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ABSTRACT 
This master thesis describes a research project conducted within the Customer Service department at ASML. 
The possible value of a certain type of machine data for diagnostic and prognostic purposes was investigated, 
and a decision support model has been developed around it. A combination of several data mining techniques 
and statistical process control was used to analyse the data and build a decision support model. Furthermore, 
the Cross Industry Standard Process for Data Mining (CRISP-DM) was used as a guide throughout the thesis. 
Due to the uncertain environment of both the data itself and application of that data, the roadmap explored 
during the project is an important part of the thesis. The thesis concludes with a discussion on the main 
findings, limitations and future recommendations.  

Keywords and phrases diagnostics, monitoring, prognostics, proactive maintenance, preventive maintenance, 
condition based maintenance, statistical process control, data mining, CRISP-DM 
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EXECUTIVE SUMMARY 
This thesis is executed within ASML customer service. As world leader in the production of lithography systems 
for the semiconductor industry, ASML wants to preserve its market share by satisfying its customers. 
Lithographic systems are complex capital goods that require large financial investment. As a result, the 
opportunity cost in case of machine downtime is also high. To satisfy customers, ASML provides a maintenance 
support service to achieve an as high as possible availability. To achieve such availability, any form of 
downtime should be resolved as quickly as possible or even prevented. While currently the maintenance is 
mainly failure-based, ASML wants to move towards pro-active maintenance. With diagnostics and prognostics 
on machine status, the unscheduled downtime can be minimized. As part of this Condition Based Maintenance 
(CBM) research, the following research goal was developed: 

“Develop a prognostic/diagnostic tool applicable to machines that find themselves in the middle part of their 
lifecycle (constant failure rate).” 

To achieve this goal, the Cross Industry Standard Process for Data Mining (CRISP-DM) approach was followed. 
Via the steps, business understanding, data understanding, data preparation, modeling, evaluation, and 
deployment a strong judgement of the possibility of diagnostics and prognostics for CBM purposes was 
obtained. This executive summary will continue with short describtions and conclusions for each of the steps 
of CRISP-DM, after which the main findings and future recommendations are summarized. 

The first step of this thesis was business understanding. General insight into how data is collected and stored 
was obtained, and the available software tools were explored. The most important result of the business 
understanding phase was to get a feeling about the ASML CBM environment. As a final step of business 
understanding, it was decided to select machine constant data as the data type to be analysed.  

During the data understanding phase, the content and behaviour of the machine constant data was reviewed. 
The data proved to include only few missing data entries or impossible values (<1%). It was concluded that it is 
impossible to understand the behaviour of machine constants by analysing it for individual machines, but only 
via reviewing the population as a whole. When reviewing the behaviour of the population, the well-known 
bell-shape of the normal distribution was observed as the standard behaviour of machine constant values. This 
was an important observation for the leftover part of the CRISP-DM cycle.  

The selected data set only required small adaptations before it could be used as input for the modeling phase. 
During the data preparation phase, a small sample of the total number of machine constants was selected. The 
requirements of these machine constants were a numeric value, positive variance, and a total number of 
entries of more than one-hundred. The reason for this was to achieve a normal distributed dataset, applicable 
to statistical process control. 

During the modeling phase, eight different statistical sub-models were combined into one model. Based upon 
statistical process control, the behaviour of machines (in the form of machine constants) is searched for 
anomalies. Each of the eight different models considers a different form of behaviour and makes a judgement 
based upon the warning limits of plus and minus two times the standard deviation from the mean of the 
normal distribution of the particular behaviour reviewed. This model proved able to identify anomalies in 
machine constant behaviour and provides a list of outliers. 

During the evaluation phase, the list of outliers obtained via the model created during the modeling phase was 
evaluated for diagnostic and prognostic value. The diagnostic value is defined as the possibility to identify 
machines that are more likely to be broken down and the identification of the exact moment that this is the 
case. After testing the significance of the diagnostic value of the outlier list (and with it the eight different 
statistical sub-models), it could be concluded that the model could add diagnostic value to the CBM 
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environment. There is a significant relation between machine constant anomalies and the current machine 
status. Regarding the prognostic value of the machine constants; even after four different attempts to find a 
relation between anomalies in machine constant behaviour and upcoming failures, there was no reason to 
assume that there is any kind of prognostic value in this type of data. All attempts resulted in insignificant 
results.  

Because the deployment phase was not performed, it is part of the future recommendations. As future 
recommendations regarding the deployment of the diagnostic value of the model, it is suggested to validate 
the results in practice with the use of the expertise of the field engineers or any other expert. The developed 
tool is not ready for practical implementation, but could be with only a few adaptations. These adaptations 
mainly consist out of automating the process, making it user friendly, bug free, and able to produce a clear 
report for the field engineer. 

As found during the evaluation phase, this thesis concludes that only diagnostic value can be extracted from 
the selected dataset, and that prognostics will more likely be found in another data type or possibly not at all. 
The concept of outliers is especially useful for the middle part of the machine life cycle (bathtub curve), 
because this area is described as a rather stable and homogenous environment with a low constant failure 
rate. This description suits the normal distribution, in which the outlier mechanism works at its best. To make a 
judgement with absolute certainty, the diagnostic value needs to be validated in practise and the limitations 
on prognostic value should be verified.  

Summarizing the main thesis findings with two sentences, could be done as follows: 

• A significantly successful machine constant monitoring tool was developed, to assist in the diagnostics 
of the CBM environment for machines in the middle part of their lifecycle. 

• Four different attempts have failed in proving the prognostic value of machine constants, which leads 
to the recommendation not to continue the research regarding extracting prognostic value from this 
type of data.  
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1 INTRODUCTION 
This master thesis is part of the on-going cooperation between the TU/e and ASML, on Condition Based 
Maintenance (CBM) research. The goal of this thesis was the development of a diagnostic and prognostic 
maintenance tool for ASML machines that find themselves in the middle of their lifecycle. The tool aims at 
increasing the availability of the lithographical machine, by reducing the unscheduled downtime. A new type 
of unexplored data (machine constants) was used to extract machine information. 

Due to confidentiality of ASML critical business information, parts of this thesis are unavailable in the 
published report (ASML-only appendix 12). This detailed background information is non-critical for the 
readability of the thesis, but is intended as support for current and future stakeholders within ASML. The 
report is organized in 12 chapters, starting with this introduction and ending with a description of the 
literature reviewed. To improve the readability of this thesis, a list of abbreviations and acronyms is given in 
appendix 3. In the next chapter, the thesis starts off with an introduction of ASML and their business 
environment for the unfamiliar reader.  
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2 COMPANY DESCRIPTION 

2.1 COMPANY PROFILE 
ASML is the world's leading provider of advanced lithography systems for the semiconductor industry. The 
company manufactures complex technology machines that are critical to the production of integrated circuits 
or chips (ASML, About, 2013). ASML designs, develops, integrates, markets and services these advanced 
systems used by their customers to create chips that power a wide array of electronic, communications and 
information technology products. Among ASML’s customers, there are many well-known, market leading 
companies such as Samsung, Intel, Toshiba, Texas Instrument, IBM, Micron and TSMC. Founded in the 
Netherlands in 1984, the company is publicly traded on stock markets Euronext (Amsterdam) and NASDAQ 
since 1995. 

ASML’s corporate headquarters is in Veldhoven, the Netherlands. Manufacturing sites, R&D facilities, 
Technology development centres, and training facilities are located in the US, Taiwan and the Netherlands. 
Additional Technology development centres and training facilities are also located in Japan and Korea. By this 
network of facilities an optimal service is provided to its customers in more than 55 locations in 16 countries. 
Despite the vast growth of ASML towards their current size, the organization is still characterized by its close 
cooperation – internally, and with customers and suppliers worldwide. This close cooperation atmosphere 
reflects ASML’s business strategy, which is based on technological leadership, operational excellence and 
customer focus (ASML, Profile, 2013). 

Due to technological progress ASML is able improve their machines with such a speed that the company can 
follow the Moor’s Law (ASML, Corporate Presentation, 2013). In general, this means that the specifications of 
their machines improve with a factor 2 within two years (doubling or dividing attribute values with a factor 2). 
An appropriate way to measure this trend is by looking at the total number of Petabytes (one Petabyte is one 
million Gigabytes) of computer memory produced every year thanks to the introduction of new ASML 
scanners. ASML's positive economic and environmental performance can be proved when the company’s sales 
and emissions are measured against the increasing number of Petabytes made on ASML machines. This is how 
ASML adds value for its customers and they will continue with this proven strategy in the future (ASML, 
Performance and Targets, 2013). 

As a side-effect of the technological progress, also the complexity of the lithography machines rises. Therefore 
ASML does not only sell machines, but is also able to take care of fab start-up, training, maintenance and other 
support services. ASML’s service contract portfolio provides a flexible solution to meet any customer’s need. 
This enables customers to focus on their core business and gain and sustain a competitive edge in the 
marketplace, with the use of the best lithography systems available (ASML, Profile, 2013). 

ASML’s largest business focuses on lithography systems for 200- and 300-millimeter diameter wafers, and the 
immersion lithography systems are the state-of-the-art technology in this field. Other business activities 
include customized solutions (e.g. for compound semiconductors), software-enhanced lithography and the 
commercialization of extreme ultraviolet (EUV) lithography (ASML, Organization, 2013). 

Figure 1 shows the general hierarchical structure of ASML, with the Supervisory Board on top.  
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FIGURE 1. ASML BUSINESS STRUCTURE 

 

2.2 LITHOGRAPHY SYSTEMS 
ASML’s core product is the lithography systems. The machines are used for the production of computer chips. 
The company uses laser to optically image a defined pattern upon a silicon wafer, coated with a film of light-
sensitive material, via a high-detailed lens. After exposure, the unexposed parts of the wafer are etched way, 
to reveal the projected pattern. The wafer is then further processed by repeatedly exposing the wafer to the 
above steps, until the final transistor patterns is generated (ASML, Corporate Presentation, 2013). See Figure 2 
for an overview of the production cycle of a wafer. The different layers on the wafer do not necessary get 
applied on the same (type of) machine and several non-lithographic processes take place between layers. The 
lithographic process can be done with several different approaches including dry lithography, immersion 
lithography, and EUV. The current industry workhorse, the high-end Twinscan NXT:1950i system (2011, see 
Figure 3), uses the EUV approach and is able to produce features down to 32 nanometres at up to 200 wafers 
per hour (ASML, Press Releases, 2013). With the size of a cargo container and a price tag of on average 27 
million euros, this piece of cutting edge technology dominates the three main lithography system markets 
worldwide, namely Asia, Europe and the United States (ASML, Performance and Targets, 2013).                                                                                      

    

                                                                      

 

  

FIGURE 3. TWINSCAN NXT:1950I FIGURE 2. WAFER PRODUCTION CYCLE 
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3 RESEARCH DESIGN 
In this chapter a description of the thesis’s research design is given. First, a problem statement is described 
(3.1). Accordingly, the research question and several sub questions are formulated (3.2). This is followed by a 
definition of the thesis’s scope (3.3), literature overview (3.4), thesis deliverables (3.5), roadmap (3.6), and the 
thesis time schedule (3.7).   

3.1 PROBLEM STATEMENT 
ASML’s customers continuously want to increase their productivity and decrease cost involved. The availability 
of the lithographic machines, provided by ASML, has a relevant influence on the productivity of the 
manufacturing companies. To be able to satisfy customer’s requirements on system availability, ASML needs 
to reduce total downtime. One method for decreasing total downtime is the application of Condition Based 
Maintenance (CBM), which is a proactive maintenance strategy based on machine health status. By monitoring 
the status of machines, more efficient scheduling and preparation of upcoming failures can be achieved. To 
successfully apply CBM it is important to have prognostic and diagnostic tools that adequately represent the 
actual machine status. Solutions for applying CBM range from maintenance optimization models 
(Timmermans, 2012) up to data-driven prediction models (Cakir, 2011).  

The latest area of ASML’s interest is the diagnostics and prognostics of machine (parts) that find themselves in 
a particular section of their lifecycle. The failure rate of a part over its lifetime can be visualized in the well-
known bathtub curve (Figure 4), which divides the lifetime into three different phases. The first phase of the 
lifecycle is characterized by a high initial failure rate. As a new product is developed, many issues are not yet 
found or solved. With updates and tuning of the product, this infant mortality decreases over time to a more 
steady state. While some companies do not bring their product to the market until it is free of child deceases, 
ASML’s strategic advantage is built upon providing the customers with cutting-edge technology as soon as 
possible. Due to the newness of the technologies within the machines, they usually start in the first phase of 
the lifecycle. Customers agree with receiving unstable products, because the benefits of new technologies 
outweigh the drawbacks of a higher initial failure rate. This second phase of the lifecycle is characterized by a 
constant failure rate, because most of the initial issues are resolved and the influence of age and wear out is 
not yet significant. During this phase failures occur due to unusual events which are considered random. In the 
final phase of the lifecycle of a part the influence of age and wear out on the failure rate becomes noticeable. 
The failure rate increases with time due to slow deterioration of parts.   
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Most tools available for analysing machine status focus on the final phase of the curve, where the parts 
experience deterioration. The interest on this final part of the cycle can be explained by the fact that the 
increase in rate of failure leads to more failures (more downtime and cost), and the fact that it is possible to 
apply classical theoretical models in analysing the deterioration of parts over time. With this part of the cycle 
being covered relatively well, ASML’s future focus is on tools that are able to analyse the behaviour of 
machines in the middle part of the curve (constant failure rate). Despite the fact that the number of failures is 
relatively low, these totally unexpected failures can lead to long down-times. Due to the fact that deterioration 
is not the main cause of failure in this part of the cycle, the application of rather new data-driven methods 
need to be explored. ASML supposes that certain machine data, described in paragraph 5.1, could be related 
to machine health status and performance and could be used to fill in the gap of CBM tools in the middle part 
of the lifecycle.  

 

 

FIGURE 4. BATHTUB CURVE 

Besides the possible relation between machine data and failure rate, ASML suspects that this data could also 
be used for optimizing the testing and calibration. A vast amount of downtime is related to the calibration and 
testing activities that need to be done after a machine down (part swap), or setup of a new machine. ASML felt 
there were opportunities in minimizing the downtime related to these activities by optimizing the selection of 
test executed, based on different kind of machine part swaps. This can be seen as a different problem from the 
actual diagnostics and prognostics of machine health status, but is still part of the whole CBM methodology. 
Depending on the condition of the machine, the most efficient set of tests and calibrations can be executed. 
Summarizing the whole problem statement; ASML wants to extent and improve their CBM approach with the 
use of machine data, specifically applicable to machines in the middle part of their lifecycle.   
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Develop a prognostic/diagnostic tool applicable to machines that find 
themselves in the middle part of their lifecycle (constant failure rate). 

3.2 RESEARCH QUESTION 
 

 

 

 

The research goal can be achieved via the following sub-questions: 

• What does the selected data represent? 
a. How is the quality of the selected data? 
b. How does the selected data behave? 
c. Which tooling/software is applicable to the data? 

 
• Is it possible to extract any useful information from the selected data? 

a. What is a suitable approach for analysing a large, rather unknown data source?  
b. Is it possible to apply any of the by literature suggested methods of data mining to the 

selected data? 
c. Is it possible to relate the selected data with the current machine status? 
d. Is it possible to relate the selected data with the future machine status and include this into a 

Preventive Maintenance approach? 
 

• What could be the future applications of monitoring the selected data? 

The build-up of the research questions is focused on finding a possible solution path for analysing the specific 
area of the machine part lifecycle. See paragraph 12.1 for a description of prognostics and diagnostics. The first 
sub question searches for a general understanding and interpretation of the data given. These questions are 
answered during the business and data understanding phase of the thesis. The second sub question uses the 
generated data knowledge to select and apply a data mining method for extracting useful information from 
the dataset. It approaches the data from both a diagnostic and prognostic view. The third sub question focuses 
on an advice about the direction this research should continue after this thesis, based upon the gathered 
knowledge throughout the process.  
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3.3 SCOPE 
In accordance with the research questions, the thesis scope is defined as follows: 

(+) Data mining: Appropriate methodology is reviewed to analyse the data provided by ASML, following the 
CRISP-DM process steps described by Wirth et al. (2000).  

• CRISP-DM. 

(+) Pro-Active Maintenance (PAM): This cross-functional ASML project team is researching the possibilities and 
applications of condition-based maintenance via prognostic and diagnostic tooling. This thesis took place in an 
exploratory area of the PAM project for which the added value of machine constant monitoring was uncertain, 
but promising. Machine Constants could be the solution for machine monitoring issues, for machines in the 
middle of their lifecycle.  

• Pro-Active Maintenance (PAM). 

(+-) Data: The initial dataset consisted out of the data from 642 machines, for 89309 machine constants (see 
paragraph 5.1), over a period of +-1.5 month (01-Feb-13 till 15-Mar-13). This dataset includes all machines and 
their constants that were set and stored during the selected period. Due to the high number of machine 
constants, even a rather small period leads to a large dataset. The benefit of a large dataset is that the 
possibility of finding interesting results increases, but the drawback is the large calculation power required. 
The initial dataset was later on filtered during the data preparation phase of the thesis (see chapter 7), to meet 
the modeling requirements and project goal. 

• 642 machines.  
• 89309 machine constants. 
• 01-Feb-13 till 15-Mar-13. 

 (+) Machine & Factory Constants: The machine constants are settings defined by machine software drivers, 
after automated tests/calibrations, which determine how the machine should perform. Factory constants are 
similar, but differ from machine constant in the fact that factory constants represent the influence of customer 
decisions on the settings of the ASML machine (for example, the edge clearance). All machine/factory 
constants relate to a physical attribute within the lithographical machine and influence the three basic KPI’s of 
ASML’s machines; Overlay, Imaging and Throughput (see paragraph 5.1). The focus of this research project is 
not on improving the specifications of the machines themselves, but trying to maximize the overlay, imaging 
and throughput with the use of the constants data. Throughout the thesis the term ‘machine constant’ will be 
used for both machine & factory constant, because 97.97% of the data is related to machine constants.  

• Machine Constants 

 (-) Job (process) Constants & Test Constants: Job and Test constants are not included in the scope of the 
thesis, because they are not included in the data. Job constants differ from the previous mentioned machine 
and factory constants, because they do not represent any of the settings that can be influenced by ASML’s 
machines. Job Constants represent the influence of non-ASML processes before or in-between wafer 
processing by the lithography system. Because Job constants may influence the output of the machines, it may 
be of future interest to include these external influences into the modeling. Test constants, usually design 
constants, are used as input for the test, calibration, and performance software. They are not within scope of 
this thesis because these constants are input data that do not fluctuate without human intervention.  

(-) Background information: Due to the time limitation on a thesis project, it is not possible to get familiar with 
the physical meaning of the machine constants, their values and the technical relations between machine 
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constants. It may be possible that interesting information in the data cannot be interpreted without this 
knowledge and therefore the suggestion that machine constants can be useful indicators of machine status 
could be falsely rejected.  

3.4 LITERATURE 
An overview of the literature review that has been conducted for this thesis is available in chapter 12. 

3.5 DELIVERABLES 
The main deliverable is the analysis of the machine constant data and a conclusion on the applicability of that 
data for CBM purposes. It was a serious possibility that the research into the application of machine constants 
led to a rejection of the suggested hypothesis, and that the main deliverable would become an advice on 
which direction to continue the search for prognostic and diagnostic tools for machines in the middle part of 
the bathtub curve. For this reason, the thesis deliverable can be described as the total roadmap from start till 
end with, all dead ends, described in detail. Preferably the deliverable consists out of a useful tool for diagnosis 
and prognosis of machine status.  

TOOLING DELIVERABLE 
An additional part of this research project is to investigate the application of certain tooling to the dataset. The 
goal of this investigation is to find out the pros and cons of several software packages available and select an 
approach that enables non- data experts to make use of the information stored within the data in a rather 
simple way.  

3.6 ROADMAP 
This paragraph describes the different paths and directions investigated during this thesis.  

SELECT RESEARCH APPROACH  
There are two different possible approaches for solving the business problem, depending on the order of 
acquiring external background information and developing a diagnostic tool. One option is to start with 
examining the requirements of the final solution and the possible methods and tools that may be used to 
achieve the thesis goal. This approach is called Knowledge Driven datamining. By collecting addition 
information about the data (how/why/when is it collected, and what does it represent), solution 
requirements, and the purpose of the tool in solving the business problem, it is easier to navigate through the 
CRISP-DM framework (Wirth & Hipp, 2000). With a better understanding of the direction of a method towards 
the goal, dead-ends are easier identified and then cut off. The downside of this approach, shaped by expert 
knowledge, is that creative and innovative directions are closed off from the solution space due to the 
predefined directions.  

With the second option the approach starts with analysing the data without any pre-knowledge. This approach 
is called Data Driven datamining. The output of the data analysis is then related to the additional information 
about the data. The advantage of this approach is that no direction is being neglected beforehand and any 
unexpected information may possibly be found. The downside of this approach is that it is difficult to supervise 
the progress towards a final result and to abort unfulfilling directions in time. The decision between both 
approaches depends on the preference for efficiency control or creative freedom. It is noteworthy to mention 
that a data driven approach is currently being used in the field by the engineers. They encounter a problem, 
see something in the data and try to solve it via trial and error. 

Abandoning the open-mindedness may especially have a negative influence for this business problem, which is 
rather new and undefined. On the other hand, not defining the solution space may lead to difficulties due to 
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the high quantity of different data-mining methods, which are closely related and suitable for almost similar 
problems. This relates to the issue concerning the time restriction related to this master thesis. It is impossible 
to examine and apply the whole variety of data-mining methods within the given time. Taking everything into 
account, the decision was made that the most appropriate approach for this business problem was to first 
start with collecting the background information and defining a clear goal for the thesis.  

The intended approach was then obstructed by the fact that this background information was hard to obtain 
and/or understand. Machine constants relate to every single module of the machine, while knowhow about 
each single module is spread over several departments and even more individual people. Therefor it is not 
possible to understand and explain general behavior of machine constants, before starting the data mining 
process. The specific and complex behavior requires too much expert knowledge to acquire in a short period of 
time. Due to the time restrictions of this thesis it was unjustifiable to await the expert knowledge. Because 
clear answers regarding machine constant knowledge kept out, the preferred expert driven approach evolved 
into the open data-mining approach.  

• Research Approach: Knowledge Driven → Data Driven 

SELECT THE DATA TO ANALYSE 
The first two suggested data sources were machine parameter values and machine constants. Parameters are 
already used to monitor the machine status, but are unable to assist in the analysis of the particular part of the 
machine life cycle where a low random constant failure is applicable. Data about machine constants was 
therefore selected because it was a rather undiscovered area of machine data. General assumption was that 
machine constants should be related to machine status, because machine constants are (indirectly) related to 
physical attributes in the machine.  

At the beginning of the thesis research the complete original machine constant dataset was part of the scope. 
At first, the scope of the data was further reduced to increase its homogeneousness. To do so, only a part of 
the existing machine types (NXT, NXE, XT, and AT) was selected. Later on it was recommended to further 
reduce the number of machine types to only the NXT machines, because of the lack of similarity between 
different machine types. Other filtering criteria like the variance, sequence number, and data format were also 
added during the first reduction of scope. See paragraph 7.2 for the argumentation of the adaptation of scope 
and the filtering criteria. 

• Data Type: Machine Constants & Machine Parameters → Machine Constants 
• Machine Type: All machines → NXT, NXE, XT, AT → NXT 

SELECT TOOLING AND HARDWARE 
Having no pre-knowledge in the field of data mining, selecting and getting familiar with the right tooling, for 
this business problem, was an important step of the thesis. Several tools like Weka, KNIME, SPSS, MATLAB, and 
RapidMiner were investigated. As described in paragraph 5.2, it was decided to focus on RapidMiner. The 
combination of large functionality (e.g. Weka & R implementation), a strong community and being an open 
source freeware supported the decision to select RapidMiner instead of any of its competitors. 

The first plan was to perform all data preparation, modeling and evaluation steps on a non-ASML device (TU/e 
laptop), but due to high calculative requirements and ASML data security reasons it was decided to perform 
the CRISP-DM steps on two desktop computers. One performs as server (with the use of MySQL), while the 
other executes the analysis (with the use of RapidMiner). Using ASML equipment would also provide the extra 
advantage of having the environment set up for future research or application with RapidMiner and MySQL. 

During the start-up phase of the thesis, in which the understanding and explanation of machine constant 
behaviour was still taking place, the visualization of data was explored. With the use of SpotFire (see 
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paragraph 5.2) it was possible to visualize the data in several different ways. While exploring the many 
possibilities of SpotFire there could be concluded that it is a great tool to provide insight into a dataset and 
useful visualization options for reporting result, but that the machine constant data is to disperse and 
heterogeneous to be able to extract information from the visualization. Without the pre-knowledge of 
machine constant behaviour, even with the great possibilities of SpotFire, extracting useful information from 
the dataset is like looking for a needle in a haystack.   

• Tooling: Weka, KNIME, SPSS, MATLAB, RapidMiner, MySQL → RapidMiner & MySQL 
• Suggestion: SpotFire 

STATISTICAL METHOD 
Largely influenced by the selected research approach, the method of analysis also evolved as the research 
proceeded. At the start of the thesis the main idea was to identify interesting patterns within the dataset, but 
because the definition of ‘interesting’ was unknown (due to the lack of expert knowledge available) the focus 
moved towards identifying abnormal machine behaviour. Abnormal machine behaviour is defined as 
behaviour that is different from the general behaviour of the machine population. If abnormal machine 
constant behaviour would indeed be related to machine status, this could become the ‘interesting’ pattern to 
look for. See paragraph 6.2 and 6.3 for more details on machine constant behaviour. 

Pattern recognition (see paragraph 12.5) is a rather new, vastly growing and promising field, which made it an 
interesting field to investigate for ASML’s business improvements. Methods like Artificial Neural Networks, 
Self-Organizing Maps, Statistical Classification K-Means (and X-means), Generalized Sequential Patterns, and 
Classification and Regression Trees (CaRTs) were studied and considered as possible pattern recognition 
algorithms. As the focus of the thesis changed from pattern to anomaly recognition, the following problem 
turned up: 

Cluster Algorithms are not easily applicable in finding outliers, because they focus on separating objects into 
different clusters. No matter how strange an object is, it will always be assigned to any of the clusters. Only if 
poor machines show exactly the same strange behaviour, significantly different from the population of 
machines that are fine, a complete cluster of poor machines could appear. If this is the case, the algorithms 
could definitely add value as a statistical warning tool. If not, an extra outlier detection algorithm is required. 
Only in case of the X-means clustering algorithm (Cluster-Based Local Outlier Factor), such an anomaly 
detection tool was available (within RapidMiner). Except for the X-means and Generalized Sequential Patterns, 
all other pattern recognition algorithms are only described in theory (see paragraph 12.5) and not applied to 
the ASML business problem. Putting extra effort into finding (or developing) these outlier detections 
algorithms for any of the other pattern recognition algorithms seemed unattractive, because the machine 
constant data itself lacks quantity of homogenous data per time stamp. Generalized Sequential Patterns was 
not used to detect anomalies, but to identify a possible pattern leading up to an anomaly. This algorithm was 
applied after anomaly detection had already taken place.  

With the change of focus, from pattern identification towards anomaly detection, a different field of research 
could be used to assist in solving the research question. The classical field of Statistical Process Control 
provided a framework that is easy to use, and well validated in practice (see paragraph 12.7). With the use of 
RapidMiner the results of several different statistical tests (8 sub models, including two X-means, described in 
paragraph 8.1) could be combined to find those machine constants that were behaving significantly abnormal.    

Apart from the above mentioned paths taken, there was an initial interest in the relation between machine 
constants and the calibrations and tests executed after a swap. As described in the final part of paragraph 3.1, 
the focus was on trying to decrease the required time after a breakdown, without decreasing the overall 
reliability of the machine after it is up and running again. Because this would indeed be beneficial for ASML 
and its clients, this direction was shortly investigated. The reason why it moved out of scope of this thesis is 



11 | P a g e  
 

because there already is a tool related to machine constants and after repair instructions, called the 
Automated Recovery Engine (ARE). While the role of machine constants is somewhat covered with a layer of 
instructions for the engineers and relational matrices used by the tool owners, it is known that ARE bases its 
advice on what tests and calibrations to execute on the underlying machine constants and its relation. It was 
impossible to extract this information for implication in this research, because of confidentiality restrictions 
and the difficult to extract layered information structure. Because ARE is a diagnostic tool, it does not solve an 
important part of this thesis regarding the implication of machine constant information into CBM.  

• Statistical Method: Pattern Recognition → Anomaly Detection (via SPC) 

VALIDATION METHOD 
The final part of the thesis was to validate the hypothesis made with the results found via the customised SPC 
model. The initial planned approach was to directly validate the relation between outlier and upcoming down 
by expert opinion. This was later on adapted because it is rather difficult to indicate if a certain outlying 
machine constant could be the cause of a failure within any of the sub modules, and even harder to state that 
it also is the cause. Together with the fact the machine constant is spread across many different people it was 
decided to first do a statistical test (see paragraph 4.3) on the relation between outliers and failures, before 
bothering engineers with vague results. The input files for statistical analysis that were considered are the 
‘error eventlog’, the ‘MC eventlog’ and the ‘Interrupt overview data’ (see paragraph 5.1). It was decided to 
select the ‘Interrupt overview data’, because the ‘error eventlog’ contained to much irrelevant data about all 
activities in and around the machine (which would be too difficult to filter) and the ‘MC eventlog’ had some 
issues with the consistency of the data. The ‘MC eventlog’ could be incomplete due to data storage 
restrictions, restore backup issues and relocation of data.  

Evaluation the diagnostic value of the created model went according to plan and did not require any change in 
validation method. Evaluating the prognostic value of the model provided information required revision of the 
statistical model and the validation process itself. Four different trials were performed to build a strong 
conclusion about the prognostic value of the model. Each of the trials was based upon the knowledge and 
reasoning obtained during the previous trials, the diagnostic validation and this exact roadmap followed. 
Because of the lack of statistical evidence found, the final step of expert validation was never executed.  

• Validation: Expert Validation→ Statistical Validation 
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CONCLUSION 
An important part of this thesis was to describe the roadmap that was taking throughout the thesis. The 
reason for this is that both research question and the data to be analysed were rather undefined and 
unknown. The roadmap gives not only an overview of how the final result was achieved, but also describes all 
the dead ends that were investigated. This may help to prevent duplicate research in the future. Based on the 
obtained knowledge several different future recommendations are given in chapter 11. Figure 5 gives an 
overview of the final structure of the research design used throughout the thesis and is strongly based upon 
the CRISP-DM methodology. Note that the roadmap itself is symbolized by the learning cycle within the figure. 
Because the figure is an overview of the whole research, details are also spread throughout the whole report.  

Deployment

Chapter 11

Modelling

Chapter 8

Data Preparation

Chapter 7

Business & Data understanding

Chapter 5 & 6

Evaluation

Chapter 9

Initial dataset

Outlier selection
process

Sublist of 
outliers

Sublist of 
outliers

Sublist of 
outliers

Sublist of 
outliers

Area Expert

Performance 
Monitoring & 
Analysis(PMA) 

Archive

Data selection 
process

Filtered 
dataset

Analytical 
Models

Area Expert

Area Expert

Filtering
Models

Machine

Advanced Data 
Collection (ADC) 

Machine

Machine

Outlier
List

Statistical 
Validation

Statistical Tests

Expert
Opinion

Process is out of scope

Analytical tool 
develeped to 
answer the 
research question.

 
FIGURE 5. RESEARCH DESIGN 

  



13 | P a g e  
 

Start final 
phase 

Finish 
modelling & 
validation 

Finish 
evaluation 

phase 

Finish on-site 
work at 
ASML 

Deliver first 
report 

Deliver final 
report Final defence  Finisch 

Project 

3.7 PLANNING 
Based upon the Cross Industry Standard Process for Data Mining method (CRISP-DM), a total time duration 
spent on a subpart of the CRISP-DM method was made (see Table 1). Because the subparts were not executed 
subsequently but via several iterative steps, no indication is given of which parts were done during which time 
periods. The planning is kept in the thesis report, because it provides an indication on the required time per 
subpart. Contrary to common thought, not the modeling itself but the preceding subparts are the most time 
consuming. For the final part of the thesis a more detailed planning could be given (see Figure 6 and appendix 
4). 

TABLE 1. PLANNING 

Activity Duration 

Business understanding,  4 weeks 

Data understanding 4 weeks 

Data preparation 6 weeks 

Modeling 3 weeks 

Evaluation  2 weeks 

Deployment 2 weeks 

Thesis completion, Defence 3 weeks 

Total time 24 weeks (week 8 till 33) 

 

 

 

 

 

 

 

 

  

FIGURE 6. DETAILED PLANNING 
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4 METHODOLOGY 
The methodology chapter gives an overview of the methodology used during the thesis. First the thesis 
approach is described (4.1). Next, the fundamental idea behind the modeling is discussed (4.2). Finally, several 
methods for qualifying a model are explained (4.3).  

4.1 THESIS APPROACH 
The theoretical framework which was the red line throughout the thesis is known as the Cross Industry 
Standard Process for Data Mining (CRISP-DM) (Wirth & Hipp, 2000). This model describes an approach for data 
mining commonly used by expert in this area. CRISP-DM breaks the process of data mining into six major 
phases; Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and 
Deployment. These different phases do not form a strict sequence and even repeating steps several times may 
be necessary. Figure 7 displays the general structure and flow of the CRISP-DM model and the implementation 
of other parts of the methodology. The outer circle in the diagram represents this cyclic nature of Data Mining 
itself. See paragraph 12.3 for a detailed description of the sub parts of the framework. 

Statistical Process 
Control

Binominal Z-Test
Student T-TestConfusion Matrix

 

FIGURE 7. CRISP-DM FRAMEWORK AND METHODOLOGY 

4.2 STATISTICAL PROCESS CONTROL 
Statistical process control (SPC) is the application of statistical technics for tracking and controlling a process, 
meant for achieving and maintaining a highly efficient business process. If a process is declared efficient 
depends on the quantity of conforming products it can make (throughput) and the amount of waste (rework 
or trash) it produces doing so. SPC emphasizes on early detection and issue prevention instead of corrective 
action after the problem has already occurred (preventive versus corrective maintenance). To do so, SPC 
predicts significant process variation that may result in future process issues. SPC is the main methodology for 
the modeling part of the CRISP-DM framework (see Figure 7). 

SPC uses control charts to monitor a process. The purpose of the control chart is to allow for simple detection 
of behaviour that is an indicative of actual process change. Due to the fact that most process characteristics 
continuously vary, the value of the control chart method is to distinguish unusual from normal variation 
(Denning, 1987). To define unusual behaviour, control charts use control limits. These upper and lower limits 
are the boundaries for which the process is considered under control. As long as process values are within 
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these boundaries, there is no reason to suspect process problems or apply corrections and changes to the 
process control parameters. The boundaries provide a confidence interval for acceptable normal behaviour. 
See paragraph 12.7 for a detailed description of SPC and control charts. 

