EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Conservative application-level performance analysis through simulation of a multiprocessor
system on chip

Nelson, A.T.

Award date:
2009

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e8c5823f-c619-4d04-85d7-d970e32fd91c

Conservative Application-Level Performance
Analysis through Simulation of a Multiprocessor
System on Chip

Andrew T. Nelson

24th March 2009

Abstract

Real time applications require temporal guarantees to ensure the validity of
their output. Firm RT applications must meet their temporal requirements
otherwise the validity of their output sharply decreases. For these applications
formal models are used to analytically calculate bounds on temporal behaviour.
The validity of early, or late, output from soft RT applications does not decrease
as sharply after the deadline has been missed. These applications are often more
complicated to model and do not adhere to equally strict programming mod-
els, e.g. input dependent application execution. Running RT applications on
MPSoCs only complicates the issue further. Individual application tasks may
be mapped to different cores complicating the modelling of the RT applica-
tion further. Simulation of RT applications on MPSoCs offers an alternative to
formally modelling RT applications. In this thesis the application of a conserva-
tive simulation technique to provide application-level performance guarantees in
network-based SoC, is demonstrated. The approach is application independent
allowing its application to any deterministically executing application that can
run on the system. Conservative guarantees are produced on a per execution
trace basis. Different execution traces may be produced by inputting different
datasets. The approach is verified through the application of the technique to
artificial test-case applications along with a real-life application in the form of a
JPEG Decoder. The simulation results of the test cases are compared with an
FPGA synthesised instance of an MPSoC system to show that the model does
facilitate conservatively timed simulation.

Contents

1 Introduction

1.1
1.2
1.3
14

Introduction
Related Work
Hardware Architecture
Contributions & Thesis Overview

2 Modelling the Athereal NoC

2.1
2.2
2.3
24
2.5
2.6
2.7

Connection Model o Lo
Hthereal NoC
Latency Rate Abstraction
Modelling the Producing NIs
Analytical CSS LR Value Derivation for TDMA Arbitration . . .
Algorithmic DSS LR Value Derivation for TDMA Arbitration . .
LR Abstraction of Slave Side Arbitration and Memory Access . .

3 Implementation of the NoC Model

3.1
3.2
3.3
3.4

Silicon Hive Development Tools
Implementing the Model
Application Level Inter-IP Synchronisation Conservativeness . . .
Application-Level Conservative Guarantees

4 Case Studies

4.1
4.2
4.3

Example of LR Value Derivation
Artificial Case Studies
JPEG Decoder Case Studies

5 Conclusions & Future Work

5.1

Future Work

ii

Chapter 1

Introduction

Soft Real Time applications such as a video decoder have temporal deadlines
that need to be met to maintain smooth playback. A combined formal model of
the application and the hardware to which it is mapped facilitates per trace ana-
lytical performance analysis. Creating formal models can be a complex and time
consuming task for all but the simplest of applications. In a measure-modify
design cycle, such as that illustrated in Figure 1.1a, time between iterations
may be relatively slow.

In this thesis conservative simulation is proposed as an alternative to for-
mal modelling for application-level performance analysis. In a measure-modify
design cycle, such as that illustrated in Figure 1.1b, modifications to the appli-
cation and hardware description only need to be compiled, linked and simulated
to generated per trace guarantees. This allows the designer to focus on tweaking
the application and hardware platform without having to worry about how to
formally model it.

In this Chapter a detailed introduction to this thesis work is given in Sec-
tion 1.1. In Section 1.2 an overview of work related to this thesis and where this
thesis fits in is given. The hardware architecture that is used throughout this
thesis follows a predictable hardware template. The specific configuration of the
hardware platform is presented in Section 1.3. An overview of the contributions
made in this thesis is presented in Section 1.4 along with an overview of the
contents of the rest of this thesis.

1.1 Introduction

Real Time applications have temporal constraints to adhere to. The rigidity of
this adherence can be defined subjectively as a firm or soft constraint [3]. Firm
RT applications must meet their deadlines or the validity of their output will be
considerably devalued, e.g. a VOIP application outputting “garbled” speech.
Soft RT applications can miss some deadlines without such a steep devaluation
of their output, e.g. a video decoder dropping frames.

Some applications composed of tasks mapped on a multiprocessor system
can be modelled as Cyclo-Static Dataflow (CSDF) Graphs [2] to facilitate ana-
lytical calculation of performance guarantees that are independent of the input
data through the application of dataflow analysis techniques [8]. The technique

Application Platform
Code Description

Application Platform
Code Code

Analytical
Calculation

(a) Per trace guarantees that are analytically ~ (b) Per trace guarantees that are generated
calculated from CSDF graphs. through conservative simulation.

Figure 1.1: Platform based design flows for formal modelling and simulation.

models the application, interconnect and mapping combined, capturing the en-
tire system in a single analytical model. Due to the restricted applicability of
CSDF graphs, this technique only applies to a small subset of applications. A
design flow for this technique is shown in Figure 1.1a. The hardware platform
is modelled as a CSDF graph as described in [8]. The application must also be
modelled as a CSDF graph, which is potentially a complex and time consuming
task if it is possible at all in some instances. The hardware and application
models are combined facilitating per trace performance analysis, which is also
a potentially complex and time consuming task. The analytically calculated
performance guarantee for a trace is used to make decisions on application and
hardware tweaks.

In this thesis conservative application-level performance analysis through
simulation of a MPSoC is proposed as an alternative to formal modelling of
RT applications. Applications that are deterministic in execution may be com-
piled and simulated to produce per trace guarantees. Non-determinism occurs
through the application execution depending on random numbers, synchroni-
sation with non deterministic hardware components and clock time. The non-
determinism effects the trace through the application execution making it im-
possible to give guarantees through simulation. The conservative simulation of
a MPSoC that will be described in this thesis is a combination of cycle-accurate
simulation and Latency-Rate (LR) modelling. Cycle-accurate simulation is used
to model the IP-cores and parts of the NoC, while LR servers are used to
conservatively model the run-time arbitrated components as described in [14].
Guarantees can subsequently be given on a per trace basis for applications that
are deterministic in execution. A trace in this instance is defined as a unique
execution path through the application’s program instructions.

A predictable hardware design template is described in [7] that has been
followed in the creation of the MPSoC implementation that is used in this the-

sis. Components are combined at the IP level to create a predictable system.
The computational cores are simple VLIW processors. The cores are stripped
of components that effect the predictability of their execution. There are no
optimisations such as out of order execution of instructions or memory caching.
Parallelisation of instructions is achieved in the construction of the VLIW in-
structions by the application compiler. Components are connected via an Athe-
real NoC that is configured to provide guaranteed service. In this configuration
bounds on latency and throughput are provided for messages traversing the
NoC and for memory arbitration. Details of the MPSoC system can be found
in Section 1.3.

The SDK from Silicon Hive [13] is used as a platform for the modelling and
simulation of the MPSoC system. The Silicon Hive SDK has the ability to create
and simulate multiprocessor systems on chip. Simulation of the processors is
carried out through cycle accurate Instruction Set (IS) simulation. Using the
Silicon Hive SDK’s simulation as a starting point a NoC model is implemented
that conservatively abstracts away from the fine detail of the NoC’s mechanics
while still capturing the NoC’s behavioural details. Non-runtime arbitrated
components are modelled cycle accurately as a delay. Run time arbitrated
components are modelled conservatively as Latency Rate (LR) servers. LR
servers are a method of generalising the timing characteristics of a run time
arbitrated component into two values representing the sustained Rate that the
component can maintain and the Latency until it can conservatively maintain
that Rate. This reduces the complexity of realising the component in a model
for simulation, instead shifting the responsibility to derivation of the LR values.

1.2 Related Work

A lot of research has been carried out in the last few years on the application-
level modelling and simulation of MPSoCs. A common thread has been the
abstraction from RTL-level simulation in order to speed up simulation times.
The variability of the abstraction approach has lead to many different MPSoC
simulation frameworks being developed.

In [1] a cycle accurate MPSoC simulator called MP-ARM is described. The
MP-ARM platform uses SystemC as its modelling and simulation environment.
The main focus of the work is on providing a complete platform for MPSoC
research, e.g. exploring the MPSoC design space. Completeness in this sense is
an MPSoC platform where all the IP-level components are simulated, a fully op-
erational OS port and code development tooling. This facilitates the simulation
of applications that were compiled for the ported OS.

A RTOS is used for scheduling in the ARTS MPSoC platform simulation
framework described in [10]. Unlike in [1] where the application could be com-
piled and run on the OS, in [10] applications first need to be modelled as dataflow
graphs before they can be simulated. In [10] it does not state how the timing
values for the dataflow graphs are calculated. The work in this thesis avoids the
necessity for the potentially complex and time consuming task of formal mod-
elling of the application. Applications in this work can simply be mapped to
the hardware, compiled, linked and simulated to provide per trace guarantees.

While not specifically aimed at MPSoC simulation, it is described in [9] how
a hybrid simulation model can be implemented using a combination of ISS and

abstract RTOS. The RTOS is abstracted as a systemC module that calculates
the schedule to be executed by the ISS. In order to provide timed performance
analysis the RTOS model is annotated with average timings. The simulation
timings can therefore not be guaranteed to be conservative, as is bore out by
the simulation results in [9]. An OS or RTOS is not used for the work in this
thesis. Instead a fast measure and redesign cycle, illustrated in Figure 1.1b,
facilitates mapping an application directly to the hardware.

The work in [14] shows that it was possible to conservatively model run-
time arbitration as Latency Rate servers and incorporate the Latency Rate
servers in a dataflow graph. In [8] a formal conservative application-level MP-
SoC modelling method is proposed, using CSDF graphs to model applications
on a predictable SoC. The formal model allows the analytical calculation of
temporal bounds, on a per-trace basis, for the application on the SoC. In [§]
it is described how individual Athereal NoC connections can be represented as
two channels abstractly modelled as Latency Rate servers.

In this thesis simulation is proposed as an alternative to formal modelling for
conservative application-level performance analysis. A connection model using
the principles of the two channel connection model in [8] is used to conserva-
tively model transaction times in simulation. Runtime arbitrated components
are modelled as Latency Rate (LR) servers as described in [14]. This thesis
demonstrates that the method to calculate the Latency component of the LR
values for TDMA arbitration described in [14] is overly conservative for TDMA
arbitration tables that do not provide service in a continuous block. An al-
gorithmic method is described in this thesis that facilitates the derivation of
shorter yet conservative Latency values.

1.3 Hardware Architecture

The hardware architecture of the system that is used throughout this thesis
follows the predictable system architecture template from [7]. The work in
this thesis is applicable to the template and not just the system used for the
work in this thesis. The system used for the work in this thesis consists of 5
processing cores, some shared memory, a frame buffer, and a timer peripheral,
as illustrated in Figure 1.2a. The processing cores are simple VLIW processing
cores without features that effect determinism such as memory caching or out of
order instruction execution. Silicon Hive [12] Pearlray processing cores are used
as they satisfy these requirements. The cores contain some internal memory,
program memory and 3 issue slots. Instruction level parallelism is achieved in
the compiler. This makes the complexity of optimising the code execution a
compiler, instead of a processor task. The instructions execute on the cores in
a deterministic manner. In software the cores are modelled using Instruction
Set Simulation (ISS) to provide cycle accurate simulation. Internal memory
access times are taken into account in the ISS. One of the issue slots and the
Pearlray’s slave port have access to the internal memory. The arbitration time
of any contention is not taken into account by the ISS. As such the case studies
in this thesis avoid contention by not providing cores direct access to the internal
memory of other cores, and by the host not interacting with the cores internal
memory during the timing of the tasks.

The memory (Mem) and framebuffer (FrmBuf) are shared memory mapped

HAthereal NoC

\i \i \

Mem FrmBuf Timer

FPGA SIM
@ <36 Code + HRT API x86 Code + HRT API
(J HDL + Control Code HSS API + LR Abstraction
@ HDL + Program Code ISS + Program Code
O HDL HSS API

(a) System hardware configuration.

Corel Core2 Core3 Cored Coreb

L Mem FrmBuf Timer)

(b) The NoC Connections use case used for the work in this thesis. All arrows
represent NoC Connections. All arrows depict the Master to Slave relationship.
Dashed arrows indicate the extra connections that are created by the 5 core
JPEG case study.

Figure 1.2: System Configuration.

data storage locations. Mem is a shared memory location that can be read and
written to making it suitable for inter-core communication, as well as storing
relatively large datasets that do not fit in the core’s internal memory. FrmBuf
is a shared memory location that can be written to by the cores but is read from
by a display device, connected to the FPGA board. Both of these components
are modelled in software using the provided Silicon Hive toolset memory devices.

The provided Silicon Hive toolset memory devices do not model access times.
Memory accesses take zero time. The simulator therefore does not perform
memory arbitration as concurrent memory accesses are possible at any instance.
Memory access times and arbitration are taken into account in the connection
model, as described in Section 2.7.

The Timer device is a 32 bit counter that increments every clock cycle. The
counter is accessible on a memory mapped address allowing the clock to be read
and reset. For software simulation the functionality of this device was recreated
using the Silicon Hive Hive System Simulator (HSS) API to make a custom
device that could be integrated into the system.

The AEthereal NoC [5] provides a predictable interconnect for the inter-IP
communication. The Athereal NoC is predictable as bounds can be given on
latency and throughput of transactions across the NoC. In Chapter 2 details are
given as to how the Athereal can be conservatively modelled for use in conser-
vative application-level performance analysis through simulation of a MPSoC.

1.4 Contributions & Thesis Overview

The rest of this thesis is organised as follows. In Chapter 2 it is explained
how the connection model from [7] can be modified to model an Ethereal NoC
[5] connection. A connection model is contributed that uses a combination of
cycle accurate simulation, and LR abstraction for runtime arbitrated compo-
nents. A brief explanation of the principles of LR abstraction is given along
with the mathematical theory to calculate LR values for the Athereal NoCs
TDMA routing tables. It is shown that the analytical LR derivation method is
unnecessarily over conservative. An algorithmic method to calculate a tightly
conservative Latency component is contributed that uses the principles of the
analytical method.

