
 Eindhoven University of Technology

MASTER

ELP
towards an extendible logistics protocol

Snoek, M.L.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8e336e0e-d80c-49c2-8a7d-6592986b46b6

ELP
Towards an

Extendible Logistics Protocol

April 2009

Eindhoven University of Technology
Department of Mathematics and Computer Science

Supervisor: dr. A.T.M. Aerts

Thesis author: M.L. Snoek (0474935)

Global Data Exchange

ELP - Extendible Logistics Protocol 1 / 170 M. Snoek - TU/e

ELP - Extendible Logistics Protocol 2 / 170 M. Snoek - TU/e

Acknowledgment

I would like to express my profound gratefulness to my supervisor, dr. Ad Aerts, of the
Mathematics and Computer Science department of the Eindhoven University of Technology. His
guidance, extensive support, recommendations, patience, comments and proofreading throughout
my graduation and writing of this thesis are invaluable. I will especially remember his continuous
support despite of the long period it took to complete this thesis. This support even extended to
Switzerland during his research at CERN. My visit to CERN and Geneva has been a valuable
experience that I will not forget.

I would like to thank Global Data Exchange in Maarssen for the opportunity to make my graduation
possible on the subject of the ELP. My sincere gratitude goes out to drs. Laurens van Run for his
recommendations and detailed proofreading of this thesis.

I would like to express my gratitude to my parents, Iede and Henriette, for making my study at the
Eindhoven University of Technology possible and especially for their support during my graduation.
I would like to thank my sweet girlfriend Jessica for her endless encouragement and patience
during the writing of this thesis.

Mark Snoek

ELP - Extendible Logistics Protocol 3 / 170 M. Snoek - TU/e

Table of contents
1 Abstract...9
2 Introduction...10

2.1 Research area and background information..10
2.1.1 Transportation in general..10
2.1.2 Transport from an Information Technology point of view..11

2.2 Reason for research..12
3 Research question..14

3.1 Outsourcing support for information systems...14
3.2 Derived subquestions..14
3.3 Summary...16

4 The approach to the ELP design...17
4.1 Functional requirements..17

4.1.1 Business processes...17
4.1.2 Information management..18
4.1.3 Management information..19
4.1.4 Legal issues...20
4.1.5 Track and Trace...20
4.1.6 Functional requirements overview..21

4.2 Existing solutions...22
4.2.1 PapiNet..22
4.2.2 ELPIF...23
4.2.3 UN/EDIFACT..24
4.2.4 ebXML..27
4.2.5 RosettaNet...28
4.2.6 Comparison of solutions...31
4.2.7 Requirements and design decisions...32

4.3 ELP design steps and document lay-out..34
4.4 Summary...36

5 Use cases to describe outsourcing..37
5.1 Goals and constraints..37
5.2 Use case 1: no outsourcing..38
5.3 Use case 2: single outsourcing..39
5.4 Use case 3: multiple outsourcing, single level..40
5.5 Use case 4: multiple outsourcing, multiple levels...40
5.6 Use case 5: outsourcing with many goods seen as one...41

6 Business processes analyses...43
6.1 Top level processes...43
6.2 Client business processes...44

6.2.1 Business process: get quotations...44
6.2.2 Business process: send order..45
6.2.3 Business process: trace order..46

6.3 Transport company business processes..46
6.3.1 Business process: create quotation..46
6.3.2 Business process: receive order..48
6.3.3 Business process: execute order..49

6.4 Use cases and BPM..50
6.4.1 Use case 1: no outsourcing..50
6.4.2 Use case 2: single outsourcing...51
6.4.3 Use case 5: outsourcing with many goods seen as one...51

6.5 Crossing company borders..53
6.6 Summary...53

ELP - Extendible Logistics Protocol 4 / 170 M. Snoek - TU/e

7 Data structures as support for business processes...54
7.1 Introduction to a common data model..54
7.2 The Common Data Model (CDM)..55

7.2.1 CDM Overview...56
7.2.2 Extensions to the CDM...61

7.3 CDM usage and outsourcing..63
7.3.1 Outsourcing and the ELP Identifier...63
7.3.2 Multiple outsourcing...64

7.4 TransHolder: the holder that can be transported..65
7.4.1 Transholder functionality..65

7.5 Summary...68
8 Communication between companies...69

8.1 Introduction to communication...69
8.2 Communication requirements..71
8.3 Communication network topologies...71
8.4 Message routing and forwarding..78

8.4.1 Routing within network topologies..80
8.4.2 Progress messages to downstream nodes...81

8.5 Summary...85
9 Exchanging progress information..86

9.1 CDM applied to outsourcing...86
9.1.1 Progress messages and the CDM..88
9.1.2 Similarity with distributed database systems..92

9.2 Introduction to distributed database systems...94
9.3 Distributed database requirements..95

9.3.1 Introduction..95
9.3.2 Requirements...95
9.3.3 Requirements as two layers...97

9.4 Layer 1: database replication...98
9.4.1 Eager replication..98
9.4.2 Lazy replication..100
9.4.3 Two Tier replication..101
9.4.4 General aspects of replication techniques..102
9.4.5 Replication techniques compared...103

9.5 Layer 2: Dynamic replication participants and rights management....................................105
9.5.1 Real-time addition and removal of nodes...105
9.5.2 Rights management...106

9.6 Summary and final design decisions..109
9.6.1 Summary..110
9.6.2 Final design decisions..110

10 ELP Prototype...112
10.1 Goals of the ELP prototype..112
10.2 ELP Prototype Architecture..113
10.3 ELP Name Service...119
10.4 ELP Prototype Implementation..122
10.5 Prototype retrospect...124
10.6 Summary...125

11 Discussion and conclusions...126
11.1 Introduction..126
11.2 Discussion of findings..126
11.3 Answer to the research question..127
11.4 Conclusion...129

12 Future research...131
12.1 Functional requirements and business processes...131
12.2 The Common Data Model..131

ELP - Extendible Logistics Protocol 5 / 170 M. Snoek - TU/e

12.3 Exchanging information...131
12.4 ELP Prototype..132

13 Appendix A – Subquestions index...133
14 Appendix B – EDIFACT and XML message comparison...134
15 Appendix C – Functional requirements and existing solutions...135
16 Appendix D - Brief Business Process Modeling Notation...136
17 Appendix E – CDM illustrations...140
18 Appendix F – Rules for outsourcing and exchanging data...141
19 Appendix G - Routing methods in detail..144
20 Appendix H - 2PC node extension (two-tier replication)..146
21 Appendix I - ELP Name Service message definitions..148
22 Appendix J - CDM Entity Details..151

22.1 Base types and requirements..151
22.2 Client entity..152

22.2.1 Additional attribute types of Client..153
22.3 Order entity..154
22.4 Transportable entity...154

22.4.1 Additional attribute types of Transportable...156
22.4.2 Additional attribute types of Transportable/RouteLocation.......................................159

22.5 TransportableTrack entity..162
22.6 LocationMoment entity...163

22.6.1 Additional attribute types of LocationMoment...163
22.7 Holder entity...164

22.7.1 Additional attribute types of Holder...165
23 Bibliography...168

ELP - Extendible Logistics Protocol 6 / 170 M. Snoek - TU/e

List of illustrations
Figure 5.1 - Elements used for order and flow of goods schemes..38
Figure 5.2 - Order scheme of use case 1...39
Figure 5.3 - Flow of goods scheme of use case 1..39
Figure 5.4 - Order scheme of use case 2 ..39
Figure 5.5 - Flow of goods scheme of use case 2..40
Figure 5.6 - Order scheme of use case 3...40
Figure 5.7 - Flow of goods scheme of use case 3..40
Figure 5.8 - Order scheme of use case 4...41
Figure 5.9 - Flow of goods scheme of use case 4..41
Figure 5.10 - Order schemes of use case 5..42
Figure 5.11 - Flow of goods scheme of use case 5..42
Figure 6.1 - BPM: top-level business processes...43
Figure 6.2 - BPM: get quotations..44
Figure 6.3 - BPM: send order...45
Figure 6.4 - BPM: trace order...46
Figure 6.5 - BPM: create quotation...47
Figure 6.6 - BPM: receive order...48
Figure 6.7 - BPM: execute order..49
Figure 6.8 - Two steps from initial state to order stage...50
Figure 6.9 - Altered BPM: execute order..52
Figure 7.1 - CDM overview...56
Figure 7.2 - Client entity relationship..57
Figure 7.3 - Order entity...58
Figure 7.4 - Transportable and transportable entity relationship...59
Figure 7.5 - Holder and transportable entity relation...60
Figure 7.6 - Order entity extended with an extension layer...62
Figure 7.7 - CDM extensions..63
Figure 7.8 - Overview of transport executed by multiple companies...65
Figure 7.9 - Outsourcing using transholders...67
Figure 8.1.a-b - Communication network of use case 3 and 4..69
Figure 8.2 - Parallel transportation...72
Figure 8.3 - Elements used within topology illustrations...73
Figure 8.4 - Topology 1a..73
Figure 8.5.a-c - Topologies 2a, 2b and 2c..75
Figure 8.6.a-b - Topologies with a buffer and trusted node..77
Figure 8.7 - Execution order within altered use case 4...81
Figure 8.8 - Use case 4 before addition of D and E..82
Figure 8.9 - Subscription requests using the four rules...84
Figure 9.1 - Simplified CDM order representation..87
Figure 9.2 - More simplified CDM order representation..87
Figure 9.3 - CDM integrated into the order tree..88
Figure 9.4 - Order tree of use case 4..92
Figure 9.5 - Eager replication with Master Updates using three nodes (replicas)...........................99
Figure 9.6 - Eager replication with Group Updates using three nodes (replicas)............................99
Figure 9.7 - Lazy replication with Master Updates using three nodes (replicas)...........................100
Figure 9.8 - Lazy replication with Group Updates using three nodes (replicas)............................101
Figure 9.9 - Initial order tree without rights management..107
Figure 9.10.a-b - Order trees with grant tracks...107
Figure 10.1 - ELP prototype architecture..115
Figure 10.2 - Sending a message using the external communication gate...................................116
Figure 10.3 - ELP Name Service architecture..120
Figure 10.4 - Object Oriented representation of the prototype..123

ELP - Extendible Logistics Protocol 7 / 170 M. Snoek - TU/e

Table 3.1 - Users, roles and their relationships..15
Table 4.1 - Overview of functional requirements..21
Table 4.2 - Properties of existing solutions...31
Table 4.3 - Design decisions..33
Table 7.1 - Terms and definitions for the common data model ..54
Table 8.1 - Properties of topologies 1, 2 and 3...78
Table 9.1 - Properties of alternative replications techniques...103
Table 10.1 - ELP prototype object creation and initialization steps...123

ELP - Extendible Logistics Protocol 8 / 170 M. Snoek - TU/e

1 Abstract

The transportation industry worldwide consists of many transport companies using information
systems, namely Transport Management Systems (TMS), to increase their efficiency, service and
profit margin. Transport companies cooperate by outsourcing orders to realize cost savings,
additional specialisms and flexible capacity. Unfortunately, the advantages of TMS software
products are limited to situations without outsourcing and can be increased when software
products support a standard to exchange information. This thesis covers the research of how
existing TMS software products can be extended to support the exchange of information to
maximize the advantages of outsourcing and the use of information systems. This research
focuses primarily on courier companies which are a part the transportation industry. The approach
of the research consists of analyzing existing solutions, business processes and information
exchanged during these business processes. Using the results, an information system, namely
ELP, has been designed. This design includes technical details to exchange information using
distributed database technology, including limited support to extend it with proprietary elements.
The design of ELP has been used to develop a prototype to test key functionality of the design.
This prototype and the design of ELP show that the approach provides most of the required
information to create an extension for existing software products to exchange information when
orders are outsourced. Finally, additional topics are provided that need to be researched before
one being able to create a full implementation of the design and to solve several practical issues
which remained unsolved.

ELP - Extendible Logistics Protocol 9 / 170 M. Snoek - TU/e

2 Introduction

2.1 Research area and background information
Transportation of goods one way or another effects everybody. Without it, stocks would be empty
and a lot of people would be unemployed. The research area of this document lies within this
important industry. The transportation industry exists of many kinds of transports, such as transport
over water, rail, roads and through the air. The focus of this reports is limited to transport over the
road with specific attention to courier companies.

This chapter contains an introduction to transportation in general as well as an introduction to IT
solutions that are used to provide automation of transport companies.

2.1.1 Transportation in general

Typical transportation process
Every day many parcels, pallets, boxes, etc are picked-up and delivered by thousands of courier
and transport companies worldwide. The common characteristic of these companies is that they
pick-up some good at one location and deliver it at another. The goods can be transported directly
from the pick-up location to the delivery location, but it also happens frequently that the goods are
stored at intermediate storage facilities, which are known as warehouses. Goods can be stored in
these facilities for a short or longer period. If intermediate storage facilities are used then the goods
will be transported from the pick-up location to a warehouse, optionally to another warehouse or
warehouses, and finally to the delivery location. In short, it can be said that a good is picked-up at
a first location, transported to zero or more warehouses and finally delivered at the delivery
location. Typical courier companies that use a lot of warehouses worldwide are UPS, DHL, FedEx
and TNT. The transportation of a parcel from Amsterdam to Sydney will probably not be executed
without intermediate storage in a warehouse at, typically, an airport.

Types of transport companies
Within the large group of transport companies there are several types that can be distinguished by
their kind of clients. There are so called “charter” companies, with usually a few cars or trucks, that
only execute orders for other transport companies. Their transportation means usually have no
company name printed on it -they use so-called “white-label” vehicles- to deliberately be not tied to
a specific company. The second type of company also has regular customers, which means that its
customers are other transport companies as well as regular customers. A third type of transport
company has mostly regular customers. Yet another type of company, which in fact is not a
transport company, is the transport broker. Brokers accept orders from transport companies or
regular clients that are outsourced to a (specialized) transport company. Brokers usually have a
large network of transport companies that can perform the actual transport.

Outsourcing is generally accepted
From the variety of transport companies, especially the charters, it can be concluded that the
execution of an order is frequently outsourced, otherwise these companies wouldn't exist. In fact,
the transport brokers can be seen as transport companies that only outsource their orders. One of
the reasons for companies to outsource an order is that they are not specialized enough to
execute the order itself. Another, more important, reason is cost saving. Although outsourcing is
usually more expensive, because of an extra company that would like to make a profit, it can be a
cost saver for transport companies as is illustrated in the following examples.

Charters are mostly used when the capacity of a transport company itself has been reached. It is
more expensive to have an extra vehicle, that is only used during busy periods, in a fleet of
vehicles than to pay the extra cost of a charter. The charter can be seen as shared capacity

ELP - Extendible Logistics Protocol 10 / 170 M. Snoek - TU/e

among transport companies with a slightly higher price per kilometer.

Another example is the extra cost due to driving with an empty vehicle. When a vehicle has
delivered its goods it is available for a new load. It can be used by other transport companies that
have to pick-up goods in the destination area of the empty vehicle and so avoid sending one of
their own vehicles. In this way the owner of the vehicle makes an extra profit and the outsourcing
company has fewer costs. There are specialized IT companies that provide information about the
locations and vehicles between transport companies such as [Intellicom] and [CourierExchange].

Due to the large competition, the rates of transport companies are under pressure. Outsourcing is
a possibility to save costs and therefore possibly make a profit. It also provides a higher 'virtual'
capacity with optionally more specialization.

Transportation process and information sharing
Courier companies frequently offer Track&Trace solutions to their customers to keep track of the
transportation of their goods. They, for example, provide information about the current and past
locations of a parcel, the direction it is going and finally the person who signed for the delivery.
These systems are needed for Just In Time (JIT) delivery and possible high priority express
delivery services. If a courier company performs the whole transportation process itself then this
Track&Trace information is usually detailed, up-to-date and complete. Unfortunately, most courier
companies don't always take care of the whole transportation process themselves. The entire
transportation process or just a part of it can be outsourced to other (transport) companies. This
outsourcing can have an effect on the accuracy and detail of the Track&Trace information when
not all transport companies have compatible Track&Trace information systems to exchange
information, if they have any at all.

In short, it can be said that the lack of information systems that can successfully exchange
transportation details is an impediment for the interoperability and the availability of up-to-date
shipping data that is of interest to more than one transport company.

Combined shipments
During the transportation from the original location to the destination, multiple goods can be
combined using special resources for a part or the total of the transportation track. Typical
examples of these resources are pallets and sea containers. The resources are goods themselves
from a transport company point of view. If a transportation resource is moved from its original
location, this is the location where it is loaded, to the final destination, this is the location where it is
unloaded, then all contained goods have the same location properties as the transportation
resource. Pallets and containers don't necessarily need to be resources. This depends on the fact
if a container is a pure wrapper that is also delivered or a wrapper that is introduced by the
transport company to accommodate goods during transport.

2.1.2 Transport from an Information Technology point of view

Automation of transport companies is done by many IT companies around the world. Since there
are many transport companies, the market for IT companies supplying software is also extensive.
A survey of TLN (“Transport en Logistiek Nederland”) [TLNNOV06], which is the branch
organization of transport and logistic companies in The Netherlands, indicates that in 2006 there
were 36 automation companies with a specialized product for the transportation sector only in the
Netherlands. Transport companies can be found all over the world and one can conclude that
there are hundreds of software products available for this sector today. The Netherlands plays an
important role in the European market of transportation needs due to the port of Rotterdam and
Schiphol airport.

Transport companies around the world are storing information about their business in their

ELP - Extendible Logistics Protocol 11 / 170 M. Snoek - TU/e

information systems. As mentioned, these systems are build by a lot of different manufacturers and
all have their own specific ways of storing information. When transport companies would like to
improve their collaboration then they should be able to exchange information about the goods they
are transporting. When two information systems don't understand each others information then this
can lead to difficult or even dangerous situations.

The automation companies are competing with specialized software for specialized kinds of
transport. Examples of these specialization are trailer transport, courier/express, distribution,
dangerous good transport and railway transport. All these specializations have aspects in common
such as loading, unloading and actual transport of goods. Since one of the practical aspects of
transportation is outsourcing, it would be preferable when the systems of all these suppliers can
communicate using a common language. Communication between these software solutions is
called Electronic Data Interchange, also known as EDI.

A look at the website of [TLNNOV06] companies shows that a number of companies has
integrated EDI functionality into their software product. Unfortunately this functionality seems to be
limited to the import and/or export of orders. Although this is very useful functionality in the sense
of preventing errors and avoiding repetitive input work, the approach is very basic. It doesn't
provide real-time or near real-time exchange of information nor is the exchange automated.
Another limitation seems to be the proprietary nature of the formats that are used to exchange the
information. This can be concluded from the fact that no supplier presents any schemes needed to
format data for import or export. The inability to exchange data between transport companies and
clients in a universal way was a motivation to start doing research on this subject at Global Data
Exchange B.V., located in Maarssen, The Netherlands.

Global Data Exchange originated from two companies that merged in 2004. These two companies
both produced an information system for courier companies. The merger was a good moment to
examine the possible data exchange between the two existing software products that are targeted
for the same market. Since the two information systems both stored data of courier companies one
might think that the data structures of the databases behind the interfaces were alike. In fact, the
databases did have a lot aspects in common. For example, both software programs used data
structures for clients, orders, invoices and rates. They also had comparable relations between
entities such as one-to-one and one-to many. The biggest difference in the data structures was the
level of detail of stored items and the possible flexibility that the software would like to offer to the
user. An example of the level of detail is the extension of a house number, such as 'BIS' or 'II', that
is a separate field in one program, but is assumed to be included in the house number by the other
software package. An example of the flexibility is the aspect of picking up multiple boxes and
deliver them at different addresses (distribution). One software package assumed these are
multiple orders while the other can handle it as one order.

When even two software products, that are targeted for the same market, have a collection of
aspects that are not common then it would be interesting to know where deviation takes place and
how the design of these product can be used to create a more common framework to exchange
data. It seems a challenge to design a framework that can bring Transport Management Software
(TMS) products closer to each other from a technological point of view and to create a solution that
makes them compatible.

2.2 Reason for research
Many courier and transport companies exist worldwide. Some of them have enough resources to
provide a worldwide delivery coverage, but most don't. Also, some of them have enough capacity
and specialization to execute all transports themselves, but most don't. These conclusions can be
drawn from the knowledge available within Global Data Exchange about the courier and transport
market. Many courier and transport companies in The Netherlands work together to execute

ELP - Extendible Logistics Protocol 12 / 170 M. Snoek - TU/e

Q005

transports that they cannot execute on their own or to make a better profit. When these benefits
are available in a country as The Netherlands then it can be assumed that the benefits of
outsourcing are also available in other countries. The reasons for this are the geological aspects
and prosperity of other countries that are comparable to The Netherlands. Transportation in
general can be seen a way to bring goods from a supplier (ports, airports, factories) to a demander
(people, companies, factories). A high population implies a high demand and thus a lot of
transportation where a high prosperity suggests the relative luxury of couriers transporting goods.
Countries that can obviously be compared to The Netherlands are those in West Europe and
several other parts of the world, such as the United States of America. The benefits of outsourcing
in these countries can even be bigger, because a larger country size suggests transports over a
longer distance.

With so many courier and transport companies around and so many of them working together, one
could ask whether their information systems also support this collaboration. From the information
available at Global Data Exchange which is a specialized software supplier for the courier industry
and market leader in The Netherlands, this question can be answered negatively. Several
questions that arise are:

● Why don't these information systems support some kind of universal outsourcing
functionality?

● Are there shortcomings in the current standards that prevent this?
● Do standards even exist?
● What aspects should be included in this universal outsourcing functionality?

The summarizing term “transportation” is a frequently used term that is so wide that restrictions are
needed to answer the questions above in a reasonable amount of time. For this reason, the
domain of these questions and the research question, given in the next chapter, is restricted to the
transportation that is done by courier companies. Consequently, the domain does not include:

● Transportation of raw materials
● Transportation of humans or animals
● Transportation that is not executed by vehicles

Additionally, the domain is restricted to the physical aspect of transporting goods. For example, the
domain does include packed goods, vehicles and companies that own the vehicles, but does not
include government issues, customs and financial aspects.

Although the domain is now limited to courier companies, this doesn't explicitly exclude from being
applicable for other kinds of transport companies. When these companies only transport packed
goods then they would probably also fit within the domain as it doesn't prescribe anything about
sizes or weight. Instead of referring to courier companies, the following chapters refer to transport
companies because a courier company is in fact a specialized transport company and other
transport companies are not excluded from the domain explicitly.

ELP - Extendible Logistics Protocol 13 / 170 M. Snoek - TU/e

Q201

3 Research question

3.1 Outsourcing support for information systems
From the introduction it can be concluded that the two software products of Global Data Exchange
do not have a common way of exchanging information between them. Other software products
don't seem to have functionality implemented to automatically exchange information between
them. Since all of these products and their targeted markets will require specific functionality for
information exchange the following research question is raised:

How can an information system be designed that provides general functionality to exchange
information about the execution of the transport of goods and give the possibility to extend it with
proprietary elements?

This research question is quite general and cannot easily be answered without asking several
subquestions.

To exchange information there has to a language, consisting of a syntax, semantics and
synchronization rules, that communicating participants all understand and support. Since a
communication language between information systems is called a protocol, the subject of this
document defined as the Extendible Logistics Protocol (ELP), where the term Extendible will be
illustrated later.

3.2 Derived subquestions
Some subquestions can be answered immediately while others are answered throughout this
document or remain unanswered. Unanswered or partially answered questions can remain due to
difficulties to answer them, being out of scope, being less relevant than others or other reasons.
Unanswered question can be seen as a base for future work.

One important subquestion that can be asked is: what is the scope of ELP?
The scope of ELP defines the context wherein ELP can be used and includes information about
information about the intended industry, intended users, with relationships and interaction between
them, as well as business processes, divided into categories, that they execute and are part of
ELPs functionality.

The intended industry of the scope is already mentioned by the domain in the previous paragraph,
namely the courier industry that is part of the transportation industry. The intended users are
courier companies and participants that appear in their business processes. These participants can
be, but are not limited to, clients, namely companies or natural persons, transport brokers as well
as other courier companies. The previous paragraph already mentioned that courier companies
are considered (specialized) transport companies. The following table presents the intended users,
their roles and relationships.

ELP - Extendible Logistics Protocol 14 / 170 M. Snoek - TU/e

Q201

User Role Relationships
Transport
company

An entity that provides and
executes the service to
physically transports goods from
one location to another using
using road vehicles.

A transport company offers its services to
clients, brokers and other transport companies.
It accepts orders from clients and is held
accountable by clients.
It can outsource orders to transport companies
or brokers. In this case its role becomes Client.

Client An entity that would like some
goods to be transported from
one location to another.

A clients places orders at a transport company
or broker.

Broker An entity that provides at least
the same services as a
transport company, but doesn't
physically transport goods.

A broker places orders at transport companies
or other brokers. It accepts orders from clients
and is held accountable by clients. It only
outsources its orders to transport companies
where its role becomes Client.

Table 3.1 – Users, roles and their relationships

The role of broker is in fact a combination of transport company and client and therefore not
mentioned specifically anymore.

The domain in the previous paragraph is restricted to the physical aspect of transporting goods.
This implies that the supported business processes within the scope only apply to this aspect and
therefore include order placement and track and trace, but exclude financial or legal aspects.

The following subquestions are not answered immediately, but most of them will be answered
throughout this document. Appendix A presents an overview of which questions are answered in
which paragraph. If a paragraph focuses on a subject that is related to one or more of the following
subquestions, a rectangle with the a question mark and the number(s) of the subquestion(s) is
given on the right of that paragraph. The rectangle on the right of this paragraph is an example.