Control charts should be customized on several points to fit each unique problem and provide the best advice 
to the process owner. These customizable settings are the selection of a confidence interval, warning limits, 
and the number of outliers required to label a process as out of control. The general selection of a confidence 
interval is largely based upon the Central Limit Theorem. This theorem states that for a sufficiently large 
sample drawn from any distribution (in which variance exists), the resulting distribution of the mean becomes 
normally distributed. For a normal distribution it is rather easy to calculate the confidence interval based on 
the selection of the upper and lower limits. A common setting for the control limits is the mean plus or minus 
three times the standard deviation (Denning, 1987) (Oakland, 2003) (Evans & Lindsay, 2010). With the 
Shewhart 3-sigma limits, 99.73% of the observations occur within three standard deviations of the mean. 
Besides the control limits, it is also possible to add warning limits to the charts. While they do not predict that 
the process is currently out of control, they signal that the process is behaving suspiciously and a high level of 
alert could be preferred. Typically, warning limits are placed at two standard deviations around the mean.  

Control charts typically have the following mandatory elements to serve as guides for control activities (Evans 
& Lindsay, 2010): 

• A central line that designates the estimated mean of the process characteristic under control; 
• An upper control limit (UCL) line, which designates an outrebound that would rarely be reached by a 

plotted point if the process is in control. Classically, this line is designated as the “three sigma” line 
and stands three times the estimated process standard deviation above the central line; 

• A lower control limit (LCL) line, which usually stands below the central line by a distance equal to the 
upper control line, usually about three times the standard deviation. 

Formalizing the above described characteristics of the control chart leads to the following formulas (Oakland, 
2003): 

 

FIGURE 8. SPC CONTROL CHART 
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CENTRAL LIMIT THEOREM 
An important fundament of the SPC control chart is the central limit theorem. The theorem states that, given 
certain conditions (well-defined variance and mean), the mean of a sufficiently large number of independent 
random variables will be approximately normally distributed (Rice, 2007). Under some conditions, it is not 
even necessary for the distributions to be identical to approximate the normal distribution. By the law of large 
numbers, the accuracy of the approximation improves with an increase in sample size. The theorem can be 
formalized as follows: 

The Lindeberg-Lévy Central Limit Theorem states that; suppose {𝑋1,𝑋2, … } is a sequence of independent and 
identically distributed random variables with 𝐸[𝑋𝑖] = 𝜇 and 𝑉𝑎𝑟[𝑋𝑖] = 𝜎2 < ∞, then as 𝑛 approaches infinity, 
the random variables √𝑛(𝑆𝑛 − 𝜇) converge into a normal distribution 𝑁(0, 𝜎2) (Oakland, 2003).  

Approximation formula:  

lim𝑛→∞ √𝑛 �(1
𝑛
∑ 𝑋𝑖𝑛
𝑖=1 )− 𝜇� = 𝑁(0, 𝜎2)   

4.3 MODEL QUALIFYING CRITERIA 
During the evaluation phase, it is important to have a clear definition of what makes a model successful (see 
Figure 7). The main objective of the model should be the correct prediction of future machine status 
(prognostic value). A model can diagnose that a machine looks strange, but does not know what it will do in 
the future (so called bad-weather status), or it can predict that something will go wrong, but not conclusively 
when and why, or a model can pin-point the exact reason that a machine will break down. While an optimal 
model does the last, less concrete predictions can still be valuable. Besides the prognostics value of a model, 
also the diagnostic value after breakdown is interesting. High diagnostic value is achieved if a model is able to 
pin-point the reason for a breakdown after it already occurred. Both values can be evaluated with similar tests. 

To prove the statistical quality of the model three different methods were used. The Binomial Z-test and 
student T-test can be applied to test if there is a significant difference between an example set with the time 
between a warning and breakdown, and a second set with the time between random a point in time and 
breakdown. In case that the difference between these two sets is significant and the warning set shows a 
lower mean until failure, it can be concluded that the model has predictive value. The exact accuracy of the 
model can then be calculated with the use of the confusion matrix, which evaluates the amount of correct and 
wrong predicts that a model makes.  
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BINOMIAL Z-TEST  
The first test to qualify models is a simple test of sample means. This Z-Test compares the number of successes 
found in each sample to state if there is a significance difference between those means (Montgomery & 
Runger, 2007). The binomial test can only be used if the data is dichotomous, which means that the data can 
be classified into two categories, and if the number of examples in each category is at least larger then 
10 (𝑁𝑥𝑝𝑥 > 10 ∧  𝑁𝑥(1− 𝑝𝑥) > 10,∀𝑥 ∈ 1,2). The larger the sample size the more likely it is to find a 
significant difference (if indeed existing). See Table 2 for an overview of the practical implementation of the 
binomial Z-test. A commonly used level of significance (2-tail) is 5%, which leads to a confidence region 
of −1.96 < 𝑍 < 1.96. If a Z value does not find itself within this region, the null hypothesis (H0) should be 
rejected.  

TABLE 2. BINOMIAL Z-TEST 

 Sample Size # ‘success’ Sample Proportion 
Group 1 𝑁1 𝐷1 𝑁1

𝐷1� = 𝑝1 

Group 2 𝑁2 𝐷2 𝑁2
𝐷2� = 𝑝2 

 

𝑍 = 𝑝1−𝑝2

�(𝑝�)(1−𝑝�)( 1
𝑁1

+ 1
𝑁2

)
  

Pooling the data, we obtain �̂� = 𝐷1+𝐷2
𝑁1+𝑁2

  

Null hypothesis (H0): 𝑝1 = 𝑝2 

STUDENT T-TEST  
A more complex test for the difference between two samples is the student T-Test (Montgomery & Runger, 
2007). The student T-Test is a statistical hypothesis test that can be used to determine if two sets of data are 
significantly different from each other. The test statistic follows the student’s T distribution if the null 
hypothesis is supported, which is based upon the average value and variance of both samples (variance is not 
included in the Z-Test). The test can be customized for several different datasets (equal/unequal sample sizes 
and variance for independent, paired and overlapping samples), but the only types applicable to this thesis are 
independent samples with equal variance. In this case the t statistic tests whether the means of the samples 
are significantly different.  Once a t value is determined, the associated p-value can be found in the Student's t-
distribution table of value. If the corresponding p-value is below the threshold chosen for statistical 
significance (generally 0.05), then the null hypothesis (H0) should be rejected. The student T-test requires the 
two populations to follow a normal distribution, which can be tested with normality tests, such as Kolmogorov-
Smirnov, Shapiro-Wilk, or a visual assessment via the histogram. The following formula is used to calculate the 
t statistic for both equal and unequal sample sizes (substitute 𝑛 for 𝑛1 and 𝑛2): 

𝑡 =
𝑋�1 − 𝑋�2

𝑆𝑋1𝑋2�
1
𝑛1

+ 1
𝑛2

 

𝑆𝑋1𝑋2 = �
(𝑛1 − 1)𝑆𝑋1

2 + (𝑛2 − 1)𝑆𝑋2
2

𝑛1 + 𝑛2 − 2  

 

Where: 

𝑋�𝑥 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒. 
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𝑛𝑥 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒. 

 𝑆𝑋𝑥
2 =  𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒. 

𝑆𝑋1𝑋2 =  𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

𝑛𝑥 − 1 =  𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒. 

 

CONFUSION MATRIX 
To qualify the result of a model it is important to statistically verify the theory behind the model. To do so, a 
statistical test considers the accuracy of the predictions. Hypothesis testing is an integral part of testing this 
accuracy. The rest requires an unambiguous definition of the null hypothesis (H0), which usually represents the 
default state of the situation, person, object, or anything else analysed (‘the machine is in a fine state; up and 
running’). The alternative implication of the null hypothesis is the unnatural state (‘the machine is in a poor 
state; broken-down’).  A model predicts if the null hypothesis should be rejected or not. If the prediction 
corresponds with reality, then the outcome is considered correct. However, if there is a discrepancy between 
the prediction and reality, the outcome is considered an error. The fact is that (almost) no model or test is free 
of error, due to the statistical nature of research. The error can be separated into two different types: type Ι 
and type ΙΙ error. In the field of machine learning it is common to visualize the performance of a model via a 
confusion matrix (see Table 3). The columns represent the predictions that the model does and the rows 
represent the actual state manifested in reality (Stehman, 1997).  

 

TABLE 3. CONFUSION MATRIX 

 Null hypothesis 
(H0) is true 

Null hypothesis (H0) 
is false 

Reject null Hypothesis (H0) Type Ι error 
False positive 

Correct outcome 
True Positive 

Fail to reject null hypothesis (H0) Correct outcome 
True negative 

Type ΙΙ error 
False negative 

 

TYPE Ι ERROR 
A Type Ι error is defined as an error in which the null hypothesis is true, but is rejected by the test. Based on 
something that is not there, a hit is reported that incorrect. In case of a single condition test, the Type Ι error is 
similar to a false positive (or false alarm). The rate of the type Ι error is denoted by α (alpha) and represents 
the size of a test, usually equal to the significance level. Except for a composite null hypothesis test, α (alpha) is 
the probability of a type Ι error. 
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TYPE ΙΙ ERROR 
A Type ΙΙ error is defined as an error in which the null hypothesis is false, but is not rejected by the test. The 
model fails to recognise what is present and therefore neglects the rejection of the null hypothesis and fails to 
believe in the truth. In case of a single condition test, the type ΙΙ error is similar to a false negative. Where the 
Type Ι error uses alpha to denote the rate of error, the rate of the Type ΙΙ error is represented by β (beta). In 
case of the Type ΙΙ error, the rate is related to the power of a test (1- β). The power of a test represents the 
probability that the test is able to reject the null hypothesis (H0), if it is indeed false.  

The definition of the null hypothesis influences directly what kind of behaviour is called a type Ι or ΙΙ error. 
One should keep in mind when defining the null hypothesis that a model can either reject or fail to reject the 
null hypothesis, but can never prove it to be correct. Failing to reject the null hypothesis does not provide any 
evidence to prove that the null hypothesis is true, only that it is not statistically false.   

This theoretical framework was implemented into the thesis scope, to determine if the model (based upon the 
data mining procedure) is useful (see Table 4). The accuracy of a model is defined as the proportion of the 
results that reflect the actual real-world status (predictions that are no type Ι and ΙΙ errors). Because the 
purpose of the model should be the recognition of machines that will receive issues in the future, the null 
hypothesis (H0) will represent all machines that are in a normal state and that are running fine. The model 
analyses the null hypothesis (H0) and predicts if it should be rejected or not. Via validation of the actual 
machine state (future interrupts and downs), the number of type Ι and ΙΙ errors and the accuracy of the model 
can be obtained. 

Noteworthy is that neglecting a poor machine status is most likely less desirable than giving a false alarm on a 
machine that is running normal. This is due to the fact that false alarms bring less cost than an unexpected 
machine down. Therefore, besides the accuracy as a percentage also the spread of the accuracy over ‘normal’ 
and ‘poor’ should be reviewed to decide upon the successfulness of a model.  

The null hypothesis (H0): the machine is in a normal state; up and running fine.  

 

TABLE 4. CONFUSION MATRIX MC 

 Predicted State 
Normal(H0) Poor 

Ac
tu

al
 

St
at

e 

Poor Type Ι error 
False Positive 

Correct outcome 
True Positive 

Normal(H0) Correct outcome 
True Negative 

Type ΙΙ error 
False Negative 

 

Accuracy ‘poor’ = True Positive / (True Positive + False Negative) 

Accuracy ‘normal’ = True Negative / (True Negative + False Positive) 

Total Accuracy = (True Positive + True Negative)/ (False Positive + True Positive + True Negative + False 
Negative)  
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5 BUSINESS UNDERSTANDING 
The first step of the CRISP-DM framework is to understand the business environment in which the thesis takes 
place. This chapter will start with an overview of what data is collected and stored and how it is done (5.1), 
than several business software packages are discussed (5.2), and finally an overview of the whole data 
structure is given (5.3). Large parts of this chapter are confidential and are only available in the ASML-only 
appendix 12.     

5.1 DATA COLLECTION & STORAGE 
ASML collects data about their machines in the field. The data is processed by IDP (Incoming Data processor) 
and is finally stored in Paris/Insight and the PMA archive (Performance Monitoring & Analysis) (ASML, 
Techwiki-ASML, 2013). The PMA archive is an archive, located in Veldhoven, used to store all kinds of relevant 
data from machines at Veldhoven or customer sites. Data in the PMA supports (any of) its two main purposes 
(ASML, PMA archive-Techwiki-ASML, 2013):   

 “Provide a historic overview of all kinds of aspects of steppers, scanners and yieldstar. This can be used by 
customer support to analyse problems in the field and by developers to learn about the behaviour of their 
functions over time and for multiple machines.” 

“Allow developers to analyse certain aspects over multiple machine(type)s. This is especially of interest for new 
developments. Therefore, with a good plan for analysis, it is in line with the intentions of PMA to request more 
data to be collected during a limited period of a half or a whole year.” 

Due to the limited capacity, the storage time of the data is also limited. Where meaningful, data is kept in the 
PMA archive for a sufficient length, depending on the storage capacity that is present and the actual amount 
of data per machine. Most data lacks such long term relevance and is therefore only stored shortly.  

A detailed description of this process can be found in ASML-only appendix 12.1. 

CONSTANTS 
There are two types of constants, design and calibration constants. Design constants typically hold a fixed 
default value that is set at the design time, while the calibration constants are determined on the machine, 
done via a calibration, specific upgrader flag, or a setting done by the operator. Besides these two constant 
types, constants can also be categorized into one out of four different categories of constants; Test constants 
(TE), Job constants (JC), Machine constants (MC), and Factory constants (FC) (ASML, Techwiki-ASML, 2013). . 
Despite the fact that they are called constants, their value does not necessary stay constant, but may change 
over time due to calibrations.  

Test constants, usually design constants, are used as input for the test, calibration, and performance software.  

Job constants differ from Job, Machine, and Factory constants, because they do not represent any of the 
settings that can be influenced by ASML’s machines. 

Machine constants, which consist of both design and calibration constants, are used by the software to 
compensate for differences in physical dimensions, compensate for drift, and to select configuration related 
items. There is a set of machine constants for each hardware subsystem and for some of the software 
components. All machine constants relate to a physical attribute within the lithographical machine and 
influence the three basic KPI’s of ASML’s machines; Overlay, Imaging and Throughput. Overlay is a measure of 
the machine’s ability to print layers accurately on top of each other. Successive layers or multiple processes on 
the same layer must be accurately aligned to the previous layer to achieve the required electrical contact 
between structures. Without accurate alignment the resulting chip will not perform to specification or may not 
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work at all (ASML, Papers, 2013). Imaging can be defined as the resolution of the structures of the printed 
layer. A higher imaging quality allows smaller structures with accurate edges in exactly the intended shape. 
Throughput has the same meaning as in most companies worldwide and represents the number of usable 
wafers (or chips) that a machine can produce in a certain time interval. Increasing Overlay and Imaging quality, 
by spending more time on testing and calibrating, usually decreases the throughput. Machine Constants are 
stored in separate files for each recognized subsystem, which makes subsystems of Machine Constants 
basically independent of each other (ASML, Techwiki-ASML, 2013).  

The PMA archive does not store all Machine Constants. These MCs are marked hidden and are not editable by 
the clients, because there is no reason for modifications by the non-experts. This is especially applicable for 
rather complex machine constants that are highly interrelated. For example, MC’s related to the mirror 
alignment are considered highly interrelated. A large number of constants work together to optimize the 
alignment of the mirror.  

Factory constants are similar to, but differ from machine constant in the fact that factory constants represent 
the influence of customer decisions on the settings of the ASML machine (for example, the edge clearance).  

REGULAR INTERVAL CALIBRATION & MAINTENANCE ACTIONS 
To keep the machines running successfully it is important that machine constants stay within its tolerable 
range of values. Because it is known that values may change over time, regular interval events are planned to 
recalibrate the machine constants. Software component MX (M-actions scheduler) provides functionality to 
execute calibration and/or maintenance actions at regular intervals.  

A detailed description of the MX activities can be found in ASML-only appendix 12.1. 

MC EVENT LOG 
The MC_event_log is a file where most changes in Machine constants are logged. Although this file seems very 
useful for finding the MC-history of a machine, there is the problem that not all changes are logged here. For 
some machine constants the changes are never logged, while others experience issues when, for example, the 
machine constant file is restored (either using the Twinscan-SW or manually) (ASML, Techwiki-ASML, 2013). 
For this reason, this data source is not is not usable for valid research opportunities and the machine constant 
change data should be retrieved directly from the PMA. 
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5.2 TOOLS 
This paragraph describes the tool used during the thesis. For non-ASML tools the applicability for business 
cases will shortly be discussed. The desktop computer on which these tools ran during the thesis holds a 
Intel(R) Xeon(R) CPU, W3565 @ 3.20 GHZ, 3.19GHZ processor with 12.0 GB installed memory (RAM) on a 64-
bit Operating System (Windows 7 Enterprise).  

W2IN 
W2IN (World Wide Information Navigator) is ASML’s reporting tool for PMA and OpEx, and is based on Oracle 
software called Oracle Business Intelligence Enterprise Edition (OBIEE). W2IN was used in this thesis to extract 
the business relevant machine interrupt information for validation of the prognostics value of models. A 
detailed description of the W2in can be found in ASML-only appendix 12.2. 

INSIGHT 
Insight Application is another ASML reporting tool that uses PMA to provide people with machine information. 
This java language based tool does not allow extracting data in the way W2IN does, but is oriented towards 
retrieving detailed machine information for individual machines. For this thesis the option in the reporting tool 
to identify the reconciled machine state at a particular moment in time (done via the productivity tab) is the 
only useful mode out of many. Because this search needs to be done manually, and searching in PMA is not 
that fast, it was rather time consuming to add the machine state at a particular 
moment to the dataset. Insight uses a number code to describe the state of 
the machine. Additional numbers can be added to the code to further specify 
the exact state of the machine. The normal up-state of the machine can be 
defined as an alteration between productive and standby states. All other 
states will be defined as down-state. A detailed description of the Insight 
states can be found in ASML-only appendix 12.2. 

RAPIDMINER 
This tool provides an environment for data mining, text mining, machine learning, and business & predictive 
analytics. RapidMiner®, formerly known as YALE (Yet Another Learning Environment) is used for a wide variety 
of applications ranging from education to industrial applications and ranked first on usage of data mining tools 
for real projects in 2010 (Mikut & Reischl, 2011). RapidMiner is able to program and execute processes such 
as; data loading & transformation, data pre-processing, visualization, modeling, evaluation, and deployment. 
Build upon the Java programming language, RapidMiner makes use of the functionalities of Weka machine 
learning environment and the R-Project and additional functionalities can be added by plugins. RapidMiner 
provides a graphical user interface (GUI) to design analytical processes that generate a XML (eXtensible Mark-
up Language) file that defines the analytics that the user wishes to apply to the data. Another interesting 
aspect of RapidMiner is its support of the PMML (Predictive Model Mark-up Language) standard, which allows 
the export of models designed within RapidMiner to other systems and applications. Therefore, the results of 
simulations executed in RapidMiner can directly be reproduced in other PMML compliant systems (Rapid-I, 
2013). All these features together make RapidMiner a strong candidate for data mining purposes (Shafait, Reif, 
Kofler, & Breuel, 2010). The Community Edition of RapidMiner is an open-source freeware tool. For application 
of ASML’s purpose, RapidMiner’s strengths and weaknesses can be summarized as follows:  

Strength:  
• Intuitive Graphical user interface that provides a good overview of the analytical process. 
• Most modeling applications and functionalities are included in the software. 
• Open-source freeware. 
• Strong online community. 



23 | P a g e  
 

• Already known within ASML.  

Weaknesses:  
• Error messages are poorly defined. 
• Small inconveniences in the interface.  
• No pre-knowledge acquired during education. 

MYSQL 
MySQL (Community Edition) is the world’s most popular freeware for open source relational database 
management applications (RDBMS) (MySQL, 2013). The SQL phrase stands for Structured Query Language, 
while My refers to the daughter of one of the co-founders. MySQL is available under the GPL license and is 
supported by a huge and active community of open source developers. Besides the community edition there 
are also several paid editions available, which offer additional functionality. Several of the world's largest and 
fastest-growing organizations such as Facebook, Twitter, Flickr, YouTube, Google, Adobe, Alcatel Lucent and 
Zappos rely on those MySQL packages to save time and money powering their high-volume web sites, 
business-critical systems and packaged software. The standard version of MySQL comes without a GUI tool but 
allows users to use the included command line tools. There is an Oracle MySQL Workbench available which 
provides the missing GUI. MySQL Workbench provides DBAs and developers an integrated tools environment 
for: Database Design & Modeling, SQL Development (replacing MySQL Query Browser), Database 
Administration (replacing MySQL Administrator), and Database Migration. For application of ASML’s purpose, 
MySQL strengths and weaknesses can be summarized as follows: 

Strength:  
• Open-source freeware. 
• Compatible with and predefined in most other applications 
• Already known within ASML. 

Weaknesses:  
• No pre-knowledge acquired during education. 

SPOTFIRE 
TIBCO SpotFire is a software platform used to visually analyse data using statistics. SpotFire strength lies in its 
possibility to visualize large datasets in such a way that difficult to find underlying behaviour can be identified. 
With ever increasing data storage in almost all market segments, the need to find proverbial needles in the 
haystack also increases. This is enabled by TIBCO’s decision to move from the in-memory data to in-database 
analysis, together with a rewritten in-memory engine that takes better advantage of high-capacity, multi-core 
servers. This combination of innovation allows for truly high-volume data analysis (up into the tens or 
hundreds of terabytes of data) in a way that does not waste time extracting and moving data or handling 
analyses on under-powered analytic severs. The SpotFire engine is based upon the well-known agile R 
language, which brings a stable and scalable fundament for the SpotFire software platform. Another 
interesting rather new feature of the software platform is a dynamic analytic application that runs on the web, 
called the TIBCO SpotFire Web Player. Other companies that also make use of SpotFire are for example BP, 
KPN, Motorola, and Saab (Spotfire, 2013).  

Strength:  
• Easy to use. 
• Flexible view settings. 
• Already known within ASML. 

Weaknesses:  
• No pre-knowledge acquired during education. 
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• Commercial tool (paid). 

5.3 DATA STRUCTURE 
In a data mining environment it is important to have a solid structure of storing and accessing data. A common 
structure is to separate the data itself from the entity that executes the data mining operations. First of all, this 
makes sure that the complete computational strength can be used for the execution itself instead of storing 
the data. Another benefit of the separate storage is that it can be stored on a server that can be approached 
from several different computers at a time. Uploading of the initial dataset (CSV) is done into MySQL via the 
SQL query language (see appendix 5), after which tools like RapidMiner and SpotFire are able to access the 
data easily. The information source interrupt overview is uploaded directly into RapidMiner (low quantity of 
data) and the Machine State information is used manually. See Figure 9 for an overview of the data flow and 
interaction from collection to analysis.  
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FIGURE 9. DATA STRUCTURE 
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6 DATA UNDERSTANDING 
Following the CRISP-DM framework, an important step in the data mining process is to understand the data. 
The first part of the chapter (6.1) (6.2) focuses on the input data of the modeling phase. This is done with some 
basic modeling to summarize the available machine constant dataset and obtain a first insight into the 
behaviour of the constants themselves. Finally, the interrupt data is described and analysed (6.3). While the 
initial dataset is used as input of the modeling phase of the CRISP-DM methodology (see chapter 8), the 
interrupt file is only used during the evaluation phase (see chapter 9). The build-up knowledge was later on 
used to adapt the content, volume and general scope of the data and help solve the business problem.  

6.1 INITIAL DATASET 
After some manual exploration of the original initial dataset a RapidMiner model was used to get an overview 
of what information is available in the data. The basic analysis retrieves the dataset from the MySQL database 
and uses some aggregation processes to calculate the basic statistics of the data (count, unique count, missing, 
average, minimum, and maximum).  

The initial dataset consist of the data of 642 machines, for 89309 machine constants, over a period of +-1.5 
month (01-Feb-13 till 15-Mar-13). This dataset includes all machines and their constants that were set and 
stored during the selected period. Due to the high number of machine constants, even a rather small period 
leads to a large dataset. The benefit of a large dataset is that the possibility of finding interesting results 
increases, but the drawback is the large calculation power required. The dataset contains background 
information about the machine constant, time of calibration and the machine itself. See appendix 6 for the 
process visualization and (XML) program code of the ‘basic analysis’ process that was used to analyse the initial 
dataset. A summary of the given data and a short description of the content of the dataset can be found in 
appendix 12 (ASML-only). 

• 642 machines. 
• 89309 machine constants. 
• 1.5 months (01-Feb-13 till 15-Mar-13).  
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6.2 INDIVIDUAL MACHINE CONSTANT BEHAVIOUR 
After the general exploration of the data, it was important to review the actual behaviour of machine 
constants. With the use of basic RapidMiner® processes it is possible to analyse the behaviour of machine 
constants (in combination with sequence) per machine over time. Several different kinds of behaviour can be 
found in the filtered dataset; for example random clouds, linear trends, jumps, and outliers (see Figure 10).  

RANDOM BEHAVIOUR 
The most basic behaviour that can be identified in the dataset is a random movement of numeric value over 
time. This random cloud shape suggests that there is no direction to which the values move. Despite the fact 
that the term random is used to describe this type of behaviour, this is exactly the behaviour you expect from 
a machine that is running fine. Especially if the random movement is a small deviation around the mean, this is 
no reason to assume that the machine is experiencing issues. To give predictions on future values, the average 
value is the best you can do for this type of behaviour. The prediction can be supported by a distribution of the 
historic values and its confidence interval. See Figure 10.A for an example of random behaviour of machine 
constants. 

LINEAR TRENDS 
A second typical behaviour of machine constant values is a linear drift over time. This shape suggests that the 
value is influenced by time and will eventually move out of specifications. While a linear trend seems rather 
interesting for future predictions, there are two reasons why this is not necessarily the case. First of all, it is 
unsure if this would also necessarily lead to an unscheduled down or if this drift can be calibrated back to its 
begin level, in a controlled manner. Secondly, machines that are in the middle part of their lifecycle do not 
show wearout behaviour, which a drift over time clearly is. So, while it may be interesting to monitor trends, 
they are not perfectly suited for the business case. In the initial dataset, there are several machine constants 
that show a significant trend in value over time (tested with the use of simple linear regression). Interesting 
fact is that this does not necessary occur on all machines and it is even possible to find conflicting trends 
(increasing and decreasing) for the same machine constant on different machines. See Figure 10.B for an 
example of a linear trend for machine constants. 

JUMPS 
Another interesting behaviour is that of a jump. A jump is an abnormal large difference between two 
successive numeric value examples. Such an extreme change in value (increase or decrease) may indicate that 
something changed in the machine status. In case a solitary jump is followed by another jump, back to the 
initial level, the data entry will most likely also be an outlier. The difference between a jump and an outlier is 
that for a jump it is not necessary that any of the values before or after the abnormal change in values is also 
an abnormal value in the total population. The other way around, also not every outlier is the result of a jump. 
See Figure 10.C for an example of a jump in machine constants. 

OUTLIERS 
An outlier is a single value that is significantly different from the rest of the population. Values that are unusual 
for a machine constant may be an indication that the machine is also in an abnormal state. An outlier can 
either be an extremely high or low value. Outliers may be interesting, because they are completely random 
and definitely not the result of slow wearout. The downside is that these kinds of random behaviour are 
difficult to predict. See Figure 10.D for an example of an outlier in machine constants. 
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CONCLUSION 
For none of the above described behaviours it is clearly identifiable if it is troublesome or not. No knowledge is 
available to state what kind of pattern can be identified as critical. For example drifting (see Figure 10.B.), is 
exactly the behaviour you expect from a drift correction machine constant and a jump may just be the result of 
a regular planned maintenance activity. What can be concluded from this exploration of the data is that 
several kinds of behaviour are present within the dataset, but none of them can simply (completely data 
driven) be identified as an indicator of poor machine status. Based on this conclusion, the actual analysis of 
machine constants should focus on outlying behaviour of machines instead of the behaviour itself. The reason 
for this is that outlying machine constant behaviour may indicate that a machine is an outlier from the 
population. Abnormal behaviour (abnormal trends, jumps, or outliers) will therefore be reviewed as an 
indication of current or upcoming failure. The remaining part of the CRISP-DM cycle (see Figure 5), consisting 
out of Data Preparation, Modeling, Evaluation, and Deployment was used to validate this statement.  

  

 

A B 

C D 

FIGURE 10. MACHINE CONSTANT BEHAVIOUR 
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6.3 POPULATION MACHINE CONSTANT BEHAVIOUR 
In the previous chapter the machine constant behaviour on individual machines was reviewed and it was 
concluded that not enough knowledge about general machine constant behaviour could be extracted with this 
scope. For this reason, the machine constant behaviour of equally names machines constants was reviewed 
(defined as the population of a machine constant). Figure 11 visualizes the distribution of values of four 
different machine constant populations, all having more than 50 examples (𝑁 ≥ 50). These four machine 
constants are a good representation of all the constants reviewed, and show a clear resemblance with the 
normal distribution. This recognizable bell shape distribution found in the histogram corresponds with the 
assumptions of the Central Limit Theorem and allow for the application of the Statistical Process Control (see 
paragraph 4.2). The fact that the values follow the normal distribution was an important requirement for the 
future steps of the CRISP-DM approach, especially the application of warning and control limits during the 
modeling (see paragraph 8.1).  

 

 

FIGURE 11. NORMAL DISTRIBUTION MC 
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6.4 INTERRUPT OVERVIEW DATASET 
The second important data source used in this research is the interrupt overview data. The interrupt data is 
used to validate the output of the created model (see paragraph 9) and extracted via W2in. W2in extracts this 
machine information from the PMA archive, after it is manually verified. Contrary to the initial dataset 
discussed in the previous paragraph, the interrupt overview is not used for anomaly detection but to analyse 
the machine behaviour around that moment in time. The interrupt data consist out of a list of all interrupts 
that occurred during the selected time period, with detailed background information about these interrupts. 
Despite the fact that there are empty fields within the dataset (for remark, SO, and USD Time), there is no 
missing data. These empty fields have no missing data, because the fields are optional. The interrupt overview 
file was linked to the machine constants dataset, so it could be used to review the interrupt behaviour 
compared to the machine constant behaviour. Due to the outcome of the evaluation of the 
diagnostic/prognostic models (see paragraph 9.3), most of the detailed information retrievable from the 
interrupt file was not used. A detailed description of the interrupt overview data can be found in ASML-only 
appendix 12.4. 
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7 DATA PREPARATION 
This chapter describes the activities to adapt the initial machine constant data in such a way that it can be fed 
into the model tool, and the interrupt overview data to serve as validation data. The knowledge about the 
data, discovered during the data understanding phase, can be used to change the given data into the final 
dataset(s). Data transformation, cleaning, reduction are commonly applied CRISP-DM steps (see paragraph 
12.3) that were applied to the initial dataset. This chapter starts with a short explanation about how to handle 
with missing data and outliers (7.1), after which two data preparation processes will be discussed for the initial 
machine constant dataset (7.2)(7.3), and finally a short description on preparing the interrupt overview file is 
given (7.4).  

7.1 MISSING DATA & OUTLIERS  
A data entry is defined as a missing value if one or more variables are not included in the dataset. In case the 
amount of missing data is less than 10% of the total data available, and the missing data occurs randomly, the 
rule of thumb states that the missing data can be removed from the dataset before continuing with the 
analysis (Montgomery & Runger, 2007) (Hair, Black, Babin, & Anderson, 2009). If any of these restrictions is not 
met, than the missing data can be imputed by an estimation of the missing value based upon the rest of the 
dataset and the available information for that individual entry. As seen during the data understanding phase 
(see paragraph 6.1 & 6.3) the amount of missing data is less than 1%, which allows simple deletion of those 
entries from the dataset. 

While in other researches the filtering of outliers is a pre-processing step, for this thesis the outliers are exactly 
those entries of interest for the actual data analysis. The fact that it is possible that the outlier is a data entry 
mistake and not the actual value of the machine constant was a risk to be taken. This risk is mentioned during 
the discussion of the limitations of this thesis (see paragraph 10.5). 

7.2 FILTERING PROCESS 
The second process to prepare the original dataset for actual analysis is the ‘filtering’ process. It retrieves the 
whole dataset from MySQL database and starts pre-processing the data by the following editing and filtering 
steps: 

• Renaming machine types to one consistent format (e.g. from NXT1950I to NXT1950i). 
• Filter machine type equal NXT (see list of machine codes in ASML-only appendix 12.6 ). 
• Filter sequence number equal to 1. 
• Filter data format equal to numeric (N). 
• Filter numeric value equal to non-missing. 

When analysing data, it is important to make sure that the data analysed also represents what is assumed that 
it does. This is a serious issue with the data concerning machine constants, because meaning, functioning and 
basic settings have changed significantly over time due to radical design evolution of ASML’s machines. So 
while the same machine constant may be mentioned in both the earliest and newest machines, assuming that 
a comparison is allowed is unfounded. For this reason the decision is made to focus only on the NXT machine 
type. These machines are rather new, have a lot of similarities and are the largest subpopulation in the initial 
dataset. Apart from the data mining perspective, the economic value of a tool would be the highest for the 
NXT machine type, because of the population size and leftover economic life time.   

It is easier to analyse numeric values instead of text, because of the large variation in text values. Therefore 
only numeric data is selected. Text mining is a whole different area of data mining and will be placed out of 
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scope. A future first step is to only take into account the fact that the machine constant is being update, which 
can easier be implemented in a numeric analysis. 

This led to a rather homogenous dataset in which machine constant do have a similar meaning and only 
analysable constants are included. For outlier detection there were two more filters required to receive the 
best possible dataset. First of all, a population should consist of enough objects to allow the central limit 
theory to be valid (see paragraph 12.7). To achieve this, at least 100 examples of a machine constant (𝑛 ≥
100) should exist within the dataset to pass the filter requirements. This requirement is based upon the work 
by Jolliffe (1995), Smith & Wells (2006) and Maxwell (2000), taking into account that the number of examples 
per machine should also lead to a normal distribution, as much as possible. Putting an individual requirement 
on the number of machine constant examples per machine would reduce population sizes too much to benefit 
the quality of the analysis. Due to the fact that a normal distribution per machine is therefore not self-evident, 
it should be kept in mind that the individual machine analysis is less reliable then the population analysis. 
Machine constants that do not satisfy the data point requirement, and occur only incidental, can still be of 
high interest, because abnormal behaviour of a machine may be an indication that there is something wrong 
with that machine. This insight will be further explored during the evaluation phase of the prognostic value of 
models (see paragraph 9.2).  

The second filtering is based on the variance of the numeric value of a machine constant. A population of a 
machine constant that shows absolute no variation is of no interest when searching for outliers, so the 
requirement filters only those machine constants that have a variance larger than 0. Despite the fact that 
there is no variation over time it may still be interesting to investigate the calibration moments over time, but 
this will be kept out of scope thus far. Finally, due to calculative power restrictions, only 40 different constants 
that meet all requirements were randomly selected. This was done randomly, because no preference could be 
given to machine constants that fulfil the requirements and raising the requirements would lead to a set of 
similar machine constants (e.g. X, Y, and Z space dimension axes of the same machine constant).  

• Filter number of examples larger than 100. 
• Filter variance larger than 0. 
• Sample machine constants equal to 40 different constants.  