In Chapter 3 it is explained how the theory of modelling the Athereal NoC,
as described in Chapter 2, is implemented as a NoC model system component
that can be integrated into the virtual hardware platform. The implementation
of the Athereal NoC model is also a contribution of this thesis. In Chapter 3
it is demonstrated that application level conservativeness is not automatically
conferred, for application level inter-IP synchronisation in shared memory, even
when the hardware level is conservatively modelled. An overview of the Sili-
con Hive SDK is also given in Chapter 3. The Silicon Hive SDK is used to model
the hardware platform and provide the simulation environment, in which the ap-
plication is simulated on the virtual hardware platform. A detailed description
of how the Athereal NoC model is actually implemented. A description is also
given as to how the model operates to conservatively model NoC transactions.
It is demonstrated that application level conservativeness, for inter-IP synchro-
nisation in shared memory, is not obtained solely by conservatively modelling
the hardware level. A method is demonstrated in this thesis, to conservatively
model the inter-IP synchronisation in shared memory through the use of a com-
munication library. The rationality behind how the implemented model can
conservatively bound the implementation through simulation is also explained.

In Chapter 4 the evaluation of conservative simulation through the use of
case studies is contributed. Artificial applications, and a real life application
in the form of a JPEG decoder, are simulated on the virtual hardware system.

Results from the simulations are compared with results from running the appli-
cations, on an FPGA synthesised version of the hardware system. Results are
also compared to a virtual hardware system where NoC transactions and mem-
ory accesses are instantaneous, allowing the contribution of the NoC timings to
be isolated from the other results. All simulations are carried out using both
methods of LR value calculation. Individual Athereal NoC connection tests are
carried out where tests are performed on load and store transactions to and
from external memories, from one of the cores. The aim of the connection tests
is to isolate the behaviour of the different transaction types so that they may be
analysed. In another case study the communication library is used in a stream-
ing application. The simple application streams data from the first core, via the
second core to the third core using the C-HEAP [11] communication protocol.
The effect of application-level synchronisation granularity is investigated in this
case study.

A JPEG decoder application is used to illustrate the applicability of the
conservative simulation technique on a real life application. The JPEG decod-
ing application is mapped onto the hardware system, conservatively simulated
and the results analysed in comparison to an FPGA implementation of the sys-
tem. In a separate case study the JPEG decoding application is mapped onto
the hardware system based on a theoretical NoC connection use case. This
case study illustrates the flexibility of using simulation to produce conservative
timing analysis.

In Chapter 5 concluding statements are made relating to the contents of this
thesis. Proposals are made for possible future applications of the simulation
technique described in this thesis. Future modifications are also proposed to
increase the functionality of the technique.

Chapter 2

Modelling the Athereal
NoC

NoCs such as Athereal described in Section 2.2 offer bounds on latency and
throughput of transactions sent across the network. In [8] it is described how
to extend the end-to-end guarantees of the NoC beyond the NoC’s Network
Interfaces (NI) to incorporate the IPs. This is achieved by modelling individual
NoC connections as Cyclo Static Dataflow (CSDF) graphs [2] and conserva-
tively modelling run-time arbitration components as Latency-Rate (LR) servers
[4, 14]. Applications that can be described as CSDF graphs, could then be
conservatively bounded through the analytical calculation of worst-case timings
on a per execution trace basis.

In the method described in this thesis, connections are modelled as a combi-
nation of cycle accurate representation of components and LR servers for run-
time arbitrated components in order to reduce the level of abstraction and there-
fore increase accuracy while maintaining conservativeness. The NoC model,
when integrated into a MPSoC simulation environment, facilitates the conser-
vative simulation of applications that exhibit deterministic execution, i.e. The
execution path or trace does not depend on random numbers, synchronisation
with non-deterministic hardware or the clock time.

In this Chapter a connection model is contributed that uses a combination
of cycle accurate and Latency Rate abstraction. This model is described in
Section 2.1. The Athereal NoC is examined in Section 2.2, in particular how
Hthereal NoC connections can be modelled independently. Section 2.4 explains
how the producing NIs can be modelled using various degrees of abstraction.
The principles of Latency Rate abstraction are explained in Section 2.3. Sec-
tion 2.5 describes how LR values can be calculated analytically from Athereal
TDMA arbitration tables. It is shown in Section 2.6 that the LR values derived
using the analytical method can be unnecessarily overly conservative for some
TDMA tables and demonstrates an algorithmic method for LR value derivation
that produces tight conservative LR values. The LR abstraction of the Slave
side memory arbitration and memory access is described in Section 2.7.

[Master IP I

credit return

UINJOI JTPAID

N B

[Slave IP]

Figure 2.1: Example connection through contention free routing using pipelined
time-division-multiplexed circuit switching. The numbered sections cause a de-
lay and therefore need to be modelled for simulation.

10

2.1 Connection Model

thereal NoC connections provide guaranteed bounds on latency and through-
put. These bounds are guaranteed regardless of network load allowing individual
connections to be modelled independently. Figure 2.1 illustrates a model that
encapsulates the behaviour of an Athereal connection, using a combination of
cycle accurate and abstract LR component representation. Circular nodes of
the graph represent components that exhibit cycle accurate latency compared
to their real life counterparts. The latency is derived from the components oper-
ational characteristics. Nodes with dashed outlines represent components with
run-time arbitration that are LR abstracted. The LR abstraction in the NIs
models the TDMA arbitration tables, as explained in Section 2.6. The multibus
LR abstraction is explained in Section 2.7.

The Master IP initiates load/read or store/write transactions. Load and
store transactions can be visualised as flowing through the model, along the
request path, from the Master IP to the Slave IP. In the case of load transactions
the fetched data can be visualised as flowing through the model, along the
response path, from the Slave IP to the Master IP. In the implementation of the
HAthereal NoC used for the work in this thesis, a phit is equal in size to one word
and only one word of data may be transferred at a time. Word sized tokens are
therefore used as a unit of transfer with the connection model in Figure 2.1.

Transactions are put onto the bus on the request channel, represented as
section 0, by the master port. The bus decodes the address and routes the
transaction request to the appropriate shell. This takes 2 cycles in the HDL
implementation so it is represented as a 2 cycle latency.

The master side shell, represented as section 1, adds the necessary message
headers for the encapsulation of the bus transactions. The action of the shell
depends on the transaction type. A load transaction carries no data payload
on the request path so is encapsulated as 2 phit sized message headers. A
store transaction carries data on the request path so is encapsulated as the data
preceded by 2 phit sized message headers. The first header leaves the shell 1
cycle after the transaction arrives, if there is space in the producing NI buffer.
The subsequent header, and possible data, leave every cycle after that. E.g. A
load arrives at the shell at cycle 0, with enough space in the producing NI buffer
for the shell’s output. Two message headers are produced leaving the shell at 1
and 2 cycles. A store arrives under similar circumstances. Two message headers
are produced in the same manner followed by the data at 3 cycles.

The producing NIs, represented as sections 2 and 7, queue the message
phits in a limited sized buffer while awaiting scheduling for transmission over
the NoC. Run-time arbitration is carried out through the use of TDMA tables.
The abstraction of this process through the use of LR servers is explained in
Section 2.6.

The paths, represented by sections 3 and 8, represent the delay caused by
the number of routers that the phit passes through en route to its destination.
Each hop delays the phit 3 cycles.

The consuming NlIs, represented by sections 4 and 9, also contain a limited
size buffer to store phits until they can be passed into the slave side shell. This
is represented by a latency of 2 cycles after the phit becomes the head of the
queue.

The slave side shell, represented as section 5, strips the message headers

11

from the transaction. This is represented as a latency of 1 cycle per word.

The multibus, represented as section 6, arbitrates the transactions arriving
from multiple shells. The multibus uses Round Robin (RR) run-time arbitration
that can also be LR abstracted. At the Slave IP data is either loaded or stored.
The temporal behaviour of the multibus and the Slave IP are modelled together.
This explained in more detail in Section 2.7.

Data, from a load returns along the response channel. The data can pass
directly through the slave side shell without delay. The producing, and consum-
ing, NIs along with the path, of the response channel, operate as before. The
path taken by the response channel across the router network may not be the
same as the request channel. The master side bus and shell transfer the data
without delay.

The Athereal NoC uses a credit system for flow control. The producing
NI contains a credit counter that is set to the buffer size at the consuming NI.
Whenever the producing NI releases a phit it decrements its counter. Whenever
the counter is zero the producing NI will not release phits until a credit has
returned from the consuming NI. Figure 2.1 illustrates the connection model,
including credit return represented as dashed arrows, originating at the con-
sumer NIs. Although not illustrated, credits from the consuming NI return via
the opposite channel to the producing NI

In this Section a model that can be used to conservatively simulate indi-
vidual Athereal connections independently, is contributed. The model uses a
combination of cycle accurate and Latency Rate abstraction to achieve this.
In Section 2.2 it is shown how Athereal achieves contention free routing and
provide bounds on latency and throughput for individual NoC connections.

2.2 Athereal NoC

The Athereal NoC, as described in [5], can provide the Guaranteed Services
(GS) that are required by a predictable platform. As regards the GS, Athe-
real is a contention free, wormhole routed, packet switching NoC that provides
end-to-end guarantees, from NI to NI, on throughput and bounded latency.
This is achieved using contention-free routing through pipelined time-division-
multiplexed circuit switching.

Contention-free routing, in the form of pipelined time-division-multiplexed
circuit switching, can be used to prevent the contention of multiple packets for
shared resources. Virtual circuit switching is used over the packet switching net-
work to create connections with fixed latency and throughput. Time-division-
multiplexing permits multiple circuit switched connections to share the same
resource, just not at the same time, while still maintaining a guaranteed latency
and throughput.

Figure 2.2 illustrates an example connection over an Athereal NoC. The
example illustrates an implementation of the Athereal NoC using routing tables
on the routers. The routing tables are synchronised at the same clock frequency
and each table has the same period. Every cycle the slot pointer increments,
modulo the table period, connecting the inputs to the outputs for that slot
in the table. E.g. a single phit of data arrives and is buffered in NI; to be
communicated to NI3. When the phit is at the head of the buffer and R;’s
routing table is in slot 0 then the phit can proceed across Ry to Rs. The

12

} 1 T i
l v
slot | O1 | O2
NI, NI, 0 1
i : .
l Y i 2
O1._ I 01 I1 3 12
—™ 4 \\\\ 02F - =14 o2— (a) Routing table for
N L Ra
R, AN AN R R,
> . slot | O3 | O4
- 04 IQ"”O\ZL S 12 0
13 03 3 Q3
T i i ; 1 14
3
NI, NI; (b) Routing table for
Ra
P P
l \

Figure 2.2: Example connection through contention free routing using pipelined
time-division-multiplexed circuit switching.

following cycle the tables are in slot 1 permitting the phit to traverse Ro and
arrive at NI3.

Traffic can also be routed across the Athereal NoC using source based rout-
ing strategies where the TDMA routing tables are located in the NIs. The
creation of source routed TDMA tables, for the Athereal NoC, is beyond the
scope of this thesis. More information on the creation of source routed TDMA
arbitration tables may be found in [6]. This is the Athereal configuration that
is modelled as it is the configuration that is used in the FPGA implementation.

Taking the TDMA arbitration table 0X0XX as an example. The 0s and Xs
represent three phit sized service slots, with 0 representing no services and X
representing phits where services take place. In some of these phit sized slots
services may be performed, as illustrated in Figure 2.3.

| 0 | 1 | 2 | 3 | 4 |
L[[[c[pp] [[[C[D[D]?[D|D]

Figure 2.3: Slot Table 0X0XX
The service slot types from Figure 2.3 are defined as:

C Header in which credits may be returned. Occurs at the start of each group
of slots and at the start of every 8" slot in the group.

D Slot in which data may be communicated.

13

7 If a transaction is to be serviced by this slot after an idle period then the slot
will act as a C slot. Otherwise it is normally a D slot.

The table’s behaviour may be represented graphically as illustrated in Fig-
ure 2.4. After the D service slot has completed the amount of data words pro-
cessed is incremented. The 7 service slot is not counted as a D service slot in
Figure 2.4. This is because the figure illustrates the guaranteed data service
graph.

Data (words)
w

0 Il Il Il Il Il Il Il Il Il Il Il Il Il
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (cycles)

Figure 2.4: Service graph for slot table from Figure 2.3 with distributed service
slots.

Throughout the rest of this thesis arbitration tables that contain a single
block of Continuous Service Slots (CSS) are classified as being CSS tables. Ar-
bitration tables with Distributed Service Slots (DSS), as illustrated in Figure 2.3,
are classified as being DSS tables.

In this section it is explained how the routing strategy of the Athereal NoC
facilitates the ability to model connections independently. The structure of a
source routed TDMA table for use on the Athereal NoC is described along with
how its behaviour may be represented graphically. In Section 2.4 it is described
how the producing NIs, that perform the TDMA arbitration, may be abstractly
modelled.

2.3 Latency Rate Abstraction

LR servers [4] facilitate the conservative modelling of run-time arbitration com-
ponents, such as the TDMA involved in the contention-free routing of the Athe-
real NoC as described in Section 2.2. LR servers were originally developed to
aid in the production of quality of service guarantees for networks composed of
heterogeneous routers by generalising the different scheduling algorithms. The

14

generalisation is realised by encapsulating the temporal characteristics of the
scheduling algorithms using two variables, latency and rate. Denoting latency
as 6 and rate as p, the relationship of these two variables to the actual behaviour
is illustrated in Figure 2.5a.

T T T T T T T T T I
T
//// I
— /// 1__ p— —
|
R |
o s + - - 7
2 -7 |
> R4
= Pie |
) .
o0 IR e + — o i
-1 |
.7 p '.|'
- Je—————] -
- P Py -
/// ’ I
[
// p |
! ! ! |1 ! ! ! ! !
. |
s idle S‘l‘e busy
time

(a) Relationship of the temporal behaviour of a Latency Rate server to the actual

scheduling behaviour.

Tp =0 T, =p"

(b) Latency Rate server dataflow represen-
tation.

Figure 2.5: Latency Rate abstraction.

The LR server is represented by the dataflow model illustrated in Figure 2.5b.
The latency vertex vy is not self timed permitting the latency delay to be
pipelined for multiple tasks. The rate vertex is self timed only allowing one
task to be serviced at a time. The LR server is said to be busy whenever the
rate vertex is busy.

In Figure 2.5a the lines starting at s and s+ 6 are both parallel and therefore
have the same gradient of p. For the line starting at s, p is the minimal rate of
service required for the LR server to maintain a constant busy state. For the
line starting at s + 6, p is the rate of execution that can be maintained by the
LR server while still remaining conservative. The latency 6 is the duration until
the rate of execution p can be conservatively maintained.

