
 Eindhoven University of Technology

MASTER

BimQL
an open domain specific query language for building information models

Mazairac, L.A.J.

Award date:
2012

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5cc50ddc-30ed-4784-8687-83a5e609bc77

BimQL

An Open Domain Specific Query Language for

Building Information Models

Ludovicus Antonius Josephus (Wiet) Mazairac
November 2012

Project website:
http://bimql.org

Eindhoven University of Technology
Faculty of Building and Architecture
Design Systems group

Graduation committee:
Prof. dr. ir. Bauke de Vries (chairman)
Dr. Dipl.-Ing. Jakob Beetz
Ir. Joran Jessurun

2

1 Abstract

This report presents the design, development and evaluation of BimQL,
an open, domain specific query language for Building Information
Models. The query language is intended for selecting and updating data
stored in Industry Foundation Class (IFC) models. Even though some
partial solutions already have been suggested, none of them are open
source, domain specific, platform-independent and implemented at the
same time. This report presents an overview of existing approaches,
the design decisions, the implementation on top of the BimServer.org
platform, which is an open source model server, functionality and
tests. The execution of example test cases show the general feasibility
and scalability of the approach chosen.

3

2 Table of Contents
1 ABSTRACT .. 2

2 TABLE OF CONTENTS .. 3

3 INTRODUCTION ... 6

4 PROBLEM STATEMENT .. 8

4.1 PAPER DRAWINGS ... 8

4.2 DIGITAL DRAWINGS ... 9

4.3 BUILDING INFORMATION MODEL .. 9

4.4 FUNDAMENTAL CONCEPTS .. 9

4.4.1 Definition of Custom Queries .. 10

4.4.2 Usability .. 10

4.4.3 Platform Independency ... 10

4.4.4 Open Source Philosophy .. 10

4.4.5 Implementation .. 10

5 REQUIREMENTS ... 11

5.1 CREATE, READ, UPDATE AND DELETE .. 11

5.2 RELATIONS ... 11

5.2.1 Attributes and Properties .. 12

5.2.2 Recursive Queries .. 14

6 RELATED WORK .. 15

6.1 GENERIC QUERYING APPROACHES .. 15

6.1.1 SQL .. 15

6.1.2 LINQ .. 16

6.1.3 RDF .. 16

6.1.4 OCL .. 17

6.2 BIM QUERYING APPROACHES .. 18

6.2.1 EQL .. 18

6.2.2 PMQL .. 18

6.2.3 GTPPM .. 19

6.2.4 GMSD .. 19

6.2.5 Solibri .. 20

6.2.6 BimServer.org ... 21

6.3 CONCLUSION .. 21

7 IMPLEMENTATION METHOD ... 22

7.1 MODEL DRIVEN ARCHITECTURE .. 22

7.1.1 EXPRESS Schema ... 22

7.1.2 EMF Model .. 23

7.1.3 BimServer.org Java Classes ... 23

7.1.4 BimQL Java Classes ... 24

7.2 ANOTHER TOOL FOR LANGUAGE RECOGNITION ... 25

8 EXAMPLES .. 26

8.1 EXAMPLE 1 ... 26

4

8.2 EXAMPLE 2 ... 26

8.3 EXAMPLE 3 ... 26

8.4 EXAMPLE 4 ... 27

8.5 EXAMPLE 5 ... 28

8.6 EXAMPLE 6 ... 29

8.7 EXAMPLE 7 ... 29

8.8 EXAMPLE 8 ... 29

9 BIMQL SPECIFICATION .. 30

9.1 BIMQL ... 30

9.2 SELECT... 31

9.3 CASCADE .. 31

9.4 WHERE .. 35

9.5 SET ... 35

9.6 STATEMENT .. 36

9.7 RELATION ... 36

9.8 RELATIONLEFT ... 37

9.9 RELATIONRIGHT ... 38

9.10 LEXER RULES ... 39

9.11 BACKUS–NAUR FORM .. 41

10 INTEGRATION .. 43

11 FUNCTIONAL TESTS ... 45

11.1 TEST DESCRIPTION ... 45

11.2 TEST RESULTS ... 45

11.2.1 Functional Test 1 ... 45

11.2.2 Functional Test 2 ... 46

11.2.3 Functional Test 3 ... 46

11.2.4 Functional Test 4 ... 47

11.2.5 Functional Test 5 ... 47

11.2.6 Functional Test 6 ... 47

11.2.7 Functional Test 7 ... 48

11.2.8 Functional Test 8 ... 48

11.2.9 Functional Test 9 ... 48

11.2.10 Functional Test 10 ... 49

11.2.11 Functional Test 11 ... 49

11.2.12 Functional Test 12 ... 50

11.2.13 Functional Test 13 ... 50

11.2.14 Functional Test 14 ... 51

11.2.15 Functional Test 15 ... 51

11.2.16 Functional Test 16 ... 52

11.3 TEST CONCLUSION ... 52

12 PERFORMANCE TESTS .. 53

12.1 TEST DESCRIPTION ... 53

12.2 TEST RESULTS AND CONCLUSION .. 54

13 CONCLUSION AND FUTURE WORK .. 55

14 ACKNOWLEDGEMENTS ... 57

5

15 REFERENCES .. 58

16 APPENDIX A: SOURCE CODE ... 60

16.1 ANTLR GRAMMAR .. 61

16.2 TRANSITION CLASSES .. 61

16.2.1 ‘GetAttribute’‐Classes ... 61
16.2.1.1 ‘GetAttributeMain’‐Class ... 62
16.2.1.2 ‘GetAttributeSub’‐Class ... 63
16.2.1.3 Generation of ‘GetAttribute’‐Classes ... 65

16.2.2 ‘SetAttribute’‐Classes .. 66

16.2.3 ‘GetProperty’‐Class ... 66
16.2.3.1 ‘GetPropertyMain’‐Class .. 66
16.2.3.2 Generation of ‘GetProperty’‐Classes ... 69

16.2.4 ‘GetEntityType’‐class .. 69

16.2.5 Relational Operators ... 70
16.2.5.1 ‘EqualOperator’‐Class .. 70

16.2.6 Boolean Operators .. 72

16.2.7 ‘CullList’‐class .. 73

16.2.8 ‘FlattenList’‐Class .. 73

16.2.9 ‘GetRelatedObjectsOperator’‐Class .. 74

16.3 INTEGRATION OF TRANSITION CLASSES INTO THE ANTLR GRAMMAR .. 75

16.3.1 ‘Bimql’‐rule ... 75

16.3.2 ‘Select’‐Rule .. 76

16.3.3 ‘Cascade’‐Rule ... 76

16.3.4 ‘Where’‐Rule ... 78

16.3.5 ‘Set’‐Rule ... 78

16.3.6 ‘Statement’‐Rule ... 79

16.3.7 ‘Relation’‐Rule ... 79

16.3.8 ‘Relationleft’‐Rule ... 80

16.3.9 Remaining Rules ... 82

17 APPENDIX B: EG-ICE PAPER ... 85

6

3 Introduction

During the design and construction process of a building many actors
are involved. Some and probably the best known actors are the
architect, the construction engineer and the contractor. Those parties
generate very much information while working on a new design and
the degree of success of the design and construction process depends
strongly on the efficient exchange of that information between the
different parties.

Mankind has been building for thousands of years and until recently
the only way to exchange information was by sending each other
drawings. Although many complex buildings have been completed
successfully this way, some drawbacks exist. The availability of the
drawings is a problem. Not all drawings will be available to all parties
at any point of time during the building and construction process. The
draftsman most likely stores his drawings in a file cabinet at the office.
When requested, a copy of a drawing will be sent, however the office
must be open and someone has to be available to send the drawings.
The second problem might be the time it takes to send a drawing. If
the drawings are sent by post, it takes some time before they arrive
and therefore they might already be outdated on arrival. Updating all
the drawings when the design has been altered is another problem. It
takes much time and effort to change all drawings and to check
whether the altered parts of the design are not conflicting with the
unchanged, already existing parts.

With the introduction of digital drawings and electronic mail some of
these problems were solved. Although the digital drawings still need to
be sent, they arrive instantly and are therefore not outdated at the
time of reception. However it still takes much time and effort to change
all the individual digital drawings and without contacting other parties
it is not certain the currently owned digital drawing is the most recent
one.

These problems were solved with the introduction of model servers. A
model server is a computer on which all information needed during the
design a building process is stored. This computer can be accessed at
any time and from anywhere through the internet. If an actor needs to
change the design, first the most recent model needs to be
downloaded, then it can be altered and when the changes have been

7

made it can be uploaded again to the model server. The actor can use
any computer program that is able to import and export a building
information model. Many computer programs used in the building
industry today can import a model from and export a model to the
Industry Foundation Classes (IFC) data model standard. This standard
is an open standard and, developed to describe building and
construction data and therefore frequently used in the process of
building information modeling. Any computer is controlled by software.
The software developed by the BimServer.org project turns any
computer, server or standalone, into a Building Information
Modelserver. The BimServer.org software does not store files, it stores
models, which are created or changed when an actor uploads a new
file. Additions and alterations are compared with the model already
present on the server and a warning can be sent when there’s a
conflict between the old and the new design. The BimServer.org
software, which is free to use and open source, can be used in
conjunction with the IFC standard.

8

4 Problem Statement

While a large amount of information is generated by different parties
during the design and building process, each actor will only be
interested in a small part of that information at a certain point in time.

The architect for example might be interested in the overall design
(Figure 4-1), the contractor needs to know how many doors of a
certain type should be ordered and the building service engineer is
mainly interested in the heating and ventilation system (Figure 4-2).

Figure 4-1: Overall design.

Figure 4-2: Building systems.

4.1 Paper Drawings
Simultaneously to the introduction of new drawing- and modeling-
techniques, new methods for retrieving specific parts from a collection
of data were introduced. In the period when drawings were the main
method for storing and exchanging information, file cabinets and
indexes were used to store and retrieve information. Those means
were not very flexible. While it was possible to retrieve a drawing, how
to search for it was dictated by the method the file cabinet and the
index was organized. It was also impossible to combine information
from multiple drawings instantly. First the required drawings were
collected and then a draftsman could produce a new drawing which
combined the information from those drawings. Compared to the
means available today, this process took a long time.

9

4.2 Digital Drawings
With the introduction of digital drawings that process improved. Digital
drawings were essentially stored the same way paper drawings were
stored, however instead of a file cabinet a directory structure on a
digital data storage device was used. Retrieving a particular drawing
was much more convenient. Multiple drawings could be checked for a
certain keyword instantly. Keywords could for example clarify by whom
the drawing was created or which part of the building was described
and provide information about different revisions. Information of
multiple drawings could be combined into one drawing by copying
parts from existing drawings and pasting them into the new drawing.
Although this method is much quicker than the methods available
before, the absence of any form of automation still makes this method
labor-intensive and error-prone.

4.3 Building Information Model
With introduction of the model server the problem of data being
scattered disappeared. Instead of searching in multiple digital or non-
digital drawings, all data was stored in one single model, the Building
Information Model. Still most actors are only interested in a small part
of the data stored on a model server. This problem is not solved by
only centralizing the storage of all data. As the use of a file cabinet was
simplified by the corresponding index, the use of the Building
Information Model could be facilitated by a method, which would
provide the possibility to retrieve part of the model.

4.4 Fundamental Concepts
Various approaches have been proposed for selecting and filtering data
from a server on which a building information model is stored. No
solution however implements all fundamental concepts we identified at
the start of this project. We believe any solution should implement
those and therefore any solution should be;

 versatile by the possibility to define custom queries
 intuitive and user-friendly
 platform independent
 open source
 implemented

10

4.4.1 Definition of Custom Queries
When an approach does not allow the definition of custom queries the
usefulness of that approach is limited. While a fixed subset may
provide a solution when faced with common design situations, these
fixed subsets are potentially useless when confronted with
unanticipated design questions.

4.4.2 Usability
An approach can offer the required functionality, however it is still not
useful when that functionality cannot be accessed in a pleasant and
straightforward way.

4.4.3 Platform Independency
The building industry uses many software packages and applications
during the design and construction process. A solution, interwoven
with and depending on a specific application, can only be used from
within that specific application. Platform independency eliminates that
problem and increases user-friendliness at the same time, because the
end-user is given one tool only to get familiar with.

4.4.4 Open Source Philosophy
Although the ability to define custom queries should do in most
situations, a software development team cannot anticipate on all
design and construction challenges. Therefore others, developers or
end-users, should be able to adapt or add new features to an already
existing solution. This is not possible when depending on proprietary
software.

4.4.5 Implementation
Naturally the concepts described above can only be enjoyed after they
are implemented. This might sound self-evident, however this report is
probably only useful for other system engineers, while the solution
developed at the end of this project will actually be useful for designers
and other end-users.

11

5 Requirements

Next to the fundamental concepts described in the previous chapter
more specific requirements need to be formulated in order to set the
scope for this tool.

5.1 Create, Read, Update and Delete
It is very likely that, while managing data, objects not only need to be
read, but also need to be created, updated or deleted. It might for
example be necessary to change the manufacturer of the windows or
maybe the color of the walls on the third floor need to be changed by
the architect. Therefore the solution to be developed should adhere to
the CRUD-principle. The letters which form the acronym CRUD stand
for create, read, update and delete, which are the four most
fundamental functions used while managing data.

5.2 Relations
An IFC (Industry Foundation Classes) model is an EXPRESS based
entity-relationship model while EXPRESS is a standard data modeling
language for product data. So basically, an IFC model is a collection of
objects related to each other. The method under development should
enable the end-user to retrieve specific objects based on its relation to
other objects. It should for example no longer be difficult to retrieve all
windows related to a specific wall.

12

5.2.1 Attributes and Properties
Sometimes the relations between IFC entities can be traced back to
connections found within a real building. For example the relation
between a window and wall in an IFC model is quite similar to the
connection found in the real world. The window fills an opening and the
opening is part of a wall (Figure 5-1, 5-2, 5-3 and 5-4).

Figure 5-1: Wall.

Figure 5-2: Opening.

Figure 5-3: Window.

Figure 5-4: Connection between IfcWall and IfcWindow.

13

Other relations are more difficult to trace back. Although the
dependency between an object and one of its properties might seem
straightforward, this dependency is much more complicated than the
relation between an object and one of its attributes (Listing 5-1).

1. ENTITY IfcWindow
2. SUPERTYPE OF (IfcWindowStandardCase)
3. SUBTYPE OF (IfcBuildingElement)
4. OverallHeight
5. OverallWidth
6. END_ENTITY

Listing 5-1: OverallHeight and OverallWidth as attributes of IfcWindow.

The IFC schema differentiates between attributes, directly attached to
an object, and properties, grouped in a propertyset and assigned to
the object by a number of relations (Figure 5-5). To find the color of a
building element (a color is a property, not an attribute) not one, but
multiple nodes present within the network need to be passed first. In
this case the wall would be red when IfcIdentifier equals color and
IfcValue equals red (Figure 5-5).

Figure 5-5: Connection between a wall and one of its properties.

A non-expert user without any knowledge of the IFC data model is not
familiar with the differences between attributes and properties.
Therefore, instead of the non-expert user, the method under
development should make that distinction. When a color needs to be
retrieved, the value of a property will be retrieved automatically, not
the value of an attribute.

14

5.2.2 Recursive Queries
The steps required while retrieving an attribute or property are known
in advance and therefore it is possible to automate this process.
However sometimes it is not possible to know beforehand which or
how many steps need to be taken to retrieve a relationship. This might
happen when creating a room connectivity graph and searching for the
shortest route outside (Figure 5-6).

Figure 5-6: Complex room connectivity graph.
All arrows are pointing towards the exit.

For such graph-like structures, recursive queries are necessary in order
to find information, enabling end users to retrieve information even
from objects connected to other objects through an arbitrary number
of relationship edges.

15

6 Related Work

Over time a wide range of querying approaches has been developed
that allows extracting and editing part of a data collection.
Approximately two categories can be distinguished. The first category
includes the generic querying approaches, while the second category
was developed to streamline the process of building information
modeling. An overview of the different querying approaches is provided
next.

6.1 Generic Querying Approaches

6.1.1 SQL
The Structured Query Language (SQL) is used by many existing
database applications. SQL was designed for managing data in
relational database management systems (RDBMS). It provides the
possibility to create, read, update and delete records and therefore
conforms to the CRUD principle. Listing 6-1, 6-2 and 6-3 show a table
which is queried by SQL and the results of that query.

1. FirstName Age
2. John 34
3. Pete 51
4. Andrew 19
5. Jack 29
6. Jim 73

Listing 6-1: Table with name and ages.

1. SELECT Table.FirstName, Table.Age
2. FROM Table
3. Where Table.Age>40

Listing 6-2: SQL query which selects all persons over 40.

1. FirstName Age
2. Pete 51
3. Jim 73

Listing 6-3: Result of the SQL query.

