. In addition, Marinho et al. [8] performed a numerical
study on the effect of the thumb position on swimming propulsion. Adduction or either
abduction influences the drag- and lift forces differently at different angles of attack.

The aim of the present project is to carry out three-dimensional simulations on the hand
plus forearm of a human swimmer using an Immersed Boundary Method (IBM). An
advantage of an immersed boundary method is that grid generation is much easier, be-
cause the body does not necessarily have to conform a Cartesian grid. Also, an im-
mersed boundary method can handle moving boundaries more easily. As a result, the
immersed boundary method uses less memory and CPU compared to simulations us-
ing a body fitted grid. Since the body of a swimmer is very complex (and moving) the
immersed boundary method should be an appropriate choice for this project. A disad-
vantage is that imposing of the boundary conditions is not straightforward compared to
the conventional methods. The immersed boundary code used in this study was made
available by Prof. R. Verzicco from the University of Rome ‘Tor Vergata’ and Dr. M.D.
de Tullio from the University of Bari. With a similar code Verzicco and Tullio achieved
good results in a research about heart valves [9]. The simulations were performed with
an axisymmetric code. This code was converted to a Cartesian version later on, which
is used in this study. Another major difference is the active fluid-structure interaction,
which was added in the code at that time.

To validate the code first a series of simulations at a broad range of Reynolds numbers
(Re = ρUD/µ) will be performed for the flow around a sphere. The drag coefficient is
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Introduction

calculated. The drag coefficient of a sphere is well documented and therefore a good
reference object. This is also a test case to validate in which range of Reynolds numbers
the DNS solver or either the Large Eddy Simulator (LES) of the code can be used.
Furthermore it will be briefly examined whether flow regimes in the wake of the sphere
can be distinguished as in previous studies.

After the simulations with a sphere the flow around a rigid hand and forearm will
be simulated, the force coefficients are calculated and compared with previous research.
The drag- and lift coefficient as function of velocity (Reynolds number) and angle of
attack under steady flow conditions will be studied. An attempt is made to study the
effects of accelerating conditions on the drag- and lift coefficient. In addition, in view
of experimental purposes, it is attempted to calculate the total force acting on the hand
from the surrounding flow using an alternative form of conservation of momentum,
where the pressure terms are eliminated.

After this introduction some theoretical concepts relevant for this study will be reviewed
in Chapter 1. Governing equations, some basic theory about propulsion and drag in
swimming and the flow past a sphere and cylinder will be cited. In chapter 2 the
most important numerical methodologies regarding this immersed boundary code are
explained, followed by the general approach and numerical set-up in chapter 3. Chapter
4 is concerned with the results and discussions of this study. In the end, this study is
concluded and summarized in chapter 4.4, where also a brief outlook to possible future
studies is made.
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Chapter 1

Theory

This chapter presents some theoretical concepts that are relevant for the present study.
In the first section some of the governing equations derived from fluid dynamics will
be presented, starting from the Navier-Stokes equations and ending with an alternative
way to formulate conservation of momentum. Some basic theory about propulsion and
resistance in swimming will be reviewed in the second section, and reference is made to
some previous research in swimming. In the subsequent sections the flow past a cylinder
and sphere will be discussed, including the concepts of added mass.

1.1 Governing equations
Within the numerical scheme of the simulation, the incompressible Navier-Stokes equa-
tions and continuity equation will be solved. Assuming that the density ρ is constant as
in the case of an incompressible flow, the (mass) continuity equation reads:

∇ ·v = 0, (1.1)

where v is the velocity vector field. This equations expresses that the divergence of the
velocity field is zero everywhere, implying that the local volume dilation rate is zero.
Conservation of momentum states:

∂v
∂ t

+(v ·∇)v = g+
1
ρ

∇ · ¯̄σ , (1.2)

where g the gravitational acceleration. For a Newtonian flow ¯̄σ = −pI+ ¯̄τ , where I is
the identity matrix. The shear stress tensor ¯̄τ = 2µ ¯̄D, with D the strain rate tensor and
µ the dynamic viscosity. Combining these relation with eq.(1.2) results in the Navier-
Stokes equation:

∂v
∂ t

+(v ·∇)v =− 1
ρ

∇p+g+ν∇
2v, (1.3)
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1.1 Governing equations 1. Theory

where p is the pressure and ν the kinematic viscosity. The physical meaning of each
term (from left to right) is as follows: unsteady acceleration, convective acceleration,
pressure gradient, gravitational forces and viscous forces [10].

By adopting a typical length scale (L), a typical velocity (U) and a convective time scale
(T ) the Navier-Stokes equation can be written in non-dimensional form:

Sr
∂v
∂ t

+(v ·∇)v =−∇p+
1

Fr
g+

1
Re

∇
2v, (1.4)

where Re is the Reynolds number, Sr is the Strouhal number, Fr is the Froude num-
ber (not taken into account in this study) and all other variables have to be considered
dimensionless now. The Reynolds number is defined as

Re = ρ
UL
µ

. (1.5)

For large values of the Reynolds numbers the inertia forces are dominating the flow, for
small Re values the viscous forces dominate.

In case of a sphere the typical length scale will be the diameter of the sphere. Due to
the complexity of the shape of the human body and moving body parts with different
relative speeds, it is less trivial to assign a certain length scale to a swimmer. Or as
will be studied in this project, the hand of a swimmer. In this study the typical length
scale of the hand and forearm is chosen to be the width of the frontal surface. That
is approximately the distance from thumb side to little finger side. Since the density,
viscosity and length scale in the picture of a swimmer in water (and simulations) are
constant, the Reynolds number in this study is just measure of the typical velocity.
The Strouhal number defined as

Sr =
f L
U

=
L

TU
, (1.6)

where f is a frequency. When Strouhal is of the order 1, viscosity is dominating the
flow and results in a collective oscillating movement of the fluid. At Strouhal numbers
in between, the oscillation is characterized by a buildup of vortices and rapidly followed
by vortex shedding. Generally the Strouhal number is relevant in problems of oscillating
fluid mechanics, where f is a measure of the vortex shedding. In studies of a human
swimmer, the Strouhal number is often used as a measure of the stroke frequency as
well.

Taking the divergence of the Navier-Stokes equations while considering the continuity
equation, will finally result in the following Poisson equation for the pressure:

∇
2 p = ∇ · ( 1

Re
∇

2v−v ·∇v) (1.7)
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1. Theory 1.1 Governing equations

This equation presents an explicit form of the pressure, instead of an implicit notation
like in the Navier-Stokes equation. This equation is again written in a non-dimensionalized
notation.

In integral formulation the momentum conservation equation is given by:

∂

∂ t

∫ ∫ ∫
V

ρvdV +
∫ ∫

S
ρv(v ·n)dS =−

∫ ∫
S

pndS+
∫ ∫

S
¯̄τ ·ndS+F, (1.8)

where n is the normal vector of a control volume V enclosed by surface S and F rep-
resents additional forces exerted by a body in the domain. [11] [10] With this integral
momentum equation it is possible to calculate the total forces on a body within the
control volume V by using the velocity and pressure data of the surrounding fluid. Fol-
lowing eq.(1.8) it is tried to evaluate a method to calculate the forces on the hand of a
swimmer. In the numerical scheme of the simulations the forces on a body are calcu-
lated in a different way using the stress and pressure data at the surface of the body. The
total pressure force Fp on a surface S bounded by a closed curve is determined by:

Fp =−
∫ ∫

S
∆pndS. (1.9)

The total viscous force Fv on the surface of the immersed body is given by:

Fv =
∫ ∫

S
¯̄τ ·ndS, (1.10)

A sum of these two forces gives the total force experienced by the immersed body.

Taking into consideration experimental studies, it is impossible, unlike simulations, to
obtain a complete data set of the pressure everywhere in the flow domain and on the
surface of the immersed body. It is not convenient to calculate the forces on the im-
mersed body out of the surrounding fluid using a conventional method of momentum
conservation with the pressure term present. Graziani et al. [12] developed a method to
determine the forces considering the surrounding flow using momentum conservation
without using a pressure term. Below most important steps in the derivation will be
discussed.

Assume that the flow is irrotational, parallel far from the body and the body surface
is impermeable. The force exerted on the body is obtained from the incompressible
Navier-Stokes equations:

F =− d
dt

∫
V (t)

vdV −
∫

S(t)
n · (v−U)vdS+

∫
S(t)

(−pn+2µn ·E)dS, (1.11)

where V (t) is an arbitrary, time-dependent, body-fixed control volume, bounded exter-
nally by a smooth compact connected surface S(t) (internally by the surface ∂B(t)),
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1.2 Propulsion and drag in swimming 1. Theory

n is the normal vector oriented outwards on S(t), U(t) the body rigid motion and
E := 1

2(∇v+∇vT ) is a symmetric tensor with components Ei j. Roughly speaking, the
pressure is eliminated and the expression for the force is written in terms of vorticity
moments using several vector relations. To eliminate the pressure in the expression for
F, first the momentum of the fluid within V (t) is written in terms of the vorticity. Finally
the pressure cancels out by the definition of the Bernoulli function h := p+ 1

2 |v|
2 and

the following expression for the force remains:

F =− 1
N−1

d
dt

[∫
V (t)

x×ωdV +
∫

∂B(t)
x× (n×v)dS

]
+
∫

S(t)
n ·GdS, (1.12)

where x is the position vector and G is a tensor defined as

G := 2µE−vv+
1
2
|v|2 I

+
1

N−1
[x×vω− (v−U)x×ω−µ(x ·∇×ωI−x∇×ω)] .

If there is no × or · present, a dyadic vector product is considered [12].

1.2 Propulsion and drag in swimming
The propulsion in swimming is obtained from the arms (hand and forearm) and the legs,
to which extent depends on the kind of crawl. A combination of curvilinear movements

Thrust

Buoyancy

Gravity

Drag

Figure 1.1: The force balance on a swimmer. Gravity and buoyancy work in the vertical
plane, drag and thrust work in the horizontal plane.

(up-down, left-right and backward) causes the forward motion of the body. In figure 1.1

8



1. Theory 1.2 Propulsion and drag in swimming

the force balance on a swimmer is shown. In the vertical plane gravity and buoyancy
work in downward and upward direction, respectively. The weight of the swimmer is
offset by the buoyancy. Since the natural ability to float differs per person, possibly
an additional force is needed to overcome the net weight. This is accomplished by the
arm strokes and kicks, by pressing down on the water. Generally speaking the drag and
thrust of a swimmer work in opposite direction in the horizontal plane. When the thrust
of the swimmer is greater than the drag, the swimmer will accelerate. When the drag
is larger than propulsive forces the swimmer will decelerate. When the thrust and drag
are equal, the swimmer will move with a constant velocity. The term drag might be a
bit confusing. In the discussion above, drag referred to be resistance induced by the
ambient water (and air), the force that is decelerating. But the term drag may also be
used in relation to propulsion: drag is then needed to propel.

1.2.1 Drag
Drag force is always exerted in a direction opposite to the direction of motion. The drag
on a body can be divided into three major components, the pressure drag (form drag),
viscous drag (skin friction) and wave resistance (just near the air-water interface). Minor
drag effects can occur from lift-induced drag. However, the lift-induced drag is so small
compared to the lift force generated, that no further explanation and reference will be
made. The general expression in hydrodynamics for the drag force is given by:

Fd =
1
2

ρU2CdA, (1.13)

where ρ is the fluid density, U is the relative velocity with respect to the fluid and A the
frontal surface. Cd is the drag coefficient which depends on the body shape (and on the
Reynolds number). The drag coefficient can roughly be divided into a part derived from
the pressure drag Cd,p and a part originating from the viscous drag Cd,v, hence

Cd =Cd,p +Cd,v. (1.14)

Figure 1.2 shows the ratio between pressure and viscous drag on several basic objects
in a uniform flow. It should be mentioned that these flow configurations depend on the
Reynolds number. If Re� 1 all forces are viscous forces. The pressure drag arises
because of the form of the body. The larger the frontal surface pushing against the
water (in the direction opposite of forward motion) and the larger the flow separation1

that occurs behind the body, the higher the pressure drag will be. [13] The pressure
drag follows the drag equation, meaning that it increases with the square of speed, and

1The flow becomes detached from the surface of the body, because the boundary layer travels far
enough against an adverse pressure gradient that the speed of the boundary layer relative to the object
falls almost to zero. The separated flow is characterized by eddies and vortices.
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1.2 Propulsion and drag in swimming 1. Theory

Figure 1.2: Percentages of pressure drag and viscous drag on several objects exposed to
an uniform flow. Actually these flow configurations depend on the Reynolds number.

thus becomes more important for higher velocities. The viscous drag arises from the
interaction of the flow (in the boundary layer) and the ”skin” of the body. The viscous
drag is directly related to the surface of the body that is in contact with the flow and also
increases with the velocity squared. Wave resistance just occurs on bodies moving in
the interface between two fluids with different densities and increases with increasing
velocities. Since the hand in the simulations in this study is totally embedded in the fluid,
the wave resistance must not be taken into account. However, in real life a swimmer will
undergo a fair amount of wave resistance. In order to reduce the drag, a swimmer must
streamline his body to reduce the amount of separation. As a result the viscous drag
increases, because more surface area is exposed to shear stresses of the flow. But since
the pressure drag is still dominant, the overall drag decreases. To reduce the viscous
drag2 (skin friction) as well, special suits were developed. Manufacturers of these suits
claim that almost all surface friction is reduced using specially treated fabrics and seams.
However, most of such high-tech suits are not allowed during competitions [14] [15].

2Generally the flow around a swimmer is already more or less turbulent. Turbulence increases the
surface friction.
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1. Theory 1.2 Propulsion and drag in swimming

1.2.2 Propulsion
The major principles responsible for propulsion in swimming are the lift force and New-
ton’s third law that states that for every action there is an equal opposite reaction. The
most obvious production of thrust comes from pushing back on the water like paddling
(Newton’s third law). Although drag can be the greatest downfall for a swimmer, it also
is the greatest ally. Without drag the action-reaction principle of propulsion would be
impossible.

Figure 1.3: The difference in pressure be-
tween the low-pressure and high-pressure
streams creates a lift force.