Subquestions related to operational matters
[Q001] Why would users like to exchange information?
[Q002] Which business processes are the users involved in?
[Q003] What information is going to be exchanged during the business processes?
[Q004] What responsibility during conducting business processes does every participant have and
are these responsibilities equally distributed?
[Q005] How valuable is an information system to exchange information to the participants?
[Q006] How is the ownership of information organized?
[Q007] What legal aspects, such as confidentiality, authentication and digital signatures, are
involved in the business processes?

Subquestions related to external and financial matters
[Q101] What solutions are currently available?
[Q102] Is there any need for a new information system?
[Q103] What is the maturity and acceptance of existing solutions?
[Q104] Which properties of existing solutions are desired in a new information system?
[Q105] Which desired properties of a new information system existing solutions not provide?
[Q106] How compatible should a new information system be with existing information systems?
[Q107] What barriers can be expected for a new information system to be accepted?
[Q108] Which investments are required for a new information system compared to existing
solutions?

ELP - Extendible Logistics Protocol 15 / 170 M. Snoek - TU/e

Q999

[Q109] What legal aspects, such as licenses and patents, are involved?

Subquestions related to limitations and extensions
[Q201] Is this system only applicable within the transportation industry?
[Q202] What extendability can be expected of ELP?
[Q203] Is is possible to design the system in such a way that it provides functionality to exchange
business process information in general, for example by introducing multiple layers?
[Q204] How can the information system be designed to not strictly limit its participants to standard
business processes to increase acceptance and compatibility?

Subquestions related to data quality assurance
[Q301] What are the requirements for availability, security, accuracy and performance of the
exchange of information?
[Q302] Is it possible that participants do not agree on the information they exchange and how can
these conflict be prevented or solved?
[Q303] How can a participant continue to work while not being able communicate with other
participants and are there any limitations to this?
[Q304] How can it be prevented that all participants fully rely on the other participants being
available?

Subquestions related to extending exchange of information (outsourcing)
[Q401] Are business processes limited to an exact number of participants?
[Q402] How can participants be added to business processes?
[Q403] How is the responsibility organized when a participant would like to add another participant
that is unknown to the existing participants?
[Q404] How are the rights and relationships between participants managed?
[Q405] How is the administration of participants set-up?
[Q406a] Does every participant know about all other participants?
[Q406b] Is it required that every participant is able to communicate with all other participants for
every business process?

Subquestions related to technological aspects
[Q501] How is communication between participants set-up?
[Q502] What kinds of communication means are suitable?
[Q503] What are the consequences if the information system fails?
[Q504] Which techniques can be used to exchange information between participants?
[Q505] What are the consequences of different locale settings worldwide?
[Q506] Is is possible to supply ELP functionality as middleware?
[Q507] Which existing technological standards can be used to simplify implementations and
increase compatibility?
[Q508] Are centralized external coordinators needed or can they be avoided?

3.3 Summary
There appears to be no common available solution for TMS software to exchange information
preserving proprietary elements, especially when it comes to outsourcing between transportation
companies. This leads to the research question: how can an information system be designed that
provides general functionality to exchange information about the execution of the transport of
goods and give the possibility to extend it with proprietary elements? The name of this information
system is defined as the Extendible Logistics Protocol, abbreviated as ELP.

ELP - Extendible Logistics Protocol 16 / 170 M. Snoek - TU/e

4 The approach to the ELP design
To give an answer to the research question and the subquestions that are raised, the first step is to
define the functional requirements of the information system. This chapter first focuses on the
functional requirements of the system by the clients, who place orders, and transport companies,
that execute the orders. These requirements are needed to be able to tell whether a, new or
existing, information system provides the functionality or at least indicates which functional
requirements are missing. After comparing the functional requirements to existing information
systems, this chapter describes the steps that are taken to design an information system, ELP,
with transport companies in mind. Although it is primarily designed for usage by these companies,
it should be able to be altered to use specific techniques within information systems for other
(industrial) areas.

4.1 Functional requirements
To be able to design an information system that can solve automation problems or introduce new
functionality, it has to be known what functional requirements are required by the users of the
system. The functional requirements can split into multiple categories, namely:

Business processes: functional requirements that belong to this category are based on day-to-
day operations, such as getting quotations and placing orders.
Information management: functional requirements that involve storing and retrieving information
from a (local) information system. This is information should support the business processes.
Management information: functional requirements for managers and board members to be able
to retrieve management reports.
Legal issues: functional requirements that belong to this category describe support for legal
operations, obligations and documents that are required for governments and customs.
Track & Trace: functional requirements that belong to this category describe functionality to be
able to get an up-to-date view on the progress orders being executed. This category is added
separately from the business processes, because it provides clear functionality of the exchange of
information to keep it up-to-date as described in chapter 2.

4.1.1 Business processes
Requesting and providing quotations
The client would like to be able to receive a quotation of the transport company about the costs to
transport the goods from the pick-up location to the final destination. This quotation is based on the
the physical aspects of the goods as well as the preferred time windows and optional dangerous
goods indications. When the transport company receives a quotation request from a client then it
would like to be able to answer this request with a financial proposal. This quotation has a period of
validity. If the transport company is not able to execute the order then the client would like to
receive a rejection including reasons why the transport company wasn't able to create a quotation.
Optionally, it is desired that the transport company can give a request with an alternative proposal,
such as slightly changed time windows. [RQFuncBus1]

Get quotations from other transport companies
Apart from the client, the transport company would like to be able to outsource (parts of) the
transport of a placed order. Before deciding whether to use outsourcing, the transport company
would like to be able to request and receive quotations from other transport companies. The
received quotations can be used to create a quotation to a client. When the company requests
quotations, its role is equal to that of a client. [RQFuncBus2]

ELP - Extendible Logistics Protocol 17 / 170 M. Snoek - TU/e

Q001
Q002

Negotiate about quotations
After the client received a quotation it would like to be able to send a counterproposal about the
transport of the same goods with different time windows and/or costs. The client would like to
receive a new quotation where the counterproposal is taken in consideration. If the transport
company doesn't change its quotation then the client would like to receive a rejection on the
counterproposal. If a new quotation is received then the previous quotation becomes invalid.
[RQFuncBus3]

Create and change an order reservations
A client would like to make a reservation based on a quotation received from a transport company.
As a response to the reservation, the client would like to receive a confirmation or a rejection.
When the reservation is confirmed then it should include a moment in time when the reservation
becomes a definitive order. Before this moment in time is reached the client has to be able to
cancel the reservation or place an order based on it. The difference between a reservation and the
period of validity of a quotation is that a reservation is a promise from the transport company while
the period of validity is not. A client would also like to be able to change the content of a
reservation, such as the addition of goods.

On the other side, the transport company would like to be able to receive reservations as well as
changes to them. During the creation of a reservation, the transport company can make
reservations for its resources required for the execution of the reservation. When a transport
company receives a change requests for a reservation then it can try to change the reservation of
its resources resulting in an confirmation of reject message to the client. [RQFuncBus4]

Place and receive orders
The client would like to change an order reservation to a definitive order. The client now knows that
the transport company will execute the order. Analogue, the transport company would like to be
able to follow this business process by changing the reservation into a definitive order. It then
informs the about the acceptance of it. An reservation that is changed info an order can not be
changed anymore. [RQFuncBus5]

Cancel reservations and orders
A client would like to be able to cancel a reservation. When the cancellation is sent before the
moment in time that the reservation would become a definitive order then the client receives a
cancellation confirmation from the transport company that canceled the reservation. A client would
like to be able to cancel an order. Although the transport company can confirm the cancellation
and stop the execution, the client cannot expect that the order isn't going to be invoiced. The client
will receive a confirmation or a rejection of the request from the transport company. A rejection is
sent when the transport company isn't able to stop the execution, for example when goods are
already loaded on an airplane that is en route. A cancellation of an order that is already being
executed is assumed to be an state that needs human intervention to solve the problem.
[RQFuncBus6]

4.1.2 Information management
Transport company management
A client would like to manage a collection of transport companies that support the functionality of
ELP. ELP therefore can be used to acquire quotations, place orders and keep track of executing
orders. [RQFuncInf1]

Reservation and order management
A client would like to manage orders which are placed or are going to be placed at the transport
companies that are mentioned in the previous requirement. A reservation is here assumed to be
an order with a special state. The information about goods that need to be transported is used to

ELP - Extendible Logistics Protocol 18 / 170 M. Snoek - TU/e

acquire quotations and place orders at transport companies. After placing an order, the information
is used to keep track of the execution progress and to provide an order history. Analogue, a
transport would also like to manage orders/reservations it received and placed (outsourcing).
[RQFuncInf2]

Goods and transport schedule management
The client would like to be able to give information to the transport company about the physical
aspects of goods that need to be transported. The information about the goods also contains
information about the pick-up and delivery addresses as well as preferred time windows for pick-up
and delivery. This information is required for acquiring quotations and placing orders. [RQFuncInf3]

Client and outsource management
A transport company would like to manage a collection of clients. These entries are used to link
received orders to clients. Client information should contain information about addresses, such as
settlement and invoice addresses, and about connectivity that can be used to reach the client as
well as provide progress information of placed orders. A transport company can use other
companies to (partly) outsource an order. The company would also like to be able to manage
information about these companies. This requirement is analogue to the 'Transport company
management' requirement. [RQFuncInf4]

Quotation management
A transport company would like to manage quotations that are sent to clients. These quotations
can be used to create reservations or orders. Quotations include information about the client,
goods, time windows, resources and quotation validity. [RQFuncInf5]

Resource management
A transport company would like to be able to manage its internal resources such as vehicles,
warehouse space and employee availability. When the transport company knows which resources
are used or available then it is able to create schedules as well as making decision about
accepting, denying, outsourcing and executing orders. The resource information is also used to
create quotations and make reservations of resources. [RQFuncInf6]

Split order management
A transport company would like to split the execution of an order into several parts which are
assigned to internal and/or external resources. External resources are other transport companies
that (a part of) the order is outsourced to. The transport company would like to know what resource
is responsible for which part of the execution. Using this information, it is able to conclude that the
complete transport is executed, i.e. the combination of the transport tracks, executed by the
resources, starts at the original location and ends at the final destination. The complete track can
contain transitions (unloading/loading/storing) of the goods from one resource to another.
[RQFuncInf7]

Transport scale-up management
A transport company would like to be able to combine the transport of several goods together into
the transport of one larger good. The transport company would like to know which goods are
contained in other larger goods, such as sea containers or pallets. Using this information the
company knows the locations of the contained goods by consulting the location information of the
container. [RQFuncInf8]

4.1.3 Management information
Create management reports
Using the received quotations and placed orders at transport companies, the client would like to be
able to derive information from the information system that can be used to create management

ELP - Extendible Logistics Protocol 19 / 170 M. Snoek - TU/e

Q004

reports. These reports can provide insight into averages, totals, increases and decreases that are
needed create decisions at management level. [RQFuncMan1]

Resource performance measurement
A transport company would like to use historical data to extract performance measurements.
These measurements are important at the management level of the transport company. They
should contain information about hours of usage, (exceeded) time windows, geographical
information and costs. Historical data has to be available to create these measurement thus the
data stored should include the necessary information. [RQFuncMan2]

4.1.4 Legal issues
Period of quotation validity
A client would like a quotation to have a period of validity wherein the client is able to place an
order based on the quotation. The client can be sure that, when the order is placed within this
period, it is reasonably accepted by the transport company, although it isn't a promise.
[RQFuncLeg1]

Government specific
A transport company would like to have a collection of government specific legislation that can be
used to execute orders without breaking a law. This information should also include customs
information and documents that can be used for the import or export of goods. [RQFuncLeg2]

4.1.5 Track and Trace
Know where goods are located geographically
Clients and transport companies would like to know where goods are located geographically.
These locations should be as accurate as possible, for example coordinates coming from GPS
devices. When coordinates are not available in transportation means then they would at least know
the geographical locations where goods have been last (un)loaded and stored. [RQFuncTra1]

Send and receive progress information
Progress information, such as the coordinates of goods described in the previous requirement,
would like to be received by a client. This client can also be another transport company in case of
outsourcing. This implies that a transport company that actually transports the goods has to send
this information to its client. [RQFuncTra2]

Know where goods have been located geographically
As an addition the the previous requirement, a client and transport company would like to know
where goods have been in the past. This information should include the (un)loading and storing
locations although detailed locations of transportation means are not required. Using this
information it is possible to provide a location track to the client that can be used for justification of
the execution of an order. [RQFuncTra3]

Know who signed for completion
A client would like to know who signed for the Proof Of Pick-up (POP) and Proof Of Delivery
(POD), both referred to as Proof Of Execution (POE), at the original location and the final
destination. The POP transfers the responsibility of the goods to the transport company and the
POD transfers the responsibility from the transport company to the receiver. As an addition to the
POE at the original location and the final location, a client would like to know the POE at
intermediate locations where the goods are (un)loaded and stored, for example because of
outsourcing. [RQFuncTra4]

ELP - Extendible Logistics Protocol 20 / 170 M. Snoek - TU/e

Q004

4.1.6 Functional requirements overview

The functional requirements described in the previous paragraphs are not all considered important.
Chapter 3 has put the focus on the communication between transport companies when orders are
outsourced what implies that management information or legal issues are out of scope. The
following table puts a weight on every functional requirement and indicates which chapter focuses
on which requirement.

Req. ID Title Importance Chapter
RQFuncBus1 Requesting and providing quotes Normal 6

RQFuncBus2 Get quotation from other transport companies Normal 6

RQFuncBus3 Negotiate about orders Low Absent

RQFuncBus4 Create and change order reservations Low Absent

RQFuncBus5 Place and receive orders Normal 6

RQFuncBus6 Cancel reservations and orders Low Absent

RQFuncInf1 Transport company management Normal 7

RQFuncInf2 Reservation and order management Normal 7

RQFuncInf3 Goods and transport schedule management Normal 7

RQFuncInf4 Client and outsource management Normal 7

RQFuncInf5 Quotation management Low Absent

RQFuncInf6 Resource management Low Absent

RQFuncInf7 Split order management Normal 7

RQFuncInf8 Transport scale-up management Normal 6,7

RQFuncMan1 Create management reports Very low Absent

RQFuncMan2 Resource performance measurement Very low Absent

RQFuncLeg1 Period of quotation validity Very low Absent

RQFuncLeg2 Government specific Very low Absent

RQFuncTra1 Know where goods are located geographically High 7

RQFuncTra2 Send and receive progress information High 6, 7

RQFuncTra3 Know where goods have been located geographically High 7

RQFuncTra4 Know who signed for completion High 7

Table 4.1 – overview of functional requirements

Functional requirements that are considered a low or very low importance are not described in this
document and are considered future work. This doesn't imply that such a functional requirement is
of no value. However, skipping them at first instance limits the scope and keeps the priority at
requirements with a high importance. Chapter 6 focuses on business processes that are described
by the functional requirements and optionally by existing solutions which are considered in the next
paragraph. Chapter 7 focuses on a data model that can be used as a base to store and retrieve
information that is used by the business processes described in chapter 6. From chapter 8 and
further the focus is changed to more technical aspects that can be used to develop an information
system to support the functional requirements.

ELP - Extendible Logistics Protocol 21 / 170 M. Snoek - TU/e

Q007

4.2 Existing solutions

Electronically exchanging information to automate business processes is not something new.
Several solutions for exchanging information about business processes already are available.
Exchanging information about business processes is generally referred to as Electronic Data
Interchange (EDI). However, this term is also used as a reference to two specific standards of EDI,
namely EDIFACT and ANSI X12, where EDIFACT has most users in Europe and ANSI X12 in the
United States. This paragraph focuses on EDIFACT and several other EDI standards or designs
and takes a closer look at whether they are suitable for the transportation industry.

To create a comparison between the existing solutions there are several questions that would like
to be answered, namely:

● Is the existing solution an industrial standard?
● Does the existing solution support transportation business processes and/or custom

businesses processes?
● What are the implementation costs?
● Can the existing solution be considered mature?
● What is known about document semantics?
● Are there any technical properties that attract attention in a positive or negative way?
● Are there any other properties that attract attention in a positive or negative way?

To answer these questions, the history, goals, details of communication and usage nowadays is
considered. After considering the existing solutions, the answers to the questions are summarized
and conclusion are made about which aspects of existing solutions are useful for ELP and which
aren't. These conclusion are not only based on the functional requirements, but also on technical
and general aspects that are seen in the existing solutions.

4.2.1 PapiNet
PapiNet [papiNet], which is an abbreviation for Paper Industry Network, originated from a group of
European paper companies and some major German customers within the printing industry that
decided to develop a business transaction standard using new XML technology in 1999. The
reason for this organization to develop a new standard was to replace the now obsolete EDI by a
standard that was cheaper to maintain and implement. The papiNet standard includes standard
documents for purchase orders, shipping notices and invoices and can therefore be a possible
solution for usage within the transport and courier industry branches.

Goal
The goal of papiNet is to enable companies, that are active within the paper and forest industry, to
provide real-time exchange of information between buyers and sellers. PapiNet has developed
standard electronic documents that are freely available to provide a “standard” for electronic
information exchange for companies within the mentioned industry. The provided standard
messages are meant to result in more structured processes with fewer data incompatibility issues.
The first messages that were introduced by papiNet in 2001 are “Purchase order”, “Call off”, “Order
confirmation”, “Delivery message” and “Invoice”. During the following years several other
messages have been added, for example to retrieve product information and inventory status.

The real-time exchange of information using a “standard” is also mentioned in the research
question. However, a major difference is the subject of the information that is exchanged. PapiNet
primarily focuses on selling and buying specific products for the paper and forest industry while
ELP primarily focuses on the ordering and outsourcing of transportation. The messages developed
by papiNet clearly illustrate this, because most of them are specifically meant for a buyer to send to
a seller or vice versa, such as the purchase of specific (industrial) products and the request for

ELP - Extendible Logistics Protocol 22 / 170 M. Snoek - TU/e

Q101

inventory status. Ignoring these specific buyer/seller messages for physical products, several
others remain that are meant for shipping and delivery.

Shipping messages
Two specific messages of papiNet focus on the transportation of the ordered products, namely
“Shipping Instructions” and “Delivery Message” [papiNet-v230]. Both messages are sent to and
from buyers and sellers as well as transportation partners. The scope of the Shipping Instructions
message includes information about the products including quantities, requested delivery date and
time, ship-to party, transportation means and the transport company. An examination of the
Shipping Instructions message identified the data items about the sender and supposed receiving
party as well as information about items that need to be transported, namely “Senderparty”,
“ReceiverParty” and “ShippingInstructionsSummary”. However, the message also includes data
items that are not of any importance for a transport company, such as “BuyerParty” and
“SupplierParty” that provide information about the seller (or producer) and the legal entity to which
the products are sold. The property of data items being mandatory or not creates a barrier for
papiNet as a possible solution for communication between transport companies, because the data
items BuyerParty and SupplierParty are mandatory while SenderParty and ReceiverParty are
optional. This doesn't exclude that, if these data items are provided, the Shipping Instructions
message is suitable for a transport company to know what goods need to be transported as well as
the required from/to information.

The other message that was examined is the Delivery Message. The scope of this message
includes information about dates, such as shipping date, products with packaging and tracking
details such as the route of delivery. The details of this message show several data items that are
specific for the paper and forest industry, such as 'MillCharacteristics” that is meant for information
about the mill party and machine that is involved in the production of the described product. The
product data item in Delivery Message is mandatory while it is of no importance for transport
companies. The predefined list of products made by papiNet also only contains industry specific
products such as paper, pulp and recovered paper. In comparison to the Shipping Instructions
message, this message contains more industry specific data items making it not very suitable for
the transportation industry. However, a positive aspect of the Delivery Message is that it includes
information about the delivery schedule as well as past deliveries during the complete transport
(route of delivery). This collection of so called 'delivery legs' provides Track and Trace information
about each item. Unfortunately, the documentation of papiNet doesn't mention any obligations to
send this message. This results in a system that does support Track and Trace information, but no
enforcement to keep the information up-to-date.

Maturity
PapiNet currently consists of group of more than 40 members in Europe and North America that
participate in the development of the papiNet standard. The papiNet development team that was
formed in 1999 is still active in 2008 with the latest release of the papiNet standard in spring 2008.
During the past years more than 380 companies have implemented the papiNet standard at 830
sites and it can therefore be considered as a mature solution for information exchange about
business processes within the paper and forest industry. Although considered mature, papiNet is
not an ISO standard [ISO].

4.2.2 ELPIF
ELPIF [Zhang] is an abbreviation for an E-Logistics Processes Integration Framework that is based
on web services. The idea for ELPIF originates from the fact that multiple (large) companies within
the courier industry, such as United Parcel Service (UPS), Federal Express (FedEx) and Airborne
Express (now part of DHL), all have their own interfaces to send purchase orders and retrieve
Track and Trace information.

ELP - Extendible Logistics Protocol 23 / 170 M. Snoek - TU/e

Q107

Goal
The goal of ELPIF is to define a common interface to communicate with companies within the
shipping industry although it can be applied to other domains as well. ELPIF can be used to
request quotations, to place orders and to keep track of shipments at multiple transport or courier
companies while only having to communicate with one single web service. Although ELPIF is
focused on clients communicating with transport companies, it is not excluded that the model can
also be used for transport companies to communicate with each other when an order is
outsourced.

Framework components
The framework incorporates three parts, namely the common alliance layer, the adaptation layer
and a dynamic data binding mechanism. ELPIF is based on web services, because they are
platform independent, easy to implement and all use XML that has advantages in the areas of data
encoding and data formatting.

The first part of ELPIF, the Common Alliance Layer, defines a set of methods that every transport
company has to support, creating an abstract high-level service interface publishing available
services. If a transport company supports these methods then it can publish its web services at a
UDDI registry [UDDI]. Although [Zhang] doesn't mention any specific UDDI registry it is assumed
that all courier and transport companies use the same UDDI registry. Customers are now able to
easily search for transport companies that can provide their services to them.

The second part of ELPIF, the Adaptation Layer, works as a service that operates between the
published web service and the legacy system of the transport company. This layer manipulates the
communication between the customer and the transport company in such a way that the legacy
system communication interface doesn't need to be altered, which may cause incompatibility with
other legacy systems and additional costs. In short, the adaptation layer converts every message
between the customer and the transport company. The third part, dynamic data binding, takes care
of replies consisting of live and updated data from the transport company.

Altogether, the three parts of ELPIF create a common interface, based on web services, to
transport companies that can easily be discovered and enables customers to communicate with
transport companies by only understanding this single set of web services.

Maturity
Although a search for ELPIF on the Internet has resulted in some documents referring to ELPIF, no
implementation of it was found. One reason for this can be that the success ELPIF depends too
heavily on the co-operation of (the mentioned) courier and transport companies to be feasible.
Another reason for this can be that the document about ELPIF doesn't supply enough information
or any specification to create an implementation of it. Probably the most important reason that no
implementation was found is that the idea is patented by United States Patent 20030191677
[ELPIF-patent].

Despite the fact that ELPIF is nothing more than a patented idea on paper, this idea of one
communication interface to communicate with transport companies is on the same wavelength as
the research question. One specific subject that ELPIF mentions is the possibility to easily invite a
quotation from multiple companies. It has to be pointed out that the patent can have consequences
for ELP being implemented using web services and exported to the United States.

4.2.3 UN/EDIFACT
UN/EDIFACT [EDIFACT] is an abbreviation for United Nations/Electronic Data Interchange For
Administration, Commerce and Transport. EDIFACT is one of the first initiatives to exchange
electronic business documents and has been developed in the 1980s. EDIFACT has been

ELP - Extendible Logistics Protocol 24 / 170 M. Snoek - TU/e

Q109

developed under the United Nations Economic Commission for Europe (UNECE).

History
One important historical aspect of EDIFACT is that, when introduced, a widespread digital
communication network as the Internet was not available resulting in a situation where the
electronic messages (or documents) had to be sent over private communication lines. Another
historical aspect is the usage of information systems in general which were less used than
nowadays due to the high costs. These two historical aspects made the use of EDIFACT, and EDI
in general, only possible for large companies that had the resources to make the high investments
for implementing EDI and the cost of communication [ShiwaFu]. A satisfactory return on
investment (ROI) could be made by these large companies due to their cost savings on traditional
communication such as fax messages that required many human resources to process them.
Since small to medium sized companies would have a similar investment but a much lower ROI,
due to the smaller amount of business documents sent and received, EDIFACT was not adopted
by them except for those that were induced to do so by essential trading partners.

Goal
Before the existence of EDIFACT and EDI in general, business environments only used paper
documents for their business activities. Exchanging paper-based documents had the disadvantage
of extensive manual processes, manual intervention, interpretation and manipulation resulting in
time delay, high labor costs and errors. The goal of EDIFACT was to create a standard for
electronic documents that can be used for communication between trading partners. These
electronic documents would solve all the mentioned disadvantages resulting in a paperless
environment that required less human interaction and therefore save costs due to less human
labor and errors. An even bigger benefit would come from the streamlined interaction between
trading partners. This can increase inventory turns, decrease inventory, improve product and sales
forecasting, decrease shipping costs, reduce product returns, improve cash flow and yield an
improved relationship with trading partners [ShiwaFu].

The final character T in EDIFACT stands for Transport which implies that the collection of
electronic business documents consists of those aimed for transportation. [Tedim-LDI] presents a
list of 37 EDIFACT documents on the subject of transportation that take care of requesting
quotations, order placement, cargo specifications, arrival notices and invoicing.

The ANSI X12 [ANSIX12] standard is the American counterpart of the in Europe developed
EDIFACT standard. ANSI X12 and EDIFACT share many business documents although EDIFACT
documents are generally longer and more complex than ANSI X12 documents. A result is that
more ANSI X12 documents are required to exchange the same information as the number of EDI
documents needed. There exist tables that map ANSI X12 documents to EDIFACT documents and
vice versa; ANSI X12 is therefore not described in detail here.