Although SQL is the most widely used query language, the possibilities
for querying and modifying a building information model or IFC data
model are limited. SQL was designed for managing data stored in
tables and hence the data stored in a building information model,
which is object based, needs to be mapped to a table based storage
system before SQL can be applied to that data. The IFC data model
consists of over 600 entities and thousands of related attributes.

16

Although nested and recursive queries can be formulated while using
standard SQL, the complexity would increase rapidly beyond levels of
feasibility, especially when the end user has no or little experience in
programming.

6.1.2 LINQ
The Language Integrated Query (LINQ) is a Microsoft .Net Framework
component that extends .NET languages with query expressions. LINQ
can be used for querying various types of data, for example databases,
XML documents, or even a list of processes being executed by the
central processing unit within a computer. Listing 6-4 shows an
example of a LINQ query and the result can be found in listing 6-5.

1. Public Sub XLinq()
2. Dim doc = XDocument.Load(dataPath + "nw_customers.xml")
3. Dim result = doc.<Root>.<Customers>(0)
4. Console.WriteLine(result)
5. End Sub

Listing 6-4: LINQ query, which selects a customer.

1. <CustomersCustomerID="ALFKI">
2. <CompanyName>AlfredsFutterkiste</CompanyName>
3. <ContactName>MariaAnders</ContactName>
4. <ContactTitle>SalesRepresentative</ContactTitle>
5. <Phone>030-0074321</Phone>
6. <Fax>030-0076545</Fax>
7. <FullAddress>
8. <Address>ObereStr.57</Address>
9. <City>Berlin</City>
10. <PostalCode>12209</PostalCode>
11. <Country>Germany</Country>
12. </FullAddress>
13. </Customers>

Listing 6-5: Result of the LINQ query.

Currently LINQ can only be used in conjunction with .NET languages
and although similar approaches for other languages have been
proposed, a common standard will probably never become platform
independent. The usefulness of LINQ, while querying a building
information model, is limited by its generic nature. Because of its
generic nature, intimate knowledge of the IFC data model is required
and queries need to be written in an extensive programming language,
not intended for an average end-user.

6.1.3 RDF
The Resource Description Framework (RDF) is a data format for
representing information on the World Wide Web. RDF is often used to
represent personal information, as well as to provide a means of
integration for disparate sources of information. The SPARQL Protocol

and
que
can
acc
sho

The
dat
me
mo
num
me

6.1
The
tex
cap

d RDF Qu
ery langu
n be sen
cept SPA
ow data w

1. ab:r
2. ab:r
3. ab:c
4. ab:c
5. ab:c
6. ab:c
7. ab:c

1. SEL
2. WH
3. { ab

Listi

1. cra
2. "c.e
3. "cra

e ability
ta from
echanism
odels sto
mber of
eans to sp

1.4 OCL
e Object
xtual des
ptured in

1. con
2. inv:

uery Lang
uage and
t to mul
RQL que
which is q

richard ab:ho
richard ab:em
cindy ab:hom
cindy ab:ema
craig ab:hom
craig ab:emai
craig ab:emai

Listing 6-6

LECT ?craigE
HERE
b:craig ab:em

ng 6-7: SPA

igEmail
ellis@usairwa
aigellis@yaho

Lis

to query
different
 would al
red at d
features

pecify and

 Constrai
criptions
 the Unifie

Figure

ntext Vehicl
: self.owner

Listing 6-9

guage (S
 has been
tiple SPA
ries and

queried by

omeTel "(229)
mail "richard4
eTel "(245) 64
il "cindym@g
eTel "(194) 96
il "craigellis@
il "c.ellis@usa

6: Names, p

Email

mail ?craigEma

ARQL query

aysgroup.com
oo.com"

sting 6-8: R

 multiple
 sources
llow the a
different
have bee

d referenc

nt Langu
 of const
ed Model

e 6-1: Relat

le
r.age>=18

9: The owne

PARQL) [
n officiall
ARQL end
return re

y SPARQL

) 276-5135" .
49@hotmail.c
646-5488" .
gmail.com" .
66-1505" .

@yahoo.com"
airwaysgroup

phone numb

ail . }

y which sel

"

Result of th

 data rep
 effectiv
ad hoc co
locations
en inspir
ce variab

uage (OC
traints w
ing Langu

tion betwee

er of a veh

[16] is th
y standa
dpoints, w
esults. Li
L and the

om" .

.
p.com" .

bers and em

lects specif

he SPARQL

positories
ely. In a
onnection
s. For th
rational, i
les by the

L) [9] is
which app
uage (UM

en vehicle a

icle should

he most e
rdized. A
which are
isting 6-6
 results o

mail addres

fic email ad

 query.

s instantly
a BIM co
n of build
he design
ncluding
e ‘?’ token

 a langu
ply to gr
L).

and owner.

 be 18 or o

establishe
A SPARQL
re service
6, 6-7 an
of that qu

sses.

ddresses.

y allows
ontext, s

ding infor
n of Bim
 the synt
n.

age for p
raphical m

.

over.

17

ed RDF
L query
es that
nd 6-8
ery.

linking
such a
mation

mQL, a
tactical

precise
models

18

6.2 BIM Querying Approaches

6.2.1 EQL
Large and complex engineering models have spurred the need for the
creation of query languages already over a decade ago. One of the
early examples is the EXPRESS Query Language (EQL) [20] proposed
by Huang. EQL is a query language that is used to perform ad hoc
queries on data stored in the STEP Part 21 file format. The STEP Part
21 file format, also called the STEP-File method, is the most widely
used method for exchanging an information model based on EXPRESS,
which is a standard data modeling language for product data. Unlike
the STEP-File method, EQL is not widely used. The reason for this
might be that EQL is not a closed language [10], which means the
result of a query cannot be queried again. It would for example be
impossible to first select all doors of a specific height and subsequently
select the walls in which those doors are located.

6.2.2 PMQL
The Partial Model Query Language (PMQL) [1] proposed by Adachi
aims to provide a general means for selecting, updating, and deleting
partial model data. Among the clear benefits the language design has
over generic query languages described in section 6.1, is the fact that
it has been designed with IFC based models in mind and therefor the
queries are fairly simple and straightforward (Listing 6-10).

1. <select type="entity" match="IfcDoor" action="get">
2. <cascades>
3. <select type="attribute" match="OverallHeight" action="get"/>
4. </cascades>
5. </select>

Listing 6-10: The height of every doors is queried.

However, it currently does not provide the possibility to create or add
model data to an existing building information model and its XML
syntax would require additional tools to enable non-programmers to
construct practical queries. For the design and specification of BimQL,
PMQL has been an important influence. Among other things, this is
reflected by the introduction of the ‘cascade’ rule, which has been
proposed by Adachi to cope with recursive characteristics of IFC model
graphs.

19

6.2.3 GTPPM
The Georgia Tech Process to Product Modeling (GTPPM) [13] is a
product modeling method to (semi-) automatically drive a product
model from collected process information. A process modeling module
(called the Requirements Collection and Modeling (RCM) module) can
capture the contents and semantics of information used in a process
model. Later, the captured information can be structured as a product
model. GTPPM does not support several Information Delivery Manual
(IDM) implementation details, it cannot automate the generation of an
entire IDM. IDM describes the processes and the data required by
identifying the steps of a building process, the information required by
each step and the results of each step. It specifies where the process
fits, the actors involved, the information created and consumed and
the required software. Benefits of using GTPPM as a method to create
an IFC IDM view include traceability and reusability.

6.2.4 GMSD
The Generalized Model Subset Definition (GMSD) [19] schema devised
by Weise et al enables the realization of client/server or file based
transactions in a structured manner, at different levels of granularity,
and for different data exchange formats. GMSD is specifically designed
to the support EXPRESS-based models, with special attention to IFC.
GMSD is not a language per se but a schema which allows a neutral
definition format with possible mappings for various practical data
exchange and server/client realizations. Borrmann et al introduced the
concept of a spatial query language for Building Information Models. It
provides formal definitions using point set theory and point set
topology for 3D spatial data types as well as the directional,
topological, metric and Boolean operators employed with these types.
It also serves to outline the implementation of 3D spatial query
processing based on an object-relational database management
system.

20

6.2.5 Solibri
The commercial application ‘Solibri Model Viewer’ provides several
ways to select or view parts of the Building Information Model.
However the methods of selection and filtering apply to this software
package only. The selection and filtering methods are not platform
independent and therefore cannot be exported to or imported from
other software packages.

Figure 6-2: Solibri Model Viewer.

21

6.2.6 BimServer.org
The BimServer.org platform already provides some means to extract
partial building information models from a repository. Selections can
be made by entering an Object ID, a Global Unique ID or the name of
a class from the IFC schema (Figure 6-3). It is also possible to create
custom queries by writing Java code, however the threshold to actually
use this feature is high and the learning curve steep. For this reason
and because the BimServer.org project is an open source project, we
made the choice to integrate our Domain Specific Language (DSL) into
the BimServer.org project. BimQL wraps the underlying querying
mechanisms and hides the low-level technicalities from end-users.

Figure 6-3: BimSer.org simple query interface.

6.3 Conclusion
No suitable solutions have been found among those investigated. The
generic querying approaches might be versatile enough to create the
desired custom queries. However the downside of that versatility, and
thus the lack of predefined IFC functionality, for example the possibility
to select a property or attribute, is the complexity of those queries.

A querying approach which is based on IFC data models could be the
solution, however only when all other requirements are met.
Unfortunately no such solution has been found. PMQL for example has
not been implemented, Solibri is not open source and the advanced
query method from the BimServer.org platform is too complicated for
most users.

22

7 Implementation Method

The Eclipse Integrated Development Environment (IDE), an Industry
Foundation Classes (IFC) to Eclipse Modeling Framework (EMF)
converter and the Another Tool for language Recognition (ANTLR)
plugin for the Eclipse IDE were the main tools used during the
development of BimQL. The EMF model is the core of the
BimServer.org software and by using the IFC to EMF converter, which
provides an independent and isolated EMF model, quick development
was possible.

7.1 Model Driven Architecture
Model Driven Architecture (MDA) is a method for developing software.
Instead of developing the source code itself, the programmer develops
a model, which is used for automatically generating the source code.
Although it can take much time to develop a system that automatically
generates source code from a model, this method increases portability,
productivity and cross-platform interoperability. The BimServer.org
software is based on this approach. First the EXPRESS schema is
converted to an EMF model. This model is then used to generate Java
classes for communicating with the BimServer.org database. Some
Java classes part of the BimQL project were also automatically
generated. The BimServer.org Java classes which are based on the
EMF Ecore model were used for generating some of the BimQL Java
classes.

7.1.1 EXPRESS Schema
EXPRESS is a standard data modeling language for product data. While
a building is a product, EXPRESS can be used to describe building
information. A schema is a data model in a formal notation. The IFC
specification consists of such a schema and describes a set of data
types and their possible relationships (Listing 7-1).

1. ENTITY IfcDoor
2. SUPERTYPE OF (IfcDoorStandardCase)
3. SUBTYPE OF (IfcBuildingElement);
4. OverallHeight: OPTIONAL IfcPositiveLengthMeasure;
5. OverallWidth : OPTIONAL IfcPositiveLengthMeasure;
6. END_ENTITY;

Listing 7-1: IfcDoor EXPRESS schema.

23

7.1.2 EMF Model
The Eclipse Modeling Framework (EMF) can be used to develop a
domain model. EMF is based on two meta-models; the Ecore model
and the Gen model. The Ecore model (Listing 7-2) contains information
about classes which are related to the data types and possible
relationships, both described by the EXPRESS schema. The Gen model
contains additional information for generating code, in this case the
BimServer.org Java classes.

The model specifications are described in the XML Metadata
Interchange (XMI). XMI is a standard for exchanging metadata via
Extensible Markup Language (XML) and integrates the industry
standards XML, Unified Modeling Language (UML) and Meta Object
Facility (MOF). UML and MOF both are maintained by the Object
Management Group (OMG).

1. <eClassifiers xsi:type="ecore:EClass" name="IfcDoor"
eSuperTypes="#//IfcBuildingElement">

2. <eStructuralFeatures xsi:type="ecore:EAttribute" name="OverallHeight"/>
3. <eStructuralFeatures xsi:type="ecore:EAttribute" name="OverallHeightAsString"/>
4. <eStructuralFeatures xsi:type="ecore:EAttribute" name="OverallWidth"/>
5. <eStructuralFeatures xsi:type="ecore:EAttribute" name="OverallWidthAsString"/>
6. </eClassifiers>

Listing 7-2: IfcDoor EMF model.

7.1.3 BimServer.org Java Classes
The BimServer.org Java classes are used to, among other things, store
a BIM model to the database and manipulate objects already stored in
the database. Each class contains ‘getters’ and ‘setters’, which are
methods used to manipulate variables. The BimQL Java classes are
based on those methods (Listing 7-3).

1. public class IfcDoorImpl extends IfcBuildingElementImpl implements IfcDoor {
2. public double getOverallHeight() {
3. return (Double) eGet(Ifc2x3Package.Literals.IFC_DOOR__OVERALL_HEIGHT,

true);
4. }
5. }

Listing 7-3: IfcDoor BimServer Java classes.

24

7.1.4 BimQL Java Classes
Although the BimQL Java classes are not generated from a model
directly and hence they are not really a part of the Model Driven
Architecture approach, indirectly these classes are still based on the
EXPRESS schema and therefore worth mentioning here. These classes
(Listing 7-4) establish a link between the developed query language
and the BimServer.org Java classes, talking to the database in which a
building information model is stored.

1. public class SetAttributeSubIfcDoor {
2. public void setAttribute() {
3. ...
4. else if (attributeName.equals("OverallHeight")) {
5. ((IfcDoor) object).setOverallHeight(Double.parseDouble(attributeNewValue));
6. }
7. }
8. }

Listing 7-4: IfcDoor BimQL Java classes.

25

7.2 ANother Tool for Language Recognition
ANTLR (ANother Tool for Language Recognition) is a tool used in the
construction of language tools. It can be used to implement Domain
Specific Languages (DSL). ANTLR reads a language description file
called a grammar and generates source files and auxiliary files. Most
users generate a lexer and a parser. A lexer reads an input stream and
divides it into tokens. The parser reads a token stream and matches
phrases in a target language.

It is possible to write the lexer and the parser manually in probably
any programming language, for example JAVA, however that would be
time-consuming and error-prone. It is much more convenient to define
the language structure only (Figure 7-5) and let ANTLR generate a
lexer (Figure 7-6) and parser which are based on that structure.

Listing 7-5: Complete ANTLR

grammar.

Listing 7-6: Part of the

lexer in JAVA.

26

8 Examples

In this section some examples are presented in which BimQL is used.
Besides the specification provided in the next section, these examples
give an insight in the basic structure of the language.

8.1 Example 1
The first example (Listing 8-1) retrieves all rooted entities of the IFC
model. Rooted entities, for example the IfcWall- and IfcDoor-entity,
derive from the IfcRoot-entity and have an identity, while non-rooted
entities, for example the IfcLine- and IfcVector-entity, do not have an
identity and can only exist when related to a rooted entity.

1. Select ?Var1

Listing 8-1: Select all rooted entities.

8.2 Example 2
The second example (Listing 8-2) retrieves part of the IFC model. Parts
of an IFC model can be all windows, the first floor or the columns, but
a part can also be a list of numbers, for example the height of all the
doors. In the second example the ‘EntityType’-token is used to retrieve
all doors present in the model.

1. Select ?Var1
2. Where ?Var1.EntityType = ”IfcDoor”

Listing 8-2: Select all doors.

8.3 Example 3
The third example (Listing 8-3) returns all entities with an arbitrary
name. You could also state that this example retrieves all objects
which have a ‘Name’-attribute.

1. Select ?Var1
2. Where ?Var1.Attribute.Name = ”*”

Listing 8-3: Select all with an arbitrary name.

27

8.4 Example 4
The next example (Listing 8-4) retrieves a list of strings instead of a
collection of objects. This example shows how to get the Global IDs of
all the doors present in the model. The first two lines in the example
select the doors. This was already demonstrated in example two. This
list of doors is referred to by the ‘?Var1’-variable. The third line creates
a new variable, ‘?Var2’ and performs a query on ‘?Var1’.

A cascade connection, which connects the input and output of two
systems, makes it possible to query a result which was generated by
an earlier query. In this case the first two lines could and the last line
could be seen as a two separate systems. The output or the result of
the first two lines is the input for the last line. The query loops through
all objects present in the ‘?Var1’-list. This ‘?Var2’-list contains the
Global IDs of all doors.

Notice the absence of the ‘Attribute’-token in the third line.

1. Select ?Var1
2. Where ?Var1.EntityType = ”IfcDoor”
3. Select ?Var2 := ?Var1.GlobalId

Listing 8-4: Select Global IDs of all doors.

28

8.5 Example 5
In the fifth example (Listing 8-5a) the ‘Property’-token is used to
retrieve a volume.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId = "87d87dffn47a90z"
3. Select ?Var2 := ?Var1.Property.Volume

Listing 8-5a: Retrieve the volume.