This resulted in a pre-processed dataset with 71 different machines and a total of 26463 data points. The 
filtered dataset is then written back into the MySQL database, into another table to keep the original dataset 
intact. See appendix 7.1 for the (XML) program code of the filtering process. 

7.3 EVENT DEFINITION PROCESS (TIME BINNING) 
The second process to prepare the dataset for the final analysis is the ‘event definition process’. This process 
edits the creation date for two reasons; reduce false detail within the data and improving the strength of the 
statistical tools using cluster analysis. As stated in the description of creation date in ASML-only appendix 12.3, 
the exact time at which the calibration is executed, and the new value is put to practice, is uncertain due to a 
possible small delay between calibration and registration. Analysing the creation date on a one second scale is 
therefore meaningless and a round-off to a one minute scale is applied (nearest whole minute is selected). A 
timeframe of one minute is selected, because this is the smallest time scale that is still always able to 
aggregate, all calibrations that belong to a single event, into a single time stamp. Increasing the time frame 
could lead to false aggregation of data from different events. The benefit of the time binning process is that 
the number of calibrations done on one particular creation date increases, which leads to more input data for 
each creation date into the cluster algorithms. Where previously information was scattered across different 
time stamps (that clearly belonged to the same event), this information is now aggregated into a single one 
time stamp.  
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What the ‘event definition’ process exactly does is the following; if converts the creation date from a date 
format into a numeric value, represented by the number of milliseconds passed by since 01/01/1970 00:00:00 
GMT, and then successively divides and rounds-off the number in such a way that it represents a number of 
minutes. By converting back the numeric value into a date format, a new round-off creation date is obtained. 
The example set is then rewritten back into the MySQL database table it was retrieved from, replacing its 
starting set. See appendix 8 for the (XML) program code of the ‘event definition’ process. Figure 12 visualizes 
the data preparation process of the initial machine constant dataset. 

Data preparation
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FIGURE 12. INITIAL DATASET PREPARATION 

7.4 INTERRUPT OVERVIEW PREPARATION 

The preparation of the interrupt overview dataset is not done in an individual pre-process, but is done in a 
RapidMiner process used during the evaluation phase (see paragraph 9.2). Before combining the outlier list 
with that of the interrupts, only those interrupts that are related to unscheduled downtime are selected 
(business relevant interrupt type). Unscheduled down time is the result of a breakdown, which is the event of 
interest during this thesis. From the interrupt overview dataset, only the machine ID and the time stamp of 
breakdown are used. The rest of the information is removed from the dataset before combining. See appendix 
10 for the process visualization and (XML) program code of the process used during the evaluation and ASML-
only appendix 12.4 for an overview of the content of the interrupt overview dataset and details about the 
interrupts that relate to unscheduled downtime. See Figure 13 for a visualization of the filtering steps applied 
to the interrupt data. 
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FIGURE 13. INTERRUPT OVERVIEW PREPARATION 
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8 MODELING 
While most people think that modeling is the most time consuming part of a project, more time was spend on 
understanding the data and preparing it then on the modeling itself. The initial modeling of the data mining 
analysis was done via a combination of several different sub analyses models. Each individual model 
determines if a particular machine or machine constant shows unusual behaviour, either compared to its own 
historical behaviour or to that of the whole population of machines. The higher the absolute normalized 
values, the higher the number of abnormal activities, and the higher the number of sub models it receives a 
‘positive’ abnormal indication from, the stronger the case that a machine constant on a certain machine 
indeed behaves in an undesirable way.  

During the first phase of the creation of the models, a well-known benchmark dataset was used. The first part 
of the creation phase aimed at getting familiar with RapidMiner and all its possible processes, and consisted 
out of trial and error experiments without clear goal. The benefit of using such a set was that the expected 
outcome of a process of sub model is known, which allowed for early design-flaw and error detection. The 
benchmark dataset used was the Iris flower dataset, which consist of 50 samples from 3 different related 
species of flowers (Murphy & Aha, 1994). This dataset is a typical test case for many classification techniques 
in machine learning. It was preferred above some other similar example sets, because it is standardly available 
within RapidMiner. For clustering purposes the dataset is able to explain the difference between supervised 
and unsupervised clustering techniques, because only one out of the three different species is clearly 
identifiable without supervision (where the other two species blend into one cluster). In general, a test set is a 
safe and easy way to get familiar with a program (RapidMiner) and the datamining techniques (SOM, K-means, 
X-means, CBLOF). The flower dataset, with its four different attributes and three different species, is shown in 
Figure 14.  

 
FIGURE 14. IRIS FLOWER DATASET 
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8.1 STATISTICAL MODELS 
The idea behind the statistical models is that if a machine shows significantly unusual behaviour, chances are 
higher that this machine will also encounter unusual events. This method is selected due to the fact that 
background detailed know-how about the behaviour of machine constants was limited and spread-out over 
several departments and even more different experts. By approaching the data from a data mining 
perspective, the assumption was made that the majority of machines are in a stable, normal and well-
functioning state. This resulted in a similar assumption about the behaviour of the machine constants. If 
normal behaviour is considered stable, outliers can be identified for predicting unstable (poor) machine states. 
Because a machine and/or machine constant can show outlying behaviour in several ways, there is a need to 
analyse this behaviour with several different models. The behaviour analysable by the model is: anomalies in 
numeric value, size of jumps, number of jumps, trend, the total set of numeric values at a particular moment in 
time, and the set of calibrations that is executed per event. Each of the models will be explained in detail in 
this resulting part of this paragraph. These models combine the data mining framework with statistical process 
control (Control Charts) and pattern recognition (X-means). See paragraph 12.8 for an overview of the 
chemistry between the theories and methodologies. This paragraph continues with a description of the eight 
statistical models that can be used to construct a shortlist of examples that are identified as significant 
outliers. Figure 15 provides an abstract overview of the statistical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15. TOTAL ANALYSIS PROCESS 
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OUTLIER VALUE COMPARED TO POPULATION (OVP) 
This statistical model compares individual machine constant values with the whole population of machine 
constant values. This population consists of all equally named machine constants that are calibrated within the 
time scope, for which it calculates the mean (average value) and the standard deviation. Each individual value 
is then normalized, based on the mean and standard deviation of the whole population it belongs to. A value is 
considered as a possible outlier if it surpasses the normalized threshold values of ±2, representing the warning 
limits of the process control charts (see paragraph 12.7). An example set of id’s that fulfil the outlier 
requirements is the final output of this first statistical tool. This first model is an implementation of a 
commonly variant of the control chart, where an individual value is judged based on its distance from the 
average value and the common population variation. See appendix 9.1 for the process visualization and (XML) 
program code of the ‘Outlier Value compared to Population’ model.  

OUTLIER VALUE COMPARED TO INDIVIDUAL (OVI)  
The second model is fairly similar to the first one discussed. Where the first model compares the machine 
constant value versus the whole population, the ‘Outlier Value compared to Individual’ model only focuses on 
the machine constant numeric values of the respective machine it belongs to. Via an equal process of 
normalizing and filtering (based on the ±2 normalized value criteria), a second set of outlying machine 
constant values is created. See appendix 9.2 for the process visualization and (XML) program code of the 
‘Outlier Value compared to Individual’ model. See Figure 16 for an abstract overview of the statistical OVP and 
OVI models. 

 

 

 

 

 

 

 

 

 
 

FIGURE 16. OVP & OVI MODEL 

OUTLIER JUMP VALUE COMPARED TO POPULATION (OJP) 
The third sub-model used in the analysis of machine constants focuses on the change of value between two 
succeeding calibration moments. The value difference can be of such size that it can be labelled as a jump. To 
determine if a jump is considered an outlier (significantly abnormal jump size) this analysis compares each 
individual change of value with all other value differences that took place within the time frame. The mean 
and standard deviation of jump values is based upon the whole population of machines per machine constant. 
Via normalizing and filtering (based on the ±2 normalized value criteria), the third set of outlying machine 
constant values is created. See appendix 9.3 for the process visualization and (XML) program code of the 
‘Outlier Jump value compared to Population’ model. 
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OUTLIER JUMP VALUE COMPARED TO INDIVIDUAL (OJI)  
As in the value models, the jump analysis is also done on both the population and the individual machine. 
Equal settings are used to determine if a change in values is considered an outlying jump. See appendix 9.4 for 
the process visualization and (XML) program code of the ‘Outlier Jump value compared to Individual’ model. 
See Figure 17 for an abstract overview of the OJP and OJI model. 

 

 

 

 

 

 

 

 

 

 

FIGURE 17. OJP & OJI MODEL 

OUTLIER JUMP FREQUENCY COMPARED TO POPULATION (OJFP) 
The fifth sub-model is a bit more innovative then the previous more classical outlier filtering and analyses the 
frequency of jumps a machine constant produces in the given time interval. Every difference in value larger 
than the standard deviation is considered a jump (softer definition of a jump than applied in the third sub-
model). For each combination of machine and machine constant the number of jumps is counted. This count is 
used to determine if a constant on a certain machine is behaving strange, compared to the whole population. 
Via normalizing and filtering (based on the ±2 normalized value criteria), the fifth set of outlying machine 
constant values is created. The difference from previous models is that this analysis compares the total 
behaviour (number of jumps) over time between machines instead of a single point in time. The disadvantage 
of this scope is that this warning cannot directly be allocated to a creation date, but only to a machine and 
constant. See appendix 9.5 for the process visualization and (XML) program code of the ‘Outlier Jump 
Frequency compared to Population’ model. See Figure 18 for an abstract overview of the OJFP model. 
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OUTLIER TREND COMPARED TO POPULATION (OTP) 
The sixth model fits a linear trend, via simple linear regression, on the behaviour of a machine constant during 
the time frame on a single machine. The linear regression module returns a value that represents the 
regression coefficient (𝛽1), referred to as the weight of the trend. The weight is compared with that of the 
same machine constant on another machine via normalization. If the weight of the trend differences 
significantly from the rest of the population (+-2 normalized value criteria) the machine constant and machine 
are identified as possible outliers. See appendix 9.6 for the process visualization and (XML) program code of 
the ‘Outlier Trend compared to Population’ model. See Figure 19 for an abstract overview of the OTP model. 

 

 

 

 

 

 

 

 

 

 

FIGURE 19. OTP MODEL 

OUTLIER MACHINE CONSTANT VALUES PER TIME STAMP (OMCV)  
Instead of one outlying machine constant found in the first six models, the clustering models suspect all 
machine constants involved during the outlying creation date. Per creation date all machine constant values 
are compared with those of the rest of the population. This comparison is done because it may be possible 
that none of the machine constant values individually can be identified as outliers, but the whole set of 
machine constants is showing abnormal behaviour. To identify this anomaly, the data is pivoted from different 
rows for the same machine and creation date, into a table were each of the constants has its own column. The 
values of a machine constant at a particular time are either based upon the value given to it during its last 
calibration, or that of the first upcoming calibration, or the average value of the population (preferred in this 
exact order).  The combination of the X-means clustering (see paragraph 12.6) and the cluster-based outlier 
factor results in an example list of creation dates with an outlier value. Exactly the same steps of normalizing 
and filtering is also applied to the outlier value and results in a list of outliers, in the form of outlying creation 
dates per machine. See appendix 9.7 for the process visualization and (XML) program code of the ‘Outlier 
Machine Constant Values per time stamp’ model. 
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OUTLIER CALIBRATION SELECTION PER TIME STAMP (OCS) 
This second clustering model, final example set creation model, and seventh sub-model focuses on the 
selection of machine constants that are calibrated at the same time. To do so, the data is pivoted from 
different rows for the same machine and creation date, into a table were each of the 40 constants has its own 
column. For all 40 constants, per creation date, it is indicated if the constant is calibrated or not with a numeric 
value equal to binomial values 1 or 0). The combination of the X-means clustering (see paragraph 12.6) and the 
cluster-based outlier factor results in an example list of creation dates with an outlier value. Exactly the same 
steps of normalizing and filtering is also applied to the outlier value and results in the last list of outliers, in the 
form of outlying creation dates per machine. See appendix 9.8 for the process visualization and (XML) program 
code of the ‘Outlier Calibration Selection per time stamp’ model. See Figure 20 for an abstract overview of the 
OMCV and OCS model. 

 

FIGURE 20. OMCV & OCS MODEL 

JOIN MACHINE CONSTANT LIST (JMCL) 
This sub process joins all the outlier lists, apart from the two clustering models. Via an outer join, based upon 
their unique example ids, the first four outlier values (if existing) are combined into one list. Due to the fact 
that the fifth and sixth model (jump frequency & trend) do not use the unique example ids, the same outlier 
value is added to all examples that have the same combination of machine number and machine constant. This 
process results in one outlier example list for the first five models. See appendix 9.10 for the process 
visualization and (XML) program code of the ‘Join Machine Constant List’ sub process. 

CREATE TOTAL ISSUE LIST (CTL) 
The final sub process combines the list of outliers from the first five models with the list from the clustering 
models. As in the fifth and sixth model, the clustering models also do not use the unique example id. For this 
reason, the outlier values are added to the list based upon the same combination of machine number and 
creation date. With this final join, a complete list of all outlying values is created with the original id 
information (see ASML-only appendix 12.3) added to each outlie. The list is then filtered based on the 
following requirements: any of the first five models should have found a significant outlier (±3) and the 
summation of the absolute outlier values of the all the models should exceed 6. The first filtering rule comes 
from Shewhart’s Statistical Process Control (see paragraph 12.7) and tests the 0.9973 confidence interval. 
Clustering models are excluded from this first test, because they are unable to indicate one clear machine 
constant that is to blame. An output with only a machine number and creation date hardens the validation 
process. The second filtering is done to further reduce the issue list to the most likely problematic outliers, 
because it requires the example to show abnormal behaviour on more than one test. This is less hard than it 
may seem, because the models are related. For example an extreme outlier will most likely also lead to one or 
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two extreme jumps, and if a numeric value is an extreme outlier in the population it is also more likely to be an 
outlier in its own individual behaviour. Furthermore, the ‘outlier machine constant values per time stamp’ 
clustering algorithm uses the same numeric values as the non-clustering algorithms. One extreme outlying 
machine constant may lead to an outlier classification of that whole time stamp (creation date). Requiring the 
models to produce a consistent judgment of the outliers increases the reliability of the model as a whole. The 
second filtering criterion is not based upon theory, but upon the above described reasoning, and is kept 
flexible to result feedback. The final output of this sub process, and also the final result, is written into an excel 
file and should provide advice on (future) maintenance activities. See appendix 9.11 for the process 
visualization and (XML) program code of the ‘Create Total issue List’ sub process. See Figure 21 for an abstract 
overview of the JMCL and CTL process. 

 

FIGURE 21. JMCL & CTL PROCESS 

 

MODEL BACKGROUND INFORMATION 
It is a well-considered decision not to divide the set into a training and test set. The reason for this is that the 
environment of the machine constants is not stable on the long run, due to continuous improvement, change 
and introduction of (new) machines. The latest population of machine constant values may differ from the old 
population, due to known non-problematic changes. Therefor the tools should not be trained by any other 
dataset then one that includes the most recent data. Due to the large quantity of data available and the 
restrictions on the selection of machine constants (N>100), the influence of behaviour in the data reviewed 
(which is also part of the input set) on the mean and standard deviation is insignificant. One should keep in 
mind that the restrictions and settings used in all the models are highly customizable. Depending on the results 
in practise it could be beneficial to change the control limits or add specific weight values to the individual 
model outliers. For example, population test will most likely be more reliable due to a larger sample size 
(Central Limit Theorem). This also applies to the clustering models, which are hard to qualify beforehand due 
to their black box characteristics. If this proves to be the case in practise, a higher weight should be attached 
to the reliable models or other models should be removed completely.  
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See Figure 22 for a RapidMiner overview of the whole model and one example of a sub model included 
(‘Outlier Jump Frequency compared to population’ model) and appendix 9 for the (XML) program code. 

 

 
FIGURE 22. TOTAL ANALYSIS PROCESS (RAPIDMINER) 
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9 EVALUATION 
The evaluation of the models is the second to last phase of the CRISP-DM method and the last phase 
performed explicitly in this thesis research. The goal of the evaluation phase is to validate if the model is able 
to provide exactly that information that is expected from it, and make a statement about the usability of the 
model in practice. As defined in the research design (see paragraph 3.2), the model should have both 
diagnostic and prognostic value. Especially in case of implementation into a preventive maintenance 
environment, the prognostic value is of high importance. The evaluation of the model starts with the analysis 
of the diagnostic value, by comparing the predicted with the actual machine state at the moment of a warning. 
The prognostic value is evaluated by comparing the predicted with the actual machine state behaviour after a 
warning. Evaluation of the prognostic value led to adaptations of the statistical models, wherefore four 
different runs (three sets of outlier and paired lists) were performed. More details about the evolution of the 
prognostic value analysis are given in paragraph 9.2. Throughout the evaluation chapter, a green highlighting 
of a cell within a data table indicates that a significant result is found.  

With the use of a simple RapidMiner process (see appendix 10) the outlier lists, created by the statistical 
models, are combined with the interrupt file to be able to analyse the relation between outliers and failures. 
See paragraph 4.3 for an overview of the statistical methodology used during the evaluation phase.  

The following time stamp lists were used throughout the evaluation phase: 

OUTLIER LIST 
The outlier list consists out of all the outliers/warnings that were found with the use of the statistical models 
described paragraph 8.1. Three different outlier lists were created for the evaluation. The first set, consisting 
out of 211 examples, was used for both diagnostic and prognostic evaluation. Second (145 examples) and third 
(61 examples) set are only used for prognostic evaluation and were created via adaptations of the original 
statistical model.  

• Lists are the output of the statistical models. 
• Used for evaluation of diagnostic and prognostic value. 

RANDOM LIST 
The random list consist out of a sample of 100 time stamps taken randomly from all machines that were part 
of the prepared dataset that was used as input for the analysis. The period from which the examples were 
taken is an extension to the original time frame, from which the outlier list was extracted. This is done to 
decrease the chance of selecting the same time stamps, which would decrease the possibility of finding 
significant differences. The random list is used to validate if the statistical model is significantly able to identify 
machines that are more likely to experience an interrupt. The extended time period goes from January up to 
May. It was decided to select an overlapping period (on both sides) to diminish the influence of external 
factors over time. The random list is only used during the evaluation of the diagnostic value, for the purpose of 
machine state comparison.  

• 100 random selected machines from the initial dataset. 
• Added random created time stamps, from the extended time period January up to May. 
• Used for evaluation of diagnostic value (identification of machines with higher interrupt probability) 
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PAIRED LIST 
For the diagnostic value evaluation the paired list consist out of a sample of 100 time stamps for machines 
from the original outlier list (duplicate machines are allowed). This means that machines that were more 
present in the original outlier list were also more likely to end up in the sample of the paired list. While it is not 
the classical definition of a paired sample, this list will be referred to as the paired list, because the content of 
this list can form a pair with an example in the outlier list. All the samples were selected from the same time 
period as the random list, for the same reasons. While the random list can only validate if the model is able to 
identify machines with a higher interrupt probability, the paired list is used to validate if the statistical model is 
also significantly able to identify the exact interrupt moment on these machines. For testing of the prognostic 
value of the model, the paired list consisted out of the same number of examples as the outlier lists, from the 
same machines, in an up state. Due to the three different runs executed during the prognostic value 
evaluation, there are three different lists of paired machine time stamps. The first set uses the same time 
frame as used for the Random List, and the second and third set are from the same time frame as the outlier 
lists (February till the mid of March). 

• Random selected machines from the outlier list. 
• Added random created time stamps. 
• Used for evaluation of prognostic and diagnostic value (identification of interrupt time stamps on a 

machines) 

Figure 23 gives an overview of the different data sets used during the evalution phase. 

 

 

 

 

 

 

 

 

 

FIGURE 23. DATA LISTS OVERVIEW 
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9.1 DIAGNOSTIC VALUE 
The goal of validating the diagnostic value of the model (made up out of the eight sub models described in 
paragraph 8.1) is to prove that there is a significant relation between machine constant values and machine 
status. The machine status is categorised in an up and down state, which is determined by information 
extracted from Insight (see paragraph 5.2). When the number of downs found at the warning moment is 
significantly higher than at a random moment in time it is permitted to state that the model has significant 
analytical capabilities. To do so, the number of current down states found in the outlier list is compared with 
that of the random list using the Binomial Z-test (see Table 5). Conditions are met, because both categories 
have enough examples. At a 5% level of significance (2-tail), the critical region is 𝑍 < −1.96 or 𝑍 > 1.96, and 
3.699 > 1.96, so H0 is rejected. 

TABLE 5. PREDICTION VS. RANDOM 

 Sample Size (𝑁𝑥) # Down Sample Proportion (𝑝𝑥) 
Outlier Group 211 106 0.502 
Random Group 100 28 0.280 

 

Condition: (𝑁𝑥𝑝𝑥 > 10 ∧  𝑁𝑥(1− 𝑝𝑥) > 10,∀𝑥 ∈ 𝑂𝑢𝑡𝑙𝑖𝑒𝑟,𝑅𝑎𝑛𝑑𝑜𝑚) 

Null hypothesis (H0): 𝑝1 = 𝑝2 

Pooling the data, we obtain �̂� = 106+28
211+100

= 0.431 

𝑍 = 0.502−0.280

�(0.431)(1−0.431)( 1
211+

1
100)

= 3.699   

 
Based on the test result and the difference between sample proportion of number of downs, there can be 
conclude that the model is able to predict if a machine is indeed experiencing issues at that exact moment in 
time. So, abnormal machine constant behaviour is an indicator that the machine is broken down. To further 
investigate this relation the outlier list was compared with the paired list. This is done to not only prove that 
the model is able to predict which machines have a higher chance of experiencing issues, but also to test if, for 
outlying machines, the warning moment has a higher chance of being in a interrupt state then a random point 
in time on the same machine. At a 5% level of significance (2-tail), the critical region is 𝑍 < −1.96 or 𝑍 > 1.96, 
and 2.354 > 1.96, so H0 is rejected. 

TABLE 6. PREDICTION VS.PAIRED 

 Sample Size (𝑁𝑥) # Down Sample Proportion (𝑝𝑥) 
Outlier Group 211 106 0.502 
Paired Group 100 36 0.360 

 

Condition: (𝑁𝑥𝑝𝑥 > 10 ∧  𝑁𝑥(1− 𝑝𝑥) > 10,∀𝑥 ∈ 𝑂𝑢𝑡𝑙𝑖𝑒𝑟,𝑃𝑎𝑖𝑟𝑒𝑑) 

Null hypothesis (H0): 𝑝1 = 𝑝2 

Pooling the data, we obtain �̂� = 106+36
211+100

= 0.457  

𝑍 = 0.502−0.360

�(0.457 )(1−0.457 )( 1
211+

1
100)

= 2.354  
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Based on both tests there can be concluded that the outlier model is able to recognize machine status based 
on the behaviour of machine constants, because in case of a warning the possibility of a machine down state is 
significantly higher than at a random point in time. While this does not provide any prove for the predictive 
value of the model, it does prove that the model does relate machine constant behaviour to current machine 
state. Figure 24 visualizes the evaluation process of the diagnostic value of the statistical model. 

 

 

 

 

 

 

 

 

 

 

FIGURE 24. OVERVIEW DIAGNOSTIC VALUE EVALUATION 

When reviewing the ‘SumOutlier’ value, which is the sum of the absolute standardized value of all the outlier 
tests, it was found that the higher the value the more likely it is that the machine is in a down state (see Table 
7).  This complies with the above findings that the model is able to predict the state of a machine, because the 
model already selects those ‘SumOutlier’ values that are above a certain limit. The reason why none of the 
individual models are significant is because each outlier only scores an outlier value for a few of the 
submodels. So each for each submodel, the population consist mainly out of non-outliers. This does not fulfil 
the Student T conditions about normality (see paragraph 4.3).  

TABLE 7. OUTLIER VALUE, UP/DOWN COMPARISON 

Up/Down  SumOutlier OVP OVI OJP OJI OJFP OTP OMCV OCS 
 Student T-Test 1.644E-06 0.119 0.974 0.644 0.449 0.923 0.923 0.363 0.163 
Up Average 7.820 2.444 0.962 3.611 1.184 0.559 0.559 0.564 0.341 
 Standard Dev. 1.565 3.370 1.571 3.405 1.872 1.265 1.265 1.361 1.180 
Down Average 11.810 3.305 0.954 3.390 0.994 0.616 0.616 0.409 0.592 
 Standard Dev. 8.075 4.534 1.563 3.540 1.642 1.489 1.489 1.090 1.407 
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9.2 PROGNOSTIC VALUE 
After concluding that the model (see paragraph 8.1) does have diagnostic value, it was an important next step 
to investigate the possibility of prognostic value of the model. The goal of validating the prognostic value is to 
prove that there is a significant relation between machine constant values and future machine status. To do so, 
the machine behaviour in the period after the warning (outlier) was analysed (see Figure 25). It is not possible 
to state with certainty that a machine is no longer in a critical outlying state after a new calibration. This is 
based on the fact that the outlying state is not necessary left with the next calibration. For example, if a 
machine constant is calibrated to the same value that it received after that constant made an outlying jump, 
there is no reason why that jump can no longer be the cause of an upcoming failure. Therefore, all interrupts 
within the upcoming period of time are considered to be possibly related to that outlier. 

30-3-2013 - 30-7-2013
Time difference

21-6-2013
2 Day Boundary

2-9-2013
7 Day Boundary

30-3-2013
Outlier Date

14-10-2013
Interrupt Date

30-7-2013
Interrupt Date

Timeline

 
FIGURE 25. INTERRUPTS AFTER WARNING  

For all examples that are listed in the outlier set, it was necessary to only select those that could have some 
predictive, preventive or advising value. To do so, the direction and timing of the relation between machine 
constants and machine status (up/down) is important. If an outlier is identified during a machine down state, 
then the warning is already too late to prevent that down or could even be the result of the down, instead of 
the cause. For prognostic purposes, it is important to understand the cause/effect relationship to make sure 
that no false causality is claimed. For this reason, the example set was reduced to only those warnings that 
occur during machine uptime.  

FIRST TRY – ORIGINAL MODEL  
The model can be validated and qualified via two different methods. The first step would be to tests if there is 
a significance difference between the outlier list and a random list concerning the chance of occurrence of a 
system interrupt within a certain amount of days (tested for both 2 and 7 days) after the selected point in 
time. This is done via a both the student t-test and the similar, but simpler, binomial test (see paragraph 4.3). 
The following statistics were compared between the outlier list and the paired list: 

• Chance that at least one interrupt occurs within 2 (or 7) days after the time stamp. 
• The number of interrupts that occur within 2 (or 7) days after the time stamp. 
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This led to the following result: 

TABLE 8. INTERRUPT AFTER WARNING (1ST TRIAL) 

 Broken 2 Broken 7 # Broken 2 # Broken 7 
Average     
Outlier 45.19% 69.23% 1.010 3.567 
Paired 54.81% 74.04% 1.154 3.606 

 
Variance     
Outlier 0.248 0.213 2.452 19.226 
Paired 0.248 0.192 2.649 14.239 

 
 Sample Size    
Outlier 104    
Paired 104    

 
T-Test (<.05)     
Outlier/Paired 0.167 0.444 0.518 0.946 

 
Z-Test (+-1.96)     
p 0.5 0.716   
Outlier/Paired -1.387 -0.769   

 

Contradictive to the hypothesis, the probability that a machine fails and the total number of failures shortly 
after an outlier are not significantly higher than that of the paired set, but even slightly (non-significantly) 
lower. This means that for the datasets used, a failure shortly after an outlier was less common than after a 
random point in time. Because this conflicts with the hypothesis some further investigation was required. The 
first step was to look if there was a difference between outliers found via any of the eight different statistical 
models (see paragraph 8.1). What was found is that only OVI and the OMCV model show significant difference 
with either the whole paired set or a modified paired set (paired with the subset)(see digital appendix A2). 
Surprisingly both sub models provide outlier lists that also experience significantly less failures in the upcoming 
time period, while the opposite effect would be expected.    

As described before, the reason that the outlier list is even worse than a random sample set could lie in the 
fact that the relation between machine constant outlier and down is hard to specify. Even after distinguishing 
between machines in up and down time, it could be possible that outlying behaviour is still the result of some 
event in the past. One would except that the chance of finding a breakdown shortly before the time stamp 
would be higher for the outliers. To verify or reject this hypothesis the same analysis as before was performed 
on the time frame before the given time stamp (see Figure 26).  

The following statistics were compared between the outlier list and the random paired list: 

• Chance that at least one interrupt occurs within 2 (or 7) days before the time stamp. 
• The number of interrupts that occur within 2 (or 7) days before the time stamp. 
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FIGURE 26. INTERRUPTS BEFORE 

While it results in a non-significant difference for the overall list of outliers and those found via the OVI model 
(both having almost equal means)(see digital appendix A2), the outcome of the analysis of the outliers found 
via the OMCV model is even more surprising (see Table 9). The fact that also the chance of having a 
breakdown event in the short past is significantly lower for the outlier list then for the paired list, not only 
rejects the assumed theory, but creates a rather unexpected and difficult to explain situation. An outlier found 
with the OMCV model would have significantly fewer failures before and after the moment it occurs. There are 
a couple of reasons why this result could be found and why it should be neglected. The fact that the example 
set is rather small (𝑁 < 20), combined with the notification that 9 out of the 17 (53%) outliers come from the 
same machine (X) and 5 out of 17 (29%) come from another machine (Y) makes it a weak representation of the 
whole machine constant population. This gets even more problematic if for the same 53% there is no known 
breakdown before the time stamps. Another issue is that the outliers are not unrelated to each other, because 
if the set of all machine constant values is labelled an outlier at a certain time stamp it will most likely still be 
an outlier after the next calibration of a single machine constant. This is indeed the reason why the sample set 
consists out of only a few different machines, with time stamps shortly succeeding each other. Finally the 
value clustering algorithm is a black box algorithm, which is based upon a lot of value back engineering and 
assumed missing values. These arguments allow neglecting the statistical ‘significant’ results found and 
concluding that the clustering algorithms are unable to function in this low information per row 
(CREATION_DATE) environment.  

TABLE 9. INTERRUPT BEFORE WARNING (OMCV) 

Paired      Subset     

 Broken 2 Broken 7 # Broken 2 # Broken 7   Broken 2 Broken 7 # Broken 2 # Broken 7 

Average      Average     

Outlier 29.41% 41.18% 0.471 1.118  Outlier 29.41% 41.18% 0.471 1.118 

Paired 54.81% 73.08% 1.221 3.529  Paired 58.82% 82.35% 1.176 3.412 

   

Variance      Variance     

Outlier 0.208 0.242 0.955 5.633  Outlier 0.208 0.242 0.955 5.633 

Paired 0.248 0.197 2.557 12.384  Paired 0.242 0.145 1.910 11.654 

   

 Sample Size   Sample Size 

Outlier 17     Outlier 17    
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Paired 104     Paired 17    

   

T-Test      T-Test     

Out/Pair 0.053 0.008 0.065 0.008  Out/Pair 0.089 0.013 0.105 0.035 

   

Z-Test      Z-Test     

p 0.512 0.686    p 0.441 0.618   

Out/Pair -1.94 -2.627    Out/Pair -1.727 -2.470   

 

Looking back to the original results of the upcoming failures after a warning, it is interesting to see that the 
average value of the individual models is lower than the average value of the population models (see digital 
appendix A2). The reason that the individual models perform ‘worse’ than the population models could be the 
result of the validation of the Central Limit Theorem. For such a small time period, the number of samples for a 
machine constant on a single machine will in some cases be too small to allow strong statistical conclusions.  

The final observation, based on the ‘SumOutlier’ findings done during the diagnostic evaluation, is that for 
strong outliers (𝑆𝑢𝑚𝑂𝑢𝑡𝑙𝑖𝑒𝑟 > 10), there is more breakdown behaviour after a warning then after a random 
point in time (see Table 10). The result is not significant, because the filtered example set is very small (𝑁 =
20). A non-significant result does not allow for any general conclusions, but provides a direction to continue 
the evaluation. 

TABLE 10. INTERRUPT AFTER WARNING (SUMOUTLIER) 

Paired      Subset     

 Broken 2 Broken 7 # Broken 2 # Broken 7   Broken 2 Broken 7 # Broken 2 # Broken 7 

Average      Average     

Outlier 72.73% 90.91% 1.909 5.182  Outlier 72.73% 90.91% 1.909 5.182 

Paired 54.81% 74.04% 1.154 3.606  Paired 45.45% 81.82% 0.545 3.727 

   

Variance      Variance     

Outlier 0.198 0.083 6.446 18.694  Outlier 0.198 0.083 6.446 18.694 

Paired 0.248 0.192 2.649 14.239  Paired 0.248 0.149 0.430 20.562 

   

 Sample Size   Sample Size 

Outlier 11     Outlier 11    

Paired 104     Paired 11    

   

T-Test      T-Test     

Out/Pair 0.258 0.219 0.176 0.201  Out/Pair 0.211 0.557 0.116 0.471 

   

Z-Test      Z-Test     

p 0.565 0.757    p 0.591 0.864   

Out/Pair 1.140 1.240    Out/Pair 1.301 0.621   

 

While the first run provides some insight into the lack of prognostic value of the model, it also provides some 
suggestions on how to improve and continue the research. These will be incorporated into the second run. 
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SECOND TRY – SLIM MODEL 
Because the model used during the first run did not have any predictive value some adaptations were applied 
to try and improve the model. The following adaptations were made: 

• Instead of putting an extra restriction on the number of machine constants per machine, the 
individual models are removed. This should not lead to high quantities of missed warning, 
because the population models test similar condition. A population outlier is more likely to be an 
individual outlier and vice versa.  

• The black box clustering sub models proved not to be applicable to the current dataset, so they 
are removed from the model.  

• Where the number of tests decreases, the required ‘SumOutlier’ value stays the same  (> 6) to 
select only the extreme outliers.   

• The number of machine constants in the input list increases to 60 (150% of the original set), 
because the calculative requirements of the model is reduced. The benefit of adding more 
machine constants is that a larger portion of the total machine constant population is 
represented and that the number of outliers to be found also increases.  

• The time frame is decreased to the exact time frame of the original dataset, because equal time 
frames allow for comparison of the time between warning and failure and it removes the 
possibility of seasonal or any other time related effects. The increase in the possibility of 
analysing overlapping time periods is taken for granted as a negative side effect.  

The adapted requirement led to a dataset that consisted out of 71 different machines and a total of 38371 
data points. Based upon the recommendations found during the first run, the following sub models were 
excluded from the model: 

TABLE 11. SECOND TRY MODELS 

Included models Excluded models 
Outlier Value Compared to Population (OVP) Outlier Value Compared to Individual (OVI) 
Outlier Jump Value Compared to Population (OJP) Outlier Jump Value Compared to Individual (OJI) 
Outlier Jump Frequency Compared to Population (OJFP) Outlier Machine Constant Value per Time Stamp (OMCV) 
Outlier Trend Compared to Population (OTP) Outlier Calibration Selection per Time Stamp (OCS) 

 

Because the model used during the second try is based upon the model used in the first try, no new 
visualization or program code will be given. With this slimmer model, and similar procedures used during the 
first run, quantitative results were obtained for the interrupt behaviour after (see Table 12) and before (see 
Table 13) the warning times. 