Defining a task as an atomic entity requiring service the principle behind the

15

temporal behaviour of the LR server, during a busy period, is that the start,
and therefore finish, of the execution of a task is dependent upon the finishing
time of the preceding execution. An execution of the task cannot begin until the
preceding execution has finished. Letting U be the set of tasks, by conservatively
bounding the finishing time of the preceding execution f (u,,% — 1) the finishing
time of the succeeding execution f (u,?) is conservatively bounded as f (u,,i) =
f (ugz,i—1)+p; . The LR server can subsequently be represented as illustrated
in Figure 2.5b. 7, represents the delay caused by the actor v,. v, has a self
timed edge that makes sure that only one task is serviced by the rate at a time.

The first execution of a busy period is conservatively bounded independent
of any preceding executions from other busy periods. By taking the start time
of the execution s (u,,i) and adding the latency 6, the finishing time of the
execution f (u.,%) is conservatively bounded by Equation 2.1.

[(i) = 8 (g, i) + 0, +p; " (2.1)

Combining the two possibilities of the task requiring service during a busy
period or during an idle period, the finishing time of an execution of a task is
given by Equation 2.2.

Vi € N* Vu, € U : f (ug,i) = max (s (g, 1) + O, f (ug,i — 1)) +p; 0 (2.2)

As there are no preceding tasks for the first execution i = 0 Equation 2.1 holds
in this case.

In this Section the principles of LR abstraction have been described. It
is demonstrated graphically in Figure 2.5a how a Latency offset can be used
to bound the sustained Rate of a TDMA table. The mathematical principles
of the LR servers implementation for use in simulation are encapsulated in
the Equations 2.1 and 2.2. In Section 2.5 an analytical method of LR value
derivation is described.

2.4 Modelling the Producing NIs

In [8] the request/response channel, from producing NI to consuming NI, is
modelled as a dataflow graph. The main principle, behind the modelling of the
communication channels, is that the scheduling of data, in the producing NI, is
dependent on the availability of credits, that represent space in the consuming NI
buffer, as described in Section 2.1. Four models were proposed in [8], of varying
levels of abstraction. Figure 2.6 illustrates the four proposed channel models
from [8] that have been modified to only model the producing NI instead of the
representing the NoC connection request or response channel. The modifications
are made because the NoC connection is now modelled as shown in Figure 2.1.
The four models have varying degrees of abstraction

L Most abstract model combining latency, rate, credit return and data arbitra-
tion into a single latency 7.q,0,. Illustrated in Figure 2.6a.

LR Less abstract than the L model by modelling latency and rate separately
as delays 7.q,9 and 7.4, respectively. Illustrated in Figure 2.6b.

16

5,
- - - —--————-~
——()
A
5.
B, L TTTTTTTTTTTTTooes
Tcd,9p296+p;1+¢c+9d+p;1 Tcd,9:90+pgl+¢c+9d
(a) L (b) LR

Tagp = Oa+ g

By
- - o - - ———- 1‘
" ()

Te,0p = gc + P:l + ¢c Te,p = ¢c Tep = P:l Tep = 90

(c) LC (d) LRC

Figure 2.6: Producing NI Models.

LC Less abstract than the L model by modelling the credit return and data
arbitration separately as delays 7.9, and 74, respectively. Illustrated in
Figure 2.6c.

LRC Least abstract model that combines the separation of concerns from the
LR and LC models. Credit return latency, rate and NoC path are repre-
sented as delays 7. ¢, Tc,, and 7. 4 respectively. Data latency and rate are
represented as delays 74,9 and 74, , respectively. Illustrated in Figure 2.6d.

In Figure 2.6 7, represents the delay produced by actor v, on an arriving
task. In Figure 2.6a, in order to model the behaviour of the producing NI
conservatively, it is assumed that there are never consumer NI buffer credits
B. whenever data needs serviced. 7.q4,6, in this case is calculated as the worst
case time before a credit return is scheduled. 6, and p, being representative
of Latency and Rate values, . + p, ! represent the delay due to the runtime
TDMA scheduling for the return of credits across the NoC. ¢, represents the
time taken for 1 phit to cross the NoC. 64 + pgl represents the delay due to

17

the runtime TDMA scheduling of data for transmission across the NoC. The
modelling of runtime TDMA arbitration is addressed in detail in Sections 2.5
and 2.6. The actor v.q4,¢9- has a self timed edge meaning that only one task can
be serviced by the actor at a time. 7 in Figure 2.6a is a constant latency, hence
the model is known as L.

It is possible to refine the producing NI model, in Figure 2.6a, further by
splitting the model along the Latency/Rate domain and the Data/Credits do-
main. Refining the abstraction of the model, to a lower level, through splitting
actors permits the latencies attributable to those actors to be pipelined. This
permits the production of tighter conservative bounds for the latency across the
producing NI.

In Figure 2.6b model L is split in the Latency /Rate domain for data transfer,
creating model LR. In this model the Latency and Rate values, for the TDMA
runtime arbitration of data across the NoC, are split into two separate actors
to form a Latency Rate server, as in Figure 2.5b but with buffer credits 8 being
modelled. Credit return is still assumed to be worst case, i.e. there are no credits
at the producing NI and there are currently none scheduled.

In Figure 2.6¢ model L is split in the Data/Credits domain, creating model
LC. This model is split acknowledging that while Data transmission is depen-
dent on the availability of credits, the scheduling of both are independent.

The most refined model LRC, illustrated in Figure 2.6d, splits the model
L in the Latency/Rate domain and the Data/Credits domain. In this model
the actors represent atomic delay values permitting the maximum amount of
pipelining. This makes the LRC model the most tightly conservative model of
the four.

In this Section four producing NI models of various degrees of abstraction are
described. In Chapter 5 results of the simulation of the case study applications
are presented from NoC models using the four different producing NI models,
illustrated in Figure 2.6. In Section 2.3 the principles behind Latency Rate
abstraction are explained, with Sections 2.5 and 2.6 demonstrating two methods
how LR values, 0, and rho,, may be calculated from source routed TDMA
tables.

2.5 Analytical CSS LR Value Derivation for
TDMA Arbitration

In [14] it is shown that Time Division Multiple Access (TDMA) is a form of LR
server. Athereal uses slot tables to achieve TDMA routing. In this section it is
shown how to generalise the temporal behaviour of Athereal routing using the
method of [14].

As in [14] let U be the set of tasks, f (ug,%),f : U X N — R be the finish
time of execution 7 of task u,, P be the slot table period, S, be the time slice
allocated to task u,, D, ; be the execution time of execution 7 of task u, once
the task has been scheduled, and D, be the worst-case execution time of task
u, once the task has been scheduled. The NI arbitration services data on phit
granularity. Upon scheduling a phit is serviced in one cycle, i.e. D, = D, = 1.

The guaranteed rate p, at which task u, finishes in a busy period can be
obtained by observing that in a busy period the start time i of task u, will

18

follow the finishing of execution i — 1 of the same task as soon as possible. In
the case of execution i of task wu, starting immediately after execution ¢ — 1 the
finishing time of execution ¢ is given by f (uy,4) = f (ug, i — 1) + Dy ;. Using
TDMA scheduling, tasks can only be serviced for a duration S, in every period
of length P. Taking this into account the finishing time of execution ¢ of task
Uy, scheduled using TDMA, is given by f (ug,i) = f (uz,t—1) + Dm‘g%~ It
follows that during a busy period, the period of repetition of task wu, can be
conservatively bounded by Dws% since it must hold that Vi € N : f (u,,7) —

flug,i—1) < Dms%. Taking into account that D, = 1, the guaranteed rate of
execution p, of task u, is given by Equation 2.3.

The latency 6, of task u, can be obtained by observing that the worst case
response time 7, of the task occurs after the first execution in a busy period
given by 7, = D, + (P — Sz) f%] Taking into account that D, = 1 the worst

case response time of task wu, is given by Equation 2.4.

Fo =1+ (P —8,) (2.4)

Equation 2.4 ignores the arrangement of the service slots in the table. By
assuming the worst case arrangement, i.e that the table is arranged with one
block of Continuous Service Slots (CSS), Equation 2.4 calculates a conservative
worst case response time that may not be accurate. Figure 2.7 illustrates a
Distributed Service Slot (DSS) table while Figure 2.8 shows the assumed CSS
table configuration.

LI [[[ofp[f [[| [p[D] [D|D]

Figure 2.7: Example DSS TDMA table

[=]=][+]+][+]+][+]-][~[D][D[D|D[D|D]

Figure 2.8: In Equation 2.4 7 is calculated by assuming that the table consists
of Continuous Service Slots (CSS). This creates the largest period of non service
for the table.

The worst case response time of the first execution in a busy period of a LR
server is given by 7, = 6, + p;!. Substituting this into Equation 2.4 produces
Equation 2.5.

0. +p;t =1+ (P—5,) (2.5)

Taking the inverse of p, in Equation 2.3 and combining this with Equa-
tion 2.5 produces Equation 2.6

P
bot o =1+ (P=S5.) (2.6)

which can be rewritten to form Equation 2.7.

19

19,76:1+(P—Sr)—5£ (2.7)

In this Section it is shown how the analytical method described in [14] for
deriving LR values for TDMA tables applies to the properties of the Athereal
NoC and the Athereal NoC source routed TDMA tables. The equations in this
Section form an integral part of the algorithmic LR value derivation, described
in Section 2.6.

2.6 Algorithmic DSS LR Value Derivation for
TDMA Arbitration

It is described in Section 2.5 how to calculate the values of latency 6 and rate p
to represent an Athereal NoC as an LR server. In this Section it is demonstrated
that the analytical method from Section 2.5 calculates an unnecessarily overly
conservative Latency component of the LR values for DSS arbitration tables.
An algorithmic method is contributed that can produce tightly conservative LR
values for CSS and DSS arbitration tables.

The analytical method described in Section 2.5 assumes that service is pro-
vided in a continuous sequence of service slots. This is not always the case. The
slot table may be configured with distributed service slots. Assuming a contin-
uous sequence of service slots is always conservative for a distributed slot table
of the same period and number of service slots. This is easily rationalised as the
sustainable rate of both tables are the same due to the equalities in the period
and the number of service slots. For a distributed table, the latency before this
rate is conservatively sustainable may be less than or equal to the latency for a
table with continuous service slots. The table with continuous service slots also
has a period of continuous idle slots. As all the idle slots are clustered together
this is the longest possible period of non-service for the table. If the service
slots are distributed the groups of idle slots can only become shorter.

An observation that can be made is that the worst case response time for a
distributed table is not necessarily caused by a single transaction arriving at a
specific instance but by multiple transactions arriving at a specific instance and
being serviced sequentially. For the purposes of calculating the worst case re-
sponse time the distributed table can be visualised as being made up of multiple
sub-tables that only contain continuous service slot distribution, at the end of
their length. The worst case response time for a continuously distributed table
always occurs for a single transaction arriving at the start of the table’s idle
period. Any subsequent transactions to be serviced in the same sub-table lower
the average response time as they are serviced immediately. The combined ef-
fect of a series of transactions can cause the worst case response time for the
table if the transactions must span multiple sub-tables.

To demonstrate the effect of this observation conservative LR values are
derived for the TDMA table illustrated in Figure 2.3. The table has a period
P =15 cycles and a task service time of Sp pusy = 7 cycles or Sp_sae = 6 cycles.
The 7 slot will act as a D during busy periods so can be included in Equation 2.3
to reflect its effect on the sustained rate pp.

20

o S:v,busy

Pe = —p (2.8)

The latency 6p required before the rate pp is sustainable is derived from the

worst case response time 7p. The worst case response time 7p does not occur

during a busy period and as such the 7 slot can not be guaranteed to act as a

D slot. This can be taken into account in Equation 2.7 along with the changes
to the sustained rate pp.

P

2.9
S:t,busy ()

9(12 =1+ (P - Sw,idle) -

Calculating the integer rate pp, for slot table 0X0XX, using the Continuous
Service Slots (CSS) method:

15 15
pBl == < [7-‘ = 3 cycles per word

And the integer latency 0p:

Op =1+ (15—6) — pp*
> 1+ (15—6) —3 =7 cycles

Since the network simulator can only handle integer delays, the latency and
rate have to be scaled appropriately to maintain conservativeness. The sus-
tained inverse rate pBl has to be rounded up to maintain conservativeness. The
integer latency € p can then be derived from the rounded rate effectively avoiding
rounding the latency up while still maintaining conservativeness.

Data (words)
38

0 I I I I I \/’/,/\ I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (cycles)

Figure 2.9: All points are conservatively bounded although the latency value is
unnecessarily large.

21

While the CSS method is conservative for slot tables with non-continuous
groups of slots, as can be seen in Figure 2.9 it can be unnecessarily overly
conservative. The points marked as x’s in Figure 2.9 must be bound in or-
der to maintain conservativeness. As can be seen the points are bound by an
unnecessarily large margin. The Distributed Service Slot (DSS) method takes
the distribution of the service slots into account. In essence the CSS method
assumes the table structure is worst case with all the service slots in a single
group. Changing the distribution of the table slots does not effect the sustained
rate of execution of a task p, but does effect the worst case response time of the
task 7. The structure of the CSS table creates the greatest 7, as it inherently
has the longest period of non-service for any configuration of the table. The
latency 6, calculated from the rate p, and 7, will therefore be conservative for
any configuration of the table, but may be more conservative than necessary.

In the DSS method the distribution of the slots in the slot table is taken into
account when calculating the worst case response time 7,,. Whereas for the CSS
simplified table 7, is simply the number of non-service slots in the table for the
particular task plus one for the task execution, 7, is not so straight forward to
calculate for a DSS table. The worst case execution time in a DSS table is not
necessarily caused by a single task execution as is shown in Section 4.1.

The DSS method to calculate latency and rate works by breaking the DSS
table down into its component CSS sub-tables. The worst case response for a
CSS table is easily calculated and is valid for the individual CSS sub-tables.

6 T

sub-table WC responses 4

Data (words)
w
\
\
\
!

|

|

|

2 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
Time (cycles)

Figure 2.10: Splitting the table into multiple sub-tables, as illustrated by the
dashed triangles.

Since 7, may be caused by more than one task execution, after a period of
idleness, any possible sequential combination of sub-tables may be responsible.
In Figure 2.10 sub-tables are encapsulated by grey dashed right angle triangles.
Their local worst case response times are also indicated. The gradient of the
hypotenuse of the triangles is the rate of execution of the task within the time
frame of the triangle.

22

It is obvious that the worst case response time 7, for the entire table is
found at one or more of the local worst case responses for the CSS sub-tables.
This is the case because any executions of a task within a continuous group
will always have a lower response time than the preceding execution. Similarly
the worst case starting points are found at one or more of the CSS sub-table
starting points. These are the points before groups of non-service. Entrance at
any succeeding slot, in the group of non-service, would only lower the response
time.