Swimmers also generate a lift type of
force, which is always exerted perpendic-
ular to the direction of motion. The lift
principle is based on the law of Bernoulli,
which states that for an inviscid flow an
increase in the velocity of a fluid oc-
curs simultaneously with a decrease in
the pressure or a decrease in the fluid’s
potential energy. A common form of
the Bernoulli equation, valid at any point
along a streamline is:

1
2

ρv2 +ρgh+ p =C, (1.15)

where ρ is the density of the fluid, v the velocity, g the acceleration due to gravity, h the
elevation of the point above a reference plane, p the pressure and C is constant along
one streamline. For example, when a stream of fluid passes around an airfoil/wing-
shaped body (fig. 1.3), the flow over the convex upper surface has a greater velocity
and, following Bernoulli, a lower pressure than the surface underneath. The difference
in pressure between the two streams creates a force called lift, perpendicular to the
direction of motion. That is the reason why planes can fly through the air. Like the drag
force, the lift force is proportional to the velocity squared. The general expression for
the lift force is similar to the expression of the drag force:

Fl =
1
2

ρU2ClAl, (1.16)

where Cl is the lift coefficient, which depends on the shape of the body, and Al is the
frontal surface. [4] [2]

That lift forces could be important in swimming propulsion is shown by developed
aquatic mammals like the dolphin (fig. 1.4(a)). Dolphins move their caudal fin up
and down, causing thrust in forward direction. Their caudal fin works as some kind of
oscillating hydrofoil, and lift is continuously produced during their strokes. Lift is the
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1.2 Propulsion and drag in swimming 1. Theory

dominant force and a combination of drag and lift provides constantly a very effective
propulsion throughout the stroke. However, a less developed aquatic animal, like the
muskrat (fig. 1.4(b)), has drag-based propulsion. The legs are paddling through the
water. The stroke is divided into two phases, a power phase and recovery phase. Drag-
based propulsion is just generated in the power phase. There are more situations to
think of, where lift-based propulsion is more effective than drag-based propulsion, like
sailing. [16]

(a)

(b)

Figure 1.4: (a) Lift-based propulsion by a dolphin. (b) Drag-based propulsion from a
muskrat. [16]

How to apply this to human swimming? The dolphin kick (fig. 1.5) in human swimming
turns out to be a very effective way to propel through the water, for the same reasons it
works for dolphins. Lift is dominating and the combination of drag and lift force results
in a resultant propulsive force. The main question is whether the propulsion by the
arm stroke in competitive swimming could be optimized by using lift-based propulsion
as well. To do so the hand probably should not always be pulled directly backward
in a straight line. Maybe a curvilinear path of the arm stroke could produce a fair
amount of forward lift at times. Or maybe the angle of attack of the hand relative to
the forward motion of the body should be constantly adjusted to achieve maximum
propulsion. [17] [15]

New views on swimming suggest that vortices shed in the wake of a swimmer can
also be used for extra effective propulsion. This idea is again copied from locomotion
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1. Theory 1.3 Flow past a cylinder

Figure 1.5: Drag and lift forces working on the legs during a kick at some stage.

observed from fishes. Vortices generated around the head, hand, arm, feet and legs of a
swimmer create extra resistance in the water. A shed vortex is a form of kinetic energy
that occurs during an increase in velocity or a dramatic change in direction. Actually
this is a loss of energy for the system so that translational velocity is reduced, especially
when the vortices are shed out of phase compared to the stroke of the swimmer. The
vortices created in the wake of a swimmer carry a fairly high momentum, which can
transfer a strong propulsive impulse for the body. It should be a strategy of the swimmer
to reuse the energy of these vortices through so-called ’vortex-recapturing’. A principle
some animals use in flying or swimming. A swimmer can possibly use the rotating
energy of the vortices created near flexing joints to enhance propulsion [14] [18] [13]
[19] [20].

1.3 Flow past a cylinder
Analytical solutions for the flow past a cylinder can be found for viscous flows (Re� 1),
when inertia forces are negligible. This situation does not apply to the present study,
however. Many experimental and numerical studies have been performed about the
flow past a cylinder, providing clear results of the drag coefficient (fig. 1.6) and the
wake configurations (fig. 1.7). At low Reynolds number (Re < 1) the drag is mainly
due to friction, with increasing Re the contribution of inertia forces is growing. At high
Reynolds number the skin friction is just a few percent of the total drag, as was shown in
figure 1.2. At the critical Reynolds number Re≈ 3×105 the drag coefficient decreases
sharply. First the laminar boundary layer separates at the front side of the cylinder. At
the critical Reynolds number the boundary layer becomes turbulent, this is associated
with a delayed separation.
Different flow configurations in the wake can be distinguished, depending on the Reynolds
number:

i (5 < Re), figure 1.7(a)

No separation occurs.
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Figure 1.6: The drag coefficient of a cylinder [10].

ii (5−15 < Re < 40), figure 1.7(b)

The flow separates and a symmetric pair of vortices is formed in the wake of
the cylinder. The size of the vortices increases linearly with increasing Reynolds
number.

iii (40 < Re < 150), figure 1.7(c)

The wake becomes unstable. First slow oscillations are visible in the wake, in-
creasing the Reynolds number even more and vortex shedding will be initiated.
The shed vortices form a laminar periodic wake of staggered vortices of opposite
sign, also called the von Karman vortex street.

iv (150 < Re < 3×105), figure 1.7(d)

First periodic irregular disturbances are found, the vortex street becomes gradu-
ally turbulent. The boundary layer is still laminar.

v (3×105 < Re < 3.5×106), figure 1.7(e)

The boundary layer becomes turbulent and the separation point is shifted to the
rear side of the cylinder again. Three-dimensional effects disrupt the shedding
process, the wake is disorganized.

vi (3.5×106 < Re), figure 1.7(f)

This is called the supercritical regime, a regular vortex street is reestablished with
a turbulent boundary layer at the surface.

[10] [21]
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Unseperated1streaming1flow

A1pair1of1vortices1fixed1in1the1
wake

A1laminar1vortex1street

The1boundary1layer1is1laminar1
up1to1the1separation1point;1the
vortex1street1is1turbulent,1and1
the1wake1flow1field1is1
increasingly1three-dimensional

The1laminar1boundary1layer1
undergoes1transition1to1a1tur-
bulent1boundary1layer1before
separation;1the1wake1becomes1
narrower1and1disorganized

A1turbulent1vortex1street1is1
reestablished1but1it1is1narrower
than1the1case1was1for1
1501<1ReD1<131x1105

ReD1<15

5-151<1ReD1<140

401<1ReD1<1150

1501<1ReD1<131x1105

31x11051<1ReD1<13.51x1106

3.51x11061<1ReD1

Figure 1.7: Different wake configurations of the flow past a cylinder, distinguished by
Reynolds number [22].

1.4 Flow past a sphere
The flow around a (3D) cylinder can be considered as a two-dimensional flow if the
cylinder is long enough. The flow around a sphere can not be considered two-dimensional,
although certain cross sections look similar to the flow around a cylinder. The flow past
a three-dimensional object (like a sphere) shows some fundamental differences. For ex-
ample no stretching and tilting of vortex tubes occurs in 2D, but they do in 3D and take
along some additional effects. At low Reynolds numbers no vortex pair is visible, but
instead there is a doughnut-shaped vortex ring. At higher Reynolds numbers no oscil-
lating vortex street is visible, but the ring-eddy oscillates and possibly some of it breaks
off periodically in the form of distorted vortex loops.
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1.4 Flow past a sphere 1. Theory

The drag coefficient of a sphere is well documented. Figure 1.8 shows the drag
coefficient as a function of the Reynolds number. The boundary layer around a sphere
undergoes a transition to turbulence at a critical Reynolds number of Re ∼ 3× 105,
which corresponds to the dip of the drag coefficient shown in the graph of figure 1.8.
This dip arises due to similar reasons as for the cylinder. Due to the turbulence the
boundary layer remains attached to the sphere farther on the downstream side, therefore
the wake remains smaller and drag decreases. In fact the turbulence in the boundary
layer increases the surface friction as a result of the larger velocity gradient at the surface
of the body. The drag rises again for post-critical Reynolds numbers towards the old
level, since the separation point of the boundary layer is slowly moving upstream [10].

Figure 1.8: The measured drag coefficient of a smooth sphere as a function of the
Reynolds number. Curve 1 is the Stokes (1856) solution, CD = 24/Re. Curve 2 is
the Oseen (1911) solution, CD = (24/Re)(1+ 3Re/16). Curve 3 shows the numerical
results after B. Fornberg (1988) [23].

Following roughly the results of Sakamoto et al. [24] and other previous studies, a rough
distinction can be made regarding the relationship between the Reynolds number and
corresponding wake configurations. For Re < 130 no separation occurs, the flow is
considered to be in the Stokes regime.

i (130 < Re < 300), figure 1.9(a)
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Faint periodic pulsative motion at the rear of the vortex-ring formed behind the
sphere could occur with a very long period.

ii (300 < Re < 420), figure 1.9(b)

The wave-like wake turns into a hairpin-shaped vortex.

iii (420 < Re < 800), figure 1.9(c)

The waveform of the fluctuating velocity based on the shedding of hairpin-shaped
vortices becomes irregular.

iv (800 < Re < 6×103), figure 1.9(d)

The vortex tubes formed by the vortex sheet separating from the sphere surface
flow into the vortex formation region at its rear end, while others are shed in small
vortex loops.

v (6×103 < Re < 3.7×105)

The vortex sheet separating from the surface of the sphere becomes completely
turbulent.

1.5 Added mass
A body and its surrounding fluid can never occupy the same physical space simulta-
neously. When a body moves through a fluid, some volume of surrounding fluid must
move around the body. Fluid in front of a body must move rapidly to the side. Be-
hind the body fluid must fill in the released space. Therefore a body moving through a
fluid has a larger effective inertia than one moving through vacuum. Most studies about
forces on a body moving through a fluid treat motion at constant velocity. When the ve-
locity of a body is not constant, additional forces will be present. The additional inertia
added to the system of an accelerating (or decelerating) body moving through a fluid,
causing the surrounding fluid to accelerate, is the so called ”added” mass of the body.

The added mass of an object can be derived by considering the hydrodynamic force
acting on it as it accelerates. The additional force on a sphere can be calculated exactly,
assuming a potential flow, and is given by

−Fa =
2
3

ρπR3a, (1.17)

where ρ is the density of the fluid, R the radius of the sphere, a the acceleration and the
negative sign indicates that the force is in opposite direction of the acceleration of the
sphere [25]. Since F = mdv

dt , the added mass of the sphere will be

ma =
2
3

ρπR3. (1.18)
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Figure 1.9: Patterns of a wake behind a sphere in several Reynolds number ranges. [24]

Apparently a submerged sphere will behave as if its inertia is larger by one-half of the
mass of the fluid it displaces [26].

Also in non-stationary (human) swimming, some of the water around the swimmer is
set in motion, which can be thought of as an added mass of water. Previous research
on added mass in human swimmers was performed by Caspersen et al. [27]. In that
study it was concluded that the added mass in human swimmers, in an extended gliding
position, is approximately 1/4 of the fluid mass displaced by the body. Furthermore,
there were minor differences, but significant, in the added mass and relative added mass
for women compared to men. This indicates that the possible body shape differences
may be an important factor in determining the added mass.
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Chapter 2

Numerical Method

In this study simulations of a three-dimensional flow in Cartesian coordinates are per-
formed by a numerical method called Immersed Boundary, IB in short. This chapter is
concerned with the numerical techniques involved in this particular immersed boundary
code. First the methodologies used will be shortly denoted, then the most important
ones will be highlighted in subsequent sections. This IBM code has been developed
over the years by Prof. R. Verzicco from the Università di Rome “Tor Vergate”, Dr. M.
D. de Tullio from the Politecnico de Bari and others.

2.1 Methodologies

The IB technique is based on a Moving-Least-Square formulation (MLS). The MLS
formulation is used since for moving bodies it results in smoother forces on the body
than the classical direct-forcing method. The Navier-Stokes equations for an incom-
pressible flow are solved by a fractional step method with the pressure in the first step
following the ideas of Kim and Moin. [28] The Poisson equation (eq.(1.7)) for the pres-
sure is solved directly by introducing a Fast Fourier Transform (FFT). The IB code has
two different solvers, a DNS solver (Direct Numerical Simulation) and a LES solver
(Large Eddy Simulation). The LES model in the numerical scheme was based on the
Smagorinsky method The time advancement of the solution is obtained by a second-
order Adams-Bashforth scheme.The nonlinear terms in this code are computed explic-
itly while the viscous terms are computed implicitly. The stability limit for the time
integration is given by the CFL (Courant-Friedrichs-Lewy) condition. The calculation
stops if the velocities are diverging for numerical stability conditions (Courant number
restrictions). In this particular study the Courant number restriction was chosen to be
C =U∆t/h > 0.25. However, when a Large Eddy Simulation (LES) is carried out, the
additional LES viscous terms are computed explicitly. This introduces an additional
stability constraint. This new constraint is generally less restrictive than the CFL con-
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2.2 Immersed boundary method 2. Numerical Method

dition. All variables are calculated in a staggered grid with the velocities on the faces
of the computational cell and all the scalars at the centre. This is important when terms
belonging to different equations are evaluated.

2.2 Immersed boundary method
The IB method is a numerical scheme, which involves both Eulerian and Lagrangian
variables. The IB method is a methodology for dealing with complex (moving) body
shapes and boundary conditions, which do not necessarily have to conform a Cartesian
grid. Despite the complexity of a body the equations of motion are usually solved on a
fixed structured grid. The IB code used in the present study is based on a direct-forcing
scheme that utilizes a versatile moving-least-square (MLS) approximation to build the
transfer functions between the Eulerian and Lagrangian grids, and can be applied to ar-
bitrary moving/deforming bodies. Treating the coupling of the structure deformations
and the fluid flow poses also a number of challenging problems for numerical simula-
tions.

Before reviewing the numerical scheme, first a comparison is made between IB and
conventional methods, based on the study by Mittal et al. [29].

2.2.1 IB method vs conventional methods

The conventional approach to consider the simulation of a flow past a solid body is to
employ structured and unstructured grids that conform to the body (fig. 2.1(a)). First a
surface grid covering the boundaries of the body (Γb) is generated, which is then used
as a boundary condition to generate a grid in the volume (Ω f ) occupied by the fluid.
Within the IB method a non-body conformal Cartesian grid is used for simulations of
the flow (fig. 2.1(b)). The immersed body is still described by a surface grid, but the
Cartesian volume grid is generated with no regards to the surface grid. The boundary
of the immersed body will cut through the Cartesian volume grid. Since the grid does
not conform the surface grid of the body, to implement the boundary conditions it is
required to modify the governing equations in the vicinity of the boundary. Imposition
of the boundary conditions on the immersed boundary is the key factor in developing an
IB algorithm.