Electronic documents
EDIFACT uses structured documents for exchanging business information that comply to strict
syntax rules. These syntax rules are defined in such a way that the generated messages consist of
only a few characters to identify message segments and to split the contained data elements into
one or more components. An example of a segment to represent a persons full name and date of
birth can be like “PRS+John:Smith+1970:10:20” (without the quotes) where “PRS” is the segment
identifier, “John:Smith” is a data element with two components (first name, last name) and
“1970:10:20” the date of birth data element consisting of three components (year, month and day).
An EDIFACT document can consist of one or more (mandatory, conditional or optional) segments
or groups where a group is a sequence of segments.

It can easily be concluded that EDIFACT messages consist of as little markup characters as
possible. This results in EDIFACT messages that have a relative small size and are therefore

ELP - Extendible Logistics Protocol 25 / 170 M. Snoek - TU/e

suitable to be transmitted over communication lines that were used during the introduction of
EDIFACT. Small message sizes also suppress (very high) communication costs. Although an
EDIFACT message has a clear advantage over XML when it comes to message size, especially
when the message is big, it is considered an 'old' standard to format documents since it misses
several advantages that the widespread use of the Internet and intensified globalization have
introduced. Johan Koolwaaij of the Dutch Telematica Institute has defined a list of advantages and
disadvantages of both (traditional) EDI and XML document formatting standards [Koolwaaij]:

EDI advantages:
● Efficient
● Mature B2B standards (EDIFACT and ANSI X12)
● Well known semantics

EDI disadvantages:
● Limited character set
● Overloaded and ambiguous
● No message validation
● High acceptance barrier

XML advantages:
● Unicode
● Simple, flexible, generic and extensible
● Widely supported by software on many platforms
● XML Schema's introduce data typing, reusable components, restrictions in syntax and

defines relations
XML disadvantages:

● Only document formatting and no mature B2B standard (compared to EDIFACT)
● Big message size

Appendix B provides an example that illustrates the differences between an EDIFACT and equal
XML message. It has to be emphasized that EDIFACT is a combination of a document formatting
standard as well as a large number of predefined message structures, that can be used for a wide
range of business transactions, where XML is only a document formatting standard. There is a lot
of discussion about the future of EDIFACT and especially of using the EDIFACT semantics
combined with the XML document formatting.

Maturity
Although EDIFACT was developed a long time ago, it is still maintained and used by many
companies nowadays. The industries that use EDIFACT are mainly the automotive, civil aviation,
tourism and retail industries. These industries have existed for a long time and have business units
spread all over the world, which probably is one of the key factors for the success of EDIFACT in
these industries. The benefits of electronically exchanging business documents are the increased
speed within supply chain management as well as the elimination of language barriers that would
exist when paper documents were exchanged. The high implementation costs, Internet as
communication network, XML advantages, practical limitations and the decreasing number of
EDIFACT specialists create an uncertain future for EDIFACT.

An industry that has not been mentioned is the transportation industry. This omission of EDIFACT
and EDI in general is acknowledged by DHL Logbook that cooperates with the Technical University
of Darmstadt [DHL-EDI]: “Despite its many advantages, EDI is not widely used in logistics because
of its high implementation costs. Instead, Internet-based variations are increasingly being used.”
Although EDIFACT is a mature standard for formatting and exchanging business documents with a
long history and support for various business documents for transportation, it is not widely used by
transport companies. This has motivated the initiative to design ELPIF.

ELP - Extendible Logistics Protocol 26 / 170 M. Snoek - TU/e

Q505

4.2.4 ebXML
ebXML is an abbreviation for electronic business Extensible Markup Language [ebXML]. This
international initiative was established by the United Nations Centre for Trade Facilitation and
Electronic Business (UN/CEFACT) and the Organization for Advancement of Structured
Information Standards (OASIS) [OASIS]. As a standard being established under the United
Nations for electronic commerce it can be seen as the successor of EDIFACT. The development of
ebXML started in 1999 and focused on five layers of substantive data specification for:

● Business processes
● Core data components
● Collaboration protocol agreements
● Messaging
● Registries and repositories

Goal
The goal of ebXML is defined by [ebXML-RS] as: “provide an XML-based open technical
framework to enable XML to be utilized in a consistent and uniform manner for the exchange of
electronic business data in application to application, application to human and human to
application environments”. ebXML would like to deliver technical specifications that consist of
common XML semantics and related document structures to facilitate global trade and are
internationally agreed on.

In contrast to papiNet and in accordance with EDIFACT, ebXML isn't targeted at only one business
sector, but at every business sector from small and very big enterprises. This implies that the
ebXML specifications and documents do not contain any specific information that can only be used
within certain business sectors. This is where a contrast with EDIFACT appears, because
EDIFACT does provide predefined document templates for specific businesses. Instead, ebXML
provides core elements that can be used to define electronic business documents which then can
be used within a specific business process. The first layer of data specifications provides a
specification to describe business processes and the second layer provides the core elements. In
short, ebXML provides specifications to describe business processes and electronic documents,
but does not provide predefined versions of these documents.

Document exchange
As described in the introduction, ebXML does not provide any standard documents for predefined
business processes. Instead, the first step to start using ebXML is to describe a business process
that is a candidate for support by electronic data interchange. Describing the business process is
done using the UN/CEFACT Modeling Methodology (UMM) [UMM] that utilizes a common set of
Business Information Objects and Core Components. This methodology breaks business
processes down into two views, namely the Business Operational View (BOV) and the Functional
Service View (FSV) [ebXML-TAS]. These views are used to construct a Business Process and
Information Meta Model (BPIMM) for an ebXML compliant application. The BOV is used to
describe the semantics of business data and the architecture for business transactions. The FSV is
used to describe the services for the mechanical needs of ebXML such as protocols and
interfaces.

The next step is to publish a BPIMM using a registry service. This registry service serves as a
storage facility for BPIMM, the used core components and a Collaboration Protocol Profile (CPP).
A collaboration protocol profile consists of contact information, industry classification, supported
business processes, interface requirements and messaging service requirements. After publication
a companies' supported business processes can be discovered by other companies. If a company
would like to conduct business then the CPP's of both companies are used to define a
Collaboration Protocol Agreement (CPA) that consists of descriptions of the messaging service
and business process requirements.

ELP - Extendible Logistics Protocol 27 / 170 M. Snoek - TU/e

Q203
Q204

Before companies are able to communicate, they have to set up a messaging service that is used
to send and receive messages (electronic documents) to and from other companies. Messages
can be transported using various kinds of transport techniques such as SMTP and HTTP(S). The
transport that is used is agreed on in the CPA. The CPA also contains information about
authentication. After defining a CPA, the ebXML registry service is no longer required and
companies can start exchanging messages about the published and agreed business processes.

Maturity
The specifications of ebXML have been published in 2001, which makes ebXML, just like papiNet,
a relatively new standard for exchanging electronic business documents. Unfortunately, ebXML
doesn't publish any information about how many companies are using implementations that are
based on their specifications. The website of ebXML contains only a few case studies of which half
are about companies or organizations that announced to use the ebXML specifications in their
design. Searches for ebXML implementations on the Internet don't result in many positive results,
because most of the results describe common information about ebXML. Another factor that can
give information about the use of ebXML is the number of ebXML registries that publish information
about business processes. Unfortunately, searching for these registries on the Internet doesn't give
a positive result. However, one of the resulting websites, freebXML, contains a free implementation
to start an ebXML registry [freebxml].

FreebXML is available for download at the popular open source software archive website
Sourceforge.net. Searching this website for other implementations of ebXML specifications shows
that most implementation projects do not have anything available for download and those that do,
don't seem to be very popular. Most project started around 2001-2003 and until summer 2008 all
projects together have had around 40.000 downloads of which almost 28.000 are downloads of
freebXML that started in autumn 2001. Also, only 4 projects published files in the last two years.

The primary source for information about ebXML, the ebXML homepage, shows news items of
which the most recent one was published in 2006. Also, the ebXML specifications have not been
updated in the last years. The maturity of ebXML is concluded to be a bit contradictory. EbXML
publishes a lot of information and specifications to design and implement software that uses the
ebXML specifications for EDI. Despite this, the decisions to actually implement the ebXML
specifications are not made or made in a negative way. The small number of ebXML
implementations, registries and downloads of available software can only lead to the conclusion
that ebXML cannot be considered a mature standard. The obsolete information on the ebXML
homepage will probably also not work in favor of ebXML, because it is not likely that companies
are willing to invest in adopting a standard of which the project team seems to be inactive. An
exception is papiNet that ensures compatibility with ebXML and speaks about the introduction of
ebXML core components in its FAQ [papiNet].

4.2.5 RosettaNet
RosettaNet is a non-profit organization that promotes electronic commerce by defining business
processes, implementation frameworks and message guidelines [RosettaNet]. RosettaNet is
named after the Rosetta Stone [RosettaStone] that was carved with the same message in three
different languages, including hieroglyphs, that led to the understanding of hieroglyphs and
translations. The name RosettaNet refers to the symbolism of understanding each other on the
basis of standard processes for sharing business information between trading partners. RosettaNet
was founded in 1998 by 40 leading IT organizations.

ELP - Extendible Logistics Protocol 28 / 170 M. Snoek - TU/e

Goal
The standards specified by RosettaNet have been created to achieve the following goals:

● Define standard supply-chain transactions
● Standardize labels for elements like product descriptions and part numbers
● XML based business message schema's and process specifications
● Maximize reductions in cycle time, inventory costs, productivity and measurable supply

chain ROI

The RosettaNet specifications primarily focus on business processes within supply-chain
management. The descriptions of these business processes are defined as Partner Interface
Processes (PIP) and are specialized system-to-system XML-base conversations. The RosettaNet
PIPs are divided into seven specialized clusters to support business processes, namely
[CoverPages-RN]:

1. RosettaNet Support: partner profile management
2. Product Information: detailed product information, product changes and technical

specifications
3. Order Management: quotes, order entry, shipping, returns and finance
4. Inventory Management: inventory allocation, collaboration, replenishment, price protection

and sales reporting
5. Marketing and support: lead and marketing campaign management, service
6. Service and support: warranty administration, technical service and support information
7. Manufacturing: transfer of design, configuration, process, quality and other manufacturing

floor information

Document exchange
RosettaNet has described many business processes as PIPs that all have unique numbers
according to the cluster they belong to [RosettaNet-CSP]. The clusters, and the PIPs belonging to
a cluster, are divided into several segments. For example, the PIP for a purchase order at a
supplier has PIP code 3A4, label “Request purchase order” and belongs to segment “3A: Quote
and order entry” in cluster three. A PIP specification includes information about [RosettaNet-RNIF]:

● Partner business roles
● Business activities between the roles
● Type, content and sequence of business documents exchanged
● Time, security, authentication, and performance constraints of interactions

Every PIP specification consist of three major parts that have an overlap with those of ebXML. The
three major parts are the BOV, FSV and Implementation Framework View (IFV). The IFV contains
message guidelines such as data type and/or length of message elements. The structure and
content of business documents exchanged is specified by XML Document Type Definitions that,
together with the message guidelines, are used to validate documents.

Communication between trading partners takes place on a peer-to-peer basis where many
different transport methods can be used, such as HTTP, FTP and SMTP. RosettaNet has support
for the delivery of messages through hubs due to specific delivery headers. Business documents,
that are XML-based, are encapsulated within a MIME structure. MIME enables the support for
multiple message parts and encodings within a single message. A well-known application of MIME
is within an e-mail message that contains the text message in both plain-text and HTML lay-out
(alternatives within the MIME message) as well as an attachment (specific message part
encoding). RosettaNet messages use MIME to split headers, such as a service and delivery
header, and the business document. RosettaNet provides support for authentication, authorization
and non-repudiation (digital signatures).

ELP - Extendible Logistics Protocol 29 / 170 M. Snoek - TU/e

The collection of RosettaNet PIPs consists of a segment that is dedicated to transportation and
distribution PIPs, namely segment 3B. This segment contains messages to place shipping orders
as well as messages to change, confirm and cancel them. Other messages provide status
inquiries, status updates and the communication of shipping documents. One aspect that attracts
attention is that the initiative to send a message is always at the same participant, namely the
shipper and not the shipping provider. This implies that status updates are not sent based on an
event that occurred, but that the shipment status is requested by the shipper, based on polling.
Another aspect that attracts attention is that the description of some of the PIPs purposes
mentions the situation where “the shipment is tendered to another Transport Service Provider at a
gateway”. Unfortunately, it is not made clear whether this is the final state of which a status
message can be sent or that a shipping provider provides status request forwarding to this
transport service provider. This also depends on whether the order at the next shipping provider is
placed by the shipper or the previous shipping provider. Luckily, it cannot be excluded that
RosettaNets shipping status inquiries can be used when an order is outsourced by a shipping
provider.

One of the goals of RosettaNet is to define a standard for conducting electronic business for
supply chain management. One of the consequences is that the collection of PIPs is generally
meant for this goal. Unfortunately, it is not possible for a RosettaNet user to extend the collection of
PIPs with custom PIPs to create support for (yet) unsupported business processes.

Altogether, the PIPs of RosettaNet that describe the supported business processes are mostly
meant for supply chain management but also include a number of PIPs that can be used for order
placement and track and trace at shipping providers which are, in this situation, courier and
transport companies. They don't appear to be industry specific such as the messages used by
papiNet and can be used in combination with outsourcing. Compared to other existing solutions,
RosettaNet can be seen as an XML-based version of EDIFACT although the business documents
within PIPs are not specifically equal to those of EDIFACT.

Maturity
Currently more than 500 companies worldwide, representing a trillion American dollars in
revenues, actively participate in RosettaNet. Although the number of companies using EDIFACT is
probably much higher, it exceeds the number of companies using papiNet and can be considered
mature. To promote participants doing business with each other, RosattaNet provides a Trading
Partner Directory on their website to search for other companies that have adopted its
specifications in their EDI implementations.

Another aspect that illustrates the maturity of RosettaNet is the fact that Microsoft has adopted the
specifications of RosettaNet into one of their product called BizTalk. This product is also made to
conduct electronic business, but is not freely available and probably too expensive for most
medium to small sized enterprises. BizTalk is primarily focused on communication between
departments within a single company and is extended to external EDI with RosettaNet.

Not only Microsoft, but also many other large organizations use RosettaNet for their EDI
implementations. An example is EDIFICE [EDIFICE] that is the European User Group for the
Electronic Industry. This organization consists of European departments of large electronic
enterprises such as Philips, IBM, Hitachi, Nokia and Siemens. EDIFICE supports UN/EDIFACT
and, for XML, RosettaNet that is, according to their website, considered the industry standard.

ELP - Extendible Logistics Protocol 30 / 170 M. Snoek - TU/e

4.2.6 Comparison of solutions
The existing solutions for conducting electronic business all have different properties that can be
useful for ELP or not. The following table summarizes these properties:

Property papiNet ELPIF UN/EDIFACT ebXML RosettaNet
A* ■■■■ ■■■■■ ■■■ ■ ■■■

B* ■■ n/a ■■■ n/a ■■■■

C* ■ n/a ■ ■■■■■ ■

D* ■■■ n/a ■■■■■ ■■■■ ■■■

E* ■■■■ n/a ■■■■■ ■■■ ■■■■

F* ■■■ n/a ■■■■■ n/a ■■■■

G Yes Yes No Yes Yes

H Extended data model to
describe goods, track
and trace support

n/a Efficient messages, ISO
standard, independent
organization

ISO standard,
independent
organization

Support for many
message transport
methods (compatibility),
transport outsourcing
mentioned

I Extended data model to
describe goods too
industry specific, no
independent
organization

Patented Decreasing number of
specialists

No electronic
documents available

No independent
organization

* The score of this property is based on a scale of five: ■ - very low; ■■ - low; ■■■ - mediocre; ■■■■ - high;
■■■■■ - very high; n/a – not applicable (absent)

A) Industry specific standard
B) Support for transportation business processes
C) Support for custom business processes
D) Financial barrier / implementation costs
E) Maturity

F) Document semantics
G) XML Advantages
H) General advantages
I) General disadvantages

Table 4.2 – properties of existing solutions

The table above can be used to identify positive and negative properties that can be used to make
design decisions for ELP. It it also possible to take a look at properties that all available solutions
have in common and that therefore are not considered as solution-specific properties. Similarly,
one can look for properties that would like to be available but that are not provided by any existing
solution.

One of the first decisions that can be made is that ELPIF has such high number of 'not applicable'
scores that it can be ignored. Its high score on property A doesn't change this decision, because it
is not of any value when most other properties are not applicable.

First, the scores of properties A, B and C can be used to decide whether an existing solution is
suitable for courier and transport companies. RosettaNet has the best support for this industry
when looking at industry specific solutions. Its PIPs define useful and quite complete business
processes when it comes to order placement and track and trace. The messages that are used in
papiNets business processes are too focused on the paper and wood industry although its goods
description specifications are suitable for the courier and transportation industry. EbXML has a
very good score on not being industry specific, but this implies that all messages still have to be
defined, and thus it provides only immature message semantics. EDIFACT is in between papiNet

ELP - Extendible Logistics Protocol 31 / 170 M. Snoek - TU/e

Q103
Q108

Q203

and RosettaNet when it comes to being industry specific. Since RosettaNet, papiNet and EDIFACT
all lack the support of support for custom business processes, the conclusion is made that
RosettaNet is the most suitable existing solution when it comes to solutions that can be used
straight away. Keeping ELP's supported business processes compatible with RosettaNets PIPs
can increase acceptance and compatibility.

Secondly, the score of property D is examined. EDIFACT has the greatest financial barrier,
because it has high implementation costs and requires expensive specialized knowledge.
RosettaNet and papiNet have an equal barrier, although lower than that of EDIFACT, because they
involve the implementation of an existing XML based solution. EbXML is also XML based, but
requires business processes and messages to the be defined which involves extra costs. It is
concluded that both papiNet and RosettaNet provide the least expensive solution and therefore the
lowest the financial barrier. The financial barrier of ELP can be kept low if it is XML based and uses
the applicable business processes and messages of papiNet and/or RosettaNet.

Thirdly, the scores of properties E, F and G are examined. EDIFACT has a long history which
results in messages with good semantics although the introduction of new messages, which are
based on existing messages, leads to ambiguity. Existing solutions that are based on XML can
more easily be extended for future requirements. The lack of Unicode support of EDIFACT raises
the question about how future proof this solution is and favors papiNet, ebXML and RosettaNet.
The mediocre score of maturity and the lack of document semantics of ebXML leaves papiNet and
RosettaNet as remaining solutions with the best scores on properties E, F and G. Although both
are mature, the conclusion is made in favor of RosettaNet, because it has the most users and is
supported by BizTalk.

Finally, the generic advantages and disadvantages of properties H and I are examined. The best
possible solution would be an ISO standard that has a non industry specific data model, multiple
transport methods for messages used for business process that are required by courier companies
and doesn't consume too much communication resources. Unfortunately, this best solution is none
of the existing solutions and the conclusion is made that the design of ELP should have as much of
these advantages as possible.

Altogether, all of the existing solutions have disadvantages that make them not perfectly suitable
for ELP. Appendix C provides an overview of functional requirements that are (not) supported by
the existing solutions. Some of the requirements that are not met are described in the next
paragraph. If a courier or transport company has to choose from the existing solutions then it can
best decide to start using RosettaNet for electronic business, because this solution has the best
overall score.

4.2.7 Requirements and design decisions
A requirement that is not met by any existing solutions is the possibility for real-time track and trace
information (requirements RQFuncTra1 and RQFuncTra2). RosettaNet supports this partially when
the status polling interval is set short enough, for example by introducing middleware that raises
events based on polling frequently. The accuracy of information, that is used or known by a client
and a transport company, in general is an aspect that none of the existing solutions really focus at.
Two remarks can be made to this, namely first that accurate information uses many
communication resources that were not available when EDIFACT was developed and second that
a design based on ebXML can provide this functionality although it is yet non-existent. Providing
real-time track and trace information based on events implies that a transport company 'tells' a
client to update its information and thus that the client has to allow this.

Another aspect that existing solutions don't focus on is outsourcing. The delay of status information
would increase if all transport companies are polling using some interval. This delay will be much

ELP - Extendible Logistics Protocol 32 / 170 M. Snoek - TU/e

Q102
Q105
Q507

Q106

Q107
Q108

Q506

Q507

smaller if status updates are event-based which implies that all participants have to be allowed to
change each others information until they have finished their part of the transport. In short, due to
polling and the fact that each participant owns its own information, a rights management technique
is not required.

Having considered several requirements that are not met by the existing solutions, there exist
some functionality that they all have in common. All existing solutions are based on messages
between two participants that are defined by a business process specification. All existing solutions
have specifications of business processes to request quotes, place orders and request status
information.

All the properties and aspects of existing solutions lead to the following design decisions for ELP,
including references to solutions that create a foundation for it:

Nr. Design decision Design decision cause Refers to
existing
solution(s)

1. ELP supports, but should not be limited
to, the following standard business
processes: 'Request quote', 'Place order'
and 'Provide status information'

These business processes appear within
RosettaNet, EDIFACT and papiNet and
will increase compatibility and
acceptability.

RosettaNet,
EDIFACT,
papiNet

2. It is possible for participants to agree on
custom business processes

Flexibility that most existing solutions lack.
Published custom businesses can more
easily become standard business
processes than proprietary third-party
middleware solutions.

ebXML

3. ELP uses messages between
participants for business processes

A message can not be split, delivered
using various transport methods and has
predefined semantics.

All

4. Messages are formatted using XML XML provides many advantages, such as
support for Unicode, and is widely
accepted.

EDIFACT
(disadvantages)

5. Messages can be sent using several
transport methods (e.g. SMTP, FTP,
HTTP)

Various transport methods provide
flexibility and lowers acceptance barriers.

RosettaNet

6. Each participant has to provide a
communication record that contains
information how to communicate with
this participant (protocols and
parameters, authentication)

Ease of (initiating) communication and
simplifying implementations due to a
communication record standard that
decreases the number of exceptions.

ebXML

7. Track and trace information ('Provide
status information') is event-based (not
polling)

Using events saves communication
resources and increases accuracy of track
and trace information.

RosettaNet,
papiNet

8. Custom business processes can also
use events

Increased business process speed and
elimination of polling that wastes
resources.

None

9. Each participant should always have
accurate information

Participants should be able to know
whether their information is accurate to
make justifiable decisions.

None

10. ELP provides rights management to
grant and revoke the possibility to
change information

Allowing other participants to change
one's information includes security risks
that can be abused and thus have to be
minimized.

None

ELP - Extendible Logistics Protocol 33 / 170 M. Snoek - TU/e

Q104
Q105

Q204
Q506

Nr. Design decision Design decision cause Refers to
existing
solution(s)

11. ELP provides a data model for entities
required by the standard business
processes

Standard data structures are required for
users to understand each others
information.

PapiNet,
RosettaNet

12. ELP provides the possibility to extend
the data model with custom extensions

Extending standard data structures with
customs extensions increases flexibility
and possible acceptance.

papiNet

13. The data model supports outsourcing to
one or more other participants

This enables companies to administrate
the (parts of) orders that are outsourced
and to communicate with a participant
about only its part of the original order.

(RosettaNet)

14. The data model supports transport up-
scaling

The administration of transport up-scaling
increases the accuracy of track and trace
information about goods that are
contained in another transport.

None

15. Outsourcing is transparent to a client A client holds a transport company
accountable, but how the transport is
executed is seen as confidential
information of the transport company.

None

Table 4.3 – design decisions

Appendix C provides an overview of references between the design decisions and the
requirements.

4.3 ELP design steps and document lay-out

The previous paragraph mentioned two major aspects that existing solutions don't focus at, namely
accurate information for all participants and support for outsourcing between transportation
companies. These two aspects are therefore the two primary aspects that this document focuses
at, because the results provide information to extend existing solutions or a way to combine
knowledge about existing solutions with aspects they are missing into a new (more transportation
specific) solution.

The first step in the approach to design an information system that meets (most of) the functional
requirements is to analyze the business processes of courier companies and transport companies
that have been mentioned earlier. When the business processes are analyzed then it is possible to
get a view on the primary entities and the flow of information between the different parts of these
organizations and the external parties that are involved.

The next step is to extend the analyses of the business processes with the processes that are
used when a company decides to outsource their orders instead of executing themselves. It is
possible that companies outsource an order completely or only a part of it. It is also possible that
an order is (partly) outsourced to more than one company where every company only performs a
part of the execution. It can not be ruled out that an order is outsourced more than once.

A primary aspect of ELP is to provide a way to exchange information about orders when
outsourcing is involved and every participant is informed about the progress. It should be possible
to extract the flow of information between these companies and the client from the analyses of the
business processes. These analyses have to provide the primary entities that can be used to

ELP - Extendible Logistics Protocol 34 / 170 M. Snoek - TU/e

create a data model that describes them and their relations.

Business processes to a data model
As a result from the business process analysis it is possible to design a data model that describes
the entities that occur in the order processing. Typical examples of entities that would probably be
part of the data model are clients and orders. The attributes of the entities provide the information
that is used to describe the necessary data that is needed to perform the business processes.
Chapter 7 is dedicated to the design of this data model and the relationship between the entities.

One of the design decision of ELP is that it supports extendability. This implies that the data model
should not be fixed without the possibility to add custom extensions. After defining the data model
in chapter 6, it focuses on how the predefined data model can be extended to introduce flexibility
and support for exceptions in standard supported business processes.