Finding 7, is a matter of checking the response times of all the starting points
to all the ending points. To do this the latency of the CSS sub-table 0,)
required to conservatively bound the local worst case responses (dotted triangles
in Figure 2.10) must be calculated. A latency offset §,(,—n) is assigned to
each sub-table (dashed triangles in Figure 2.10). This is necessary to maintain
conservativeness and tightness of the sustained Rate bounding of the TDMA
behaviour. If a sub-table has a local rate faster than the DSS table rate then a
negative offset is required to maintain tightness. If a sub-table has a local rate
slower than the DSS table rate then a positive offset is required to maintain
conservativeness.

To accomplish this a new term 0, (,) is defined, that represents the latency
offset requirement for the CSS sub-table. Equation 2.10 describes how the offset
is calculated. Multiplying the inverse rate p, ! for the entire table by the number
of service slots S;(,—m) in the CSS sub-table gives the length of time required
to transmit the same amount of words at the entire table’s rate. Subtracting
this from the CSS sub-table period P, _.,) returns the latency offset that this
table may contribute when calculating the latency for the entire table.

59:(n—>m) = P(n—mz) - pglsaﬁ(n—vm) (210)

For each CSS sub-table from n — m the latency 6p(n — m) and latency
offset dp(n — m) is calculated.

0 1
[[[CID[D]

Figure 2.11: CSS sub-table 0-1

For the CSS sub-table illustrated in Figure 2.11, the table’s period and
number of data service slots are used to calculate the worst case response time
in the same manner as the CSS method.

Po_1)=6
Spo—1) =2
Tpo—1) = 1+ Po-1) — Spo-1)
=146—2=>5cycles

The worst case response time is subsequently used to calculate the latency in
the same manner as the CSS method. The DSS method also requires the latency
offset to be calculated for the sub-table to account for the differing average rates
between the DSS table and the CSS sub-table.

23

Op(0—1) = PD(0—1) — PD'
=5—3 =2 cycles
dpo—1) = Po-1) — pp X Spo—1)

=6—3x2=0cycles

This is repeated for the rest of the CSS sub-tables to obtain the latency and
latency offset values.

2 3
[[IC[p[D]

Figure 2.12: CSS sub-table 2-3

P(Q_,g) =6
Sp(a—3) =2
Tpe—s3) =1+6—2=25 cycles

Op(2—3) =5 — 3 =2 cycles
dp(2—3) =6 —3 x 2 =0 cycles

Figure 2.13: CSS sub-table 4

P(4) == 3
Spay =2
Tpa) =1+3—2=2cycles

Op) =2 —3 = —1 cycles
dp) =3 —3 x 2= -3 cycles

In order to bound the worst case data arbitration the combined effects of
the CSS sub-tables must be taken into account. The CSS sub-tables are used in
a sequential manner reducing the combinations that must be examined. Three
starting points to three ending points generates a set of nine possible latencies.
The greatest latency value (or values) from this set is the conservative latency
value. Table 2.1a displays how the latencies are calculated using the latencies

02(n—m) and the latency offsets d,(,—.m). The results of these calculations are
displayed in Table 2.1b

24

CSS 0= 1) 0SS 2 = 3) CSS (4)
CSS Opo—1) Op—3) Opa)
CSS +1 dpo—1) +Op@e—3) dp@—3) +0pu dp@) +8p—1)
CSS +2 | dpo—1) +Ope—3) +0pu) | 9p2—3) + dp@) +Ip0-1) | dp4) + Ip0—1) + ID(2—3)

(a) Table of latency calculations for all possible sequential combinations of CSS sub-tables.

CSS(0—1)] CSS(2—3) | CSS (4)
CSS 2 2 —1
CSS +1 2 1 —1
CSS +2 -1 —1 -1

(b) Table of latencies resulting from the calculations in Ta-
ble 4.1a. The maximum value is the conservative latency for
the table.

Table 2.1: Algorithmic latency value derivation for a DSS TDMA table. CSS
sub-tables are represented horizontally and sequential combinations of CSS sub-
tables are represented vertically, e.g. CSS +1 indicates the CSS sub-table in the
horizontal domain in combination with the following CSS sub-table.

Data (words)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (cycles)

Figure 2.14: The sustained rate is still provided conservatively while the latency
is reduced compared to the CSS method.

The maximum latency in Table 2.1b is the conservative latency. There are
three start to end point combinations that require the latency to be 2 cycles.
Working back from the values’ positions in Table 2.1b it is possible to work out
the combination of events that create the worst case responses. A latency of 2
cycles is required to conservatively provide an inverse rate of 3 cycles whenever:

1. 1 word of data enters at the start of slot 0

2. 1 word of data enters at the start of slot 2

25

3. 3 words of data start to enter at the start of slot 0

For this table the tightest Latency 6p, while still remaining conservative for
a sustained inverse rate pBl = 3 cycles per word, is §p = 2 cycles. It can be
seen in Figure 2.14 that the DSS derived latency is conservative while not being
overly conservative as in the CSS method in Figure 2.9.

In this Section it is shown that the LR values calculated using the analytical
CSS method are unnecessarily overly conservative for DSS TDMA tables. An
algorithmic method is contributed that uses the principles of the analytical
method to calculate tight conservative LR values for both CSS and DSS TDMA
tables. The method is demonstrated by deriving conservative LR values for the
example slot table illustrated in Figure 2.3. In Section 2.7 it is described how
conservative LR values can be derived to encapsulate memory arbitration and
access times at the Slave IP.

2.7 LR Abstraction of Slave Side Arbitration
and Memory Access

In the implementation the Multibus component, in Figure 2.1, arbitrates the
connections from multiple shells for access to the Slave IP. Arbitration is carried
out on a Round-Robin (RR) basis. The Multibus and the Slave IP may run at
different clock frequencies, so they must communicate through a clock bridge,
not illustrated in Figure 2.1. The Multibus, clock bridge and Slave IP can be
visualised as being in the configuration illustrated in Figure 2.15.

togo 2
L_X_
| | 4 N\
| |
| |

- —— -
| | Q
2 S w
L= ~ g
T e ©) 4
s 1 =, p—
e | . ;o)
;A | [0

- |— @ -¢
| |
| |
! ! N\ J
r---A
o1 2

Figure 2.15: Slave side

The numbers in Figure 2.15 represent the number of cycles of delay caused
by the particular component. The RR scheduling in the Multibus causes a
minimal delay of 4 cycles, i.e. RR arbitration of a single incoming connection
takes 4 cycles. The clock bridge in the request direction causes a 2 cycle delay.
The Slave IP takes 4 cycles to read or write a word. If data has to be returned
by a read then it must pass through the clock bridge again on the response
channel causing a further 2 cycle delay and the Multi-Bus incurring a 1 cycle
delay. The connection model, as described in Section 2.1, models individual
connections independently.

26

In order to conservatively bound the temporal behaviour of the Multibus
and Slave IP access, each connection must assume the worst case for the Round
Robin arbitration, i.e. that all other incoming connections to the Multibus
require servicing at the same time. The temporal behaviour of the Multibus,
clock bridge and Slave IP may be conservatively modelled as single LR server.
Assuming n to be the number of possible incoming connections to the Multibus
in reality, then the worst case response time 7 for reading a single word from
the Slave IP can be calculated as in Equation 2.11.

F=4n+2+4+2+1=4n+9 cycles (2.11)

The sustainable rate p is governed by the bottleneck, which in this case is
the RR arbitration in the Multibus, therefore p~! = 4n. As is explained in
Section 2.5, latency @ plus the inverse rate p~! must at least equal the worst
case response time 7 in order to remain conservative, i.e ¥ = 6 + p~!. The
latency 6 can then be calculated using this equation by substituting the values
calculated for worst case response time 7 and inverse rate p~! to calculate the
latency 6, as calculated in Equation 2.12.

=7—p t=4n+9—4n =29 cycles (2.12)

In this Section it is shown how the memory arbitration and memory access
times can be conservatively abstracted as LR values. In Chapter 3 it is de-
scribed how the NoC model is implemented using the connection model from
Section 2.1 and the producing NI models from Section 2.4. The NoC model is
used in combination with the LR values that are derived using both the CSS
and DSS methods in Chapter 4 to evaluate the effectiveness of the NoC model to
perform conservative application-level performance analysis through simulation,
by applying case study applications.

27

28

Chapter 3

Implementation of the NoC
Model

The work from Chapter 2 explained how the NoC connection could be broken
into atomic components, and a LR abstraction applied to run-time arbitrated
components. In this Chapter it is explained how the NoC model is realised using
the Silicon Hive SDK. The NoC model expands the already existing capability of
the Silicon Hive SDK to simulate multiprocessor systems to also conservatively
bound NoC transactions and memory arbitration timings.

The Chapter is structured as follows. In Section 3.1 an overview of the rel-
evant parts of the Silicon Hive SDK is given. Using this as a starting point the
section further goes on to explain some design options for integrating the NoC
model into the tool flow. Section 3.2 looks at how the model is actually imple-
mented using C and some of the algorithms that are used to achieve functional
operation.

Section 3.3 explains how conservatively modelling individual connections on
the transaction behaviour level for MPSoCs alone, does not guarantee conser-
vativeness at the application level when tasks are distributed across multiple
processors. A solution for the conservativeness of the communication is also ex-
plained and how this can be achieved using an inter-processor communication
library. In Section 3.4 the rationality is explained behind how the implemented
NoC model can be used in simulation to provide conservative application-level
guarantees.

3.1 Silicon Hive Development Tools

The Silicon Hive SDK [12] provides an environment in which Multiprocessor
Systems on Chip (MPSoC) can be developed and simulated. For this project
the SDK provided the ability to:

e Create virtual custom devices, i.e. custom hardware components at the IP
level.

e Create custom virtual hardware systems, in software, from proprietary or
custom IP level components.

29

e Compile and simulate applications mapped to the custom hardware sys-
tems in software

e Compile and simulate applications on an FPGA.

3.1.1 Custom Devices and Systems

The Silicon Hive SDK provides the ability to describe a SoC using the Hardware
System Description (HSD) language [13]. The HSD language is used to define
how the individual IP level system components (or “devices” as seems to be the
interchangeable naming convention in [13]) are connected and also assign values
to devices configurable properties. The C programming language is used to
describe the individual devices, with the assistance of the Hive System Simulator
(HSS) API. The Silicon Hive SDK comes with some existing device descriptions
for ubiquitous SoC devices such as memory and interconnect.

The Silicon Hive SDK provides the framework in which to describe custom
components/devices for use in the simulation hardware platform. Key character-
istics such as the device’s functionality, communication, memory and temporal
behaviour are able to be captured and replicated in simulation. Replication of
a device’s behaviour does not necessarily mean that every detail of the devices
circuit diagram is mimicked but refers to a more abstract level of replication in
which the devices behaviour as experienced by other components is mimicked.
The devices temporal behaviour is imitated by a wait function to which the
desired length of delay time can be passed.

Communication behaviour is captured by assigning one or more port devices
to the custom device. There are multiple types of port device to help
replicate streaming protocols or Memory Mapped 10 (MMIO). MMIO
ports can be configured as masters or slaves. The functionality of the
ports is not inherent but must be specified by assigning call back functions.
This provides the possibility to capture unique functional and temporal
characteristics of ports.

Memory behaviour is captured as a static or dynamically reserved array. As
devices are described in C this can be achieved as through the normal C
methods for memory reservation. Capacity can be represented by the size
of the reservation. Temporal delays for memory transactions can be taken
into account by creating a delay for the transactions.

Functionality of the device is replicated in a callback function in which code
can be placed that contains the operations to mimic the real device be-
haviour. Operations in the function coordinate the devices computation,
communication and memory accesses.

The HSD language is used to declare the system’s devices and their hierarchy.
A typical system is composed of a Host Processor, a number of Hive Processors,
distributed System Memory, possibly some custom devices, all connected to a
System Bus. The HSD language uses the Port primitive to describe how the
components interact. Checks are done at compile time to ensure that the port
polarity is obeyed, e.g. two Slave ports are not connected to each other.

Once compiled the system can be linked in during application compilation
allowing the application to run on the system during simulation.

30

3.1.2 Simulation

Simulation of the ported application is carried out in the Silicon Hive SDK
using hivesim. Compiler arguments for the application dictate the degree of
complexity of the simulation.

sched maps and schedules the processor resources. Temporal simulation does
not include stall cycles due to NoC communication or memory arbitration.

fpga generates program code for use in an FPGA implementation of the system.

The sched simulation provides the most temporal accuracy out of all the
software simulations. Due to the absence of temporal stall and arbitration
accounting, this simulation can only provide limited information on the temporal
behaviour of the system as a whole. Processor stalling could take up most of
the system’s runtime, in reality, without being indicated.

3.2 Implementing the Model

The NoC model integrates with the Silicon Hive platform model by replacing
the SystemBus component in the system’s HSD file. The NoC model has a
variable number of ports so as to enable it to be easily reused for other system
configurations. In order to model the NoC, object classes were created. The
relationship between these classes can be seen in Figure 3.1.

The Master and Slave objects encapsulate the parameters and associ-
ated behaviour pertaining to the ports of the NoC. The name parameter is
a string value that contains the name of the port. The port parameter is
a hss-mmio_server or hss_mmio_slave object pointer depending on whether the
port is a master or slave port. These are objects provided in the Silicon Hive HSS
API that represent the communication ports of the custom component, which in
this case is the NoC model. The num_conns variable records the number of con-
nections from or to the port. The connection[] array of size num_conns stores
Connection object pointers, of connections from or to the port. In addition
to the other parameters the Slave object has address_begin and address_end
values that represent the address range of the port.

The details described in the system’s HSD file are used to initiate the NoC
model component. The Silicon Hive simulator calls a function that is to be used
to initialise the ports. It is in this function that the Master and Slave objects
are initialised.

The Connection object encapsulates the parameters and associated be-
haviour pertaining to the enabled NoC connections. The master and slave
parameters are object pointers to the Master and Slave objects of the ports
that the connection runs between. The model parameter is a pointer to the
Model object for the connection.

The Connection object contains the temporal values of the LR server el-
ements in the 1d[], ird[], 1c[] and irc[] arrays. These represent the data
latencies and inverse rates, and the credit latencies and inverse rates respec-
tively. Two of each of these arrays relate to the request and response channel
producing NIs. The Multi-Bus is also represented by a data latency and inverse
rate, as describied in Section 2.7. The dp[] array contains the length of the
data path in both the request and response directions.