Within conventional methods a discretized version of the Navier-Stokes equation is
solved on a body-conformal grid where the boundary condition on the immersed bound-
ary is enforced directly. In an IB method, the Navier-Stokes equation is discretized on a
nonbody conformal Cartesian grid and the boundary conditions are imposed indirectly
through a forcing-function in the governing equations that reproduces the effect of a
boundary.
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(a) (b)

Figure 2.1: (a) Sketch of a body-conformal grid. (b) Sketch of a grid used in an im-
mersed boundary method. [30]

The advantage of the IB method compared to conventional methods is that grid gen-
eration is simplified. Grid complexity and quality are not significantly affected by the
complexity of the geometry for the simulation carried out on a non-body conformal
Cartesian grid. In conventional methods it is usually an expensive task to generate the
body-conformal structured or unstructured grids. The requirements are to construct a
grid that provides an adequate local resolution with the minimum number of total grid
points. These conflicting requirements can lead to a poor grid quality and have nega-
tive impact on the accuracy and convergence properties of the solver. Especially with
more complex geometries an acceptable grid becomes increasingly difficult. Further-
more, simulations for flows with moving boundaries can be handled more easily with
IB methods including body motion. For a body-conformal grid it is required to generate
a complete new grid at each time-step, with again negative impact on the accuracy, costs
and simplicity. Since IB methods use a stationary, non-deforming Cartesian grid it is
relatively simple to include moving boundaries.

A major disadvantage of the IB method is that imposing the boundary conditions is
not straightforward. The accuracy and conservation properties of the numerical scheme
are not clear because of the treatment of the boundary in IB. Moreover, body-conformal
grids give better control of the grid resolution in surroundings of the body surface. This
could be useful with increasing Reynolds numbers and solving the boundary layer. [29]

2.3 Direct-forcing scheme and MLS approximation
The MLS formulation for the immersed boundary technique used in this particular code
is similar to the technique used by Vanella and Balaras. This technical description is
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derived from their paper. [31] This paper also includes some accuracy studies of this
method.

For the sake of clarity, the body is immersed in an Eulerian grid, but is itself described
by a Lagrangian grid. The current and next time step in this description are denoted by
n and n+ 1, respectively, the three vector components (directions) are denoted with i.
The uppercase symbols denote variables at Lagrangian points on the immersed body,
normal symbols denote the same variables but then on Eulerian points.

In this code the direct-forcing function is computed on the Lagrangian markers in-
stead of Eulerian grid nodes as in other IB codes. This results in smoother hydrody-
namic forces. The direct-forcing function is computed on each Lagrangian marker by a
rewritten form of the time-discretized momentum equation:

Fn+1/2
i =

Un+1
i −Un

i
∆t

−RHSn+1/2, (2.1)

where F is the direct-forcing function which is different form zero only at the grid
points in the vicinity of the immersed body, Un and Un+1 are discrete approximations
of the velocity field, ∆t the time step and RHS contains all advective and diffuse terms.
For every point where Fi 6= 0 the desired velocity Ub, to be considered as a boundary
condition, can be used instead of Un+1:

Fn+1/2
i =

Ub
i −Un

i
∆t

−RHSn+1/2. (2.2)

Eq. (2.2) is actually the essence of IB. This force is not a force with any physical mean-
ing, but is used to impose the proper boundary conditions. Replacing Un+∆tRHSn+1/2

by Ũ , the Lagrangian counterpart of the predicted velocity, yields:

Fn+1/2
i =

Ub
i −Ũi

∆t
, (2.3)

see [32] [31]. The predicited velocity on Eulerian grid nodes is computed as follows:

ũi = un
i +

∆t
2
(3H(un

i )−H(un−1
i ))−∆t

∂ pn

∂xi
, (2.4)

where H is a discrete operator representing the spatially discretized convective and vis-
cous terms, p the pressure term and x the position vector. Note that the density is sup-
posed to be 1 and that eq. (2.4) is actually a rewritten form of the discrete Navier-Stokes
equation. The predicted velocities do not satisfy the incompressibility constraint and
the boundary conditions but this is corrected during the computations. A direct-forcing
function will enforce these proper boundary conditions on all the Eulerian grid nodes
influenced by the immersed body [31].
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2.3.1 MLS reconstruction

As mentioned in the previous section, the direct-forcing function is computed on the
Lagrangian markers. This force must then be transferred to the Eulerian grid nodes.
The transfer operators are constructed by using MLS shape functions. For clarity, fig.

XA

XB

hX

hY

lA

lB

HX

HY

ΔVlA

ΔVlB

Figure 2.2: Definition of the associated volumes ∆VlA and ∆VlA (blue) for the markers
lA and lB respectively. The marker lA and lB are associated to the closest grid nodes XA
and XB respectively, which is in the centre of a cell with dimensions hx and hy (red).
The support domain (green) is a rectangular box of size 2Hx×2Hy×2Hz centred at the
location of the marker.

2.2 gives a schematic representation of the following description about how the transfer
operators are created.

(i) First the closest Eulerian grid node for each Lagrangian marker must be identi-
fied. Thus Lagrangian marker lA is associated to the Eulerian grid node xA, which is in
the centre of a cell with dimensions hx and hy. Even so the marker lB is associated to
grid node xB. It is possible and allowed that more than one Lagrangian marker from the
same or different immersed bodies is associated with the same Eulerian grid node.

(ii) Then a support-domain, in which the shape functions are constructed, is defined
around the Lagrangian markers centred at the location of the markers. The support-
domain is a rectangular box of size 2Hx× 2Hy× 2Hz. The lengths Hx, Hy and Hz are
dependent on the Eulerian grid and can be different for each marker.

(iii) Thereafter a volume ∆V l = Alhl is associated to each marker point. Where Al

is the area of the body surface associated to marker l and hl the local thickness that
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depends on the local grid size. The volumes do not overlap and the sum of all local Al

is equal to the total area of the immersed body surface.
With this in mind, the transfer operators that relate Ũi to the corresponding velocities

ũi can be defined. Where Ũi is approximated in its support domain by a linear interpola-
tion of the velocity. A weighted MLS approximation is used to tune these two velocities
as good as possible. Cubic splines were used for the weight functions.
In the end using this MLS method, Ũi for each Lagrangian marker can be approximated
in its support domain as follows:

Ũi =
ne

∑
k=1

φ
l
k(x)ũ

k
i = κ

T ũk
i , (2.5)

where k denotes a Eulerian point in the interpolation stencil, ne is the total number of
grid points in the interpolation stencil, φ l

k the shape function between grid point k and
marker l and κ(x) is a column vector of length ne, containing the shape function values
for marker point l.

Eq. (2.5) gives Ũi, which can be substituted into eq. (2.3), giving the volume force
Fi on all the Lagrangian markers. The same shape functions used in the interpolation
procedure can then be used to transfer Fi to the Eulerian points associated with that
Lagrangian marker l. The final forces on the Eulerian grid become:

f k
i =

nl

∑
l=1

clφ
l
kF l

i , (2.6)

where f k
i is the volume force in the Eulerian point k in the direction i, nl the number

of Lagrangian markers related to grid point k, F l
i the force in Lagrangian marker l and

φ l
k again the shape function relating the variables between the grid point k and marker

l. The factor cl is used to properly scale the shape functions. To rescale the shape
functions the following conditions must be satisfied:

nte

∑
k=1

f k
i ∆V k =

ntl

∑
l=1

F l
i ∆V l, (2.7)

where nte and ntl are the total number of forced grid points, ∆V k = (hx × hy × hz)
is the volume associated with the Eulerian grid point l and ∆V l = Alhl the volume
associated with the marker l. The total force acting on the fluid must not be changed by
the transfer from Eulerian to Lagrangian grids and the other way around. The transfer
operators conserve momentum as well. In case of uniform grids, the torque will be also
conserved.

The force form eq. (2.6) can be used to correct the predicted velocity ũi with respect
to the boundary conditions on the immersed body, leading to an approximate velocity
u∗i , which is not divergence-free:

u∗i = ũi +∆ fi. (2.8)
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When a correction term is applied, this approximate velocity can be applied to a diver-
gence free space:

un+1
i = u∗i −∆t

∂

∂xi
(δ p), (2.9)

where δ p= pn+1− pn is the pressure correction satisfying the Poisson equation, eq.(1.7).
The velocity field un+1

i satisfies the boundary conditions to the order of O(∆t2). By us-
ing these corrections the incompressibility constraint is also satisfied. [31]

So, in summary, the predicted velocity on the Eulerian grid is transferred to the
Lagrangian grid. The Lagrangian velocity is substituted in the direct-forcing equation
to compute the Lagrangian volume force. This force is again transferred back to the
Eulerian grid and can be used to correct the predicted velocity to respect the boundary
conditions.

2.3.2 Calculation of forces
As mentioned previously, the direct-forcing function is not a force with any physical
meaning. In this section the computation of the hydrodynamic forces will be shortly
explained. However, extra complications are introduced in the computation of those
forces generated by the surrounding fluid, since the computational grid and the body
are almost never aligned. For rigid bodies eq. (2.6) is sufficient to compute the hy-
drodynamic forces, provided that all interior points are properly treated. In the general
case with moving and deforming bodies, the approach is not trivial. In this study the
hydrodynamic forces per unit area on a surface element is directly computed from the
flow field around the body by:

f H
i = σi jn j =

[
−pδi j +µ

(
∂ui

∂x j
+

∂u j

∂xi

)]
n j, (2.10)

where f H
i is the hydrodynamic surface force in direction xi, σi j the stress tensor, n j

the direction cosine of the normal unit vector in x j direction, δi j an alternative way to
formulate the identity tensor, and µ the viscosity term. Note that this equation is an
addition of eq. (1.9) and eq. (1.10). In order to use eq. (2.10), p and ∂ui/∂x j on
the body surface should be known. Using the same transfer functions to estimate p
and ∂ui/∂x j at the Lagrangian makers will probably underestimate the actual traction
forces, since the boundary is defined in a sharp manner, while the pressure and velocity
are forced to vary smoothly through the surface of the body. To solve this problem a
normal probe is created on the body surface for each Lagrangian marker by locating
an external point e at a distance hn from the surface (see fig. 2.3). The distance hn is
proportional to the local grid spacing and is given by hn = (hx+hy+hz)/3. The pressure
p at point e is computed using a similar MLS formulation as in the previous section for

25



2.3 Direct-forcing scheme and MLS approximation 2. Numerical Method

e

hn

Figure 2.3: Schematic representation of the normal probe defined between a Lagrangian
marker l and point e within the support domain, which is used for the MLS approxima-
tion.

the velocity, but now the support domain is centred around point e. The pressure at the
surface (needed for eq. (2.10)) is obtained from:

pl = pe− ∂ p
∂n

hn, (2.11)

where ∂ p/∂n is obtained from the momentum equation normal to the boundary. The
velocity gradients at location e for each Lagrangian marker l are derived from eq. (2.5)
by differentiating:

∂Ui

∂x j
=

ne

∑
k=1

∂φk

∂x j
ui. (2.12)

Because hn is in the order of the local grid size, and because it is assumed that the
variation in the velocity is linear close to the body, the derivatives ∂Ui/∂x j are a good
approximation of the derivatives ∂ui/∂x j.

This method of computing the forces on the surface of an immersed body is very
accurate compared to boundary-conforming methods at the same grid resolution [31].

26



2. Numerical Method 2.4 DNS and LES solver

2.4 DNS and LES solver
Two different solvers can be chosen within this code, a Direct Numerical Simulation
(DNS) and a Large Eddy Simulation (LES). DNS is restricted to low Reynolds number
values so that LES is preferred in more practical situations.

2.4.1 DNS
In a DNS the Navier-Stokes equations must numerically solved on all spatial and tem-
poral scales without using a model for turbulence. DNS is the most accurate approach
to solve turbulence, provided that the grid is sufficiently fine to resolve the motion at the
smallest scales of importance. This means that turbulence must be resolved from the
smallest dissipative scales up to the scales with motions containing most kinetic energy.
This smallest scale, also called the Kolmogorov scale η , is given by:

η = (ν3/ε)1/4, (2.13)

where ν is the kinematic viscosity and ε the rate of kinetic (viscous) dissipation. In
order to resolve turbulence at the smallest scales, the mesh size h must be smaller then
the Kolmogorov length scale h ≤ η . The estimated energy dissipation per unit mass
is ε ∝ U3/L, where U is the macroscopic velocity scale and L the macroscopic length
scale. The number of points N in a given mesh must satisfy Nh > L, so the large scales
are contained within the computational domain. Combining all previous relations gives
the following relation for the number of mesh points:

N ∼ L
η
∼
(

L4ε

ν3

)1/4

=

(
L3U3

ν3

)1/4

= Re3/4. (2.14)

Thus in a three-dimensional DNS the number of mesh points satisfies:

N3 ≥ Re9/4. (2.15)

It can be concluded that the memory storage requirement in DNS grows very fast with
the Reynolds number and that the computational costs of DNS are very high. The num-
ber of floating point operations grows even as Re3, since the number of time steps grows
also as a power law of the Reynolds number. In order to be accurate, the integration time
step ∆t must be small enough such that the fluid particles move only a fraction of the
mesh size in each time step. That is,

C =U∆t/h < 1, (2.16)

with C the Courant number. The time interval simulated will be proportional to the
turbulence time scale τ = L/U and h must be in the order of η . Combining these
relations results in

L/η ∼ Re3/4 (2.17)
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and consequently the number of time steps has got a similar kind of dependence on Re
like one spatial dimension [33] [34].