TABLE 12. INTERRUPT AFTER WARNING (2TH TRIAL) 

 Broken 2 Broken 7 # Broken 2 # Broken 7 MinDiff 
Average      
Outlier 40.00% 62.86% 0.657 2.829 16.846 
Paired 44.29% 61.43% 0.629 2.214 16.711 
  
Variance      
Outlier 0.240 0.233 0.997 17.999 548.193 
Paired 0.247 0.237 0.633 6.654 545.958 
  
 Sample Size     
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Outlier 70     
Paired 70     

  
T-Test (<.05)      
Out/Pair 0.611 0.863 0.853 0.306 0.973 

  
Z-Test (+-1.96)      
p 0.421 0.621    
Out/Pair -0.513 0.174    

 

TABLE 13. INTERRUPT BEFORE WARNING (2TH TRIAL) 

 Broken 2 Broken 7 # Broken 2 # Broken 7 MinDiff 
Average      
Outlier 41.43% 55.71% 0.643 2.700 -26.023 
Paired 41.43% 61.43% 0.586 2.400 -24.261 

  
Variance      
Outlier 0.243 0.247 0.915 13.610 822.665 
Paired 0.243 0.237 0.700 8.211 803.515 
  
 Sample Size     
Outlier 70     
Paired 70     
  
T-Test (<.05)      
Out/Pair 1 0.496 0.709 0.595 0.717 

  
Z-Test (+-1.96)      
p 0.414 0.586    
Out/Pair 0 -0.686    

 

What can be concluded from the results is that the assumed possibility of improving the prognostic value of 
the original model was false. While the model no longer generates predictions with significantly lower number 
of failures before or after a warning, it also still does not predict significant higher number of failures in those 
periods. No promising adaptations of the original model exist, so it can be concluded that basing upcoming 
machine status on anomalies in current machine constant value is impossible.    
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THIRD TRY – UNIQUE CONSTANTS 
After two failed tries, based upon the idea of anomaly detection, a rather different approach is tested during 
the third try.  Instead of looking at the value of the machine constant, this rather simple model identified those 
machine constants that were only calibrated once during the whole time period. The fact that a machine 
constant is unique may indicate that the machine is experiencing abnormal behaviour. Because this 
identification process requires no analytics, the outlier list was created via the same data preparation process 
used during the first try (see paragraph 7.2). The only difference is that the number of examples of a machine 
constant in the dataset should not be larger than 100 (𝑁 ≥ 100), but equal to only 1 (𝑁 = 1). The result of 
the filtering process were 29031 unique machine constants, spread across 61 creation dates on 31 different 
machines. It is interesting to note that these machine constants most be related, because the number of 
machine constants per time stamp is high.  

Another noteworthy finding is that 57.3% of the creation dates results in a current machine down state. 
Comparing this with the results found during the diagnostic value evaluation (see paragraph 9.1); it is safe to 
state that, besides abnormal machine constant values, abnormal machine constants themselves are a strong 
indication that the machine is in a down state. This further strengthens the conclusion that machine constant 
have diagnostic value.  

Continuing with the analysis of the prognostic value of machine constants, the failure behaviour before and 
after the warning time is compared with a paired group (see Table 14 and Table 15). 

 

TABLE 14. INTERRUPT AFTER WARNING (3TH TRIAL) 

 Broken 2 Broken 7 # Broken 2 # Broken 7 MinDiff 
Average      
Outlier 42.31% 65.38% 0.692 2.808 11.850 
Paired 46.15% 61.54% 1.500 3.192 10.472 

  
Variance      
Outlier 0.244 0.226 0.905 10.694 277.351 
Paired 0.249 0.237 5.250 13.925 255.251 
  
 Sample Size     
Outlier 26     
Paired 26     

  
T-Test (<.05)      
Out/Pair 0.785 0.779 0.110 0.670 0.767 

  
Z-Test (+-1.96)      
P 0.442 0.635    
Out/Pair -0.279 0.288    
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TABLE 15. INTERRUPT BEFORE WARNING (3TH TRIAL) 

 Broken 2 Broken 7 # Broken 2 # Broken 7 MinDiff 
Average      
Outlier 42.31% 53.85% 1.077 3.115 -26.425 
Paired 46.15% 57.69% 0.846 3.385 -24.568 

  
Variance      
Outlier 0.244 0.249 3.686 19.564 829.957 
Paired 0.249 0.244 1.592 28.391 799.207 

  
 Sample Size     
Outlier 26     
Paired 26     

  
T-Test (<.05)      
Out/Pair 0.785 0.785 0.618 0.847 0.819 

  
Z-Test (+-1.96)      
P 0.442 0.558    
Out/Pair -0.279 -0.279    

 

Similar to the findings during the first two tries, also the third try is unsatisfying in prognostic value. There is no 
significant difference between the outlier list and the paired list, for either behaviour before or after a 
warning. While the sample size is not as large as preferred, it is safe to conclude that a larger sample size will 
not improve the results (being so far away from positively significant). Having found three failed attempts to 
prove the relation between machine constant anomalies and upcoming failures, with the current knowledge 
and skill, it can be concluded that prognostic value of machine constants does not lie in the anomalies 
themselves.  
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FOURTH TRY – PATTERN RECOGNITION 
The fourth and last model for prognostic value does not look for behaviour after an outlier, but tries to predict 
the outliers themselves. During the diagnostic value evaluation it was found that there is a relation between 
the anomalies and the direct machine status at that same moment in time. So, if a model is able to predict the 
moment in time the anomaly will appear, it should be able to predict a possible outlier significantly better than 
a random pick. So the fourth model does not contradict with the original statistical model (see paragraph 8.1), 
but continues with its output.  

25-5-2013 - 17-9-2013
Pattern Period

17-3-2013
A

25-5-2013
-7 Day Boundary

8-7-2013
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26-10-2013
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27-4-2013
B

17-9-2013
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D
24-8-2013

B
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10-6-2013
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FIGURE 27. PATTERN RECOGNITION 

To analyse the machine constant behaviour before an outlier, a pattern recognition algorithm is used. The 
Generalized Sequential Pattern (SGP) algorithm searches for common behaviour during a period of 7 days, 
before the outlier (see Figure 27). Each time stamp is labelled with an alphabetic character to represent the 
area in which the machine constant value finds itself. The areas are based upon normalization of the machine 
constant values that are not qualified as outliers (𝑍 < 2). Figure 28 describes the area labelled J (which are the 
outliers), and the division of the leftover values following the normal distribution. Positive and negative 
deviations from the mean receive the same label, to increase the chance of finding a pattern. This is based 
upon the idea that an outlier may show slight machine constant value deviation from the population prior to 
the actual outlier. Because the labelling is based upon the machine constant value, compared to the whole 
population, there is large overlap with the OVP sub model included into the model used during the first try. 
See paragraph 12.6 for a detailed description of the SGP algorithm.   

 

 
FIGURE 28. AREA DEFINITION 
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The dataset that is used as input for the fourth try is based upon the outlier list from the first try. Machine 
constants X and Y were the most occurring machine constants in downstate in the original outlier list, and 
therefore selected as filtering criteria for the fourth try (see Table 16). Out of the 134 timestamps that 
occurred during the period monitored, a total of 23 outliers were identified.    

TABLE 16. GSP DATASET 

Machine Constants # Timestamps # Outlying 
X 68 15 
Y 66 8 
Total 134 23 

 

The dataset was then implemented into a RapidMiner process (see Appendix 11). The GSP model is customized 
to find patterns that occur within one week (𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 = 7 𝑑𝑎𝑦𝑠) and neglects the maximum time 
gap (𝑚𝑎𝑥 𝑔𝑎𝑝 = 0 𝑑𝑎𝑦𝑠), because each machine constant value represents a unique event and there is no 
benefit in aggregating events. Figure 29 provides an abstract visualization of the pattern recognition process. 

 

 

 

 

 

 

 

 

FIGURE 29. PATTERN RECOGNITION MODEL 

 

Filtering for only those sequences that include an outlying state (𝐽) the following result was obtained: 

TABLE 17. OUTLIER SEQUENCE 

% Population Sequence # Machines % Outliers 
5.2% 𝐺 → 𝐽  7 30.4% 
5.2% 𝐸 → 𝐽 7 30.4% 
5.2% 𝐷 → 𝐽 7 30.4% 
7.5%  𝐽 → 𝐺 10 43.5% 
7.5%  𝐽 → 𝐹 10 43.5% 
6.0%  𝐽 → 𝐸 8 34.8% 
9.0%  𝐽 → 𝐽 12 52.2% 
6.0%  𝐽 → 𝐺 → 𝐹 8 34.8% 
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As seen in Table 17, three different sequences that result in an outlier are identified. While it seems quite 
promising that there are sequences with a slightly abnormal machine constant state (D, E, and G) during the 
last week before a failure, for 30.4% of the outliers, it still provides low amounts of prognostic value. For 
example, if a machine is in a G state, the number of machines that show a pattern from that state towards any 
other non-outlying state is higher for any state then the outlier J (see Table 18). So, if a machine is in a D, E, or 
G state, the accuracy of the prediction that an outlier will occur within the next seven days is at most 5.2%. The 
accuracy is most likely even much lower, because the algorithm only counts the number of machines that 
show the pattern somewhere in the whole sequence. So even if the pattern leading up to a failure is found 
once, it is possible that the same state does not lead up to an outlier during other parts of the sequence. 
Together with the fact that not all outliers become direct machine failures, pattern recognition (implemented 
in this exact way) is an unpromising method for prognostic purposes.  

TABLE 18. EXAMPLE SEQUENCE 

% Population Patterns 
42.5% 𝐺 → 𝐴 
42.5% 𝐺 → 𝐵 
42.5% 𝐺 → 𝐶 
42.5% 𝐺 → 𝐷 
48.5% 𝐺 → 𝐸 
52.2% 𝐺 → 𝐹 
51.5% 𝐺 → 𝐺 
6.7% 𝐺 → 𝐻 
5.2% 𝐺 → 𝐽 
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9.3 CONCLUSION 
Throughout the evaluation phase the relation between machine constants and the current machine status is 
validated. Both the original model (trial 1) and the unique machine constants model (trial 3) have proven to be 
able to indicate if a machine is in a down state, statistically significantly better than a random guess. With an 
accuracy of around 50%, regarding Type ΙΙ errors and True Positives (see paragraph 4.3), the model close to 
doubles the diagnostic value compared to having no machine constant information. The fact that the Type ΙΙ 
error has a high value of 50% is no problem, because the information about outlying machine constants will 
only be used in case the machine is already down. So, false warnings do not have any negative effect on the 
business process. Because all the models used throughout the thesis only monitor a fraction of the total 
amount of machine constant, it is impossible to qualify the accuracy regarding Type Ι errors and True 
Negatives (see Table 19). Only if all machine constants are taken into account, the exact diagnostic accuracy of 
the model can be obtained. So far, it can be concluded that there is diagnostic value in machine constants and 
that this information seems worth implementing in current (Automated Recovery Engine) or new diagnostic 
tools.  

TABLE 19. DIAGNOSTIC VALUE 

 Predicted State 
Healthy Broken Down 

Ac
tu

al
 

St
at

e 

Broken Down Unknown%  
Type Ι error 

50% 
True Positive 

Healthy Unknown% 
True Negative 

50% 
Type ΙΙ error 

 

After performing four different tries to validate the hypothesis that machine constants have a prognostic value 
for future machine health, it can be concluded that there is no prove to accept this hypothesis and that it is 
even more likely that it can be rejected. See Figure 30 for an overview of the process of prognostic value 
validation. Despite with the possibility of applying completely different algorithms, approaches, or 
implementing expert knowledge, it is unlikely that machine constant could have any prognostic value. Applying 
the confusion matrix (see paragraph 4.3) to any of the above models is not useful, because it was already 
concluded that the models do not have any prognostic value. So if unusual behaviour of a machine constant 
does not lead to a direct down, it is of no harm to the machine and has no predictive value. The input data and 
results of all of the four trials can be found in digital appendix A to D. 

FIGURE 30. PROGNOSTIC VALUE OVERVIEW 
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10 RESEARCH CONCLUSIONS 
This chapter uses all obtained results and knowledge from the previous chapters to answer the research 
questions and goal. The structure of this chapter follows the build-up of the research question paragraph (3.2), 
building up towards a discussion on how far the research goal is met (10.4), and ending with an overview of 
the limitations of this research (10.5). 

10.1 WHAT DOES THE SELECTED DATA REPRESENT? 
The data that was selected consists of machine constant data and the interrupt overview. Machine constants 
are settings defined by machine software drivers, after automated tests/calibrations, which determine how 
the machine should perform. They relate to a physical attribute within the lithographical machine and 
influence the three basic KPI’s of ASML’s machines; Overlay, Imaging and Throughput (see paragraph 3.3). The 
interrupt data describes all interrupts that occurred during the selected time period, with detailed background 
information about these interrupts.  

HOW IS THE QUALITY OF THE SELECTED DATA? 
Machine constants: Assuming that the given dataset was a good representation of the machine constant data 
in general, it can be concluded that machine constant data is stored correctly and reliable. The amount of 
missing data is negligible (<1%), because it lies below the 10% rule of thumb, and no unacceptable data entries 
are found. Despite the good start, there are some issues with the data that make it difficult to analyse and 
interpret. First of all, there is no documentation on the exact meaning of the data available. Some sort of 
legend or appendix with the meaning of the terms used for each column would provide some more certainty 
about the interpretation of the data. The second issue with the data quality is the uncertainty with the time 
stamps. It would be beneficial for the analytical quality if the time between the moment that an event takes 
place in reality and the time stamp to which it is allocated in the dataset is registered, or if the uncertainty 
would be described or quantified. Another noteworthy insight about the machine constant values is that a 
variance of 0 is rather common, while in practice this should not be possible. Machine constants relate to 
physical attributes of the machine, and there is always some movement (assuming that the machines are not 
in a zero Kelvin environment). The reason that zero variance is measured could be the cause of rounding off 
small values during the measurement or storage data. Because this rounding off is most likely not done 
deliberately, the possible negative side effects of this loss of data are probably not considered. This is 
something to keep in mind when mining data that is extremely detailed (up to Nano-meters). The last remark 
on data quality is the fact that the selected dataset is not optimal for clustering. While this is not exactly a flaw 
in data quality, it influences the quality of the analysis. For future application of cluster algorithms, it is 
preferred to use a data source that stores more machine constant information per time stamp (instead of only 
the value deviation).    

Interrupt overview: This data source includes no missing data or unacceptable data entries. The fact that the 
data is manually verified means that there is space for human error. While it is most likely more reliable than 
non-verified data, it is false to conclude that the data is errorless. While machine error is easier to identify, 
because it is more structured, human error is almost unidentifiable. Besides this possible flaw, there are no 
known critics on this data source. The final verdict about the overall quality of the selected data (machine 
constants and interrupt overview) is that the data is of an on average quality, where the amount of data and 
percentage of missing data are fine, but the easiness of interpretation of data is below requirements.  

HOW DOES THE SELECTED DATA BEHAVE? 
Machine constants: As described in chapter 5, there is all kind of machine constant behaviour. Even for a 
similar machine constant it is common that the behaviour per machine is significantly different. Some 
examples of machine constant behaviour are the linear trend, jumps, outliers and a random cloud. It is 
impossible to identify bad machine states, based on its own behaviour, because there is no description 
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available about the normal behaviour of the machine constants. It could be possible to analyse behaviour 
individually, if expert knowledge was able to define guidelines for machine constant behaviour. E.g. upper and 
lower limits of the MC values, un-allowed drifting/jumping/fluctuating of certain constants, or a predefined 
MC specific failure patterns. Because this information is either unavailable or does not exist at all, the best 
judgement of the allowed behaviour of a machine constant is the general behaviour of the whole population 
of machine constants (on the different machines), as validated during the evaluation (see chapter 9).  

Interrupt overview: Because this data source does not show behaviour, this will not be discussed.  

WHICH TOOLING/SOFTWARE IS APPLICABLE TO THE DATA? 
As described in paragraph 5.2, there are many different software packages to choose from. During this 
explorative phase of a project, the selecting criteria for tools were a short learning time, low costs, and the 
required features (e.g. the X-means, Regression, and SOM models in RapidMiner). From all of those different 
options, the combination of MySQL and RapidMiner was selected as the most suited tools for the ASML 
business environment. Both tools are open source freeware with a strong issue solving community behind 
them, and have proven to be able to solve the business problem. This could be done in a rather short period, 
without any data mining experience (Note: some statistical and program code experience is advised).  

One issue regarding use of tooling/software to the data is the computational strength. Even with a desktop 
computer with high level specifications (Intel(R) Xeon(R) CPU, W3565 @ 3.20 GHZ, 3.19GHZ processor with 
12.0 GB installed memory (RAM) on a 64-bit Operating System (Windows 7 Enterprise)), it was impossible to 
perform the analysis the preferred way. The reason for this is that the RAM memory of the computer slowly 
fills during a run. As soon as the RAM memory almost reaches the maximum level, the speed of performing 
processes drops extremely, up to the point that the run will take an infinite amount of time to finish. The 
strange fact is that the developed model (see paragraph 8.1) takes about 30 minutes to run, while only a slight 
extension of the amount of machine constants used as input leads to an infinite running time. The cause of this 
extreme growth of running time is unknown and unsolved during this thesis, but it could either be the result of 
inefficient use of memory by RapidMiner (due to non-optimal settings) or just the result of the high 
requirements of the many subprocess, loops, and algorithms. Especially with the rise of big data analysis, this 
is certainly an issue to solve in the future. In general, try to do as much of the pre-processing in MySQL (or any 
other database software), because this is clearly not the strength of RapidMiner (uneasy and RAM memory 
consuming). 
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10.2 Is it possible to extract any useful information from the selected data? 
Because the idea behind the machine constants is that they are related to physical attributes within the 
machine, the expectation was that there is some useful information about machine status in that data. During 
the evaluation phase, it was found that the constants do indeed relate to machine status. Practice and/or 
experts should validate if this information is indeed useful. So, it is indeed possible to extract information from 
the machine constants, and this information is most likely also useful.   

WHAT IS A SUITABLE APPROACH FOR ANALYSING A LARGE, RATHER UNKNOWN DATA SOURCE? 
Literature provided a suitable approach for analysing large rather unknown data sources, called the Cross 
Industry Standard Process of Data Mining (CRISP-DM) (see paragraph 12.3). Following a cyclic iterative process 
of business understanding, data understanding, data preparation, modeling, evaluation, and deployment the 
unknown data source can slowly be unravelled. Because of the iterative approach of CRISP-DM, it is important 
to keep track of the previous taken paths. Describing the dead ends protects from running in circles and 
provides a summary of the options evaluated, useful for future researchers. It can be concluded that CRISP-DM 
is a useful approach for data mining beginners, for whom it provides a strong guidance through the whole 
process, and experienced data mining experts, for whom it makes sure that no parts of the process are 
neglected due to tunnel vision towards the final result.      

Regarding the decision between a Data and Knowledge Driven approach, this research question already aims 
at Data Driven, because the data source is defined as rather unknown. Based upon the knowledge and 
experience obtained during the thesis, a preference for the Knowledge Driven approach is created. Knowing 
what to mine for simplifies the mining process and decreases the uncertainty after results are found. For this 
reason, expert knowledge should be included in the process as soon as possible, or should even be the initiator 
of a data mining project. After the initial phase, in which the knowledge is transferred, a data mining expert 
can continue the research on its own, up to the evaluation and deployment phase of the CRISP-DM cycle.  

IS IT POSSIBLE TO APPLY ANY OF THE BY LITERATURE SUGGESTED METHODS OF DATA MINING TO THE 

SELECTED DATA? 
Apart from the general CRISP-DM methodology, there was one other main framework, called Statistical 
Process Control (SPC) (see paragraph 12.7). This classical anomaly detection method proved successful for the 
particular machine constant data source, and could probably also be applied to other types of machine data. 
Comparing behaviour of a machine constant with that of the population is the best you can do without any 
expert knowledge about that machine constant.  

From the data mining models found in the literature (see paragraph 12.6), X-means (with CLBOF) and 
Sequential Pattern Recognition (GSP) where put to practise. While it is difficult to quantify to quality of the 
output of the models, it is most likely that these models did their task correctly. X-means provided rather 
unusual results, but this was the result of a small biased dataset. In case of a longer time window, the 
possibilities of X-means should definitely be considered. Sequential Pattern Recognition worked as required 
and provided an expected but unsatisfying result of no interesting sequences.  

Other models, like ANN, SOM and CaRTs, seemed less suited for this particular business problem, because they 
focus more on separating a dataset into homogenous regions instead of anomaly detection. This could be 
useful to identify differences between machines, but not directly for diagnostics or prognostics. During a 
follow up step of anomaly detection, the result of a cluster algorithm can be used as input to a pattern 
recognition algorithm to find patterns in the movement of clusters. If a common failure pattern is found, the 
cluster models could be useful for prognostics. This could be part of the future research on machine 
prognostics (see paragraph 11.2). 
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IS IT POSSIBLE TO RELATE THE SELECTED DATA WITH THE CURRENT MACHINE STATUS? 
During the evaluation phase (see paragraph 9.1) it was found that machine constants indeed statistical 
significantly relate to machine status. If a machine constant is strongly deviating from the population, chances 
are higher that the machine is currently experiencing issues. It is difficult to define the exact relation of that 
constant value and the machine status, because the interrupt could be the result of the abnormal value or vice 
versa. The machine constant can at least provide some diagnostic information to the engineer on which 
module of the machine (the module that relates to the machine constant) could be experiencing issues.  

IS IT POSSIBLE TO RELATE THE SELECTED DATA WITH THE FUTURE MACHINE STATUS AND INCLUDE THIS INTO 

A PREVENTIVE MAINTENANCE APPROACH? 
During the evaluation phase (see paragraph 9.2) it was found that machine constants do not relate with 
upcoming machine status and that it is not possible to predict future outliers via pattern recognition. Despite 
the fact that there are some possible limitations to this thesis (see paragraph 10.5), based upon the acquired 
knowledge, any implementation of machine constant monitoring into the prognostics of a CBM environment is 
not recommended (not to be confused with diagnostic value). If the possibility of implementing machine 
constants into preventive maintenance is still not forsaken, a radically different new approach should be 
explored.   

10.3 WHAT COULD BE THE FUTURE APPLICATIONS OF MONITORING THE SELECTED DATA? 
Because the machine constants do have diagnostic value, but no prognostic value, monitoring machine 
constants does not solve the complete business problem. Still it could be valuable to implement machine 
constants monitoring into the machine diagnosis after an interrupt. The outlying machine constants could be 
an indicator for the kind of issues the machine is facing. See future recommendations (chapter 11) for a more 
detailed description on how to implement the research results. 
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Develop a prognostic/diagnostic tool applicable to machine parts that find 
themselves in the middle part of their lifecycle (constant failure rate). 
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10.4 RESEARCH QUESTION 
As defined in the research design (see paragraph 3.2), the following thesis goal was defined: 

 

 

 

The goal of the thesis is partially met, because a conceptual process (see Figure 31) and tool (see chapter 8) 
were developed that relate machine constants with machine status. The problem is that this relation is only 
between machine constant values and current machine status (diagnostics), but not between the data and 
future interrupts (prognostics). The developed tool tries to find outlying machine constant values, in the 
assumption that this may lead to a machine interrupt.  

The concept of outliers is especially useful for the middle part of the machine life cycle (bathtub curve), 
because this area is described as a rather stable and homogenous environment with a low constant failure 
rate. This description suits the normal distribution, in which the outlier mechanism works at its best. Another 
characteristic of this part of the life cycle is that parts do no suffer from wear out, as result of age. Wear out is 
usually predicted by the trend line of the wear out, while random failures are unpredictable by such a trend 
line. Monitoring anomalies in the form of outliers is the best alternative in case of random failures. The middle 
part of the curve being the main focus of this thesis, it can be concluded that the diagnostic value of the tool 
should be considered for implementation by ASML. While the developed tool is currently in an experimental 
state, and therefore not ready for real-world implementation, this could be done after a small number of 
adaptations. This is part of the future recommendations for ASML (see paragraph 11.1). Summarizing: 

• Continue the research on, and implementation of the diagnostic value of machine constants. 
• Cancel the research on the prognostic value of machine constants. To obtain certainty about this, the 

limitations (see next paragraph) should be investigated and rejected.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 31. CONCEPTUAL PROCESS 
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10.5 LIMITATIONS 
Like all research, this thesis has some limitations. It should be kept in mind that these limitations could have 
influenced the obtained results and conclusions. A distinction is made between research design and research 
question limitations, because of the difference in fundamental influence on the thesis. Design limitations are 
insights that were obtained throughout the thesis that could have been overcome if known in advance 
(hindsight), while question limitations concern fundamental issues that would bring down the whole research 
approach. The limitations are written down as statements, but it should be noted that they are still subjective. 

RESEARCH DESIGN LIMITATIONS 
• The amount of data used was a too small sample of the total dataset to provide significant 

results. Both the short length of the time frame and the fact that not all machine constants could 
be analysed makes it impossible to find valid outliers. To be able to increase the amount of used 
data, the processing strength of RapidMiner should have been increased. This could either have 
been done via optimizing of the settings or increasing the hardware capabilities (e.g. by running 
the analysis on a heavier computer). 

• Putting the influence of variation in machines, parts and locations out of scope immerses the 
machine constant values in a cloud of noise, from which no prognostic value can be obtained. 

• The major part of the outlying machine constants are data entry errors. Therefore, the control 
limits are no longer representative for the machine constant population. This results in a list with 
only the data entry errors instead of real machine constant value outliers.  

• The selected time frame is not representative for the general behaviour of machine constants. It 
could be possible that the customers are in a down turn, in which abnormal low/high amounts of 
issues occur due to low production, or more preventive maintenance planning (set-up 
calibrations).  

• The validation of the models can only be done in practice or by knowledgeable experts, instead of 
sole statistically. So the conclusion that the model does have diagnostic and does not have 
prognostic value is pre mature. It could be the case that, despite the positive results, there is no 
practical diagnostic value in machine constants. The other way around, it could also be that there 
is prognostic value in the data, despite the negative results. Both could be the result of evaluation 
of outliers with expert knowledge, when only ‘interesting’ outliers are selected.  

• The dataset selected for this thesis contains only a fraction of the total information available at a 
single time stamp, because only the values of calibrated machine constants are stored. It is 
impossible to back-engineer this information to a dataset applicable for cluster algorithms.  
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RESEARCH QUESTION LIMITATIONS 
Based on the fact that a lot of other tools also lacked significant prognostic value (e.g. list of tools validated 
and made by the Spanish consultant team) and the negative results found in this thesis, the following 
statements on the research question could be true: 

• The assumption that machine constants influence machine status is not true. The physical 
relation between hardware and machine constants is not as direct as assumed. 

• General monitoring of machine population cannot be performed, due to the heterogeneousness 
of the machine and machine constant population (e.g. differences in location, software/hardware 
versions, client customisation, and workload). Even after incorporating this information, it is 
impossible to compare machines successfully in any way, because the amount of homogeneous 
examples would become too limited. A data-driven approach is therefore unsuccessful for such a 
dataset, and only a knowledge driven approach could extract useful information from beneath 
the layer of noise.  

• The influence of the storage time noise within the data (especially regarding the time stamps) 
predominates the underlying useful information. This cannot be simply overcome, because the 
amount of deviation from the real moment in time is unknown and no alternative more accurate 
datasets are available.  
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11 FUTURE RECOMMENDATIONS 
The future recommendations chapter describes a vision on the activities to perform after this thesis. It starts 
with a discussion on final phase of the CRISP-DM cycle, called the Deployment phase. Finally several 
suggestions are given for the future direction of this research topic, with specific focus on the on-going 
research cooperation between ASML and University of Technology Eindhoven (TU/e).  

11.1 DEPLOYMENT 
The deployment phase of this research discusses the possibilities of implementing the model. This final phase 
of the CRISP-DM methodology is out of scope of this thesis and therefore discussed as a part of the future 
recommendations. While the intention of the research question was explanatory, it is important to define the 
possible benefits of monitoring machine constants and provide some insights into the implementation process 
itself.  

During the evaluation phase it was found that the constructed model is unable to fulfil the complete 
requirements of the research question, namely a tool that is able to provide both diagnostic and prognostic 
value on machine status. Due to the fact that no positive prognostic relation was found between machine 
constants and future machine status, there is no such model or approach to be implemented at the current 
moment in time. Despite this shortcoming on the initial requirements, it is reasonable to consider the 
implementation of the knowledge obtained about diagnostics. The outlying machine constant could give some 
extra information to the field engineer on the issues that the machine is experiencing, but it was impossible to 
validate this theory with the current RapidMiner tool and lack of expert knowledge. The first step of the 
deployment phase would be to extent the time interval on which the RapidMiner tool bases its outliers and 
include all machine constants, instead of a rather random sample set. It is only possible to execute this step 
with the supported of enough calculative power, probably from a central server. Increasing the amount of data 
increases the possibility of finding true outliers, because it strengthens the effect of the Central Limit Theorem 
(see paragraph 12.7). Including all machine constants makes sure that all outliers can be found (because they 
are no longer out of scope of the tool) and increases the possible applicability of cluster algorithms (because 
there is more data available per time stamp). With only a few small adaptations, the existing RapidMiner tool 
can be extended and further automated (e.g. daily repeated executing, user friendliness, email notification, 
report building, removing bugs).  

The first step before full roll-out would be doing a trial with the help of several field experts and validating the 
found relation between the outlying machine constant and the machine interrupt. Only if the field engineers 
find the machine constant information useful in practice there is an urge to continue with the tool. So, it can 
be stated that the current RapidMiner tool is too experimental to be implemented directly in practice, but is a 
strong fundament for a future real-world running support tool, and that the theoretical value should first be 
validated in practice before up scaling the project.  

A final note on deployment is the fact that there already was a previous initiative on machine constant 
monitoring in the far past (2003), which was cancelled due to lack of support. This tool was a basic monitoring 
tool on outlying machine constant values, similar to the OVP statistical sub model (see paragraph 8.1). Due to 
inaccurate project documentation, only few relevant objective documents could be retrieved. The ‘EDS MC 
Monitoring Tool’ document describes the layout of the user interface and the required behaviour of the MC 
monitoring tool, and the ‘EPS Requirements MC monitoring tool’ document describes the high level 
requirements for the MC monitoring tool (see digital appendix F1 and F2). Both documents provide a list of 
names of people who were involved and could have some tacit knowledge on machine constant monitoring 
and tooling. As the initiative took place around 10 years ago, this knowledge may be out-dated or just drained 
away. Because the deployment phase is not executed during this thesis, this whole paragraph could be seen as 
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a first suggestion on future research. It should be noted that this would be more based upon practical 
knowledge (defined as relevance) then a contribution to research itself (defined as rigour) (Katzav, 2012).  

11.2 FUTURE RESEARCH 
Next to continuing from the point where this research on the possible value of machine constants in a CBM 
environment ended, there are several other directions the obtained knowledge could lead to.  

• The experience with clustering models can be applied to parameter monitoring. In the thesis 
from Goknur Seyma Cakir (2011), it was found that parameter monitoring could be useful for 
machine prognostics. Clustering algorithms (e.g. X-means, SOM) are found to be successful in 
case of a multi-dimensional data environment and are therefore interesting for analysing 
parameters. Cakir already successfully implemented some of those algorithms, but with the 
vastly evolving field of data mining there are still lots of topics to investigate for possible 
implementation.   

• Cluster models could also be applied on another dataset that contains all machine constant 
values of the whole machine population at a several moments in time (periodic or based on 
calibration moments), instead of only the values that change due to calibrations at the moment 
of those calibrations. For this new dataset, each time stamp contains large quantities of data for 
comparing machines within the population. Or cluster algorithms could be used to pre-process 
the input data of a pattern recognition model, to base prognostics on the movement between 
clusters over time. 

• Enrichment of the information environment by adding data concerning the business 
environment, the machine (such as age of the machine, output, location, and up/down time), or 
the machine constants themselves (such as manufacturers specifications, and ASML internal 
threshold values). 

• Investigate all of the uncertainties discussed during the limitations paragraph (10.5).  
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12 LITERATURE REVIEW 
In this section an overview of the theoretical background used in this thesis is given. The literature review 
starts off with a short description of prognostic and diagnostic tooling in the field of condition based 
maintenance. After this introduction it continues with the main topic; data mining, and then slowly zooms into 
the more detailed methodology. The final part of the literature review is unrelated to data mining and focuses 
on Statistical Process Control. Condition Based Maintenance (CBM) is not reviewed because this thesis is part 
of an on-going cooperation of the University of Technology Eindhoven (TU/e) and ASML in the field of 
Condition Based Maintenance. More information about the CBM topic can be found in previous master theses 
from Bas Timmermans (2012) and Goknur Seyma Cakir (2011). 

12.1 DIAGNOSTICS AND PROGNOSTICS  
Diagnostics and prognostics are two different ways of using data to analyse the status of a system. Both 
procedures are important parts of a Condition Based Maintenance program, where system status analysis is 
fundamental task.  

DIAGNOSTICS 
The procedure with the longest history of practical application is diagnostics. The goal of diagnostics is to 
identify the nature or cause of a fault, which is done via detection, isolation and identification of faults when 
they occur (Jardine, Lin, & Banjevic, 2006). Detection should indicate when something is going wrong in the 
monitored system, isolation should provide an indication on where the problem is located (e.g. which 
component failed) and identification should detect the nature of the fault (e.g. rust on a bearing). Diagnostics 
is a procedure that is executed after a system has failed, following the ‘fireman’ approach.  

PROGNOSTICS 
The goal of prognostics is to provide an accurate prediction of the future behaviour of a system, with particular 
interest in the prediction of failures (Jardine, Lin, & Banjevic, 2006). A commonly used prediction is the 
Remaining Useful Life (RUL), which is an indication of the expected time between now and the first upcoming 
failure. The prediction is defined by the expected time and likelihood that a fault will occur in the upcoming 
time period. Where diagnostics is a posterior event analysis, prognostics is a prior event analysis. Prognostic 
models can be categorized into data-driven, model-based, or hybrid.  

When comparing diagnostics with prognostics, the possible economic value of prognostics is much higher. 
Prognostics is a better procedure to achieve a zero-downtime environment, because it is pro-active instead of 
re-active. By preventing failures or preparing for the upcoming events, via planning of the required human and 
mechanical resources, unplanned maintenance cost can be saved. Despite this advantage, diagnostics is an 
important backup procedure which should not be completely neglected in practice. The first reason for this is 
that prognostics is a procedure, which like any other prediction technique, is unable to give a prediction 
without uncertainty. Without this 100% certainty about upcoming failures, some unsuccessful prediction will 
still lead to unexpected failure. For these cases, diagnostics is the best re-active solution for achieving the 
shortest down time. Besides uncertainty coverage, diagnostics is also the basic information provider to the 
prognostic tooling. The failure mechanisms should be known and analysed before future predictions can be 
given. Finally, the diagnostic information is also useful as feedback for system redesign or future designs. So it 
can be concluded that for a strong CBM environment, a cooperation of both diagnostics and prognostics is 
preferable (Jardine, Lin, & Banjevic, 2006).   
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12.2 DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES (KDD) 
The field of data mining is the main area this thesis aims at. It is a broad topic, which can be summarized as a 
computational process of discovering patterns in large datasets. Data mining is a major part of the emerging 
abstract field of knowledge discovery in databases (KDD), which is concerned with the development of 
methods and techniques for making sense of data. Data mining’s contribution to the KDD process consists of 
applying data analysis and discovery algorithms that produce a particular enumeration of patterns or models 
for the data applied to. Other important steps in KDD are data collection, data preparation, data interpretation 
and reporting (Fayyad, Piatetsky-Shapiro, & Smyth, 1996).  