This example also serves as an illustration as to why a domain specific
language that provides syntactic simplifications compared with a
general purpose language is useful for complex models such as IFC
models. The relation of an entity with its properties that go beyond the
few direct attributes defined in the core schema constitutes a complex
sub graph. Instead of using the ‘Property’-token, the volume of an
entity could be retrieved by applying multiple ‘cascade’-connections or
‘cascade’-rules and navigate manually through the IFC model (Listing
8-5b).

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId = "87d87dffn47a90z"
3. Select ?Var2 := ?Var1.Attribute.IsDefinedBy
4. Select ?Var3 := ?Var2.Attribute.RelatingPropertyDefinition
5. Select ?Var4 := ?Var3.Attribute.HasProperties
6. Where ?Var1.Attribute.Name = "Volume"
7. Select ?Var5 := ?Var4.Attribute.NominalValue

Listing 8-5b: Retrieve the volume without the ‘Property’-token.

Using the ‘Property’-token as a shortcut (Figure 8-1) is much more
convenient, requires less knowledge of the IFC data model specification
and was one of the main reasons for developing BimQL.

Figure 8-1: Query Shortcut against the Traditional Graph-connection.

29

8.6 Example 6
Example six (Listing 8-6) shows how to select all objects related to a
specific object. Line 2 selects a specific object, based on a Global ID.
The third line selects all related objects, which are three or less hops
away. The ‘+’-sign indicates, that ‘IfcRelDefines’-objects will also be
selected.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId = ”1eHJakbVPEdf9cGdMXVBAY”
3. Select ?Var2 := ?Var1.*(3+)

Listing 8-6: Select related objects.

8.7 Example 7
Example seven (Listing 8-7) selects all walls related to one space. First
line 1 and 2 select one specific space (Figure 8-2). Line 3 selects all
related elements and line 4 retrieves the walls from all the elements
selected in line 3 (Figure 8-3).

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId = ”1eHJakbVPEdf9cGdMXVBAY”
3. Select ?Var2 := ?Var1.*(3)
4. Where ?Var2.EntityType = ”IfcWall”

Listing 8-7: Select walls related to one space.

Figure 8-2

Figure 8-3

8.8 Example 8
The final example (Listing 8-8) shows how to change the value of an
attribute. The first two lines select the object which attribute value
needs to be changed. The third line actually changes the value.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId = ”1eHJakbVPEdf9cGdMXVBAY”
3. Set ?Var1.Attribute.Description := ”RedDoor”

Listing 8-8: Change color of the door.

30

9 BimQL Specification

In this part the BimQL language specification will be presented. At the
end of this part in listing 9-1 the Backus-Naur Form (BNF) is provided.
While the first part of this chapter explains the specification in more
detail, the BNF provides an overview of BimQL. The BNF describes the
most recent version of the grammar, in which double quotes have been
added to the ‘DQSTRING’-token and in which the ‘DOTSTRING’-token
is introduced.

Note that the specification provided is currently limited to the ‘select’
and ‘set’ parts of the language features, while ‘create’ and ‘delete’
might be developed in the future. The implementation of the latter two
language features require a significant amount of additional research
and software development, because the consequences of these
operations are far from straightforward. For example, even though the
deletion of a single window could be achieved by issuing a simple
query, the extraction would have to incorporate additional
housekeeping and garbage collection to ensure model integrity. Such
depending operations include the deletion of all its representations, its
openings and its indirect dependencies such as window profiles and
material specifications in order to avoid the presence of unreferenced
entities while the model evolves.

Like any other grammar, The BimQL specification consists of a number
of rules. By explaining the rules, it will become clear how BimQL
operates and what it is capable of.

9.1 Bimql
The first rule is the ‘bimql’-rule (Figure 9-1), denoting the start of the
query. This rule enables the user to choose the ‘select’-rule. You might
expect other rules at this location, for example ‘set’. However the
syntax is designed in such way, you first have to select the items
which need to be altered.

Figure 9-1: Bimql Syntax Diagram.

31

9.2 Select
Stating the ‘select’-rule (Figure 9-2) is called by the ‘bimql’-rule is not
entirely correct, although this might sound obvious. The ‘bimql’-rule
consists of only one nonterminal, the ‘select’-nonterminal, and two
terminals, the start- and endpoint. The ‘select’-nonterminal is
described by the ‘select’-rule or ‘select’-diagram. Instead of the
‘select’-rule begin called by the ‘bimql’-rule, the ‘select’-nonterminal is
actually replaced by the ‘select’-rule or diagram.

First the ‘Select’-token is followed by a variable. Variable names can be
chosen freely by the user and will be assigned with lists of query
results. Those lists can be used again at various locations. They can for
example be returned to the end-user or can be queried again in the
‘cascade’-rule. The variable can be followed by a ‘where’-rule, a
‘cascade’-rule or a ‘set’-rule. The first narrows the selection, the
second selects related entities and the third can change the attributes
of the selection.

Figure 9-2: Select Syntax Diagram.

9.3 Cascade
The ‘cascade’-rule (Figure 9-3) makes it possible to query a list of
objects, created by a previous query. For example first the doors with
a certain height are selected and next the ‘cascade’-rule selects the
walls in which those doors are located. The ‘cascade’-rule assigns that
list of objects to another variable, narrows the list, or selects some or
all of the children related to the objects stored in it.

Figure 9-3: Cascade Syntax Diagram.

32

The first variable in this rule is used to store query results generated
by this rule. The second variable contains the already existing list of
objects. Consequently the existing list of objects is copied and assigned
to the first variable. Next, the first option of six proceeds directly to the
‘where’-nonterminal. This nonterminal is optional and provides the
possibility to narrow the list of objects just assigned to the second
variable.

The next six options provide different methods for selecting children or
properties of the objects contained by the second variable. First the
‘.EntityType’-option returns the IFC class of each queried object. The
‘Attribute.STRING’-option makes it possible to select a property of an
object or to select another, related object. The ‘IfcDoor’-entity for
example has a few attributes. One of those attributes is called
‘OverallHeight’ and another one is called ‘FillsVoids’. Actually the
‘IfcDoor’-entity is a subtype of the ‘IfcElement’-entity and inherits all
the attributes owned by the ‘IfcElement’-entity. Therefore the
‘IfcDoor’-entity does not only own the ‘OverallHeight’- and the
‘OverallWidth’-attribute, however it also owns all attributes owned by
the ‘IfcElement’-entity, for example the ‘FillsVoids’-attribute.
Consequently to select the height of the door, the ‘STRING’-
nonterminal is replaced with the string ‘OverallHeight’ and to select the
voids which are filled by the door it is replaced with the string
‘FillsVoids’.

The ‘Property.STRING’-option is another possibility to retrieve more
information about an object. It is important to realize that the IFC
schema differentiates between attributes that are directly attached to
an object as attributes, and properties, grouped in a propertyset and
assigned to the object by a number of relations.

Figure 9-4: Query Shortcut.

33

It is possible to retrieve a property, part of a propertyset, by applying
the ‘cascade’-rule multiple times. However this method is very
cumbersome, time consuming and requires intimate knowledge of the
IFC data model. The ‘Property.STRING’-option provides a convenient
query shortcut (Figure 9-4), which reduces the required number of
‘cascade’-queries from four to only one.

The next option is the ‘.STRING’-option. This option combines the
‘Attribute.STRING’- and the ‘Property.STRING’-option. An end-user
without knowledge of the IFC data model is unaware of the differences
between attributes and properties. Therefore the end-user will
probably not know that the height of a door is an attribute, while the
color is a property. This option solves that problem. When this option is
used, BimQL searches both the attributes and the properties for a
match. This option has been implemented, however it is not yet
completely error-free.

The ‘.*’-option selects all objects and properties, which are directly
related to the objects stored in the second variable. As stated before,
properties and objects are related to other objects by attributes. This
option first checks which attributes are owned by an object and then it
selects all objects and properties to which these attributes are
pointing.

34

An alternative for the ‘.*’-option enables the end-user to select the
depth of the ‘cascade’-query and whether or not ‘IfcRelDefines’-objects
are selected. When the ‘depth’-integer is set to zero, only the objects
already stored in the second variable will be returned. When the
‘depth’-integer is set to one, this option behaves like the ‘.*’-option,
described in the previous paragraph and when the ‘depth’-integer is
set to two the children of the children stored in the second variable are
also selected and so forth (Figure 9-5). The method for searching a
graph described here is referred to as the breadth-first strategy.

Figure 9-5: Depth Integer.

The end-user is provided with the option to ignore ‘IfcRelDefines’-
objects during a ‘cascade’-query. The reason for this can best be
explained by providing an example. If the end-user is looking for all
objects related to a door, that user is probably looking for the wall in
which it is located or the room to which it gives access. However that
door might also have a color, which is a property, not an attribute. This
property, the color can be returned by the ‘cascade’-rule and other
objects, related to that color, can also be returned by this rule. If
‘IfcRelDefines’-objects are not ignored it is possible that all red objects
are returned. So not only the wall and the room directly related to that
door, also the red columns on another floor. Querying ‘IfcRelDefines’-
objects can be enabled by providing the optional ‘true’-token, in this
case a ‘+’-sign.

35

The Partial Model Querying Language (PMQL) designed by Y. Adachi
was the main source of inspiration while developing the ‘cascade’-rule.
The first approach was based on the ‘From’-clause defined in the SQL
standard and although the resulting code was working quite well, I
believe the ‘cascade’-approach is more intuitive, because while using
the ‘from’-clause, the end-user needs to specify what to select first and
then where to select it from. I believe this is inconvenient, especially
when multiple ‘from’-rules are applied consecutively. The design of the
‘cascade’-rule solved this problem.

9.4 Where
The ‘where’-rule (Figure 9-6) provides both the ‘select’-rule and the
‘cascade’-rule with the possibility to narrow a selection. For each
object, the statement is either true or false. When the statement is
true, the object is kept and when false, the object will be removed
from the list.

Figure 9-6: Where Syntax Diagram.

9.5 Set
The ‘set’-rule (Figure 9-7) makes it possible to change the value of an
attribute. The name of the attribute that needs to be changed is
specified by the ‘STRING’-nonterminal. The list of entities which
attributes will be changed is referred to by the ‘VARIABLE’-
nonterminal. Some attributes are related to properties, while other
attributes are related to objects. The ‘set’-rule is only able to change
the value of a property, not the object to which an attribute is pointing.

Figure 9-7: Set Syntax Diagram.

36

9.6 Statement
A statement (Figure 9-8) is a single relation or a combination of
several relations. If more relations are specified within one statement
these relations are combined using the ‘Or’-token or the ‘And’-token.
These tokens indicate a dis- or conjunction between the relations. This
single relation or combination of relations is either true or false.

Figure 9-8: Statement Syntax Diagram.

9.7 Relation
The ‘relation’-rule (Figure 9-9) is specified by a ‘relationleft’- and a
‘relationright’-nonterminal and a collection of ‘operator’-tokens that
separate them. A relation is either true or false.

Figure 9-9: Relation Syntax Diagram.

37

9.8 Relationleft
The ‘relationleft’-rule (Figure 9-10) bears many similarities to the
‘cascade’-rule. While the ‘cascade’-rule was designed to return objects
and properties to the end-user, the ‘relationleft’-rule was designed to
retrieve properties which can be compared to a value specified by the
end-user. This value can be specified using the ‘relationright’-rule.

Figure 9-10: Relationleft Syntax Diagram.

The first four options of the ‘relationleft’-rule are similar to options
found in the ‘cascade’-rule. They can be used to compare directly
related properties to a value specified in the ‘relationright’-rule. The
last three options show some similarity with the last option of the
‘cascade’-rule. While the last option of the ‘cascade’-rule returns all
directly and indirectly related objects and properties, the last three
options of the ‘relationelft’-rule make it possible to compare an the the
name of an IFC class and attribute- and property-values of directly and
indirectly related objects to a value specified by the end-user. The
‘STRING’-nonterminals are used to specify from exactly which attribute
or property the value is needed. The option to specify the depth of the
query and the option to ignore ‘IfcRelDefines’-objects, which were
described earlier, are also available here.

38

9.9 Relationright
The ‘relationright’-rule (Figure 9-11) for the assignment of comparison
can be a string only, although the figure seems to show otherwise.
However if an integer or real is entered it is immediately converted to
a string and later when the value it is compared to appears to be
numeric, it is cast automatically to an appropriate format. Although the
‘relationright’-rule operates as desired, removing the ‘INTEGER’- and
the ‘REAL’-nonterminals improves the BimQL specification, while then
these unnecessary items are no longer present. It is also possible to
specify patterns by using asterisks, question marks and other regular
expression terms. The underlying functionality will try to match the
pattern with the value the 'relationleft'-rule returns. These patterns
make is possible to return all entities which have a specific attribute,
for example a ‘Height’-attribute. This allows for both schema-level and
instance-level query operations and is future proof for later versions of
the IFC model specification. Currently our implementation harnesses
the built-in regular expressions engine provided by Java. Since
different flavors of regular expression engines differ in both
expressivity and speed, it might be profitable to investigate alternative
implementations to gain speed and versatility in future developments.

Figure 9-11: Relationright Syntax Diagram.

39

9.10 Lexer Rules
The previous rules were all parser rules. The next rules however are
lexer rules. The lexer rules read characters, divide them into tokens
using patterns, and generate a token stream as output. The parser
rules read a token stream, generated by the lexer, and match phrases
in the language via the rules. Most lexer rules below are quite common
and are used in many other grammars. Those common rules are used
to identify, strings, numbers and whitespaces.

Figure 9-12: String Syntax Diagram.

Figure 9-13: Integer Syntax Diagram.

Figure 9-14: Real Syntax Diagram.

40

Figure 9-15: Whitespace Syntax Diagram.

A variable (Figure 9-16) is designated by the dollar sign. This syntax is
inspired by other languages such as SPARQL.

Figure 9-16: Variable Syntax Diagram.

Finally two rules were introduced to give the end-user the possibility to
specify true and false (Figure 9-17 and 9-18). Only the ‘true’-token is
currently used, however it didn’t take much effort to also create the
‘false’-token.

Figure 9-17: True Syntax Diagram.

Figure 9-18: False Syntax Diagram.

41

9.11 Backus–Naur Form
The Backus-Naur Form (BNF) is a notation technique for grammars.
Although it might not be as clear as the diagrams above, because it is
an exact and textual description, which means no figures are needed,
it is often provided when describing programming and other languages
(Listing 9-1). The BNF describes the most recent version of the
grammar, in which double quotes have been added to the ‘DQSTRING’-
token and in which the ‘DOTSTRING’-token is introduced.

1. bimql ::=
2. select
3.
4. select ::=
5. 'Select' VARIABLE where? cascade* set?
6.
7. cascade ::=
8. 'Select' VARIABLE ':=' VARIABLE
9. (| '.EntityType'
10. | '.Attribute' DOTSTRING
11. | '.Property' DOTSTRING
12. | DOTSTRING
13. | ('.*' | '.*(' INTEGER? TRUE? ')')
14.) where?
15.
16. where ::=
17. 'Where' statement
18.
19. set ::=
20. 'Set' VARIABLE '.Attribute' DOTSTRING ':=' (INTEGER | REAL | DQSTRING)
21.
22. statement ::=
23. relation ('And' relation | 'Or' relation)*
24.
25. relation ::=
26. relationleft
27. ('=' relationright
28. | '/=' relationright
29. | '<' relationright
30. | '<=' relationright
31. | '>=' relationright
32. | '>' relationright
33.)
34.
35. relationleft ::=
36. (VARIABLE '.EntityType'
37. | VARIABLE '.Attribute' DOTSTRING
38. | VARIABLE '.Property' DOTSTRING
39. | VARIABLE DOTSTRING
40. | VARIABLE ('.*.EntityType' | '.*(' INTEGER? TRUE? ').EntityType')
41. | VARIABLE ('.*.Attribute' | '.*(' INTEGER? TRUE? ').Attribute') DOTSTRING
42. | VARIABLE ('.*.Property' | '.*(' INTEGER? TRUE? ').Property') DOTSTRING
43.)
44.
45. relationright ::=
46. (INTEGER
47. | REAL

42

48. | DQSTRING
49.)
50.
51. TRUE ::=
52. '+'
53.
54. FALSE ::=
55. '-'
56.
57. VARIABLE ::=
58. '$' ('0..9' | 'A..Z' | 'a..z')+
59.
60. INTEGER ::=
61. '-'? '0..9'+
62.
63. REAL ::=
64. '-'? '0..9'+ '.' '0..9'+
65.
66. DQSTRING ::=
67. '"'
68. ('0..9' | 'A..Z' | 'a..z'
69. | '!' | '#' | '$' | '%' | '&' | '^' | '|' | '*' | '+' | ',' | '-' | '.'
70. | '/' | ':' | ';' | '<' | '=' | '>' | '?' | '~' | '`' | '@' | '_'
71.)+
72. '"'
73.
74. DOTSTRING ::=
75. '.'
76. ('0..9' | 'A..Z' | 'a..z'
77. | '!' | '#' | '$' | '%' | '&' | '^' | '|' | '*' | '+' | ',' | '-' | '.'
78. | '/' | ':' | ';' | '<' | '=' | '>' | '?' | '~' | '`' | '@' | '_'
79.)+
80.
81. WS ::=
82. (' '
83. | '\t'
84. | '\n'
85. | '\r'
86. | '\f'
87.)+

Listing 9-1: BNF of BimQL.