Having a data model that can be used for a single company including the flexibility to extend it, the
focus is changed to the aspect of outsourcing where multiple participants are involved (exchanging
information). The second part of the chapter describes outsourcing in relation to which parts of the
data model are important and how they are used when an order is outsourced. It provides
overview of steps and rules that have to be followed and obeyed to be sure that the correct
information is exchanged and to create a view on the progress of an order by all participants
involved.

Communication means to exchange information
Chapter 7 introduced a data model and an overview of participants exchanging information.
However, companies that are exchanging information require communication means to be able to
do this. Chapter 8 focuses on communication between companies. Some of the aspects that are
attended are the actual reasons for companies to communicate, which companies have to
communicate, what communication networks and topologies can be used and the increasing
number of involved participants when an order is outsourced.

Techniques to provide accurate information
The result of chapter 7 and 8 is a data model to describes entities occurring in the business
processes of chapter 6, the exchange of information and a communication network that can be
used to exchange this information. Chapter 9 describes techniques that can be used for the actual
exchange of information between participants using a communication network of chapter 8. This
includes their ability to provide accurate information, and which of these techniques is the most
suitable for ELP. Having accurate information is mentioned by design decision 9. One of the
reasons for this is to be able to justify progress to clients. This means especially that, when an
order is outsourced, the information about progress has to be generated by one participant and
exchanged with the others using an information exchange technique. As an addition to techniques
to exchange information, chapter 9 also focuses on rights management to change information that
is of interest to more than one company.

ELP Prototype
Using the results of the previous chapters it should be possible to create a prototype that uses ELP
to outsource orders and to provide accurate information about the progress to all the involved
participants. Chapter 10 describes a prototype that has been designed using the business
processes, data model and synchronization techniques.

Before describing the business processes, the next chapter covers the use cases which are used
throughout the following chapters to compare solutions to real life situations.

ELP - Extendible Logistics Protocol 35 / 170 M. Snoek - TU/e

4.4 Summary
To analyze existing solution and to be able to make design decisions for ELP, functional
requirements are defined. These requirements are split info five categories, namely business
processes, information management, management information, legal information and track & trace.
To limit the scope of ELP, some requirements are partially or not considered, namely management
information and legal information.

An analyses of the existing solutions is made based on the history, goals, details of
communication and usage nowadays. The existing solutions that are considered are PapiNet,
ELPIF, UN/EDIFACT, ebXML and RosettaNet. None of the existing solution is completely suitable
for ELP, especially because they don't focus on outsourcing and providing accurate progress
information. Therefore the design of ELP is especially focused on these two aspects. From the
existing solutions PapiNet has the best overall score when these aspects are not considered
important.

To create a design for ELP, the following steps are taken. First, a closer look is taken at the
business processes in which clients and transportation companies are participants. Second, a
common data model is designed that can be used as a model to represent information that is
currently stored in proprietary information systems and is suitable for exchanging information when
it comes to outsourcing. Next, to be able to exchange information, several alternative ways of
creating a communication network are considered. Finally, having the business processes, the
data model and a communication network, these are used to create a design of ELP that is closer
to the application layer to exchange information.

ELP - Extendible Logistics Protocol 36 / 170 M. Snoek - TU/e

5 Use cases to describe outsourcing

The business processes described in the previous chapter as well as all the technological aspects
of ELP need to be compared to real life situations. In fact, the business processes describe these
situations. This chapter describes use cases that can be used to check whether a designed
solution would work with them. Another advantage of the use cases is the information that they
provide about the flow of information and the flow of goods. The upcoming chapters of this
document frequently refer to the uses cases, because this keeps these chapters close to the
context of real life situations.

5.1 Goals and constraints

A use case consists of two parts that to describe a real life situation. First the participants of the
use case are given. Second, the activities that happen are given. The activities that are performed
by the participants, create a path for the flow of information between them. The activities and
primary flow of information, such as order placing, are drawn in a scheme using a tree structure.
The first property of the tree structure is that it describes how the order is outsourced. When the
order is outsourced then the outsourcing company becomes a parent and the executing company
becomes its child. The parent places an order at its child(ren) and sends the required data to the
child need to execute it. An order scheme always starts with a client as root node, but it is not
excluded that the client is another transport company or broker. In fact, when an order is
outsourced, the outsourcing company is the client of another transport company.

The second property of the order tree is that the execution, that goes from the parent to the child,
also carries over the responsibility. A child always has to justify the progress of an order to its
parent. If this parent also has a parent then the justification is analogue, i.e. from the leaves to the
root. When a company outsources its order to two or more other companies then this company is
responsible for the whole order while the other companies are only responsible for their part of the
execution.

A third property of the trees is the sequence of the order execution. The leaves, from the left to the
right, are the companies that transport the goods in that order. A yellow transport shape indicates
that the company doesn't outsource the entire order, but does a part of the execution itself. If the
yellow transport is absent then this company outsources the entire order.

The following constraints can be defined for the order scheme:
● An order scheme always starts with a client as root node.
● A company can outsource the entire or a part of an order another company.
● When a entire order is outsourced then this company doesn't appear in the flow of goods

scheme.
● When an order is outsourced then the outsourcing company places an order at the

executing company and sends the required data that is needed to execute the transport.
● A company can do one or more parts of the transport itself and outsource the other part(s).
● The combination of transport that is done by a company together with the (partial) transport

that it has outsourced is equal to the transport requested in the received order.
● A child always has to justify the progress to its parent.

Another scheme that is given, is the flow of goods. This information is used to get a sequence of all
the resources that 'hold' the goods during the transport. The flow of goods can be seen as a
flattened sequence of all the children of the order scheme. It therefore doesn't include all
companies that are part of the order scheme. The order scheme doesn't give any information

ELP - Extendible Logistics Protocol 37 / 170 M. Snoek - TU/e

Q004

about how the goods are exactly transported, for example, it doesn't give information about a
possible temporary storage of the goods in a warehouse of a company; this information is provided
by the scheme that describes the flow of goods. The current location of goods is a key aspect in
'Track&Trace' functionality.

The following constraints can be defined for the flow of goods scheme:
● The original location can not be the same as the final destination.
● The original location where the goods need to be picked-up doesn't have to be the same as

the location of the root node (client).
● When an order is executed by more than one company then all the partial executions form

a contiguous chain of transport from the original location to the final destination with
possible intermediate storage.

● A flow of goods start with the transfer of goods from the original location to a transportation
means.

● A flow of goods ends with the transfer of goods from a transportation means to the final
location.

● The transfer of goods can be between two transportation means or between a
transportation means and a non transportations means.

The order tree and the flow of goods are used as an important reference in the other chapters to
design a solution that is conform these schemes as they describe real-life situations.

The following elements are used for the 'order' and 'flow of goods' schemes:

Figure 5.1 – elements used for order and flow of goods schemes

The color of the truck symbol identifies the company that owns the truck because that company
has the same symbol color.

The final destination doesn't play an active role in the transport process in the 'flow of goods'
schemes. It can be possible that this location is unaware of the fact that goods are sent to it, but it
is assumed in the use cases that it will accept the goods and is therefore always the final shape in
the 'flow of goods' schemes. The returning of undeliverable goods can be considered as a new
order or as a change to the existing order. Although this should be possible with ELP it is out of the
scope of the use cases.

 The use cases have trucks as transportation means, but these can be any other transportation
means.

5.2 Use case 1: no outsourcing
Participants
Client C, transport company A (Company A), receiver company R (Receiver R)

ELP - Extendible Logistics Protocol 38 / 170 M. Snoek - TU/e

Client C

Company B

Origin location or final destination

Transportation Company Loading or Unloading (pick-up and delivery)

Truck (green: Company B)

Activity with description
The quick brown fox...

Transport A part of the execution is done without outsourcing

Activities
Client C places an order at Company A. The order is about goods that need to be transported from
Client C to Receiver R. Company A sends a truck to Client C to pick-up (load) the goods, drive to
Receiver R and deliver them (unload).

Order scheme

Figure 5.2 – order scheme of use case 1

Flow of goods scheme

Figure 5.3 – flow of goods scheme of use case 1

5.3 Use case 2: single outsourcing
Participants
Client C, Warehouse X, transport company A and B (Company A and B) and receiver company R
(Receiver R)

Activities
Client C places an order at Company A. The order is about goods that need to be transported from
Warehouse X to Receiver R. Company A outsources the order partially to Company B. Company A
sends a truck to Warehouse X to pick-up (load) the goods and drive to Company B where the
goods are stored. Company B loads the goods into another truck and drives to Receiver R to
deliver them (unload).

Order scheme

Figure 5.4 – order scheme of use case 2

ELP - Extendible Logistics Protocol 39 / 170 M. Snoek - TU/e

Company A

Places order at

Client C

Client C
Drives to Receiver R

Loading into truck of
Company A

Unload and deliver to
Receiver R

Receiver R

Client C

Places order at

Company A

Company B

Outsources a part of the transport to

Transport

Flow of goods scheme

Figure 5.5 – flow of goods scheme of use case 2

5.4 Use case 3: multiple outsourcing, single level
Participants
Client C, transport company A, B and C (Company A, B and C respectively) and receiver company
R (Receiver R)

Activities
Client C places an order at Company A. The order is about goods that need to be transported from
Client C to Receiver R. Company A outsources a part of the order to Company B that has to pick-
up (load) the goods at Client C and deliver (store) them at the warehouse of Company B. Company
A outsources the other part of the transport to Company C. This company has to pick-up (load) the
goods at Company B and deliver them at Receiver R.

Order scheme

Figure 5.6 – order scheme of use case 3

Flow of goods scheme

Figure 5.7 – flow of goods scheme of use case 3

5.5 Use case 4: multiple outsourcing, multiple levels

Participants
Client C, transport companies A, B, C, D and E (Company A, B, C, D and E respectively), receiver
company R (Receiver R)

ELP - Extendible Logistics Protocol 40 / 170 M. Snoek - TU/e

Company A

Company B Company C

Places order at

Outsources a part of the transport toOutsources a part of the transport to

Client C

Client C Company B

Loading into truck of
Company B

Drives to Company B

Unload and store in
warehouse of Company B

Receiver R
Drives to Receiver R

Loading into truck of
Company C

Unload and deliver to
Receiver R

Warehouse X
Drives to Receiver R

Receiver R

Loading into truck of
Company B

Unload and deliver to
Receiver R

Loading into truck of
Company A

Drives to Company B

Company B

Unload and store in
warehouse of Company

B

Activities
The activities are equal to use case 3 but with the following addictions. Company B outsources a
part of its order to Company D. Company D has to pick-up (load) the goods at Client C and deliver
(store) them at the warehouse of Company D. Company B outsources another part of its order to
Company E that has to pick-up (load) the goods at Company D and deliver them at the warehouse
of Company B.

Order scheme

Figure 5.8 – order scheme of use case 4

Flow of goods scheme

Figure 5.9 – flow of goods scheme of use case 4

5.6 Use case 5: outsourcing with many goods seen as one
Participants
Client C, transport companies A, B, C and D (Company A, B, C and D respectively), receiver
company R (Receiver R)

Activities
Client C places an order at Company A. The order is about goods that need to be transported from
Client C to Receiver R. Company A outsources the order to Company B. Company B transports
the goods from Client C to its warehouse where they are stacked upon a pallet. Company B places
an order at Company C to transport the pallet. The pallet is transported from the warehouse of
Company B to that of Company D by Company C. Company D unstacks the goods from the pallet
and delivers them at Receiver R.

ELP - Extendible Logistics Protocol 41 / 170 M. Snoek - TU/e

Client C

Places order at

Company A

Outsources a part of the transport to Outsources a part of the transport to

Company B Company C

Company ECompany D

Outsources a part of the transport toOutsources a part of the transport to

Loading into truck of
Company D

Unload and store in
warehouse of Company D

Loading into truck of
Company E

Unload and store in
warehouse of Company B

Client C Company D
Drives to Company D

Receiver R

Drives to Company B

Company B

Drives to Receiver R

Loading into truck of
Company C

Unload and deliver to
Receiver R

Order schemes

Figure 5.10 – order schemes of use case 5

Flow of goods scheme

Figure 5.11 – flow of goods scheme of use case 5

It is clear that the use cases evolve from straightforward transport without outsourcing to a complex
situation consisting of outsourcing together with transport up-scaling. The following chapter refer to
the use cases to illustrate subjects that they are dedicated to.

ELP - Extendible Logistics Protocol 42 / 170 M. Snoek - TU/e

Client C

Company A

Places order at

Company B

Outsources a part
of the transport to

Company D

Client C
Drives to Company B Drives to Company D

Drives to Receiver R

Receiver R

Unload and deliver to
Receiver R

Loading into truck of
Company B

Unload and store in
warehouse of Company

B

Loading into truck of
Company C

Unload and store in
warehouse of Company

D

Loading into truck of
Company D

Company B Company D

Goods contained in a pallet

Outsources a part
of the transport to

Company B

Company C

Places order at

6 Business processes analyses

6.1 Top level processes

The use cases described in the previous chapter are all combinations of business processes that
are executed sequentially as well as partly in parallel. This chapter describes the business
processes that are executed. The business processes are modeled using the Business Process
Modeling Notation [BPMN] created by the Object Management Group [OMG]. The graphical
elements that are used to create the models are described in appendix D.

The first paragraph gives an overview using a client that requests a quotation, also referred to as a
quote, and places an order at a transport company. The order is executed and the progress is
reported to the client. This Business Process Model (BPM) contains several collapsed sub-
processes. These sub-processes are described in more detail in the next paragraphs.

The transport of an order involves two or more participants. First, there has to be a client that has
goods that need to be transported. Second, there is at least one transport company that executes
the transport. The client requests quotations from one or more transport companies and finally
chooses one to place the order. This transport company can execute the order itself, but, as the
use cases describe, can also outsource (parts of) the order to other transport companies. The BPM
in figure 6.1 below describes the top-level business processes when no outsourcing is used.

Figure 6.1 – BPM: top-level business processes

Figure 6.1 contains a Client pool and a Transport Company pool. The two pools together describe
what business processes are executed at each participant and when messages are sent from one
to another. This BPM doesn't explicitly include outsourcing although it does when some of the
collapsed sub-processes are expanded in the next paragraphs. The ELP design decisions in
chapter 4 mentioned three standard supported business processes. These business processes are
represented by the combinations of 'Get quotations' and 'Create quotations', 'Send order' and
'Receive order', and 'Execute order' and 'Trace order'.

The business process that starts with goods to be transported at a client and finishes with all goods
transported is referred to as the 'complete transport'. The model in figure 6.1 describes the

ELP - Extendible Logistics Protocol 43 / 170 M. Snoek - TU/e

Get
quotations

Send
order

Trace
order

Quotes
given?

Order
placed?

+ + +

\ \
No

No

Order
data

Create
quoatation

+

Yes Yes

Receive
order

+

Order
placed?

Execute
order

+
Yes

No\

Cl
ie

nt
Tr

an
sp

or
t

co
m

pa
ny

Offer
request

Transport
order

Quotes Order
result

Order
result

complete transport starting at the Start event. The transport company can't start the complete
transport because it only has message events which are triggered by a message coming from the
client. The top-level view of the complete transport is straight forward: first, the client has goods
that need to be transported. It sends a quotation request to the transport company which triggers
the 'Create quotation' business process at the transport company. Second, the transport company
sends a quotation or a rejection back to the client. The model in figure 6.1 only has one pool for a
transport company, but many of these pools can exists with quotation requests sent to each pool.
When the client received a quotation it can place an order at the transport company. It is assumed
that the client receives a quotation that satisfies its requirements.

The next collapsed sub-process in the clients pool sends an order, based on the received
quotation, to a transport company. The transport company receives the order and sends a
confirmation back to the client. The transport company now starts executing the order. The
progress that is made, within the 'Execute order' collapsed sub-process is sent to the client. When
the execution is finished then both client and transport company end the complete transport
business process.

6.2 Client business processes

The next paragraphs will take a closer look at the collapsed sub-processes of the client and the
transport company. First, the collapsed sub-processes of the client pool are described, followed by
the collapsed sub-processes of the transport company pool.

6.2.1 Business process: get quotations
This paragraph focuses on the 'Get quotations' collapsed sub-process in the Client pool displayed
in figure 6.1. The input of the sub-process are data objects that are used to create an order that is
going to be placed at a transport company. The result of the sub-process is a list containing
quotations from transport companies with, typically, time windows for the execution, prices, etc.
The contents of a quotation is not defined as it would go beyond the scope of the business
processes.

 functional requirement RQFuncBus1

Figure 6.2 – BPM: get quotations

Figure 6.2 describes the BPM of 'Get quotations'. It starts with three data objects, namely 'Goods
description', 'Goods specification' and 'From/To data', that are used to create an order data object.
The order data object contains the data that a transport company needs to create a quotation for
executing it. Using the order object, the client now is going to request quotations from transport

ELP - Extendible Logistics Protocol 44 / 170 M. Snoek - TU/e

Goods
description

Create
order

Send quote
request

Receive
quote

Order

Add to
quotes

Request
rejected

Timeout

Offer

Parallel for every transport company

Quotes

Goods
specification

From/To
data

Q003

companies it knows. The requests are executed in parallel for every transport company as
indicated by the parallel activity. First, the client sends a quotation request to the transport
company. Next, this company sends a message back to the client that handles it using the
complex gateway. If the message contains a quotation then it is added to the list of quotations.
Otherwise, by receiving a rejection or a timeout event, no quotation is put to the list of quotations
and the instance of the parallel process finishes. Finally, the sub-process ends with a (empty or
non-empty) list of quotations.

6.2.2 Business process: send order

The result of the 'Get quotations', described in the previous paragraph, is a list of quotations made
by transport companies. The gateway in the Client pool after the collapsed sub-process decides
whether to go on with the order or, if no quotation are available, end the complete process. When
quotations are available then the next step1 is to place an order at a transport company that is
described in this paragraph. It is modeled by expanding the 'Send order' sub-process, see figure
6.1.

 functional requirement RQFuncBus5

Figure 6.3 – BPM: send order

The 'Send order' sub-process starts with a list of quotations. When no quotations are given in the
previous 'Get quotations' sub-process then this list will be empty and, due to the first gateway, this
sub-process ends without a a placed order. When the list of quotations is not empty then the
quotations in the list can be sorted according to the specific demands of the client. The client now
selects the best quotation and removes it from the list. The best quotation is used to send an order
request, that refers to the quotation, to the transport company. The order request will be received
by the 'Receive order' sub-process of the transport company. This sub-process, which is described
later, sends a 'rejected' or 'accepted' message back to the client.

When no message is received from the transport company after a certain amount of time then a
timeout occurs and the order is processed as being rejected. The rejection and timeout event are
followed by a gateway that determines whether more quotations are available, in which case the
sub-process is repeated from the activity where the best quotation is chosen. Without any
alternative quotations the sub-process ends without a placed order.

When the client received a 'accepted' message then the order, based on the quotation, is placed.

1 Creating a reservation based on a quotation is skipped due to the absence RQFuncBus4

ELP - Extendible Logistics Protocol 45 / 170 M. Snoek - TU/e

Quotes
available?

Sort quotes

Select best
quote

Remove
quote

Send
order

Quotes
available?

Quotes

Quotes

Selected
quote

\

\
No

Yes

No

Yes

Timeout

Rejected

Accepted

Order

Figure 6.1 tells that the transport company starts executing the order and the client is tracing its
order. This is the sub-process that is expanded in the next paragraph.

6.2.3 Business process: trace order

The 'trace order' sub-process is based on three events that can occur using a complex gateway.
One event is a 'progress' message received by the client. This message is sent by the transport
company and informs the client about progress that is made during the execution of an order. The
client updates the order data and waits for the next event to occur.

Another event that can occur is receiving a 'finished' message from the transport company. This
message informs the client about the order that is completely executed. Typical data that is
included within this message is a Proof Of Delivery (POD). The client knows that the order is
finished and the trace sub-process also finishes.

A third kind of event that can occur is a timeout. This event can occur when the time passed, since
the start of the execution, is beyond reasonable and the order should be finished already. The
timeout events ends the sub-process with an error state.

 functional requirement RQFuncTra2

Figure 6.4 – BPM: trace order

6.3 Transport company business processes

The following paragraphs focus on the sub-processes of the transport company pool of figure 6.1.
These sub-processes also include business processes that are used for outsourcing from one
transport company to one or more others. When a transport company outsources (a part of) an
order then, in fact, it becomes a client of another transport company. The transport company uses
the 'Get quotations' sub-process of the clients pool to get quotations from companies that it can
outsource (a part of) the order to. The next paragraphs will focus on the sub-processes that are
part of the pool of the transport company.

6.3.1 Business process: create quotation

The 'create quotation' business process handles the event of a quotation request from a client. The
model in figure 6.1 illustrates that a client sends a quotation request to a transport company
containing data that is needed to create a quotation. The transport company tries to create a
quotation, described in this paragraph, and finally sends either the quotation or a rejection. Figure
6.5 contains the business process model of the expanded sub-process 'create quotation'.

ELP - Extendible Logistics Protocol 46 / 170 M. Snoek - TU/e

Update
progress

Order in
progress

Progress

Finished

Finalize
order

Timeout

Finished
order

 functional requirements RQFuncBus1, RQFuncBus2

Figure 6.5 – BPM: create quotation

The transport company first receives the quotation request and analyses its internal resources.
Internal resources are, for example, the trucks, employees and warehouse facilities that belong to
the transport company. Using the analyses, the company is able to decide whether it can execute
the request using internal resources or (completely) using outsourcing. Another possibility is to
reject the request anyway. The decision to use outsourcing is made in the first gateway. When no
outsourcing is used then the quotation is based on the use of internal resources. The created
quotation is stored and sent to the client.

When the company decides to use outsourcing to create a quotation then it is possible that it fully
outsources the execution of the request or only a part of it. The company splits the request into
parts that are either executed by internal resources or by outsourcing. All parts together have to
form the transport from the original location to the final destination. After the creation of these
parts, the model forks the flow into the creation of quotations for the internal and external parts. It
is possible that the request is fully outsourced in which case no internal parts exist. The creation of
a quotation for these parts is then simply skipped and the flow goes immediately to the join
gateway.

As the company decides to use outsourcing, there is at least one part that is executed by another
transport company. The company would like to receive quotations for every part of the request that
it would like to outsource. These quotations are requested in parallel within the multiple instance
task object. First, quotations for the part are requested within the 'Get quotations' sub-process that
is described earlier in this chapter. The next step of the multiple instance task is to select the best
quotation for the part which is analogue to the selection of the company to place the order within
the 'Send order' sub-process of the clients pool. Finally, when a quotation is selected for each part,
then the flow continuous from the join gateway. This can also happen when it took to long time to
receive and/or select a best quotation for a part in which case the instance of the multiple instance
task reaches a timeout.

ELP - Extendible Logistics Protocol 47 / 170 M. Snoek - TU/e

Receive
quote request

Analyse
internal

resources

Use out-
sourcing?

Create quote
(int. res.)

Send
quote

Split request
into internal/

external parts

Create quotes'
internal part(s)

Get
quotes

+
Quotes
given?

Select best
quote

Sort
quotes

Best
quote for

part

+
Track

complete?

Send
reject

Quotes

Parallel for each outsourcing part (track)

Int/Ext
parts

Yes

No
Reject

anyway

\

Timeout

Store
quote

Quote

Yes No\

\ No

Yes

Quote
request

Combine parts
to one quote

Within the next gateway, after the two flows are joined, the quotations for all internal and external
parts are checked to see whether the concatenation of them is equal to the transport track that is
requested by the client. If it is equal then the quotations for the parts are combined together in one
quotation that is stored and sent to the client. If it is not equal then the company wasn't able to
create a suitable quotation and sends a reject message.

A remark that can be made to this expanded sub-process is that it introduces recursive calls to its
own model. The 'Get quotations' sub-process in the multiple instance task starts the 'Create
quotations' sub-process at each transport company it would like a quotation from. As this sub-
process can start its own 'Get quotations' sub-processes it can even be possible that transport
company A, that requested a quotation from company B, receives a quotation request from
company B to execute the same transport (circular quotation request). A solution to this problem
can be to uniquely identify the goods and to assume that this identifier is contained unchanged
within a quotation request. A company can now easily check whether it already has the goods in a
'request quotation state' and reject the request anyway.

There is no limit on the number of times that an order is outsourced although it is assumed that it is
limited due to practical limits such as profit margins that all involved companies would like to have.

6.3.2 Business process: receive order

The pool of the transport company in figure 6.1 contains collapsed sub-process 'Receive order' that
it initiated when a 'Transport order' message is received. The result of this sub-process is that the
order is placed or that it is not placed, including the parts that can be outsourced. Figure 6.6 below
illustrates the expanded sub-process of 'Receive order'.

 functional requirement RQFuncBus5

Figure 6.6 – BPM: receive order

ELP - Extendible Logistics Protocol 48 / 170 M. Snoek - TU/e

Receive
order

request

Allocate int.
resources

Split offer
into internal/

external parts

Offer
known?

Place
order

Cancel
order

Cancel
allocation

Send
rejected

Parallel for each outsourcing part (track)Quote

+
Store
order

Order

Send
accepted

Yes

\
No

Order
result

When the transport company receives the order requests, that includes a reference to a quotation,
then it checks whether the quotation is known. If the quotation is not known then the company
rejects the order immediately. When the quotation is known then it is split into internal and external
parts and an order placing transaction is started.

The transaction forks the flow into one an internal and external part. If there is no internal or
external part then the activities in the flow are skipped. The company tries to allocate the internal
resources that are part of the quotation. If the resources cannot be allocated, for example because
they are already allocated for another order, then the transaction is canceled and every allocation/
order placement is rolled back. When the resources can be allocated then the flow waits for the
completion of the outsourcing flow at the gateway.