Data mining involves methods from the fields of artificial intelligence, machine learning, statistics, and 
database systems. The purpose of a data mining process is to retrieve implicit, previously unknown and 
potentially useful information from a dataset and transform it into an understandable form of output (Chen, 
Han, & Yu, 1996). Besides the raw data analysis, the process involves data and data management aspects, data 
pre-processing, model selection, post processing of discovered structures, and visualization. With the rapid 
growth of the amount of data that can and is being stored, the new techniques and tools that are invented, 
and the availability and affordability of processing power, the research area of data mining got increasingly 
important over the last decades. The patterns that the data mining process tries to discover can be clusters, 
anomalies, and dependencies within the data records. The process of analysing the data is done fully or semi-
automatically. The discovered knowledge can then be applied to information management, query processing, 
decision making, process control, and other decision support systems (Chen, Han, & Yu, 1996).  

12.3 CROSS INDUSTRY STANDARD PROCESS FOR DATA MINING (CRISP-DM) 
The theoretical framework which is the red line throughout the thesis is known as the Cross Industry Standard 
Process for Data Mining (CRISP-DM) (Wirth & Hipp, 2000). This model describes an approach for data mining 
commonly used by expert in this area. CRISP-DM breaks the process of data mining into six major phases; 
Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. These 
different phases do not form a strict sequence and even repeating steps several times may be necessary. 
Figure 32 displays the general structure and flow of the CRISP-DM model. For example, while cleaning and 
preparing data, it may turn out that certain data is unusable, or that data from a previously unidentified source 
is required to be added (Zhang, Zhang, & Yang, 2003). The model also does not end after the Deployment 
phase of a data mining project, because often new questions and projects will arise. The outer circle in the 
diagram represents this cyclic nature of Data Mining itself.  

 

 

FIGURE 32. CRISP-DM FRAMEWORK 
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Pardo et al. (2002) explain the six phases of the CRISP-DM model in more detail: 

BUSINESS UNDERSTANDING 
At the start of a project the highest priority is the understanding of the project objectives and requirements 
from a business perspective. This general understanding should then be converted into a data mining problem 
definition, project objectives, data to be used, and a preliminary plan. The goals of a knowledge discovery 
project must be identified and must be verified as actionable. This makes sure that, if the goals are met, the 
newly discovered knowledge can be put to use (Chen, Han, & Yu, 1996).  

DATA UNDERSTANDING 
The data understanding phase starts with an initial data selection and collection. To understand the data in 
more detail it is necessary, to identify data quality problems, to discover first insights into the data, or to 
detect interesting subsets. The exploratory data analysis consists of two parts; calculating the summary 
statistics, and plotting the data. A statistic is an estimation (obtained from data) of the parameters 
characterizing the underlying probability distribution of the whole population. By calculating the summary 
statistics (such as the mean and variance) for each feature and for each class a first insight of the data can be 
obtained. An even more useful way of an initial analysis of the data is to construct a graphical view of the data. 
Histograms and scatter plots of pairwise combinations of variables can successfully be applied if the 
dimensionality of the data is not too high. The most informative option is to plot the data projections in two 
dimensions. This plotting can already be considered as part of the data preparation phase, because it reduces 
the dimensionality in a similar way to feature extraction. Commonly used unsupervised method during the 
data understanding phase is the principal component analysis (PCA). If possible, the data understanding phase 
should be supported and validated by a data expert. When a better view of the data is obtained, hypotheses 
about the hidden information in the data should be formed. 

DATA PREPARATION 
The data preparation phase covers all activities to adapt the initial raw data in such a way that it can be fed 
into the model tool. Data preparation changes the raw data into a final dataset. Data preparation tasks are 
likely to be performed multiple times, and not in any prescribed order. The pre-processing of the data can be 
done by encoding and the dimensionality reduction mentioned during the data understanding phase, using 
data transformation, data cleaning, data reduction, and data discretization. For these steps it may be possible 
to apply the a priori knowledge obtained during the understanding phase. Pre-processing should make the task 
of estimating simpler by reducing the number of informative features in the dataset.  

MODELING 
In the modeling phase, various modeling techniques are selected and applied to the dataset, and their 
parameters are calibrated to optimal values. Models are trained with a certain selected dataset, to be able to 
be applied to another set of data later on. There has been much research in the field of data mining, and many 
data mining techniques and systems have recently been developed. Different classification schemes can be 
used to categorize data mining methods and systems based on the kinds of databases to be studied, the kinds 
of knowledge to be discovered, or the kind of techniques to be utilized (Chen, Han, & Yu, 1996). An effective 
classification scheme to use is the kinds of knowledge to be mined, because it presents a clear display on 
different data mining requirements and techniques. Most important classes in this scheme are; association 
rules, characterization, classification, and clustering. Each of these classes can be further split up into different 
approaches (Chen, Han, & Yu, 1996). Data mining problems can usually be solved by several different mining 
techniques, involving different kinds of models. Some techniques have specific requirements on the form of 
data. Therefore, stepping back to the data preparation phase is often needed. It is difficult to point out a best 
approach beforehand, therefore it is important to try different approaches and compare the results. It is 
important to stress the difference between the best model and the actual best guess, which can differ due to 
over-fitting on the learning data. The models applied in this thesis are described in 12.6. 
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EVALUATION 
At this stage in the project, via several iterative steps, a model with high data analytical qualities is 
constructed. Before deploying the model into the business environment, it is important to thoroughly evaluate 
the model and review the whole process from start-up (Wirth & Hipp, 2000). Models used for supporting 
human decision making need to be interpretable in order to be implementable, because humans are not likely 
to base their decision  on the result of so called ‘black-box’ models. The goals of accurate prediction and 
interpretation are somewhat contradictory, since this required high accuracy can only be obtained by quite 
complex models. Over time, the balance between accuracy and simplicity slowly moves towards the more 
complex models with high accuracy (compared to the traditional statistical approach). Providing an 
interpretable view of the result produced by these high-dimensional models is being viewed as a separate task 
and is still an active area of research. At the end of the evaluation phase, a decision on the use of the data 
mining model should be made (Wirth & Hipp, 2000). 

DEPLOYMENT 
The final phase of the CRISP-DM framework is the deployment of the model made. This can be as complex as 
implementing a complete repeatable data mining process or as simple as writing a report. Most of the times, 
the actual deployment will not be carried out by the data analyst, but the customer the model was built for. 
For the customer to be able to do this it is of utmost importance that the analyst informs the customer about 
all the actions that need to be carried out in order to successfully deploy the model. Deployment of the model 
is usually not the end of the project, because even if the purpose of the model is to increase knowledge about 
the data, the knowledge gained will need to be organized and presented in a way that the customer can use it 
(Wirth & Hipp, 2000). Furthermore the whole project may lead to new data mining project for further 
investigation of business processes. 
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12.4 PRINCIPLE COMPONENT ANALYSIS (PCA)  
The Principle component analysis (PCA) is a mathematical procedure that uses an orthogonal transformation 
to convert high dimensional data into a lower dimensional dataset. This unsupervised dimension reduction is 
used in very broad areas such as meteorology, image processing, genomic analysis, and information retrieval 
(Ding & He, 2004). It is mostly used as a tool for exploratory data analysis and predictive purposes. PCA 
reduces the dimension by picking up the dimension with the largest variances, which lead to a number of 
principal components that is always less or equal to the number of original variables. The first principle 
component (with the largest variance), represents the most variability of the data. Upcoming principle 
components decreasingly represent as much variability as possible, taking into account that the selected 
component is uncorrelated with previous selected components (Ding & He, 2004). Principle component 
analysis can be done via eigenvalue decomposition of the data correlation matrix. For better results, the data 
should be centered normalized or Z-scored for each attribute. The principle component analysis returns 
component scores, and the underlying loadings. Based upon these scores, only the first few principal 
components can be selected so that the dimensionality of the transformed data gets reduced. Principle 
component analysis is one of the simplest eigenvector-based analyses for revealing the internal structure of a 
dataset (Malhi & Gao, 2004).  

12.5 PATTERN RECOGNITION 
In machine learning, pattern recognition is defined as a set of mathematical, statistical and heuristic 
techniques of fundamental importance in executing ‘man-like’ tasks on computers (Nieddu & Patrizi, 2000). 
Pattern recognition is applied in many fields, such as ethology, psychology, cognitive science, traffic flow, and 
computer science. In practice, pattern recognition can be described as the process of assigning a certain label 
to a given input value (Jain, 2010). The pattern recognition algorithms aim at providing a most likely match of 
an input value with the rest of the dataset. This approximation is the one feature of pattern recognition that 
distinguishes it from pattern matching, in which an exact match with a pre-existing pattern is required. The 
four best known approaches for pattern recognition are; template matching (closely related to pattern 
matching), statistical classification, syntactic or structural matching, and artificial neural networks (Jain, Duin, 
& Mao, 2000). For a long time, pattern recognition problems have been solved by using a classical statistical 
classification approach. Due to the lack of calculation power more general modeling methods, such as neural 
networks and fuzzy logic, were not applicable. Compared to the statistical methods and models, these new 
methods are more appropriate for solving real-world pattern recognition problems with a higher accuracy and 
efficiency (Melin & Castillo, 2005). The three essential aspects of the design of a pattern recognition system; 
data acquisition and pre-processing, data representation, and decision making are easily implemented into the 
CRISP-DM theoretical framework (Jain, Duin, & Mao, 2000).    

Clustering is an important step in exploratory data mining, and an approach commonly used for data analysis 
in the fields of; machine learning, pattern recognition, image analysis, and information retrieval (Pardo & 
Sberveglieri, 2002). It groups a set of data (without a predefined class attribute), based on the conceptual 
clustering principle: maximizing the intra-class similarity and minimizing the interclass similarity (Chen, Han, & 
Yu, 1996). The goal is to develop an algorithm that can discover the natural groupings in the unlabelled data. 
The cluster itself can be defined as a high density region in the feature space, separated by a low density 
region (Jain, 2010). The clusters in one dataset can differ in terms of their size, shape, and density. Together 
with the noise that is always present in the data, the detection of clusters can be rather difficult. The ideal 
cluster that can easily be identified is a set of points that is completely isolated and compact. In most real-
world cases the clustering is a subjective method that requires domain knowledge to be interpreted and 
implemented successfully. While the human brain is excellent at identifying clusters in a low-dimension space 
(up to three dimensions), computing assistance is required for high-dimensional data. To solve all these 
difficulties with data clustering, dozens of clustering algorithms have been published and continue to appear. 



71 | P a g e  
 

The most important categories of data clustering algorithms are; hierarchical clustering, k-means clustering, 
distribution-based clustering, and density-based clustering (Jain, 2010).  

Modeling can either be done supervised or unsupervised (Alhoniemi, Hollmen, Simula, & Vesanto, 1999) (Jain, 
2010). In supervised learning, each input value (typically a vector) is linked to a desired output value. A 
supervised model analyses the training data and learns how to classify each new input into one of the known 
output values. To be able to use supervised learning, it is therefore required to have input learning data in 
which different classes are already recognised and indicated as such (from the moment of collection or after 
data pre-processing). If such a priori knowledge is not available, one should consider the use of unsupervised 
learning. With unsupervised learning, the goal is to try to find hidden structure in unlabelled data. Compared 
to the supervised learning, unsupervised leads to more of a ‘black-box’ modeling, in which the process from 
input to output is  more difficult to understand and validate (Alhoniemi, Hollmen, Simula, & Vesanto, 1999). 
The basic methodologies behind unsupervised learning are data mining methods used for pre-processing data 
(Pardo & Sberveglieri, 2002), such as clustering (e.g. artificial neural networks, hierarchical clustering, mixture 
models, k-means) and dimensionality reduction (e.g. principal component analysis, independent component 
analysis, singular value decomposition). Among the artificial neural network models, the self-organizing map 
(SOM) is a widely used unsupervised learning algorithm (Hüllermeier, 2005).  

12.6 DATA MINING MODELS  
Several models that can be used in the pattern recognition are given in the following subsections. 

ARTIFICIAL NEURAL NETWORKS (ANN)  
Neural networks are computational models with learning or adaptive characteristics. The method is based 
upon a model used for analysing the human brain. Natural neural networks consist of neurons and 
connections between them. The neurons are modeled with nodes and the connections are arcs, which 
together form a computational neural network. This network in combination with a computational algorithm is 
what makes neural networks a powerful methodology to simulate complex behaviour. The neurons form 
representative clusters of the data if is applied to. Neural networks models can be both supervised and 
unsupervised. Supervised uses both input and output data in the training phase, while unsupervised only 
focuses on the input data. Building an ANN takes place in two steps; training and applying (mapping).  Neural 
networks are used to solve problems in a wide range of fields such as, system identification, control, diagnosis, 
time series prediction, and pattern recognition. For pattern recognition problems neural networks are an 
efficient solution for achieving the level of efficiency and accuracy required for real-world applications. Neural 
networks are able to deal with the great complexity and high dimensional spaces that are present in pattern 
recognition problems (Melin & Castillo, 2005). A commonly used type of artificial neural network used for 
pattern recognition problems is the Self-Organizing Map (SOM), also known as Kohonen-Network (mainly used 
for feature mapping and data clustering). Despite the obvious different underlying principles, there is a 
significant similarity between these neural network models and the classical statistical pattern recognition 
methods (Jain, Duin, & Mao, 2000). 
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SELF-ORGANIZING MAPS (SOM) 
A Self-Organizing Map (SOM), or Kohonen Map, is a type of artificial neural network (ANN) that is trained using 
unsupervised learning to produce a (typically) two-dimensional map of the training sample it receives as input 
(Kohonen, 1990). SOM is different from ANN in the sense that it maintains the topological properties of the 
input space by using a neighbourhood function. This way, SOM makes it possible to visualize high-dimensional 
data on a 2D map (Kohonen & Honkela, 2007). Similar to ANN, SOMs are built in the steps training and 
mapping. Training builds the map using the example input data, while mapping automatically classifies the 
data based on the learned model.   

A self-organizing map consists of components called neurons (or nodes), which are associated with a weight 
vector of the same dimension as the input data, and have their own unique position on the map (Wu, 2012). 
The initial weights of the neurons should be selected randomly. In the training phase, input vectors are 
presented to the network in a random order. For each input vector, the (weighted) closest neuron is identified. 
The second step is to find all the neurons that are within the predefined neighbourhood of the closest neuron 
and update their weight vectors to move towards the input vector. The selection of the best neuron and their 
neighbours can be determined by calculating the Euclidean distance between the input vector and weight 
vectors. So for each input value, certain parts of the map are manipulated to represent the input patterns 
found in the original dataset. To change the map from the original random placement to a representation of 
the data pattern it is important feed a large number of example vectors to the map. Input vectors can be used 
several times as iteration to form the final map (Kohonen & Honkela, 2007). The goal of this is to provide a low 
dimensional map space from a higher dimensional input space for better pattern recognition. When the map is 
trained and the patterns in the input data are found (if actually present) the SOM can be put to practice. 
During this mapping process, an input vector is appointed to the closest weight vector and therefor 
represented by that neuron. The unique characteristic of SOM, compared to learning vector quantization 
(LVQ), is that it defines a neighbourhood (Jain, Duin, & Mao, Statistical Pattern Recognition: A Review, 2000). 
Self-organizing maps are typically considered as type of feed-forward networks, despite the fact that the type 
of architecture behind it is significantly different in motivation and arrangement. While for a small number of 
nodes the SOM behaves similar to the K-Means method, for larger settings the SOM distinguishes itself due to 
its topological characteristics (Jain, Duin, & Mao, Statistical Pattern Recognition: A Review, 2000). The SOM 
algorithm can simply be formulized in the following list of steps (Choe, 2008): 
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1. Randomly initialize weight vectors 𝑤𝑖 

2. Randomly sample input vector 𝑥 

3. Find Best Matching Unit (BMU): 

4. Update weight vectors: 

𝜂: learning rate 

ℎ�𝑗, 𝑖(𝑥)�: Neighborhood function of BMU. 

5. Repeat steps 2 – 4. 
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Figure 33 represents an example of the use of SOM, as the result of a data analysis done by the World Bank 
statistics of countries in 1992 (Neural Networks Research Center, 1997). 39 variables concerning quality-of-life 
factors, such as state of health, nutrition, educational service, etc., were used. SOM joins these factors and 
visualizes the countries on a map that presents similar circumstances in each area of the map. The different 
clusters on the map were automatically encoded with different bright colours, nevertheless so that colours 
change smoothly on the map display. As a result of this process, each country was in fact automatically 
assigned a colour describing its poverty type in relation to other countries.   

 

FIGURE 33. SELF ORGANIZING MAP WORLD BANK STATISTICS OF COUNTRIES 

STATISTICAL CLASSIFICATION K-MEANS 
K-means clustering is a method of cluster analysis which groups the total dataset into the predefined number 
of cluster, to obtain the highest intra-class similarity and lowest the interclass similarity (Chen, Han, & Yu, 
1996). This supervised method does so by minimizing the sum of the squared error over all the clusters. Figure 
34 shows a simple example of the output after applying K-means clustering. Even for a low number of clusters 
(K=2) the optimization is a NP-hard problem, which can only be solved by a greedy algorithm. With exception 
of a dataset with distinctly separated cluster, the greedy algorithm will converge to a local instead of a global 
minimum. The main steps of K-means algorithm are as follows (Jain, 2010): 

1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster membership stabilizes. 
2. Generate a new partition by assigning each pattern to its closest cluster center. 
3. Compute new cluster centers. 

 
The user is required to provide three user-specified parameters to the K-means algorithm; (K) number of 
clusters, cluster initialization, and distance metric. The most important input of these three is the number of 
clusters to identify. No clear guidelines exist for selecting the optimal number of clusters, but a number of 
heuristics are available to assist. For successful clustering it is recommended to run the K-means algorithm 
several times, with different number of clusters. The most meaningful result can then be selected by the 
domain expert (Jain, 2010).  

The second user selection is the cluster initialization. Different initializations can lead to different final 
clustering because K-means only converges to local minima. One way to overcome the local minima is to run 
the K-means algorithm with multiple different initializations and choose the partition with the smallest 
squared error. So to select the optimal setting for K and the initialization it is required to run several different K 
settings, with several different initializations (Jain, 2010).   

The final parameter selection influences the calculation of the similarity, based on the distance between points 
and cluster centres. Commonly used settings are Euclidean, Mahalanobis, L1, Bregman, and Itakura-Saito 
distances (ranked on popularity). Euclidean is most used and is suited for finding spherical or ball-shaped 
clusters. The Mahalanobis specializes on hyper-ellipsoidal cluster, at the expense of higher computational cost. 
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Itakura-Saito. L1 is used to model the distance on a square grid, while Bregman and Itakura-Saito are non-
symmetric variants of the Euclidean and Mahalanobis distances (Jain, 2010). When applying K-means to high-
dimensional data the use of the squared Euclidean distance is not suitable, because of the ‘curse of 
dimensionality’. Research has proven that one of the solutions to this problem is to use alternative distance 
functions such as the cosine similarity Euclidean distance. Another way to tackle this problem is to employ 
dimension reduction for high dimensional data, with traditional methods such as the Principal Component 
Analysis, Multidimensional Scaling, and Singular Value Decomposition (Jain, 2010).  

 

FIGURE 34. K-MEANS CLUSTERING 

X-MEANS 
X-Means is a slight adapted K-Means clustering algorithm, which determines the correct number of centroids 
(K) based upon a simple but effective heuristic (Pelleg & Moore, 2000). The heuristic starts with a minimum set 
of centroids and subsequently increases the number of centroids by splitting them op. Which one centroid 
should be split and where both new centroids should be placed, is based upon the Bayesian Information 
Criterion (BIC) developed by Kass and Wasserman (1995). An increase in the number of centroids leads to 
more precision, but has a drawback of increasing the complexity. The BIC criterion balances the trade-off 
between model precision and complexity. The adaptation from K to X-means improves the unsupervised 
learning ability of the algorithm because an input value of K is no longer required.   

CLUSTER-BASED LOCAL OUTLIER FACTOR (CBLOF) 
To be able to use clustering for outlier detection an extra algorithm is required. The algorithm assigns a factor 
to each object, called the Cluster-Based local outlier factor (CBLOF), to represent the significance of an outlier 
(He, Xu, & Deng, 2003). The algorithm determines the value of the factor upon the size of the cluster the 
object belongs to and the distance between the object and its nearest large cluster centroid. The algorithm is a 
cluster extension to the basic density-based local outlier algorithm introduced by Breunig et al (2000). An 
important part of the CBLOF algorithm consists of the distinction between small and large clusters, determined 
by the selection of input parameters alpha (𝛼) and beta (𝛽). The whole idea behind this distinction is that an 
object assigned to a small cluster, that finds itself far away from other clusters representing the majority of the 
population, is more likely to be an outlier. Alpha represents the percentage of the population that is required 
to call a cluster large. Beta is the factor that defines the number of times a small cluster is smaller than a large 
cluster. E.g. if 𝛼 = 30% and 𝛽 = 3, a small cluster holds at most 10% of the population and a large cluster at 
least 30%. The higher the determined CBLOF is, the more likely it is to be a significant outlier.  
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CLASSIFICATION AND REGRESSION TREES (CARTS) 
Classification and regression trees (CaRTs) are decision tree - machine-learning - methods for constructing 
prediction models from data (Loh, 2011). A decision tree is a decision support tool that uses a tree-like graph 
to visualize the behaviour of data. They are commonly used in the field of Operations Research, due to the 
advantage of being easy to understand and interpret by non-experts. In data mining, there are two main types 
of decision trees; classification and regression (Lemon, Roy, Clark, Friedmann, & Rakowski, 2003). Classification 
trees predict the class to which a certain data vector most likely belongs based on the training data, while 
regression trees predict a certain continuous value. The two different approaches may also lead to different 
decisions on splitting the tree. The term CART is an umbrella term for an application of any of the two decision 
trees (Speybroeck, 2012). The learning phase of the modeling is done by reclusively partitioning the data space 
and fitting a simple prediction model within each partition. The process of top-down modeling the decision 
tree is an example of a greedy algorithm, which is a commonly used approach in machine learning application. 
The greedy algorithm splits the data by selecting the variable for which a split leads to the most homogeneous 
branches, after the split. This partitioning leads to the distinctive tree shape (see Figure 35) of this type of data 
analysis (Loh, 2011). 

CART is a valuable approach for analyzing complex interactions in complex data and returning a result, 
interpretable even by non-statisticians. It is able to handle with missing values in both response and 
explanatory variables, which is the case in most datasets. The missing values of explanatory variables are 
based upon the values of non-missing values, called surrogate variables (Speybroeck, 2012). CART is able to 
work with a wide range of response variables. The downturn of this flexibility is that it is a rather blunt 
instrument, which divides data into two subgroups based only on one explanatory variable at a time. Another 
difficulty is the decision on the depth of the tree, because a large tree will give a more accurate but over fitted 
model while a small tree does not provide enough useful information about the behavior of the data. To solve 
these problems it is suggested to hypothesize the relationship between variables a priori (Speybroeck, 2012). 

 

 

FIGURE 35. CLASSIFICATION AND REGRESSION TREE 
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SEQUENTIAL PATTERN RECOGNITION (GSP)  
To recognise a pattern in an example set, where values are delivered in a sequence, the Generalized 
Sequential Pattern (GSP) algorithm can be used. The GSP algorithm is able to discover all sequential patterns 
with a user-specified minimum support, which is the number of data-sequences that contain that exact 
pattern (Srikant & Agrawal, 1996). GSP analyses a dataset repetitively, where the length of the candidate 
sequence increases per round. The algorithm starts with selecting all single items that occur frequently to form 
solo sequences. The solo sequences form the starting dataset for the second up to the final repetition of 
sequence recognition, where only the supported sequences of previous length are used as input for the next 
round.  

GSP can be customized on the time window is should analyse and the maximum time gap between two 
succeeding labels to be related to one event. Having more than one label per event is a feature that GSP can 
identify and represent via a different kind of sequence. E.g. Sequence [1] → [2] → [5] is different from [1] →
[2; 5], because the first sequence does not state anything about the time difference between value B and C 
while the second sequence clearly states that value B and C take place during the same event (within the 
maximum time gap). The time window itself represents the maximum time from the first event up to the last 
event that can be identified as one sequence. In practise, this represent the maximum time between events 
where for a relation between events can be claimed. See Figure 36 for a visualization of the GSP algorithm and 
the given example.  

GSP scales linearly with the quantity of data, and has strong up scaling properties compared to the average 
pattern recognition algorithm (Srikant & Agrawal, 1996). This makes the GSP a suitable algorithm for 
sequential pattern recognition. 

2-9-2013 - 6-10-2013
Max Gap

9-6-2013 - 6-10-2013
Window Size

24-3-2013
1

15-4-2013
2

7-5-2013
5

28-5-2013
3

19-6-2013
1

11-7-2013
2

2-8-2013
3
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5
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1
28-2-2013

4

 

FIGURE 36. GENERALIZED SEQUENTIAL PATTERN 
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12.7 STATISTICAL PROCESS CONTROL (SPC) 
Statistical process control (SPC) is the application of statistical technics for tracking and controlling a process, 
meant for achieving and maintaining a highly efficient business process. If a process is declared efficient 
depends on the quantity of conforming products it can make (throughput) and the amount of waste (rework 
or trash) it produces doing so. Statistical process control can be applied to any process for which the output 
can be measured (Oakland, 2003). Statistical Process Control was pioneered by Walter A. Shewhart at Bell 
Laboratories in the early 1920s.  

SPC makes use of control charts and design of experiments to focus on continuous improvement. Compared to 
other methods of quality control, such as inspection, SPC emphasizes on early detection and issue prevention 
instead of corrective action after the problem has already occurred (preventive versus corrective 
maintenance). To do so, SPC predicts significant process variation that may result in future process issues. Any 
source of variation can be classified into one of the following two classes (Oakland, 2003) (Flott, 2012):  

• Common variation; sometimes referred to as "normal" or "chance" sources of variation. 
Considered as uncontrollable variation without identifiable cause, resulting in a noise around the 
stable behavior. 

• Assignable variation; sometimes referred to as "special" sources of variation. Considered as an 
offset to the normal behavior due to an event or process occurring over time. Instead of a noise 
like behavior, the variation significantly influences the process and may require an intervention.  

This classification of variation is very important for the prediction of process issues. While most processes have 
many different sources of variation, SPC should only focus on those few sources that have significant influence 
on the process quality, and ignore the majority of minor variation sources. The dominant assignable variation 
sources should be detected as soon as possible, after which the cause can be identified and removed, to return 
the process to its stable state. The stabilized process will still experience the common variation, but should 
remain within the known set of limits (for as long as another assignable source of variation is not present). 
Applying SPC involves three main sets of activities to improve a business process; understanding the business 
process via process mapping, measuring & controlling the sources of variation via control charts, and 
identifying & eliminating problematic sources of variation via expert process knowledge (Evans & Lindsay, 
2010). 

When a process is defined as out of control, with the use of the control charts, several activities can be 
executed to identify the source of excessive variation. Commonly used tooling includes the Ishikawa diagrams, 
Pareto Analysis, and designed experiments. After detailed problem identification, management can decide to 
try and eliminate the source of variation with newly developed standards, staff training, error-proofing or by 
changing the process itself. With a structural execution of the three main steps of statistical process control it 
is possible to reduce process issues. One should keep in mind that the success of SPC does not only require the 
right skills, but also depends on how suitable the process is. This represents the main disadvantage of SPC; it is 
difficult to judge whether or not application of SPC is appropriate for a certain business process (Oakland, 
2003) (Thor, et al., 2007). 

CONTROL CHARTS 
Control charts, also known as Shewhart charts (named after the inventor of the chart, and pioneer in the area 
of quality control; Walter A. Shewhart), are valuable tools for quality control. Dating back from 1924, control 
charts are used in statistical process control and mostly used to determine if a business or manufacturing 
process is under control. Control charts are particularly appealing for quality control since they can be 
constructed and used by persons without extensive knowledge of statistics or process behaviour (Evans & 
Lindsay, 2010). The purpose of this method is to allow for simple detection of behaviour that is an indicative of 
actual process change. Due to the fact that most process characteristics continuously vary, the value of the 
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control chart method is to distinguish unusual from normal variation. Identifying unusual process behaviour 
can be based upon all kinds of process related data, such as quality measures, output measures, event 
counters, interval timers, and resource measures accumulated over a fixed time interval or between two 
related events (Denning, 1987).  

To define unusual behaviour, control charts use control limits. These upper and lower limits are the boundaries 
for which the process is considered under control. As long as process values are within these boundaries, there 
is no reason to suspect process problems or apply corrections and changes to the process control parameters. 
The boundaries provide a confidence interval for acceptable normal behaviour. In addition to ad hoc decision 
making, the behaviour within the limits can be used for forecasting the future behaviour and so provide 
information for, or advice on, preventive maintenance (Neave, 2002). If the upper or lower limits are 
surpassed, it is assumed that the monitored process is not in control and an intervention should be executed. 
It should be noted that surpassing the limits provides no certainty about process failure, but should be 
interpreted as a strong indication that further analysis of the process is a necessity from a business point of 
view. In other words, try to find out why the process is behaving in an unusual way and if this abnormality may 
lead to problems (e.g. lower quality, lower output, or even total machine breakdown) (Oakland, 2003). For the 
preventive use of the control charts it is beneficial to add warning limits or subdividing the chart into zones for 
early notification. When a process finds itself in a certain part of the chart, a warning message can be 
generated and send to the process owner. The owner can then determine in more detail whether there is a 
special controlled cause for the outlier or if there is a good reason to increase the monitoring of the process or 
even prepare for issues. This cooperation between expert process knowledge and data driven analysis is the 
basic pillar of the control chart. The charts need no prior knowledge about normal activities in order to set 
limits, but learn what is considered normal from its observations, and then reflect this increased knowledge 
automatically in the confidence intervals. What is considered to be normal remains user specific, because 
confidence intervals depend on the observed data (Denning, 1987). 

Control charts should be customized on several points to fit each unique problem and provide the best advice 
to the process owner. These customizable settings are the selection of a confidence interval, warning limits, 
and the number of outliers required to label a process as out of control. The general selection of a confidence 
interval is largely based upon the Central Limit Theorem. This theorem states that for a sufficiently large 
sample drawn from any distribution (in which variance exists), the resulting distribution of the mean becomes 
normally distributed. For a normal distribution it is rather easy to calculate the confidence interval based on 
the selection of the upper and lower limits. A common setting for the control limits is the mean plus or minus 
three times the standard deviation (Denning, 1987) (Oakland, 2003) (Evans & Lindsay, 2010).  

The Vysochanskii-Petunin inequality states that the probability of an outcome greater than k standard 
deviations from the mean is at most 4/(9𝑘2). For the Normal distribution, with the Shewhart 3-sigma limits, 
99.73% of the observations occur within three standard deviations of the mean. So if the process is in control, 
almost all of the process values will fall between the upper and lower control limits. Any observations outside 
the limits are an indication that there is an unanticipated source of variation, known as a special-cause 
variation. Since increased variation means increased issue probability, a control chart signalling the presence 
of a special-cause requires immediate further detailed investigation (Evans & Lindsay, 2010). It is noteworthy 
that even if a process is in control, there is approximately a 0.27% probability that there is a falls signal due to 
a value exceeding the 3 sigma control limits. This provides further support to the statement that the 
collaboration of expert knowhow and data driven analysis is of utmost importance. Besides the control limits, 
it is also possible to add warning limits to the charts. While they do not predict that the process is currently out 
of control, they signal that the process is behaving suspiciously and a high level of alert could be preferred. 
These warning limits are interesting for situations in which an out of control process is highly undesirable. 
Typically, warning limits are placed at two standard deviations around the mean.  
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Control charts typically have the following mandatory elements to serve as guides for control activities (Evans 
& Lindsay, 2010): 

• A central line that designates the estimated mean of the process characteristic under control; 
• An upper control limit (UCL) line, which designates an outrebound that would rarely be reached by a 

plotted point if the process is in control. Classically, this line is designated as the “three sigma” line 
and stands three times the estimated process standard deviation above the central line; 

• A lower control limit (LCL) line, which usually stands below the central line by a distance equal to the 
upper control line, usually about three times the standard deviation. 

Formalizing the above described characteristics of the control chart leads to the following formulas (Oakland, 
2003): 

 

FIGURE 37. SPC CONTROL CHART 

𝑈𝑝𝑝𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐿𝑖𝑚𝑖𝑡 = 𝜇 + 𝑘 ∙ 𝜎  
𝐿𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐿𝑖𝑚𝑖𝑡 = 𝜇 − 𝑘 ∙ 𝜎  

 
𝑤ℎ𝑒𝑟𝑒 𝜇 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒,  

𝑘 = 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 3),  
𝑎𝑛𝑑 𝜎 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  

 

𝜎 = �1
𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝜇 = 1

𝑁
∑ 𝑥𝑖𝑁
𝑖=1   

 
Shewhart’s charts have proven to be quite good at detecting large changes in process variation and mean, but 
experience issues with important large changes that occur just within the range of the limits. The best suitable 
kind of data for the control charts is numeric data with Gaussian assumptions (normal distribution) (Oakland, 
2003) (Evans & Lindsay, 2010). The final noteworthy fact about the control charts is that the control limits 
should not be confused with tolerance limits or specifications. Where control limits describe the process 
production capabilities, tolerance and specification limits describe the customer requirements (“voice of 
process” versus “voice of the customer”) (Evans & Lindsay, 2010).  
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THE CENTRAL LIMIT THEOREM 
In general probability theory, the central limit theorem (CLT) states that there is a weak convergence of the 
sum of individual independent stochastic variables. The most well-known application of this general theorem 
involves the convergence towards the normal distribution. Given certain conditions (well-defined variance and 
mean), the mean of a sufficiently large number of independent random variables will be approximately 
normally distributed (Rice, 2007). Under some conditions, it is not even necessary for the distributions to be 
identical to approximate the normal distribution. By the law of large numbers, the accuracy of the 
approximation improves with an increase in sample size. The theorem can be formalized via the following 
formula: 

The Lindeberg-Lévy Central Limit Theorem states that; suppose {𝑋1,𝑋2, … } is a sequence of independent and 
identically distributed random variables with 𝐸[𝑋𝑖] = 𝜇 and 𝑉𝑎𝑟[𝑋𝑖] = 𝜎2 < ∞, then as 𝑛 approaches infinity, 
the random variables √𝑛(𝑆𝑛 − 𝜇) converge into a normal distribution 𝑁(0, 𝜎2) (Oakland, 2003).  