2.4.2 LES

Within LES the range of length scales to solve Navier-Stokes is reduced to suppress
the computational costs. Instead of resolving the turbulence on small scales like DNS,
a model is used to mimic the turbulence. The difficulty of modeling this is to model
the interaction between the large and small scales, preventing separation of scales. The
main operation of LES is to apply a filter on a spatial and temporal field. Scales smaller
than a certain cutoff length scale ∆ and cutoff time scale τc will be eliminated from
the actual field. Thus the field φ is split up into a filtered φ̄ and sub-filtered part φ ′

as φ = φ̄ + φ ′. The filtering is usually done by a convolution with a filter function G,
φ̄ = G ? φ . Assuming that the flow is incompressible, the filtered continuity equation
and Navier-Stokes equation (1.4) become:

∂ ūi

∂xi
= 0 (2.18)

∂ ūi

∂ t
+

∂uiu j

∂x j
=− 1

ρ

∂ p̄
∂xi

+ν

(
∂ ūi

∂xi
+

∂ ū j

∂xi

)
=− 1

ρ

∂ p̄
∂xi

+2ν
∂ S̄i j

∂xi
, (2.19)

where S̄i j is the rate-of-strain (or deformation) tensor. These equations are now written
in index notation, with i and j denoting the different vector components. The only term
causing difficulties within LES modeling is the nonlinear filtered advection term uiu j.
To solve this term, knowledge of the unfiltered velocity field is required. This field is
unknown and includes the interaction between the large and small scales. So it must
be modeled under appropriate assumptions to prevent separation of scales. The filtered
advection term can be split up as uiu j = τr

i j + ūiū j, where τr
i j is the residual stress tensor

(also known as subgrid-scale tensor) grouping all unclosed terms. This stress tensor can
be decomposed as τr

i j = Li j +Ci j +Ri j, where Li j is the Leonard tensor representing
interactions among large scales, Ri j the Reynolds stress-like term representing the in-
teractions among the sub-filter scales, and Ci j the Clark tensor representing cross-scale
interactions between large and small scales. Actually the challenge in this is to model
the particular stress tensor with a subgrid-scale model (SGS) [35]. Most SGS models
are based on the eddy-viscosity assumption (the Reynolds stresses could be linked to
the mean rate of deformation similarly as viscous stresses) to model the subgrid-scale
tensor:

τ
r
i j−

1
3

τ
r
kkδi j = 2νt S̄i j, (2.20)
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where S̄i j is again the rate-of-strain tensor of the resolved field and νt the turbulent
viscosity. The SGS model used in this code is the so-called Smagorinsky method. In
Smagorinsky’s model, the eddy-viscosity is assumed to be proportional to the subgrid
characteristic length scale ∆ (named as the cut off length scale before) and to a charac-
teristic turbulent velocity taken as the magnitude of the local strain |S̄|:

νt = (Cs∆)
2 |S̄|. (2.21)

Above, |S̄| =
√

2S̄i jS̄i j and the typical length scale ∆ is computed as (∆x1∆x2∆x3)
1/3,

where ∆xi is the grid spacing in direction i. The coefficient Cs is an externally provided
coefficient that has been tuned from the decay of homogeneous isotropic turbulence.
Actually the value of the Smagorinsky constant for isotropic turbulence is given by

Cs =
1
π

(
2

3Ck

)3/4

, (2.22)

assuming that the energy production and dissipation on small scales is in equilibrium,

and where Ck is the Kolmogorov constant, with for the energy spectrum E(k)=Ckε
2
3 k
−5
3 .

Practically, the value of Cs depends on the type of flow and mesh resolution. The co-
efficient is not a universal constant and therefore this coefficient is the most serious
shortcoming of this model [36] [37] [38].

2.4.3 LES applied in the code
The filter operations in LES can be implicit or explicit. Within this code the additional
viscous LES terms, when a LES simulation is carried out, are computed explicitly inside
the nonlinear terms routines. The filtering is performed in all directions using a box filter
in the physical space. The contributions will not be weighted according to the volume
of their corresponding cell, because it turns out to be a quite heavy computation. But
a uniform Cartesian grid is used and furthermore using an LES model approximations
are made anyway. The turbulent viscosity is calculated at the cell centre. Therefore,
after computation of the strain tensor, all elements will be averaged at the cell centre.
The turbulent viscosity (2.22) is calculated using an Cs coefficient of

√
0.025. This

coefficient probably gained the best results in previous studies by Verzicco and was
chosen through empirical testing.

2.5 Time advancement
The time advancement of the solution is obtained by a Adams method. This method is
popular to solve numerically non-stiff ordinary differential equations (ODEs). Adams
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2.5 Time advancement 2. Numerical Method

methods are useful to reduce the number of functions calls, but require more CPU
time than Runge-Kutta methods. For the simulations of this study the Adams-Bashfort
method is used.

2.5.1 Adams-Bashforth
The Adams-Bashforth methods are linear multi-step methods and commonly used in
non-stiff initial value-problems. It is an explicit method with very small regions of
absolute stability. The description of the Adams-Bashforth method in this section is ob-
tained from the derivation by Ascher [39]. In general a k-step linear multi-step method
is given by

k

∑
j=0

α jyn− j = h
k

∑
j=0

β jfn− j, (2.23)

where α j,β j are the method’s coefficients and h is the step size. The discretized terms
y and f originate form the ordinary differential equation system y′ = f(t,y). For all
Adams methods it is considered that α0 = 1,α1 = −1 and α j = 0, j > 1. In a k-step
Adams method f is interpolated through the previous point t = tn−1, tn−2, ..., tn−k. Thus
the general formulas for the Adams-Bashforth method become

yn = yn−1 +h
k

∑
j=1

β j fn− j, (2.24)

where the coefficients β j are found using a polynomial interpolation for the function f
to be solved. The coefficients turn out to be

β j = (−1) j−1
k−1

∑
i= j−1

(
i

j−1

)
γi, (2.25)

γi = (−1)i
∫ 1

0

(
−s
i

)
ds. (2.26)

Notice that the first-order Adams-Bashforth method is known as the forward Euler
method. The second-order Adams-Bashforth with k = 2 and γ0 = 1,γ1 = 1/2 yields

yn = yn−1 =+h
(

3
2

fn−1−
1
2

fn−2

)
, (2.27)

or equivalently

yn = yn−1 =+h
(

fn−1 +
1
2

∇
1 fn−1

)
. (2.28)
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where ∇1 is part of the series ∇i = ∇i−1 fn−1−∇i−1 fn−2
fn−1

with ∇0 = 1. The first equation with
coefficients 3/2 and −1/2 is used in the Adams-Bashforth calculations in this code.
Compared to Euler’s method, the second-order Adams-Bashforth is more accurate [39].
In this derivation a constant step size h is assumed, whilst in the code the step size
is varying to satisfy the Courant number restrictions. From a mathematical point of
view only third order Runge-Kutta is capable of handling variable time steps without
reducing the order of accuracy. From a practical point of view it is shown that also the
Adams-Bashforth method performs well concerning “small” CFL. Although there exist
Adams-Bashforth methods with variable step size, a standard Adams-Bashforth scheme
with a variable time step is used in present study [38].

2.6 Integration scheme
The integration scheme used to solve the three-dimensional, time-dependent incom-
pressible Navier-Stokes equations is a so-called fractional step method described by
Kim and Moin [28]. This section continues with a review of the ideas of Kim and Moin,
following their paper. The method herein works in conjunction with the approximate-
factorization technique. Using this method, the velocities solved from Navier-Stokes
satisfy the continuity equation up to machine accuracy at every time-step. The three-
dimensional Poisson equations are solved directly by a transform method. The pressure
is solved in the first step of the fractional step method, wherein the pressure correction
is solved by a direct method based on trigonometric expansions.

The fractional step method is a method of approximation of the evolution equations
based on the decomposition of the operators they contain. The pressure in the Navier-
Stokes equations is interpret as a projection operator. This operator projects an arbitrary
vector field into a divergence-free vector field.

The following two-step time-advancement equations are solved in the code:

ûi−un
i

∆t
=−α∇pn + γHn

i +ρHn−1
i +

α

2Re
∇

2 (ûi +un
i ) , (2.29)

where the superscript n indicates the time step level, Hi = −(∂/∂x juiu j) contains the
nonlinear terms (ie. the convective terms and viscous terms with a single velocity deriva-
tive), p is the pressure, u the velocities, û the provisional non-solenoidal velocity field.
α,γ and ρ are the coefficients derived from the time advancement scheme. Thus in this
case, α = 1, γ = 3/2 and ρ = −1/2 (see eq.(2.27)). The non-solenoidal velocity field
is projected onto the solenoidal field (incompressible vector field) by a scalar Φ using
the following equation:

∇
2
Φ =

1
α∆t

∇ · ûi. (2.30)
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Then the solenoidal velocity field at the new time step is computed through

un+1 = ûi−α∆t∇Φ. (2.31)

The pressure field is updated using

pn+1 = pn +Φ− α∆t
2Re

∇
2
Φ. (2.32)

All of these variables are located on a staggered grid (figure 2.4) with the velocities
on the faces of the computational cell and all the scalars at the centre. The method is
second-order accurate in both space and time [40] [28].

u2(i,j+½,k)

u1(i-½,j,k) u1(i+½,j,k)

u2(i,j-½,k)

ϕ(i,j,k)

x1

x2

Figure 2.4: The staggered mesh in two dimensions.
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Chapter 3

Method

This chapter is concerned with the numerical set up and approach used in this study. The
code is written in Fortran and an OpenMP version can be used to run the code parallel.
The simulations are performed on a server with two Intel Xeon E5405 processors, both
with four parallel cores, using an Ifort compiler for the parallel simulations. Serial runs
used the GNU compiler or either the same Ifort compiler.

3.1 Numerical setup

In figure 3.1 the XZ- and Y Z-sections (through (0,0,2.5)) of both the simulations with
the sphere and hand are shown. In all simulations a cubic domain is used of 5× 5× 5
non-dimensional length units consisting of 201 nodes in each directions. The 200 grid
cells are of uniform size 0.025×0.025×0.025. The boundaries at z = 0 and z = 5 are
the in- and the outlet, respectively. The inlet velocity is set uniform across the entire
inlet, U = 1 in non-dimensional units. At the outflow a radiative boundary conditions
(for open boundaries) for the velocity applies. The boundaries at x =−2.5 and x = 2.5
have periodic boundary conditions, thus data at x = −2.5 and x = 2.5 are exactly the
same. Thus actually it can be assumed that the immersed body is within one of a linear
array of bodies in the X-direction. The boundaries at y =−2.5 and y = 2.5 have a free-
slip conditions. The free-slip condition consists of a non-penetration condition v ·n = 0
and a stress condition on the wall. The stress condition implies that the slip velocity at
the wall is dependent on the shear stress, where the shear stress on its turn is assumed
to be zero. Thus no vorticity can be produced at the walls and no fluid can leak through
the walls.

This code can handle a single (rigid moving) immersed body in the domain. The
typical width of the immersed bodies is 1 in non-dimensional units, so one fifth of
the domain. In the case of the sphere this typical width is the diameter, while in the
case of the hand it is the distance between thumb and little finger side. The relative
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Figure 3.1: XZ- and Y Z-sections through (0,0,2.5) for both the simulations of the sphere
and hand. Boundary conditions are shown within the figure.

density of the body was set to 1, thus it is assumed that gravity forces are turned off
in this study. The boundary condition on the immersed body is a no-slip condition,
which states that the velocity is zero at the boundary. Input files for the immersed body
considered in a certain simulation must be in STL (ASCII) format, where STL means
STereoLithography. STL files describe a raw unstructured triangulated surface by the
unit normal and vertices of the triangles using a three-dimensional Cartesian coordinate
system. The files do not contain any scaling information, so the units are arbitrary. The
triangles of the triangulation have to be evenly spread on the surface of the body in
order to run the code properly. Furthermore the size of the triangles should not deviate
too much from the grid cell size. Basically, the bodies can be placed everywhere in the
domain under every configuration as long as they are entirely within the domain. In case
of simulations with a stationary body, the body was placed a little towards the inlet, in
order to survey a bigger part of the wake. Just in front of the body and further upstream
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3. Method 3.2 Output of simulations

numerical ”probes” are placed to measure the velocities across time (denoted by point 1
and point 2 in figure 3.1). Movements of the rigid bodies can be prescribed in the code
by functions for position, velocity and acceleration for both the translational movements
and rotational movements.

3.2 Output of simulations

The output of the simulation is given in several files and formats. There is a file con-
taining the viscous-, pressure- and gravity forces, momenta and the velocities in point
1 and 2, on the body at each time step of the simulation. At times indicated two files
representing all velocity, pressure, vorticity and velocity gradient data on all nodes of
the XZ-plane at y = 0 and the Y Z-plane at x = 0 will be generated. Another file contain-
ing all pressure and stress data on all nodes at the surface of the object will be written
at these times as well. These files are designed to open with Tecplot360 software. Fur-
thermore there are two kinds of binary files containing the three-dimensional data. One
of these files contains all the velocity and pressure data on each node, one of them all
turbulent viscosity data which will be just generated when applying a LES simulation.
The times on which these binary files are generated can be controlled separately from
the other files. Storage limitations prohibit saving all data at each time step.

3.3 Simulations with a sphere

In order to test whether the code produces reliable results and to build up some ex-
perience with the simulations, first some well-documented results will be reproduced.
Since the drag coefficient of a sphere embedded in a uniform flow is well documented,
the sphere is a good test case. The flow around a fixed sphere will be simulated at dif-
ferent Reynolds numbers for 100 (simulation) time units. To see which solver gives the
most reliable results in particular Reynolds regimes, a part of the simulations will be
performed with the LES (Large Eddy Simulation) solver turned on and part with the
DNS solver turned on. The drag coefficient will be calculated using the averaged drag
force (the sum of the viscous and pressure forces on the body), parallel to the mean
stream direction. Just results of the second half of the total simulation time will be
used to avoid starting up errors. Since the code is totally dimensionless, so is the drag
force resulting from the output. Calculating the drag coefficient from this drag force
is a matter of multiplying the force with a factor to normalize with the frontal surface.
Following eq. (1.13) and considering that in the simulations, the velocity U = 1, den-
sity ρ = 1 and the radius of the sphere R = 0.5, the drag coefficient following from the
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simulations is:

Cd =
Fd

1
2π0.52

=
8Fd

π
. (3.1)

The drag coefficient will be plotted as a function of the Reynolds number, just like
figure 1.8, together with the documented values. Furthermore an attempt is made to
distinguish the different regimes in the wake qualitatively, by comparing the behaviour
of the force in time with the regimes reported by Sakamoto (section 1.4) [24]. It will
also be examined whether useful information can be extracted from the fluctuations of
the wake. Therefore the Strouhal number (Sr) of the fluctuating velocity in point 2 (fig.
3.1) is computed using a Fourier transform, following the ideas of Sakamoto.

3.3.1 Accelerating sphere
The flow around an accelerating sphere has also been simulated. An attempt is made
to validate the added mass principle (1.5) of a sphere and to uncover the effects of the
accelerating. The left figure 3.2 shows a sketch of the numerical set up. The sphere will
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Figure 3.2: Numerical setup for the simulation of the flow around an accelerating sphere
and hand. The sphere is accelerated from initial position z = 4, the hand is accelerated
from initial position z = 3.5. The acceleration is directed towards the inlet.

be accelerated from initial position z = 4 towards the inlet (approximately three length
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units). The simulations diverge when the immersed body is too close to the boundary
of the domain (inlet) and stop concerning out of bound reasons. First a short reference
run at constant flow speed will be done with the initial conditions. Then six different
(non-dimensional) accelerations will be simulated, namely as = 0.1,0.2,0.5,1,2 and
5. The drag force will be plotted together with an analytical result of the force on an
accelerating sphere. If the results from the simulation agree with the analytical result,
added mass will be present. Note that the velocity is actually v = v0 +at, where v0 = 1
is the initial velocity of the flow and as the acceleration of the sphere. It is interesting to
examine how much the drag coefficient is increased by the accelerations and whether it
agrees with the theoretical added mass principle.