The quotation given contains references to the quotations from transport companies that are used
for the outsourcing of the order. The company now tries to place the orders for the outsourced
parts. If one part cannot be placed then all others, as well as allocated internal resources, are
canceled.

When both the allocation of the internal resources as well as the orders for the outsourced parts
succeeded then the order is stored and a confirmation is sent to the client. The transaction now
commits. When the allocation of the internal resources or an order of an outsourced part failed
then the transaction is rolled back and a rejection message is sent to the client.

To improve the success rate of the transaction, a quotation can include a period in which the
quotation acts as an option on the resources. The period shouldn't be too long, but long enough for
a usual execution time of the 'Get quotations' sub-process. When the order is successfully placed,
and probably an option is used, the client must cancel the other options to release the reserved
resources at the other transport companies.

6.3.3 Business process: execute order

The last sub-process in the pool of the transport company in figure 6.1 is 'Execute order'. This
business process is only started when an order was successfully placed by the client. The result of
this business process is an executed order including information on the progress that was made
during the execution. The sub-processes is expanded in figure 6.7 below.

 functional requirement RQFuncTra2

Figure 6.7 – BPM: execute order

The process starts with the execution of the order. At some moment in time there will be some
progress, for example the pick-up of the goods. An employee of the transport company will send a
message with the progress that is made. This progress is stored and is sent to the client. This will
trigger the 'Progress' event in the 'Trace order' sub-process. When the progress message isn't
indicating that the execution is finished then the transport company will continue executing until the

ELP - Extendible Logistics Protocol 49 / 170 M. Snoek - TU/e

Execute
order

Update
progress

Send
progress

Order
finished?

Order

No Yes

Progress
made

\

next event occurs. Finally a 'Finished' message will be received and this message is also sent to
the client. Both the client and the transport company will now finish the order and therefore the
complete transport is finished.

When an order is outsourced by a transport company then it starts the 'Execute order' sub-process
beginning with the 'Execute order' activity. Assuming that the complete order is outsourced, the
company doesn't execute anything itself, but waits for messages from the transport
company/companies that the order is outsourced to. When a message arrives then it updates its
own order data and sends the progress to the client. The 'Send progress' activity of the transport
company where the order is outsourced to doesn't send the progress message to the client, but
sends the progress message to transport company that outsourced its order. In short, when
outsourcing is used and the actual executing company makes progress then a chain of progress
messages will flow from that company back to the client, updating everyones order data. This
chain is equal to use case trees going from a leaf up to the root.

6.4 Use cases and BPM
The use cases described in chapter 5 should be instances of flows in the business process models
of the previous chapters. This paragraph focuses on each use case to check whether these
instances can be made using the business process models.

6.4.1 Use case 1: no outsourcing

The first use case consists of a client that places an order at a transport company. It is executed by
that company. First, the client requests quotations from one or more transport companies within
the 'Get quotations' sub-process. Next, it selects a quotation and sends an order to Company A.
This company accepts the order and executes it. This use case fits exactly in the BPM described
by figure 6.1.

The order tree of use case 1 is build using two phases that are not described in the use cases
chapter. The use cases don't give any information about quotations that are requested and only
display the companies that are involved when an order is placed/outsourced. The order tree of use
case one is built by going trough the following stages that are derived from the business processes
of this chapter:

Initial state: a client with goods that need to be transported
Quotation stage: the client requests quotations from transport companies
Order stage: the client places an order at one of the transport companies
Execution stage: the transport company executes the order
Final state: the order is executed.

All financial aspects such as invoices and payments are not taken inconsideration as described in
paragraph 6.2.1.

Figure 6.8 – two steps from initial state to order stage

ELP - Extendible Logistics Protocol 50 / 170 M. Snoek - TU/e

Company A

Places order at

Client C Client C

Company B Company C

Client C

C requests
offers from

Initial state Quotation stage Order stage

Company A

Figure 6.8 above describes two steps, from the initial state to the order stage, that result in the
order tree displayed of use case 1. Client C requests quotations from several companies (quotation
stage) and decides to place an order at company A (order stage). The (successful) result of the
order stage is displayed in the order tree of the use case.

The execution stage is also not mentioned in the order trees of the use cases. From sub-process
'Execute order' and 'Trace order' it can be concluded the initiator of messages sent changes from
the client to the transport company. These messages form the justification from a child to its parent
described in paragraph 5.1. The execution stage can therefore also be drawn as the order tree
except that all the arrows are turned around and form the justification using progress messages.
The final state is equal to the initial state except that the goods are transported.

6.4.2 Use case 2: single outsourcing
Use case 2 starts with the same sub-process as each other use case, namely 'Get quotations'.
This invokes the 'Create quotations' sub-process of transport company A. The sub-process splits
the order into an internal part and an external part. For the external part, the transport company
starts the 'Get quotations' sub-process itself and requests a quotation for the part it is outsourcing.
The quotation stage displayed in the previous chapter would be drawn with an extension of several
transport companies as children of company A and probably children of the other transport
companies if they would also use outsourcing for the order. Company A decides that the quotation
of Company B is the best one and uses it together with the quotation of its internal part to create
the quotation for the client. The clients decides to use this quotation (sub-process 'Place order')
which results in the order tree of use case 2 when the sequence flow reaches the start of the
transaction of sub-process 'Receive order'.

In paragraph 6.3.1 it is pointed out that the 'Create quotation' sub-process creates recursion within
the complete process. When this recursion is suitable within a single outsourcing use case then it
is also suitable for use cases that use multiple outsourcing and/or multiple levels since these use
cases only create more instances of the 'Create quotation' sub-process. Use case 3 and 4 can
therefore also be described using a sequence flow of the business process models.

6.4.3 Use case 5: outsourcing with many goods seen as one

Use case 5 contains the scenario where the goods are loaded upon a pallet that is transported
from Company B to Company D. The transport of this pallet is a new order. Company B is
responsible for the transport of the goods from its warehouse to the warehouse of Company D.
Usually company B would load, transport and unload the goods and send this progress to
Company A. In this use case these activities are performed within the new order that company B
places at company C. Since company C is unaware of the goods stacked on the pallet, it doesn't
send progress messages for the goods of Client C to Company B or A. However, it does send
progress messages about the execution of the new order to company B. Company B is the only
company that knows that the goods of Client C are stacked on the pallet and therefore Company
B, that receives progress messages of the pallet transport, has to use these messages to update
the progress of the transport of the goods. In short, when the transport of the pallet makes
progress then the transport of the goods makes progress also.

The business process models described in this chapter do not have any activities involved with
combined transports with, for example, a pallet. These activities are added to the existing models
described in the previous paragraphs.

The first activity that has to be added is when goods are combined into 'new goods'. This activity

ELP - Extendible Logistics Protocol 51 / 170 M. Snoek - TU/e

has to store information about what goods are contained in the new goods. In the use case, this
would enable Company B to detect that the goods of Client C make progress when the transport of
the pallet makes progress. This small business process, that can be called 'Combine goods', with
one ore more data of goods as input and one data of goods as output is not modeled here.

The second activity has to be added to the sub-process 'Execute order'. This activity checks for
every progress message whether the goods that are described within the message contain other
goods. If so, then the transport company needs to send a progress message the other sub-process
'Execute order' that is about the goods that are contained. The altered sub-process 'Execute order'
displayed below.

 functional requirements RQFuncTra2 and RQFuncInf8

Figure 6.9 – altered BPM: execute order

Company B is executing a transport of the goods of Client C (BP-A). It is also involved in the
execution of the transport of the pallet (BP-B). When a progress message of the pallet transport
arrives at company B then the gateway checks whether there are other goods contained by this
transport. This is true in this use case, thus the company sends a (internal) message to the
business process BP-A. This business process will also check whether it contains other goods, but
this is false. Both processes will update their progress and send progress messages to the
participant it received the order from.

The solution for combined transports only works if Company B places an order for the transport of
the pallet at itself and outsourced it to Company C. When Company B would only acts as a client of
company C then it wouldn't have sub-process 'Execute order' active and therefore wouldn't send
the progress message to BP-A.

ELP - Extendible Logistics Protocol 52 / 170 M. Snoek - TU/e

Execute
order

Order
finished?

No Yes

Update
progress

Send
progress

Progress
made

\

Other goods
container?

Send
message

Order

\
No

Yes

Progress message to the
other 'Execute order'

sub-process that is executing.
Combined

goods

6.5 Crossing company borders
One of the major differences between a company that accepts and executes an order and one that
accepts and outsources an order is that the latter involves a more complex situation because a lot
of business aspects cross its company border. The previous paragraphs have shown a superficial
view on outsourcing that exists of simply acquiring quotations, placing orders and receiving
progress updates. Although this superficial view corresponds with real life situations, this
paragraph focuses in more detail on aspects that appear when business processes cross a
companies' border.

The first aspect is the introduction and shifts of responsibilities and accountability. A company that
outsources an order keeps all responsibility and accountability to its client, but it has to realize that
to it becomes dependable on another company when it is actually held accountable. This implies
that the outsourcing company has to realize that, by outsourcing the order, its influence on a
successful execution decreases although its responsibility and accountability remain equal.
Realizing this, an outsourcing company shall not only make its decision, who to outsource the
order to, based on the lowest quotation, but also on a companies reputation and successful
cooperation in the past.

Another aspect is the agreement on obligations and requirements that participants need to have.
Many obligation and requirements can be thought of, for example:

● Agree on the contents of an order and a companies flexibility to deviate from it.
● What progress information needs to be provided and what requirements are there on the

frequency and/or accuracy of this information?
● What are the requirements for exchanging information? For example, is information

exchanged between humans (voice, paper), information systems (EDI) or a combination of
these and which language (protocol) is used as well as the informations' level of detail?

● Who is responsible for the information and updates of this information? This has influence
on the possibility to hold someone accountable in case information is incorrect.

● Are there any restrictions on which company an order can be outsourced to? For example,
company A doesn't like to do business with company X. However, A outsourced its order to
company B, that in its turn does like to do business with and outsource its order to company
X.

● What are the requirements for confidentiality?

In general, companies that do business need to agree on many aspects that can be divided into
the categories operational, financial, legal and technological. If no agreement can be made then
this can cause unforeseen problems that are not likely to exist in case of no outsourcing. The
categories operational, financial and legal are assumed to be out of scope of this document,
although it is worth emphasizing them to exist. The next chapters, that focus on more technological
subjects, do keep them in mind to provide solutions where possible.

6.6 Summary
The functional requirements introduced several business processes that would like to supported by
ELP. The business processes are steps performed at a client and a transport company starting
with quotations and resulting in an executed order of which the progress can be observed by the
client. The following business processes are analyzed and modeled in detail: get quotations,
create quotations, send order, receive order, execute order and trace order. The business
processes provide a view on the messages that are sent between a client and a transport
company. Using the use cases, these business processes are extended with steps that are taken
when an order is outsourced. Outsourcing introduces many aspects that a pair of outsourcing and
accepting companies need to agree on to prevent conflicts and disappointments. These aspects
can be divided into the categories operational, financial, legal and technological of which this
document primarily focuses on the technological aspect that can support the other categories.

ELP - Extendible Logistics Protocol 53 / 170 M. Snoek - TU/e

Q302

7 Data structures as support for business processes

7.1 Introduction to a common data model

The business processes described in the previous chapter use several kind of data objects and
messages. An order is modeled as a message that is sent from the client to the transport company
and contains order data. Equal messages are used when a transport company outsources an
order to another company. In practice, these data objects and messages have to be created and
understood by existing information systems. The data objects that, for example, contain orders and
goods need to be described by a Common Data Model (CDM) that is supported by the existing
information systems. It doesn't need to be the model of the data of the software itself, but the
information systems need to have at least a two-way mapping function to read and write data
about a transport from and to the common data model.

The difficulty with a common data model will always be that it isn't completely suited for all systems
that are used nowadays. To maximize the usability and compatibility with current information
systems it would be best to split each business processes, physical aspects of goods as well as
general information to a high level of detail. The advantage of this approach is that software
packages that don't support the high level of detail can internally still manage to convert this data
into the common data model. The software package simply doesn't need all the possibilities. The
problem still remains for software packages that internally have such a detailed data structure that
it is not possible to convert this data to the common data model. A (partial) solution of this problem
is given in paragraph 7.2.2. It describes a solution for attributes that are required for one company
but not for another and a solution to introduce attributes that are not part of the CDM, but are
required for a company to operate.

The common data model is designed to describe information about logistic processes of transport
companies. Before it is possible to give a description of the common data model, there are several
terms that need to be defined. These term are used throughout the rest of the document.

Term Definition
Transportable Transportables are all physical materials that can be transported from

one location to another. Examples are a box, an envelope or a sealed
pallet.

Holder A holder is a resource that contains one or more transportables or other
holders. Examples of holders that contain transportables are cars,
trailers and warehouses. If a trailer is loaded on a train then the trailer is
contained in the train, which is a holder on its own.

Transholder A transholder is a holder that also acts as a transportable.
Track The pick-up of a transportable at a certain location and the delivery of

that transportable at another location.
Remaining Track (RT) The track from the current location to the final destination.

Table 7.1 – terms and definitions for the common data model

ELP - Extendible Logistics Protocol 54 / 170 M. Snoek - TU/e

7.2 The Common Data Model (CDM)

The common data model can be used as a general data model to describe information about
logistic processes. It has a number of primary entities which are described in this part of the
chapter. This chapter would grow dramatically if all (detailed) parts of the CDM are described here.
The whole description of the CDM, including examples, is given in appendix J. This chapter
however does contain an overview of the major data models and their relations to give a basic idea
of how the CDM is defined.

The primary goal of the CDM is to provide a model that describes the entities, attributes and
relations that are common for transport companies and is based on their logistic processes for
which the data is processed using a Transport Management System (TMS). The secondary goal is
to design the model in such a way that it can be used for implementations of ELP to improve the
automation of outsourcing and to be compatible with data models used for the development of
existing TMS solutions.

The primary entities of the CDM are:
● Client: a customer of a transport company.
● Order: a request of a client to a transport company or transport broker to transport goods

from one or more origins to one or more destinations.
● Transportable: physical materials that can be transported from one location to another

location.
● RouteLocation: a location where a transport company has to perform a specific task.
● Holder: a resource in a transportation process that can contain one or more transportables,

one or more holders or one or more transholders.
● TransportableTrack: a deviation of the pick-up, return and delivery locations of a

transportable.

When the CDM is used for an implementation then a transport company is able to receive orders
from clients that contain information about goods that need to be transported. The information that
can be described using the CDM is based on the logistic business processes of a transport
company, described in chapter 6, which means that, for example, financial aspects are absent. It
would probably not be too complicated to extend the CDM with information about rates, amounts,
invoices, etc.

First, the CDM is given from a non-detailed point of view to give an overview using ER diagrams.
Second, parts of the overview are described in more detail by component models. Unfortunately, it
is not possible to fit all detailed parts together on one page which would give a complete view.
Every part of the CDM is described with more technical aspects and detail in appendix J that
should be consulted if an implementation of the CDM is made.

After the more detailed description of the components of the CDM, the CDM will be viewed from an
outsourcing point of view. The CDM can be used by transport companies that use outsourcing and
would like to be well informed about the progress of the transport.

ELP - Extendible Logistics Protocol 55 / 170 M. Snoek - TU/e

7.2.1 CDM Overview

The primary entities can be drawn together in an ER diagram to give the relationship between
those entities. The elements that are used to draw an ER diagram are explained in detail in
appendix E. The overview ER diagram has strong entities Client, Order, Transportable and Holder.
Client and Holder represent long-lived business resources as they can appear in multiple orders
that are mutually processed. An order can exist on its own although it should have a reference to a
client because orders without a client are quite unusable. A transportable can exists on its own but
it has a reference attribute constraint that it must always be contained in a holder. The final
destination of a transportable can be seen as special holder that is the final holder of every
transportable. The ER diagram will be split into component data models in the next paragraphs by
focusing on parts of the following ER diagram.

Figure 7.1 – CDM overview

An order is given by a client who is defined by the Client component model. The order should
contain information about goods that need to be transported. The goods are described using the
Transportable component data model such that every order should consists of at least one
transportable to make the order executable. A transportable is always contained in exactly one
holder, such as a truck or a warehouse. A holder, however, can contain more than one
transportable. As mentioned before, a holder can be contained in another holder.

A transport company can be involved in only a part of the transport of goods from their original
location to their final destination, instead of the whole transport. The Transportable component
data model only contains information about the starting and ending point of the ordered transport
as attributes of the Transportable. Therefore an additional component data model is needed to
describe a part of the transport. The TransportableTrack items of an order are used to provide the
'from' and 'to' locations, that alter from the 'from' and 'to' of the Transportable, to describe the
partial track that has to be executed by the transport company. The use of TransportableTrack is

ELP - Extendible Logistics Protocol 56 / 170 M. Snoek - TU/e

Client Order

TransportableTransportableTrack

LocationMoment

Holder

Places

About

ContainedIn

IsSeen

LocationOf

0..n1

 1

 1..n

 0..n

1

0..1

 0..n

ContainedIn
0..n

 0..1

About
0..1 1

 1

0..n

described in more detail in paragraph 7.3.2. Every TransportableTrack must have a reference to a
transportable that is part of the order.

A transportable will be stored in at least two locations during the transport process. These two
locations are the original location and the final destination. It is possible that a transportable is
stored or 'seen' at more than those two locations, for example in the intermediate storage
warehouses used for cross-continent transports. The ER diagram has the entity LocationMoment
to describe information about where a specific transportable is registered. Initially this list will be
empty, but as the transports proceeds this list will be filled with locations and times where the
transportable has been. All the items in the LocationMoment entity set of a transportable provide a
transport history of the transportable. A LocationMoment always references to a specific
transportable.

When using the CDM as a basis for an implementation then ER diagram given in figure 7.1 can be
used as a basis to set-up initial database tables. The following paragraphs will take a parts of the
ER diagram and describe those in more detail. Detailed information can also be found in appendix
J.

7.2.1.1 The Client data component model
Every transport company has clients that place orders at the transport company. The CDM
consists of a component model to describe client information. A client can be a natural person or a
company. Because a natural person can be seen as a contact person of a company, the client of
an order is based on a data model that describes a company. Another possibility is to introduce an
ISA superclass for Client with Person and Company as subclasses. This alternative is not chosen
because, from an Object Oriented point of view, Company is inherited from Person so using the
Company data structure provides all aspects of the Person data structure. The detailed ER
diagram of Client is displayed below.

 functional requirement RQFuncInf4

Figure 7.2 – client entity relationship

ELP - Extendible Logistics Protocol 57 / 170 M. Snoek - TU/e

Client

CommerceCountry

CommerceNumber

CommerceCity

ContactPerson

TaxCode

Name

ID

Address

Connectivity

Street

Number

Premise

PostalCode

City

State

Country

Email

Phone

Fax

Cellphone

Website

Has

Has

1 1..n

 1

 1..n

Relation to
Order

Ty pe

The attributes in the ER diagram are common to describe information about companies. They are
compatible with Microsoft Outlook and therefore usable with Microsoft Exchange to provide easy
integration. A remark can be made to the relationships between Client and Address. One client can
have multiple addresses where the Type attribute indicates whether it is a settlement address or an
invoice address. A client has at least a settlement address; the invoice address is optional if it
differs from the settlement address.

7.2.1.2 The Order data component model
A client, that can also be another transport company, has to be able to place orders which are
described by the Order data component model. The detailed ER diagram of an order is displayed
below.

The order is uniquely identified by the identifier given by the ID attribute and should have a
reference to a client that has placed the order at a certain moment in time (Moment). The order
has a list of transportables that describe all the goods that need to be transported. The data
component model of a transportable will be described later. The ReferencePerson attribute can
contain the name of the person that can be contacted at the clients if questions or problems arise.

 functional requirement RQFuncInf2

Figure 7.3 – order entity

ELP - Extendible Logistics Protocol 58 / 170 M. Snoek - TU/e

Order

Ref erencePerson

Moment

ID

Relation to
Transportable

Relation to
Client

7.2.1.3 The Transportable, TransportableTrack and RouteLocation data component
models
The data component model of a transportable describes all kind of information about goods. For
example, this information contains the sender, the destination and specific properties that are used
to decide what resource to use such as weight and dangerous good numbers. The Transportable
data component model has many fields from which now only the most important are displayed. The
following figure illustrates the component model:

 functional requirements RQFuncInf3, RQFuncInf7 and RQFuncTra4

Figure 7.4 – transportable and transportable entity relationship

Every transportable is identified by a unique identifier. The packing attribute describes the packing
where the goods are packed in, for example a box or an envelope. Transportable and
TransportableTrack entities both have references to RouteLocation entities. For a transportable
they describe the location where the goods are originally coming from, need to be returned to in
case they are undeliverable, are currently going to and finally need to be delivered. There is a
constraint on the 'Original Location' and 'Return Location' entities that is not part of the figure. The
constraint is defined as: if a transportable hasn't got a 'Return Location' then it must have a
'Original Location'. The reason for this constraint is that there has to be at least one location to
return the goods to in case they are undeliverable. Due to competition, the original location is often
hidden to preserve client information.

ELP - Extendible Logistics Protocol 59 / 170 M. Snoek - TU/e

TransportableTrack

RouteLocation

LocationFromIsOrigin

ID

Transportable

ID

Packing

TaskRequested

TaskEstimated

TaskPlanned

TaskActual

Company

TaskOperation

Instruction

Ref erence

Proof Of Execution

Perform
0..11

Comes
f rom

location

Goes to
location

Return to
location

Has
original
location

Return to
location

Goes to
location

Has
f inal

location

0..1 0..1 0..1 1 1 0..1 1

1 1 1 1 1 1
1

Disjoint

Relation to
Holder

Relation to
LocationMoment

ID

ISA

Original
Location

Return
Location

Next
Location

Final
Location

From
Location

Return'
Location

To
Location

LocationNextIsFinal

It is common that the transport of goods is done by multiple transport companies or employees.
The TransportableTrack entity contains information that is specific for a transportable for only one
transport company or employee. The TransportableTrack component model describes the track
that has to be executed by a specific company or employee. In short, TransportableTrack is
introduced to deviate a transport from the locations described by a transportable. The
TransportableTrack items can be seen as the parts in which an order is split in the business
process described in paragraph 6.3.2.

Information about the pick-up and the delivery of goods is described using the RouteLocation data
component model. It describes a task that has to be performed at a certain moment at a certain
location. Typical information that is described, is an address, the kind of operation such as loading
or unloading and information about the preferred time this has to take place. The TaskRequested,
TaskEstimated, TaskPlanned and TaskActual attributes are TimeWindow data component models
that, respectively, give the time window in which the task is requested to be performed by the
client, probably performed, planned by the transport company and actually performed. The
ProofOfExecution attribute is a data component model that contains information about the person
who signed if the task is completed.

Every RouteLocation entity has specific information about the task that has to be performed at a
specific location. Since all the locations of a Transportable and TransportableTrack have different
meanings, a RouteLocation can only apply to one of these locations. This is indicated by the
disjoint ISA relation.

7.2.1.4 The Holder and LocationMoment data component model
The data component model of a holder describes information about all kind of resources that are
used during a transport process that can contain a transportable. Typical examples of holders are
vehicles and warehouses, which can hold goods. The data model of holder is illustrated in the
following ER diagram:

 functional requirements RQFuncTra1 and RQFuncTra3

Figure 7.5 – holder and transportable entity relation

ELP - Extendible Logistics Protocol 60 / 170 M. Snoek - TU/e

Holder

ID

Subcategory

Location

Category

ContainedIn

Transportable

Contains

IsSeenLocationMoment

Inv olv edIn

ID

Moment

1

 0..n

 1

 0..n
 0..n

 0..1 0..1

 0..n

Relation to
TransportableTrack

Relation to
Order

Location

Every holder is uniquely identified by an ID. A holder is part of a category and a subcategory,
described the appendix J, and describes what kind of holder it is, such as subcategory
'Warehouse' in the category 'Buildings'. The location of a holder gives information about the place
on earth, such as the GPS location of a vehicle or an address of a building. It is possible that a
holder is contained in another holder. When a holder is contained in another holder then the
ContainedIn reference gives the identifier of the holder where the holder is contained in, for
example a trailer that is contained in a train.

The history of a transportable, such as the locations where a transportable has been stored during
the transport, is described by the entity LocationMoment. This entity describes the moment that a
transportable was at a specific location. It is possible to refer to a holder to provide additional
information that is part of a holder but not of a LocationMoment.

7.2.2 Extensions to the CDM

The common data model provides, as the name already suggests, common properties of a data
model that can be used for the development of a TMS. It cannot be proven that the model is suited
for all transport companies and gives a reason to think about changes that can be made to the
CDM without interfering with its basic definitions. This is exactly where the first word of ELP,
Extendible, comes into place. There consist two problems that are solved in this paragraph using
extendability.

When an order is placed at a transport company then the following problems can occur:

● A client doesn't know which attributes are required by a transport company: an attribute is
required by a company to execute the order but the value of the attribute is not given. The
required attributes don't need to be the same for every company.

● A transport company requires specific information that is not part of the order: the CDM
doesn't provide the attributes that describe the specific information.

7.2.2.1 Required attributes
Together with the first problem one can ask what information is required. Although the descriptions
in appendix J provide information about required attributes, it would be preferable if a transport
company can define the required attributes on its own. A solution to this problem can be to
introduce an extra layer on top of the CDM that defines which attributes are required (must-have),
recommended (should-have) or optional (could-have). This extra layer overrules the CDM except
for primary or foreign key attributes.