Approximation formula:  

lim𝑛→∞ √𝑛 �(1
𝑛
∑ 𝑋𝑖𝑛
𝑖=1 )− 𝜇� = 𝑁(0, 𝜎2)   
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12.8 CONCLUSION 
The field of data mining is spacious and ever increasing. With the technological progress (ironically, partially 
made possible by ASML itself)  both the amount of data stored and the processing speed increase, which lead 
to more possibilities and need for data mining solutions. Via several layers of methodology the scope of the 
theoretical review moved from the top level of data mining in general, towards multiple possible methods that 
were applied in this thesis (see Figure 38). The applicability of each method strongly depends on the possibility 
of supervising the modeling phase and all of them have their own pros and cons.  

What distinguishes this thesis from the available literature is that it combines several fields of science for 
solving a single business case. It shows that in case of a lack of data knowledge it is possible to apply a 
combination of data mining techniques (X-means, Cluster-Based Local Outlier Factor, and Generalized 
Sequential Pattern) and statistical process control to obtain a result that gives some insight into a previously 
unknown dataset.  

The application of the newer data mining techniques like ANN and CaRTs are not proven to be applicable for 
condition based maintenance purposes (nor rejected), because the dataset is not homogenous enough for 
significantly strong clustering. From a theoretically perspective, they do seem interesting if the dataset is large 
and complex. In case of the ASML data, the information available per time stamp is difficult to compare 
between (even after back engineering information to a time stamp, see paragraph 8.1).      

Data mining

CROSS INDUSTRY STANDARD PROCESS FOR DATA MINING (CRISP-DM)

Generalized 
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Pattern(GSP)

STATISTICAL PROCESS CONTROLE (SPC)

CONTROL CHARTS
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Pattern Recognition

ARTIFICIAL NEURAL 
NETWORKS (ANN) 

Self-Organizing Maps 
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FIGURE 38. THEORATICAL FRAMEWORK OVERVIEW
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3 Appendix: ACRONYMS 
ADC  Advanced Data Collection 
ANN  Artificial Neural Networks 
ARE  Automated Recovery Engine 
BIC  Bayesian Information Criterion 
BRES  Basic Remote Equipment Support 
CaRTs  Classification and Regression Trees 
CBM  Condition Based Maintenance 
CCB  Change Control Board 
CLBOF  Cluster-Based Local Outlier Factor 
CLT  Central Limit Theorem 
CRISP-DM Cross Industry Standard Process for Data Mining 
CTL  Create Total issue List 
FC  Factory Constant 
GSP  Generalized Sequential Pattern 
IDP  Incoming Data Processor 
JMCL  Join Machine Constant List 
KDD  Knowledge Discovery in Databases 
MC   Machine Constant 
OCS  Outlier Calibration Selection per time stamp 
OJFP  Outlier Jump Frequency compared to Population 
OJI  Outlier Jump value compared to Individual 
OJP  Outlier Jump value compared to Population 
OMCV  Outlier Machine Constant Values per time stamp 
OTP  Outlier Trend Compared to Population 
OVP  Outlier Value compared to Population 
OVI  Outlier Value compared to Individual 
PAM  Pro-Active Maintenance 
PCA  Principle Component Analysis 
PMA  Performance Monitoring & Analysis 
RUL  Remaining Useful Life 
SOM  Self Organizing Maps 
SPC  Statistical Process Control 
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4 APPENDIX: DETAILED FINAL PHASE PLANNING 
This is a short overview of the final phase of this master thesis project. A time planning and list of activities is 
given: 

TABLE 20. DETAILED PLANNING 

Activity Week Number Deadline  

Start of final phase Week 22 Tuesday 28th of May 

Finish modeling & validation Week 26 Friday 28th of June 

Finish evaluation phase Week 27 Friday 5th of July 

Finish (required) on-site work at ASML Week 28 Friday 12th of July  

Deliver first Report Week 30 Tuesday 23th of July  

Deliver final Report Week 32 Tuesday 6th of August 

Final defence (presentation) Week 33 Tuesday 13th of 
August 
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5 APPENDIX: MYSQL INPUT CODE 
DROP TABLE IF EXISTS `pam_ASML`.`Machine_constants` ; 
 
CREATE  TABLE IF NOT EXISTS `pam_ASML`.`Machine_constants` ( 
  `MACHINE` INT NULL , 
  `STE_CODE` VARCHAR(45) NULL , 
  `MACHINE_CONSTANT` VARCHAR(150) NULL , 
  `VALID_FROM_DATE` DATE NULL , 
  `MCS_TYPE` VARCHAR(45) NULL , 
  `MCS_TYPE_DESCRIPTION` VARCHAR(45) NULL , 
  `SEQUENCE` INT NULL , 
  `CREATION_DATE` DATETIME NULL , 
  `DATA_FORMAT` CHAR NULL , 
  `TEXT_VALUE` VARCHAR(150) NULL , 
  `NUMERIC_VALUE` DOUBLE NULL , 
  `CONSTANT_TYPE` VARCHAR(45) NULL , 
  `CONSTANT_TYPE_DESCRIPTION` VARCHAR(45) NULL , 
  `CATEGORY_CODE` VARCHAR(45) NULL , 
  `CATEGORY_DESCRIPTION` VARCHAR(150) NULL , 
  `KEEP_HISTORY` CHAR NULL, 
  INDEX `machine` (`MACHINE` ASC) , 
  INDEX `constant` (`MACHINE_CONSTANT` ASC)) ENGINE = InnoDB; 
 
Load data infile 'machine_constant-since1-feb-2013.csv' 
into table pam_ASML.machine_constants 
fields terminated by ',' 
enclosed by '"' 
IGNORE 1 LINES 
 
(`MACHINE`, 
`STE_CODE`, 
`MACHINE_CONSTANT`, 
@tempvar1, 
`MCS_TYPE`, 
`MCS_TYPE_DESCRIPTION`, 
`SEQUENCE`, 
@tempvar2, 
`DATA_FORMAT`, 
@tempvar3, 
@tempvar4, 
`CONSTANT_TYPE`, 
`CONSTANT_TYPE_DESCRIPTION`, 
`CATEGORY_CODE`, 
`CATEGORY_DESCRIPTION`, 
`KEEP_HISTORY`) 
 
SET VALID_FROM_DATE = STR_TO_DATE(@tempvar1,'%d-%m-%Y'), 
        CREATION_DATE = STR_TO_DATE(@tempvar2,'%d-%m-%Y %H:%i:%s'), 
        TEXT_VALUE = nullif(@tempvar3, ''), 
        NUMERIC_VALUE = nullif(@tempvar4,'');   
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6 APPENDIX: BASIC ANALYSIS 

 
 
<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<process version="5.2.008"> 
  <context> 
    <input/> 
    <output/> 
    <macros/> 
  </context> 
  <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> 
    <process expanded="true" height="586" width="835"> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" 
y="30"> 
        <parameter key="repository_entry" value="//DB/asml_pam/Example Sets/machine_constants"/> 
      </operator> 
      <operator activated="true" class="replace" compatibility="5.2.008" expanded="true" height="76" name="Replace" width="90" x="179" 
y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="STE_CODE"/> 
        <parameter key="replace_what" value="NXT1950I"/> 
        <parameter key="replace_by" value="NXT1950i"/> 
      </operator> 
      <operator activated="true" class="replace" compatibility="5.2.008" expanded="true" height="76" name="Replace (2)" width="90" x="313" 
y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="STE_CODE"/> 
        <parameter key="replace_what" value="NXT1960BI"/> 
        <parameter key="replace_by" value="NXT1960Bi"/> 
      </operator> 
      <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="166" name="Multiply" width="90" x="581" 
y="30"/> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (5)" width="90" 
x="715" y="390"> 
        <list key="aggregation_attributes"> 
          <parameter key="KEEP_HISTORY" value="count"/> 
        </list> 
        <parameter key="group_by_attributes" value="|KEEP_HISTORY"/> 
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      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (4)" width="90" 
x="715" y="300"> 
        <list key="aggregation_attributes"> 
          <parameter key="CONSTANT_TYPE" value="count"/> 
        </list> 
        <parameter key="group_by_attributes" value="|CONSTANT_TYPE"/> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (3)" width="90" 
x="715" y="210"> 
        <list key="aggregation_attributes"> 
          <parameter key="DATA_FORMAT" value="count"/> 
        </list> 
        <parameter key="group_by_attributes" value="|DATA_FORMAT"/> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (2)" width="90" 
x="715" y="120"> 
        <list key="aggregation_attributes"> 
          <parameter key="CATEGORY_CODE" value="count"/> 
          <parameter key="CATEGORY_DESCRIPTION" value="count"/> 
          <parameter key="CONSTANT_TYPE" value="count"/> 
          <parameter key="CONSTANT_TYPE_DESCRIPTION" value="count"/> 
          <parameter key="CREATION_DATE" value="count"/> 
          <parameter key="DATA_FORMAT" value="count"/> 
          <parameter key="KEEP_HISTORY" value="count"/> 
          <parameter key="MACHINE" value="count"/> 
          <parameter key="MACHINE_CONSTANT" value="count"/> 
          <parameter key="MCS_TYPE" value="count"/> 
          <parameter key="MCS_TYPE_DESCRIPTION" value="count"/> 
          <parameter key="NUMERIC_VALUE" value="count"/> 
          <parameter key="SEQUENCE" value="count"/> 
          <parameter key="STE_CODE" value="count"/> 
          <parameter key="TEXT_VALUE" value="count"/> 
          <parameter key="VALID_FROM_DATE" value="count"/> 
        </list> 
        <parameter key="only_distinct" value="true"/> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (6)" width="90" 
x="715" y="480"> 
        <list key="aggregation_attributes"> 
          <parameter key="CATEGORY_CODE" value="count"/> 
          <parameter key="CATEGORY_DESCRIPTION" value="count"/> 
          <parameter key="CONSTANT_TYPE" value="count"/> 
          <parameter key="CONSTANT_TYPE_DESCRIPTION" value="count"/> 
          <parameter key="CREATION_DATE" value="count"/> 
          <parameter key="DATA_FORMAT" value="count"/> 
          <parameter key="KEEP_HISTORY" value="count"/> 
          <parameter key="MACHINE" value="count"/> 
          <parameter key="MACHINE_CONSTANT" value="count"/> 
          <parameter key="MCS_TYPE" value="count"/> 
          <parameter key="MCS_TYPE_DESCRIPTION" value="count"/> 
          <parameter key="NUMERIC_VALUE" value="count"/> 
          <parameter key="SEQUENCE" value="count"/> 
          <parameter key="STE_CODE" value="count"/> 
          <parameter key="VALID_FROM_DATE" value="count"/> 
          <parameter key="TEXT_VALUE" value="count"/> 
        </list> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate" width="90" 
x="715" y="30"> 
        <list key="aggregation_attributes"> 
          <parameter key="MACHINE" value="average"/> 
          <parameter key="MACHINE" value="maximum"/> 
          <parameter key="MACHINE" value="minimum"/> 
          <parameter key="NUMERIC_VALUE" value="average"/> 
          <parameter key="NUMERIC_VALUE" value="maximum"/> 
          <parameter key="NUMERIC_VALUE" value="minimum"/> 
          <parameter key="CREATION_DATE" value="average"/> 
          <parameter key="CREATION_DATE" value="maximum"/> 
          <parameter key="CREATION_DATE" value="minimum"/> 
          <parameter key="VALID_FROM_DATE" value="average"/> 
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          <parameter key="VALID_FROM_DATE" value="maximum"/> 
          <parameter key="VALID_FROM_DATE" value="minimum"/> 
        </list> 
      </operator> 
      <connect from_op="Retrieve" from_port="output" to_op="Replace" to_port="example set input"/> 
      <connect from_op="Replace" from_port="example set output" to_op="Replace (2)" to_port="example set input"/> 
      <connect from_op="Replace (2)" from_port="example set output" to_op="Multiply" to_port="input"/> 
      <connect from_op="Multiply" from_port="output 1" to_op="Aggregate" to_port="example set input"/> 
      <connect from_op="Multiply" from_port="output 2" to_op="Aggregate (2)" to_port="example set input"/> 
      <connect from_op="Multiply" from_port="output 3" to_op="Aggregate (3)" to_port="example set input"/> 
      <connect from_op="Multiply" from_port="output 4" to_op="Aggregate (4)" to_port="example set input"/> 
      <connect from_op="Multiply" from_port="output 5" to_op="Aggregate (5)" to_port="example set input"/> 
      <connect from_op="Multiply" from_port="output 6" to_op="Aggregate (6)" to_port="example set input"/> 
      <connect from_op="Aggregate (5)" from_port="example set output" to_port="result 5"/> 
      <connect from_op="Aggregate (4)" from_port="example set output" to_port="result 4"/> 
      <connect from_op="Aggregate (3)" from_port="example set output" to_port="result 3"/> 
      <connect from_op="Aggregate (2)" from_port="example set output" to_port="result 2"/> 
      <connect from_op="Aggregate (6)" from_port="example set output" to_port="result 6"/> 
      <connect from_op="Aggregate" from_port="example set output" to_port="result 1"/> 
      <portSpacing port="source_input 1" spacing="0"/> 
      <portSpacing port="sink_result 1" spacing="0"/> 
      <portSpacing port="sink_result 2" spacing="0"/> 
      <portSpacing port="sink_result 3" spacing="0"/> 
      <portSpacing port="sink_result 4" spacing="0"/> 
      <portSpacing port="sink_result 5" spacing="0"/> 
      <portSpacing port="sink_result 6" spacing="0"/> 
      <portSpacing port="sink_result 7" spacing="0"/> 
    </process> 
  </operator> 
</process>  
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7 APPENDIX: PREPARE SET 

7.1 FIRST RUN 

 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<process version="5.2.008"> 
  <context> 
    <input/> 
    <output/> 
    <macros/> 
  </context> 
  <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> 
    <process expanded="true" height="531" width="1555"> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" 
y="30"> 
        <parameter key="repository_entry" value="//DB/asml_pam/Example Sets/machine_constants"/> 
      </operator> 
      <operator activated="true" class="replace" compatibility="5.2.008" expanded="true" height="76" name="Replace" width="90" x="180" 
y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="STE_CODE"/> 
        <parameter key="replace_what" value="NXT1950I"/> 
        <parameter key="replace_by" value="NXT1950i"/> 
      </operator> 
      <operator activated="true" class="replace" compatibility="5.2.008" expanded="true" height="76" name="Replace (2)" width="90" x="315" 
y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="STE_CODE"/> 
        <parameter key="replace_what" value="NXT1960BI"/> 
        <parameter key="replace_by" value="NXT1960Bi"/> 
      </operator> 
      <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (3)" 
width="90" x="450" y="30"> 
        <parameter key="condition_class" value="attribute_value_filter"/> 
        <parameter key="parameter_string" value="STE_CODE=NXT1950i || STE_CODE=XT1950Hi || STE_CODE=XT860K || STE_CODE=XT1000H 
|| STE_CODE=NXT1960Bi || STE_CODE=XT1900Gi || STE_CODE=XT400K || STE_CODE=XT1450H || STE_CODE=XT860H || STE_CODE=XT1400F 
|| STE_CODE=XT1700i || STE_CODE=XT1450G || STE_CODE=XT1900i || STE_CODE=XT400F || STE_CODE=XT850F || STE_CODE=XT1250D || 
STE_CODE=XT1700Fi || STE_CODE=XT1400E || STE_CODE=XT860F || STE_CODE=XT875F || STE_CODE=XT870G || STE_CODE=XT860G || 
STE_CODE=XT400E STE_CODE=XT870F || STE_CODE=XT875G || STE_CODE=XT1250B || STE_CODE=XT400G || STE_CODE=XT760F || 
STE_CODE=XT850G || STE_CODE=XT450F  "/> 
      </operator> 
      <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" 
width="90" x="585" y="30"> 
        <parameter key="condition_class" value="attribute_value_filter"/> 
        <parameter key="parameter_string" value="SEQUENCE=1 &amp;&amp; DATA_FORMAT=N &amp;&amp; NUMERIC_VALUE!=?"/> 
      </operator> 
      <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply" width="90" x="720" 
y="30"/> 
      <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role" width="90" x="849" 
y="30"> 
        <parameter key="name" value="MACHINE_CONSTANT"/> 
        <parameter key="target_role" value="id"/> 
        <list key="set_additional_roles"/> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate" width="90" x="45" 
y="165"> 
        <list key="aggregation_attributes"> 
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          <parameter key="NUMERIC_VALUE" value="variance"/> 
          <parameter key="NUMERIC_VALUE" value="count"/> 
          <parameter key="NUMERIC_VALUE" value="average"/> 
        </list> 
        <parameter key="group_by_attributes" value="MACHINE_CONSTANT"/> 
      </operator> 
      <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename" width="90" x="179" 
y="165"> 
        <parameter key="old_name" value="variance(NUMERIC_VALUE)"/> 
        <parameter key="new_name" value="VAR_NV"/> 
        <list key="rename_additional_attributes"> 
          <parameter key="count(NUMERIC_VALUE)" value="COUNT_NV"/> 
          <parameter key="average(NUMERIC_VALUE)" value="AVERAGE_NV"/> 
        </list> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes" 
width="90" x="313" y="165"> 
        <list key="function_descriptions"> 
          <parameter key="COV" value="VAR_NV/((AVERAGE_NV)^2)"/> 
        </list> 
      </operator> 
      <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (2)" 
width="90" x="447" y="165"> 
        <parameter key="condition_class" value="attribute_value_filter"/> 
        <parameter key="parameter_string" value="COUNT_NV&gt;100 &amp;&amp; VAR_NV&gt;0"/> 
      </operator> 
      <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes" 
width="90" x="581" y="165"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="MACHINE_CONSTANT"/> 
      </operator> 
      <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (2)" width="90" x="715" 
y="165"> 
        <parameter key="name" value="MACHINE_CONSTANT"/> 
        <parameter key="target_role" value="id"/> 
        <list key="set_additional_roles"/> 
      </operator> 
      <operator activated="true" class="sample" compatibility="5.2.008" expanded="true" height="76" name="Sample (2)" width="90" x="849" 
y="165"> 
        <parameter key="sample_size" value="40"/> 
        <list key="sample_size_per_class"/> 
        <list key="sample_ratio_per_class"/> 
        <list key="sample_probability_per_class"/> 
        <parameter key="use_local_random_seed" value="true"/> 
        <parameter key="local_random_seed" value="1791"/> 
      </operator> 
      <operator activated="true" class="intersect" compatibility="5.2.008" expanded="true" height="76" name="Intersect" width="90" x="983" 
y="30"/> 
      <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (3)" width="90" 
x="1117" y="30"> 
        <parameter key="name" value="MACHINE_CONSTANT"/> 
        <list key="set_additional_roles"/> 
      </operator> 
      <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (2)" 
width="90" x="1251" y="30"> 
        <parameter key="attribute_filter_type" value="subset"/> 
        <parameter key="attributes" 
value="CATEGORY_CODE|CATEGORY_DESCRIPTION|CONSTANT_TYPE|CREATION_DATE|DATA_FORMAT|MACHINE|MACHINE_CONSTANT|M
CS_TYPE_DESCRIPTION|NUMERIC_VALUE|SEQUENCE|STE_CODE|TEXT_VALUE|VALID_FROM_DATE|CONSTANT_TYPE_DESCRIPTION|MCS_TY
PE|KEEP_HISTORY"/> 
      </operator> 
      <operator activated="true" class="write_database" compatibility="5.2.008" expanded="true" height="60" name="Write Database" 
width="90" x="1385" y="30"> 
        <parameter key="connection" value="asml_pam"/> 
        <parameter key="table_name" value="machine_constants2"/> 
        <parameter key="overwrite_mode" value="overwrite"/> 
      </operator> 
      <connect from_op="Retrieve" from_port="output" to_op="Replace" to_port="example set input"/> 
      <connect from_op="Replace" from_port="example set output" to_op="Replace (2)" to_port="example set input"/> 
      <connect from_op="Replace (2)" from_port="example set output" to_op="Filter Examples (3)" to_port="example set input"/> 
      <connect from_op="Filter Examples (3)" from_port="example set output" to_op="Filter Examples" to_port="example set input"/> 
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      <connect from_op="Filter Examples" from_port="example set output" to_op="Multiply" to_port="input"/> 
      <connect from_op="Multiply" from_port="output 1" to_op="Set Role" to_port="example set input"/> 
      <connect from_op="Multiply" from_port="output 2" to_op="Aggregate" to_port="example set input"/> 
      <connect from_op="Set Role" from_port="example set output" to_op="Intersect" to_port="example set input"/> 
      <connect from_op="Aggregate" from_port="example set output" to_op="Rename" to_port="example set input"/> 
      <connect from_op="Rename" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/> 
      <connect from_op="Generate Attributes" from_port="example set output" to_op="Filter Examples (2)" to_port="example set input"/> 
      <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Select Attributes" to_port="example set input"/> 
      <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/> 
      <connect from_op="Set Role (2)" from_port="example set output" to_op="Sample (2)" to_port="example set input"/> 
      <connect from_op="Sample (2)" from_port="example set output" to_op="Intersect" to_port="second"/> 
      <connect from_op="Intersect" from_port="example set output" to_op="Set Role (3)" to_port="example set input"/> 
      <connect from_op="Set Role (3)" from_port="example set output" to_op="Select Attributes (2)" to_port="example set input"/> 
      <connect from_op="Select Attributes (2)" from_port="example set output" to_op="Write Database" to_port="input"/> 
      <portSpacing port="source_input 1" spacing="0"/> 
      <portSpacing port="sink_result 1" spacing="0"/> 
    </process> 
  </operator> 
</process> 

7.2 FOURTH RUN 

 

 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<process version="5.2.008"> 
  <context> 
    <input/> 
    <output/> 
    <macros/> 
  </context> 
  <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> 
    <process expanded="true" height="645" width="1505"> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" 
y="30"> 
        <parameter key="repository_entry" value="//DB/asml_pam/Example Sets/machine_constants"/> 
      </operator> 
      <operator activated="true" class="replace" compatibility="5.2.008" expanded="true" height="76" name="Replace" width="90" x="180" 
y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="STE_CODE"/> 
        <parameter key="replace_what" value="NXT1950I"/> 
        <parameter key="replace_by" value="NXT1950i"/> 
      </operator> 
      <operator activated="true" class="replace" compatibility="5.2.008" expanded="true" height="76" name="Replace (2)" width="90" x="313" 
y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="STE_CODE"/> 
        <parameter key="replace_what" value="NXT1960BI"/> 
        <parameter key="replace_by" value="NXT1960Bi"/> 
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      </operator> 
      <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (3)" 
width="90" x="450" y="30"> 
        <parameter key="condition_class" value="attribute_value_filter"/> 
        <parameter key="parameter_string" value="STE_CODE=NXT1950i || STE_CODE=NXT1960Bi "/> 
      </operator> 
      <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" 
width="90" x="585" y="30"> 
        <parameter key="condition_class" value="attribute_value_filter"/> 
        <parameter key="parameter_string" value="SEQUENCE=1 &amp;&amp; DATA_FORMAT=N &amp;&amp; NUMERIC_VALUE!=?"/> 
      </operator> 
      <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (4)" 
width="90" x="715" y="30"> 
        <parameter key="condition_class" value="attribute_value_filter"/> 
        <parameter key="parameter_string" value="MACHINE_CONSTANT = MCKV_CHUCK_0_LS_DRIFT_CORRECTION_LAST_UPDATE_TAG || 
MACHINE_CONSTANT = MCUL_BS_PE_AXIS_1_MU_AI_LINEAR_ACTUATOR_OFFSET_TAG "/> 
      </operator> 
      <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values" width="90" 
x="849" y="30"> 
        <parameter key="attribute" value="MACHINE_CONSTANT"/> 
        <parameter key="iteration_macro" value="loopA"/> 
        <parameter key="parallelize_iteration" value="true"/> 
        <process expanded="true" height="645" width="1103"> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (2)" 
width="90" x="45" y="30"> 
            <parameter key="condition_class" value="attribute_value_filter"/> 
            <parameter key="parameter_string" value="MACHINE_CONSTANT=%{loopA}"/> 
          </operator> 
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize" width="90" 
x="180" y="30"> 
            <parameter key="attribute_filter_type" value="single"/> 
            <parameter key="attribute" value="NUMERIC_VALUE"/> 
          </operator> 
          <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes (3)" width="90" x="315" y="30"> 
            <list key="function_descriptions"> 
              <parameter key="NUMERIC_VALUEX" value="abs(NUMERIC_VALUE)"/> 
            </list> 
          </operator> 
          <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="112" name="Multiply" width="90" 
x="450" y="30"/> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (6)" 
width="90" x="581" y="165"> 
            <parameter key="condition_class" value="attribute_value_filter"/> 
            <parameter key="parameter_string" value="NUMERIC_VALUEX&gt;=2"/> 
          </operator> 
          <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes (2)" width="90" x="715" y="165"> 
            <list key="function_descriptions"> 
              <parameter key="AREA" value="&quot;j&quot;"/> 
            </list> 
          </operator> 
          <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate" width="90" 
x="849" y="165"> 
            <list key="aggregation_attributes"> 
              <parameter key="MACHINE" value="count"/> 
            </list> 
            <parameter key="only_distinct" value="true"/> 
          </operator> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (5)" 
width="90" x="581" y="30"> 
            <parameter key="condition_class" value="attribute_value_filter"/> 
            <parameter key="parameter_string" value="NUMERIC_VALUEX&lt;2"/> 
          </operator> 
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (2)" width="90" 
x="715" y="30"> 
            <parameter key="attribute_filter_type" value="single"/> 
            <parameter key="attribute" value="NUMERIC_VALUE"/> 
          </operator> 
          <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes" width="90" x="849" y="30"> 
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            <list key="function_descriptions"> 
              <parameter key="AREA" 
value="if(abs(NUMERIC_VALUE)&lt;0.25,&quot;a&quot;,if(abs(NUMERIC_VALUE)&lt;0.5,&quot;b&quot;,if(abs(NUMERIC_VALUE)&lt;0.75,&qu
ot;c&quot;,if(abs(NUMERIC_VALUE)&lt;1,&quot;d&quot;,if(abs(NUMERIC_VALUE)&lt;1.25,&quot;e&quot;,if(abs(NUMERIC_VALUE)&lt;1.5,&q
uot;f&quot;,if(abs(NUMERIC_VALUE)&lt;1.75,&quot;g&quot;,if(abs(NUMERIC_VALUE)&lt;2,&quot;h&quot;,&quot;i&quot;))))))))"/> 
            </list> 
          </operator> 
          <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (2)" width="90" 
x="581" y="255"> 
            <list key="aggregation_attributes"> 
              <parameter key="MACHINE" value="count"/> 
            </list> 
            <parameter key="only_distinct" value="true"/> 
          </operator> 
          <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="94" name="Append" width="90" x="983" 
y="30"/> 
          <connect from_port="example set" to_op="Filter Examples (2)" to_port="example set input"/> 
          <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Normalize" to_port="example set input"/> 
          <connect from_op="Normalize" from_port="example set output" to_op="Generate Attributes (3)" to_port="example set input"/> 
          <connect from_op="Generate Attributes (3)" from_port="example set output" to_op="Multiply" to_port="input"/> 
          <connect from_op="Multiply" from_port="output 1" to_op="Filter Examples (5)" to_port="example set input"/> 
          <connect from_op="Multiply" from_port="output 2" to_op="Filter Examples (6)" to_port="example set input"/> 
          <connect from_op="Multiply" from_port="output 3" to_op="Aggregate (2)" to_port="example set input"/> 
          <connect from_op="Filter Examples (6)" from_port="example set output" to_op="Generate Attributes (2)" to_port="example set 
input"/> 
          <connect from_op="Generate Attributes (2)" from_port="example set output" to_op="Aggregate" to_port="example set input"/> 
          <connect from_op="Aggregate" from_port="original" to_op="Append" to_port="example set 2"/> 
          <connect from_op="Filter Examples (5)" from_port="example set output" to_op="Normalize (2)" to_port="example set input"/> 
          <connect from_op="Normalize (2)" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/> 
          <connect from_op="Generate Attributes" from_port="example set output" to_op="Append" to_port="example set 1"/> 
          <connect from_op="Append" from_port="merged set" to_port="out 1"/> 
          <portSpacing port="source_example set" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="0"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
      <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection (2)" 
width="90" x="983" y="30"/> 
      <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append (2)" width="90" 
x="1117" y="30"/> 
      <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (2)" 
width="90" x="1251" y="30"> 
        <parameter key="attribute_filter_type" value="subset"/> 
        <parameter key="attributes" 
value="CATEGORY_CODE|CATEGORY_DESCRIPTION|CONSTANT_TYPE|CONSTANT_TYPE_DESCRIPTION|CREATION_DATE|DATA_FORMAT|KEE
P_HISTORY|MACHINE|MACHINE_CONSTANT|MCS_TYPE|MCS_TYPE_DESCRIPTION|STE_CODE|VALID_FROM_DATE|AREA|NUMERIC_VALUEX
"/> 
      </operator> 
      <operator activated="true" class="write_database" compatibility="5.2.008" expanded="true" height="60" name="Write Database" 
width="90" x="1385" y="30"> 
        <parameter key="connection" value="asml_pam"/> 
        <parameter key="table_name" value="machine_constants2"/> 
        <parameter key="overwrite_mode" value="overwrite"/> 
      </operator> 
      <connect from_op="Retrieve" from_port="output" to_op="Replace" to_port="example set input"/> 
      <connect from_op="Replace" from_port="example set output" to_op="Replace (2)" to_port="example set input"/> 
      <connect from_op="Replace (2)" from_port="example set output" to_op="Filter Examples (3)" to_port="example set input"/> 
      <connect from_op="Filter Examples (3)" from_port="example set output" to_op="Filter Examples" to_port="example set input"/> 
      <connect from_op="Filter Examples" from_port="example set output" to_op="Filter Examples (4)" to_port="example set input"/> 
      <connect from_op="Filter Examples (4)" from_port="example set output" to_op="Loop Values" to_port="example set"/> 
      <connect from_op="Loop Values" from_port="out 1" to_op="Flatten Collection (2)" to_port="collection"/> 
      <connect from_op="Flatten Collection (2)" from_port="flat" to_op="Append (2)" to_port="example set 1"/> 
      <connect from_op="Append (2)" from_port="merged set" to_op="Select Attributes (2)" to_port="example set input"/> 
      <connect from_op="Select Attributes (2)" from_port="example set output" to_op="Write Database" to_port="input"/> 
      <portSpacing port="source_input 1" spacing="0"/> 
      <portSpacing port="sink_result 1" spacing="0"/> 
    </process> 
  </operator> 
</process> 
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8 APPENDIX: EVENT DEFINITION 

 
<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<process version="5.2.008"> 
  <context> 
    <input/> 
    <output/> 
    <macros/> 
  </context> 
  <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> 
    <parameter key="parallelize_main_process" value="true"/> 
    <process expanded="true" height="637" width="1110"> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" 
y="30"> 
        <parameter key="repository_entry" value="//DB/asml_pam/Example Sets/machine_constants2"/> 
      </operator> 
      <operator activated="true" class="date_to_numerical" compatibility="5.2.008" expanded="true" height="76" name="Date to Numerical" 
width="90" x="180" y="30"> 
        <parameter key="attribute_name" value="CREATION_DATE"/> 
        <parameter key="millisecond_relative_to" value="epoch"/> 
        <parameter key="second_relative_to" value="epoch"/> 
        <parameter key="minute_relative_to" value="epoch"/> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(2)" width="90" x="315" y="30"> 
        <list key="function_descriptions"> 
          <parameter key="ACREATION_DATE" value="round(CREATION_DATE/60000)"/> 
        </list> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(3)" width="90" x="450" y="30"> 
        <list key="function_descriptions"> 
          <parameter key="BCREATION_DATE" value="ACREATION_DATE*60000"/> 
        </list> 
      </operator> 
      <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes" 
width="90" x="585" y="30"> 
        <parameter key="attribute_filter_type" value="subset"/> 
        <parameter key="attributes" 
value="BCREATION_DATE|CATEGORY_CODE|CATEGORY_DESCRIPTION|CONSTANT_TYPE|DATA_FORMAT|MACHINE|MACHINE_CONSTANT|
MCS_TYPE_DESCRIPTION|NUMERIC_VALUE|SEQUENCE|STE_CODE|VALID_FROM_DATE||KEEP_HISTORY|MCS_TYPE|TEXT_VALUE|CONSTAN
T_TYPE_DESCRIPTION"/> 
      </operator> 
      <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename" width="90" x="720" 
y="30"> 
        <parameter key="old_name" value="BCREATION_DATE"/> 
        <parameter key="new_name" value="CREATION_DATE"/> 
        <list key="rename_additional_attributes"/> 
      </operator> 
      <operator activated="true" class="numerical_to_date" compatibility="5.2.008" expanded="true" height="76" name="Numerical to Date" 
width="90" x="855" y="30"> 
        <parameter key="attribute_name" value="CREATION_DATE"/> 
      </operator> 
      <operator activated="true" class="write_database" compatibility="5.2.008" expanded="true" height="60" name="Write Database" 
width="90" x="990" y="30"> 
        <parameter key="connection" value="asml_pam"/> 
        <parameter key="table_name" value="machine_constants2"/> 
        <parameter key="overwrite_mode" value="overwrite"/> 
      </operator> 
      <connect from_op="Retrieve" from_port="output" to_op="Date to Numerical" to_port="example set input"/> 
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      <connect from_op="Date to Numerical" from_port="example set output" to_op="Generate Attributes (2)" to_port="example set input"/> 
      <connect from_op="Generate Attributes (2)" from_port="example set output" to_op="Generate Attributes (3)" to_port="example set 
input"/> 
      <connect from_op="Generate Attributes (3)" from_port="example set output" to_op="Select Attributes" to_port="example set input"/> 
      <connect from_op="Select Attributes" from_port="example set output" to_op="Rename" to_port="example set input"/> 
      <connect from_op="Rename" from_port="example set output" to_op="Numerical to Date" to_port="example set input"/> 
      <connect from_op="Numerical to Date" from_port="example set output" to_op="Write Database" to_port="input"/> 
      <portSpacing port="source_input 1" spacing="0"/> 
      <portSpacing port="sink_result 1" spacing="0"/> 
    </process> 
  </operator> 
</process>   
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102 | P a g e  
 

9 APPENDIX: TOTAL ANALYSIS            
<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<process version="5.2.008"> 
  <context> 
    <input/> 
    <output/> 
    <macros/> 
  </context> 
  <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> 
    <parameter key="notification_email" value="p.v.d.aalst@student.tue.nl"/> 
    <process expanded="true" height="816" width="1464"> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" 
y="30"> 
        <parameter key="repository_entry" value="//DB/asml_pam/Example Sets/machine_constants2"/> 
      </operator> 
      <operator activated="true" class="generate_id" compatibility="5.2.008" expanded="true" height="76" name="Generate ID" width="90" 
x="179" y="30"/> 
      <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation" width="90" x="313" y="30"> 
        <parameter key="first_attribute" value="MACHINE"/> 
        <parameter key="second_attribute" value="MACHINE_CONSTANT"/> 
      </operator> 
      <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="220" name="Multiply" width="90" x="447" 
y="30"/> 

9.1 OVP       

 

 
 