31

Slave Master

name name
port port
num_conns r;> num_conns
connection[num_conns] : connection[num_conns]
. |
address begin } createMaster ()
address_end | destroyMaster ()
createSlave() !
destroySlave() |
/T\ 1 Command
| ! exec_time
\J// i connection
| section
Connection | flow
master | next
slave . next_time
model createCommand ()
}d[gj destroyCommand ()
ird[3] .
insertCommand ()
lef2] execCommands ()

irc[2] e ----
dp[2] /1\

|
|
createConnection() | Model
destroyConnection() 1 : ode
addConnection() L,,,;> section[10]
execution[10]
createModel ()
destroyModel ()
r] updateDataflow()
| updateCreditflow()
FIFO ! !
|
capacity : N
|
hegdptr . Token
tailptr -
buffer[capacity] action
address
createFIFO() data
destroyFIFOO) [~~~ 77 3> bytes
pushFIFOQO) start_time
popFIF0()
FIFOtokens () createToken()
FIFOspace () destroyToken()

Figure 3.1: Connection model “use” dependency class diagram.

32

Once a connection has been created it can be added to the connection list of
the Master and Slave port objects by calling the add_connection() function.

The Model object encapsulates the parameters and associated behaviour
pertaining to the connection model as illustrated in Figure 2.1. The section[]
array contains pointers to the Token and FIFO objects that make up the con-
nection model. In Figure 2.1 sections 0, 1 and 5 are modelled as Tokens while
sections 2, 3, 4, 6, 7, 8 and 9 are modelled as FIFOs. Only these components
are modelled as the other components do not create a delay. The execute[]
array is used to store the execution times of the sections after the wait of the
Token, in that section, has been calculated.

The updateDataflow() and updateCreditflow() functions are used to per-
form and update on a particular section of the model to facilitate the data and
credits flow through the model. This is explained in more detail in Section 3.2.1.

The Command object encapsulates the parameters and associated be-
haviour pertaining to commands that are scheduled to execute
updateDataflow() or updateCreditflow() at some point in the future. The
exec_time value stores the time in the future at which the command is to be
executed. The connection is an object pointer to the Connection object on
which the model is to be updated. The section value contains the section num-
ber on which the update is to be performed. The flow value indicates whether
it is a data or credit flow update so that the appropriate update function is
called when the exec_time is reached.

Command objects can be daisy-chained in two dimensions. This facili-
tates the formation of a two dimensional queueing structure that is described in
more detail in Section 3.2.1. Command objects are chained using the next
and next_time Command object pointer. Command objects can be en-
tered into this queueing structure using the insertCommand() function. The
execCommands () function is used to execute commands in the queue that have
an exec_time that is the same as the current time.

The most basic building block of the entire connection model is the Token
object. The Token object contains the details of the NoC transaction. The
action value stores a character, which indicates if the transaction is for a read
or a write. The address value stores the offset from the begin address of the
port. The data value is a pointer to the location where the data is to be read
from or written to. The bytes value is the number of bytes to be read or written.
The start_time variable is used to store the time at which the Token entered
a FIFO.

The FIFO object encapsulates the parameters and the associated behaviour
pertaining to a Token FIFO. The capacity value stores the FIFO’s token
capacity. The headptr and tailptr values are pointers to the head and tail of
the FIFO respectively. The buffer[] array of size capacity stores pointers to
the Token pointers that have been pushed onto the FIFO.

The pushFIF0() function is used to push Token objects onto the FIFO. The
popFIFO function is used to pop the head Token off the FIFO. The FIFOtokens
function returns how many Token pointers are currently in the FIFO. The
FIFOspace function returns how much capacity in the FIFO is currently un-
noccupied.

33

3.2.1 Model Operation

The NoC provides Memory Mapped 10 (MMIO) transactions. When a trans-
action is initiated by a master port a handler function in the Model is called. In
the case of the NoC Model the interface between the ports and the connection
model is illustrated in Figure 3.2.

MMIO
Transaction

load store

\i \

create Token create Token
\i Y
get, Connection get Connection
from Address from Address
\i Y
acquire Bus acquire Bus
semaphore semaphore
\i Y
push Token push Token
onto Bus onto Bus
Y

acquire Read

semaphore

END
Transaction

Figure 3.2: MMIO to Connection Model interface flowchart.

In Figure 3.2 a distinction is made between whether the transaction is a load

34

or a store. Both branches create a Token with the transaction information. In
order to locate the correct Slave port the Master object’s connection[] list is
searched to find a Slave port with an appropriate address range. A semaphore
is acquired that signals if the Bus section in the connection model is occupied.
If the Bus is occupied, due to the previous transaction still being processed, the
transaction is stalled until the semaphore is released. Upon the release of the
semaphore the Token can be pushed into the first section of the connection
model, representing the Bus, and the updateDataflow() function called.

If the transaction is a load (read) the master port needs to stall until the
data is returned. This is achieved by using another semaphore that is released
only whenever the read has completed the flow through the connection model.
If the transaction is a store (write) the master port does not need to wait on an
acknowledgement and may proceed. In order to make sure multiple transactions
are not sent simultaneously a minimum total duration of the store is set to 1
cycle.

A Token flows through the connection model from master to slave, and in
the case of a load, back to master again. Points of pipelined delays are repre-
sented as sections in the connection model. These may be positions that delay
a single Token or FIFOs that delay multiple Tokens. Figure 3.3 illustrates
the generic flowcharts of how the delays are created, in both instances, when
updateDataflow() is called.

If a Token has just been pushed into a Token section, or has become
the head of the FIFO buffer, then the wait for the token is calculated. A
Command is created to update the section whenever the wait has expired.
The Command is added to the CommandQ that stores the update callbacks for
the entire NoC model. When the callback updates the section after the wait
the Token is pushed to the next section and updateDataflow() for that sec-
tion is called. In a FIFO section if there are Tokens still in the FIFO then
updateDataflow() is recursively called for that section.

The CommandQ is structured as illustrated in Figure 3.4. Whenever the
insertCommand () function is called the CommandQ is searched, in the temporal
domain from earliest to latest Command exec_time to find the point where the
Command should be inserted. If Commands already exist at that temporal
instance then they must be ordered so that credit returns for that instance will
be executed first and that updates to the model occurs from highest numbered
section to the lowest.

Commands are ordered to ensure that sections do not have to stall unnec-
essarily due to credit return or the next section updating later in the same time
instance. As such the Commands are ordered so that updateCreditflow()
Commands that are to be called in that instance are executed first. Com-
mands to updateDataflow() are ordered to ensure that sections further along
the pipe from master to slave, and back again, are executed first. In order to
facilitate the flow of data and credits the execCommands () function is executed
every cycle. The Commands for that instance are subsequently executed in
order.

In this Section it is contributed how the modelling theory, from Chapter 2,
can be implemented as a model that can be integrated into an MPSoC simulation
framework. In Section 3.3 it is demonstrated that application-level inter-IP
synchronisation is not guaranteed by conservatively bounding transaction times.

35

update
Section

yes no

Y

update
Section

calculate pop Token
Wait from FIFO
Y Y
yes no add Command push Token
to CommandQ to Section+1

Y
calculate push Token
Wait to Section+1

call update
Section—+1

Y

add Command call update
to Command(Q Section—+1
l
end
update
(a) Generic Token section flowchart. (b) Generic FIFO section flowchart.

Figure 3.3: Section flowcharts.

t +1 +2 +3 +4 +5

Figure 3.4: CommandQ structure obtained by daisy chaining Command objects.

36

Corel i Req: R ‘ Mem. ‘ Resp: 0 ‘ i Req: R ‘ Mem. ‘ Resp: 1
REAL A |
Core2 | Req: W 1 | Mem. ‘ J:
A ‘ l
Corel | Req: R ‘ Mem. ‘ Resp: 1 ‘ 3
SIM A | !
Core2 | Req: W 1 ‘ Mem. ‘ J: 3

(a) Core 1 polling for a value in external memory that Core 2 sets. Even
though the individual transactions are conservatively bounded in simulation
the synchronisation is not.

A !

Corel ~ [MRI [RespRI [CR| ReqR1 [MRI | RespRI
REAL A 3 3
Core2 | ReqR2 | MR2 | | ;

A |

Corel [MSI [RespS1 |CS|ReqS1 [MS1 | RespS1
SIM R
Core2 | ReqS2 ‘ MS2 ‘ !

(b) Core 1 polling an extra time in simulation, upon receiving a positive poll, to conservatively
bound the synchronisation.

Figure 3.5: Guaranteeing conservativeness at the application level when cores
synchronise.

3.3 Application Level Inter-IP Synchronisation
Conservativeness

In order to maintain application level conservativeness of the simulation, syn-
chronisation between cores must also be conservatively bounded. A situation is
illustrated in Figure 3.5a whereby even though the individual reads and writes
are conservatively bounded, in simulation, the overall act of polling a value up-
dated by another core is not. This may occur when two cores synchronise in
shared memory. Even though transaction ordering is maintained in simulation
between a core and the memory, the ordering of the transactions at the memory
from multiple cores is not maintained.

In Figure 3.5a Core 1 is polling a value, that is initially 0, in the shared
memory, and will stop upon a positive poll, when the value polled is 1. Core
2 writes the value 1 to shared memory. In the REAL example, the first poll
arrives before the value 1 is written and therefore Core 1 must poll again. In
the SIM example, the first poll arrives after the value is written to 1 and the
first poll is therefore sufficient. As can be seen in Figure 3.5a, even though the
read and write transactions, in the SIM example are bounded conservatively,

37

the poll terminates earlier than in reality. The synchronisation is therefore not
conservatively bounded at the application layer. It is possible that any number
of instructions could be executed in between polls making the timing discrepancy
unbounded.

It is possible to bound the synchronisation conservatively, at the application
level, by simply making the simulated version of the application poll one more
time, upon receiving a positive poll. The writing of the polled value is con-
servatively bound in SIM, therefore any subsequent poll after a successful poll
also conservatively bounds the possibility that the REAL implementation just
missed the positive poll and had to poll again. An example of this is illustrated
in Figure 3.5b. In order to prove this to be the case the following assertions are
made:

1. All timing values exist in the R>o domain.

2. SIM transactions are never shorter than REAL transactions. This is also
true of the timed elements that the transactions are composed of.

3. SIM write will never start earlier than REAL write.

4. SIM Time between polls is never shorter than REAL time between polls.

Assertions 1-3 are obvious observations of the properties of a conservative
simulation. Assertion 4 is not inherently true in a conservative simulation. One
method of ensuring that this is the case is by stipulating that only a fixed num-
ber of instructions may be executed between polls.

In order to maintain conservativeness; SIM Sync Time > REAL Sync Time.

To show that polling an extra time in simulation, upon receiving a positive
poll, maintains conservativeness this must be shown to be true in all cases.

The worst case for conservativeness is when the polling core in REAL just
misses, while the polling core in SIM just hits, the positive poll value. An extra
poll is produced in SIM to conservatively bound the synchronisation. This pro-
duces the following synchronisation timings, using the naming from Figure 3.5b:

REAL Sync Time = ReqR2 + RespR1 + CR + ReqR1 + M R1 + RespR1
SIM Sync Time = ReqS2 4+ MS2 + MS1+ RespS1
+ CS + ReqS1+ MS1+ RespS1

The worst case for conservativeness is also when SIM transactions and REAL
transactions are equal in duration. Therefore cancelling out equivalent terms:

RegS2 + MS2 + MS1+ RespST + 08 + RegST + M-ST + BespST >
ReqRZ + RespRT + OR + ReqRT + MRT + RespRT

Leaves:

MS2+MS1>0

38

This is always true due to Assertion 1; memory access times cannot be neg-
ative. Therefore polling an extra time in simulation, upon receiving a positive
poll, will always cause the simulation synchronisation to conservatively bound
the implementation synchronisation.

To ensure that synchronisation is performed in this manner, i.e. complies
with Assertion 4, it is possible to incorporate the extra complexity in a commu-
nication API and stipulate that all inter-IP synchronisation should be carried
out using it.

3.3.1 Communication API

C-HEAP, as described in [11], is an application level communication protocol
that abstracts away from underlying hardware protocols. This permits the MP-
SoC application programmer to communicate data, between possibly heteroge-
neous components, without having to program specific communication routines
for each platform.

This is achievable by creating C-HEAP protocol libraries for each platform,
that enable the C-HEAP protocol on top of the platforms hardware communi-
cation protocol. These libraries not only aid in the programming of new appli-
cations but facilitate the porting of applications designed for other platforms
that use the C-HEAP communication protocol.

The C-HEAP protocol works by communicating data through administrated
circular buffers in shared memory, from the producing task to the consuming
task, while maintaining FIFO ordering. The administration contains static val-
ues such as the token size, the start address of the buffer in memory, the max-
imum number of tokens, etc. The administration also contains the variables
readc and writec that are used to track the buffer occupancy. Two variables
are used in this case as the platform does not provide atomic read-modify-write
access to memory. This means that it cannot be guaranteed that the variable
is not written too by an external source between reading the value and writing
it back again. By only allowing the producer and the consumer to modify one
of the variables the issue of memory consistency is circumvented.

In [11] a set of standardised primitives were defined.

claim space Claims space in the circular buffer to be written to by the pro-
ducer. Illustrated by communication 1 in Figure 3.6.

release_data Releases the data so that it may be read by the consumer. Illus-
trated by communication 3 in Figure 3.6.

claim data Claims data in the circular buffer to be read from by the consumer.
Tllustrated by communication 4 in Figure 3.6.

release_space Releases the space so that it may be written to by the producer.
Tllustrated by communication 6 in Figure 3.6.

In order to maintain a consistent record of the circular buffer’s occupancy
readc and writec are implemented as counters that count modulo the buffer
capacity. Whenever the producer calls release _data, the writec variable is
incremented. Whenever the consumer calls release_space the readc variable is
incremented. The current buffer occupancy is the difference of the two variables.

39

To solve the ambiguous case that occurs when both of the values are equal (is
the buffer full or empty) a bit in each of the variables can be devoted to be a
wrap around flag, that toggles value each time the counter wraps around to 0.

(Producing] LConsumingJ

Core

Core

Shared Memory

Figure 3.6: Transactions involved for the communication of data via the C-
HEAP protocol. An arrow towards a core indicates a read. An arrow away
from a core indicates a write.