First it is assumed that the CDM has a version so that future changes can be made and detected
within ELP. When assumed that the described CDM has version 1.0.0 then the “requirement layer”
should have an reference to CDM version 1.0.0. The requirement layer itself must also have a
version for the same reasons as the CDM. A difference between the CDM and the requirement
layer is that the CDM cannot be altered by a transport company, but the requirement layer can. It is
possible that the company uses a different requirement layer for different customers. Therefore the
requirement layer must have an identifier that is given by the transport company and is globally
unique to protect it being confused with other requirement layer provided by other companies with
the same name. Chapter 10 describes unique identifiers with ELP (ELP-Id's). A requirement layer
can be identified by the following set of key-value pairs:

{Version=1.0.3,CDMVersion=1.0.0,ID=Foo-bar}

The content of the requirement layer data can contain information about the attribute

ELP - Extendible Logistics Protocol 61 / 170 M. Snoek - TU/e

Q202

'ContactPerson' of entity 'Order' being required. This paragraph doesn't go into detail about how to
describe these required properties.

7.2.2.2 Extending attributes
The second problem involves attributes that are not part of the CDM, but are required by a
transport company. Examples of attributes that can be required are:

● An order registration number that is obliged by the government in a country
● Information required for customs documents

These examples are not a coincidence, because they are examples of attributes that can be
required for business processes that are defined to be out of scope of ELP for now, see paragraph
3.2. Although being out of scope, if it is possible to extend ELP with these attributes then it shows
a clear example of the power of ELP specifications being extended and therefore more suitable for
custom business processes.

The solution to provide extendibility to the CDM can be analogue to the solution for defining
required attributes, namely by introducing an additional layer that describes additional attributes.
This layer is called the “extension layer” and exists on top of the CDM, but below the requirements
layer. The reason for this is that, if the extension layer is on top of the requirement layer, it is not
possible to provide any information about an additional attribute being required. An addition of
attributes and requirements is illustrated in figure 7.6 below:

Figure 7.6 – order entity extended with an extension layer

First, the extension layer is applied to the CDM. In the illustrating example above the extension
consist of the attribute 'ExportCode' that, for distinction reasons, is drawn using a darker orange
color. Second, the requirement layer is applied to the current model. In this example the layer
defines that 'ReferencePerson' and 'ExportCode' are required (must-have) attributes, illustrated by
bold names. Should-have and could-have attributes can, respectively, be written using a italic and
normal font.

When a transport company needs additional attributes or values for required attributes then clients
of this company need to know about it. One way of providing these requirements is by adding them
to ELPNS. Another way is to set-up a method to request them from a transport company. A
complete solution is not part of this document.

7.2.2.3 Future extensions
The previous two paragraphs described two kind of extension that can be used to make ELP wider
applicable. It is not excluded that more extensions are needed to let ELP work for every company.

ELP - Extendible Logistics Protocol 62 / 170 M. Snoek - TU/e

Q204

ID

Moment

Ref erencePerson

Relation to
Transportable

Relation to
Client Order

ID

Moment

ReferencePerson

Order
Relation to

Transportable
Relation to

Client

ExportCode

Other extensions that can be thought of are the introduction of new entities to the CDM or even a
complete new data model that can be used to share information about the locations of a
companies fleet. ELP can provide the framework to describe the data models that can be used
together with shared entities.

7.3 CDM usage and outsourcing
This chapter so far focused on the use of the CDM by a single company to describe the data model
that it could use. This paragraphs focuses on on the use of the CDM by more than one company
and especially for using it with outsourcing. The outsourcing of transport between brokers and
transport companies is one of main aspects of ELP. The outsourcing of orders has influenced the
focus on the design of the CDM that is also described by the second goal of the CDM.

7.3.1 Outsourcing and the ELP Identifier
Outsourcing involves the exchange of data between two or more transport companies. Information
that is sent from one to another. Examples of this information can be quotations, orders,
reservations and progress updates. When an order is outsourced then the outsourcing company
has to store information about the order and the transport company or companies it is outsourced
to. The track that is outsourced can be described by the TransportableTrack entity, but this entity
doesn't provide any information about the transport company that is executing that part. Also, the
outsourcing transport company must have placed an order at the other transport company, which
is also not described by the CDM so far. The CDM needs to be extended to describe a model that
can also be used for outsourcing.

Many parts of the CDM can be used to extend the model for outsourcing. First, the company where
an order is outsourced to can be modeled by the Company component model. Second, a new
entity 'Outsourced order' should be introduced to model orders that are outsourced. The content of
the order is described by the Transportable and TransportableTrack entities of the CDM. The
outsourced order is about one or more transportables that are transported by another company
over the tracks that are described by the transportabletrack of each transportable.

When a transport company would like to outsource an order then it needs a way to identify the
transport company where the order is outsourced to. Also, it needs information about how to
contact this company. A solution to this problem is the ELP Identifier (ELP-Id). The ELP-Id is a
unique identifier for each transport company. The information that is needed to communicate and
exchange data with this company and can be offered by a protocol analogue to the existing DNS
protocol. Instead of resolving a domain name to an IP address this protocol can provide a lookup
from an ELP-Id to the (technical) information needed to communicate with a company. Instead of
Domain Name Service this lookup service is now referred to as ELPNS. The assigning of ELP-Id's
and providing the ELPNS is not part of this document, but is trivially a centralized administration.

The extension to the CDM as well as the ELP-Id create the following model:

 functional requirements RQFuncInf1 and RQFuncInf4

Figure 7.7 – CDM extensions

ELP - Extendible Logistics Protocol 63 / 170 M. Snoek - TU/e

Outsourced
Order

OutsourceTrack

Perf ormsTransport
Company

ELP-Id

About
 0..n1 1

 1..n

TransportableTrackId

Q003

Figure 7.7 displays the strong entity Transport Company. This entity is equal to that of Company
except that it has an extra attribute ELP-Id. The content of this attribute is needed to communicate
with this company. The Transport Company can perform zero or more orders that are outsourced
to this company. An Outsourced Order is about one or more Outsource Tracks that are referred to
with the TransportableTrackId attribute. This attribute is a foreign key to a TransportableTrack.
Because every TransportableTrack has a reference to a transportable, the outsourced order also
has references to transportables using the TransportableTrackId of its OutsourceTracks. The
relation between OutsourceTrack and Transportable track can also be given using a one-to-one
relation between these entities.

It is possible that an order is outsourced to more than one company. All companies perform a part
of the complete transport. In this case there are more 'Outsourced Order' items of which
OutsourceTrack refers to different TransportableTrack items, but these TransportableTrack items
refer to the same transportable.

When an order is outsourced then the outsourcing company sends the information about the
transportable as well as the transportabletrack to the executing company. The transportabletrack
belongs to the outsourced order and refers to the transportable. The company where the order is
outsourced to now has the information about the goods as well as the from/to information that is
needed for the execution.

The outsourcing company would like to receive updates about the progress of the execution. The
executing company has to know how to contact its client thus the Company component model
should be extended with an ELP-Id of the client. This means that the Transport Company and
Company entities are equal.

During the execution of the order by another transport company it can add items to the
LocationMoment entity set as well as change the holder of a transportable. These changes form
updates on the progress of the order and the outsourcing company would also like to receive them.
A solution to distribute the updates on the progress to all the involved participants is to share the
data of a transportable, its LocationMoment items and the current Holder. This combination is now
referred to as 'shared transportable'. When one participant changes the shared transportable then
the shared transportable data is also updated for the other participants. Using shared
transportables, it is also possible to outsource an order multiple times where only the number of
participants sharing the transportable grows.

It is possible that a transport companies requires values for attributes of the CDM to be given or
values for attributes that are not part of the CDM. The next paragraph focuses on required
attributes as well as additional attributes that are needed by transport companies to execute an
order.

7.3.2 Multiple outsourcing
As an alternative of outsourcing to a single company, it is possible that the transport is outsourced
to multiple transport companies. In this case, equal to use case 3, Company A decides to place an
order at Company B to transport the goods from the client its warehouse. Company A also places
an order at Company C to transport the goods from the warehouse of company B to the final
location. Since the data of transportables is shared among the transport companies, the pick-up
and delivery locations of the transportables are not correct for every transport company. In case of
multiple outsourcing, company A includes instances of the TransportableTrack data model to the
orders placed at company B and company C. These instances describe the part of the transport
that has to be done by a specific transport company. This implies that they are different for
company B and C, but are both known by company A. The following figure illustrates multiple
outsourcing to describe the data components used, locations and the holders of the transportables.

ELP - Extendible Logistics Protocol 64 / 170 M. Snoek - TU/e

 functional requirements RQFuncInf7 and RQFuncTra3

Figure 7.8 – overview of transport executed by multiple companies

Data components of participants
Company A

● Order: transport goods from the original location (OL) to the final destination (FD) for client
C

● Transportable: described the goods and their OL and FD
● OutsourceTrack B: describes the part of the transport outsourced to company B
● OutsourceTrack C: described the part of the transport outsourced to company C

Company B
● Order: transport goods from the OL to the intermediate storage for company A
● Transportable: described the goods and their OL and FD
● TransportableTrack: describes the transport company B has to execute

Company C
● Analogue to company C

Locations and holders
The transportable has, assuming that different transportation means are used, five different
holders and three different locations during the transport track . The five holders and locations are:

1. The original location (1st location)
2. The transportation means between the OL and the intermediate
3. The intermediate storage (2nd location)
4. The transportation means between the intermediate storage and the FL
5. The final location (3rd location)

7.4 TransHolder: the holder that can be transported

7.4.1 Transholder functionality
The previous paragraphs described how outsourcing takes place when a transportable is
transported by one or more transport companies. Although this would be sufficient for general
outsourcing purposes, described in use case 1 to 4, it is not sufficient for use case 5. This is the
first use case where a transholder is introduced. A transholder can be seen as a long-lived
resource that is used to combine multiple transportables into one transportable. So, the
transportables are contained in the transholder. An example of a transholder, that is well-known, is
a pallet where boxes are stacked upon. The two main differences between a holder and a
transholder are the fact that the transholder is transported including an origin and a final location

ELP - Extendible Logistics Protocol 65 / 170 M. Snoek - TU/e

Full transport track (RT) – Company A
Transport lef t (RT) – Company B

Transport lef t (RT) – Company C

0% 100%
% Transport done (distance)

Original
location

Final
destination

% Transport
done (outsourcing)

Executes the TransportableTrack that
describes the transport f rom the original
location to the warehouse of company B. This
TransportableTrack is also described by an
equal OutsourceTrack of company A.

Executes the TransportableTrack that
describes the transport f rom the warehouse of
company B to the f inal destination. This
TransportableTrack is also described by an
equal OutsourceTrack of company A.

0%

100%

Intermediate
storage at
company B

and that a holder doesn't contain other transportables.

The transportables that are contained in a transholder can have different final locations and usually
have a partial track in common. The transport company that created the transholder, i.e. put the
boxes on the pallet, knows which transportables are contained in that transholder. After the
creation, the transholder can be seen as a transportable that is described by the Transportable
data model of the CDM.

As a transholder is in fact a new transportable, there arises a problem for the track and trace
functionality. Transport companies that only transport the transholder do not know about
transportables that are contained in the transholder. This means that these companies also don't
share the data of the transportables and thus can not update, for example, the holder and the
LocationMoment items. There are several solutions for this problem:

1. Ignore the problem and accept the missing track and trace information.
2. Provide the track and trace information about the transholder to the companies involved in

the transport of the transportables that are contained in the transholder.
3. Assume that the track and trace information about the transholder is an addition to that of

the transportables.

The first solution is not acceptable since one of the primary aspects of ELP is to provide good track
and trace functionality, see paragraph 4.3. The second solution can be acceptable and feasible,
but doesn't take separation of concerns in consideration. There is no need for the client to know
that one or more of its transportables are contained in a transholder. The third solution doesn't
work, because the companies that are involved in the transport of the transholder do not know
about the transportables. However, it is possible to create a feasible solution by combining solution
two and three. The key role in this combination is performed by the transport company that created
the transholder. This company has up-to-date information about the transholder as well as the
transportables. The solution would be that if changes are made to the transholder then this
company makes the same changes to the transportables. For example, when the holder of the
transholder changes to warehouse A then the holder of all the transportables also changes to
warehouse A. Appendix F consists of a set of rules for the administration of holders, transholders
and transportables that have to be obliged by transport companies to guarantee up-to-date track
and trace information.

The following figure illustrates a transport process in which a transholder is involved. The actual
transport can be extracted from the cyan boxes from top to bottom. The cyan boxes on the left
describe the transport of the transportable when it is not part of a transholder and these on the
right describe the transport when it is. The red boxes illustrate the transitions of containment of the
transportable. The progress information that company A sends to the customer is left out for
simplicity, but the aspect that it has this information available can be derived from the blue
rhombuses that represent the exchange of information about the 'shared transportables'.

ELP - Extendible Logistics Protocol 66 / 170 M. Snoek - TU/e

 functional requirements RQFuncInf8 and RQFuncTra2

Figure 7.9 – outsourcing using transholders

ELP - Extendible Logistics Protocol 67 / 170 M. Snoek - TU/e

Transportable-1Customer
(Origin)

Order to transport
Transp.-1 f rom

Origin to
Destination.

Company A
transports Transp.-1

f rom Origin to
Company A.

Warehouse of
transport

company A

Warehouse of
transport

company A
Transportable-1

Tr. Company A

Transp.-1 is placed upon
(holder) pallet-1. Pallet-1 is

transportable-2.

Exchange
information about
Transportable-1

Exchange
information about
Transportable-2

Order to transport
Transp.-1 f rom

Warehouse-C to
Destination.

Transportable-2
= pallet-1 which

contains transp-1

Tr. Company A

Order to transport Transp.-
2 f rom Warehouse-A to

Warehouse-C.

Company B transports
Transp.-2 f rom Company

A to Company B.

Warehouse of
transport

company B

Tr. Company B

Transportable-2
= pallet-1 and

contains transp-1

Transportable-2
= pallet-1 and

contains transp-1

Company B
transports Transp.-2
f rom Company B to

Company C.

Warehouse of
transport

company C

Warehouse of
transport

company C

Transportable-1
Transp.-1 is taken f rom

pallet-1. Pallet-1 is
transportable-2.

Tr. Company C

Order to transport
Transp.-1 f rom

Origin to
Destination.

Company B transports
Transp.-2 f rom
Company B to
Company C.

Transportable-1Destination

Tr. Company C

C ompany

Warehouse

Transport Process

O rdering Process

Transholder involv ement

Transportable

Transholder

Information
exchange
mechanism

Legend

7.5 Summary

The Common Data Model, abbreviated as CDM, provides a model that can be used to describe
clients and orders in such a way that existing information systems are able to map their existing
proprietary model to the CDM. The CDM introduces the entities Transportable and Holder to model
goods, including their specifications and addressing, and resources that are currently contain them
such as warehouses and vehicles. As an extension to these entities, the TransHolder entity can be
used to model the situation where goods are contained in other long-lived resources such as sea
containers. Due to required or addition proprietary attributes by existing information systems, a way
to extend the CDM is given. Finally, the CDM is extended with entities to support situations where
multiple transportation companies only execute a part of the actual transport or outsource such a
part to another transport company. The addition CDM entities TransportableTrack,
TransportCompany, OutsourcedOrder and OutsourceTrack provide support for describing
information that is introduced when an order is outsourced. Outsourcing introduces the exchange
of information to provide accurate information what can be described using an information
exchange overview with rules that have be followed. To be able to keep track of the goods and to
exchange this information, the entity LocationMoment is added to the CDM that describes the
location of goods during the execution of the order.

ELP - Extendible Logistics Protocol 68 / 170 M. Snoek - TU/e

8 Communication between companies

8.1 Introduction to communication

The previous chapters described the updates of the shared data of a transportable by two or more
companies. To provide any update there has to be a way to communicate between those
companies. Paragraph 4.2 indicated that private communication lines cannot be excluded. It
speaks for itself that the Internet is currently the most used means of communication between
electronic devices such as personal computers. It can therefore easily be assumed that the
Internet is used for communication between companies that share data of a transportable.
However, this ignores the existence of private networks that larger international transport
companies can have and it cannot be excluded that companies exist that have the ability for digital
communication, without using the Internet. Paragraph 4.2 also mentioned different transport
method when the Internet is actually used what indicates that the assumption of using the Internet
is not precise enough. Because of these reasons, this chapter focuses on the creation of
communication networks that can easily be represented by the Internet, but don't take the
everybody-can-talk-to-everybody property, always-connected property and a predefined transport
method for granted. Instead, the actual means of communication is left out of scope and a
communication line between two companies indicates that, using an arbitrary means of
communication and transport method, it is possible to send each other messages (full duplex).

In this chapter are companies replaced by nodes in a network that have to be able to
communicate. When two companies are able to communicate directly then they are connected with
an edge. The communication network between the nodes can be like the order scheme. This
results in a tree (or acyclic graph) with nodes connected with communication channels. The
communication networks of use case 3 and 4 are illustrated below.

Figures 8.1.a-b - on the left (8.1.a): use case 3; on the right (8.1.b): use case 4

The communication channels provide a way to send messages from one node to another. A
communication channel must always be bidirectional to enable the nodes to 'talk' to each other and
therefore the edges are undirected. A communication network with a topology comparable to that
of the order scheme guarantees that a path, and therefore a (indirect) communication channel,
exists from one node to another. However, the topology of the communication network doesn't
necessarily need to be equal to the order scheme. The first part of this chapter focuses on several
alternatives of creating a communication network.

The outsourcing of an order doesn't only consist of placing an order at another transport company.
It also consists of sending progress information to the transport company that outsourced the order
described by the “execute order” sub-process in paragraph 6.3.3. The previous chapter introduced
information updates about data that is required by the nodes. One of the purposes of the updates
is that a transport company is able to react on events that can change its part of the transport. The
second part of this chapter focuses on updating data at other nodes within the communication
network.

ELP - Extendible Logistics Protocol 69 / 170 M. Snoek - TU/e

A

B C

A

B C

D E

Q501
Q502

Reasons for communication
The introduction described a communication network between nodes that belong to an outsourcing
scenario. The dotted arrows between the two pools described in paragraph 6.1 provide three
reasons for communication, namely:

1. Requesting and providing quotations
2. Placing orders by accepting quotations
3. Sending and receiving progress information

It has to be pointed out that these reasons also apply to communication between a client and a
transport company and not just for the situation where one transport company outsources an order
to another. The first two reasons for communication imply that communication is needed by at least
two participants, namely the node that places (or outsources) the order, i.e. the parent, and the
node that accepts the order, i.e. the child. This applies to use case 1 and 2. However, when more
participants are involved, the question rises which nodes should be able to communicate with each
other. There are two situations where more than one node is accepting an (partially) outsourced
order.

The reasons for communication deliberately don't include the creation, changing and cancellation
of reservations and orders, because these belong to functional requirements RQFuncBus4 and
RQFuncBus6 that have a low priority. The reasons for communication can be extended if these
requirements are considered by research or development in the future.

Multiple outsourcing with a single level order scheme
The first situation consists of a transport company that outsources an order to two or more
companies and where the order scheme has a single level of outsourcing; this applies to use case
3. The first two reasons for communication define that a communication channel has to exist
between the order placing and accepting node. When assumed that direct communication
channels are possible then the topology of the network is equal to the order scheme except that
the arrows represent bidirectional communication channels. The third reason for communication is
also accomplished by this topology, because when every node is sending progress messages to
its parent node then every node has the information needed to be accountable. This corresponds
to the second goal of the use cases, see paragraph 5.1.

The topology equal to the order scheme implies that company B and C of use case 3 do not
communicate or at least not directly. Since these two companies do not do any business together
this should not be a problem for communication reason 1 and 2. Reason 3 however introduces a
practical reason why company C would like to communicate with company B. This reason is an
event during the transportation process of company B that has an effect on the transportation
process, such as the transportation- and resource schedules, of company C. This implies that
company C likes to receive the progress messages of company B, but not vice-versa, and
therefore (in)direct communication between them can prevent transportation failures.

Multiple outsourcing with a multilevel order scheme
The second situation consists of more than one transport company that outsources (a part of) its
orders; this applies to use case 4 and 5. The communication requirements for placing and
accepting orders are equal to those described in the previous paragraphs except that more
communication channels exist on multiple levels. However, a difference can exist in the need to
receive progress messages. For example, when a delay occurs at the transportation process of
company D then this doesn't necessarily imply that the transport schedule of company C changes
but it can also not be denied. The practical reason for communication between company B and C
from use case 3 suffers the same insecureness although on a smaller scale.

ELP - Extendible Logistics Protocol 70 / 170 M. Snoek - TU/e

In general, independent whether an event influences some schedule or not, it can be concluded
that the progress messages have more functionality then just providing information to a parent
node to be held accountable. The progress messages also provide useful information for any
downstream transport company presented in the flow of goods schemes of the use cases.

8.2 Communication requirements
The reasons for communication in the previous paragraph describe requirements of the
communication network between nodes. These and additional aspects can be summarized in a list
of requirements of the communication network.

Communication channels between order placing/accepting nodes
To place an order there has to be a communication channel between the node, that can also be a
client, that is outsourcing (a part of) an order and the node that could accept the order. This
communication channel is also needed to request and provide quotations as well as send progress
messages due to responsibility. [RQP001]

Knowledge about downstream nodes
Progress message provide useful information for downstream nodes in the flow of goods scheme.
Nodes need to know what nodes downstream in this scheme to be able to send progress
messages to them. [RQP002]

Communication channels between succeeding nodes
The previous paragraph described the need for progress messages to be received by downstream
nodes within the flow of goods scheme of the use cases. To be able to receive these progress
messages there has to be a (indirect) communication channel between the sender of the progress
message and the transport companies that are downstream in the flow of goods scheme.
[RQP003]

Multiple communication channels per node
A transport company, represented by a node, has to be able to communicate with more than one
node in parallel. This is needed because it can request quotations from many nodes in parallel as
described by the business process in paragraph 6.2.1. [RQP004]

Real-time addition and removal of nodes
A transport company outsourcing an order increases the number of companies within the order
scheme. Requirement RQP003 introduced the need for a communication channel between a new
company and those earlier in the flow of goods scheme when it is added at the end of the flow of
goods scheme. The added company has to receive the the progress messages sent by a company
earlier in the flow of goods scheme and thus there has to be an administration consisting of the
nodes that require to receive progress messages. [RQP005]

Support for nodes being unavailable
Due to, for example, communication problems, it is possible that a node is unavailable for some
time. The network of nodes can consist of mobile nodes that are not able to communicate for some
time. However, it is taken for granted that all nodes are available 50% of the time. [RQP006]

8.3 Communication network topologies
To describe several alternatives for the communication network topology, use case 4 is used as a
reference. This use case is chosen because it contains multiple companies outsourcing orders on
multiple levels. Topologies that suit this use case also suit less complex ones since these are only
simplifications of it.

ELP - Extendible Logistics Protocol 71 / 170 M. Snoek - TU/e

Q301
Q503

The order schemes of use cases can be drawn using trees where nodes represent companies and
edges represent communication lines. To simplify RQP003 to this tree, it is assumed that all the
nodes are presented in an order from left to right and that the nodes drawn using a bold circle
form the actual transport process described by the flow of goods scheme. This means that in use
case 4 the first company actually executing a transport is company D followed by E and C (all
drawn using bold circles). Also, it is possible that transportation takes place in parallel using
multiple vehicles or multiple outsourcing. An example of the latter is such a big amount of boxes
that the order is partially outsourced to one transport company and partially to another. It is
assumed that, if this transportation track is the final transportation track, it is accepted by the
receiver to receive the goods by multiple deliveries. Parallel outsourcing is drawn in the trees by
two bold nodes that appear on the same vertical position. The following figure illustrates the tree of
use case 4 with communication lines and it is extended with company F to include parallelism.

Figure 8.2 – parallel transportation

Chapter 7 described that every transportable of an order has its own transportation track and
therefore it is possible for every transportable to be transported from its original location to its final
destination using different transport companies and/or vehicles and/or routes; even in parallel. It is
not excluded that one transport company appears more than once when it accepted multiple
outsourced orders that all represent a part of the complete transport.

Requirements RQP001 and RQP003 describe communication channels between:
● Nodes that have an order placement relation
● Nodes that send progress messages that need to be received by downstream nodes within

the flow of goods scheme

Using RQP001 and RQP003 several alternatives can be used for the communication network.
These alternatives are distinguished by direct/indirect communication channels and the
introduction of additional nodes that only function as message pass-through. An indirect
communication channel is defined as a communication channel from one node to another where
one or more nodes, that pass through messages, exist between them. It has to be pointed that
when nodes are mentioned, these exist at the application layer of the OSI reference model
[Tanenbaum]. This implies that when two nodes have a direct communication channel it doesn't
mean that the communication channel is also direct on the transport layer.

ELP - Extendible Logistics Protocol 72 / 170 M. Snoek - TU/e

A

B C

D E

F

Execution order

Several resources, such as [TanenbaumProxy], [WikiProxy], [WikiGateway] and [PCMagGateway]
do not fully agree on the definitions of proxy, gateway and router. Therefore the following specific
definitions are used:

Term Definition
Proxy-node A node that is not the sender nor intended receiver of a message and passes

through messages it received, either with or without routing functionality (see
Router).

Router A proxy-node with three or more communication channels and some kind of
intelligence to decide to which communication channel it will forward a received
message.

The communication network, where the client is absent for simplicity, always starts with a single
node that is the root of the tree. When (partial) orders are outsources then new nodes are added to
the network, according to RQP005. The topology of the communication network is determined by
the building steps that describe what communication channels are added when an additional node
is added to the network. These building steps are redone every time a node is added. If a
communication channel between two nodes already exists then this remains the only
communication channel.

The following elements are used for a graphical representation of a topology:

Figure 8.3 – elements used within topology illustrations

Network topology approach 1: direct communication channels
The primary aspect of using direct communication channels is that all messages sent from one
node to another do not pass any other node. This paragraph describes two methods to acquire a
network topology using only direct communication channels. It is emphasized that these topologies
represent a network topology where the execution of transport can be derived from as described
by the previous paragraphs.