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="76" name="OVP" width="90" x="648" 
y="30"> 
        <process expanded="true" height="637" width="768"> 
          <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values" width="90" 
x="45" y="30"> 
            <parameter key="attribute" value="MACHINE_CONSTANT"/> 
            <parameter key="iteration_macro" value="loopA"/> 
            <parameter key="parallelize_iteration" value="true"/> 
            <process expanded="true" height="637" width="433"> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (4)" 
width="90" x="45" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="MACHINE_CONSTANT=%{loopA}"/> 
              </operator> 
              <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize" width="90" 
x="180" y="30"> 
                <parameter key="attribute_filter_type" value="single"/> 
                <parameter key="attribute" value="NUMERIC_VALUE"/> 
              </operator> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (5)" 
width="90" x="313" y="30"> 
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                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="NUMERIC_VALUE&gt;2.00 || NUMERIC_VALUE&lt;-2.00"/> 
              </operator> 
              <connect from_port="example set" to_op="Filter Examples (4)" to_port="example set input"/> 
              <connect from_op="Filter Examples (4)" from_port="example set output" to_op="Normalize" to_port="example set input"/> 
              <connect from_op="Normalize" from_port="example set output" to_op="Filter Examples (5)" to_port="example set input"/> 
              <connect from_op="Filter Examples (5)" from_port="example set output" to_port="out 1"/> 
              <portSpacing port="source_example set" spacing="0"/> 
              <portSpacing port="sink_out 1" spacing="0"/> 
              <portSpacing port="sink_out 2" spacing="0"/> 
            </process> 
          </operator> 
          <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection 
(2)" width="90" x="179" y="30"/> 
          <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append (2)" width="90" 
x="313" y="30"/> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (6)" 
width="90" x="447" y="30"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="id|NUMERIC_VALUE"/> 
          </operator> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (3)" width="90" 
x="581" y="30"> 
            <parameter key="old_name" value="NUMERIC_VALUE"/> 
            <parameter key="new_name" value="ValuePop"/> 
            <list key="rename_additional_attributes"/> 
          </operator> 
          <connect from_port="in 1" to_op="Loop Values" to_port="example set"/> 
          <connect from_op="Loop Values" from_port="out 1" to_op="Flatten Collection (2)" to_port="collection"/> 
          <connect from_op="Flatten Collection (2)" from_port="flat" to_op="Append (2)" to_port="example set 1"/> 
          <connect from_op="Append (2)" from_port="merged set" to_op="Select Attributes (6)" to_port="example set input"/> 
          <connect from_op="Select Attributes (6)" from_port="example set output" to_op="Rename (3)" to_port="example set input"/> 
          <connect from_op="Rename (3)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="0"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
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9.2 OVI   

 
 
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="76" name="OVI" width="90" x="648" 
y="120"> 
        <process expanded="true" height="637" width="768"> 
          <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values (2)" 
width="90" x="45" y="30"> 
            <parameter key="attribute" value="MACHINE_MACHINE_CONSTANT"/> 
            <parameter key="iteration_macro" value="loopB"/> 
            <parameter key="parallelize_iteration" value="true"/> 
            <process expanded="true" height="637" width="500"> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (6)" 
width="90" x="45" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="MACHINE_MACHINE_CONSTANT=%{loopB}"/> 
              </operator> 
              <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (2)" 
width="90" x="179" y="30"> 
                <parameter key="attribute_filter_type" value="single"/> 
                <parameter key="attribute" value="NUMERIC_VALUE"/> 
              </operator> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (8)" 
width="90" x="313" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="NUMERIC_VALUE&gt;2 || NUMERIC_VALUE&lt;-2"/> 
              </operator> 
              <connect from_port="example set" to_op="Filter Examples (6)" to_port="example set input"/> 
              <connect from_op="Filter Examples (6)" from_port="example set output" to_op="Normalize (2)" to_port="example set input"/> 
              <connect from_op="Normalize (2)" from_port="example set output" to_op="Filter Examples (8)" to_port="example set input"/> 
              <connect from_op="Filter Examples (8)" from_port="example set output" to_port="out 1"/> 
              <portSpacing port="source_example set" spacing="0"/> 
              <portSpacing port="sink_out 1" spacing="0"/> 
              <portSpacing port="sink_out 2" spacing="0"/> 
            </process> 
          </operator> 
          <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection 
(3)" width="90" x="179" y="30"/> 
          <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append (3)" width="90" 
x="313" y="30"/> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (7)" 
width="90" x="447" y="30"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="id|NUMERIC_VALUE"/> 
          </operator> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (4)" width="90" 
x="581" y="30"> 
            <parameter key="old_name" value="NUMERIC_VALUE"/> 
            <parameter key="new_name" value="ValueIndv"/> 
            <list key="rename_additional_attributes"/> 
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          </operator> 
          <connect from_port="in 1" to_op="Loop Values (2)" to_port="example set"/> 
          <connect from_op="Loop Values (2)" from_port="out 1" to_op="Flatten Collection (3)" to_port="collection"/> 
          <connect from_op="Flatten Collection (3)" from_port="flat" to_op="Append (3)" to_port="example set 1"/> 
          <connect from_op="Append (3)" from_port="merged set" to_op="Select Attributes (7)" to_port="example set input"/> 
          <connect from_op="Select Attributes (7)" from_port="example set output" to_op="Rename (4)" to_port="example set input"/> 
          <connect from_op="Rename (4)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="0"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
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9.3 OJP 

       
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="76" name="OJP" width="90" x="648" 
y="210"> 
        <process expanded="true" height="637" width="701"> 
          <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values (4)" 
width="90" x="42" y="30"> 
            <parameter key="attribute" value="MACHINE_CONSTANT"/> 
            <parameter key="iteration_macro" value="loopD"/> 
            <parameter key="parallelize_iteration" value="true"/> 
            <process expanded="true" height="637" width="969"> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (9)" 
width="90" x="45" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="MACHINE_CONSTANT=%{loopD}"/> 
              </operator> 
              <operator activated="true" class="sort" compatibility="5.2.008" expanded="true" height="76" name="Sort" width="90" x="179" 
y="30"> 
                <parameter key="attribute_name" value="CREATION_DATE"/> 
              </operator> 
              <operator activated="true" class="series:lag_series" compatibility="5.3.000" expanded="true" height="76" name="Lag Series" 
width="90" x="313" y="30"> 
                <list key="attributes"> 
                  <parameter key="NUMERIC_VALUE" value="1"/> 
                </list> 
              </operator> 
              <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (5)" width="90" 
x="447" y="30"> 
                <parameter key="old_name" value="NUMERIC_VALUE-1"/> 
                <parameter key="new_name" value="NUMERIC_VALUE_SERIES"/> 
                <list key="rename_additional_attributes"/> 
              </operator> 
              <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes" width="90" x="581" y="30"> 
                <list key="function_descriptions"> 
                  <parameter key="NumDiff" value="NUMERIC_VALUE_SERIES-NUMERIC_VALUE"/> 
                </list> 
              </operator> 
              <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (3)" 
width="90" x="715" y="30"> 
                <parameter key="attribute_filter_type" value="single"/> 
                <parameter key="attribute" value="NumDiff"/> 
              </operator> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (11)" 
width="90" x="849" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="NumDiff&gt;2 || NumDiff&lt;-2"/> 
              </operator> 
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              <connect from_port="example set" to_op="Filter Examples (9)" to_port="example set input"/> 
              <connect from_op="Filter Examples (9)" from_port="example set output" to_op="Sort" to_port="example set input"/> 
              <connect from_op="Sort" from_port="example set output" to_op="Lag Series" to_port="example set input"/> 
              <connect from_op="Lag Series" from_port="example set output" to_op="Rename (5)" to_port="example set input"/> 
              <connect from_op="Rename (5)" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/> 
              <connect from_op="Generate Attributes" from_port="example set output" to_op="Normalize (3)" to_port="example set input"/> 
              <connect from_op="Normalize (3)" from_port="example set output" to_op="Filter Examples (11)" to_port="example set input"/> 
              <connect from_op="Filter Examples (11)" from_port="example set output" to_port="out 1"/> 
              <portSpacing port="source_example set" spacing="0"/> 
              <portSpacing port="sink_out 1" spacing="0"/> 
              <portSpacing port="sink_out 2" spacing="0"/> 
            </process> 
          </operator> 
          <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection 
(5)" width="90" x="176" y="30"/> 
          <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append (5)" width="90" 
x="313" y="30"/> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (9)" 
width="90" x="447" y="30"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="id|NumDiff"/> 
          </operator> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (6)" width="90" 
x="581" y="30"> 
            <parameter key="old_name" value="NumDiff"/> 
            <parameter key="new_name" value="JumpPop"/> 
            <list key="rename_additional_attributes"/> 
          </operator> 
          <connect from_port="in 1" to_op="Loop Values (4)" to_port="example set"/> 
          <connect from_op="Loop Values (4)" from_port="out 1" to_op="Flatten Collection (5)" to_port="collection"/> 
          <connect from_op="Flatten Collection (5)" from_port="flat" to_op="Append (5)" to_port="example set 1"/> 
          <connect from_op="Append (5)" from_port="merged set" to_op="Select Attributes (9)" to_port="example set input"/> 
          <connect from_op="Select Attributes (9)" from_port="example set output" to_op="Rename (6)" to_port="example set input"/> 
          <connect from_op="Rename (6)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="0"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
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9.4 OJI    

       
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="76" name="OJI" width="90" x="648" 
y="300"> 
        <process expanded="true" height="655" width="902"> 
          <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values (6)" 
width="90" x="46" y="30"> 
            <parameter key="attribute" value="MACHINE_MACHINE_CONSTANT"/> 
            <parameter key="iteration_macro" value="loopF"/> 
            <parameter key="parallelize_iteration" value="true"/> 
            <process expanded="true" height="637" width="1103"> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (12)" 
width="90" x="45" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="MACHINE_MACHINE_CONSTANT=%{loopF}"/> 
              </operator> 
              <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation (5)" width="90" x="180" y="30"> 
                <parameter key="first_attribute" value="MACHINE"/> 
                <parameter key="second_attribute" value="STE_CODE"/> 
              </operator> 
              <operator activated="true" class="sort" compatibility="5.2.008" expanded="true" height="76" name="Sort (2)" width="90" x="313" 
y="30"> 
                <parameter key="attribute_name" value="CREATION_DATE"/> 
              </operator> 
              <operator activated="true" class="series:lag_series" compatibility="5.3.000" expanded="true" height="76" name="Lag Series (2)" 
width="90" x="447" y="30"> 
                <list key="attributes"> 
                  <parameter key="NUMERIC_VALUE" value="1"/> 
                </list> 
              </operator> 
              <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (7)" width="90" 
x="581" y="30"> 
                <parameter key="old_name" value="NUMERIC_VALUE-1"/> 
                <parameter key="new_name" value="NUMERIC_VALUE_SERIES"/> 
                <list key="rename_additional_attributes"/> 
              </operator> 
              <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes (4)" width="90" x="715" y="30"> 
                <list key="function_descriptions"> 
                  <parameter key="NumDiff" value="NUMERIC_VALUE_SERIES-NUMERIC_VALUE"/> 
                </list> 
              </operator> 
              <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (4)" 
width="90" x="849" y="30"> 
                <parameter key="attribute_filter_type" value="single"/> 
                <parameter key="attribute" value="NumDiff"/> 
              </operator> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (14)" 
width="90" x="983" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
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                <parameter key="parameter_string" value="NumDiff&gt;2 || NumDiff&lt;-2"/> 
              </operator> 
              <connect from_port="example set" to_op="Filter Examples (12)" to_port="example set input"/> 
              <connect from_op="Filter Examples (12)" from_port="example set output" to_op="Generate Concatenation (5)" to_port="example set 
input"/> 
              <connect from_op="Generate Concatenation (5)" from_port="example set output" to_op="Sort (2)" to_port="example set input"/> 
              <connect from_op="Sort (2)" from_port="example set output" to_op="Lag Series (2)" to_port="example set input"/> 
              <connect from_op="Lag Series (2)" from_port="example set output" to_op="Rename (7)" to_port="example set input"/> 
              <connect from_op="Rename (7)" from_port="example set output" to_op="Generate Attributes (4)" to_port="example set input"/> 
              <connect from_op="Generate Attributes (4)" from_port="example set output" to_op="Normalize (4)" to_port="example set input"/> 
              <connect from_op="Normalize (4)" from_port="example set output" to_op="Filter Examples (14)" to_port="example set input"/> 
              <connect from_op="Filter Examples (14)" from_port="example set output" to_port="out 1"/> 
              <portSpacing port="source_example set" spacing="0"/> 
              <portSpacing port="sink_out 1" spacing="0"/> 
              <portSpacing port="sink_out 2" spacing="0"/> 
            </process> 
          </operator> 
          <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection 
(7)" width="90" x="181" y="30"/> 
          <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append (7)" width="90" 
x="316" y="30"/> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (4)" 
width="90" x="447" y="30"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="id|NumDiff"/> 
          </operator> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (8)" width="90" 
x="581" y="30"> 
            <parameter key="old_name" value="NumDiff"/> 
            <parameter key="new_name" value="JumpIndv"/> 
            <list key="rename_additional_attributes"/> 
          </operator> 
          <connect from_port="in 1" to_op="Loop Values (6)" to_port="example set"/> 
          <connect from_op="Loop Values (6)" from_port="out 1" to_op="Flatten Collection (7)" to_port="collection"/> 
          <connect from_op="Flatten Collection (7)" from_port="flat" to_op="Append (7)" to_port="example set 1"/> 
          <connect from_op="Append (7)" from_port="merged set" to_op="Select Attributes (4)" to_port="example set input"/> 
          <connect from_op="Select Attributes (4)" from_port="example set output" to_op="Rename (8)" to_port="example set input"/> 
          <connect from_op="Rename (8)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="0"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
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9.5 OJFP       

       
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="76" name="OJFP" width="90" x="648" 
y="390"> 
        <process expanded="true" height="637" width="1103"> 
          <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values (8)" 
width="90" x="45" y="30"> 
            <parameter key="attribute" value="MACHINE_MACHINE_CONSTANT"/> 
            <parameter key="iteration_macro" value="loopH"/> 
            <parameter key="parallelize_iteration" value="true"/> 
            <process expanded="true" height="637" width="969"> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (15)" 
width="90" x="45" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="MACHINE_MACHINE_CONSTANT=%{loopH}"/> 
              </operator> 
              <operator activated="true" class="sort" compatibility="5.2.008" expanded="true" height="76" name="Sort (3)" width="90" x="179" 
y="30"> 
                <parameter key="attribute_name" value="CREATION_DATE"/> 
              </operator> 
              <operator activated="true" class="series:lag_series" compatibility="5.3.000" expanded="true" height="76" name="Lag Series (3)" 
width="90" x="313" y="30"> 
                <list key="attributes"> 
                  <parameter key="NUMERIC_VALUE" value="1"/> 
                </list> 
              </operator> 
              <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (9)" width="90" 
x="447" y="30"> 
                <parameter key="old_name" value="NUMERIC_VALUE-1"/> 
                <parameter key="new_name" value="NUMERIC_VALUE_SERIES"/> 
                <list key="rename_additional_attributes"/> 
              </operator> 
              <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes (5)" width="90" x="581" y="30"> 
                <list key="function_descriptions"> 
                  <parameter key="NumDiff" value="NUMERIC_VALUE_SERIES-NUMERIC_VALUE"/> 
                </list> 
              </operator> 
              <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (5)" 
width="90" x="715" y="30"> 
                <parameter key="attribute_filter_type" value="single"/> 
                <parameter key="attribute" value="NumDiff"/> 
              </operator> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (17)" 
width="90" x="849" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="NumDiff&gt;0.50 || NumDiff&lt;-0.50"/> 
              </operator> 
              <connect from_port="example set" to_op="Filter Examples (15)" to_port="example set input"/> 
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              <connect from_op="Filter Examples (15)" from_port="example set output" to_op="Sort (3)" to_port="example set input"/> 
              <connect from_op="Sort (3)" from_port="example set output" to_op="Lag Series (3)" to_port="example set input"/> 
              <connect from_op="Lag Series (3)" from_port="example set output" to_op="Rename (9)" to_port="example set input"/> 
              <connect from_op="Rename (9)" from_port="example set output" to_op="Generate Attributes (5)" to_port="example set input"/> 
              <connect from_op="Generate Attributes (5)" from_port="example set output" to_op="Normalize (5)" to_port="example set input"/> 
              <connect from_op="Normalize (5)" from_port="example set output" to_op="Filter Examples (17)" to_port="example set input"/> 
              <connect from_op="Filter Examples (17)" from_port="example set output" to_port="out 1"/> 
              <portSpacing port="source_example set" spacing="0"/> 
              <portSpacing port="sink_out 1" spacing="0"/> 
              <portSpacing port="sink_out 2" spacing="0"/> 
            </process> 
          </operator> 
          <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection 
(9)" width="90" x="179" y="30"/> 
          <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append (9)" width="90" 
x="313" y="30"/> 
          <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (2)" width="90" 
x="447" y="30"> 
            <list key="aggregation_attributes"> 
              <parameter key="NumDiff" value="count"/> 
            </list> 
            <parameter key="group_by_attributes" value="|MACHINE_MACHINE_CONSTANT"/> 
          </operator> 
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (6)" width="90" 
x="581" y="30"> 
            <parameter key="attribute_filter_type" value="single"/> 
            <parameter key="attribute" value="count(NumDiff)"/> 
          </operator> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (10)" width="90" 
x="715" y="30"> 
            <parameter key="old_name" value="count(NumDiff)"/> 
            <parameter key="new_name" value="JumpFreq"/> 
            <list key="rename_additional_attributes"/> 
          </operator> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (18)" 
width="90" x="849" y="30"> 
            <parameter key="condition_class" value="attribute_value_filter"/> 
            <parameter key="parameter_string" value="JumpFreq&gt;2 || JumpFreq&lt;-2"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (10)" width="90" 
x="983" y="30"> 
            <parameter key="name" value="MACHINE_MACHINE_CONSTANT"/> 
            <parameter key="target_role" value="id"/> 
            <list key="set_additional_roles"/> 
          </operator> 
          <connect from_port="in 1" to_op="Loop Values (8)" to_port="example set"/> 
          <connect from_op="Loop Values (8)" from_port="out 1" to_op="Flatten Collection (9)" to_port="collection"/> 
          <connect from_op="Flatten Collection (9)" from_port="flat" to_op="Append (9)" to_port="example set 1"/> 
          <connect from_op="Append (9)" from_port="merged set" to_op="Aggregate (2)" to_port="example set input"/> 
          <connect from_op="Aggregate (2)" from_port="example set output" to_op="Normalize (6)" to_port="example set input"/> 
          <connect from_op="Normalize (6)" from_port="example set output" to_op="Rename (10)" to_port="example set input"/> 
          <connect from_op="Rename (10)" from_port="example set output" to_op="Filter Examples (18)" to_port="example set input"/> 
          <connect from_op="Filter Examples (18)" from_port="example set output" to_op="Set Role (10)" to_port="example set input"/> 
          <connect from_op="Set Role (10)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="0"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
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9.6 OTP             

 
 
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="76" name="OTP" width="90" x="648" 
y="480"> 
        <process expanded="true" height="655" width="815"> 
          <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values (3)" 
width="90" x="179" y="30"> 
            <parameter key="attribute" value="MACHINE_CONSTANT"/> 
            <parameter key="iteration_macro" value="loopA"/> 
            <process expanded="true" height="655" width="1284"> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (3)" 
width="90" x="45" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="MACHINE_CONSTANT=%{loopA}"/> 
              </operator> 
              <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation (4)" width="90" x="180" y="30"> 
                <parameter key="first_attribute" value="MACHINE"/> 
                <parameter key="second_attribute" value="DATA_FORMAT"/> 
              </operator> 
              <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(15)" width="90" x="315" y="30"> 
                <parameter key="attribute_filter_type" value="subset"/> 
                <parameter key="attributes" 
value="CREATION_DATE|MACHINE|MACHINE_DATA_FORMAT|MACHINE_MACHINE_CONSTANT|NUMERIC_VALUE|MACHINE_CONSTANT"/> 
                <parameter key="include_special_attributes" value="true"/> 
              </operator> 
              <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values (5)" 
width="90" x="447" y="30"> 
                <parameter key="attribute" value="MACHINE_DATA_FORMAT"/> 
                <parameter key="iteration_macro" value="loopB"/> 
                <parameter key="parallelize_iteration" value="true"/> 
                <process expanded="true" height="637" width="1552"> 
                  <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples 
(7)" width="90" x="45" y="30"> 
                    <parameter key="condition_class" value="attribute_value_filter"/> 
                    <parameter key="parameter_string" value="MACHINE_DATA_FORMAT=%{loopB}"/> 
                  </operator> 
                  <operator activated="true" class="date_to_numerical" compatibility="5.2.008" expanded="true" height="76" name="Date to 
Numerical" width="90" x="179" y="30"> 
                    <parameter key="attribute_name" value="CREATION_DATE"/> 
                    <parameter key="millisecond_relative_to" value="epoch"/> 
                  </operator> 
                  <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes (3)" width="90" x="313" y="30"> 
                    <list key="function_descriptions"> 
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                      <parameter key="Time" value="(CREATION_DATE/60000000)-22000"/> 
                    </list> 
                  </operator> 
                  <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (12)" width="90" 
x="447" y="30"> 
                    <parameter key="name" value="MACHINE_MACHINE_CONSTANT"/> 
                    <parameter key="target_role" value="id"/> 
                    <list key="set_additional_roles"> 
                      <parameter key="NUMERIC_VALUE" value="label"/> 
                    </list> 
                  </operator> 
                  <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(16)" width="90" x="581" y="30"> 
                    <parameter key="attribute_filter_type" value="subset"/> 
                    <parameter key="attributes" value="MACHINE_MACHINE_CONSTANT|NUMERIC_VALUE|Time"/> 
                  </operator> 
                  <operator activated="true" class="generate_id" compatibility="5.2.008" expanded="true" height="76" name="Generate ID (2)" 
width="90" x="179" y="165"/> 
                  <operator activated="true" class="linear_regression" compatibility="5.2.008" expanded="true" height="94" name="Linear 
Regression" width="90" x="715" y="30"> 
                    <parameter key="eliminate_colinear_features" value="false"/> 
                    <parameter key="min_tolerance" value="1.0"/> 
                  </operator> 
                  <operator activated="true" class="weights_to_data" compatibility="5.2.008" expanded="true" height="60" name="Weights to Data" 
width="90" x="849" y="30"/> 
                  <operator activated="true" class="generate_id" compatibility="5.2.008" expanded="true" height="76" name="Generate ID (3)" 
width="90" x="983" y="30"/> 
                  <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (4)" width="90" x="983" 
y="165"> 
                    <list key="key_attributes"/> 
                  </operator> 
                  <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(17)" width="90" x="1184" y="30"> 
                    <parameter key="attribute_filter_type" value="subset"/> 
                    <parameter key="attributes" value="MACHINE_MACHINE_CONSTANT|Weight||Time|MACHINE|MACHINE_CONSTANT"/> 
                    <parameter key="include_special_attributes" value="true"/> 
                  </operator> 
                  <connect from_port="example set" to_op="Filter Examples (7)" to_port="example set input"/> 
                  <connect from_op="Filter Examples (7)" from_port="example set output" to_op="Date to Numerical" to_port="example set 
input"/> 
                  <connect from_op="Date to Numerical" from_port="example set output" to_op="Generate Attributes (3)" to_port="example set 
input"/> 
                  <connect from_op="Date to Numerical" from_port="original" to_op="Generate ID (2)" to_port="example set input"/> 
                  <connect from_op="Generate Attributes (3)" from_port="example set output" to_op="Set Role (12)" to_port="example set input"/> 
                  <connect from_op="Set Role (12)" from_port="example set output" to_op="Select Attributes (16)" to_port="example set input"/> 
                  <connect from_op="Select Attributes (16)" from_port="example set output" to_op="Linear Regression" to_port="training set"/> 
                  <connect from_op="Generate ID (2)" from_port="example set output" to_op="Join (4)" to_port="left"/> 
                  <connect from_op="Linear Regression" from_port="weights" to_op="Weights to Data" to_port="attribute weights"/> 
                  <connect from_op="Weights to Data" from_port="example set" to_op="Generate ID (3)" to_port="example set input"/> 
                  <connect from_op="Generate ID (3)" from_port="example set output" to_op="Join (4)" to_port="right"/> 
                  <connect from_op="Join (4)" from_port="join" to_op="Select Attributes (17)" to_port="example set input"/> 
                  <connect from_op="Select Attributes (17)" from_port="example set output" to_port="out 1"/> 
                  <portSpacing port="source_example set" spacing="0"/> 
                  <portSpacing port="sink_out 1" spacing="0"/> 
                  <portSpacing port="sink_out 2" spacing="0"/> 
                </process> 
              </operator> 
              <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection" 
width="90" x="585" y="30"/> 
              <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append" width="90" 
x="720" y="30"/> 
              <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (11)" 
width="90" x="849" y="30"> 
                <parameter key="attribute_filter_type" value="single"/> 
                <parameter key="attribute" value="Weight"/> 
              </operator> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (10)" 
width="90" x="983" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="Weight &lt;= -2 || Weight &gt;= 2"/> 
              </operator> 
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              <connect from_port="example set" to_op="Filter Examples (3)" to_port="example set input"/> 
              <connect from_op="Filter Examples (3)" from_port="example set output" to_op="Generate Concatenation (4)" to_port="example set 
input"/> 
              <connect from_op="Generate Concatenation (4)" from_port="example set output" to_op="Select Attributes (15)" to_port="example 
set input"/> 
              <connect from_op="Select Attributes (15)" from_port="example set output" to_op="Loop Values (5)" to_port="example set"/> 
              <connect from_op="Loop Values (5)" from_port="out 1" to_op="Flatten Collection" to_port="collection"/> 
              <connect from_op="Flatten Collection" from_port="flat" to_op="Append" to_port="example set 1"/> 
              <connect from_op="Append" from_port="merged set" to_op="Normalize (11)" to_port="example set input"/> 
              <connect from_op="Normalize (11)" from_port="example set output" to_op="Filter Examples (10)" to_port="example set input"/> 
              <connect from_op="Filter Examples (10)" from_port="example set output" to_port="out 1"/> 
              <portSpacing port="source_example set" spacing="0"/> 
              <portSpacing port="sink_out 1" spacing="0"/> 
              <portSpacing port="sink_out 2" spacing="0"/> 
            </process> 
          </operator> 
          <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection 
(4)" width="90" x="313" y="30"/> 
          <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append (4)" width="90" 
x="447" y="30"/> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (12)" width="90" 
x="581" y="30"> 
            <parameter key="old_name" value="Weight"/> 
            <parameter key="new_name" value="TrendPop"/> 
            <list key="rename_additional_attributes"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (13)" width="90" 
x="715" y="30"> 
            <parameter key="name" value="MACHINE_MACHINE_CONSTANT"/> 
            <parameter key="target_role" value="id"/> 
            <list key="set_additional_roles"/> 
          </operator> 
          <connect from_port="in 1" to_op="Loop Values (3)" to_port="example set"/> 
          <connect from_op="Loop Values (3)" from_port="out 1" to_op="Flatten Collection (4)" to_port="collection"/> 
          <connect from_op="Flatten Collection (4)" from_port="flat" to_op="Append (4)" to_port="example set 1"/> 
          <connect from_op="Append (4)" from_port="merged set" to_op="Rename (12)" to_port="example set input"/> 
          <connect from_op="Rename (12)" from_port="example set output" to_op="Set Role (13)" to_port="example set input"/> 
          <connect from_op="Set Role (13)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="0"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
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9.7 OMCV       

       
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="76" name="OMCV" width="90" x="648" 
y="570"> 
        <process expanded="true" height="637" width="1103"> 
          <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation (3)" width="90" x="45" y="30"> 
            <parameter key="first_attribute" value="MACHINE"/> 
            <parameter key="second_attribute" value="CREATION_DATE"/> 
          </operator> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (5)" 
width="90" x="179" y="30"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="MACHINE|MACHINE_CONSTANT|MACHINE_CREATION_DATE|NUMERIC_VALUE"/> 
          </operator> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Numeric Filter" 
width="90" x="313" y="30"> 
            <parameter key="condition_class" value="no_missing_attributes"/> 
            <parameter key="parameter_string" value="NUMERIC_VALUE=?"/> 
          </operator> 
          <operator activated="true" class="pivot" compatibility="5.2.008" expanded="true" height="76" name="Pivot" width="90" x="447" 
y="30"> 
            <parameter key="group_attribute" value="MACHINE_CREATION_DATE"/> 
            <parameter key="index_attribute" value="MACHINE_CONSTANT"/> 
            <parameter key="consider_weights" value="false"/> 
            <parameter key="skip_constant_attributes" value="false"/> 
          </operator> 
          <operator activated="true" class="split" compatibility="5.2.008" expanded="true" height="76" name="Split" width="90" x="581" 
y="30"> 
            <parameter key="attribute_filter_type" value="single"/> 
            <parameter key="attribute" value="MACHINE_CREATION_DATE"/> 
            <parameter key="split_pattern" value="_"/> 
          </operator> 
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          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (11)" width="90" 
x="715" y="30"> 
            <parameter key="old_name" value="MACHINE_CREATION_DATE_1"/> 
            <parameter key="new_name" value="MACHINE"/> 
            <list key="rename_additional_attributes"> 
              <parameter key="MACHINE_CREATION_DATE_2" value="CREATION_DATE"/> 
            </list> 
          </operator> 
          <operator activated="true" class="loop_values" compatibility="5.2.008" expanded="true" height="76" name="Loop Values (10)" 
width="90" x="45" y="165"> 
            <parameter key="attribute" value="MACHINE"/> 
            <parameter key="iteration_macro" value="MACH"/> 
            <process expanded="true" height="637" width="299"> 
              <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (19)" 
width="90" x="45" y="30"> 
                <parameter key="condition_class" value="attribute_value_filter"/> 
                <parameter key="parameter_string" value="MACHINE=%{MACH}"/> 
              </operator> 
              <operator activated="true" class="loop_attributes" compatibility="5.2.008" expanded="true" height="60" name="Loop Attributes" 
width="90" x="179" y="30"> 
                <parameter key="iteration_macro" value="ATT"/> 
                <process expanded="true" height="637" width="299"> 
                  <operator activated="true" class="series:replace_missing_series_values" compatibility="5.3.000" expanded="true" height="76" 
name="Replace Missing Values (Series)" width="90" x="45" y="30"> 
                    <parameter key="attribute_name" value="%{ATT}"/> 
                  </operator> 
                  <operator activated="true" class="series:replace_missing_series_values" compatibility="5.3.000" expanded="true" height="76" 
name="Replace Missing Values (2)" width="90" x="179" y="30"> 
                    <parameter key="attribute_name" value="%{ATT}"/> 
                    <parameter key="replacement" value="next value"/> 
                  </operator> 
                  <connect from_port="example set" to_op="Replace Missing Values (Series)" to_port="example set input"/> 
                  <connect from_op="Replace Missing Values (Series)" from_port="example set output" to_op="Replace Missing Values (2)" 
to_port="example set input"/> 
                  <connect from_op="Replace Missing Values (2)" from_port="example set output" to_port="example set"/> 
                  <portSpacing port="source_example set" spacing="0"/> 
                  <portSpacing port="sink_example set" spacing="0"/> 
                </process> 
              </operator> 
              <connect from_port="example set" to_op="Filter Examples (19)" to_port="example set input"/> 
              <connect from_op="Filter Examples (19)" from_port="example set output" to_op="Loop Attributes" to_port="example set"/> 
              <connect from_op="Loop Attributes" from_port="example set" to_port="out 1"/> 
              <portSpacing port="source_example set" spacing="0"/> 
              <portSpacing port="sink_out 1" spacing="0"/> 
              <portSpacing port="sink_out 2" spacing="0"/> 
            </process> 
          </operator> 
          <operator activated="true" class="flatten_collection" compatibility="5.2.008" expanded="true" height="60" name="Flatten Collection 
(10)" width="90" x="179" y="165"/> 
          <operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="76" name="Append (10)" width="90" 
x="313" y="165"/> 
          <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation (10)" width="90" x="447" y="165"> 
            <parameter key="first_attribute" value="MACHINE"/> 
            <parameter key="second_attribute" value="CREATION_DATE"/> 
          </operator> 
          <operator activated="true" class="replace_missing_values" compatibility="5.2.008" expanded="true" height="94" name="Replace 
Missing Values" width="90" x="581" y="165"> 
            <list key="columns"/> 
          </operator> 
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (7)" width="90" 
x="715" y="165"/> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(10)" width="90" x="849" y="165"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="CREATION_DATE|MACHINE_CREATION_DATE_3||MACHINE"/> 
            <parameter key="invert_selection" value="true"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (4)" width="90" 
x="983" y="165"> 
            <parameter key="name" value="MACHINE_CREATION_DATE"/> 
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            <parameter key="target_role" value="label"/> 
            <list key="set_additional_roles"/> 
          </operator> 
          <operator activated="true" class="x_means" compatibility="5.2.008" expanded="true" height="76" name="X-Means" width="90" x="45" 
y="300"/> 
          <operator activated="true" class="anomalydetection:Cluster-Based Local Outlier Factor (CBLOF)" compatibility="1.3.000" 
expanded="true" height="94" name="Cluster-Based Local Outlier Factor (CBLOF)" width="90" x="179" y="300"/> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (5)" width="90" 
x="313" y="300"> 
            <parameter key="name" value="outlier"/> 
            <list key="set_additional_roles"> 
              <parameter key="MACHINE_CREATION_DATE" value="regular"/> 
              <parameter key="cluster" value="regular"/> 
            </list> 
          </operator> 
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (8)" width="90" 
x="447" y="300"> 
            <parameter key="attribute_filter_type" value="single"/> 
            <parameter key="attribute" value="outlier"/> 
          </operator> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (20)" 
width="90" x="581" y="300"> 
            <parameter key="condition_class" value="attribute_value_filter"/> 
            <parameter key="parameter_string" value="outlier&gt;2"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (6)" width="90" 
x="715" y="300"> 
            <parameter key="name" value="MACHINE_CREATION_DATE"/> 
            <parameter key="target_role" value="id"/> 
            <list key="set_additional_roles"/> 
          </operator> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename" width="90" x="849" 
y="300"> 
            <parameter key="old_name" value="outlier"/> 
            <parameter key="new_name" value="ClusterValue"/> 
            <list key="rename_additional_attributes"/> 
          </operator> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(12)" width="90" x="983" y="300"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="|ClusterValue|MACHINE_CREATION_DATE"/> 
          </operator> 
          <connect from_port="in 1" to_op="Generate Concatenation (3)" to_port="example set input"/> 
          <connect from_op="Generate Concatenation (3)" from_port="example set output" to_op="Select Attributes (5)" to_port="example set 
input"/> 
          <connect from_op="Select Attributes (5)" from_port="example set output" to_op="Numeric Filter" to_port="example set input"/> 
          <connect from_op="Numeric Filter" from_port="example set output" to_op="Pivot" to_port="example set input"/> 
          <connect from_op="Pivot" from_port="example set output" to_op="Split" to_port="example set input"/> 
          <connect from_op="Split" from_port="example set output" to_op="Rename (11)" to_port="example set input"/> 
          <connect from_op="Rename (11)" from_port="example set output" to_op="Loop Values (10)" to_port="example set"/> 
          <connect from_op="Loop Values (10)" from_port="out 1" to_op="Flatten Collection (10)" to_port="collection"/> 
          <connect from_op="Flatten Collection (10)" from_port="flat" to_op="Append (10)" to_port="example set 1"/> 
          <connect from_op="Append (10)" from_port="merged set" to_op="Generate Concatenation (10)" to_port="example set input"/> 
          <connect from_op="Generate Concatenation (10)" from_port="example set output" to_op="Replace Missing Values" to_port="example 
set input"/> 
          <connect from_op="Replace Missing Values" from_port="example set output" to_op="Normalize (7)" to_port="example set input"/> 
          <connect from_op="Normalize (7)" from_port="example set output" to_op="Select Attributes (10)" to_port="example set input"/> 
          <connect from_op="Select Attributes (10)" from_port="example set output" to_op="Set Role (4)" to_port="example set input"/> 
          <connect from_op="Set Role (4)" from_port="example set output" to_op="X-Means" to_port="example set"/> 
          <connect from_op="X-Means" from_port="cluster model" to_op="Cluster-Based Local Outlier Factor (CBLOF)" to_port="cluster 
Model"/> 
          <connect from_op="X-Means" from_port="clustered set" to_op="Cluster-Based Local Outlier Factor (CBLOF)" to_port="clustered set"/> 
          <connect from_op="Cluster-Based Local Outlier Factor (CBLOF)" from_port="clustered set" to_op="Set Role (5)" to_port="example set 
input"/> 
          <connect from_op="Set Role (5)" from_port="example set output" to_op="Normalize (8)" to_port="example set input"/> 
          <connect from_op="Normalize (8)" from_port="example set output" to_op="Filter Examples (20)" to_port="example set input"/> 
          <connect from_op="Filter Examples (20)" from_port="example set output" to_op="Set Role (6)" to_port="example set input"/> 
          <connect from_op="Set Role (6)" from_port="example set output" to_op="Rename" to_port="example set input"/> 
          <connect from_op="Rename" from_port="example set output" to_op="Select Attributes (12)" to_port="example set input"/> 
          <connect from_op="Select Attributes (12)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
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          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="270"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator>        