In Figure 3.6 an example data transfer via the C-HEAP protocol is illus-
trated. In this example it is assumed that the static values in the administra-
tion have also been stored locally on both the producing and consuming cores.
Action 1 illustrates the producer calling claim_space. This action reads the
two counter variables, readc and writec, from the administration to ascertain
if there is space in the buffer. The variables are polled until there is space in
the circular buffer, at which point the pointer to the next slot in the circular
buffer is returned. Action 2 is the producing core writing the data into the
circular buffer at the address acquired through action 1. Now that the data is
in the buffer the producing core calls release_data in action 3 incrementing
the writec variable.

The consumer calls claim_data in action 4. Like claim_space, claim data
polls the variables, readc and writec. This time the variables are polled until
there is found to be data in the buffer. When it is found that there is data
in the buffer claim_data returns the address of the next piece of data in the
buffer, maintaining FIFO ordering. Action 5 is the consuming core reading the
data starting at the address obtained through action 4. Once the data has been
read by the consuming core the space in the buffer can be freed again for use by
the producer. The consuming core calls release_space incrementing the readc
variable.

In order to conservatively bound the synchronisation step of the communi-
cation the blocking functions claim_space and claim data are augmented to
perform an additional poll upon receiving a positive poll in simulation, thus
bounding the possibility that the positive poll was just missed in reality and
needed to be polled for again, as described in Section 3.3. Data can be com-
municated through the circular buffers as normal as they are guarded by the
synchronisation steps.

40

By separating the concerns of synchronisation and communication in this
manner, it is possible to amortise the extra temporal contribution in simulation
of the extra poll by increasing the amount of communicated data between syn-
chronisations. The effect of synchronisation granularity on the timing results
from simulation in comparison to the FPGA implementation is investigated in
Section 4.2.2.

In this Section it is shown that conservatively bounding transaction times is
not sufficient to conservatively bound inter-IP synchronisation on the applica-
tion level. A solution is presented to conservatively bound the synchronisation.
To simplify the implementation of the solution it is demonstrated that it can be
incorporated into an application-level communication API. In Section 3.4 the
rationality behind how application-level conservative guarantees can be gener-
ated through simulation using the implemented NoC model and the augmented
C-HEAP communication API is described.

3.4 Application-Level Conservative Guarantees

In order for the simulation to provide conservative timing guarantees the ap-
plication runtime generated through simulation must never be less than the
implementation application runtime. If the application’s runtime is monotonic
in comparison to the duration of influencing factors such as computation, inter-
task synchronisation and inter-task communication then the application will be
bounded conservatively in simulation if these factors are conservatively bounded.
The monotonicity of these three factors for the system described in this thesis
is explained as follows:

1. Application instructions are monotonic in duration. Instructions depen-
dent on NoC transactions are also monotonic, i.e if the NoC transaction
time increases the instruction time will not decrease and similarly if the
NoC transaction time decreases the instruction time will not increase.

2. Blocking inter-IP synchronisation at the application-level is monotonic in
duration if the Assertions detailed in Section 3.3 are met. The conditions
are met if synchronisation is carried out using the augmented C-HEAP
communication protocol. An increase in synchronisation time will not de-
crease the application runtime and similarly a decrease in synchronisation
time will not increase the application runtime.

3. Application-level inter-IP communication is monotonic if carried out using
explicit synchronisation. This is achievable using the C-HEAP commu-
nication protocol, e.g. a synchronisation, followed by one or more write,
followed by a synchronisation, followed by one or more reads is monotonic
due to 2, 1, 2 and 1 respectively.

There are some application-level stipulations in 2 and 3 that must be followed
to maintain the monotonicity of the application in comparison to synchronisa-
tion and communication. This is easily achieved by requiring all application-
level inter-IP synchronisation and communication are carried out using the mod-
ified C-HEAP communication protocol described in Section 3.3. Conservative
simulation can be achieved by bounding these three influencing factors on ap-
plication runtime, which can be explained as follows.

41

1. Application instructions are conservative in duration. Instructions de-
pendent on NoC transactions are also conservative, i.e SIM_instruction >
REAL_instruction comparing their durations.

2. Blocking inter-IP synchronisation at the application-level is conservative in
duration if the Assertions detailed in Section 3.3 are met and the measures
described to bound the synchronisation are implemented. The conditions
are met if synchronisation is carried out using the augmented C-HEAP
communication protocol. At the application-level SIM_sync > REAL _sync
comparing their durations.

3. Application-level inter-IP communication is conservative if carried out
using explicit synchronisation. This is achievable using the C-HEAP
communication protocol, e.g. a synchronisation, followed by one or more
write, followed by a synchronisation, followed by one or more reads is
conservative due to 2, 1, 2 and 1 respectively. At the application-level
SIM_comm > REAL_comm comparing their durations.

4. Distributed tasks execute, synchronise and communicate conservatively
making the application conservative if there are no influences that nega-
tively effect the determinism of the execution. Non-determinism such as a
dependency on random numbers, synchronisation with a non-deterministic
hardware component, clock dependent operations may cause the applica-
tion to execute differently in simulation than on the implementation de-
stroying the conservativeness guarantee. At the application-level
SIM_app_runtime > REAL_app_runtime comparing their durations.

Another application-level stipulation to maintain conservativeness in simu-
lation in 4, is that the application must execute deterministically. This is to
ensure that the simulation is conservatively bounding the same trace as the
implementation. By conservatively bounding computation, inter-IP synchro-
nisation and inter-IP communication in simulation the application runtime is
conservatively bounded if the application executes deterministically.

In Chapter 4 case study applications are simulated using the NoC model
described in this described in this Chapter. Timing results of the simulations
are compared with results from the FPGA implementation to ascertain if the
model is useful for conservative application-level performance analysis through
simulation of an MPSoC.

42

Chapter 4

Case Studies

In this chapter the model introduced in the previous chapters is applied to
multiple case studies with the aim of evaluating the model’s usefulness. The
case studies are carried out on the target system, as described in Section 1.3.

The case studies are broken down into two categories. The Artificial case
studies make use of specifically designed applications that expose underlying
behaviour that may be more difficult to isolate in more complex real life appli-
cations. The real life case studies highlight the applicability of the system to an
existing problem in the form of a JPEG decoder.

In this Chapter an example is given, in Section 4.1, of LR value derivation
for a TDMA arbitration table from the implementation. The artificial case
studies are presented and evaluated in Section 4.2, illustrating the NoC models
behaviour. The JPEG decoder case studies are presented and evaluated in Sec-
tion 4.3, demonstrating that the model can generate conservative performance
bounds without requiring an application model.

4.1 Example of LR Value Derivation

Taking as an example the NI slot tables for the connection between Core 1 and
External Memory. The request NI slot table for the connection is as illustrated
in Figure 4.1 . The data arbitration of the table can be represented as illustrated
in Figure 4.2. In this figure only the data slots that may be used after an idle
period are shown.

L0 , 1 , 2 , 3,4, 5,6 7 .8 9 10 11 12 | 13
CTTTT T T lemblemb TTTTT I TTTTTTICDhDT]

Figure 4.1: Request Table

First the Latency and Rate are calculated by applying the CSS method of
calculation. For the inverse rate calculation, 7 slots are taken to be D slots as
this would be the case during a sustained busy period. The table contains 17
slots each containing 3 service slots giving a period P = 51. The table contains
7 data service slots making Sp = 7. Equations 2.3 and 2.7 can then be applied
as follows.

43

Data (words)
w

O L L L L

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

Time (cycles)

Figure 4.2: Example slot table with distributed service slots.

Data (words)
w

0 I N N NN N S I RN S S B
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

Time (cycles)

Figure 4.3: All points are conservatively bounded although the latency value is
unnecessarily large.

44

sub-table WC responses |

Data (words)
w
\

27

17 /// : -
|
- |

0 s L | L | i L | | | | | | | | | |

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

Time (cycles)

Figure 4.4: Splitting the table into multiple sub-tables, as illustrated by the
dashed triangles.

Data (words)
o

8 21 24 27 30 33 36 39 42 45 48 51

0 I I R B
0 3 6 9 12 151

Time (cycles)

Figure 4.5: The TDMA table’s sustained rate is still provided conservatively
while the latency is reduced compared to the CSS method.

45

- P P ol
ppt = . < IVSD—‘ = {7—‘ = 8 cycles per word

The rounding up of the inverse rate can be taken into account in the Latency
equation as the Latency does not have to be as long before the more conservative
rate can be sustained.

9m:1+(P—Sz)—S£
21+(P—SD)—[SP]
D

51
>14(1-7)— {7—‘ = 37 cycles

The resultant bounding curve for the CSS LR derivation method is illus-
trated in Figure 4.3. As can be seen the latency derived is unnecessarily overly
conservative. For the DSS method the sustainable rate stays exactly the same.
The only difference from the CSS method is the observation that the latency
required before the rate is sustainable is calculated assuming that all the service
slots are in one continuous group in the table. To take account of the slot dis-
tribution’s affect on the worst case response time, the table can be visualised as
being split into smaller sub-tables that have continuous service slots at the end.
This is illustrated in Figure 4.4 using triangles to bound the CSS sub-tables.
The worst case latency for each sub-table can then be calculated by applying
Equation 2.7 while taking the inverse rate to be 8 cycles.

For each CSS sub-table from n — m the latency 0p(n — m) and latency
offset 0p(n — m) is calculated.

4

Figure 4.6: CSS sub-table 4

For the CSS sub-table illustrated in Figure 4.6, the table’s period and number
of data service slots are used to calculate the worst case response time in the
same manner as the CSS method.

P(4) == 3
S D(4) = 2
Tpay =1+3—2=2 cycles
The worst case response time is subsequently used to calculate the latency in
the same manner as the CSS method. The DSS method also requires the latency

offset to be calculated for the sub-table to account for the differing average rates
between the DSS table and the CSS sub-table.

Op) =2 —8 = —6 cycles
dp) =3 —8 x 2= —13 cycles

46

This is repeated for the rest of the CSS sub-tables to obtain the latency and
latency offset values.

., 5 , 6 7 ,8 ;9 | 10 |
LI T TP [[clpp]

Figure 4.7: CSS sub-table 5-10

Pi510) =18
Sp(s—10) = 2
Tps—10) = 1 + 18 — 2 =17 cycles

Op(5—10) = 17— 8 =9 cycles
0p(5—10) = 18 =8 x 2 = 2 cycles

Figure 4.8: CSS sub-table 11-3

P(ll*)B) =30
Sp1—3) =2
Tp(11—3) = 1 +30 — 2 = 29 cycles

Op(11—3) = 29 — 8 = 21 cycles
dp(11—3) = 30 — 8 x 2 = 14 cycles

In order to bound the worst case data arbitration the combined effects of the
CSS sub-tables must be taken into account. The CSS sub-tables are used in a se-
quential manner reducing the combinations that must be examined. Table 4.1a
displays the latency calculations for the possible sequential CSS sub-table com-
binations.

The maximum latency in Table 4.1b is the conservative latency for the entire
table. There is only one start to end point combination that requires the latency
to be 23 cycles. Working back from its position in the Table 4.1b it can be
deduced that this latency is required to conservatively bound when 3 words of
data start to enter at the start of slot 5.

For this table the tightest Latency 6p, while still remaining conservative for
a sustained inverse rate pBl = 8 cycles per word, is €p = 23 cycles. It can be
seen in Figure 4.5 that the DSS derived latency is conservative while not being
overly conservative as in the CSS method in Figure 4.3.

47

€SS (5 = 10) €SS (11 = 3) €SS (4)
CSS Op(5-10) Opa1—3) Op4)
CSS +1 dp(s—10) T Op1-3) dpai-3) + b dp() +9pi-10)
CSS +2 | dp(5—10) + 9p(11-3) + 0p) | Ip(1-3) +0p@) +Up5-10) | Ip) +Ip5-10) + UD11-3)

(a) Table of latency calculations for all possible sequential combinations of CSS sub-tables.

CSS (5 — 10) | CSS (11 — 3) | CSS (4)
CSS 9 21 —6
CSS +1 23 8 1
CSS +2 10 10 20

(b) Table of latencies resulting from the calculations in Table 4.1a.
The maximum value is the conservative latency for the table.

Table 4.1: Algorithmic latency value derivation for a DSS TDMA table. CSS
sub-tables are represented horizontally and sequential combinations of CSS sub-
tables are represented vertically, e.g. CSS +1 indicates the CSS sub-table in the
horizontal domain in combination with the following CSS sub-table.

4.2 Artificial Case Studies

In this section two case studies are presented that use specially crafted appli-
cations to evaluate the NoC model’s behaviour through simulation. In Sec-
tion 4.2.1 a specially crafted application, that tests the time to read or write an
array of data over a single connection, is simulated and the results evaluated
in comparison to the application run on the FPGA implementation. In Sec-
tion 4.2.2 an application using the augmented C-HEAP communication API,
described in Section 3.3.1, is used to investigate the effect of the choice of C-
HEAP Token size on the communication time. The effect of synchronisation
granularity on simulation accuracy is also evaluated.

4.2.1 Connection Tests

This case study exercises individual connections by carrying out relatively large
amounts of the same transaction type over a single connection at a time. A
common occurrence of this in real life applications is the reading or writing of
arrays to or from external memory. As can be seen in Figure 1.2b only Core
1 has a connection with the Timer peripheral. As such, only the connections
associated with Core 1 shall be tested.

The test is performed by Core 1 reading an array of integer values sequen-
tially from external memory. The timer peripheral is read before and after
the transmission of the array and the difference taken as the total transmission
time. The overhead incurred reading the timer is also conservatively bounded
and is negligible compared to the array IO operations. The test is repeated for
writing an array of the same size to external memory and the framebuffer. The
simulations are carried out using LR values that were calculated using both the
CSS and DSS method.

The bar chart in Figure 4.9a depicts the results for reading the array from
external memory. The descriptions in the bar chart’s legend are defined as
follows:

IDEAL Zero NoC delay. Transactions across the NoC happen instantly.

48

Individual Connection Test: Read External Memory

3000000
T IDEAL ——
L &3
2500000 | LR |
LC o
- LRC
2000000 | FPGA o |
R
S 1500000 g
@)
1000000 | E
500000 | g
0 — —
CSS DSS

(a) Bar chart depicting the timing results for reading the array from external memory.

Figure 4.9: Results of individual connection tests.

L Connections modelled as in Figure 2.1 using the NI model as described in
Figure 2.6a.

LR Connections modelled as in Figure 2.1 using the NI model as described in
Figure 2.6b.

LC Connections modelled as in Figure 2.1 using the NI model as described in
Figure 2.6¢.