1

Ru
Bim
into
me
me
Bim

Bim
20
pro
info
ann
Thi

Unf
num
of
cho

0 In

ben de
mServer.o
o the Bi
ethods fo
ethod and
mQL meth

mServer.o
12, was
obably be
ormation
nounced
is announ

fortunate
mbers, fo
manufac

oice to le

tegr

Laat a
org deve
mServer.
r queryin
d the Jav
hod (Figu

Figure 10-

org versio
the first

ecome on
 models
on the 28

ncement c

ely it is n
or examp
cturers. T
et the sof

ratio

nd Léon
lopment
org softw

ng buildin
va query
re 10-1).

-1: BimServ

on 1.2.0
 release
e of thre
when us

8th of Au
can be fo

not yet p
le a list o
The BimS
ftware ret

n

n van
team, in

ware. Th
ng inform
engine p

ver webinte

beta, rel
in which
e standa
sing the
ugust 201
und at ht

possible t
of Global
Server.org
turn valid

Berlo, b
ntegrated
is platfor

mation mo
plugin. No

erface and

eased on
h BimQL
rd metho
BimServ

12 on the
ttp://bims

to downl
IDs, a lis
g develo
d IFC mo

both mem
 the Bim
rm alread
odels, th
ow it offe

 BimQL opt

 the 16th
was pres

ods for qu
er.org so
 BimServ
server.org

oad a lis
st of dime
pment te
dels only

mbers o
mQL fram
dy offere
e simple
ers a thir

tion.

h of Sept
sent and
uerying b
oftware.
ver.org w
g/tag/bim

st of stri
ensions o
eam mad
y. This ch

43

of the
mework
ed two
 query
rd, the

tember
 it will

building
It was
ebsite.

mql/.

ngs or
or a list
de the
hoice is

44

very comprehensible, because only then the end-user can be sure the
returned model can be opened and edited without any problems. After
this issue was brought to the attention of the BimServer.org
development team, I was told that this matter would be discussed.

45

11 Functional Tests

This section reports on some sample queries which were conducted to
test if the BimQL design and implementation were functioning as
expected.

11.1 Test Description
The tests were performed on the latest grammar which was available
on the 24th of November 2012. The IFC model ‘AC11-Institute-Var-2-
IFC.ifc’ was downloaded from the BimServer.org website.

The tests were performed from within the Eclipse development
environment and the results were visualized by importing them into
the Solibri Model Viewer. The results consisted of a list of Global IDs.

11.2 Test Results

11.2.1 Functional Test 1
The first test (Functional test 11-1) selects the complete model.

1. Select ?Var1

Functional test 11-2: Select everything.

46

11.2.2 Functional Test 2
The second test (Functional test 11-2) selects all doors from the
model.

1. Select ?Var1
2. Where ?Var1.EntityType = "IfcDoor"

Functional test 11-3: Select all doors.

11.2.3 Functional Test 3
The third test (Functional test 11-3) selects one object. This selection
is based on the Global ID of the object.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId =

"32UdM49pfAMxiX5WyXhCuy"

Functional test 11-4: Base selection on Global ID.

47

11.2.4 Functional Test 4
Unfortunately the next test (Functional test 11-4) failed. The
‘Attribute’-token is still needed to retrieve an attribute.

1. Select ?Var1
2. Where ?Var1.GlobalId =

"32UdM49pfAMxiX5WyXhCuy"

Functional test 11-4: Base selection on Global ID, without ‘attribute’-token.

11.2.5 Functional Test 5
This query (Functional test 11-5) selects the objects which type-name
start with ‘IfcW’.

1. Select ?Var1
2. Where ?Var1.EntityType = "IfcW*"

Functional test 11-5: Select object based on entitytype-name.

11.2.6 Functional Test 6
Functional test 6 retrieves all objects which have an attribute with the
name OverallHeight

1. Select ?Var1
2. Where ?Var1.Attribute.OverallHeight

= "*"

Functional test 11-6: Select objects which have an OverallHeight attribute.

48

11.2.7 Functional Test 7
Functional test 7 retrieves all red objects. A color is stored in a
property-set, it is not an attribute.

1. Select ?Var1
2. Where ?Var1.Property.MainColor =

"rot"

Functional test 11-7: Select all red objects.

11.2.8 Functional Test 8
The next test (Functional Test 11-8) failed. The ‘Property’-token is still
needed when querying a property.

1. Select ?Var1
2. Where ?Var1.MainColor = "rot"

Functional test 11-8: Select all red objects, without ‘property’-token.

11.2.9 Functional Test 9
Functional test 9 retrieves an object with a specific Global ID.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId =

"3iSzpa9d93jhTDB7hG0QBW"

Functional test 11-9: Select object with specific Global ID.

49

11.2.10 Functional Test 10
Functional test 10 first selects one object, and then it selects all
objects 1 deep. Although these objects are not visible, this test was
successful.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId =

"3iSzpa9d93jhTDB7hG0QBW"
3. Select ?Var2 := ?Var1.*

Functional test 11-10: Select related objects, 1 deep.

11.2.11 Functional Test 11
Functional test 11 first selects one object, and then it selects all related
objects, again 1 deep. Although these objects are not visible, this test
was successful.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId =

"3iSzpa9d93jhTDB7hG0QBW"
3. Select ?Var2 := ?Var1.*(1)

Functional test 11-11: Select related objects, again 1 deep.

50

11.2.12 Functional Test 12
Functional test 12 first selects one object, then it selects all objects 2
deep. Although these objects are not visible, this test was successful.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId =

"3iSzpa9d93jhTDB7hG0QBW"
3. Select ?Var2 := ?Var1.*(2)

Functional test 11-12: Select related objects, 2 deep.

11.2.13 Functional Test 13
Functional test 13 first selects one object, and then it selects all
objects 3 deep.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId =

"3iSzpa9d93jhTDB7hG0QBW"
3. Select ?Var2 := ?Var1.*(3)

Functional test 11-13 Select related objects, 3 deep.

51

11.2.14 Functional Test 14
Functional test 14 retrieves all walls related to a specific space.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId =

"3iSzpa9d93jhTDB7hG0QBW"
3. Select ?Var2 := ?Var1.*(2)
4. Where ?Var2.EntityType =

"IfcWallStandardCase"

Functional test 11-14: Select related walls.

11.2.15 Functional Test 15
Functional test 15 retrieves all doors and windows related to the walls
selected in functional test 14.

1. Select ?Var1
2. Where ?Var1.Attribute.GlobalId =

"3iSzpa9d93jhTDB7hG0QBW"
3. Select ?Var2 := ?Var1.*(2) Where

?Var2.EntityType =
"IfcWallStandardCase"

4. Select ?Var3 := ?Var2.*(4) Where
?Var3.EntityType = "IfcDoor" Or
?Var3.EntityType = "IfcWindow"

Functional test 11-15: Select related doors and windows.

52

11.2.16 Functional Test 16
Functional test 16 shows antoher method to select all objects related
to one specific object.

1. Select ?Var1
2. Where

?Var1.*(2).Attribute.GlobalId =
"3iSzpa9d93jhTDB7hG0QBW"

Functional test 11-16: Select related objects.

11.3 Test Conclusion
Most test results were on par with our expectations. Unfortunately the
feature which discharges the end-user from deciding whether a
property or an attribute is involved is not (yet) functioning. This has
probably something to do with the grammar, however I expect to solve
this issue shortly.

53

12 Performance Tests

In order to test performance, we have conducted a number of tests
using different models and queries.

12.1 Test Description
All tests have been carried out on standard contemporary year 2012
hardware (Intel Core 2 Duo P8600 processor, which runs at 2.4 GHz, 4
GB main memory and a 300 GB, 7200 rpm hard disk). BimQL
addresses BimServer.org functionality and therefore most of the time it
is BimServer.org functionality running instead of BimQL functionality.
However other developers might change how BimQL addresses
BimServer.org functionality and if performance is an issue the
performance of that new method can be compared with the
performance of current methods.

BimQL was integrated into BimServer.org version 1.2.0 beta.
Unfortunately we could not use this version to test our domain specific
language, because we were unable to communicate with the BimServer
through its SOAP interface. The SOAP interface can be used to
automate the interaction with the BimServer. So instead of performing
multiple queries manually, code can be written to perform those
queries automatically one after another. After we mentioned this
problem on the BimServer.org support forum, the problems present in
the BimServer.org software were quickly solved by the BimServer.org
development team. They even provided a script, which automatically
carries out BimQL queries. So eventually the performance tests were
run on the trunk version downloaded on the 16th of October 2012 from
http://bimserver. googlecode.com/svn/trunk.

54

The tests documented here use three different models that are
available from the Open IFC Model Repository. Three exemplary
queries where issued repeatedly through the SOAP interface to the
BimServer.org system running on the local host. Query 1: ‘Select
$Var1’, selecting all entity instances from the model. Query 2: ‘Select
$Var1 Where $Var1.Attribute.GlobalId = [Global ID from model]’,
selecting a single entity from the respective model. Query 3: ‘Select
$Var1 Where $Var1.EntityType = IfcDoor’, selecting all instances of
IfcDoor existing in the respective models.

12.2 Test Results and Conclusion

#

 o
f

en
tit

ie
s

Q
ue

ry
 1

:
tim

e
(s

ec
)

Q
ue

ry
 1

:
#

 o
f

re
su

lts

Q
ue

ry
 2

:
tim

e
(s

ec
)

Q
ue

ry
 2

:
#

 o
f

re
su

lts

Q
ue

ry
 3

:
tim

e
(s

ec
)

Q
ue

ry
 3

:
#

 o
f

re
su

lts

Duplex Apartment Model 38906 3.455 3893 3.226 1 3.094 14

AC11-Institute-Var-2-IFC 49674 3.602 6565 3.277 1 2.796 77

AC-11-Smiley-West-04-07-2007 73665 4.484 2565 3.552 1 4.000 85

Table 1: Overview of the models and queries tested.

The results depicted in table 1 of the queries show a linear increase of
execution time in relation with the number of entities a model consists
of. The repeated execution of queries showed variations of execution
times in insignificant ranges of a few milliseconds, which allows
drawing the conclusion that neither positive nor negative side-effects
such as caching are to be expected in practice.

55

13 Conclusion and Future Work

In this report BimQL was described. BimQL is an open domain specific
query language for building information models. It can be used to
select and update partial aspects in building information models. This
report described the steps taken during the design process of the
language.

After the requirements were specified and related research performed
by others was examined, the BimQL specification was developed. The
language was designed and implemented on top of the BimServer.org
platform, however while the specification of BimQL is based on the IFC
model specification, BimQL can be integrated in any other IFC based
modeling or development tool.

One of the requirements was to adhere to the CRUD-principle. During
this project we focused mainly on the read- and select-part of that
principle and we also implemented the functionality to update or set
the value of an attribute. The create- and the delete-part of the CRUD-
principle were not implemented. These operations are more
complicated and therefore more research is required.

Another requirement was streamlining the retrieval of properties and
directly and indirectly related objects. To meet that requirement the
‘.property’- and ‘.*’-token were introduced, which were successfully
implemented. The design provides the option to omit the ‘.property’-
and the ‘.attribute’-token. The implementation of this option was
started, however is not yet functional.

We received positive feedback and hope other enthusiasts will further
develop and improve our domain specific language. To facilitate that,
we made the source code available through GitHub and we will
document the language at bimql.org.

Future development may focus on natural language enhancements
that would potentially increase usability by allowing end-users to
operate with non-technical vocabulary (‘Walls’, ‘Wall’, ‘Wand’, ‘Muur’
would then cover ‘IfcWall’ and ‘IfcWallStandardcase’).

56

Other syntactic shortcuts, similar to the ‘property’-operator, might also
be developed. Those shortcuts would ease the creation of simple and
complex queries by predefining often used partial queries. A shortcut
that simplifies searching for certain specific dependencies between
entities could be created. This would make it easier to for example find
all doors or windows related to one wall. This is already possible now,
however more than one line of query code is needed.

Further future potential extensions of the work include the introduction
of spatial queries, providing the possibility to retrieve information
about geometric and topologic entities in a building information model.
It would then for example be possible to search for all south faced
windows and all outside doors on the ground floor. While developing
the spatial query functionality, simultaneously new shortcuts could be
developed to accelerate the development of queries.

Even though this query language is far from feature complete, BimQL
can be a useful vantage point for future research, discussion and
development.

57

14 Acknowledgements

Although the development of this framework could probably last
forever, my journey ends her. The last year has been a good
experience. The design and development of a computer language was
something new to me which I enjoyed discovering. I had the
impression other members of the BIM-community were also interested
in this project. That and the prospect of this framework being
integrated into the BimServer.org-platform were the drive trying to
make this project a success.

At the start of this project the expectations were high and we had
many ideas in store. We talked about graphical user interfaces, spatial
queries and probably much more I cannot remember now. Although we
did not implement most ideas, a clear and stable framework has been
created which can be taken further by anyone who is interested in
what we did.

In July 2012 I went to the EG-ICE workshop which was organized by
the Technical University Munich. At this workshop I presented the
paper which described the development and the current status of the
BimQL project. That paper was written together with Jakob Beetz, my
supervisor. I want to thank him for giving me the opportunity to
present the paper at that event and for the supporting me during this
project. The paper can be found at the end of this document.

I would like to extend my sincere gratitude and appreciation to the
bimserver.org community and especially to Ruben de Laat and Léon
van Berlo of TNO and to Joran Jessurun of the Eindhoven University of
Technology for their support and feedback during this work.

58

15 References
1. Adachi, Y. (2003). Overview of Partial Model Query Language. In proceedings of

the 10th ISPE International Conference on Concurrent Engineering (ISPE CE
2003), 549-555.

2. Beetz, J., van Berlo, L.A.H.M., de Laat, R. and Bonsma, P. (2011). Advances in
the development and application of an open source model server for building
information. In proceedings of the 28th International Conference of CIB W78.

3. Borrmann, A., Beetz, J. (2010). Towards spatial reasoning on building
information models. In proceedings of the 8th European Conference on Product
and Process Modeling (ECPPM), 1-6.

4. Borrmann, A., Rank, E. (2009). Topological analysis of 3D building models using
a spatial query language. Advanced Engineering Informatics, 23(4), 370-385.

5. Borrmann, A., van Treeck, C., Rank, E. (2006). Towards a 3D spatial query
language for building information models. In Proceedings of the 11th Int. Conf.
on Computing in Civil and Building Engineering (ICCCBE-XI).

6. Eastman, C., Lee, J., Jeong, Y., Lee, J. (2009). Automatic rule-based checking of
building designs. Automation in Construction, 18(8), 1011-1033.

7. Eastman,C. (1999). Building product podels: Computer environments supporting
design and construction CRC Press.

8. Huang, L. (1999). EXPRESS Query Language and Templates and Rules: Two
languages for advanced Software System Integrations. Dissertation Ohio
University

9. Hussmann, H., Zschaler, S. (2004). The Object Constraint Language for UML 2.0
- Overview and assessment. Upgrade Journal, 5(2).

10. H. Kang, G. Lee, Development of an Object-Relational IFC Server, in: Proc. of the
3rd International Conference on Construction Engineering & Management / 6th
International Conference on Construction Project Management, Jeju, Korea,
2009.

11. Kriegel, A., Trukhnov, B. (2003). SQL bible. Wiley Publishing, Inc.

12. Lee, G., Eastman, C., Sacks, R. (2003). GT PPM user manual. Available at:
http://dcom.arch.gatech.edu/gtppm/dn/GT%20PPM%20USER%20MANUAL_r4_1
.pdf (Accessed December 24, 2011).

13. Lee, G., Sacks, R., Eastman, C. (2007). Product data modeling using GTPPM — A
case study. Automation in Construction, 16(3), 392-407.

14. Martin, J. (1983). Managing the database environment. Prentice Hall.

15. Parr, T. (2007). The Definitive ANTLR Reference. Pragmatic Bookshelf.

59

16. Prudhommeaux, E., Seaborne, A. (2008). SPARQL query Language for RDF.
Available at: http://www.w3.org/TR/rdf-sparql-query/ (Accessed December 7,
2011).

17. Rattz, j., Hayes, D. (2009). Pro LINQ language integrated query in VB 2008.
Apress.

18. Warmer, J., Kleppe, A. (2003). The Object Constraint Language. Addison Wesley.

19. Weise, M., Katranuschkov, P., Scherer, R. (2003) Generalised Model Subset
Definition schema. In Construction

20. D. Koonce, L. Huang, R. Judd, EQL an Express Query Language, Computers &
Industrial Engineering. 35 (1998) 271–274.

60

16 Appendix A: Source Code

The implementation of the design starts with the conversion from the
Backus Naur Form (BNF) notation into an ANTLR grammar. This
grammar consists of a lexer and a parser, which can read an input
stream and divide it into tokens. The lexer and parser can recognize
BimQL, however a grammar alone is not capable of performing any
actions.