3.4 Simulations with a hand
Subsequently, simulations of the flow around a rigid (right) hand and forearm will be
performed. Again the simulation will run off 100 time units and results will be averaged
among the second half of the total simulation time. For the first set of simulations,
the hand will have a fixed position and orientation throughout all simulations. To see
whether the drag coefficient is dependent on velocity, the flow will be simulated at a
range of different Reynolds numbers. The hand was positioned a little towards the inlet
at z = 1.5, with the hand palm orientated towards the inlet, in order to study a larger
part of the wake. Actually the problem of a hand moving with constant velocity through
quiescent water was reversed to a stationary hand in a steady flow. This is a matter of
the choice of the reference frame. The frontal surface of the hand will be determined
using a Matlab script. A cross-section (image) of the hand is imported, all pixels within
the hand were blackened, all pixels outside the hand whitened. The result is a matrix
of 0’s and 1’s. The surface of black pixels was calculated, by summing the amount of
black pixels in each row. This is converted to a non-dimensional surface by using the
ratio between the number of black pixels from the little finger to the thumb side and the
non-dimensional size of this typical width. Again this frontal surface will be used to
calculate the drag coefficient, as in the simulations with the sphere.

In the second set of simulations, the hand will have a fixed position during a simu-
lation. But throughout all simulations the angle of attack is increased. What is meant
by the angle of attack, is shown in figure 3.1 and highlighted in figure 3.3. The angle
of attack is 0◦ when the hand palm is oriented towards the inlet, 90◦ when the thumb
side is oriented towards the inlet, etcetera. Possibly different from the expectations, the
drag and lift coefficients will not be calculated using the frontal surface in each case.
The maximum projected area, thus the frontal surface at 0◦, is used for each angle of
attack, in order to compare the results with previous studies. It would be interesting to
study how the drag and lift coefficients change with the angle of attack and whether an
addition of drag and lift forces could obtain an even higher “propulsive” force at certain
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Figure 3.3: The hand at different angles of attack, shown from the XZ-section.

angles. Therefore the maximum resultant force
√

F2
d +F2

l is plotted as a function of an-
gle of attack. The resultant will always be bigger than the drag force with presence of a
lift force. The resultant force will be at an certain angle θ with the drag force, as shown
in figure 3.4. This angle is of interest and must be calculated. In the end the arm stroke

Fd

Fl

Fr

θ

Figure 3.4: The resultant force of drag and lift. The angle between the resultant force
and drag force is indicated by θ .

should be adjusted to the maximum resultant force. The results obtained with these
simulations of the hand will be discussed using previous results found in literature.
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3.4.1 Simulations with an accelerating hand

In reality the arms of a swimmer will not move at a constant speed all the time. The
next step in this study will be the simulation of an accelerating hand, which is less trivial
than a hand in a steady flow. It will be interesting to investigate how drag is affected by
accelerated conditions and to see what is for example the added mass of an accelerating
hand. To avoid starting up errors within the short time period available for accelerating,
first a reference run at constant flow speed will be done, allowing the flow to “settle”.
The hand is again positioned with the hand palm oriented towards the inlet, but now the
hand is placed more towards the outlet of the domain at z = 3.5, see the right figure in
3.2. The hand will be accelerated over approximately 3 length units (0.36 m in real).
Accelerations of ar = 0.5,1,2,3,4,5 m/s2 towards the inlet will be imposed. Note that
there is an initial velocity v0 due to the imposed velocity of the flow.

In order to calculate the corresponding acceleration in non-dimensional simulation units,
simulation time units ts and real time units tr (seconds) must be related first. Velocity
and length could be related using the Reynolds number. To relate ts and tr, the expres-
sion s = vt is used, with s a distance. In the non-dimensional simulations it takes 1 time
unit to pass 1 length unit with (initial flow) velocity of 1. In real it takes tr = sr/vr to
pass the distance sr (corresponding with ss = 1) with (initial flow) velocity vr, following
from the Reynolds number. This gives a relation between the two time units. These cor-
responding variables together with the expression s = 1

2at2+v0t, should gave a relation
between the accelerations.

3.5 Calculation of forces from surrounding flow

In the simulations the net forces on the hand are computed from integration of the vis-
cous and pressure forces at the surface of the immersed body (equations (1.9), (1.10)
and (2.10)). In experiments this is not that evident. For research on swimming efficiency
it is desirable to compute the forces on the hand from the velocity field at some distance
from the hand. Through these simulations an attempt is made to calculate the forces
from the surrounding flow. For example, forces could be deduced from the vorticity
field, induced by the hand motion. Such a vorticity field could be measured from the
video analysis of tracer particle motion. The simplest application would be to compute
the forces from a fluid momentum balance using a test volume surrounding the hand
(eq.(1.8)).

Forces on the body will be calculated from the three-dimensional flow field, contained in
the output files of the simulations. To do so, an arbitrary volume must be chosen around
the immersed body, preferably at some distance of the periodic and free-slip walls of the
domain. This is to avoid as much of the influences of the imposed boundary conditions
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as possible. Figure 3.5 shows the volume chosen. The forces will be calculated just at
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Figure 3.5: The arbitrary volume used to apply conservation of momentum on the flow
is indicated by the red striped lines in both the XZ- and Y Z-section.

one point of time. Not all time dependent information could be stored due to storage
limitations. The results will be compared with the forces resulting from the simulations.

Clearly, eq.(1.8) needs information about the pressure field which is hard to come by
experimentally. At most the pressure at certain points is known using a sensor. A
reformulation of eq.(1.8), which avoids the pressure field was done by Graziani et al.
[12]. Following this method an attempt was made to calculate the forces as well.
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Chapter 4

Results

In this chapter we will present and discus the obtained results in this study. Part of the
results is focused on reproducing results of previous work to see whether our results
show agreement with documented cases. After presenting and discussing the results of
the sphere and swimmer’s hand there will be continued with a general consideration of
domain size, dependency on Z-position and influences of the wall.

4.1 Drag coefficient of a sphere

4.1.1 Drag coefficient of a stationary sphere

Primarily the code was validated by simulations of the flow past a sphere. Simulations
were performed in the Reynolds number range 10 to 4 ·106. Results are shown in figure
4.1 in a log-log-plot and plotted on top of the result reported by Schlichting [23]. The
red circles indicate the results obtained with the DNS solver, while the blue triangles
denote the results from the LES solver. The black dotted curve in the back shows the
digitized data from Schlichting. Any inaccuracies in the data from Schlichting came
from digitizing the graph with Origin9 software. The drag force (and coefficient) is de-
fined as a time average, because even for a “steady” flow the drag force can fluctuate.
From a certain Reynolds number, a sphere will asymmetrically shed its wake. Espe-
cially this vortex shedding induces large fluctuations in the force along the direction of
motion which affects the drag force. Inside the data points small black error bars are
visible, indicating the deviation from the averaged drag force. The error calculation is
based on the standard deviation of the non-dimensional force in time. The forces on
the immersed body fluctuate in time due to fluctuations in the wake of the passing flow
(vortex shedding for example). The computational errors are small and do not influence
the results considerably. One error check is the maximum divergence within the com-
putational domain. When the simulations are stable, the maximum divergence was of
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Figure 4.1: log-log-plot of the drag coefficient of a sphere versus the Reynolds number.
Red circles indicate results obtained with the DNS solver, the blue triangles the results
from the LES solver. Small error bars are visible within the data points. The black
dotted curve in the back shows the digitized results from Schlichting. [23]

the order 10−11−10−14 (machine error: 10−16) and can be considered zero, as it should
be. This immediately explains why the errors in the laminar regime up to Re = 100 are
that small (of the order 10−10) in comparison with the vortex shedding and turbulent
regime (order 10−2). As an exception, the simulation at Re = 10 showed a larger error
in relation to all other runs, which is due to an instability present throughout the whole
simulation.

Generally the data with both solvers agree quite well with the documented values. Data
from the DNS solver are not reliable anymore for Reynolds number values larger than
approximately 1000. Using 201 mesh points allows us to perform calculations up to
Reynolds numbers of 1177, following eq.(2.15). Also a coarse estimation of the bound-
ary layer thickness is made, using the Blasius boundary layer thickness of a flat plate.
From this it can be concluded that there are less than five nodes within the boundary

42



4. Results 4.1 Drag coefficient of a sphere

layer when the Reynolds number is 1000 or more. In fact the boundary layer can not
be solved at this resolution. After Re = 1000 it can be noticed that the data from the
simulation slightly lose the trend described by Schlichting. Data obtained with the LES
solver still follow the trend of Schlichting. Except for the data points around the critical
Reynolds number 2 · 105, where the data points keep on following the constant level
of the drag coefficient. Actually the boundary layer around a sphere should undergo
a transition to turbulence, which corresponds to the dip of the drag coefficient in the
data of Schlichting (section 1.4). First the idea was, that the turbulence in the boundary
layer had to be initiated by a minor distortion, because a “clean” simulation would be
too perfect compared with the real situation. To test whether this was the case, random
noise was added on top of the uniform inlet velocity at levels of 1% and 5%. The results

Table 4.1: The effect on the drag coefficient when adding noise on top of the uniform
inlet velocity.

Re random noise % drag coefficient
0 0.49±0.01

105 1 0.49±0.02
5 0.48±0.01
0 0.49±0.02

2 ·105 1 0.49±0.02
5 0.48±0.01
0 0.49±0.02

4 ·105 1 0.48±0.01
5 0.49±0.01
0 0.49±0.02

106 1 0.48±0.01
5 0.46±0.01

in table 4.1 reveal that the random noise did not effect the data considerably. Another,
more obvious, explanation would be in using the LES solver. Since a LES solver is
used, the turbulence is modelled and thus not exactly resolved. Furthermore the bound-
ary layer thickness is approximately of the order 10−2 (using the turbulent boundary
layer thickness of a flat plate) while the grid size is 0.025. It is not possible to solve all
fine flow structures in the boundary layer at this resolution with just a maximum of one
node inside the boundary layer. In fact the Kolmogorov length scale around the critical
Reynolds number is in the order of 10−4−10−6.

4.1.2 Wake survey
The different flow regimes, when increasing the Reynolds number were coarsely anal-
ysed by considering the development and fluctuations of the force components in time.
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Of course the steps in Reynolds number are too large to define sharp regions of differ-
ent wakes, but at least the data can be grouped and compared with previous studies. In
appendix A the associated figures are shown.

i (Re≤ 100), figure A.1:
The force exerted on the sphere is constant up to Reynolds numbers of about Re =
100, where the Z-force is just of importance, the other components are negligible
small. It can be concluded from this that the flow is laminar up to approximately
Re = 100, which is consistent with the rough distinction made by Sakamoto and
Hanui. (section 1.4). There it was stated that the flow is laminar up to Re = 130.

ii (Re = 200), figure A.2:
The forces in the X- and Y -direction seem to grow gradually in time. Probably due
to an asymmetry in the wake of the sphere. However, the X- and Y -forces are still
negligible compared to the Z-force. An even longer simulation should have been
carried out to see whether this is faint periodic pulsative motion, as Sakamoto and
Hanui. described the region of 130 < Re < 300. The force in Z-direction is still
constant.

iii (Re = 400), figure A.3:
The X- and Y -forces start to develop clear fluctuations, probably due to vortex
shedding. The averaged value of the forces in X- and Y -directions is still around
zero, but the fluctuations are definitely not negligible. Besides that, the fluctua-
tions in X- and Y -direction are approximately in phase. Probably regular hair-pin
vortices are shed, providing the in phase fluctuations, which is again consistent
with the results of Sakamoto and Hanui.

iv (1000≤ Re≤ 4000), figure A.4:
The X- and Y -forces are no longer in phase, which suggest irregular shedding of
vortices, as described in the third region stated by Sakamoto and Hanui. in section
1.4. Furthermore the force signal is not everywhere that smooth in time anymore,
due to minor fluctuations on top of the clear fluctuations due to vortex shedding.
Especially on the Z-force, which seems to be more or less constant over time, but
constantly experiences minor fluctuations.

v (Re≥ 10000), figure A.5:
After Re = 10000 all runs seem to be in the same regime. X- and Y -forces show
intens irregular fluctuations. The Z-force is approximately constant over time,
with a minor fluctuations on top of the signal. Probably the vortex sheets separat-
ing from the surface of the sphere become turbulent. This is consistent with the
last regime that was again formulated by Sakamoto and Hanui.
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Thus the results of these numerical simulations seem to agree quite well with the differ-
ent regions distinguished by Sakamoto and Hanui [24].

Furthermore the irregular fluctuations in the wake were examined by investigating the
Strouhal numbers of the fluctuations in the three components of the velocity. The ve-
locity was probed at a point in the wake behind the sphere at z = 3.75. Figure 4.2 shows
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Figure 4.2: The Strouhal numbers of the different components of the velocity in point 2
as a function of the Reynolds number. Circles indicate the results from the LES solver,
squares the results from the DNS solver. Black, red and blue respectively indicate the
X-, Y - and Z-components of the velocity.

the results. The black, red and blue data points indicate the data obtained from X-, Y -
and Z-components of the velocity, respectively. The circles represent the results ob-
tained with the LES solver, the squares the results obtained with the DNS solver. It can
be concluded that all Strouhal numbers are approximately in a band around Sr = 0.2.
These results of this study agree with results obtained in previous studies (like Sakamoto
and Hanui [24]). Sakomoto, Hino and others showed that the Strouhal number of the
fluctuations in the wake of a sphere is approximately 0.2 at a broad range of Reynolds
numbers. A considerable spread is seen in figure 4.2, which probably could be attributed
to a limited time span of the simulations. The peaks in the frequency spectrum were not
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all that clearly, especially not for the Z-component. Maybe the position of the probe in
the wake could be chosen different as well to gain better results.