LRC Connections modelled as in Figure 2.1 using the NI model as described
in Figure 2.6d.

FPGA Implementation of the system.

To read values from external memory the transaction has to follow the entire
path of the connection model, illustrated in Figure 2.1. After the core puts the
read request onto the Master side bus it stalls until the data is returned from
the slave before continuing with any processing operations. This has the effect
that after a read the entire pipe from core to slave and back to core again will
always be empty.

The action of reading an array from external memory is carried out by a
series of read transactions. Read transactions are encapsulated at the message
level as two word sized message headers, on the request channel. The headers
are generated by the shell component. Both headers arrive in the producing NI
within one cycle of each other. The later header is queued until the earlier header
has been serviced by the LR server. The NI LR model illustrated in Figure 2.6¢
that models Latency and Rate combined, along with Credit return, starts the
clock for the Latency component of the LR server, for the later header, whenever
the earlier header has left the NI. The NI LR model illustrated in Figure 2.6d

49

Individual Connection Test: Write External Memory

3000000
IDEAL ——1
L &3
2500000 L _ LR mmm
LC
LRC o
2000000 L FPGA mmm |
P _
g 1500000 E
®)
1000000 E
500000 E
0
CSS DSS

(b) Bar chart depicting the timing results for writing the array to external memory.

Individual Connection Test: Write Frame Buffer

2500000 —
IDEAL ——
L =3
LR ===
2000000 F LC mmmm
LRC mmm
FPGA mmmm
1500000] 1
g
)
>
o
1000000 8
500000 F 1
0
CSS DSS

(c) Bar chart depicting the timing results for writing the array to the frame buffer.

Figure 4.9: Results of individual connection tests.

50

that models Latency and Rate separately, along with Credit return, starts the
clock for the Latency component of the LR server, for the later header, as soon
as it enters the producing NI buffer, producing a tighter conservative delay. The
effect of this on the simulation times can be seen in Figure 4.9a as the difference
between the LC and LRC values.

Depending on the specific NoC LR timings, the first read header phit is likely
to encounter the producing NI's LR server during an idle period. This means
that it is likely that it will incur the full conservative delay of the Latency and
Rate combined. The second header phit will encounter the producing NI’s LR
server during a busy period allowing it to effectively pipeline its Latency while
the first header is being serviced. Producing NI models that do not use LR
servers, i.e. L and LC, cannot pipeline the Latency component of the LR values
in this way.

The bar charts in Figures 4.9b and 4.9c depict the results of writing the
array to the external memory and the frame buffer respectively. As opposed
to reads, once the core puts the write request onto the Master side bus it can
continue with processing operations. The core will only stall in this case if the
Master side bus is not able to accept the transaction immediately. This will
occur if the Master side bus is still processing the previous transaction, but can
also occur if there is a backlog of transactions due to a full buffer at the Master
side NI

Writes are encapsulated at the message level as two phit sized headers fol-
lowed by the phit sized data. As the request channel’s producing NI buffer is
not as likely to be empty, during a series of writes and depending on specific
NoC LR timings, writes are more likely to encounter the NI's LR server during
a busy period allowing the Latency component of the LR values to be pipelined.
If a series of writes arrive with a high enough rate, creating a busy period, then
only the first phit incurs the penalty of the Latency, for NIs that model La-
tency and Rate separately. The larger the series of phits, serviced during a busy
period, the more the Latency, incurred by the first phit, is amortised.

The effect of the pipelining the Latency overhead is reflected in an increased
throughput at the NoC. This in turn reduces the possibility of backlogs, starting
at the producing NI. This means that the core will have to stall less frequently
than for the producing NI models that model Latency and Rate separately.
The ability of the producing NI models, that use LR servers, to pipeline the
Latencies of phits in the buffer creates the relatively large contrast in results
between the producing NIs that model Latency and Rate separately (L & LC)
and the producing NIs that model them together (LR & LRC) as shown in
Figures 4.9b and 4.9c.

The simulations using the LR values generated using the algorithmic DSS
method show a marked improvement over those using the values from the ana-
lytical CSS method. The DSS method is explained in detail for the TDMA slot
table, for the producing NI, on the request channel of the Core 1 to external
memory connection, in Section 4.1. Even though the L and LC models do not
use LR servers to simulate their Nls, the LR values are still used to calculate
their delays 7., as described in Figure 2.6. The bar chart for reading the array,
illustrated in Figure 4.9a, shows a considerable reduction in timings for all pro-
ducing NI models, when using LR values derived using the DSS method. The
reduction in timing is also markedly noticeable, for producing NIs that model
Latency and Rate together, for writing the array, as illustrated in Figures 4.9b

51

and 4.9c. There is also a less evident reduction in timing, for writing the ar-
ray, using the producing NI models that use LR servers. The timings for these
models were already quite conservatively tight with the FPGA timings.

The data from this case study indicates that the NoC model functions as
expected. It highlights the fundamental differences in how read and write trans-
actions experience the model and the LR abstractions. Reads are more conser-
vatively bound than writes due to the ability of the platform to pipeline write
transactions allowing multiple writes to be traversing the NoC at any one time.
Reads cause the core to stall until the data returns and experience conservative
LR models at producing NIs on the request and response path and at the Slave
IP arbitration on the multibus.

4.2.2 Communication API Case Study

Interprocessor communication is achieved in this system through shared mem-
ory. Shared memory communication is used as a result of the limitations of the
timing model for the arbitration of the local memories in the Pearl-Ray cores.

C-HEAP, as described in Section 3.3.1, is a communication protocol that
uses administrated circular buffers in shared memory to facilitate the transfer of
data. There is a certain amount of overhead involved in reading the status of the
administration and subsequently updating it relating to the performed action.
The purpose of this case study is not only to demonstrate a working C-HEAP
example but also to demonstrate the effect synchronisation granularity has on
the performance of the application in simulation and on the implementation.
This case study uses the Processing Cores 1-3 set with the cores assigned to be a
producer, intermediary and consumer respectively. The producing core sets the
Timer to zero, then pushes data via the C-HEAP protocol to the intermediary
core. The intermediary core pushes the received data via the C-HEAP protocol
to the consuming core. Once all the data has been transferred from producer to
consumer the consumer sets a flag in external memory so that the Core 1 can
stop the Timer.

The test is performed for tokens of size 4, 8, 16 and 32 bytes. It was not
possible to use token sizes greater than this due to an unresolved tooling error.
While the token sizes are changed the total data transferred and the C-HEAP
buffer sizes in bytes remain the same. This will help isolate the administration
overhead associated with the C-HEAP protocol.

The C-HEAP protocol, as described in Section 3.3.1, uses two counters readc
and writec, to maintain the current position, and occupancy, within the circular
buffer. In order to ascertain the occupancy of the C-HEAP buffer the differ-
ence between the two variables must be calculated. For the producing and the
consuming cores this is captured as the functions claim space and claim data
respectively. As is shown in Section 4.2.1 reads are blocking. This means that
the next transaction entering the pipe will encounter the LR server during an
idle period and incur the delay of the latency before it is serviced by the rate.
Smaller token sizes mean more tokens need to be transmitted to transfer the
data. This in turn means that more synchronisation is required for the same
amount of data transferred.

It can be observed from Figure 4.10 that the shape of the graphs are similar to
Figure 4.9a in Section 4.2.1. This indicates that reads in the C-HEAP example
are the dominant factor in the overall simulation time. This makes sense as

52

C-HEAP Example With a Token Size of 4

10000000000
IDEAL ———
L =3
LR ===
8000000000 LC mmmm
LRC momm
FPGA mmm
6000000000 |- 8
£
)
>
O
4000000000 | 1
2000000000 1
0000

CSS DSS

(a) Bar chart depicting the timing results for the C-HEAP communication experi-
ment with a buffer size of 4 bytes.

C-HEAP Example With a Token Size of 8

10000000000

IDEAL ———
L ==
LR ===
8000000000 LC mmmm
LRC s
FPGA mmmm
6000000000 | 8
£
©
>
O
4000000000 | 8
2000000000 ~ 1
0000

CSS DSS

(b) Bar chart depicting the timing results for the C-HEAP communication experi-
ment with a buffer size of 8 bytes.

Figure 4.10: Results of C-HEAP token sizing tests.

53

C-HEAP Example With a Token Size of 16

10000000000
IDEAL ——3
| D —
LR
8000000000 | LC mmmm
LRC mmm
FPGA s
6000000000 g
i{/j
[3)
>
O
4000000000 R
2000000000 R
0000

CSS DSS

(c) Bar chart depicting the timing results for the C-HEAP communication experi-
ment with a buffer size of 16 bytes.

C-HEAP Example With a Token Size of 32

10000000000
IDEAL ——
| PR —
LR =
8000000000 LC mmmm
LRC mmm
FPGA
6000000000 F g
£
3]
>
o
4000000000 g
2000000000 E
0000 J...-_Dl..-—
CSS DSS

(d) Bar chart depicting the timing results for the C-HEAP communication experi-
ment with a buffer size of 32 bytes.

Figure 4.10: Results of C-HEAP token sizing tests.

54

for every write made by the producer, to shared memory, there has to be an
equivalent read by the consumer. In Section 4.2.1, in Figure 4.9, it can be seen
that reading data from shared memory takes much longer than writing the same
amount of data to shared memory.

A better solution (providing sufficient local memory is available), both in
reality and for the accuracy of the simulation, would be to locate the C-HEAP
buffer in the local memory of the consuming core. Both the producer and the
consumer keep a local copy of the administration. When the producing core calls
release_data the local and remote copies of writec are incremented. The same
principle is applied to readc when the consuming core calls release_space. In
this manner both cores only need to read the variables from the administration
located in local memory, when trying to ascertain buffer occupancy, forgoing
the lengthier reads over the NoC. The transmission of data from producer to
consumer is carried out over the NoC entirely using writes. The consuming core
reads the transmitted data out of its local memory.

In Section 4.2.1 the effects of the differences between the read and write
transactions were shown. Writes were seen to be closer to reality in simulation
than reads. This means that applications using the more desirable C-HEAP
configuration would produce results in simulation closer to reality.

It is described in Section 3.3 how the C-HEAP API could be modified to
poll once more upon the receival of a positive poll in simulation in order to
conservatively bound the application-level. While not apparent from the results
graphs, in Figure 4.10, the ratio of the FPGA timing to the LRC timing increases
from 55% for a 4 byte token, 56% for an 8 byte token, 57% for a 16 byte token
to 59% for a 32 byte token. The proportion of the FPGA timing increases as
the temporal effect of the extra poll in simulation is amortised by the increase
in synchronisation granularity due to the increased token size.

This case study shows that increasing synchronisation granularity has the
effect of decreasing the overal communication time in both simulation and on
the FPGA implementation. It is also shown that increasing the synchronisation
granularity has the effect of amortising the temporal effect of the required extra
poll in simulation.

4.3 JPEG Decoder Case Studies

A JPEG decoder is used to demonstrate a real-life application that can be
modelled using the dataflow analysis technique. JPEG is the format of choice for
the storage of photographic images as its compression techniques use knowledge
of the human visual system to more heavily compress less important parts of the
image. Many steps in the JPEG decoding process, as illustrated in Figure 4.11,
are similar to those used to decode video formats such as MPEG.

Run-Length De- Inverse Up- Colour
Decoding Quantisation| DCT Sampling Transform Image

Figure 4.11: JPEG decoding steps.

The JPEG decoding steps can be mapped onto different processors to create
a functional partitioning of labour. The entire decoding process can be mapped

%)

to multiple cores with each core decoding a different part of the image, creating
a data partitioning of labour. The cores work independently of each other under
a data partitioning of labour with as a consequence that all cores must perform
the RLD step on the image. As a consequence all the cores need to read the
entire JPEG from memory.

By decoding different images different workloads on the cores and the NoC
can be achieved. e.g. An image with a relatively large amount of high frequency
information will have a relatively large file size to be read by the cores over the
NoC and will also take longer to decode during the RLD step.

The following two case studies both demonstrate a data partitioned JPEG
decoder.

4.3.1 3 Core Parallel JPEG Decoder

In this case study a JPEG decoder is mapped onto the system that is described
in Figure 1.2a. From the connection map in Figure 1.2b it can be seen that only
cores 1-3 have the appropriate connections between the host, shared memory
and the frame buffer. The entire JPEG decoding algorithm is mapped onto
each of the cores 1-3. The VLD step of the decoding algorithm can not be
easily data partitioned. This results in all of the cores having to read the image
in its entirety from shared memory. The image “blocks” used for the JPEG
encoding are used as unit elements for sharing the workload among the cores.
The cores follow a counting system, modulo the number of cores, to ascertain
which “blocks” they are to decode.

Two JPEG images were used to test the system. Both of the JPEGs have
the same dimensions of 1024 x 768. One of the JPEGs is more detailed and
therefore is compressed to a relatively large file size. The other JPEG had
much less detail and is therefore compressed to a relatively small file size. For
each of these images simulations were performed using CSS and DSS calculated
LR timings.

The delay due to NoC communication can be seen as the difference between
the IDEAL and the FPGA results. The IDEAL simulation cycle accurately
models the computation, for the JPEG decoding, but not the NoC communi-
cation. In Figure 4.12 the resultant bar charts, for both JPEG files, show that
relatively little of the decoding time is due to communication over the NoC.
This is to be expected as the computation involved in decoding a JPEG is rel-
atively complex. The larger NoC time difference for the relatively large file, in
comparison to the relatively smaller file, is simply due to the larger file needing
to be read over the NoC from shared memory.

As is discovered, in Section 4.2.2, the shape of the resultant bar charts are
similar in shape to the read bar chart in Figure 4.9a indicating that the delay
caused by reading over the NoC dominates the writes over the NoC. This is not
an obvious result as the compressed JPEG that is read from shared memory
should be smaller than the decoded image written to the frame buffer. This
appears to be another illustration of how much longer reads take in comparison
to writes.

The resultant bar charts in Figure 4.12 show that the model can be used to
perform conservative application-level performance analysis through simulation
through simulation of an MPSoC.

56

JPEG Data Partition Decoder: 1024x768 Small File

500000000

B IDEAL
450000000 | L 1
LR
400000000 | LC
LRC
350000000 |- FPGA 1
300000000 |- 1
250000000 |- _ 1
200000000 |- 1
150000000 | 1
100000000 | 1
50000000 |- 1
0

1 Core 2 Cores 3 Cores

il

Cycles

(a) Timings generated assuming Continuous Service Slots in the slot tables.