The BimServer.org project provides the possibility to create complex
and extensive queries by writing Java code. Consequently all
functionality desired is already present, however the actual problem is
addressing this functionality. The development of the BimQL
framework solves this problem.

The most obvious next step might be directly connecting the newly
developed grammar and the already existing functionality present
within the BimServer.org project. However this is not how it was done,
because it would be too complicated to make the translation from the
grammar to the BimServer.org functionality within the grammar.
Instead a number of transition Java classes were written first. One of
these Java classes is for example able to search for an attribute or
property and another one ANDs two lists of Booleans. This means the
BimServer.org functionality is not directly addressed by the grammar.
Instead it is addressed by the transition classes which are the ones
actually being addressed by the grammar.

In this part the ANTLR grammar is discussed first. Then the generation
and operation of the transition classes is explained and finally the
relation between the two is clarified.

61

16.1 ANTLR Grammar
The ANTLR grammar (Listing 16-1) looks very similar to the Backus
Naur Form (BNF) notation. Notice the action at the end of the
‘whitespace’-rule, rule 16. This action places the ‘whitespace’-tokens
on a hidden channel. They are still sent to the parser, but are invisible.
Whitespaces will be ignored and therefore the character streams
‘Select $Var1’ and ‘Select$Var1’ will be treated equally by the parser.

1. bimql: select;
2. select: 'Select' VARIABLE where? cascade* set?;
3. cascade: 'Select' VARIABLE' := 'VARIABLE (| '.EntityType' | '.Attribute.'STRING |

'.Property.' STRING | '.' STRING | (('.*') | ('.*('INTEGER? TRUE? ')'))) (where)?;
4. where: 'Where' statement;
5. set: 'Set' VARIABLE '.Attribute.' STRING ':=' (INTEGER | REAL | STRING);
6. statement: relation1=relation ('And' relation | 'Or' relation)*;
7. relationreturns: relationleft ('=' relationright | '/=' relationright | '<' relationright | '<='

relationright | '>=' relationright | '>' relationright);
8. relationleft: VARIABLE '.EntityType' | VARIABLE '.Attribute.' STRING | VARIABLE

'.Property.' STRING | VARIABLE '.' STRING | VARIABLE ('.*.EntityType' | '.*(' INTEGER?
TRUE? ').EntityType') | VARIABLE ('.*.Attribute' | '.*(' INTEGER? TRUE? ').Attribute.')
STRING | VARIABLE ('.*.Property' | '.*(' INTEGER? TRUE? ').Property.') STRING;

9. relationright: INTEGER | REAL | STRING;
10. TRUE: '+';
11. FALSE: '-';
12. VARIABLE: '$' STRING;
13. INTEGER: ('0'..'9')+;
14. REAL: INTEGER+ ('.' INTEGER+)?;
15. STRING: ('\u002A'..'\u002A' | '\u0024'..'\u0024' | '\u003F'..'\u003F' | '\u0030'..'\u0039' |

'\u0041'..'\u005A' | '\u005B'..'\u0060' | '\u0061'..'\u007A')+;
16. WS: (' ' | '\t' | '\n' | '\r' | '\f')+ {$channel=HIDDEN;};

Listing 16-1: ANTLR grammar.

16.2 Transition Classes
Each class described in this section performs a specific action which
can be initiated by the parser. Each transition class and probably each
other Java class can be divided into a few sections. During this project
and maybe in general the most important sections are the field-, the
constructor- and the method-section. The field-section defines the
class-variables, the constructor-section contains some special methods
which can instantiate the class and all the other methods are grouped
together in the method-section. These methods can for example alter
variables defined earlier or return the solution of a calculation.

16.2.1 ‘GetAttribute’-Classes
The ‘GetAttribute’-classes make it possible to retrieve the value of an
attribute. The height of a door for example is stored in the attribute
with the name ‘OverallHeight’. All the classes which are necessary to
extract information from attributes are located in the package named
‘nl.wietmazairac.bimql.get.attribute’. One of those classes is called

62

‘GetAttributeMain.java’ and that class is the starting point when
retrieving an attribute. Each single other class is related to one IFC
entity type. For example the class related to the entitytype IfcDoor is
called ‘GetAttributeSubIfcDoor’.

16.2.1.1 ‘GetAttributeMain’-Class
When the value of an attribute needs to be retrieved, the
‘GetAttributeMain’-class is the first class to be called. This class
determines the entitytype of the object of which the value of an
attribute needs to be retrieved. Subsequently the ‘GetAttributeMain’-
class calls the appropriate ‘GetAttributeSub’-class, which actually
retrieves the value of an attribute.

To operate correctly the ‘GetAttributeMain’-class requires a list of
objects and a string, a sequence of characters. The string describes the
name of the attribute which value needs to be retrieved. The objects
contained by the list are the objects from which the value of one of its
attributes might need to be fetched. The constructor of this class is
shown in listing 16-2.

1. public GetAttributeMain(List<Object> ObjectList, String string) {
2. this.ObjectList = ObjectList;
3. this.string = string;
4. }

Listing 16-2: GetAttributeMain-constructor.

63

For each object in the list the ‘GetAttributeMain’-class determines its
type and it then creates an instance of the appropriate
‘GetAttributeSub’-class. Part of this loop is shown in listing 16-3. The
instance of the ‘GetAttributeSub’-class returns the value of the
attribute which is stored in a list.

1. for (Object object : ObjectList) {
2. if (((IfcRoot) object).eClass().getName().equals("Ifc2DCompositeCurve")) {
3. GetAttributeSubIfc2DCompositeCurve GetAttributeSubIfc2DCompositeCurve = new

GetAttributeSubIfc2DCompositeCurve(object, string);
4. objectArrayList = GetAttributeSubIfc2DCompositeCurve.getResult();
5. arrayListArrayList.add(objectArrayList);
6. }
7. ...
8. ...
9. ...
10. else if (((IfcRoot) object).eClass().getName().equals("IfcDoor")) {
11. GetAttributeSubIfcDoor GetAttributeSubIfcDoor = new GetAttributeSubIfcDoor(object,

string);
12. objectArrayList = GetAttributeSubIfcDoor.getResult();
13. arrayListArrayList.add(objectArrayList);
14. }
15. ...
16. ...
17. ...
18. else {
19. }
20. }

Listing 16-3: GetAttributeMain-class.

16.2.1.2 ‘GetAttributeSub’-Class
A ‘GetAttributeSub’-class is called by the ‘GetAttributeMain’-class after
the entitytype of the object from which the value of an attribute needs
to be retrieved has been determined. The ‘GetAttributeSub’-classes
have been created to solve typecasting problems. Keeping the code
organized was another benefit. Not all entitytypes own the same
attribute types and by taking this route that has been taken into
account.

64

A ‘GetAttributeSub’-class needs an object and a string. It will check if
that object has an attribute with the same name as the string. The
constructor of this class is shown in listing 16-4.

1. public GetAttributeSubIfcDoor(Object object, String string) {
2. this.object = object;
3. this.string = string;
4. }

Listing 16-4: GetAttributeSubIfcDoor-constructor.

The ‘GetAttributeSub’-class tries to match the provided string with the
name of an attribute. Part of that code is shown in listing 16-5. If a
match occurs, BimServer.org functionality is executed to retrieve the
required value. This value is then stored in a list. It is possible that the
value of an attribute is not one object or value, but a list of objects or
values. This has been accounted for as shown in the code below. The
‘OverallWidth’-section only adds one value or object to the list called
‘resultList’, wether the ‘ConnectedTo’-section might add more than one
if the size of the retrieved list (“getConnectedTo().size()”) is larger
than one.

1. if (string.equals("OverallWidthAsString")) {
2. resultList.add(((IfcDoor) object).getOverallWidthAsString());
3. }
4. else if (string.equals("OverallWidth")) {
5. resultList.add(((IfcDoor) object).getOverallWidth());
6. }
7. ...
8. ...
9. ...
10. else if (string.equals("FillsVoids")) {
11. for (int i = 0; i < ((IfcDoor) object).getFillsVoids().size(); i++) {
12. resultList.add(((IfcDoor) object).getFillsVoids().get(i));
13. }
14. }
15. else if (string.equals("ConnectedTo")) {
16. for (int i = 0; i < ((IfcDoor) object).getConnectedTo().size(); i++) {
17. resultList.add(((IfcDoor) object).getConnectedTo().get(i));
18. }
19. }

Listing 16-5: GetAttributeSubIfcDoor-class.

65

16.2.1.3 Generation of ‘GetAttribute’-Classes
Many ‘GetAttribute’-classes are present in the package named
‘nl.wietmazairac.bimql.get.attribute’. To all write them manually would
have been a cumbersome task and therefore it was decided to apply
the concept of metaprogramming. While metaprogramming, the
programmer does not write the final code itself, instead he writes the
code that generates that final code for him. This concept may be
applied when the final code is very long and when that code contains a
lot of repetitive elements, like in our case.

The class that generates the ‘GetAttribute’-classes is called
‘CreateGetAttributeMainSubObjectWrap.java’ and is located in the
package named ‘nl.wietmazairac.bimql’. This class first loops through
all the classes located in the package named
‘org.bimserver.models.ifc2x3.impl’. If the name of a class starts with
“Ifc” and ends with “Impl”, a second loop is initiated. This second loop
checks whether the class found in the first loop has any methods that
start with “get”. The methods the second loop goes through are part of
the BimServer.org functionality. A method that starts with “get” is, in
this particular case, a method that retrieves the value of an attribute.
Now the classes of interest and the relevant methods are known, the
‘java.io.Printwriter’-class can be used to generate the ‘GetAttribute’-
classes.

There was another issue that needed to be addressed and it was
designated the ‘WrappedValue’-problem. This problem revealed itself
when trying to retrieve all GlobalIDs of a list of objects. Instead of
retrieving a list of strings, a list of objects was returned. This is what
actually should happen, but it is probably not something a non-expert
user would expect. Therefore another if clause was added which stated
that if a retrieved objects owns a method called ‘getWrappedValue’ ,
not the object itself should be retrieved, however the value wrapped
should be instead. It is still possible to retrieve the object instead of
the wrapped value. This is done by appending the character string
‘object’. For example to fetch the ‘GlobalID’-object instead of the
‘GlobalID’-string, ‘GlobalIdObject’ should be entered instead of
‘GlobalId’. This was also demonstrated earlier in the examples.

66

16.2.2 ‘SetAttribute’-Classes
The ‘SetAttribute’-classes make it possible to change the value of an
attribute. All the classes which are necessary to change the values
stored in attributes are located in the package named
‘nl.wietmazairac.bimql.set.attribute’.

The ‘SetAttribute’-classes and the ‘GetAttribute’-classes are very
similar. The way the ‘GetAttribute’-classes operate and the way they
were created was described before and the same methods apply to the
‘SetAttribute’-classes.

16.2.3 ‘GetProperty’-Class
The ‘GetProperty’-class makes it possible to retrieve the value of a
property. Properties are different from direct attributes. An almost
unlimited amount of properties can be added to an object. This
contrasts with the small amount of attributes already defined in the
core schema. Another difference is the amount of network hops that
need to be taken before the required property is reached. Until the
deployment of BimQL, when users were still required to write advanced
queries in Java, it was more complicated to retrieve a property than it
was to retrieve an attribute. This class eliminates that problem. The
‘GetProperty’-class is located in the package named
‘nl.wietmazairac.bimql.get.property’.

16.2.3.1 ‘GetPropertyMain’-Class
The ‘GetPropertyMain’-class needs a list of objects and a string to
function. This class will check of any of those objects owns a property
which name is equal to the string. If so, the value of that property will
be stored in a list. The constructor of this class is shown in listing 16-6.

1. public GetPropertyMain(List<Object> objectList, String string) {
2. this.objectList = objectList;
3. this.string = string;
4. }

Listing 16-6: GetPropertyMain-constructor.

The hops that need to be taken while retrieving a property are shown
in figure 8-1 and It explains the code in listing 16-7. Line 1 defines the
start of a loop. This means it executes the lines within the curly
brackets for each object in the list. That object is equivalent to the
‘IfcSpace’-object in figure 4. It could be a space, however it could as
well be any other object. Line 3 checks if the object is an instance of
an ‘IfcObject’. If not, it skips the current object, otherwise an error
could occur later on. Line 4, 5 and 6 fetch all objects related to the

67

current object and it checks which of those objects have a name equal
to ‘IfcRelDefinesByProperties’. The objects that meet this requirement
will be processed further. Line 7 and 8 get the relating property
definition and check if that property definition is of the type
‘IfcPropertySet’. If that’s true the properties of that set are added to a
temporary list called ‘ifcPropertyList’. This happens in line 9. In line 10
a loop is defined which checks every object contained by this new list.
If the name of a property from the ‘ifcPropertyList’ is equal to the
string encountered earlier, the value of that property needs to be
retrieved. Line 12 and line 29 determine if the property which value
needs to be fetched, is a complex property or a single value property.
A complex property is a collection of single value properties. Color is a
complex property for example. Each color is defined by a red, a green
and a blue value (RGB) or by a hue, a saturation and a brightness
value (HSB). The three single value properties are stored together in
one complex property. Finally the data type stored in a property needs
to be determined. This is done line 13 through 26 and in line 32
through 45. Once the data type has been determined the value can be
stored into a temporary list. This happens in line 14, line 20, line 26,
line 33, line 39 and in line 45.

1. for (Object object : objectList) {
2. ArrayList<Object> objectArrayList = new ArrayList<Object>();
3. if (object instanceof IfcObject) {
4. List<IfcRelDefines> ifcRelDefinesList = new ArrayList<IfcRelDefines>(((IfcObject)

object).getIsDefinedBy());
5. for (IfcRelDefines ifcRelDefines : ifcRelDefinesList) {
6. if (ifcRelDefines.eClass().getName().equals("IfcRelDefinesByProperties")) {
7. IfcPropertySetDefinition ifcPropertySetDefinition = ((IfcRelDefinesByProperties)

ifcRelDefines).getRelatingPropertyDefinition();
8. if (ifcPropertySetDefinition.eClass().getName().equals("IfcPropertySet")) {
9. List<IfcProperty> ifcPropertyList = new ArrayList<IfcProperty>(((IfcPropertySet)

ifcPropertySetDefinition).getHasProperties());
10. for (IfcProperty ifcProperty : ifcPropertyList) {
11. if (ifcProperty.getName().equals(string)) {
12. if (ifcProperty.getClass().getSimpleName().equals("IfcPropertySingleValueImpl")) {
13. if (((IfcPropertySingleValue)

ifcProperty).getNominalValue().getClass().getSimpleName().equals("Ifc2x3Package")) {
14. objectArrayList.add(((Ifc2x3Package) ((IfcPropertySingleValue)

ifcProperty).getNominalValue()).getWrappedValue());
15. }
16. ...
17. ...
18. ...
19. else if (((IfcPropertySingleValue)

ifcProperty).getNominalValue().getClass().getSimpleName().equals("IfcInteger")) {

68

20. objectArrayList.add(((IfcInteger) ((IfcPropertySingleValue)
ifcProperty).getNominalValue()).getWrappedValue());

21. }
22. ...
23. ...
24. ...
25. else if (((IfcPropertySingleValue)

ifcProperty).getNominalValue().getClass().getSimpleName().equals("IfcReal")) {
26. objectArrayList.add(((IfcReal) ((IfcPropertySingleValue)

ifcProperty).getNominalValue()).getWrappedValue());
27. }
28. }
29. else if (ifcProperty.getClass().getSimpleName().equals("IfcComplexPropertyImpl"))

{
30. List<IfcProperty> ifcComplexPropertyList = new

ArrayList<IfcProperty>(((IfcComplexProperty) ifcProperty).getHasProperties());
31. for (IfcProperty ifcComplexProperty : ifcComplexPropertyList) {
32. if (((IfcPropertySingleValue)

ifcComplexProperty).getNominalValue().getClass().getSimpleName().equals("Ifc2x3Package
")) {

33. objectArrayList.add(((Ifc2x3Package) ((IfcPropertySingleValue)
ifcComplexProperty).getNominalValue()).getWrappedValue());

34. ...
35. ...
36. ...
37. }
38. else if (((IfcPropertySingleValue)

ifcComplexProperty).getNominalValue().getClass().getSimpleName().equals("IfcInteger")) {
39. objectArrayList.add(((IfcInteger) ((IfcPropertySingleValue)

ifcComplexProperty).getNominalValue()).getWrappedValue());
40. }
41. ...
42. ...
43. ...
44. else if (((IfcPropertySingleValue)

ifcComplexProperty).getNominalValue().getClass().getSimpleName().equals("IfcReal")) {
45. objectArrayList.add(((IfcReal) ((IfcPropertySingleValue)

ifcComplexProperty).getNominalValue()).getWrappedValue());
46. }
47. }
48. }
49. }
50. }
51. }
52. }
53. }
54. }
55. }

Listing 16-7: GetPropertyMain-class.