9.8 OCS        

 
 
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="76" name="OCS" width="90" x="648" 
y="660"> 
        <process expanded="true" height="637" width="1103"> 
          <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation (8)" width="90" x="45" y="30"> 
            <parameter key="first_attribute" value="MACHINE"/> 
            <parameter key="second_attribute" value="CREATION_DATE"/> 
          </operator> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(11)" width="90" x="180" y="30"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="MACHINE_CONSTANT|MACHINE_CREATION_DATE|NUMERIC_VALUE"/> 
          </operator> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Numeric Filter (2)" 
width="90" x="315" y="30"> 
            <parameter key="condition_class" value="no_missing_attributes"/> 
            <parameter key="parameter_string" value="NUMERIC_VALUE=?"/> 
          </operator> 
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (9)" width="90" 
x="450" y="30"> 
            <parameter key="attribute_filter_type" value="single"/> 
            <parameter key="attribute" value="NUMERIC_VALUE"/> 
            <parameter key="method" value="range transformation"/> 
            <parameter key="min" value="1.0"/> 
            <parameter key="max" value="1.000000001"/> 
          </operator> 
          <operator activated="true" class="pivot" compatibility="5.2.008" expanded="true" height="76" name="Pivot (2)" width="90" x="580" 
y="30"> 
            <parameter key="group_attribute" value="MACHINE_CREATION_DATE"/> 
            <parameter key="index_attribute" value="MACHINE_CONSTANT"/> 
            <parameter key="consider_weights" value="false"/> 
            <parameter key="skip_constant_attributes" value="false"/> 
          </operator> 
          <operator activated="true" class="replace_missing_values" compatibility="5.2.008" expanded="true" height="94" name="Replace 
Missing Values (3)" width="90" x="714" y="30"> 
            <parameter key="attribute" value="NUMERIC_VALUE"/> 
            <parameter key="default" value="zero"/> 
            <list key="columns"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (8)" width="90" 
x="849" y="30"> 
            <parameter key="name" value="MACHINE_CREATION_DATE"/> 
            <parameter key="target_role" value="label"/> 
            <list key="set_additional_roles"/> 
          </operator> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(13)" width="90" x="983" y="30"> 
            <parameter key="attribute_filter_type" value="subset"/> 
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            <parameter key="attributes" value="CREATION_DATE"/> 
            <parameter key="invert_selection" value="true"/> 
          </operator> 
          <operator activated="true" class="x_means" compatibility="5.2.008" expanded="true" height="76" name="X-Means (2)" width="90" 
x="45" y="165"/> 
          <operator activated="true" class="anomalydetection:Cluster-Based Local Outlier Factor (CBLOF)" compatibility="1.3.000" 
expanded="true" height="94" name="Cluster-Based Local Outlier Factor (2)" width="90" x="179" y="165"/> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (7)" width="90" 
x="313" y="165"> 
            <parameter key="name" value="outlier"/> 
            <list key="set_additional_roles"> 
              <parameter key="MACHINE_CREATION_DATE" value="regular"/> 
              <parameter key="cluster" value="regular"/> 
            </list> 
          </operator> 
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize (10)" width="90" 
x="447" y="165"> 
            <parameter key="attribute_filter_type" value="single"/> 
            <parameter key="attribute" value="outlier"/> 
          </operator> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (21)" 
width="90" x="581" y="165"> 
            <parameter key="condition_class" value="attribute_value_filter"/> 
            <parameter key="parameter_string" value="outlier&gt;2"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (9)" width="90" 
x="715" y="165"> 
            <parameter key="name" value="MACHINE_CREATION_DATE"/> 
            <parameter key="target_role" value="id"/> 
            <list key="set_additional_roles"/> 
          </operator> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (2)" width="90" 
x="849" y="165"> 
            <parameter key="old_name" value="outlier"/> 
            <parameter key="new_name" value="ClusterEvent"/> 
            <list key="rename_additional_attributes"/> 
          </operator> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(14)" width="90" x="983" y="165"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" value="|ClusterEvent|MACHINE_CREATION_DATE"/> 
          </operator> 
          <connect from_port="in 1" to_op="Generate Concatenation (8)" to_port="example set input"/> 
          <connect from_op="Generate Concatenation (8)" from_port="example set output" to_op="Select Attributes (11)" to_port="example set 
input"/> 
          <connect from_op="Select Attributes (11)" from_port="example set output" to_op="Numeric Filter (2)" to_port="example set input"/> 
          <connect from_op="Numeric Filter (2)" from_port="example set output" to_op="Normalize (9)" to_port="example set input"/> 
          <connect from_op="Normalize (9)" from_port="example set output" to_op="Pivot (2)" to_port="example set input"/> 
          <connect from_op="Pivot (2)" from_port="example set output" to_op="Replace Missing Values (3)" to_port="example set input"/> 
          <connect from_op="Replace Missing Values (3)" from_port="example set output" to_op="Set Role (8)" to_port="example set input"/> 
          <connect from_op="Set Role (8)" from_port="example set output" to_op="Select Attributes (13)" to_port="example set input"/> 
          <connect from_op="Select Attributes (13)" from_port="example set output" to_op="X-Means (2)" to_port="example set"/> 
          <connect from_op="X-Means (2)" from_port="cluster model" to_op="Cluster-Based Local Outlier Factor (2)" to_port="cluster Model"/> 
          <connect from_op="X-Means (2)" from_port="clustered set" to_op="Cluster-Based Local Outlier Factor (2)" to_port="clustered set"/> 
          <connect from_op="Cluster-Based Local Outlier Factor (2)" from_port="clustered set" to_op="Set Role (7)" to_port="example set 
input"/> 
          <connect from_op="Set Role (7)" from_port="example set output" to_op="Normalize (10)" to_port="example set input"/> 
          <connect from_op="Normalize (10)" from_port="example set output" to_op="Filter Examples (21)" to_port="example set input"/> 
          <connect from_op="Filter Examples (21)" from_port="example set output" to_op="Set Role (9)" to_port="example set input"/> 
          <connect from_op="Set Role (9)" from_port="example set output" to_op="Rename (2)" to_port="example set input"/> 
          <connect from_op="Rename (2)" from_port="example set output" to_op="Select Attributes (14)" to_port="example set input"/> 
          <connect from_op="Select Attributes (14)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="126"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
       
       



120 | P a g e  
 

9.9 JOIN       
<operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join Clst Alg." width="90" x="849" 
y="615"> 
        <parameter key="join_type" value="outer"/> 
        <list key="key_attributes"/> 
      </operator> 
        
      <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (8)" width="90" x="849" 
y="435"> 
        <parameter key="join_type" value="outer"/> 
        <list key="key_attributes"/> 
      </operator> 

9.10 JMCL 

 
 
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="166" name="JMCL" width="90" x="983" 
y="120"> 
        <process expanded="true" height="637" width="1213"> 
          <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (2)" width="90" x="45" 
y="30"> 
            <parameter key="join_type" value="outer"/> 
            <list key="key_attributes"/> 
          </operator> 
          <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join" width="90" x="179" y="75"> 
            <parameter key="join_type" value="outer"/> 
            <list key="key_attributes"/> 
          </operator> 
          <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (3)" width="90" x="313" 
y="120"> 
            <parameter key="join_type" value="outer"/> 
            <list key="key_attributes"/> 
          </operator> 
          <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (9)" width="90" x="447" 
y="165"> 
            <list key="key_attributes"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (2)" width="90" 
x="581" y="165"> 
            <parameter key="name" value="id"/> 
            <list key="set_additional_roles"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (3)" width="90" 
x="715" y="165"> 
            <parameter key="name" value="MACHINE_MACHINE_CONSTANT"/> 
            <parameter key="target_role" value="id"/> 
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            <list key="set_additional_roles"/> 
          </operator> 
          <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (5)" width="90" x="313" 
y="345"> 
            <parameter key="join_type" value="left"/> 
            <list key="key_attributes"/> 
          </operator> 
          <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation (2)" width="90" x="447" y="345"> 
            <parameter key="first_attribute" value="MACHINE"/> 
            <parameter key="second_attribute" value="CREATION_DATE"/> 
          </operator> 
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes 
(18)" width="90" x="581" y="345"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attributes" 
value="CATEGORY_CODE|CATEGORY_DESCRIPTION|CONSTANT_TYPE|JumpFreq|JumpIndv|JumpPop|MACHINE_CONSTANT|MACHINE_CREA
TION_DATE|NUMERIC_VALUE|STE_CODE|TrendPop|VALID_FROM_DATE|ValueIndv|ValuePop"/> 
            <parameter key="include_special_attributes" value="true"/> 
          </operator> 
          <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (14)" width="90" 
x="715" y="345"> 
            <parameter key="name" value="MACHINE_CREATION_DATE"/> 
            <parameter key="target_role" value="id"/> 
            <list key="set_additional_roles"/> 
          </operator> 
          <connect from_port="in 1" to_op="Join (2)" to_port="left"/> 
          <connect from_port="in 2" to_op="Join (2)" to_port="right"/> 
          <connect from_port="in 3" to_op="Join" to_port="right"/> 
          <connect from_port="in 4" to_op="Join (3)" to_port="right"/> 
          <connect from_port="in 5" to_op="Join (9)" to_port="right"/> 
          <connect from_port="in 6" to_op="Join (5)" to_port="right"/> 
          <connect from_op="Join (2)" from_port="join" to_op="Join" to_port="left"/> 
          <connect from_op="Join" from_port="join" to_op="Join (3)" to_port="left"/> 
          <connect from_op="Join (3)" from_port="join" to_op="Join (9)" to_port="left"/> 
          <connect from_op="Join (9)" from_port="join" to_op="Set Role (2)" to_port="example set input"/> 
          <connect from_op="Set Role (2)" from_port="example set output" to_op="Set Role (3)" to_port="example set input"/> 
          <connect from_op="Set Role (3)" from_port="example set output" to_op="Join (5)" to_port="left"/> 
          <connect from_op="Join (5)" from_port="join" to_op="Generate Concatenation (2)" to_port="example set input"/> 
          <connect from_op="Generate Concatenation (2)" from_port="example set output" to_op="Select Attributes (18)" to_port="example set 
input"/> 
          <connect from_op="Select Attributes (18)" from_port="example set output" to_op="Set Role (14)" to_port="example set input"/> 
          <connect from_op="Set Role (14)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="source_in 3" spacing="0"/> 
          <portSpacing port="source_in 4" spacing="0"/> 
          <portSpacing port="source_in 5" spacing="54"/> 
          <portSpacing port="source_in 6" spacing="0"/> 
          <portSpacing port="source_in 7" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="216"/> 
          <portSpacing port="sink_out 2" spacing="18"/> 
        </process> 
      </operator> 
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9.11 CTL             

 
 
<operator activated="true" class="subprocess" compatibility="5.2.008" expanded="true" height="94" name="CTL" width="90" x="1184" 
y="300"> 
        <process expanded="true" height="655" width="1069"> 
          <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (7)" width="90" x="112" 
y="30"> 
            <parameter key="join_type" value="outer"/> 
            <list key="key_attributes"/> 
          </operator> 
          <operator activated="true" class="split" compatibility="5.2.008" expanded="true" height="76" name="Split (2)" width="90" x="246" 
y="30"> 
            <parameter key="attribute_filter_type" value="single"/> 
            <parameter key="attribute" value="MACHINE_CREATION_DATE"/> 
            <parameter key="include_special_attributes" value="true"/> 
            <parameter key="split_pattern" value="_"/> 
          </operator> 
          <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (13)" width="90" 
x="380" y="30"> 
            <parameter key="old_name" value="MACHINE_CREATION_DATE_1"/> 
            <parameter key="new_name" value="MACHINE"/> 
            <list key="rename_additional_attributes"> 
              <parameter key="MACHINE_CREATION_DATE_2" value="CREATION_DATE"/> 
            </list> 
          </operator> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" 
width="90" x="514" y="30"> 
            <parameter key="condition_class" value="attribute_value_filter"/> 
            <parameter key="parameter_string" value="JumpFreq &gt;= 3 || JumpFreq &lt;=-3 || ValuePop &gt;= 3 || ValuePop &lt;=-3 || 
ValueIndv &gt;= 3 || ValueIndv &lt;=-3 || JumpPop &gt;= 3 || JumpPop &lt;=-3 || JumpIndv &gt;= 3 || JumpIndv &lt;=-3 || ClusterEvent 
&gt;=3 || ClusterValue &gt;=3"/> 
          </operator> 
          <operator activated="true" class="replace_missing_values" compatibility="5.2.008" expanded="true" height="94" name="Replace 
Missing Values (4)" width="90" x="648" y="30"> 
            <parameter key="attribute_filter_type" value="subset"/> 
            <parameter key="attribute" value="id"/> 
            <parameter key="attributes" value="JumpFreq|JumpIndv|JumpPop|TrendPop|ValueIndv|ValuePop||ClusterEvent|ClusterValue"/> 
            <parameter key="default" value="zero"/> 
            <list key="columns"/> 
          </operator> 
          <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes (2)" width="90" x="782" y="30"> 
            <list key="function_descriptions"> 
              <parameter key="SumOutlier" value="sum(abs(JumpFreq) 
,abs(ValuePop),abs(ValueIndv),abs(JumpPop),abs(JumpIndv),abs(ClusterEvent),abs(ClusterValue),abs(TrendPop))"/> 
            </list> 
          </operator> 
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (2)" 
width="90" x="916" y="30"> 
            <parameter key="condition_class" value="attribute_value_filter"/> 
            <parameter key="parameter_string" value="SumOutlier&gt;=5"/> 
          </operator> 
          <connect from_port="in 1" to_op="Join (7)" to_port="right"/> 
          <connect from_port="in 2" to_op="Join (7)" to_port="left"/> 
          <connect from_op="Join (7)" from_port="join" to_op="Split (2)" to_port="example set input"/> 
          <connect from_op="Split (2)" from_port="example set output" to_op="Rename (13)" to_port="example set input"/> 
          <connect from_op="Rename (13)" from_port="example set output" to_op="Filter Examples" to_port="example set input"/> 
          <connect from_op="Filter Examples" from_port="example set output" to_op="Replace Missing Values (4)" to_port="example set 
input"/> 
          <connect from_op="Replace Missing Values (4)" from_port="example set output" to_op="Generate Attributes (2)" to_port="example set 
input"/> 
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          <connect from_op="Generate Attributes (2)" from_port="example set output" to_op="Filter Examples (2)" to_port="example set 
input"/> 
          <connect from_op="Filter Examples (2)" from_port="example set output" to_port="out 1"/> 
          <portSpacing port="source_in 1" spacing="0"/> 
          <portSpacing port="source_in 2" spacing="0"/> 
          <portSpacing port="source_in 3" spacing="0"/> 
          <portSpacing port="sink_out 1" spacing="180"/> 
          <portSpacing port="sink_out 2" spacing="0"/> 
        </process> 
      </operator> 
 

9.12 WRITE LIST 
      <operator activated="true" class="write_excel" compatibility="5.2.008" expanded="true" height="76" name="Write List" width="90" 
x="1318" y="300"> 
        <parameter key="excel_file" value="C:\Users\paalst\Desktop\Final.xlsx"/> 
        <parameter key="file_format" value="xlsx"/> 
      </operator> 
      <connect from_op="Retrieve" from_port="output" to_op="Generate ID" to_port="example set input"/> 
      <connect from_op="Generate ID" from_port="example set output" to_op="Generate Concatenation" to_port="example set input"/> 
      <connect from_op="Generate Concatenation" from_port="example set output" to_op="Multiply" to_port="input"/> 
      <connect from_op="Multiply" from_port="output 1" to_op="OVP" to_port="in 1"/> 
      <connect from_op="Multiply" from_port="output 2" to_op="OVI" to_port="in 1"/> 
      <connect from_op="Multiply" from_port="output 3" to_op="OJP" to_port="in 1"/> 
      <connect from_op="Multiply" from_port="output 4" to_op="OJI" to_port="in 1"/> 
      <connect from_op="Multiply" from_port="output 5" to_op="OJFP" to_port="in 1"/> 
      <connect from_op="Multiply" from_port="output 6" to_op="OMCV" to_port="in 1"/> 
      <connect from_op="Multiply" from_port="output 7" to_op="OCS" to_port="in 1"/> 
      <connect from_op="Multiply" from_port="output 8" to_op="OTP" to_port="in 1"/> 
      <connect from_op="Multiply" from_port="output 9" to_op="JMCL" to_port="in 5"/> 
      <connect from_op="OVP" from_port="out 1" to_op="JMCL" to_port="in 1"/> 
      <connect from_op="OVI" from_port="out 1" to_op="JMCL" to_port="in 2"/> 
      <connect from_op="OJP" from_port="out 1" to_op="JMCL" to_port="in 3"/> 
      <connect from_op="OJI" from_port="out 1" to_op="JMCL" to_port="in 4"/> 
      <connect from_op="OJFP" from_port="out 1" to_op="Join (8)" to_port="left"/> 
      <connect from_op="OTP" from_port="out 1" to_op="Join (8)" to_port="right"/> 
      <connect from_op="OMCV" from_port="out 1" to_op="Join Clst Alg." to_port="left"/> 
      <connect from_op="OCS" from_port="out 1" to_op="Join Clst Alg." to_port="right"/> 
      <connect from_op="Join Clst Alg." from_port="join" to_op="CTL" to_port="in 2"/> 
      <connect from_op="Join (8)" from_port="join" to_op="JMCL" to_port="in 6"/> 
      <connect from_op="JMCL" from_port="out 1" to_op="CTL" to_port="in 1"/> 
      <connect from_op="CTL" from_port="out 1" to_op="Write List" to_port="input"/> 
      <portSpacing port="source_input 1" spacing="0"/> 
      <portSpacing port="sink_result 1" spacing="90"/> 
    </process> 
  </operator> 
</process> 
 

10 APPENDIX: PREDICTIVE ANALYSIS 

 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<process version="5.2.008"> 
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  <context> 
    <input/> 
    <output/> 
    <macros/> 
  </context> 
  <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> 
    <process expanded="true" height="457" width="1639"> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Paired" width="90" x="45" 
y="210"> 
        <parameter key="repository_entry" value="Paired3"/> 
      </operator> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Interrupt" width="90" x="45" 
y="300"> 
        <parameter key="repository_entry" value="Interrupt"/> 
      </operator> 
      <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" 
width="90" x="179" y="300"> 
        <parameter key="condition_class" value="attribute_value_filter"/> 
        <parameter key="parameter_string" value="INTERRUPT TYPE=Reliability || INTERRUPT TYPE=Availability"/> 
      </operator> 
      <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (2)" 
width="90" x="313" y="300"> 
        <parameter key="attribute_filter_type" value="subset"/> 
        <parameter key="attributes" value="MACHINE|TIMESTAMP"/> 
      </operator> 
      <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply" width="90" x="447" 
y="300"/> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Outlier" width="90" x="45" 
y="30"> 
        <parameter key="repository_entry" value="Outlier3"/> 
      </operator> 
      <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (2)" 
width="90" x="179" y="30"> 
        <parameter key="condition_class" value="attribute_value_filter"/> 
        <parameter key="parameter_string" value="Up/Down=Up"/> 
      </operator> 
      <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes" 
width="90" x="313" y="30"> 
        <parameter key="attribute_filter_type" value="subset"/> 
        <parameter key="attributes" value="MACHINE|CREATION_DATE|"/> 
      </operator> 
      <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join" width="90" x="447" y="30"> 
        <parameter key="join_type" value="left"/> 
        <parameter key="use_id_attribute_as_key" value="false"/> 
        <list key="key_attributes"> 
          <parameter key="MACHINE" value="MACHINE"/> 
        </list> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Attributes" width="90" x="587" y="30"> 
        <list key="function_descriptions"> 
          <parameter key="Time" value="date_diff(CREATION_DATE,TIMESTAMP)/144000000"/> 
        </list> 
      </operator> 
      <operator activated="true" class="replace_missing_values" compatibility="5.2.008" expanded="true" height="94" name="Replace Missing 
Values" width="90" x="715" y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="Time"/> 
        <parameter key="default" value="value"/> 
        <list key="columns"/> 
        <parameter key="replenishment_value" value="60"/> 
      </operator> 
      <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation" width="90" x="849" y="30"> 
        <parameter key="first_attribute" value="MACHINE"/> 
        <parameter key="second_attribute" value="CREATION_DATE"/> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(10)" width="90" x="983" y="30"> 
        <list key="function_descriptions"> 
          <parameter key="TimeDiff" value="if(Time&lt;=0,60,Time)"/> 
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        </list> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate" width="90" 
x="1117" y="30"> 
        <list key="aggregation_attributes"> 
          <parameter key="TimeDiff" value="minimum"/> 
        </list> 
        <parameter key="group_by_attributes" value="MACHINE_CREATION_DATE|"/> 
      </operator> 
      <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (3)" width="90" 
x="1251" y="30"> 
        <parameter key="old_name" value="minimum(TimeDiff)"/> 
        <parameter key="new_name" value="MinDiff"/> 
        <list key="rename_additional_attributes"/> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(7)" width="90" x="1251" y="120"> 
        <list key="function_descriptions"> 
          <parameter key="Broken2" value="if(TimeDiff&lt;=2,1,0)"/> 
          <parameter key="Broken7" value="if(TimeDiff&lt;=7,1,0)"/> 
        </list> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (4)" width="90" 
x="1385" y="120"> 
        <list key="aggregation_attributes"> 
          <parameter key="Broken2" value="sum"/> 
          <parameter key="Broken7" value="sum"/> 
        </list> 
        <parameter key="group_by_attributes" value="MACHINE_CREATION_DATE|"/> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(4)" width="90" x="1385" y="30"> 
        <list key="function_descriptions"> 
          <parameter key="Broken2" value="if(MinDiff&lt;=2,1,0)"/> 
          <parameter key="Broken7" value="if(MinDiff&lt;=7,1,0)"/> 
        </list> 
      </operator> 
      <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (4)" width="90" x="1519" 
y="30"> 
        <parameter key="use_id_attribute_as_key" value="false"/> 
        <list key="key_attributes"> 
          <parameter key="MACHINE_CREATION_DATE" value="MACHINE_CREATION_DATE"/> 
        </list> 
      </operator> 
      <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (2)" width="90" x="447" 
y="210"> 
        <parameter key="join_type" value="left"/> 
        <parameter key="use_id_attribute_as_key" value="false"/> 
        <list key="key_attributes"> 
          <parameter key="MACHINE" value="MACHINE"/> 
        </list> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(3)" width="90" x="581" y="210"> 
        <list key="function_descriptions"> 
          <parameter key="Time" value="date_diff(CREATION_DATE,TIMESTAMP)/144000000"/> 
        </list> 
      </operator> 
      <operator activated="true" class="replace_missing_values" compatibility="5.2.008" expanded="true" height="94" name="Replace Missing 
Values (2)" width="90" x="715" y="210"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="Time"/> 
        <parameter key="default" value="value"/> 
        <list key="columns"/> 
        <parameter key="replenishment_value" value="60"/> 
      </operator> 
      <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation (2)" width="90" x="849" y="210"> 
        <parameter key="first_attribute" value="MACHINE"/> 
        <parameter key="second_attribute" value="CREATION_DATE"/> 
      </operator> 
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      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(11)" width="90" x="983" y="210"> 
        <list key="function_descriptions"> 
          <parameter key="TimeDiff" value="if(Time&lt;=0,60,Time)"/> 
        </list> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (2)" width="90" 
x="1117" y="210"> 
        <list key="aggregation_attributes"> 
          <parameter key="TimeDiff" value="minimum"/> 
        </list> 
        <parameter key="group_by_attributes" value="|MACHINE_CREATION_DATE"/> 
      </operator> 
      <operator activated="true" class="rename" compatibility="5.2.008" expanded="true" height="76" name="Rename (2)" width="90" 
x="1251" y="210"> 
        <parameter key="old_name" value="minimum(TimeDiff)"/> 
        <parameter key="new_name" value="MinDiff"/> 
        <list key="rename_additional_attributes"/> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(8)" width="90" x="1251" y="300"> 
        <list key="function_descriptions"> 
          <parameter key="Broken2" value="if(TimeDiff&lt;=2,1,0)"/> 
          <parameter key="Broken7" value="if(TimeDiff&lt;=7,1,0)"/> 
        </list> 
      </operator> 
      <operator activated="true" class="aggregate" compatibility="5.2.008" expanded="true" height="76" name="Aggregate (5)" width="90" 
x="1385" y="300"> 
        <list key="aggregation_attributes"> 
          <parameter key="Broken2" value="sum"/> 
          <parameter key="Broken7" value="sum"/> 
        </list> 
        <parameter key="group_by_attributes" value="|MACHINE_CREATION_DATE"/> 
      </operator> 
      <operator activated="true" class="generate_attributes" compatibility="5.2.008" expanded="true" height="76" name="Generate Attributes 
(6)" width="90" x="1385" y="210"> 
        <list key="function_descriptions"> 
          <parameter key="Broken2" value="if(MinDiff&lt;=2,1,0)"/> 
          <parameter key="Broken7" value="if(MinDiff&lt;=7,1,0)"/> 
        </list> 
      </operator> 
      <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join (5)" width="90" x="1519" 
y="255"> 
        <parameter key="use_id_attribute_as_key" value="false"/> 
        <list key="key_attributes"> 
          <parameter key="MACHINE_CREATION_DATE" value="MACHINE_CREATION_DATE"/> 
        </list> 
      </operator> 
      <connect from_op="Paired" from_port="output" to_op="Join (2)" to_port="left"/> 
      <connect from_op="Interrupt" from_port="output" to_op="Filter Examples" to_port="example set input"/> 
      <connect from_op="Filter Examples" from_port="example set output" to_op="Select Attributes (2)" to_port="example set input"/> 
      <connect from_op="Select Attributes (2)" from_port="example set output" to_op="Multiply" to_port="input"/> 
      <connect from_op="Multiply" from_port="output 1" to_op="Join" to_port="right"/> 
      <connect from_op="Multiply" from_port="output 2" to_op="Join (2)" to_port="right"/> 
      <connect from_op="Outlier" from_port="output" to_op="Filter Examples (2)" to_port="example set input"/> 
      <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Select Attributes" to_port="example set input"/> 
      <connect from_op="Select Attributes" from_port="example set output" to_op="Join" to_port="left"/> 
      <connect from_op="Join" from_port="join" to_op="Generate Attributes" to_port="example set input"/> 
      <connect from_op="Generate Attributes" from_port="example set output" to_op="Replace Missing Values" to_port="example set input"/> 
      <connect from_op="Replace Missing Values" from_port="example set output" to_op="Generate Concatenation" to_port="example set 
input"/> 
      <connect from_op="Generate Concatenation" from_port="example set output" to_op="Generate Attributes (10)" to_port="example set 
input"/> 
      <connect from_op="Generate Attributes (10)" from_port="example set output" to_op="Aggregate" to_port="example set input"/> 
      <connect from_op="Aggregate" from_port="example set output" to_op="Rename (3)" to_port="example set input"/> 
      <connect from_op="Aggregate" from_port="original" to_op="Generate Attributes (7)" to_port="example set input"/> 
      <connect from_op="Rename (3)" from_port="example set output" to_op="Generate Attributes (4)" to_port="example set input"/> 
      <connect from_op="Generate Attributes (7)" from_port="example set output" to_op="Aggregate (4)" to_port="example set input"/> 
      <connect from_op="Aggregate (4)" from_port="example set output" to_op="Join (4)" to_port="right"/> 
      <connect from_op="Generate Attributes (4)" from_port="example set output" to_op="Join (4)" to_port="left"/> 
      <connect from_op="Join (4)" from_port="join" to_port="result 1"/> 
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      <connect from_op="Join (2)" from_port="join" to_op="Generate Attributes (3)" to_port="example set input"/> 
      <connect from_op="Generate Attributes (3)" from_port="example set output" to_op="Replace Missing Values (2)" to_port="example set 
input"/> 
      <connect from_op="Replace Missing Values (2)" from_port="example set output" to_op="Generate Concatenation (2)" to_port="example 
set input"/> 
      <connect from_op="Generate Concatenation (2)" from_port="example set output" to_op="Generate Attributes (11)" to_port="example 
set input"/> 
      <connect from_op="Generate Attributes (11)" from_port="example set output" to_op="Aggregate (2)" to_port="example set input"/> 
      <connect from_op="Aggregate (2)" from_port="example set output" to_op="Rename (2)" to_port="example set input"/> 
      <connect from_op="Aggregate (2)" from_port="original" to_op="Generate Attributes (8)" to_port="example set input"/> 
      <connect from_op="Rename (2)" from_port="example set output" to_op="Generate Attributes (6)" to_port="example set input"/> 
      <connect from_op="Generate Attributes (8)" from_port="example set output" to_op="Aggregate (5)" to_port="example set input"/> 
      <connect from_op="Aggregate (5)" from_port="example set output" to_op="Join (5)" to_port="right"/> 
      <connect from_op="Generate Attributes (6)" from_port="example set output" to_op="Join (5)" to_port="left"/> 
      <connect from_op="Join (5)" from_port="join" to_port="result 2"/> 
      <portSpacing port="source_input 1" spacing="0"/> 
      <portSpacing port="sink_result 1" spacing="0"/> 
      <portSpacing port="sink_result 2" spacing="0"/> 
      <portSpacing port="sink_result 3" spacing="0"/> 
    </process> 
  </operator> 
</process> 
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11 APPENDIX: PATTERN RECOGNITION 

 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<process version="5.2.008"> 
  <context> 
    <input/> 
    <output/> 
    <macros/> 
  </context> 
  <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> 
    <process expanded="true" height="456" width="969"> 
      <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" 
y="30"> 
        <parameter key="repository_entry" value="//DB/asml_pam/Example Sets/machine_constants2"/> 
      </operator> 
      <operator activated="true" class="generate_concatenation" compatibility="5.2.008" expanded="true" height="76" name="Generate 
Concatenation (2)" width="90" x="179" y="30"> 
        <parameter key="first_attribute" value="MACHINE"/> 
        <parameter key="second_attribute" value="MACHINE_CONSTANT"/> 
      </operator> 
      <operator activated="true" class="date_to_numerical" compatibility="5.2.008" expanded="true" height="76" name="Date to Numerical" 
width="90" x="313" y="30"> 
        <parameter key="attribute_name" value="CREATION_DATE"/> 
        <parameter key="time_unit" value="second"/> 
        <parameter key="millisecond_relative_to" value="epoch"/> 
        <parameter key="second_relative_to" value="epoch"/> 
        <parameter key="minute_relative_to" value="epoch"/> 
        <parameter key="day_relative_to" value="epoch"/> 
        <parameter key="month_relative_to" value="epoch"/> 
      </operator> 
      <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize" width="90" 
x="447" y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="CREATION_DATE"/> 
        <parameter key="method" value="range transformation"/> 
        <parameter key="max" value="43.0"/> 
      </operator> 
      <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (5)" 
width="90" x="581" y="30"> 
        <parameter key="attribute_filter_type" value="subset"/> 
        <parameter key="attributes" value="|AREA|MACHINE_MACHINE_CONSTANT|CREATION_DATE"/> 
      </operator> 
      <operator activated="true" class="nominal_to_binominal" compatibility="5.2.008" expanded="true" height="94" name="Nominal to 
Binominal" width="90" x="715" y="30"> 
        <parameter key="attribute_filter_type" value="single"/> 
        <parameter key="attribute" value="AREA"/> 
      </operator> 
      <operator activated="true" class="generalized_sequential_patterns" compatibility="5.2.008" expanded="true" height="76" name="GSP" 
width="90" x="849" y="30"> 
        <parameter key="customer_id" value="MACHINE_MACHINE_CONSTANT"/> 
        <parameter key="time_attribute" value="CREATION_DATE"/> 
        <parameter key="min_support" value="0.05"/> 
        <parameter key="window_size" value="7.0"/> 
        <parameter key="max_gap" value="0.0"/> 
        <parameter key="min_gap" value="0.0"/> 
        <parameter key="positive_value" value="true"/> 
      </operator> 
      <connect from_op="Retrieve" from_port="output" to_op="Generate Concatenation (2)" to_port="example set input"/> 
      <connect from_op="Generate Concatenation (2)" from_port="example set output" to_op="Date to Numerical" to_port="example set 
input"/> 
      <connect from_op="Date to Numerical" from_port="example set output" to_op="Normalize" to_port="example set input"/> 
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      <connect from_op="Normalize" from_port="example set output" to_op="Select Attributes (5)" to_port="example set input"/> 
      <connect from_op="Select Attributes (5)" from_port="example set output" to_op="Nominal to Binominal" to_port="example set input"/> 
      <connect from_op="Nominal to Binominal" from_port="example set output" to_op="GSP" to_port="example set"/> 
      <connect from_op="GSP" from_port="patterns" to_port="result 1"/> 
      <portSpacing port="source_input 1" spacing="0"/> 
      <portSpacing port="sink_result 1" spacing="0"/> 
      <portSpacing port="sink_result 2" spacing="0"/> 
    </process> 
  </operator> 
</process> 
 

 

  