4.1.3 Accelerating sphere

Before accelerating the sphere, first a reference simulation of 40 time units was per-
formed with the initial conditions for the follow-up runs. The Reynolds number of the
initial flow was set on Re = 105, the non-dimensional initial velocity is 1. Accelerations
of a = 0.1,0.2,0.5,1,2 and 5 were tested. Figure 4.3(a) and figure 4.3(b) show the re-
sults of the (non-dimensional) drag force of an accelerating sphere at a = 1 and a = 5,
respectively. The red graph represents the drag force resulting from the simulations.
The blue graph represents an analytical result for the force. In the context of added
mass the time-dependent force can be described by:

F(t) =
1
2

am+
1
2

Aρv(t)2Cd,stationary, (4.1)

with v(t) = v0 +at, where v0 is the initial velocity and a is the acceleration imposed at
t = 0. The first term on the right side is the force due to the added mass of a sphere,
where 1

2m = 1
2

4
3π0.53 is the added mass of a sphere, see section 1.5. The second term is

the drag force when the velocity is increased linearly, assuming that the drag coefficient
Cd is constant. Figure 4.3(a) and figure 4.3(b) show that eq. (4.1) applies, with a shift
of the time axis. For clarity, figure 4.4 shows the additional force due to added mass
as a function of acceleration. The blue graph represents an analytical result, the red
data points result from the accelerated simulations. This result proves that the jump
of the drag force in the beginning (at t = 0) of the accelerated simulation is probably
originating from added mass. The jump of the drag force was expected to be sharp
where the acceleration starts. However, as the acceleration needs to be communicated
to the environment of the sphere, some time is required to adjust to the new conditions.
Therefore a smooth increase is found. The trend of both graphs is similar, and thus
possibly described by the last two terms of eq.(4.1). From the results it was concluded
as well, that the increase due to added mass was dependent on the acceleration. When
the acceleration was larger, the added mass effect was larger (the jump in the beginning),
which is consistent with theory. The deviations from the analytical result at longer times
seem to be quite constant. Maybe this is related to the delay at t = 0, when the simulation
adjusts to the accelerating conditions. If the results could be shifted in time, the graphs
will overlap. Other deviations could be explained by some dependence on Z-position as
will be reported in section 4.3. Actually these simulations should have been performed
in larger computational domains.
Moreover, the drag coefficient is in fact dependent on the Reynolds number. For cer-
tain velocities (Reynolds numbers) the drag coefficient will drop due to the drag crisis.
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a = 1

[A.U.]

[A.U.]

(a)

[A.U.]

a = 5

[A.U.]

(b)

Figure 4.3: The (non-dimensional) drag force of an accelerating sphere as a function of
time. Panel (a) shows the results with an acceleration of a = 1, while panel (b) shows
the results with an acceleration of a = 5.

However, this dip is not seen in the results of this study, figure 4.1. For similar reasons,
this dip does not seem to affect the results of the accelerating sphere.

The agreement of the added mass found in these results with the theoretical value (1
2m)

is surprising as the latter result follows from potential flow, which does not apply to
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Figure 4.4: The additional force due to added mass as a function of acceleration. The
blue graph represents an analytical result, the red data points the results following from
the accelerated simulations.

the turbulent flows in our simulations. Interestingly, observations by Pantaleone and
Messer [25] also showed that the added mass principle obtains quite good results for
flows with high Re-values.
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4.1.4 Summary results sphere

To summarize the results achieved with the sphere:

• The drag coefficient of the sphere follows the trend of the documented values
quite well, except for the data points around the critical Reynolds number.

• The different kind of wakes can be distinguished by analysing the behaviour of
the force components. These results were consistent with the results obtained by
Sakamoto and Hanui [24].

• The additional force of the accelerating sphere due to added mass principles seems
to agree quite well with the theory. At t = 0, when the acceleration starts, the drag
force increases with a jump which equals the size of the added mass of a sphere
1
2msphere times the imposed acceleration.

To finish this paragraph, figure 4.5 shows a typical snapshot of a simulation at Re = 105.
The image was obtained by processing the data with Tecplot. The (non-dimensional)
pressure field of both the flow and on the sphere is visualized by the colours, with red
representing the high pressure areas and with blue representing the low pressure areas.
The little black vectors indicate the velocity field.
The high pressure area in front of the sphere is due to a stagnation point. The low
pressure areas behind the sphere originate from vorticity. Two clear (turbulent) vortex
patches are shed, but the life time of these vortices is short, they become quickly tur-
bulent. Although the assumption was made, that the boundary layer will not be exactly
solved, the separation of the boundary layer at the sphere’s surface seems to be visible.
It would be interesting for a follow-up study to study the relation between the Reynolds
number and location of the separation at the surface of the sphere.

4.2 Drag and lift coefficient of a hand

As a next step, simulations were also performed on the flow around around a rigid hand
(+ forearm). The discussion and comparison of the results of the hand are less obvious
than the results of the sphere. A sphere is a sphere, but each hand model is unique and
thus to be precise, each hand model has its own unique set of force coefficients. Of
course, previous results give an idea of how the results should be, but comparing the
values up to detail is probably nonsense. It is about the trend of the data and finding
the variations in results within a model, which could lead to a better understanding of
propulsion.
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Figure 4.5: A snap shot of the flow passed a sphere at Re = 105. The colours in the
back and on the sphere indicate the (non-dimensional) pressure field. Red represents
high pressure areas, blue represents low pressure areas. The black vectors represent the
velocity field.

4.2.1 Drag and lift coefficient of a stationary hand
First a set of simulations was performed where the force coefficient were tested as a
function of velocity. The flow was simulated at a Reynolds number range of 105 up
to 2.8 · 105, with increments of 2 · 104 for each simulations. These Reynolds numbers
where chosen in order to let the velocities to be within a broad range of swimming
speeds. The “swmiming” velocities ranged from approximately 0.83 m/s to 2.33 m/s,
assuming a hand width (typical length) of 0.12 m. Figure 4.6 shows the results of the
drag- and lift coefficients in this particular range of Reynolds numbers. The results are
compared with results obtained in a previous study by Rouboa et al. [4]. The red circles
and squares represent the drag and lift coefficients, respectively, of the simulations in
the present study. The blue circles and squares represent the the drag and lift coeffi-
cients of the previous study by Rouboa et al. The data points from the study by Rouboa
et al. were digitized using Origin9 software. Rouboa et al. used CFD code with a k-ε
turbulence model and did simulations on three two-dimensional models of a right arm,
a frontal model and two lateral models. The results of this study were processed similar
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Figure 4.6: Drag and lift coefficients of a rigid stationary hand at a certain range of
Reynolds numbers. The red circles and squares represent the drag and lift coefficient,
respectively, of the simulations in this study. The blue circles and squares represent the
the drag and lift coefficients of a previous study by Rouboa et al. [4]

to the study of Rouboa et al. The drag coefficient was calculated using the projection
area of the hand at an angle of attack of 0◦. The area was calculated using Matlab and
turned out to be 0.029 m2 (2.0054 in non-dimensional units). According to the results
it can be concluded that the drag and lift coefficients are constant throughout this range
of Re-values (at the particular range of swimming speeds). The drag coefficient, the
coefficient accounting for “propulsion”, has an averaged value of 1.128±0.001, the lift
coefficient an averaged value of 0.081± 0.001. Furthermore, the obtained results are
show good agreement with the results of Rouboa et al. (Cd = 1.16, Cl = 0.02), those
results were also constant throughout the whole range of velocities. Furthermore the
results by Rouboa were already consistent with experimental work. Keep in mind that
the values of the results will always be off, since the models used are different. There
are differences in shape of the hands and the fact that the simulations by Rouboa et al.
were two-dimensional is also of importance. The differences occurring because of pro-
jected area size are excluded, because the drag coefficient is in fact normalized on this
surface. Effects of drag crisis (expected around approximately ∼ 3 ·105 compared with
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a cylinder) due to boundary layers getting turbulent around the hand and fingers are not
experienced. But since the data by Rouboa et al. were constant as well and already con-
sistent with previous experimental work, it is assumed that the trend of current results
is correct.

Discussion finger spreading
Figure 4.7(a) and 4.7(b) show the hand models used in the simulations of this study and
for the simulations by Rouboa et al., respectively. Later on in this study the other hand
models in this figure are discussed. We noticed that, the hand in present study has a

(a) (b) (c) (d)

Figure 4.7: The hand models used in different numerical studies. (a) present study (b)
study by Rouboa et al. [4] (c) study by Bixler and Riewald [2] (d) study by Sato and
Hino [3]

significant finger spreading, while in the hand models used by Rouboa et al. the fin-
gers are closed. Previous studies on finger spreading have revealed that a slight spread
could allow the hand to create more propulsive force. This effect will be smaller when
the fingers are spread too much. Minetti et al. [6] showed that a 12◦ finger spreading
(8mm inter-digit distance at mid finger) offered 8.8% extra propulsion with respect to
a fully closed hand. A numerical study by Marinho et al. [5] showed that a small fin-
ger spread of 0.32 cm (fingertip to fingertip) offered more propulsion than the fingers
closed together or with the fingers spread 0.64 cm. A study by Sidelnik and Young [7]
concluded that more propulsion can be gained with a finger spread of 10◦. Although
there are reasonable differences between these previous studies, maybe this effect must
be taken into account to analyse current results. The finger spreading in current hand
model is not the same between all fingers, the inter-digit distance between the index-
and mid finger is approximately 7− 8mm. Following Minetti et al. this would be the
finger spread for most optimal propulsion, which means that the maximum propulsive
force is already achieved concerning finger spread. Following Marinho et al. the effect
of finger spread is already offset. The effects of finger spreading of this hand model are
worth investigating in a future study.
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Discussion thumb position
Another study by Marinho et al. [8] showed that besides fingers spreading also the
orientation of the thumb compared to the hand is of importance for both the drag and
lift coefficient. Marinho et al. stated that adduction of the thumb presented slightly
higher values for the drag coefficient and moreover, that the position with the thumb
fully abducted allowed increasing lift coefficients for angles of attack of 45◦ and 90◦. In
current model the thumb is partially abducted. Probably the thumb position of current
model could be more optimal to allow the drag coefficient to increase. However at
other angles of attack, the abducted thumb could be more favorable to gain higher lift
coefficients. Moreover, the thumb position could probably explain the differences in
ratio of drag and lift forces between different hand models.

Considering the corresponding drag forces from the results in figure 4.6, shows that the
(trend of the) drag force is also in good agreement with a previous study by Sato and
Hino [3]. Figure 4.8 present the results for the drag force as a function of the velocity.
The red data represent the drag force resulting from the simulations. The blue data were
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Figure 4.8: The red data points represent the drag force as a function of velocity result-
ing from the simulations. The blue data points the drag force as a function of velocity
obtained from a study by Sato and Hino [3].
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obtained by digitizing the results obtained by Sato and Hino. Of course, these data have
a parabolic trend, according to (eq. (1.13)).

Snapshots simulation
Figures 4.9(a) and 4.9(b) show snapshots of a simulation at Re = 2.2 · 105 in both the
XZ- and Y Z-plane. The images were obtained using Tecplot. The colours indicate the
(non-dimensional) pressure field on the surface of the hand and at a cross section of the
flow. High pressure are coloured red, while the low pressure areas are denoted by blue.
The black vectors indicate the velocity field.
The flow in the XZ-plane at the level of the wrist can be roughly approximated by the
flow around a cylinder. Behind the hand a sort of Von Karman vortex street is visible.
The Reynolds number indeed seems to be fairly consistent with a familiar regime (fully
turbulent vortex street: 300 < Re < 3 · 105) for the flow around a cylinder, see Blevins
[22]. In the Y Z-plane a big vortex structure is visible just behind the fingers, originating
when passing the finger tips. But the flow in the Y Z-plane seems to become turbulent.

Also a section of the flow through at the level of the fingers is visualized, see figure
4.10. For clarity, the fingers are pointing out of the paper. The vectors indicate again
the velocity field, the colours represent the pressure. The visualized flow between the
fingers is interesting to observe in relation to the effect of finger spreading. With a small
finger spread the boundary layer around the fingers acts as a blockage. The surface
of the hand is in fact increased and this is a possibility to increase propulsion. At a
certain finger spread the effect is offset and the flow can easily pass through the fingers.
Possibly those effects can explain the amount of flow passing between the fingers with
different inter-digit distances in figure 4.10.

The vortex generation at the fingers is clearly visible. Behind each finger two vor-
tices are present, like the wake of a flow around a cylinder. Further downstream, the
flow seems to be turbulent inside the wake, but vortices shed from the little finger and
index finger seem to intact. Actually the flow around the fingers could be approximated
as the flow around an array of (small) circular cylinders. And in fact, locally the flow
around a finger is characterised by a smaller Reynolds number.
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(a)

(b)

Figure 4.9: The flow around a hand (Re = 2.2 · 105). The image was obtained by pro-
cessing the data with Tecplot. Colours in the back and on the hand indicate the (non-
dimensional) pressure. The black vectors indicate the velocity field. (a) XZ-section at
level of the wrist (b) Y Z-section
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Figure 4.10: The flow at a cross section at the level of the fingers, with the fingers
pointing out of the paper. Vortex generation behind the fingers is clearly visible. The
vectors indicate the velocity field, colours the pressure field.

4.2.2 Drag coefficient as a function of angle of attack

Throughout the second set of simulations the angle of attack was changed from 0◦ to
360◦ with increments of 15◦. The drag and lift coefficients were calculated using the
maximum projected area, which is again 0.029 m2 (2.0054 in non-dimensional units).
In the previous section it was concluded that the drag coefficient practically does not
change with velocity, the velocity was now kept fixed: the flows were all simulated with
the same Reynolds number Re = 2.2 · 105. This Reynolds number corresponds with a
velocity of 1.83 m/s, assuming the typical length of 0.12 m. Figures 4.11(a) and 4.11(b)
show the result obtained in this study in red. In the first figure 4.11(a) the results are
compared with previous numerical work by Bixler and Riewald, given in blue [2]. The
second figure 4.11(b) shows a comparison with previous numerical work by Sato and
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Hino, given in light green coloured data points [3]. The circles indicate again the drag
coefficient, while the lift coefficients are denoted by squares.

The results of previous studies were again digitized using Origin9 software. The
angle of attack α = 0◦ was defined differently in other studies. To compare with the
results obtained in this study, there was accounted for those differences in α = 0◦. The
results by Bixler and Riewald were obtained by using the three-dimensional Fluent CFD
code with a standard k-ε model. Sato and Hino also used a CFD code with an unsteady
three-dimensional Navier-Stokes solver based on a unstructured grid. The drag coef-
ficient measured in this study as a function of the angle of attack showed predictable
trends. The results resemble the data of previous studies concerning the trend, with the
peaks and lows approximately at the same angles of attack as in the previous studies
shown. However, most values seem to be off a fair amount.