69

16.2.3.2 Generation of ‘GetProperty’-Classes
Just like the ‘GetAttribute’- and ‘SetAttribute’-classes, the
‘GetPropertyMain’-class could not be written manually. Many different
data types need to be processed by this class and they all had to be
specified to prevent casting problems. Listing 16-8 shows the essence
of the ‘CreateGetPropertyMain’-class. Line 5 checks if a class owns a
method which is named ‘getWrappedValue’. If that is true line 8
through 15 add the lines to the ‘GetPropertyMain’-class which check if
the current property is the property being searched for and the lines,
which cast that property to the appropriate type.

1. int j = 0;
2. for (int i = 0; i < ClassArray.length; i++) {
3. Method method[] = ClassArray[i].getDeclaredMethods();
4. for (Method aMethod : method) {
5. if (aMethod.getName().equals("getWrappedValue")) {
6. System.out.println(i);
7. if (j == 0) {
8. printWriter.print(" if ");
9. } else {
10. printWriter.print(" else if ");
11. }
12. printWriter.println("(((IfcPropertySingleValue)

ifcProperty).getNominalValue().getClass().getSimpleName().equals(\"" +
ClassArray[i].getSimpleName() + "\")) {");

13. printWriter.println(" objectArrayList.add(((" +
ClassArray[i].getSimpleName() + ") ((IfcPropertySingleValue)
ifcProperty).getNominalValue()).getWrappedValue());");

14. printWriter.println(" }");
15. j++;
16. }
17. }
18. }

Listing 16-8: CreateGetPropertyMain-class.

16.2.4 ‘GetEntityType’-class
The ‘GetEntityType’-class makes it possible to determine what the type
of an object is, for example ‘IfcDoor’ or ‘IfcWall’. This class is located in
its own package named ‘nl.wietmazairac.bimql.get.entitype’. It needs a
list of objects to operate and it returns a two dimensional list of
strings. A two dimensional list of strings could also be described as a
list of lists of strings. This class does not require a two dimensional list
as one object can only be of one type. However there are cases in
which this two dimensional construction is actually indispensable. A
wall for example can be connected to more than one other wall. In this
case the ‘first dimension’-list contains all the walls. Only one ‘first-
dimension’-list exists. The amount of ‘second dimension’-lists is equals

70

to the amount of walls contained by the ‘first dimension’-list. The first
‘second dimension’-list contains the walls which are connected to the
first wall stored in the ‘first dimension’-list. The second ‘second-
dimension’-list contains the walls which are connected to the second
wall stored in the ‘first dimension’-list, and so on.

The reason for using this two dimensional construction here, although
not strictly necessary, is the way the others classes operate. The
constructors of for example the ‘relational operators’-classes, which
will be discussed later, are expecting a two dimensional list. Another
option might have been to let the ‘GetEntityType’-class generate a ‘one
dimensional’-list and create new constructors for the ‘relational
operators’-classes. This however was not the preferred route, because
then additional code was generated to handle exceptions while it is
often better to fit exceptions into the big picture.

16.2.5 Relational Operators
Six relational operators have been implemented. Present are the
equal-, the in-equal, the less-, the less-equal-, the greater- and the
greater-equal-operator. Only the equal-operator will be discussed here,
because it is the most complicated relational operator and because the
other relational operators are very similar.

16.2.5.1 ‘EqualOperator’-Class
The relational operators compare a two dimensional list, a list of lists of
doubles or strings to a string. It returns a list of Booleans. The
constructor of this class is shown in listing 16-9.

1. public EqualOperator(List<ArrayList> leftOperand, String rightOperand) {
2. this.leftOperand = leftOperand;
3. this.rightOperand = rightOperand;
4. }

Listing 16-9: EqualOperator-constructor.

The ‘EqualOperator’-class (listing 16-10) first checks whether the left
operand is a string or a double. This happens in line 5 and in line 20.
When the left operand is a string, regular expressions can be used to
compare the left and the right operand. A regular expression is a
pattern that can be matched to an input character stream. For example
the pattern ‘Floor*’ will match the input text ‘Floor2’, ‘Floor13’ and
‘Floor4a’. The pattern ‘Room???’ will match the input stream
‘Room429’, ‘Room5w3’ and ‘Room78e’. When the left operand is a
double the right operand will be parsed to a double and then they will
be compared. However if the right operand is an asterisk symbol, any

71

double will be matched. The asterisk symbol is commonly used as a
wildcard character.

If the right operand is a string, it will first be converted to a regular
expression pattern. The ‘EqualOperator’-class tries to match the left
operand to this pattern. If a match occurs ‘true’ is added to the list of
results. If no match has occurred a ‘false’ will be added.

1. for (ArrayList arrayList : leftOperand) {
2. if (arrayList.size() > 0) {
3. for (int i = 0; i < arrayList.size(); i++) {
4. if (arrayList.get(i) != null) {
5. if (arrayList.get(i).getClass().getSimpleName().equals("Double")) {
6. if (rightOperand.indexOf("*") < 0) {
7. double rightOperandDouble = Double.parseDouble(rightOperand);
8. if (arrayList.get(i).equals(rightOperandDouble)) {
9. result.add(true);
10. break;
11. } else {
12. if (i == arrayList.size() - 1) {
13. result.add(false);
14. }
15. }
16. } else if (rightOperand.equals("*")) {
17. result.add(true);
18. break;
19. }
20. } else if (arrayList.get(i).getClass().getSimpleName().equals("String")) {
21. String regex = rightOperand;
22. regex = regex.replace(".", "\\.");
23. regex = regex.replace("*", ".*");
24. regex = regex.replace("?", ".?");
25. if (((String) arrayList.get(i)).matches(regex)) {
26. result.add(true);
27. break;
28. } else {
29. if (i == arrayList.size() - 1) {
30. result.add(false);
31. }
32. }
33. }
34. } else {
35. if (i == arrayList.size() - 1) {
36. result.add(false);
37. }
38. }
39. }
40. } else {
41. result.add(false);
42. }
43. }

72

44. }
45. }

Listing 16-10: EqualOperator-class.

16.2.6 Boolean Operators
Two Boolean operators have been implemented, the AND- and the OR-
operator. Both operators need two lists of Booleans to operate. This is
illustrated by the constructor from the ‘AndOperator’-class in listing 16-
11.

1. public AndOperator(List<Boolean> leftOperand, List<Boolean> rightOperand) {
2. this.leftOperand = leftOperand;
3. this.rightOperand = rightOperand;
4. }

Listing 16-11: AndOperator-constructor.

The logical operator AND, also known as a logical conjunction, results
in true if both of its operands are true, otherwise the result will be
false. The logical operator OR, also known as a logical disjunction,
results in true if at least one of its operands is true, otherwise the
result will be false. The ‘AndOperator’-class returns a list of Booleans.
This is shown in listing 16-12. It loops through the list of left and right
operands simultaneously. If both the left and right operand are true,
the value ‘true’ will be added to the list of Booleans this method
returns. If one of the operands is false, the value ‘false’ will be added
to that list.

1. public List<Boolean> getResult() {
2. List<Boolean> result = new ArrayList<Boolean>();
3. for (int i = 0; i < leftOperand.size(); i++) {
4. if (leftOperand.get(i) && rightOperand.get(i)) {
5. result.add(true);
6. } else {
7. result.add(false);
8. }
9. }
10. return result;
11. }

Listing 16-12: AndOperator-class.

73

16.2.7 ‘CullList’-class
The ‘CullList’-class removes items from a list. Which items to remove is
based on a list of Booleans. Therefore this class needs two lists to
operate, a list of objects and a list of Booleans. This is illustrated by
the constructor, which is shown in listing 16-13.

1. public CullList(List<Object> objectList, List<Boolean> booleanList) {
2. this.objectList = objectList;
3. this.booleanList = booleanList;
4. }

Listing 16-13: CullList-operator.

The list of Booleans will probably be generated by the relational or the
Boolean operators. The ‘CullList’-class loops through the list of objects
and the list of Booleans simultaneously. If the Boolean value is equal
to ‘true’ the related object will be added to a new list. However if the
Boolean value equals ‘false’, then the related object will be ignored and
the next Boolean value will be evaluated immediately. This procedure
is executed by the code shown in listing 16-14.

1. public List<Object> getResult() {
2. List<Object> result = new ArrayList<Object>();
3. for (int i = 0; i < objectList.size(); i++) {
4. if (booleanList.get(i)) {
5. result.add(objectList.get(i));
6. }
7. }
8. return result;
9. }

Listing 16-14: CullList-class.

16.2.8 ‘FlattenList’-Class
The ‘FlattenList’-class converts a two dimensional list into a one
dimensional list. This operation needs to be executed before a list of
results is returned to the end-user. When the end-user for example
wants to retrieve all GlobalIds of all doors, those GlobalIds will be
stored in a two dimensional list. This class converts that list of lists of
GlobalIds into one list of GlobalIds. The constructor of this class is in
listing 16-15.

1. public FlattenList(List<ArrayList> arrayListList) {
2. this.arrayListList = arrayListList;
3. }

Listing 16-15: FlattenList-operator.

74

The ‘FlattenList’-class loops through the list of lists. If the second list
contains any objects, those objects will be added to a new list.
However if the second list contains no items, the next list in the first
list will be examined. The code for this procedure is shown in listing
16-16.

1. public List<Object> getResult() {
2. List<Object> objectList = new ArrayList<Object>();
3. for (ArrayList arrayList : arrayListList) {
4. if (arrayList.size() > 0) {
5. for (Object object : arrayList) {
6. objectList.add(object);
7. }
8. }
9. }
10. return objectList;
11. }

Listing 16-16: FlattenList-class.

16.2.9 ‘GetRelatedObjectsOperator’-Class
This class loops through a list of objects and collects all objects directly
related to those objects. These objects are stored in a list and
depending on what the value of the integer it was passed it repeats
this process. It loops through the objects just collected and retrieves
all directly related objects. When such an object has not yet been
stored to the list, it is stored to the list, otherwise it is ignored.

75

16.3 Integration of Transition Classes into the
ANTLR Grammar

The classes described above provide all the functionality to perform
queries on a building information model. By using them it is possible to
extract the values of attributes and properties, to compare those
values to a character string or number and to create a list of objects
which meet certain criteria’s.

These classes were developed to form a bridge between the BimQL
grammar and the BimServer.org functionality. The classes above rely
often on the classes and methods only present within the
BimServer.org-platform. For example the generation algorithms for the
‘GetAttribute’-classes and the actual ‘GetAttribute’-classes itself cannot
exist independent of the BimServer.org-platform. This relation has
been discussed above. In this part the relation between the transition
classes and the ANTLR-grammar is discussed. This part explains how
the grammar creates instances of the transition classes and how the
grammar get the query results by making use of those instances. For
each grammar rule it is explained which transition classes are
instantiated and how that is done.

16.3.1 ‘Bimql’-rule
The ‘bimql’-rule (Listing 16-17) is the start of every query. It is passed
an IFC model and it returns a list of objects. That list of objects will be
the result of the query. Lines 3 through 7 retrieve all the objects from
the model which type equals IfcRoot or which type is a subtype of
IfcRoot. These objects are stored in a new list and passed on to the
‘select’-rule.

1. bimql [IfcModel ifcModel] returns [List<Object> bimqlReturns] :
2. {
3. List<IfcRoot> ifcRootList = new ArrayList<IfcRoot>();
4. ifcRootList = ifcModel.getAllWithSubTypes(IfcRoot.class);
5. List<Object> objectList = new ArrayList<Object>();
6. for (IfcRoot ifcRoot : ifcRootList) {
7. objectList.add(ifcRoot);
8. }
9. }
10. select [objectList] {
11. $bimqlReturns = $select.selectReturns;
12. }
13. ;

Listing 16-17: Bimql-rule.

76

16.3.2 ‘Select’-Rule
The ‘select’-rule (Listing 16-18) is passed a list of objects by the
‘bimql’-rule and the result of this rule will again be returned to the
‘bimql’-rule. The ‘select’-rule lets the user choose a variable. The list of
objects it was passed will now be associated with this variable.

1. select [List<Object> objectList] returns [List <Object> selectReturns] :
2. 'Select' VARIABLE {
3. $selectReturns = $select.objectList;
4. hashMapObjectList.put($VARIABLE.text, objectList);
5. }
6. (where[$VARIABLE.text] {
7. $selectReturns = hashMapObjectList.get($VARIABLE.text);
8. })?
9. (cascade {
10. $selectReturns = hashMapObjectList.get($cascade.cascadeReturns);
11. })*
12. set?
13. ;

Listing 16-18: Select-rule.

16.3.3 ‘Cascade’-Rule
The ‘cascade’-rule (Listing 16-19) can instantiate the
‘GetEntityTypeMain’-class, the ‘GetAttributeMain’-class, the
‘GetPropertyMain’-class and the ‘GetRelatedObjectsOperator’-class. In
this rule these four classes make a new selection which is based on an
already existing selection. The already existing selection could for
example be all the windows of a certain height. The new selection
would consist of the openings in which these windows are located.

The ‘Flatten’-class can be instantiated multiple times. The new
selection, the selection which contains the openings, is flattened in
these lines. The selection which originally was a two dimensional list
will just be a one dimensional list after these lines have been executed.

The option to omit the ‘Attribute’- and ‘Property’-tokens has been
disabled, while this option is not yet operating as it should operate.
Some problems exist distinguishing the ‘String’-token and for example
the ‘Attribute’-token. This problem will be solved soon.

1. cascade returns [String cascadeReturns] :
2. 'Select' VARIABLE1 = VARIABLE ':=' VARIABLE2 = VARIABLE (
3. {
4. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE2.text));
5. hashMapObjectList.put($VARIABLE1.text, objectList);
6. $cascadeReturns = $VARIABLE1.text;
7. }
8. |'.EntityType' {

77

9. List<Object> objectList = new
ArrayList<Object>(hashMapObjectList.get($VARIABLE2.text));

10. GetEntityTypeMain getEntityTypeMain = new GetEntityTypeMain(objectList);
11. List<ArrayList> arrayListList = new

ArrayList<ArrayList>(getEntityTypeMain.getResult());
12. objectList.clear();
13. FlattenList flattenList = new FlattenList(arrayListList);
14. objectList = flattenList.getResult();
15. hashMapObjectList.put($VARIABLE1.text, objectList);
16. $cascadeReturns = $VARIABLE1.text;
17. }
18. |'.Attribute.' string1 = STRING {
19. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE2.text));
20. GetAttributeMain getAttributeMain = new GetAttributeMain(objectList,

$string1.text);
21. List<ArrayList> arrayListList = new

ArrayList<ArrayList>(getAttributeMain.getResult());
22. objectList.clear();
23. FlattenList flattenList = new FlattenList(arrayListList);
24. objectList = flattenList.getResult();
25. hashMapObjectList.put($VARIABLE1.text, objectList);
26. $cascadeReturns = $VARIABLE1.text;
27. }
28. |'.Property.' string2 = STRING {
29. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE2.text));
30. GetPropertyMain getPropertyMain = new GetPropertyMain(objectList,

$string2.text);
31. List<ArrayList> arrayListList = new

ArrayList<ArrayList>(getPropertyMain.getResult());
32. objectList.clear();
33. FlattenList flattenList = new FlattenList(arrayListList);
34. objectList = flattenList.getResult();
35. hashMapObjectList.put($VARIABLE1.text, objectList);
36. $cascadeReturns = $VARIABLE1.text;
37. }
38. | '.' string3 = STRING {
39. System.out.println("Sorry, not yet implemented!!!");
40. // List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE2.text));
41. // GetAttributeMain getAttributeMain = new GetAttributeMain(objectList,

$string3.text);
42. // List<ArrayList> attributeArrayListList = new

ArrayList<ArrayList>(getAttributeMain.getResult());
43. // GetPropertyMain getPropertyMain = new GetPropertyMain(objectList,

$string3.text);
44. // List<ArrayList> propertyArrayListList = new

ArrayList<ArrayList>(getPropertyMain.getResult());
45. // objectList.clear();
46. // FlattenList attributeFlattenList = new FlattenList(attributeArrayListList);

47. // objectList = attributeFlattenList.getResult();
48. // FlattenList propertyFlattenList = new FlattenList(propertyArrayListList);

49. // objectList.addAll(propertyFlattenList.getResult());
50. // hashMapObjectList.put($VARIABLE1.text, objectList);
51. // $cascadeReturns = $VARIABLE1.text;
52. }
53. |(('.*')|('.*(' INTEGER? TRUE?')')) {

78

54. List<Object> objectList = new
ArrayList<Object>(hashMapObjectList.get($VARIABLE2.text));

55. GetRelatedObjectsOperator getRelatedObjectsOperator = new
GetRelatedObjectsOperator(objectList,
Integer.parseInt($INTEGER!=null?$INTEGER.text:"1"), $TRUE!=null?true:false);

56. List<ArrayList> getRelatedObjectsOperatorArrayListList = new
ArrayList<ArrayList>(getRelatedObjectsOperator.getResult());

57. objectList.clear();
58. FlattenList flattenList = new

FlattenList(getRelatedObjectsOperatorArrayListList);
59. objectList = flattenList.getResult();
60. hashMapObjectList.put($VARIABLE1.text, objectList);
61. $cascadeReturns = $VARIABLE1.text;
62. }
63.)
64. (where[$VARIABLE1.text]
65.)?