Figure 8.4 – topology 1a

ELP - Extendible Logistics Protocol 73 / 170 M. Snoek - TU/e

A

B C

D E

Node with identifier A

Node that executes a transport

Buffering special proxy-node

A

A

Node with identifier A

Communication channel as meant by RQP001
Communication channel as meant by RQP003
Communication channel (other)

Building steps for topology 1a:
1. Introduce a communication channel between every order placing/accepting pair of nodes

[RQFuncInf1]
2. Initiate a communication channel between the new bold node and other bold nodes by a

mechanism where the new bold node 'broadcasts' its appearance.
3. Every bold node that does not have a communication channel with the new bold node

creates one.

Building step 2 is in fact indirect communication between nodes, but is not considered as indirect
communication because the broadcast messages are used to build the network topology and not
for one or more of the the three reasons for communication.

An important aspect of this topology as well as some of the downstream (indirect communication)
topologies is business logic. Within the order tree, that is equal to figure 8.4 without the red edges,
the edges also represent a nodes responsibility. This means that a node from a business, i.e. non-
technology, point of view can only be held accountable by its parent. The direct communication
channels however introduce an additional task for a node that it is assumed to perform. This
additional task is to send progress messages to nodes it has no business relation with. For
example, node D is assumed to send progress messages to node C as addition to those to node
B. The progress messages to node D are related to RQP003 while the progress messages to node
B are related to RQP001. The latter are the only messages that are required from a business point
of view. In short, within network topology 1a there is no supporting business obligation for node D
to send progress messages to node C.

From the previous paragraph two questions can be asked, namely:
● A node is not obliged to send progress messages to nodes that it doesn't do business with

according to the order tree. Is there a way to introduce this obligation?
● Is an obligation to send progress messages to non-business participant acceptable in

practice?

The first question can be answered positively, namely by introducing an additional part to the legal
agreement between an outsourcing the order accepting participant. This part includes the
obligation that every node has to forward broadcast messages as well as creating communication
channels if needed. However, the answer to the second question can make the answer to the first
question worthless. This question cannot be answered at this point although it can be assumed
that any technology that supports (current) business processes will be accepted more easily. This
implies that a technology that supports the obligations according to the order tree is an advantage.
If a network topology has this advantage then it is entitled as ' it follows the order scheme'.

Advantages of topology 1a:
● No routing mechanism for progress messages required
● No proxy-node(s) that can fail
● The distance between two nodes is O(1)

Disadvantage of this topology:
● The red communication channels already exist indirectly. Additional communication

channels require more resources.
● It has to be possible to create direct communication channels between all nodes.
● Bold nodes have to keep an administration of nodes they have to send progress messages

to. This administration has to be updated when a bold node is added or removed.
● (Confidential) business process information is published. For example, node A might not

like that node D has knowledge about node C as part of the transportation process due to
competition.

● Coordination of the creation of new communication channels is complex because many
nodes, including ones that do not become a part of the channel, are involved. For example,

ELP - Extendible Logistics Protocol 74 / 170 M. Snoek - TU/e

Q004

Q107

A has to send a message to B that it added C. Now B has to send a message to its children
that C is added and that, if one of them is a leaf, it has to establish a communication link to
C, et cetera. This is an example of a possible broadcast mechanism.

The building steps of topology 1a can be rewritten to one more general rule (1b), namely:
1. Introduce a communication channel between every new node and all existing nodes,

regardless whether a node is bold or not. This is also done using a broadcast mechanism.

The result of network topology 1b is a complete graph with many unused communication channels,
because they are not needed according to RQP001 and RQP003. The number of communication
channels in this network topology grows quadratically (O(n2)), namely n(n-1)/2 where n is the
number of nodes.

Network topology approach 2: indirect communication channels
The primary aspects of indirect communication channels is that, as opposite to direct
communication channels, messages, as meant by the reasons for communication, can pass other
nodes that are not the sender or intended receiver. If an indirect communication channel between
two nodes already exists then there is no need to introduce an additional communication channel.
The following figure illustrates several approaches to create a network topology for indirect
communication.

Figures 8.5.a-c – topology 2a (8.5.a), topology 2b (8.5.b) and topology 2c (8.5.c)

Building steps for topology 2a:
1. Introduce a communication channel between every order placing/accepting pair of nodes

[RQP001]

Building steps for topology 2b:
1. Introduce a single communication communication channel when a node is added to the

order tree. This communication channel is created in the network topology between the
node added to the order tree and the root of the network topology. If the outsourcing node
is the root of the order tree, then introduce a communication channel between the root of
the network topology and the added node.

Building steps for topology 2c:
1. Introduce a single communication communication channel when a node is added to the

order tree as follows. If node A has no children in the order tree and it outsources (a part of)
its order to node B then this communication channel is created in the network topology
between A and B. Node A marks B as its network topology extension node.

2. If node A already has children in the order tree and it outsources another part of its order to
node C then a communication channel is created in the network topology between node C
and the network topology extension node. Now node C is marked as network topology
extension node instead of node B.

ELP - Extendible Logistics Protocol 75 / 170 M. Snoek - TU/e

A

B C

D E

A

B C

D E

A

B C

D E

The primary aspects of network topology 2a and 2b is that 2a results in a topology equal to the
order tree while 2b results in a star topology with the root of the order tree as central node.
Topology 2c has as primary aspect that every node has a maximum of three communication
channels, namely one to its parent (A-B) and/or one to its (older) 'brother' (B-C) and/or one to its
first child (B-D).

Advantages of topology 2a:
● Straightforward introduction of communication channels, only two nodes are involved.
● It follows the order scheme.
● No publishing of (confidential) business process information. Two connected nodes do not

have confidential information to each other. A node only sends progress messages to
participants it is doing business with. If a node receives a progress message and it is also
doing business with other participants then it can send a (new) progress message to nodes
representing these participants. In short, a progress message only travels one single
communication channel and thus no proxy-nodes exist.

Disadvantages of topology 2a:
● The distance between a sender of a progress message and a receiver using it is O(n).
● The higher the distance, the higher the chance of a failing node, e.g. unreachable.

Advantages of topology 2b:
● Mediocre complexity when introducing new communication channels, a maximum of three

nodes can be involved. The three nodes are the outsourcing node, the accepting node and
the root of the network topology.

● The distance between two nodes is O(1).
● The routing mechanism needed by the root is trivial.

Disadvantages of topology 2b:
● A single point of failure (the root).
● Use of resources is focused on one node.
● (Confidential) business process information is published (although limited). The root and

only the root, can receive confidential business process information of other nodes.

Advantages of topology 2c:
● Limited number of communication channels per node (resources).
● Mediocre complexity when introducing new communication channels, a maximum of three

nodes can be involved.

Disadvantages of topology 2c:
● The distance between two nodes is O(n).
● A routing mechanism is needed.
● (Confidential) business process information is published. For example, B receives progress

messages from C that it has to pass through to A.

Network topology approach 3: introduction of special nodes
Instead of only introducing communication channels between nodes that represent companies it is
also possible to introduce additional nodes that only function as special kind of proxy-node, called
special-node. Special-nodes appear in the network topology, but not in the order tree. One of the
properties of a special-node is that it can have a higher availability percentage than mentioned for
other nodes, see RQP006. A special-node can also act as a buffer within a normal communication
channel and can have a positive influence on the number of successful delivered messages. This
can especially help when mobile nodes exist in the network that are assumed to have less reliable
connectivity. All messages sent to the mobile device can be stored at the special-node and are

ELP - Extendible Logistics Protocol 76 / 170 M. Snoek - TU/e

Q301

Q508

retrieved when a connection to the special-node is made.

Another property of a special-node is that it can create a more confidential communication network.
One assumption for this has to be made, namely that the special-node is a trusted third party for all
the nodes involved. The special-node can act as a pass trough node for all messages and make
the promise that it doesn't read any of them.
Since a special-node is always in between two or more nodes it is not possible to create a network
topology with only direct communication channels between the (non proxy-node) nodes.
Topologies that can be built are variations of those of approach 2. The following two figures
represent network topology 2a and 2b with a special-node acting as buffer and trusted third party
respectively:

Figures 8.6.a-b – topology 3a with a buffer special-node (8.6.a), topology 3b with a trusted special-node
(8.6.b)

Topology 3a is equal to topology 2a except that node E now is a mobile node that communicates
through a buffer. Messages sent to node E are temperately stored at the buffer and requested by
node E when it has connectivity. Messages sent by node E also pass the buffer that takes care of
delivering them at the next node, i.e. node B in this case.

Every node can be replaced by a buffering special-node together with the replaced node although
this can have an undesired delaying effect on the communication. A buffering special-node
therefore always acts as a buffer for only one node without children. The advantage of the
buffering special-node is that it improves the communication with mobile nodes. The forwarding of
messages is discussed later in this chapter.

Topology 3b is a modification of topology 2b where the trusted special-node takes care of the
delivery of messages at all other nodes. Since this special-node acts as a trusted party, all the
other nodes assume that the special-node handles the message as confidential information. The
buffering special-node of topology 3a can also act as a trusted special-node to ensure that
messages from/to node E are not read.

ELP - Extendible Logistics Protocol 77 / 170 M. Snoek - TU/e

A A

B C B

C

D

E

D

E

Q508

The properties of approach 1, 2 and 3 are summarized in the following table:

Property / Topology 1a 1b 2a 2b 2c 3a 3b
Only direct communication* - - - - -

Unused communication channels* - - - - - -

Complexity of adding nodes* ■■■ ■■■ ■ ■■ ■■ ■ ■■

Distance between communicating nodes** O(1) O(1) O(n) O(1) O(n) O(n) O(1)
Complexity of routing* - - - ■ ■■ - ■

Single point of failure* - - - - -

Publishing confidential information* - - - -

Follows the order scheme*/*** - - - - -

* - = Absent;- Present; ■ - = Straightforward; ■■ - Mediocre; ■■■ - Complex
** Big O notation
*** Nodes only communicate with other nodes that are known from placing/receiving the order

Table 8.1 – properties of topologies 1, 2 and 3

Table 8.1 summarizes that network topologies 2b, 2c and 3a publish confidential information. This
property requires some additional attention, because it is not a technological property that a
transport company can consider as a problem of its technology partner (software company).
Because competitors within the transportation industry can abuse it, it can be a barrier for these
topologies to be accepted in practice. A solution for this problem is to introduce encryption using an
asynchronous encryption algorithm. However, preventing confidential information from being
published by using a specific topology is a preferred solution, because it is easier to implement and
requires less resources and administration.

8.4 Message routing and forwarding
The previous paragraph mentioned the routing of messages through the network topology when a
sender and a receiver are not connected by a single communication channel. This part of the
chapter focuses on some basic principles of routing, well-known routing methods and applying
them on the network topologies.

The basic problem of routing is how to make the decision on which output line an incoming packet
should be transmitted [Doyle] where lines and packets are equivalents of communication channels
and messages within this document. The routing problem occurs when a collection of nodes -or
subnets within routing documentation- is connected and there exists at least one path between
every two nodes [Caldwell].

There exist many methods for routing such as flooding, distance-vector routing, link state routing,
hierarchical routing and multidestination routing that are described by [Doyle] and in more detail by
[Tanenbaum]. The goal of these methods is to deliver a message at the intended receiver, but they
all have certain properties that makes them appropriate for specific situations. This paragraph only
describes the main aspects of several route methods, but more detailed description are given in
appendix G.

Flooding
The main aspects of the flooding method is that if a node receives a message, it is forwarded to
every other node it can directly communicate with unless this node receiving the message is the
intended receiver. It supports a technology to prevent endless forwarding. This method guarantees

ELP - Extendible Logistics Protocol 78 / 170 M. Snoek - TU/e

Q007
Q508

that the shortest path is used and a high chance of delivery, but wastes a lot of bandwidth.

Distance-vector routing
The main aspect of the distance-vector routing method is that every node constructs a table with a
'distance' to every other node where a node can appear twice (with possible different distances)
when there exist multiple routes. It takes some time for every node to construct or alter a table
containing every node in the network. Every record in the table includes which communication
channel has to be used to send a message to the node of that record. This method doesn't waste a
lot of bandwidth and guarantees that the shortest path is used, but doesn't work very well when
nodes fail because of the time needed to reconstruct the distance table using alternative routes.

Link state routing
The routing method is a combination of the flooding and distance-vector routing methods. It uses
flooding the spread the information required to construct the distance-vector routing table. This is a
trade off between wasting bandwidth and quickly (re)building the routing table. The latter makes it
better suitable for situations where a node fails solving this disadvantage of the distance-vector
routing method.

Hierarchical routing
This routing method can be put on top of the two previous routing methods when the network
consists of many nodes. It splits the network into several sections where the distance-vector table
of each node only contains information about nodes in its section what saves resources.
Additionally, every section has an 'exit'/'entry' node that connects the sections together. If an
intended receiver is not in in a section then the message is sent to the exit/entry node to forward it
to a correct other section. The slightly longer paths and heavy traffic load at the exit/entry node are
disadvantages.

Multidestination routing
This routing method is an extension to existing routing methods by introducing functionality to let a
single message contain multiple receivers. If a single message frequently has to be send to more
than one other node then this routing method decreases the total amount of messages sent
(heavily). Together with another route method that doesn't waste bandwidth, it facilitates a network
with as low bandwidth usage as possible.

Consequences of the network topologies
Before being able to take a look at routing methods suitable for the different topologies, one
important aspect has to be pointed out. The described routing methods all assume that a network
exists of many communication channels that usually form more than one path from one node to
another. However, all the topologies mentioned only have one path from one node to another
because they are all trees. This has the following effects on the described routing methods:

Flooding: no cycles exist and thus it is not possible to receive a message twice. The technology to
stop the message from being flooded is therefore not needed, because it will stop at all the leafs of
the tree. There exists only one path between two nodes and so the the advantage of a high chance
of delivery be ignored.

Distance-vector routing: the knowledge about the distance to all nodes using a specific
communication channel makes it possible to create a so called Sink Tree with shortest paths from
one node to every other node. The network topology (a tree) created by the building steps is
therefore automatically the Sink Tree of all nodes. With no alternative routes available, the 'node
failure' problem doesn't exist.

Link state routing: the effects of the previous two routing methods also applies here. The more
detailed description in appendix G mentions the problem of aging. This problem doesn't exist,
because there exists no alternative paths and thus will the flooded routing information after a

ELP - Extendible Logistics Protocol 79 / 170 M. Snoek - TU/e

reboot be equal to that before the reboot.

Hierarchical routing: the effects of the previous routing methods also apply here. One could
question whether this method is of any use in practice, because very large network of nodes
probably don't exist when it comes to outsourcing.

Multidestination routing: there is no effect on this routing method. It can be an (valuable) addition to
the previous three routing methods.

8.4.1 Routing within network topologies
The previous paragraph described several routing methods that can be used to deliver messages
at their intended receiver. Now it is possible to take a look at the network topologies and their most
suitable routing method.

Extending topology 1a, 1b and 2a with routing
Topologies 1a, 1b and 2a don't need any routing method, because they only use direct
communication channels. The first two topologies have a direct communication channel to every
node they have to send progress message to while the third topology only has communication
between parent-child pairs that are always connected due to the order placing-accepting
relationship.

Extending topology 2b with routing
Topology 2b is a star network with the root as central node. This implies that the maximum number
of communication channels a message has to travel is limited to 2, namely from the sender to root
and from the root to the destination. The only node in this network topology that has to route
messages is the root.

There is only one routing method that is really suitable for this topology, namely distance-vector
routing. This method guarantees the (trivial) shortest path and wastes no resources. Although
flooding is easy to implement and will work, it wastes a lot of resources that is clearly worthless.
Link state and hierarchical routing are not suitable because only one routing node exists.

Extending topology 2c with routing
This network topology focuses on limiting the number of communication channels of every node to
a maximum of three. The characteristic of this topology is that it creates relatively long chains of
nodes wherein a node can only route a message to its only other communication channel. This
implies that the flooding method doesn't necessarily wastes as much resources as topology 2b
does, because a destination can be reached before it is flooded to the end of the string. This
makes flooding a suitable routing method for this topology although wasting of resources still
occurs.

Distance-vector is a suitable routing method, because it guarantees the shortest path. It is more
suitable then link state routing, because no alternative paths exist while it uses more resources
than distance-vector routing. Hierarchical routing can not create longer paths, but is less suitable
due to the practical aspect.

Extending topology 3a and 3b with routing
Topology 3a and 3b differ from 2a and 2c in the addition of a buffering proxy-node and a trusted
proxy-node. A buffering node does not influence any routing method described, because it only
acts as a (more reliable) replacement for the original node. This means that the buffering proxy-
node takes over the routing of the node it replaces and that this replaced node doesn't need
routing functionality. This is an advantage because messages that pass the buffering node do not
have to wait until the mobile node has connectivity. Apart from a buffering node that doesn't

ELP - Extendible Logistics Protocol 80 / 170 M. Snoek - TU/e

influence a routing method, topology 3a doesn't have any routing at all.

The trusted proxy-node fulfills the same role as the root node in topology 2b. This implies that the
trusted proxy-node is the one that routes the messages between all nodes and adds the guarantee
that it doesn't read the contents of the message. The flooding routing method is not suitable
anymore, because messages are delivered at all nodes, including those that are not trusted.

All topologies have one ore more suitable routing method to provide the functionality for
requirements RQP001, RQP003 and RQP005. The topologies together with one of the routing
methods create a communication networks that can be used to send progress message from one
node to another and is described in the next part.

8.4.2 Progress messages to downstream nodes
Requirement RQP002 mentions the ability for a node to know the nodes that it has to send
progress messages to. This collection of nodes can only be derived from the flow of goods
scheme. Unfortunately, nodes only know their parent and their child node(s), because these are
the nodes where they placed or received their order from. Even in topologies that don't follow the
order tree, such as 2b and 3c, a node only has a communication channel with another node of
which it doesn't know its role.

An important aspect in sending progress messages is the limited knowledge of nodes about the
other nodes in the order tree. A part of knowledge that every node has, is the collection of children
it outsourced (a part of) the order to. Of course it is possible that a node does not outsource. This
knowledge can be used by every node to create an execution order on the children responsible for
a part of its transportation order as well as its own transport (if it does any). For example, in use
case 4 company A knows that B and C are both responsible for a part of the transportation where
B appears before C in the execution. A doesn't know whether B or C also outsourced a part of their
order, but it does know that if this is the case then the children of B appear before C. This implies
that progress messages created by nodes in the C-subtree are not needed by the nodes of the B-
subtree. However, they are needed vise versa. From this it can be concluded that nodes of the C-
subtree would like receive progress messages sent by nodes in the B-subtree.

The following figure illustrates the execution order of nodes in the order tree of use case 4 where
node B is explicitly extended with executing a part of the transport itself between that of node D
and E. The execution order is indicated with blue numbers for every node.

Figure 8.7 – execution order within altered use case 4

The question that needs to be answered is: what algorithms can take care of delivering progress
messages at specific (interested/intended) nodes by using the limited knowledge of a node and
using the properties of a network topology?

ELP - Extendible Logistics Protocol 81 / 170 M. Snoek - TU/e

A

CB

D E
Transport

1 2

1 3
2

Q004
Q406a

First, the network topologies can be categorized into two groups:

Topology group one: the topologies in this group follow the order scheme (2a and 3a). This group
is referred to as the first group.
Topology group two: the topologies in this group don't follow the order scheme (all except 2a and
3a). This group is referred to as the second group.

The first group is assumed to be more acceptable in practice, but the second group introduces
some technological advantages.

General aspects of both groups
The first general aspect is that a parent always receives progress messages from its children. A
parent can also send progress messages to its children.

The second general aspect is the limited knowledge about the order tree existing at a node. As
mentioned earlier in this paragraph, a node is able to put an order on the execution by its children
and itself. The progress messages that a node would like to receive are those sent by other nodes
'on the left' in the order tree as well as those of its children. To illustrate the addition of a node, use
case 4 is used before the addition of D and E:

Figure 8.8 – use case 4 before addition of D and E

Initially, A receives progress messages of B and C, because they have an outsourcing/accepting
relationship (RQP001) and it is possible for A to send progress messages to B and C. Starting from
this situation there are two possibilities where a new node can be added, namely as a child of B or
as a child of C. If the new node is added as child of B then all the nodes 'on the right' would like to
receive progress messages, but the only node that receives them is node B. If the new node is
added as child of C then the new node would like to receive progress messages from nodes 'on
the left', but the only node that receives progress messages is node C (coming from the new
node). The addition of a new node in both groups always has two goals, namely:

● The new node would like to get progress messages from nodes 'on the left'.
● Nodes 'on the right' would like to receive progress messages sent by the new node.

Specific aspects of the first group
The most distinguishing aspect of the first group is that a node only sends progress messages to
its parent and/or its children. In other words, a node only sends progress messages to nodes it is
directly connected to in the order tree (and thus in the network topology). If a parent, that receives
a progress message, also has a parent (multi level outsourcing) then this parent also has to send a
progress message, what is a new message and not a forward of the message received from the
child.

The following algorithm or rules take care of the sending and receiving or progress messages.

● A new child that is added to the order tree doesn't send any 'announcement' message
because its parent already knows about its existence and no other nodes need to know
about its existence.

ELP - Extendible Logistics Protocol 82 / 170 M. Snoek - TU/e

A

B C

Q406a
Q406b

● If a node creates a progress message then it sends a progress message to:
– its parent (if it exists) because it is obliged to
– its children (if they exist) of which it knows that they have a higher execution order ('on

the right')

● The created progress message now goes upwards (to the parent) and downwards (to the
children) in the order tree. Inverted, it is received from from beneath or from above. If a
progress message is received from beneath then the node sends a progress message to:
– its parent (if it exists) because it obliged to
– its children (if they exist) of which it knows that they have a higher execution order than

the one it received the progress message from ('on the right')

● If a progress message is received from above then a progress message is sent to all the
children (if they exist). The fact that the message was received from above indicates that
the receiver is 'on the right' of the sender. The sender doesn't even know whether the
receiver has children.

● This algorithm can be illustrated with use case 4. When node D sends a progress message
then the information travels upwards to the root. Node B and the root both send the
information to children 'on the right', which are E and B.

Specific aspects of the second group
If a node would like to receive the progress messages, a solution can be that it is able to take a
subscription on the progress messages sent by nodes that appear earlier in the flow of goods
scheme. This means that communication can appear directly between other nodes than just those
in the order outsourcing/accepting relationship. Two requirements to enable those subscriptions
are that a new node has to inform the others about its presence and that a node that receives the
announcement initiates the right actions to enable a subscription.

The first requirement involves two goals, namely get a subscription on the progress messages of
nodes appearing earlier in the flow of goods scheme as well as telling other nodes to take a
subscription on its progress messages if the appear later in the flow of goods scheme. The right
actions of the second requirement can be summarized as a set of rules that a node has to follow
when it receives an announcement. Before introducing these rules, the three kind of messages
required by the rules are introduced, namely:

● Announcement: telling receivers that it is part of the order tree and is executing a part of the
transport. The message contains the identifier of the new node. Announcement messages
are not addressed to a specific node.

● Subscription request: requesting a subscription to the progress messages of a specific
node. A subscription request is addressed to a single node.

● Subscription suggest: telling receivers that a new node announced itself and appears
earlier in the flow of goods scheme. The message contains the identifier of the new node.
Subscription suggest messages are not addressed to a specific node.

The following rules introduce an algorithm that takes care of the two goals, but first some
assumptions are made to simplify the algorithm and to ensure that all companies appearing in the
order tree can rely on the same expectations:

ELP - Extendible Logistics Protocol 83 / 170 M. Snoek - TU/e

● If a node receives a subscription request and it is performing a part of the transport itself
then the requesting node is added to the subscription table.

● A node that actually executes a transport sends progress messages to the subscribers of
its subscription table.

● Superfluous: all nodes obey the rules below.

Rule 1: introduction
Every new node that is going to execute a part of the transport has to introduce itself by sending
an announcement to its parent.

Rule 2: receiving an announcement from a child
If a node receives an announcement from a child then it knows that a node is added somewhere in
the subtree below. The receiving node has to:

1. Forward the announcement to its parent (if it has any)
2. Forward the announcement to all of its children (if it has any) with a lower execution order

than the one it received the announcement from.
3. Send a subscription suggest to all of its children (if it has any) with a higher execution order

than the one it received the announcement from.
4. Add the announcing node to its subscription table if it executes a part of transport itself with

a lower execution order.
5. Send a subscription request to the new node if it executes a part of transport itself with a

higher execution order.

Rule 3: receiving an announcement from a parent
If a node receives an announcement from a parent then it has to:

1. Forward the announcement to all of its children (if it has any).
2. Add the announcing node to its subscription table if it performs a part of the transport itself.

This is needed because the announcing node appears later in the flow of goods scheme
(derived from rule 2.2).

Rule 4: receiving a subscription suggest from a parent
If a node receives a subscription request from its parent then it knows that it appears later in the
flow of goods then the added node. Due to rule 2.3 a suggest is only sent by a parent to its
children (downwards in the order tree). The receiving node has to:

1. Forward the subscription suggest to all of its children (if it has any)
2. Send a subscription request to the sender if it executes a part of transport itself.

The rules are illustrated using the following complex order tree:

Figure 8.9 – subscription requests using the four rules

Node J is just added to the order tree. The blue edges indicate that an announcement has been

ELP - Extendible Logistics Protocol 84 / 170 M. Snoek - TU/e

A

B C

D E F G H

JI

sent from one node to another. The red edges indicate that a subscription suggest has been sent
from one node to another. A green node indicates that this node has added node J to its
subscription table. A purple node indicates that this node has sent a subscription request to node
J.