JPEG Data Partition Decoder: 1024x768 Small File
500000000

B IDEAL
450000000 | L 1
LR
400000000 | LC
350000000 |- nggfi 1
300000000 |- 1
250000000 |- _ 1
200000000 | 1
150000000 | 1
100000000 | 1
50000000 |- 1
0

1 Core 2 Cores 3 Cores

il

Cycles

(b) Timings generated taking into account Distributed Service Slots.

Figure 4.12: Bar charts illustrating the conservative timing data for traces gen-
erated using a data parallel jpeg decoder, decoding a 1024 x 768 JPEG with a
relatively small file size.

57

JPEG Data Partition Decoder: 1024x768 Large File

1000000000

IDEAL ——
900000000 | L — |

LR ===
800000000 | LC mmmm

LRC
700000000 | — FPGA mmm |
600000000 | !

wn
;; 500000000 | - i
400000000 | !
300000000 | !
200000000 | 1
100000000 | 1
0

1 Core 2 Cores 3 Cores

(c) Timings generated assuming Continuous Service Slots in the slot tables.

JPEG Data Partition Decoder: 1024x768 Large File

1000000000
IDEAL ——
L =3
LR o
800000000 |- LC s -
LRC
N FPGA mm—
600000000 |- .
ki
[&]
>
O
400000000 |- 1
200000000 .
0

1 Core 2 Cores 3 Cores

(d) Timings generated taking into account Distributed Service Slots.

Figure 4.12: Bar charts illustrating the conservative timing data for traces gen-
erated using a data parallel jpeg decoder, decoding a 1024 x 768 JPEG with a
relatively small file size.

58

4.3.2 5 Core Parallel JPEG Decoder

This case study, as in the case study in Section 4.3.1, maps a data partitioned
JPEG decoder onto the system illustrated in Figure 1.2a. Instead of mapping
it on Cores 1-3 it is mapped on Cores 1-5. The dashed lines in Figure 1.2b
are connections that do not exist in reality but can be created by adding LR
data for the connections, into the XML data file that contains the derived LR
values for the connections. For this case study similar LR values to the relative
connections to and from the other cores were input into the XML file. The LR
values for the arbitration at the memory and the frame buffer were modified
appropriately to take into account the extra connections.

This case study shows that a theoretical platform connection configuration
can be created and tested as an alternative to creating and testing an FPGA
implementation. Results from the JPEG decoding simulations, using the NoC
model, are conservative compared to an equivalent real system.

As in Section 4.3.1, two JPEG images are used for testing that have the same
resolution of 1024 x 768 but have different compressed file sizes. Figure 4.13
illustrates the results decoding the images on simulation systems configured
with the different NI models, as illustrated in Figure 2.6. The images were also
decoded on a simulation system with ideal NoC timings and a cycle accurate
simulation on an FPGA, for comparison. The bar charts’ legends are explained
in Section 4.2.1.

As in Section 4.3.1, the computation is the major contribution to the decod-
ing time. Adding more cores has an exponential decrease of return, as is bore
out in Figure 4.13. The IDEAL simulation stays approximately proportional
to the simulation models that take account of the NoC timings for all numbers
of cores used. This demonstrates that it is computation and not communication
that is the limiting factor when the JPEG decoder is mapped to an increasing
number of cores, e.g. all cores must perform the VLD step on the entire image.
The contribution of the NoC to the decoding time has only marginally increased
compared to the results for the 3 Core system in Section 4.3.1. The Athereal
NoC, as described in Section 2.2, is contention free. The marginal increase in
delay due to the NoC is because of taking into account the contention at the
memory arbitration.

This case study shows that with the addition of the NoC model, theoretical
hardware platforms can be developed and simulated in software. The results of
any simulation will be conservative compared to the real life implementation.
This allows the platform based design approach to be carried out entirely in
software, while still being able to provide performance guarantees.

59

JPEG Data Partition Decoder: 1024x768 Small File

500000000

- IDEAL ——
450000000 |- L == |

LR m=m
400000000 |- LC o -

350000000 | LRC mm—
300000000 | 1

wn
E% 250000000 |- ~ i
200000000 | 1
150000000 | i
100000000 | i
50000000 |- 1
0

1 Core 2 Cores 3 Cores 4 Cores 5 Cores

(a) Timings generated assuming Continuous Service Slots in the slot tables.

JPEG Data Partition Decoder: 1024x768 Small File

500000000

- IDEAL ——
450000000 |- L == |

LR mm
400000000 |- LC o -
350000000 | LRC wm—m |
300000000 | 1

wn
E% 250000000 | ~ i
200000000 | 1
150000000 | i
100000000 | i
50000000 |- 1
0

1 Core 2 Cores 3 Cores 4 Cores 5 Cores

(b) Timings generated taking into account Distributed Service Slots.

Figure 4.13: Bar charts illustrating the conservative timing data for traces gen-
erated using a data parallel jpeg decoder, decoding a 1024 x 768 JPEG with a
relatively small file size.

60

JPEG Data Partition Decoder: 1024x768 Large File

1000000000
IDEAL
900000000 | L o= -
LR oo
800000000 | LC o 1
700000000 | LRC mm—
600000000 | 1

n

<5}

3 500000000 | - 1
400000000 | 1
300000000 | 1
200000000 | 1
100000000 |- 1

0

1 Core 2 Cores 3 Cores 4 Cores 5 Cores

(c) Timings generated assuming Continuous Service Slots in the slot tables.

JPEG Data Partition Decoder: 1024x768 Large File

1000000000
IDEAL
L &=
LR oo
800000000 | LC oo 1
LRC
600000000 | 1
£
[}
> —
O
400000000 | 1
200000000 | 1
0

1 Core 2 Cores 3 Cores 4 Cores 5 Cores

(d) Timings generated taking into account Distributed Service Slots.

Figure 4.13: Bar charts illustrating the conservative timing data for traces gen-
erated using a data parallel jpeg decoder, decoding a 1024 x 768 JPEG with a
relatively large file size.

61

62

Chapter 5

Conclusions & Future Work

Real Time applications have temporal constraints to adhere to. In order to
ensure compliance to the temporal constraints it is necessary to be able to
conservatively predict the temporal behaviour of the application for its tar-
get hardware platform. It is possible to analytically calculate application-level
conservative temporal bounds through the use of formal modelling techniques
to model the application and hardware. Soft RT applications are often more
difficult to formally model than Firm RT applications, as they may be input
dependent and the programming models used less strict, while their temporal
constraints are more lenient.

In this thesis, simulation is proposed as an alternative to formal modelling
in order to facilitate application-level performance analysis. Using a predictable
hardware platform as a starting point, an off-the-shelf MPSoC modelling and
simulation framework from Silicon Hive is used to model the hardware plat-
form. The processors are modelled using cycle accurate ISS, while the temporal
behaviour of the interconnect, memory arbitration and memory access are en-
capsulated in the interconnect model.

In this thesis a method is contributed how Athereal NoC connections can
be independently modelled using a combination of cycle accurate and LR ab-
stracted components. LR abstraction is applied to runtime arbitrated compo-
nents in order to conservatively bound the temporal behaviour of the arbitration
without having to apply an overly conservative static worst case timing. In this
thesis it is shown how Latency and Rate values can be calculated for TDMA
arbitration tables, using analytical methods described in [14]. It is shown that
the Latency component of the LR values calculated using this method are overly
conservative for TDMA arbitration tables that do not deliver service in a single
continuous block of service slots. It is observed that TDMA tables can be clas-
sified as having either Continuous Service Slots (CSS) or Distributed Service
Slots (DSS). In this thesis an algorithmic method to calculate LR values is con-
tributed, that uses the observation that DSS tables are made up entirely of CSS
sub-tables to apply the principles of the existent analytical LR value method to
algorithmically derive tight conservative Latency values. It is also shown how
models of varying degrees of abstraction can be used to model the producing
NI components of the connection model using the derived LR values.

The thesis work also contributes a description of how the Athereal NoC
model can be implemented in a programming language non-specific manner.

63

The implementation described explains the techniques that are used to model
all the independent NoC channels in a single thread, that may be necessary
for some MPSoC modelling frameworks. The NoC simulation model is able to
conservatively bound read and write transactions across the NoC. It is shown
in this thesis that conservatively bound transactions do not guarantee that the
application level is also conservatively bounded for inter-IP synchronisation. A
technique is described that uses an augmented application-level communication
API that incorporates measures to conservatively bound inter-IP synchronisa-
tion in simulation.

A further contribution is made in the evaluation of the simulation tech-
nique by applying it to artificial applications and a real-life application in the
form of a JPEG decoder. Results are then compared with the timing results
of the same applications executed on an FPGA implementation of the system.
Through the use of artificial applications it is possible to bring to the surface
underlying behaviour of the model. The Connection Test case study exercises a
single Athereal NoC connection by reading and writing an array from and too
external memory respectively. This allows the temporal behaviour of the model
for the two different transaction types to be studied. The Communication API
case study results illustrate that the effect of synchronisation granularity on
the applications temporal behaviour in both simulation and FPGA implemen-
tation. It is shown that increasing the synchronisation granularity decreases the
runtime in both cases. Increasing the synchronisation granularity also has the
effect of increasing the amortisation of the extra poll required for conservative
application-level synchronisation in simulation.

The JPEG Decoder case study results provide the opportunity to evaluate
the model when used to simulate a real-life application. The method used
to decode a JPEG has much in common with the method to decode video
frames, e.g. from a video format such as MPEG. The results show that the
model can successfully conservatively bound the decoding of a JPEG image. A
second JPEG Decoder case study is used to demonstrate that the NoC model
parameters are modifiable enabling the exploration of NoC configurations in
simulation.

In this thesis conservative simulation is proposed as an alternative to for-
mal modelling for application-level performance analysis of an MPSoC. It is
contributed how the Athereal NoC connections can be modelled independently
using a combination of cycle accurate components and LR server abstraction
for runtime arbitrated components. A further contribution in this thesis is an
algorithmic technique to derive tightly conservative Latency Rate values for the
Mthereal TDMA arbitration tables used by the producing NIs. The description
of the implementation of the model is also contributed along with the evaluation
of the model through the simulation of multiple case study applications. The
conclusions of which are that conservative simulation of an MPSoC is a feasible
technique for conservative application-level performance analysis.

5.1 Future Work

The ISS for the Pearlray cores used in the hardware platform does not take mem-
ory arbitration time of the Pearlray’s internal memory into account. This was
circumvented in the work in this thesis by performing inter-core communication

64

via shared memory external to the cores. Silicon Hive processors definitions are
modifiable using the TIM language. It may be possible to implement temporal
accountability for Pearlray core’s internal memory arbitration.

The derivation of Latency Rate values, in this thesis, is focussed on the cal-
culation of conservative values. LR servers do not necessarily have to be con-
servative. If it is not necessary to provide temporal guarantees some form of
average LR values could be derived for use instead. This could allow the model
to provide expected timing estimations rather than just worst case timings.

Conservative buffer sizing should be possible on a per-trace basis through simu-
lation of an application using the model. By setting the producing NI buffer on
the request side to be infinitely large (or something more feasible) the maximum
occupancy of the producing NI buffer on the request side during a simulation is
the worst case size for the buffer, as all timings after and including the arbitra-
tion at the producing NI buffer, are worst case. In order to conservatively size
the consuming NI buffer on the request side in a similar manner some form of
best case LR timing could be used for the producing NI. All timings after and
including the request side NI buffer are worst case, making the maximum oc-
cupancy of the consuming NI buffer during simulation the worst case buffer size.

It should be possible to provide worst case energy consumption for the NoC
model on a per-trace basis. By assigning the NoC model components a watts-
per-cycle value the conservative timing simulation could also generate the worst
case energy consumption for the NoC. Using average LR timings, as suggested
for timing analysis, would generate an energy consumption estimation.

An Embedded Systems Laboratory module, that is taught in the Technical
Universities in both Eindhoven and Delft, uses the Silicon Hive SDK in combi-
nation with a predictable MPSoC hardware platform to teach students about
the complexities of program mapping on MPSoCs. Timing analysis of the stu-
dents efforts is carried out using the FPGA implementation. The Athereal
NoC model described in this thesis could be used to provide application-level
performance analysis through simulation of the MPSoC.

65

66

Bibliography

[1]

L. Benini et al. Mparm: Exploring the multi-processor soc design space
with systemc. J. VLSI Signal Process. Syst., 41(2):169-182, 2005.

G. Bilsen et al. Cyclo-static dataflow. IEEE Transactions on Signal Pro-
cessing, 44(2):397-408, February 1996.

Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

S. Dimitrios et al. Latency-rate servers: a general model for analysis of traf-
fic scheduling algorithms. IEEE/ACM Trans. Netw., 6(5):611-624, 1998.

K Goossens et al. Ethereal network on chip: Concepts, architectures, and
implementations. IFEE Design and Test of Computers, 22(5):414-421,
September/October 2005.

A. Hansson et al. Undisrupted quality-of-service during reconfiguration of
multiple applications in networks on chip. In DATE ’07: Proceedings of
the conference on Design, automation and test in Europe, pages 954-959,
2007.

A. Hansson et al. Compsoc: A template for composable and predictable
multi-processor system on chips. ACM Trans. Des. Autom. Electron. Syst.,
14(1):1-24, 2009.

A. Hansson et al. Enabling application-level performance guarantees in
network-based systems on chip by applying dataflow analysis. IET Com-
puters & Digital Techniques, 2009.

Matthias Krause et al. Combination of instruction set simulation and ab-
stract rtos model execution for fast and accurate target software evaluation.
In CODES+1555°08, pages 143-148, 2008.

S. Mahadevan et al. Arts: a system-level framework for modeling MP-
SoC components and analysis of their causality. Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2005. 13th IEEE
International Symposium on, pages 480-483, Sept. 2005.

A. Nieuwland et al. C-heap: A heterogeneous multi-processor architecture
template and scalable and flexible protocol for the design of the embed-
ded signal processing systems. Design Automation for Embedded Systems,
7(3):233-270, October 2002.

67

[12] Silicon Hive. website. http://www.siliconhive.com.

[13] Silicon Hive. SDK User Manual: Silicon Hive software development kit,
November 2006. Revision 1.

[14] Maarten Wiggers et al. Modelling run-time arbitration by latency-rate
servers in dataflow graphs. In SCOPES, pages 11-22, 2007.

68

http://www.siliconhive.com

	Abstract
	Contents
	1. Introduction
	2. Modelling the AEthereal NoC

	3. Implementation of the NoC Model
	4. Case studies
	5. Conclusions & future work
	Bibliography