Listing 16-19: Cascade-rule.

16.3.4 ‘Where’-Rule
The ‘where’-rule (Listing 16-20) makes use of the ‘CullList’-class. The
list of objects which the ‘where’-rule retrieves from the
‘hashMapObjectList’ is culled by an instance of this class. The list of
Booleans needed for this operation is fetched from the ‘statement’-
rule.

1. where [String string] :
2. 'Where' statement {
3. CullList cullList = new CullList(hashMapObjectList.get($string),

$statement.statementReturns);
4. hashMapObjectList.put($string, cullList.getResult());
5. }
6. ;

Listing 16-20: Where-rule.

16.3.5 ‘Set’-Rule
The ‘set’-rule (Listing 16-21) is the rule that instantiates the
‘setAttributeMain’-class. This happens in line 3.

1. set :
2. 'Set' VARIABLE1 = VARIABLE '.Attribute.' string1 = STRING ':=' (string2 = INTEGER |

string2 = REAL | string2 = STRING) {
3. SetAttributeMain setAttributeMain = new

SetAttributeMain(hashMapObjectList.get($VARIABLE1.text), $string1.text, $string2.text);
4. setAttributeMain.setAttribute();
5. }
6. ;

Listing 16-21: Set-rule.

79

16.3.6 ‘Statement’-Rule
The ‘statement’-rule (Listing 16-22) instantiates both the
‘AndOperator’-class and the ‘OrOperator’-class. This happens in line 8
and in line 14. Notice the ‘$statementReturns’-variable in line 4. If only
one relation is present in the this part of the query, the result of that
query is immediately returned by this rule. However when a second
relation is present and therefore the ‘AND’- or ‘OR’-operator is used,
this variable is not instantly returned, instead line 7 or line 13
transform it into a parameter which is passed into an instance of the
‘AndOperator’-class or the ‘OrOperator’-class.

1. statement returns [List<Boolean> statementReturns] :
2. relation1 = relation {
3. List<Boolean> firstBooleanList = new ArrayList<Boolean>($relation1.relationReturns);
4. $statementReturns = firstBooleanList;
5. }
6. ('And' relation2 = relation {
7. List<Boolean> tempBooleanList = new ArrayList<Boolean>($statementReturns);
8. AndOperator andOperator = new AndOperator(tempBooleanList,

$relation2.relationReturns);
9. List<Boolean> andBooleanList = new ArrayList<Boolean>(andOperator.getResult());
10. $statementReturns = andBooleanList;
11. }
12. |'Or' relation3 = relation {
13. List<Boolean> tempBooleanList = new ArrayList<Boolean>($statementReturns);
14. OrOperator orOperator = new OrOperator(tempBooleanList,

$relation3.relationReturns);
15. List<Boolean> orBooleanList = new ArrayList<Boolean>(orOperator.getResult());
16. $statementReturns = orBooleanList;
17. })*
18. ;

Listing 16-22: Statement-rule.

16.3.7 ‘Relation’-Rule
The ‘relation’-rule (Listing 16-23) can call one of six classes which
define the relational operators.

1. relation returns [List<Boolean> relationReturns] :
2. relationleft (
3. '=' relationright1 = relationright {
4. EqualOperator equalOperator = new EqualOperator($relationleft.relationleftReturns,

$relationright1.relationrightReturns);
5. List<Boolean> booleanList = new ArrayList<Boolean>(equalOperator.getResult());
6. $relationReturns = booleanList;
7. }
8. | '/=' relationright2 = relationright {
9. InEqualOperator inEqualOperator = new

InEqualOperator($relationleft.relationleftReturns, $relationright2.relationrightReturns);

80

10. List<Boolean> booleanList = new
ArrayList<Boolean>(inEqualOperator.getResult());

11. $relationReturns = booleanList;
12. }
13. | '<' relationright3 = relationright {
14. LessOperator lessOperator = new LessOperator($relationleft.relationleftReturns,

$relationright3.relationrightReturns);
15. List<Boolean> booleanList = new ArrayList<Boolean>(lessOperator.getResult());
16. $relationReturns = booleanList;
17. }
18. | '<=' relationright4 = relationright {
19. LessEqualOperator lessEqualOperator = new

LessEqualOperator($relationleft.relationleftReturns, $relationright4.relationrightReturns);
20. List<Boolean> booleanList = new

ArrayList<Boolean>(lessEqualOperator.getResult());
21. $relationReturns = booleanList;
22. }
23. | '>=' relationright5 = relationright {
24. GreaterEqualOperator greaterEqualOperator = new

GreaterEqualOperator($relationleft.relationleftReturns,
$relationright5.relationrightReturns);

25. List<Boolean> booleanList = new
ArrayList<Boolean>(greaterEqualOperator.getResult());

26. $relationReturns = booleanList;
27. }
28. | '>' relationright6 = relationright {
29. GreaterOperator greaterOperator = new

GreaterOperator($relationleft.relationleftReturns, $relationright6.relationrightReturns);
30. List<Boolean> booleanList = new

ArrayList<Boolean>(greaterOperator.getResult());
31. $relationReturns = booleanList;
32. }
33.)
34. ;

Listing 16-23: Relation-rule.

16.3.8 ‘Relationleft’-Rule
Not only the ‘cascade’-rule can instantiate the ‘GetEntityTypeMain’-
class, the ‘GetAttributeMain’-class, the ‘GetPropertyMain’-class and the
‘GetRelatedObjectsOperator’-class. The ‘relationleft’-rule (Listing 16-
24) is also able to do that. The ‘cascade’-rule applied these
instantiations to make a new selection, this rule however performs the
same action to acquire information about the current selection. This
information is then evaluated by the ‘relation’-rule.

1. relationleft returns [List<ArrayList> relationleftReturns] :
2. VARIABLE '.EntityType' {
3. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE.text));
4. GetEntityTypeMain getEntityTypeMain = new GetEntityTypeMain(objectList);

81

5. List<ArrayList> arrayListList = new
ArrayList<ArrayList>(getEntityTypeMain.getResult());

6. $relationleftReturns = arrayListList;
7. }
8. | VARIABLE '.Attribute.' STRING {
9. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE.text));
10. GetAttributeMain getAttributeMain = new GetAttributeMain(objectList, $STRING.text);
11. List<ArrayList> arrayListList = new

ArrayList<ArrayList>(getAttributeMain.getResult());
12. $relationleftReturns = arrayListList;
13. }
14. | VARIABLE '.Property.' STRING {
15. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE.text));
16. GetPropertyMain getPropertyMain = new GetPropertyMain(objectList, $STRING.text);
17. List<ArrayList> arrayListList = new

ArrayList<ArrayList>(getPropertyMain.getResult());
18. $relationleftReturns = arrayListList;
19. }
20. | VARIABLE '.' STRING {
21. System.out.println("Sorry, not yet implemented!!!");
22. // List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE.text));//
23. // GetAttributeMain getAttributeMain = new GetAttributeMain(objectList,

$STRING.text);
24. // List<ArrayList> arrayListListA = new

ArrayList<ArrayList>(getAttributeMain.getResult());//
25. // GetPropertyMain getPropertyMain = new GetPropertyMain(objectList,

$STRING.text);
26. // List<ArrayList> arrayListListP = new

ArrayList<ArrayList>(getPropertyMain.getResult());//
27. // List<ArrayList> arrayListList = new ArrayList<ArrayList>();
28. // arrayListList.addAll(arrayListListA);
29. // arrayListList.addAll(arrayListListP);
30. // $relationleftReturns = arrayListList;
31. }
32. | VARIABLE ('.*.EntityType' | '.*(' INTEGER? TRUE?').EntityType') {
33. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE.text));
34. GetRelatedObjectsOperator getRelatedObjectsOperator = new

GetRelatedObjectsOperator(objectList,
Integer.parseInt($INTEGER!=null?$INTEGER.text:"1"), $TRUE!=null?true:false);

35. List<ArrayList> getRelatedObjectsOperatorArrayListList = new
ArrayList<ArrayList>(getRelatedObjectsOperator.getResult());

36. List<ArrayList> arrayListList = new ArrayList<ArrayList>();
37. for (ArrayList arrayList : getRelatedObjectsOperatorArrayListList) {
38. GetEntityTypeMain getEntityTypeMain = new GetEntityTypeMain(arrayList);
39. List<ArrayList> GetEntityTypeMainArrayListList = new

ArrayList<ArrayList>(getEntityTypeMain.getResult());
40. FlattenList flattenList = new FlattenList(GetEntityTypeMainArrayListList);
41. arrayListList.add(flattenList.getResult());
42. }
43. $relationleftReturns = arrayListList;
44. }
45. | VARIABLE ('.*.Attribute' | '.*(' INTEGER? TRUE?').Attribute.') STRING {
46. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE.text));

82

47. GetRelatedObjectsOperator getRelatedObjectsOperator = new
GetRelatedObjectsOperator(objectList,
Integer.parseInt($INTEGER!=null?$INTEGER.text:"1"), $TRUE!=null?true:false);

48. List<ArrayList> getRelatedObjectsOperatorArrayListList = new
ArrayList<ArrayList>(getRelatedObjectsOperator.getResult());

49. List<ArrayList> arrayListList = new ArrayList<ArrayList>();
50. for (ArrayList arrayList : getRelatedObjectsOperatorArrayListList) {
51. GetAttributeMain getAttributeMain = new GetAttributeMain(arrayList,

$STRING.text);
52. List<ArrayList> getAttributeMainArrayListList = new

ArrayList<ArrayList>(getAttributeMain.getResult());
53. FlattenList flattenList = new FlattenList(getAttributeMainArrayListList);
54. arrayListList.add(flattenList.getResult());
55. }
56. $relationleftReturns = arrayListList;
57. }
58. | VARIABLE ('.*.Property' | '.*(' INTEGER? TRUE?').Property.') STRING {
59. List<Object> objectList = new

ArrayList<Object>(hashMapObjectList.get($VARIABLE.text));
60. GetRelatedObjectsOperator getRelatedObjectsOperator = new

GetRelatedObjectsOperator(objectList,
Integer.parseInt($INTEGER!=null?$INTEGER.text:"1"), $TRUE!=null?true:false);

61. List<ArrayList> getRelatedObjectsOperatorArrayListList = new
ArrayList<ArrayList>(getRelatedObjectsOperator.getResult());

62. List<ArrayList> arrayListList = new ArrayList<ArrayList>();
63. for (ArrayList arrayList : getRelatedObjectsOperatorArrayListList) {
64. GetPropertyMain getPropertyMain = new GetPropertyMain(arrayList,

$STRING.text);
65. List<ArrayList> getPropertyMainArrayListList = new

ArrayList<ArrayList>(getPropertyMain.getResult());
66. FlattenList flattenList = new FlattenList(getPropertyMainArrayListList);
67. arrayListList.add(flattenList.getResult());
68. }
69. $relationleftReturns = arrayListList;
70. }

Listing 16-24: Relatioleft-rule.

16.3.9 Remaining Rules
The other rules do not relate to a transition class. They do not
instantiate such a class and therefore they are not mentioned
separately.

1. relationright returns [String relationrightReturns] :
2. INTEGER {
3. $relationrightReturns = $INTEGER.text;
4. }
5. |REAL {
6. $relationrightReturns = $REAL.text;
7. }
8. |STRING {
9. $relationrightReturns = $STRING.text;
10. }
11. ;

Listing 16-25: Relationright-rule.

83

1. TRUE :
2. '+'
3. ;
4.
5. FALSE :
6. '-'
7. ;

Listing 16-26: True and false-rules.

1. VARIABLE :
2. '$' STRING
3. ;

Listing 16-27: Variable-rule.

1. INTEGER :
2. ('0'..'9')+
3. ;

Listing 16-28: Integer-rule.

1. REAL :
2. INTEGER+ ('.' INTEGER+)?
3. ;

Listing 16-29: Real-rule.

1. STRING :
2. (
3. '\u002A'..'\u002A'
4. |'\u003F'..'\u003F'
5. |'\u0030'..'\u0039'
6. |'\u0041'..'\u005A'
7. |'\u005B'..'\u0060'
8. |'\u0061'..'\u007A'
9.)+
10. ;

Listing 16-30: String-rule.

84

1. WS :
2. (' ' | '\t' | '\n' | '\r' | '\f') + {$channel = HIDDEN;}
3. ;

Listing 16-31: Whitespace-rule.

85

17 Appendix B: EG-ICE paper

The next few pages have been reserved for the paper, written together
with Jakob Beetz. We presented this paper at the International
Workshop for Intelligent Computing and Engineering, which was
organized in Germany from the 4th till the 6th of July 2012.

1

Towards a Framework for a Domain Specific Open Query Language for
Building Information Models

Wiet Mazairac, Jakob Beetz
Eindhoven University of Technology, The Netherlands

l.a.j.mazairac@student.tue.nl

Abstract. In this paper we present the on-going development of a framework for a Domain
Specific Open Query Language for Building Information Models. This query language will make
it possible to retrieve data from building information models stored on the open source
bimserver.org model server. Even though some partial solutions to this problem already have been
suggested, none of them are open source, domain specific, platform independent and implemented
at the same time. This paper provides an overview of existing approaches and conceptual sketches
of the language in development.

1. Introduction

Being able to obtain required information in time is one of the keys to success in the building
industry. Not too long ago, drawings were stored using file cabinets and sent by post. An
index simplified the process of retrieving the drawing needed. Over time the building process
has become more complex. The number of stakeholders involved in a design and construction
process has increased and so did the amount of information each actor generates. More recent
approaches to share and distribute information include shared building information models
stored on specialized servers, which enable the structured maintenance of large quantities of
data from various sources. New or altered designs can be uploaded to the server and only a
few moments later those design changes are at the disposal of others.

For an average building and construction project, the amount of information stored in a multi-
domain repository becomes very large and complex. However, information needs of various
project stakeholders differ substantially. For example, a construction engineer does not need
all the information stored in the common model and is e.g. not interested in the type of
suspended ceiling used in a building design. This makes the extraction of partial model
subsets or domain specific views on large models necessary. On a generic level, this is
addressed by the Information Delivery Manual (IDM) effort, and the Model View Definitions
(MVD) that are under ongoing development. However, these approaches rely on fixed sub
sets of information and do not allow an easy, project-specific assembly of views on the fly.
Although various approaches have been proposed for selecting and filtering data from a
server on which a building information model is stored, an open source, platform independent
solution for creating such queries is currently not available.

Most software environments designed to process building information models provide some
way to select or filter data. The BimServer.org project (Beetz et al, 2010) for example enables
end-users to download parts of the model from the server by providing GUIDs, selecting all
instances of a particular class, using filters (e.g. as generated by the mvdXML tool by Weise
et al) or by writing custom queries in JAVA. Other tools such as the Solibri Model Viewer
(http://www.solibri.com/) also provide ways to select part of the model. Although it offers
partial model extraction, sophisticated queries and constraint checks, these mechanisms are
not based on open, reusable specifications and cannot be tailored to individual needs in
straight-forward, non-proprietary ways.

2

2. Overview and analysis of existing querying approaches

Already, a number of querying approaches are available in order to extract data from large
model instances. They can be divided into two groups. The first category includes generic
querying approaches. These are more versatile, but might not be able to perform a very
specific task. Approaches specific to the AEC/FM domain fall into the second category. In
this section we provide an overview of these two categories of BIM querying approaches.

2.1 Generic Querying Approaches

Many of the existing database applications on the market use the Structured Query Language
(SQL) as the standard language. SQL was designed for managing data in a Relational
Database Management System (RDBMS). SQL makes it possible to create, read, update and
delete (CRUD) records. Designed on top of the .NET platform, the Language Integrated
Query (LINQ) is Microsoft’s technology to provide a language-level support mechanism for
querying data of all types. These types include in-memory arrays and collections, databases,
XML documents, and more. The Resource Description Framework (RDF) is a directed,
labeled graph data format for representing information in the Web. RDF is often used to
represent, among other things, personal information, social networks, metadata about digital
artifacts, as well as to provide a means of integration for disparate sources of information.
Although a number of different RDF query languages exist, the SPARQL Protocol and RDF
Query Language (SPARQL) is the most popular one and has been officially standardized by
the W3C. The Object Constraint Language (OCL) is a language for precise textual
descriptions of constraints which apply to graphical models captured in the Unified Modeling
Language (UML).