The peak value of the drag coefficient is 1.13±0.01 and is located at α = 0◦, which
is consistent with the result by Sato and Hino, and Bixler and Riewald. For the sake of
clarity, with this orientation the hand palm is directed towards the inlet. Another peak
is visible when the back of the hand is orientated towards the inlet. The lowest value of
the drag coefficient, 0.62±0.01, is located at α = 255◦, this is somehow with the little
finger oriented towards the inlet. Also when the thumb is leading the drag coefficient
has a low. The lift coefficient peaks at α = 30◦ with a value of 0.26±0.01 and has its
minimum of−0.24±0.01 on α = 315◦. The location of the peaks and lows is consistent
with the results of Bixler and Riewald, although the peak in the study by Bixler and
Riewald is not clear. The peak of Sato and Hino seems to be at an higher angle of
attack α = 45◦. Moreover, the drag coefficient was dominant over the lift coefficient
throughout the whole range of angles tested. This was also reported by Loebbecke and
Mittal [41]. In general the drag coefficient in this study seems to be consequently higher
than previous studies across the entire range and the amplitude of the sinusoidal shape
trend of the lift coefficient seems to be smaller.

The discussion of these results is based on the same arguments as in previous section
4.2.1. The differences can not be explained by velocity and frontal surface differences,
since the drag coefficient is normalized on these variables. It is not expected that the
results will be consistent up to detail, due to the difference in hand models used. The
model by Bixler and Riewald is smooth and has closed fingers (figure 4.7(c)), whereas
the model of Sato and Hino is pretty coarse with the fingers wide open (figure 4.7(d)).
Maybe the small finger spread in this study is more favorable to obtain higher drag
forces/coefficients. And probably the thumb position could have a considerable effect
on both the drag and lift force and the ratio between those forces. Again only future
studies with this hand model could reveal these questions.
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Figure 4.11: Drag and lift coefficient as a function of the angle of attack. The drag
coefficients are indicated with circles, the lift coefficients by squares. Results of the
present study are shown in red. Panel (a) shows these results together with those of
Bixler and Riewald (in blue) [2]. Panel (b) shows the comparison with the results by
Sato and Hino (light green) [3]

.
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An addition of drag and lift forces
Studies of this kind have been arisen for the purpose of optimizing the propulsive capa-
bilities of the swimmer’s hands (and arms).
Propulsion by the legs is mainly due to lift forces, which turns out to be very effective.
However, for the hand, drag forces are by far dominant compared to the lift forces under
each angle of attack, as shown in previous section 4.2.2. Biggest drag-based propulsion
can be obtained with an angle of attack of 0◦, when the hand is perpendicular to the
flow. The question is whether a resultant force of the drag and lift can obtain more
propulsion than just drag-based propulsion. Non of the previous studies referred to this,
although this is a big question within swimming and furthermore the actual reason to
do these studies. Translating this question towards the arm movements of a swimmer, it
says: Could a diagonal or curvilinear path of the arms obtain more propulsion than just
pulling the arms straightly backward? The swimmer must move its hand in such a way
that the resultant force (a vector addition) of drag and lift obtains the propulsion. This
resultant force will not be exactly parallel to the direction of motion of the hand, like
the drag force.

The maximum resultant force from drag and lift force is found by
√

F2
d +F2

l . Figure
4.12 shows the resultant force as a function of the angle of attack. The maximum of the
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Figure 4.12: The resultant force of drag and lift. The resultant force has its maximum
at α = 0◦. This force turned out to be slightly bigger than the maximum drag force.
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resultant force is also found at an angle of attack of α = 0◦. The maximum resultant
force is furthermore slightly higher than the maximum drag force found, 54.8± 0.5 N
against 54.7± 0.5 N. It is a difference of just 0.08 N and this is considerably smaller
than the error margins of the forces. Thus it can not be stated that there is a significant
difference. But it can be stated that the resultant force is always bigger than the drag
force on its own, just looking at vector additions. To use this resultant force as a propul-
sive force, the arms must not be pulled straightly backward, but slightly diagonally with
an angle of θ = 3.05◦, as shown in figure 4.13. Still the hand palm must be used to
push against the water, the angle of attack (compared with direction of hand movement)
must be 0◦). Of course it is not doable for a swimmer to adjust for an angle of just 3◦, to

Fd

Fl

Fr

θ

Movement hand

Figure 4.13: The resultant force used for propulsion. The movement of the arms must
be slightly diagonal (3◦) with the hand palm leading (angle of attack α = 0◦).

gain 0.08 N extra propulsion. Furthermore it must be noted that these results are valid
for this particular hand model. Every hand is unique, drag and lift coefficient could be
slightly different for other hands. Therefore the angle θ could be slightly different as
well and it is even possible that the maximum resultant force is at a different angle of
attack.
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4.2.3 An accelerating hand
Like the simulations of the sphere, first a reference simulation was performed with the
initial conditions for the follow-up runs. The Reynolds number of the initial flow was
set on 2.2 ·105, so the initial velocity is 1.833 m/s. Acceleration of a = 0.5,1,2,3,4 and
5 m/s2 were imposed. Figures 4.14(a) and 4.14(b) show some results obtained when
accelerating the hand. The red graph represents the results for the drag force on the
hand, following from the simulations. The blue graph represents an analytical result
of the total force without an added mass term, see eq. (4.1). The added mass effect
is less obvious than the results of the sphere, because the imposed (non-dimensional)
accelerations set in the numerical scheme were much smaller. However, the jump in the
drag force at the start of the acceleration originates from added mass effects. Further
down the graph the difference is increasing, while it was expected to be constant. How-
ever, the drag coefficient of the hand turned out be strongly dependent on the position
in the domain, as will be reported in section 4.3. Actually, these simulations had to be
performed in larger domains, to obtain better results.

The difference in force was roughly picked by eye and gained surprisingly good
results for the added mass by using the relation F = ma. The added mass of a hand
turned out to be ∼ 0.7 kg with accelerations of a = 2,3,4 and 5 m/s2. At accelerations
of 0.5 and 1 m/s2 the differences between the graphs were overruled by the fluctuations
of the force. The real mass of a similar hand (+forearm) is approximately ∼ 0.9−1 kg
(assuming ρ = 1), thus the added mass is approximately 7/10 of the total mass of the
hand and forearm. For comparison: The added mass of a sphere is 1/2 of the total mass
of fluid displaced by the sphere. More tests must be performed to validate this result, at
least the order of magnitude seems to be quite well.

From these results it appears that the added mass concept also approximately applies to
the accelerating hand, with a force dependence as

F(t) = ama +
1
2

Aρv(t)2Cd,stationary, (4.2)

where ma = CaρVhand is the added mass of the hand, with Ca a constant indicating the
ratio of added mass with respect to the total mass of the hand. An interesting question
now is about the optimization of the trajectory of the hand and arms that maximizes
trust and minimizes energy.

Despite the fact that higher velocities (and forces) are obtained faster with larger accel-
erations, the accelerations do not seem to have an additional, significant advantage. Just
at the start of an acceleration a significant difference is present, due to the added mass.
If the behaviour of the drag force is really as reported in eq. (4.1), it can be concluded
that from a certain velocity the effect of added mass is not significant anymore. The
added mass is constant during the whole acceleration, while the other contribution of
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Figure 4.14: The drag force of an accelerating hand as a function of velocity. Panel (a)
shows the results with an acceleration of a = 2 m/s2. While panel (b) shows the results
at an acceleration of a = 5 m/s2.

the force increases with the velocity squared. Besides that, does added mass really con-
tribute in the propulsive forces anyway or is it just of importance regarding resistance?
Previous studies mentioned added mass just with regard to additional resistance. For a
future study it would be interesting to study the added mass effect in more detail as well
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as the differences between dynamic and static drag.

4.2.4 Summary results hand
To summarize the results achieved with the stationary hand:

• The drag and lift coefficient as a function of Reynolds number (or velocity) seems
to be constant in the range of simulations done. Moreover, our results show good
agreement with results of previous studies. The values of the drag and lift coeffi-
cients are 1.128±0.001 and 0.081±0.001, respectively.

• When changing the angle of attack, the trend of the data follows the expectations.
The maximum value of the drag force 1.13± 0.01 was obtained at an angle of
attack of α = 0◦. The maximum lift force (0.26±0.01) was obtained at an angle
of attack of α = 30◦. Moreover, the drag was dominant throughout the whole
range of angles tested.

• The resultant force of drag and lift has a maximum of 54.8±0.5N at an angle of
attack of 0◦. This force is 0.08N higher than the drag force, this is not a significant
difference. However, by pulling the arms 3◦ diagonally backward this resultant
force can be used for propulsion.

• The added mass of a hand and forearm turned out to be ∼ 7
10 of the total mass of

the hand and forearm. More tests must be performed to validate this result.

4.3 General considerations
Some general considerations about domain size, dependency on Z-position and influ-
ences of the wall which could have affected the results.

4.3.1 Effect of domain size
The effect of the domain size and the grid size on the drag coefficient was briefly in-
vestigated by some additional simulations on a sphere. Runs in domains sized 4×4×4
and 6×6×6 with equal grid size were performed. Table 4.2 shows the results. The do-
main size did not affect the drag coefficient of the sphere, the different results are even
within their error margins. The grid size seems to have its effect on the results, but the
drag coefficient was even larger than expected. However, to avoid lack of time issues,
the bulk of the simulations was not performed with finer meshes and larger domains.
A three-dimensional LES simulation of domain size 5× 5× 5, grid size 0.025 for 100
simulation seconds took already more than 48 hours on 4 processors.
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Table 4.2: The effect of domain size and grid size on the drag coefficient.

Re nodes domain size grid size drag coefficient
161x161x161 4x4x4 0.025 0.48±0.02

2 ·105 201x201x201 5x5x5 0.025 0.49±0.02
241x241x241 6x6x6 0.025 0.48±0.02
251x251x251 5x5x5 0.02 0.51±0.01
161x161x161 4x4x4 0.025 0.49±0.02

4 ·105 201x201x201 5x5x5 0.025 0.49±0.02
241x241x241 6x6x6 0.025 0.48±0.01
251x251x251 5x5x5 0.02 0.51±0.02

4.3.2 Dependency on Z-position

Although the results of a stationary at different velocities fitted the previous research
pretty well, the drag coefficient turned out to be dependent on the Z-position. Some
additional runs were done to figure this out. Results are shown in table 4.3. It was

Table 4.3: The effect of Z-position on the drag and lift coefficient. z = 0 is inlet, z = 5
is outlet

Re Z-position drag coefficient lift coefficient
1 1.46±0.02 0.11±0.02

1.5 1.13±0.01 0.08±0.01
2 ·105 2 1.01±0.02 0.07±0.01

2.5 0.99±0.06 0.07±0.03
3.5 1.11±0.21 0.07±0.13

expected that the drag coefficient would be much higher when the hand was placed
closed to the inlet. Actually this is a non-physical situation. The inlet velocity is forced
to be 1 and then rapidly forced to flow around the body. In reality the flow would
adjust more gradually. After this initial jump, the mean force shows a slight variation
with Z- position. However, this variation is comparable with the size of the temporal
fluctuations.

Comparing the reference simulation of the accelerating runs with the stationary runs of
a sphere, showed that also the drag of the sphere is dependent on Z-position. Actually
these results had to be gained in advance of all simulations. And the simulations had to
be performed in bigger computational domains.
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4.3.3 Influences of the wall
The numerical configurations of the flow domain and the boundary conditions was com-
pletely different for different studies. Most likely the flow around the hand in present
study experiences influences of the walls, especially in the Y -direction and from the
inlet. Therefore a brief consideration of the influences of the walls is done. The size
of this domain was a compromise between the simulation time, available memory and
size of the wake visible. The domain could not be chosen much larger and the mesh
could not be chosen finer to avoid memory and time issues. Free-slip walls do not
add any vorticity in the flow, but a non-penetrating condition applies (at the walls on
y =−2.5 and y = 2.5 vy = 0), forcing the fluid to be inside the boundaries. For the sake
of mass conservation, extra momentum is added to the flow, when the y-components of
the velocity are forced to be zero, the x- and z-components will increase. This addi-
tional momentum causes the drag coefficient to be slightly lower. The periodic walls on
x = −2.5 and x = 2.5 will not affect the results, the wakes of all simulations are well
within the boundaries and thus would not be influenced by the wakes of “neighbouring”
hands. Like at the free-slip walls the velocity at the inlet is forced to satisfy a specific
condition, i.e. vz = 1. When the body is placed too close to the inlet, the solution might
be non-physical. The flow should be given some distance to adjust for the presence
of the object. Otherwise extreme adjustments occur, leading to non-physical pressure
distributions and velocity distributions, causing the drag to be higher.

4.4 Calculation of forces from surrounding flow
The few results obtained for the calculation of forces, using conservation of momentum
(eq. (1.8)), from the surrounding flow are presented in table 4.4. The corresponding
forces resulting from the simulations are also presented in this table. The differences

Table 4.4: Force calculations from surrounding flow based on conservation of momen-
tum compared with force output of the IB code.

Re method Fx Fy Fz

1 ·105 output IB code 0.084 0.101 1.129
conservation of momentum 0.129 0.091 1.264

2.2 ·105 output IB code 0.069 0.099 1.108
conservation of momentum 0.056 0.110 1.352

2.8 ·105 output IB code 0.218 0.077 1.068
conservation of momentum 0.217 0.064 1.116

between these forces is due to the neglect of fluid velocities inside the object. Also the
neglect of viscous forces (i.e. turbulent viscosity) on the boundary of the domain could
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affect the results. However, the trend and order of magnitude of these data do already
agree up to a certain extent.

Unfortunately, the attempt to calculate the forces on the immersed body following
Graziani’s method [12] was unsuccessful. The different terms in eq. (1.12) must be
studied in more detail. A future study of this method is still of interest, because it would
be very useful in experimental studies of swimming.
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Validation of the immersed boundary code was made by performing simulations of the
flow around a sphere. The drag coefficient of the sphere followed the trend of docu-
mented values quite well, except for data points around the critical Reynolds number.
The fluctuations of the force components were analysed and a classification of different
types of wake flows was made. The (Reynolds number) regimes of those wakes were
consistent with previous research by Sakamoto et al. [24]. Furthermore the results of
the accelerated spheres were quite consistent with the added mass principle. These ar-
guments strengthened the confidence in the proper working of the numerical code, so
that we could continue with the study of a swimmer’s hand.