2.2 BIM querying Approaches

Large and complex engineering models have spurred the need for the creation of query
languages already over a decade ago. One of the early examples is the Express Query
Language (EQL) proposed by Huang (1999) designed as a generic query extension to STEP
initiative. The Partial Model Query Language proposed by Adachi (2002) aims to provide a
general means for select, update, and delete partial model data that contains specific part of
product model data. This language enables users to write recursive and conditional
expressions based on SQL. However it does not provide the possibility to create or add model
data to an existing building information model. The Georgia Tech Process to Product
Modeling by G. Lee et al, (2006) is a product modeling method to (semi-) automatically drive
a product model from collected process information. A process modeling module (called the
Requirements Collection and Modeling (RCM) module) can capture the contents, scope,
granularity, and semantics of information used in a process model. Later, the captured
information can be structured as a product model. GTPPM does not support several IDM
implementation details, it cannot automate the generation of an entire IDM. Benefits of using
GTPPM as a method to create an IFC IDM view include traceability and reusability. The
Generalized Model Subset Definition (GMSD) schema devised by Weise et al (2003) enables
the realization of client/server or file based transactions in a structured manner, at different
levels of granularity, and for different data exchange formats. GMSD is specifically oriented
to the support of EXPRESS-based models, with special attention to IFC. GMSD is not a
language per se but a schema which allows a neutral definition format with possible mappings
for various practical data exchange and server/client realizations. Borrmann et al (2006)
introduced the concept of a spatial query language for Building Information Models. It
provides formal definitions using point set theory and point set topology for 3D spatial data

3

types as well as the directional, topological, metric and Boolean operators employed with
these types. It also serves to outline the implementation of 3D spatial query processing based
on an object-relational database management system. The commercial application “Solibri
Model Viewer” provides several ways to select or view parts of the Building Information
Model. However the methods of selection and filtering apply to this software package only.
The selection and filtering methods are not platform independent and therefore cannot be
exported to or imported from other software packages.

3. Design of a query language for building information models

The framework to be developed should enable the end user to interact with a building
information model following the CRUD principle. By using this framework, records in the
building information model can be created, selected, updated, and deleted. Adhering to the
network-like structure the IFC model exposes in particular ways, recursive queries should be
made possible. This enables the end user to collect information even from objects that are
related to other objects via an arbitrary number of relationships edges. By using a syntax close
to the natural language non-expert users should be enabled to use these querying mechanisms
on an ad-hoc, per-project level. Instead of using the lexically correct IFC class names such as
IfcWallStandardCase and IfcDoor, we would like to enable users to use natural language
terms such as ‘Wall’, ‘Walls’ and ‘Door’ in the end. Using look-up dictionaries and structured
vocabularies such as the International Framework for Dictionaries (IFD), localizations of the
query language can be achieved.

Objects in a building information model often are linked to each other through a complex
network of relationships. A window for example is related to an opening, that opening is
related to a wall and the wall is related to a building storey etc. Often, even seemingly
straight-forward relations between information entities in a BIM require complex navigation
of the underlying model. To retrieve a simple property such as the fire rating of a given door
for example demands already quite some knowledge of the underlying data model from an
interested domain expert and results in a complex query: The desired value is not directly
provided as an explicit attribute of e.g. the IfcDoor entity, but is loosely attached to a door
instance through a property set. Apart from explicit (if indirect) relationships that can be
found in the IFC model, other, implicit relationships networks can be extracted from such
models. A prominent example are room connectivity graphs which can be used to check
building code compliance or minimize evacuation times of buildings. A requirement for query
mechanisms to allow a query of an arbitrary room to the nearest exit is its ability to run
recursively through the network of room nodes that are connected by edges (representing
doors etc.). Enabling end-users to retrieve answers to common questions such as “How many
windows are on this floor?”, “What is the fire rating of all external doors?” and “What is the
shortest way to the exit?” without requiring intimate knowledge of a complex BIM schema
such as the IFCs is the use case of the proposed language.

By providing a modular architecture, more functionality will be integrated in future. Through
the addition of query extensions the base language will allow more complex uses. Prospective
extensions include spatial reasoning operators or domain specific operators that e.g. require
the intermediate computation of model properties by means of procedural functions or
complete external simulations which are propagated back into the model.

4

4. Implementation

In our prototype implementation, the model is based on the Eclipse Modeling Framework
(EMF). The model specifications are described in the XML Metadata Interchange (XMI).
XMI is a standard for exchanging metadata via Extensible Markup Language (XML) and
integrates the industry standards Extensible Markup Language (XML), Unified Modeling
Language (UML) and Meta Object Facility (MOF). UML and MOF both are maintained by
the Object Management Group (OMG).

The bimserver.org platform already provides some means to extract partial building
information models from a repository. Selections can be made by entering an Object ID, a
Global Unique ID, or all instances of a selected entity in the IFC schema. It is also possible to
create custom queries by writing Java code, however the threshold to actually use this feature
is high and the learning curve steep. Because of that and because the bimserver.org is an Open
Source project we integrate a Domain Specific Language (DSL) that wraps the underlying
querying mechanisms and hides the low-level technicalities from end-users into the
bimserver.org platform.

ANTLR (Another Tool for language Recognition) is a tool used in the construction of
language tools. It can be used to implement Domain Specific Languages. ANTLR reads a
language description file called a grammar and generates source files and auxiliary files. Most
uses generate a lexer and a parser. A lexer reads an input stream and divides it into tokens.
The parser reads a token stream and matches phrases in a target language. Eclipse, the
ANTLR plugin for the Eclipse SDK and an IFC to EMF converter are the tools we use to
develop this new domain specific language. By using the IFC to EMF converter, integrating
this new framework into the BimServer project will be a straightforward task, yet
performance differences between in-memory and on-disk models cannot be estimated at this
time of the development.

In the next paragraph the Backus-Naur Form notation to describe the syntax of the proposed
Domain Specific query Language is provided. Note that the specification provided currently
limited mainly to the ‘select’ part of the language features, whilst ‘create’, ‘update’ and
‘delete’ are still work in progress
 <bimql> ::= <create> | <select> | <update> | <delete>

 <create> ::= "CREATE" "?" <ident> ("SET" <leftterm> "=" <rightterm>)+

 <select> ::= "SELECT" "?" <ident> <statement>+

 <update> ::= "UPDATE" "?" <ident> <statement>+ ("SET" <leftterm> "="

 <rightterm>)+

 <delete> ::= "DELETE" "?" <ident> <statement>+

 <statement> ::= <wherestatement>

<wherestatement> ::= "WHERE" <expression>

 <expression> ::= <realtion> ("AND" | "OR" <relation>)*

 <relation> ::= <leftterm> ("==" | "!=" | "<" | "<=" | ">=" | ">") <rightterm>

 <leftterm> ::= "?" <ident> (("." | ".*.") (<ident> | "ENTITYTYPE" |

 "ATTRIBUTENAME"))+

 <rightterm> ::= ('"' <ident> '"') | <number>

 <ident> ::= <letter> (<letter> | <digit>)*

 <number> ::= <digit>+

 <letter> ::= ("a".."z") | ("A".."Z")

 <digit> ::= "0".."9"

5

Figure 1: Prelimenary BNF of the proposed query language

The first rule is the ‘bimql’-rule, denoting the start of the query. This rule enables the user to
choose the action to be carried out. The top-level choice are the four actions ‘create’, ‘select’,
‘update’ and ‘delete’. Only one action can be selected at a given time. In all four cases the
token is followed by a variable designated by the question mark sign (this syntax is inspired
by other languages such as SPARQL). Variable names are freely chosen by the user and will
be later assigned with lists of query results that are returned to the end-user. The ‘create’-rule
is followed by the SET-token. This token, the ‘leftterm’-rule, the assignment-token and the
‘rightterm’-rule make it possible to assign properties to the entity created. More than one
property can be assigned in a single query execution. The variable in the ‘select’ rule is
followed by one or more statements. Statements make it possible to specify what to select and
to narrow the selection. The ‘update’ acts as a hybrid rule in which a first statement selects the
entity or graph node to be selected followed by a SET-token to determine its new value.
Currently the only statement specified is a ‘where’ statement. Every ‘where’ statement starts
with a token that identifies it and is followed by an expression-rule. An expression is a single
relation or a combination of several relations. If more relations are specified within one
expression these relations combined using the ‘OR’-token or the ‘AND’-token. These tokens
indicate a dis- or conjunction between the relations. The relation-rule is specified by a
‘leftterm’- and a ‘rightterm’-rule and a collection of operator-tokens that separate them. The
‘leftterm’-rule points to the property or attribute to be changed or is involved in any other
actions. The ‘leftterm’-rule starts with the variable defined earlier by the user. It is followed
by the "."-token or the ".*."-token. Similar to EXPRESS language rules, the "."-token
indicates a direct relation between its operands. In addition to these common combinations
typically an entity name followed by an attribute (e.g. ‘IfcDoor.GlobalId’), the ".*."-token
indicates an indirect relation between its operands. The ‘*’ asterisk is a placeholder that
allows the matching of relation chains of arbitrary depths. This allows shortcuts and
abbreviations in queries to act on nodes that are connected only indirectly via several edges
and nodes in between them. A frequent example of such chains are properties in property sets
assigned to entities (see figure 2). In future versions of the language, frequently used patterns
will also be added as explicit operators (for example, the PSet case might be directly
addressed with ‘[Entity].hasProperty’ constructs). Such explicit domain specific query
operators would not only be syntactic sugar, but would also limit the search and graph-
traversal and –matching scope, which is expected to yield performance enhancements esp. on
larger models. These to operators can be followed by an identifier, the ‘ENTITYTYPE’- or
‘ATTRIBUTENAME’-tokens. The identifier can be used to base actions on specific
properties or attributes found in a building information model. The ‘ENTITYTYPE’- and
‘ATTRIBUTENAME’-tokens can be used to specify the type of an entity (for example
IfcDoor) or the name of an attribute (for example ‘OwnerHistory’ or ‘OverallHeight’). The
ATTRIBUTENAME-token makes it for example possible to return all entities which have a
‘height’-attribute. This allows for both schema-level and instance-level query operations and
is future proof for later versions of the IFC model. The ‘rightterm’-rule for the assignment of
comparison can be a string. Numeric strings will be automatically matched to number types
such as double or integer through conversions.

5. Examples

The development of this new Domain Specific Language is still in progress. In this section we
will present a few examples in which this new language is used. These examples will give an
insight in the basic structure of the framework.

6

The first examples show how to select only those building elements that satisfy certain
criteria. We will for example select only those spaces that have a floor area larger than 20
square meters. This example also serves as an illustration as to why a domain specific
language that provides syntactic simplifications compared with a general purpose language is
useful for complex models such as the IFC. The relation of an entity (IfcSpace in this
example) with its properties that go beyond the few direct attributes defined in the core
schema spans constitutes a complex sub graph. This requires several graph network ‘hops’ or
nested iterations in procedural programming approaches and nested joins in traditional SQL
based query languages.

Figure 2: Query Shortcut against the Traditional Graph-connection

Although the information in an IFC model is organized very well, some steps are needed to
retrieve certain information. This new framework streamlines that process.

5.1 Read

The first examples will retrieve parts of the IFC model. Parts of an IFC model can be all the
windows, the first floor or all the columns, but a part can also be a list of numbers, for
example all the doors and their dimensions. The first example returns all the spaces.
SELECT ?mySpace WHERE

 ?mySpace.ENTITYTYPE == "IfcSpace"

The second example returns all the spaces which area is larger than 20 square meters. Notice
the .*. operator. It indicates that the operand it follows has a relation with the operand it
precedes. In the case provided, it will match instances of the ‘IfcSpace’ entity which have a
‘NetFloorArea’ property assigned to them by an IfcElementQuantity property set. Matching
such a sub graph might involves the use of (implicit) inverse relationships or the traversal of
the explicitly present RelatedObjects/RelatingPropertyDefinition objectified relations in an
inversed edge direction.
SELECT ?mySpace WHERE

 ?mySpace.ENTITYTYPE == "IfcSpace"

 ?mySpace.*.NetFloorArea > "20"

The last example returns the floor area of a space which GlobalID is known. Notice the
statement in the second line. This statement is true when the value stored in the ‘Name’
attribute equals ‘NetFloorArea’. This statement is also true when the name of an attribute
equals ‘NetFloorArea’.
SELECT ?myNetFloorArea WHERE

 ?myNetFloorArea.NAME == "NetFloorArea" FROM

 ?mySpace WHERE

7

 ?mySpace.GlobalID == "3Dn6BYWjfErxE1JocogMGQ"

Figure 3: Select Syntax Diagram

5.2 Delete

It will also be possible to delete elements from an IFC model. The first example deletes one
door. The GlobalID of that door is known.
DELETE ?myDoor WHERE

 ?myDoor.GlobalID == "3Dn6BYWjfErxE1JocogMGQ"

The second example deletes all doors whose height is more than 2 meters.
DELETE ?myDoor WHERE

 ?myDoor.ENTITYTYPE == "IfcDoor"

 ?myDoor.OverallHeight > "2"

Figure 4: Delete Syntax Diagram

5.3 Update

The update feature will make it possible to change the values of an attribute or property. In
the next example the name of a space is altered.
UPDATE ?mySpace WHERE

 ?mySpace.GlobalID == "3Dn6BYWjfErxE1JocogMGQ"

 SET ?mySpace.NAME = "Kitchen"

Figure 5: Update Syntax Diagram

6. Summary and Outlook

In this paper we introduced the on-going developments of a domain specific query language
for the selection, addition and update of partial aspects in building information models. We
have introduced our conceptual approaches and have outlined some of the requirements we
have identified. We have also shown some examples in which our new framework is applied.
Early stages of a prototypical implementation of the proposed language look promising and
the general interest and positive feedback to the work so far will drive the future
developments. The language will be designed and implemented on top of the bimserver.org
platform even though it will be generic enough to be adapted in other implementations of
IFC-based modeling and development tools. At this stage, it is too early to provide indicative

8

performance measures. The ongoing development is focused on the identification of frequent
use patterns in order to create syntactic shortcuts (see the ‘hasProperty’ example in section 4),
the efficient implementation on the bimserver platform and experiments with fuzzy natural
language enhancements that would potentially increase usability by allowing end-users to
operate with non-technical vocabulary (‘walls’, ‘wall’, ‘Wand’, ‘muur’ covering IfcWall and
IfcWallStandardcase). We are investigating the inclusion of user feedback from the research
and practice communities and will aim at a formal specification proposal in the near future.

References

Adachi, Y. (2003). Overview of Partial Model Query Language. In proceedings of the 10th ISPE International
Conference on Concurrent Engineering (ISPE CE 2003), 549-555.

Prudhommeaux, E., Seaborne, A. (2008). SPARQL query Language for RDF. Available at:
http://www.w3.org/TR/rdf-sparql-query/ (Accessed December 7, 2011).

Beetz, J., van Berlo, L.A.H.M., de Laat, R. and Bonsma, P. (2011). Advances in the development and
application of an open source model server for building information. In proceedings of the 28th International
Conference of CIB W78.

Borrmann, A., Beetz, J. (2010). Towards spatial reasoning on building information models. In proceedings of the
8th European Conference on Product and Process Modeling (ECPPM), 1-6.

Borrmann, A., Rank, E. (2009). Topological analysis of 3D building models using a spatial query language.
Advanced Engineering Informatics, 23(4), 370-385.

Borrmann, A., van Treeck, C., Rank, E. (2006). Towards a 3D spatial query language for building information
models. In Proceedings of the 11th Int. Conf. on Computing in Civil and Building Engineering (ICCCBE-XI).

Eastman, C., Lee, J., Jeong, Y., Lee, J. (2009). Automatic rule-based checking of building designs. Automation
in Construction, 18(8), 1011-1033.

Eastman,C. (1999). Building product podels: Computer environments supporting design and construction CRC
Press.

Huang, L. (1999). EXPRESS Query Language and Templates and Rules: Two languages for advanced Software
System Integrations. Dissertation Ohio University

Hussmann, H., Zschaler, S. (2004). The Object Constraint Language for UML 2.0 - Overview and assessment.
Upgrade Journal, 5(2).

Kriegel, A., Trukhnov, B. (2003). SQL bible. Wiley Publishing, Inc.

Lee, G., Eastman, C., Sacks, R. (2003). GT PPM user manual. Available at:
http://dcom.arch.gatech.edu/gtppm/dn/GT%20PPM%20USER%20MANUAL_r4_1.pdf (Accessed December
24, 2011).

Lee, G., Sacks, R., Eastman, C. (2007). Product data modeling using GTPPM — A case study. Automation in
Construction, 16(3), 392-407.

Martin, J. (1983). Managing the database environment. Prentice Hall.

Parr, T. (2007). The Definitive ANTLR Reference. Pragmatic Bookshelf.

Rattz, j., Hayes, D. (2009). Pro LINQ language integrated query in VB 2008. Apress.

Warmer, J., Kleppe, A. (2003). The Object Constraint Language. Addison Wesley.

Weise, M., Katranuschkov, P., Scherer, R. (2003) Generalised Model Subset Definition schema. In Construction
IT: Bridging the Distance, Proceedings of the CIB-W78 Workshop

	final report v3
	20