It can be concluded from this study that the drag and lift coefficients, of the particular
hand model that was used, are constant throughout a certain range of velocities (105 ≤
Re ≤ 2.8 · 105), namely Cd = 1.128± 0.001 and Cl = 0.081± 0.001. This result is
similar to what was found in previous research by Rouboa et al. [4]. By varying the
angle of attack it was concluded that the largest drag force is obtained while pushing
the hand palm exactly against the water. The drag coefficient had its maximum at angle
of attack α = 0◦, Cd = 1.128±0.001. The lift coefficient had its maximum at 30◦ with
Cl = 0.260±0.010. Although, the trend (sinusoidal graph) of these data was similar to
the trend observed in previous research, the actual values show a difference. Moreover,
the drag coefficient was dominant over the lift coefficient throughout the whole range
of angles of attack tested. This was also reported by Loebbecke and Mittal [41]. From
these results we suggest that swimmers to pull their arms backwards in a straight line
with the hand palms exactly facing the flow.
A resultant force of the drag and lift force is always larger than just the drag force.
By analysing the resultant force it was found that pulling the arms ∼ 3◦ diagonally
backward, with an angle of attack of α = 0◦ could gain 0.08 N more propulsive force
(total propulsive force 54.76 N). This result is not significant. For accelerating hands it
was found that the added mass is approximately ∼ 7/10 of the total mass of the hand.
Besides that higher velocities, and thus higher forces, are obtained faster with higher
accelerations, the acceleration does not seem to have additional, significant advantages
on the drag force.
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Throughout this study it became clearly that the comparison with other research (using
other hand models) is probably less relevant than analysing the results of one unique
hand. Of course, the outcome of other research provides an approximate reference and
trends can be compared, but it is probably not of importance to compare the values up
to detail. There will always be differences in comparing hand models. Future studies
on finger spreading, thumb position etcetera of this particular hand would give a more
complete picture to search and understand the highest possible propulsive force. In real-
ity the hands of different swimmers will have a slightly different set of force coefficients
as well. Studies like the present one are aimed at better understanding the trend of the
data and finding variations of importance, which could lead to more propulsion.

Finding the optimum propulsive force in a physicist point of view, does not have to be
the perfect propulsion for a swimmer. There is much more to be taken into account.
When swimming at a certain velocity, the swimmer will experience drag (in terms of
resistance) and the swimmer will generate propulsive forces. These propulsive forces
are dependent on muscular power as well. Furthermore, a swimmer will make conscious
and unconscious adjustments with the body, thus affecting the flow. All of this has to
be taken into account when searching for optimal propulsion. And there is more, for
example: What is energetically the best propulsion for a swimmer? A sprinter would
be less worried about this compared to a long-distance swimmer. And what is possible
regarding human movements? These are just a few examples out of many aspects to be
considered as well. Basically this kind or research helps us in understanding the basics
of propulsion in water. Results can be taken into account as background information to
adjust swimming techniques.

In retrospect, concerning the approach and methods, I would have taken a different ap-
proach. More tests should have been done in advance to figure out the dependency
on grid size, domain size and position etc. In addition, I have some doubts concern-
ing the advantage of using an IBM. Although lots of computational efforts are saved
by working with fixed grids, the computational efforts add up fast when performing
three-dimensional (IB) simulations. The mesh size is constant throughout the entire
computational domain. Concerning a flow around a complex body (for example the
hand), the mesh size must be chosen small enough, resulting in a fine mesh throughout
the whole domain, also in areas where it is not necessary. If more detailed results (finer
meshes) or larger computational domains are required, I would suggest to perform the
simulations on computers with more computational power. Concerning the IBM, maybe
alternative methods of IB are more useful for this study. There exist IBMs were unstruc-
tured meshes are used, with the finer grids close to the body. But in my opinion this is a
solution in between DNS and IB. It offsets the essence of a purely IBM of the separate
fixed (cartesian) grid for the flow domain and the surface grid of the immersed body, as
the grids are not be recalculated in each computational step. Applying an “unstructured”
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grid in IB probably means that the grid must be recalculated in each computational step
when moving the immersed body, despite the fact that the grid is not conformal with the
body. In that case, the profit concerning computational times and efforts compared with
purely IB will be limited.
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Appendix A

Results: Flow regimes sphere

The associated figures with the flow regimes stated in section 4.1.2. The development
in time of the forces in respectively the X-, Y - and Z-directions is shown in the figures
below. Both forces and time are non-dimensional, as they were computed in the code.
The red coloured graph shows the results of the gravitational forces. Gravitational ef-
fects were turned off in the simulations, thus gravitational forces are zero. The (dark)
blue graph indicates the viscous forces (eq.(1.10)). The (dark) green graph indicates the
pressure force (eq.1.9). The turquoise graph the total forces, an addition of viscous and
pressure forces.

Figure A.1: range: Re≤ 100, graph: Re = 20
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Figure A.2: range: Re = 200, graph: Re = 200

Figure A.3: range: Re = 400, graph: Re = 400
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Figure A.4: range: 1000≤ Re≤ 4000, graph: Re = 2000

Figure A.5: range: Re≥ 10000, graph: Re = 100000

III



A. Results: Flow regimes sphere

IV



Bibliography

[1] M. A. M. Berger, G. de Groot, A. P. Hollander. Hydrodynamic drag and lift forces
on human hand arm models. Journal of Biomechanics, 28(2):125–133, 1995.

[2] B. Bixler, S. Riewald. Analysis of a swimmer’s hand and arm in steady flow
conditions using computational fluid dynamics. Journal of Biomechanics, 35:713–
717, 2002.

[3] Y. Sato, T. Hino. Estimation of thrust of swimmers’s hand using CFD. Proceedings
of second international symposium on aqua biomechanisms, 2003.

[4] A. Rouboa, A. Silva, L. Leal, J. Rocha, F. Alves. The effect of swimmers’s hand/-
forearm accelerations on propulsive forces generation using computational fluid
dynamics. Journal of Biomechanics, 39:1239–1248, 2006.

[5] D. A. Marinho, T. M. Barbosa, V. M. Reis, P. L. Kjendlie, F. B. Alves, J. P. Villas-
Boas, L. Machado, A. J. Silva, A. I. Rouboa. Swimming propulsion forces are
enhanced by a small finger spread. Journal of Applied Biomechanics, 26:87–92,
2010.

[6] A. E. Minetti, G. Machtsiras, J. C. Masters. The optimum finger spacing in human
swimming. Journal of Biomechanics, 42:2188–2190, 2009.

[7] N. O. Sidelink, B. W. Young. Optimising the freestyle swimming stroke: the effect
of finger spread. Sport Engineering, 9:129–135, 2006.

[8] D. A. Marinho, A. I. Rouboa, F. B. Alves, J. P. Vilas-Boas, L. Machade, V. M. Reis,
A. J. Silva. Hydrodynamic analysis of different thumb positions in swimming.
Journal of Sports Science and Medicine, 8:58–66, 2009.

[9] M. D. de Tullio, A. Cristallo, E. Balaras, R. Verzicco. Direct numerical simulation
of the pulsatile flow through an aortic bileaflet mechanical heart valve. Journal of
Computational Physics, 622(1):259–290, 2009.

[10] P. K. Kundu, I. M. Cohen, D. R. Dowling. Fluid mechanics. Elsevier Academic
Press, 5th edition, 2012.

V



BIBLIOGRAPHY BIBLIOGRAPHY

[11] G. J. F. van Heijst. Lecture notes, Fysica van Transportverschijnselen. Eindhoven,
Universtiy of Technology, 2010.

[12] G. Graziani, P. Bassanini. Unsteady viscous flows about bodies: Vorticity release
and forces. Mecannica, 37:283–303, 2002.

[13] E. W. Maglischo. Swimming fastest. Human Kinetics, 2003.

[14] Tina Osness. Swimming Forces. http: // ffden-2. phys. uaf. edu/

211. fall2000. web. projects/ Tina% 20Osness/ Physics% 20Project%

20Index. html .

[15] Fluid Dynamics of Swimming. http: // www. fi. edu/ wright/ again/

wings. avkids. com/ wings. avkids. com/ Book/ Sports/ instructor/

swimming-01. html .

[16] F. E. Fish. Transition from drag-based to lift-based propulsion in mammalian
swimming. American Zoologist, 36:628–641, 1996.

[17] C. M. Colwin. Breakthrough swimming. Human Kinetics, 2002.

[18] S. Hochstein, R. Blickhan. Vortex re-capturing and kinematics in human under-
water undulatory swimming. Human Movement Science, 30:998–1007, 2011.

[19] R. Arellano. Vortices and propulsion. Applied proceedings of the XVII Interna-
tional Symposium on Biomechanics in Sports: Swimming, pages 53–65, 1999.

[20] R. Arellano, J. M. Terrs-Nicoli, J.M. Redondo. Fundamental hydrodynamics of
swimming propulsion. Portugese Journal of Sport Sciences, 6(2):17–22, 2006.

[21] Tubes, Crossflow over. http: // www. thermopedia. com/ content/ 1216/

?tid= 104&sn= 1410 .

[22] R. D. Blevins. Flow-Induced Vibrations. Van Nostrand Reinhold, 1990.

[23] H. Schlichting, K. Gersten. Boundary-layer Theory. Springer, 2000.

[24] H. Sakamoto, H. Haniu. A study on vortex shedding from spheres in a uniform
flow. Journal of Fluids Engineering, 112(387), 1990.

[25] J. Pantaleone, J. Messer. The added mass of a spherical projectile. American
Journal of Physics, 79(12):1202, 2011.

[26] A. H. Techet, B. P. Epps. Derivation of added mass around a
sphere. http: // web. mit. edu/ 2. 016/ www/ handouts/ Added_ Mass_

Derivation_ 050916. pdf .

VI

http://ffden-2.phys.uaf.edu/211.fall2000.web.projects/Tina%20Osness/Physics%20Project%20Index.html
http://ffden-2.phys.uaf.edu/211.fall2000.web.projects/Tina%20Osness/Physics%20Project%20Index.html
http://ffden-2.phys.uaf.edu/211.fall2000.web.projects/Tina%20Osness/Physics%20Project%20Index.html
http://www.fi.edu/wright/again/wings.avkids.com/wings.avkids.com/Book/Sports/instructor/swimming-01.html
http://www.fi.edu/wright/again/wings.avkids.com/wings.avkids.com/Book/Sports/instructor/swimming-01.html
http://www.fi.edu/wright/again/wings.avkids.com/wings.avkids.com/Book/Sports/instructor/swimming-01.html
http://www.thermopedia.com/content/1216/?tid=104&sn=1410
http://www.thermopedia.com/content/1216/?tid=104&sn=1410
http://web.mit.edu/2.016/www/handouts/Added_Mass_Derivation_050916.pdf
http://web.mit.edu/2.016/www/handouts/Added_Mass_Derivation_050916.pdf


BIBLIOGRAPHY BIBLIOGRAPHY

[27] C. Caspersen, P. A. Berthelsen, M. Eik, C. Pakozdi, P. L. Kjendlie. Added mass
in human swimmers: Age and gender differences. Journal of Biomechanics,
43:2369–2373, 2010.

[28] J. Kim, P. Moin. Application of a Fractional-Step Method to Incompressible
Navier-Stokes Equations. Journal of Computational Physics, 59:308–323, 1985.

[29] R. Mittal, G. Iaccarino. Immersed Boundary Methods. Annual Review Fluid Me-
chanics, 37:239–261, 2005.

[30] J. Y. Shao, C. Shu, Y. T. Chew. Development of an immersed boundary-phase
field-lattice Boltzmann method for Neumann boundary condition to study contact
line dynamics. Journal of Computational Physics, 234:8–32, 2013.

[31] M. Vanella, E. Balaras. A moving-least-square reconstruction for embedded-
boundary formulation. Journal of Computational Physics, 228(18):6617–6628,
2009.

[32] M. Uhlmann. An immersed boundary method with direct forcing for the simu-
lation of particulate flows. Journal of Computational Physics, 209(2):448–476,
2005.

[33] H. J. H. Clercx. Lecture notes, Turbulent flow phenomena. Eindhoven, University
of Technology.

[34] S. A. Orszag. Analytical theories of turbulence. Journal of Fluid Mechanics,
41:363–386, 1970.

[35] R. Clark, J. Ferziger, W. Reynolds. Evaluation of subgrid-scale models using an
accurately simulated turbulent flow. Journal of Fluid Mechanics, 91:1–16, 1979.

[36] P. Majander T. Siikonen. Evaluation of Smagorinsky-based subgrid-scale models
in a finite-volume computation. International Journal for Numerical Methods in
Fluids, 40:735–774, 2002.

[37] F. Nicoud, F. Ducros. Subgrid-scale stress modelling based on the square of the
velocity gradient tensor. Flow, Turbulence and Combustion, 62(3):183–200, 1999.

[38] R. Verzicco. personal communication.

[39] U. M. Ascher, L. R. Petzold. Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. Society for Industrial and Applied
Mathematics, 1998.

VII



BIBLIOGRAPHY BIBLIOGRAPHY

[40] R. Verzicco, P. Orlandi. A Finite-Difference Scheme for Three-Dimensional
Incompressible Flows in Cylindrical Coordinates. Journal of Computational
Physics, 123(2):402–414, 1996.

[41] A. von Loebbecke, R. Mittal. Comparative analysis of thrust production for dis-
tinct arm-pull styles in competitive swimming. Journal of Biomechanical Engi-
neering, 134, 2012.

VIII


	Abstract
	Contents
	Introduction
	Theory
	Governing equations
	Propulsion and drag in swimming
	Drag
	Propulsion

	Flow past a cylinder
	Flow past a sphere
	Added mass

	Numerical Method
	Methodologies
	Immersed boundary method
	IB method vs conventional methods

	Direct-forcing scheme and MLS approximation
	MLS reconstruction
	Calculation of forces

	DNS and LES solver
	DNS
	LES
	LES applied in the code

	Time advancement
	Adams-Bashforth

	Integration scheme

	Method
	Numerical setup
	Output of simulations
	Simulations with a sphere
	Accelerating sphere

	Simulations with a hand
	Simulations with an accelerating hand

	Calculation of forces from surrounding flow

	Results
	Drag coefficient of a sphere
	Drag coefficient of a stationary sphere
	Wake survey
	Accelerating sphere
	Summary results sphere

	Drag and lift coefficient of a hand
	Drag and lift coefficient of a stationary hand
	Drag coefficient as a function of angle of attack
	An accelerating hand
	Summary results hand

	General considerations
	Effect of domain size
	Dependency on Z-position
	Influences of the wall

	Calculation of forces from surrounding flow

	Conclusion
	Results: Flow regimes sphere
	References