Due to rule 1, node J sends an announcement to node E. Next, after applying rule 2.1 two times,
the announcement is received by node B and A. It is also received by node D and I because of rule
2.2 and 3. In short, the first three rules take care of delivering the announcement at all nodes up to
and including the root (1 and 2.1) as well as to all the nodes 'on the left' (2.2 and 3.1). Now I
receives progress messages from all nodes on 'on the left' and those up to the root that execute a
part of the order before the new node (2.4, 2.5 and 3.2).

Rule 2.3 takes care of the first step of sending subscription suggestion messages to all the nodes
'on the right' and is applied by node B and A. Finally rule 4 takes care of forwarding the message to
the other nodes 'on the right' and requesting subscriptions (4 and 2.5).

In short, the algorithm splits the order tree into a blue subtree on the left of the root and into a red
subtree on the right of the root. The nodes of the red subtree added the new node to their
subscription tables. The nodes of the blue subtree sent a subscription request to the new node.
The nodes that appear on the path from the new node to the root (blue colored), and also perform
a part of the transport, are taken care of by rule 2.4 and 2.5.

8.5 Summary
This chapter describes three reasons why communication between participants is needed, namely
to get quotations, place orders and acquire progress information. A communication network
between the participants can be created based on three network topology approaches. These
three approaches distinguish their selves on using direct and indirect communication channels as
well as the requirement of special addition communication nodes that provide support for unreliable
connectivity and more secure communication. Some of the network topologies are suitable for
situations in which communication can only appear between an order placing/accepting pair of
nodes.

All communication network alternatives have a different score for the complexity of adding nodes,
the distance between nodes, the requirement of routing and the publishing of confidential
information. There exists a correlation between the complexity of adding nodes, the distance
between nodes and the requirement of routing functionality (of which several alternatives are
given). There also exists a (trivial) correlation between the property of direct communication and
the publishing of confidential information. None of the alternatives can be assumed to be a best
solution to create a communication network, because this depends to heavily on the importance of
one or more desired properties. However, all alternatives enable communication between all nodes
that would like to communicate because of the three reasons.

The third reason describes the need to send and receive progress information between nodes that
can appear before or behind each other in the flow of goods scheme. For every topology an
algorithm is given for a node to be able to know to which nodes it has to send progress information
to. This collection of nodes is referred to a as the nodes appearing in the progress information
subscription list.

Knowing that it is possible to create a communication network that is suitable for all three reason of
communication, it can be used as a communication layer that, in its turn, can be used by an
application that actually implements the the three reasons. The next chapter focuses on creating
an application that implements several business processes of chapter 6 using the CDM of chapter
7 and based on a communication network being available from this chapter.

ELP - Extendible Logistics Protocol 85 / 170 M. Snoek - TU/e

9 Exchanging progress information

The previous chapter describes three reasons why companies have to be able to communicate
with each other. This results in several options to create communication networks that can be
categorized into two groups, namely one that follows the order tree and one that doesn't. For both
groups, a communication network, based on one of the topologies of the previous chapter, is
assumed to exist.

The first two reasons only involve several messages between an order placing/accepting pair of
nodes of which the messages can easily be derived from an existing solution, for example
RosettaNet. Therefore, this chapter focuses primarily on the the third reason for communication,
i.e. sending and receiving progress information, with the differences between the two groups in
mind. This chapter combines business process 'Execute order' (chapter 6) with the Common Data
Model (chapter 7) having the assumed communication network.

After focusing on the exchange of progress messages, this chapter takes the growing and
shrinking of an order three into consideration. Next, a closer look is taken at specific rights that
companies need to have to alter information that is used by multiple companies. This subject has
already been mentioned within paragraph 6.5 as one of the aspects that should be considered
when business processes cross company borders.

9.1 CDM applied to outsourcing
Chapter 7 described a Common Data Model that can be used by transport companies to store
information about their transport processes. Another option is to create the possibility to translate
information to and from the CDM using an existing TMS. The previous paragraph mentioned two
reasons for sending progress messages, namely:

● To hold a company accountable
● To inform downstream companies about the transportation progress.

This paragraph focuses on the influence of the progress messages on data stored using the CDM.
First, the primary elements of the CDM are repeated to take a look at how orders are stored. This
is illustrated by figure 7.1 of paragraph 7.2.1. The main content of an order is given by
transportables that describe goods including their physical aspects, origin and final destination. For
example, an order can consist of three boxes that are described by three transportables. When the
transportables do not need to be transported from the origin to the final destination then the track
over which they have to be transported by the transport company is described by a
TransportableTrack that refers to a single transportable. This implies that when all three boxes of
the example need to be transported over the same track, there exist three TransportableTrack
items that refer to each transportable.

To keep track of the history of a transportable, i.e. to keep track of a box in the example, the CDM
contains the LocationMoment entity. Every instance of a LocationMoment refers to a single
transportable and includes information about the location where a transportable was at a certain
moment. Another entity, namely Holder, describes the long-lived resource or building in which a
transportable is contained, for example a sea container, vehicle or warehouse. A LocationMoment
instance can have a reference to a holder to give more information about the location. The
following figure illustrates an example of the contents of the CDM entities when an order is
received to transport a single box. The details of the relations as well as the possible reference
from a LocationMoment to a Holder are left out for simplicity.

ELP - Extendible Logistics Protocol 86 / 170 M. Snoek - TU/e

Figure 9.1 – simplified CDM order representation

Figure 9.1 can be further simplified by leaving out the Client and Order entities, because the client
is trivial and this chapter assumes that only one order exists at each transport company accepting
the order. This implies that the transportable always has a reference to that single order. Another
assumption that is made, is that each order only consists of one transportable, because multiple
transportables only make figures and descriptions more complex, while all other details remain the
same.

The following figure displays figure 9.1 without the Client and Order entities as well as instances of
the entities using the following example:

● A box needs to be transported from ABC in the Netherlands to KLM in Belgium.
● Physical aspects are not part of the example for simplicity.
● A warehouse exists at the Dutch/Belgium border and is called NLBE.

Figure 9.2 – more simplified CDM order representation

Paragraph 7.3 describes additions to the CDM to enable it for outsourcing. If a transport company
outsources (a part of) an order then the CDM provides OutsourceTrack entities for the
administration of outsourcing. The transport company in the example (A) places an order at two
other companies (B and C) that both take care of a part of the total transport. This implies that
company A uses two instances of OutsourceTrack and that company B and C both have an
instance of TransportableTrack to describe their track of the total transport. The track of company
B is from ABC to NLBE-storage and that of company C from NLBE-storage to KLM. To be able to
put all the entities in one figure, the relations are left out and the added arrows represent
outsourcing. This results in an order tree with CDM information where companies are represented
by nodes.

ELP - Extendible Logistics Protocol 87 / 170 M. Snoek - TU/e

Transportable
- Origin

- Final Destination
- Next Location

TransportableTrack
- Specific Track

data for this company

LocationMoment
- List of items

about the location of
the transportable at

a certain moment

Holder
- Information about
the current location
of the transportable

Client
(detailed data of

the client)

Order
(detailed data of

the order)

Entity Entity of the CDM

Reference to

Transportable
- Origin: ABC

- Final Dest: KLM
- Next Loc: N/A

LocationMoment
N/A

TransportableTrack
N/A

Holder
Client-mailroom

Legend

Figure 9.3 – CDM integrated into the order tree

The figure above displays the nodes and their data using the CDM after node A outsourced its
order partially to node B and C. Several properties can be derived from figure 9.3, namely:

● The data of a transportable is equal for all nodes
● The OutsourceTrack instances have an equality with the TransportableTrack instances of

the companies outsourced to.
● None of the companies has instances for LocationMoment, because the transport hasn't

started yet.
● Only company A knows the holder.

All involved companies have the data required to execute their part of the transport and if no
problems occur during the execution then the order will be completed successfully with both nodes
B and C having Proofs of Execution. However, when these nodes do not inform others about the
transportation progress and/or possible delays one cannot be held responsible or react to possible
delays. These problems are exactly the two reasons why progress messages exist. The next
paragraphs focus on these two reasons and how the progress messages reflect on the CDM.

9.1.1 Progress messages and the CDM
First, the reason to hold a company accountable is reflected on the CDM to get a view on the
information changed or added when a progress message is received. To be able to do this, it has
to be defined what information is required in a progress message. In other words, what information
is required to hold a company responsible? Another question that can be asked is whether this
information is different within the two groups. The following information can be used to hold a
company responsible:

● The current location of the transportables. This information gives an answer to the clients'
question 'where are my goods?' and can be considered as basic Track&Trace information.

● The locations where the transportables have been in the past. This information can be used
to judge possible delays or other negative occurrences.

● The proof of execution information. This information contains a name, signature and time of
a sender of receiver at specific location.

This information enables a customer, whether it is a client or an outsourcing transport company, to
know the current and past locations of its goods as well as pick-up/delivery information. This
information is assumed to be enough to hold someone responsible in case something goes wrong.
Because sending progress information to a parent is obligatory in both groups, there is no

ELP - Extendible Logistics Protocol 88 / 170 M. Snoek - TU/e

Transportable
- Origin: ABC

- Final Dest: KLM
- Next Loc: N/A

LocationMoment
N/A

Holder
Client-mailroom

OutsourceTrack
ABC to NLBE

OutsourceTrack
NLBE to KLM

Transportable
- Origin: ABC

- Final Dest: KLM
- Next Loc: N/A

LocationMoment
N/A

Holder
Unknown

TransportableTrack
ABC to NLBE

TransportableTrack
NLBE to KLM

Transportable
- Origin: ABC

- Final Dest: KLM
- Next Loc: N/A

LocationMoment
N/A

Holder
Unknown

A

B B

Q004

difference between the group that follows the order scheme and the one that doesn't.

The three information elements mentioned are present within the CDM. The current location of the
transportables is represented by the holder that provides a location. The history of locations where
the transportable has been is provided by the LocationMoment items. This entity represents a
location, including the point in time, where a transportable has been. The proof of execution
attribute is available in both TransportableTrack and OutsourceTrack.

When a company is executing its part of the transport it can change the holder and/or its location
to store the current location. An item of LocationMoment is typically added when the holder
changes. The proof of execution can be registered by changing the attributes of
TransportableTrack. The task of the progress messages is now defined as taking care of updating
and/or adding the following information at a parent node:

● If a node changes the holder then this change has to be send and processed by the parent.
● If a node adds an item to LocationMoment then this item also has to be added to

LocationMoment by the parent.
● If a node completes a task and stores a proof of execution by changing the

TransportableTrack then the parent also has to make this change to its OutsourceTrack.

In short, it can be said that the data of Holder, LocationMoment and TransportableTrack /
OutsourceTrack has to be equal for both nodes. The data of the Transportable can be added to
this list to ensure that possible small changes to it, such as minor corrections, are also known by
both nodes. Updates and/or additions to the data can be send from one node to another using
progress messages, but this introduces the following problems:

● If a node sends a progress message to another node then how does this sending node
know that it has been received and processed successfully by the intended receiver? This
problem can occur when hardware/network failures appear or when acknowledge
messages are absent.

● If a node sends multiple progress messages in a short time interval, how can the receiver
process them in the correct order?

● It is not excluded that both nodes make changes to the same attribute, such as a minor
correction of the data of a transportable, at the same time. How is this conflict resolved?

● If data is considered to be equal at a child-parent pair of nodes, how do changes affect the
data of other children of the parent?

The assumption of data being equal at multiple nodes and the problems described above are
typical assumptions and problems within the topic of distributes databases [Camarinha]. For now, it
is assumed that the techniques for distributed databases can be used to solve the first three
problems; the topic of distributed database techniques is therefore discussed later on in this
chapter.

The last problem can be illustrated by considering the LocationMoment items that refer to a
transportable. If these items are equal for nodes A and B then so are they for A and C. This implies
that, when B is executing its order, C can follow its progress, by examining the LocationMoment
items, although this information is not required by C to be held accountable by A. In fact, it can
publish confidential information of node B to node C. A solution to this problem is not given in
detail, but additional attributes to the LocationMoment entity can split the items of LocationMoment
between involved nodes.

Progress messages and downstream nodes
The second reason for process messages is to inform downstream nodes about possible delays or
other unforeseen issues. Every downstream node executes a part of the whole transport. In other
words, all the partial transports of all nodes together form a track from the original location to the

ELP - Extendible Logistics Protocol 89 / 170 M. Snoek - TU/e

Q007

Q504

final destination and are thus required to be interconnected. This implies that all the
TransportableTrack instances, as described in the previous paragraph, have the property that the
delivery location of one node is the pick-up location of the company that executes the next part.
This is also true for OutsourceTrack instances, because these have an equality relation with a
TrackportableTrack of a node the order is (partial) outsourced to.

This paragraph focuses on delays that can occur during the execution of the transport. The term
delay is defined as an event during the execution of a transport that influences the earlier
estimated time of arrival of a transportable. A change to the estimated time of arrival can have
influence on the planning of other (downstream) transport companies. Naturally, the client will
probably not be satisfied with any delay, but this is out of the scope of the execution of the
transport. The contents of a progress message to inform downstream nodes about a delay can be
one of two kinds, namely the actual delay, that is a delta, or a new estimated time of arrival, that is
absolute.

The network topologies topic made the distinction between two groups when it came to sending
progress messages to downstream nodes. These two groups were:

1. Network topologies that follow the order tree.
2. Network topologies that don't follow the order tree.

This paragraph takes a closer look at the progress message used inform to downstream nodes
about delays and also makes the distinction between the two groups.

Delays and progress messages in the first group
The primary aspect of the first group is that communication only appears between two nodes,
namely a parent and one of its children. If a delay appears during the transport executed by the
child it has to send a progress message to the parent to inform it about the delay. The parent in
turn can send a delay message if it is a child of another parent. This process can continue up to
the root of the order tree, but the main aspect is that all progress messages are new (fresh). The
rules described in paragraph 8.4 also describe other events of sending a progress message in
scenarios.

The previous paragraph mentioned two kinds of content for delay progress messages, namely a
delta value and an absolute value. The steps that are taken are as follows:

1. A delay occurs at the child
2. The child creates a progress message (delta or absolute)
3. The child sends the progress message to the parent
4. The parent receives the progress message
5. The parent changes the estimated time of arrival of the OutsourceTrack
6. The estimated time of arrival is also changed at the childs' TransportableTrack

The last step is based on the equality of an OutsourceTrack and TransportableTrack described
earlier. This aspects introduce an alternative to inform the parent about a delay, namely by
changing the TransportableTrack at the child which implies that the OutsourceTrack is also
changed accordingly at the parent. The steps above suffer the same problems as the progress
messages sent for being accountable such as network/hardware failures. The alternative is based
on the idea of a distributed database that is assumed to solve these problems.

The next step is take a look at what happens at the parent after its OutsourceTrack has changed. If
node B of the example has a delay then this can influence the execution of node C, but this doesn't
necessarily need to be true. For example, if the delay is 1 hour and the the TransportableTrack of
node C described loading the transportable 2 hours after delivery at NLBE then no problem exists,
but it does if the delay is 3 hours. Thus, if a delay hasn't got any influence on the remaining track
the parent simply notifies the delay, but doesn't need to take any further action (a solved delay).

ELP - Extendible Logistics Protocol 90 / 170 M. Snoek - TU/e

This makes the process of informing downstream nodes about a delay somewhat intelligent
compared to just simply altering all times of OutsourceTrack/TransportableTrack instances.

It is also possible that a delay does influence the transport of at least the first downstream node.
For example, the estimated time of arrival of B at NLBE is later than the planned loading of the
transportable by C. In other words, after the OutsourceTrack is changed at A, an overlap appears
in the time windows of both OutsourceTrack instances. This situation is now referred to as a high
priority delay. The only possibility to solve a high priority delay by A is to postpone the times of the
OutsourceTrack of C. At least the moment that C can load the transportable needs to be
postponed, because the transportable is physically absent at NLBE at the original time. Postponing
the track is done by A by simply changing the OutsourceTrack describing the transport of C,
because this also changes the TransportableTrack of C.

From the delay situation described above, it can be concluded that the algorithm or rules that apply
to the first group for sending progress messages in fact describes what OutsourceTrack or
TransportableTrack instances need to be changed. The steps that are taken when a (high priority)
delay occurred are equal for all nodes in the order tree. Therefore a high priority delay at the start
of flow of goods scheme can involve a lot of changes to OutsourceTrack or TransportableTrack
instances, but at least the algorithm takes care of updating all downstream nodes.

Although progress messages in the first group can successfully inform all downstream nodes about
a delay, one assumption seems to have been made, namely that any node simply accepts any
change to its TransportableTrack. In practice this cannot be true, for example when a transport
company has no vehicle available at the new times. The only solution to this problem is to cancel
the order which implies that the parent has to place a new order of its OutsourceTrack at another
transport company. The question which company has what responsibility and possible (financial)
consequences are legal issues and are out of the scope of this thesis.

Delays and progress messages in the second group
One of the assumptions for progress messages in the second group is that every node has a
subscription list that contains all downstream nodes, see paragraph 8.4.2. In comparison to the first
group, a node is able to send progress messages to all downstream nodes in parallel where in the
first group a child only sends a progress to its parent. The variants of the content of a progress
cannot be equal to those of the first group. It is not possible to send an absolute time to all nodes
of the subscription table, because the receiving nodes do not know the old time and are therefore
not able to calculate the delay, but it is still possible to send the delay as a delta. However, this
method suffers the same problems as the progress messages sent for being accountable,
although it is simple and straightforward. Since it is assumed that distributed database technology
solves these problems, changing an instance of an entity that is known by all downstream nodes
will create a solution.

Within the first group, TransportableTrack instances are changes by children to inform parents
about a delay. Unfortunately, this is only possible between a parent and a child node, because
these instances are not 'shared' with downstream nodes. The properties derived from figure 9.3
however indicate one entity whose instances are equal at all nodes in the order tree, namely
Transportable. This implies that the only solution to inform downstream nodes using distributed
database technology is by making changes to the instance of Transportable.

The previous paragraph about the progress messages to downstream nodes in the first group
described a kind of intelligence that created a difference between easily solvable delays and high
priority delays. It is possible to have this same kind of intelligence within the solution for the second
group by examining the knowledge of every node about their TransportableTrack. It is known that
the delivery location of a TransportableTrack is equal to the loading location of the
TransportableTrack of the next downstream node. From this it can be concluded that a node does

ELP - Extendible Logistics Protocol 91 / 170 M. Snoek - TU/e

have knowledge about the TransportableTrack of the first downstream node. If a node is able to
change the data of this TransportableTrack by making a change to the transportable then this
would simply be sufficient. The attribute used to inform the next downstream node is NextLocation
of the Transportable entity using the following steps:

1. Every node that starts executing a transport changes the NextLocation to the delivery
location of its TransportableTrack including the estimated time of arrival.

2. This change is propagated to all other nodes, because this data is equal at all nodes.
3. If the NextLocation of the transportable is equal to the start location of a nodes'

TransportableTrack then this node is able to conclude whether there exists a (high priority)
delay.

4. If a node concludes that a high priority delay exists then it can change its
TransportableTrack

The last step that changes a TransportableTrack can involve the same legal problems as with the
first group and is therefore also out of scope. From the steps above it can be concluded that
sending progress messages to downstream nodes in the second group can be done by making a
change to the NextLocation attribute of the transportable. Only one, namely the first downstream
node, can react to this, but it will inform other downstream nodes when it changes its
TransportTrack. The second group therefore also uses the method of sending progress messages
of the first group. This can be left out of the method for the second group, but then delays will only
be communicated to one downstream node ahead through the change of NextLocation.

The method of sending progress messages to downstream nodes within the second group has the
disadvantage that it publishes possible confidential information. This confidential information exist
of the NextLocation that is known by all nodes, but only important for the first downstream node.

9.1.2 Similarity with distributed database systems
The methods for sending progress messages mentioned several problems that are solved by using
distributed database technology. It is not excluded that some (if not all) problems can be solved by
introducing additional technologies that, for example, ensure message delivery. However, the
existence of data required and/or 'shared' by multiple nodes resembles in such a way that the use
of technology for distributed databases with data replication is trivial and thus are other solutions
not considered.

The network topologies of both group give a good view on how distributed databases can be used.
In the first group there exists only communication between a parent and its children. This suggests
that synchronization also only appears between a parent and its children. This is true when the
scope of the synchronization is bound to one parent and its children. However, use case 4 consists
of two parents of which one is also a child. The order tree of use case 4 is now repeated to
illustrate the synchronization in the first group.

Figure 9.4 – order tree of use case 4

All nodes of use case 4 have information about the transportable that is being transported and is

ELP - Extendible Logistics Protocol 92 / 170 M. Snoek - TU/e

A

B C

D E

Q007

equal for all nodes. For simplicity, it is assumed that the LocationHistory is also equal for all nodes,
ignoring the problem of possible publishing confidential information as described earlier. Besides
the data of a transportable, each parent-child pair also has equal information about the
transportation track due to the OutsourceTrack-TransportableTrack combination.

All nodes having equal data about the transportable seems less complex than it is, because this
equality is based on synchronization between all the parent-child pairs. This means that if node D
makes a minor change to the transportable data then this is only synchronized with node B. Node
B in its turn has to synchronize its changes to node A and E, et cetera. This is referred to as the
propagation of the update (change). Two or more nodes that agree on an update all commit it, in
analogy to a commit in a regular DBMS. Within the first group there are two ways of propagation
possible, namely:

● Local-commits: this is defined as a node that propagates an update to its parent and/or
children and then all commit. The term 'local' refers to the fact that the update is only
propagated to the nodes an updating node has a direct connection to.

● Tree-commit: this is like a local commit, but a node that created the update or received an
update only commits after it has propagated the update to its (other) connected nodes and
received a commit from all of them. The term 'tree' refers to all nodes in the tree that
commit the single update.

A local-commit can easily be illustrated by an update made by node D. This update is propagated
to node B and both nodes commit. Now B propagates the update to node A and E, where after all
are assumed to commit. Finally A propagates the update to C and both commit resulting in the
update being propagated to all nodes.

The typical difference of a tree-commit compared to a local-commit is that the update is first
propagated to all the nodes in the tree and then committed. This can be illustrated again by an
update made by B. It propagates the update to node B. Now, B doesn't initiate a commit, but
propagates the update to A and E, followed by A propagating the update to C. Nodes C and E both
don't have connections to other nodes and initiate to commit. The commit of C results in A to
commit. This goes on until B commits the update to D and all nodes agree on the update.

A major disadvantage of local-commit is that, during all the sequential local-commits, nodes are
working on different data they assume to be correct. This causes problems when multiple nodes
perform an update concurrently and two sequential local-commits can collide creating a split of
nodes agreeing on a value. On the other hand, local-commits is not complex compared to tree-
commit and the mentioned disadvantage doesn't occur when only two nodes appear in the order
tree, because it is assumed that at the start, for a propagation to start successfully, a local
transaction at both nodes is started on the object being changed.

The major disadvantage of the local-commit doesn't occur with tree-commit, because all nodes first
agree on a specific update and then commit it. This can be compared to a transaction that is
distributed over all nodes, but requires a lot of steps and communication. Unfortunately, the
network topology only prescribes directly connected nodes to be able to communicate. This
problem is solved by the network topologies of the second group in which all nodes are able to
communicate with each other on the application layer. If a node would like to propagate an update
then it simply initiates this at all nodes in parallel preventing a lot of waiting and saving
communication costs.

It is possible to add some 'tweaks' to local-commits in the first group to resolve possible conflicts
when a collision occurs. One of those tweaks can be to assign an 'always right' label to exactly one
node in the tree. In case of a conflict, this node defines the correct (new) value. A typical node that
this can be assigned to is the root. This adds the advantage that a propagation can be committed
after the root agrees on the update and thus speeding up local-commits.

ELP - Extendible Logistics Protocol 93 / 170 M. Snoek - TU/e

Q302

Aspects as 'always right', parallel updates and commits and conflicts are all subjects of distributed
database systems, namely 'Masters', eager replication and conflict preventing/resolving. The focus
on updates of transportables and OutsourceTrack / TransportableTrack in the order tree can
therefore be changed to a more general focus by considering the existing technologies on this
subject. The next part of this chapter takes a closer look at the different technologies for distributed
databases.

9.2 Introduction to distributed database systems
Before focusing on the different kind of technologies for distributes databases, first a definition is
given [ke7]:

A distributed database is a database that is stored in more than one physical location. Parts
(Partition d/b) or copies (Replicated d/b) are physically stored in one location and other parts or
copies are stored and maintained in other locations.

The definition points out two kinds of storing the database at more than one location, namely
partitions and copies.

Parts
The first kind is partitioning the data of a table over the multiple locations. This can be done in two
ways, namely horizontally and vertically. Both ways are illustrated by splitting a huge database
table, namely one that has many columns and many records, over multiple locations.

Horizontal partitioning
The table (or relation) has the same columns on every location, but the records of the table are
partitioned over the different locations. This means that the partitioned data of the huge table can
be reconstructed by combining all the records of all locations. An example of this way of
partitioning is one database location for every province of The Netherlands that stores information
about the income of the citizens of that province. One advantage of this way is that if one's income
changes, it only has to be changed in the database partition of that province. By combining the
partitions it is still possible to calculate, for example, the average income of all citizens of the
Netherlands.

Vertical partitioning
This way of partitioning partitions the huge table by storing some columns at one location and
others at other locations. This implies that the number of records of every partition is equal and that
every row requires a unique identifier that is part the rows of every partition. The latter is needed to
be able to reconstruct the huge table, because this can't be done without knowing what part of a
row of one location is related to what other part at another location. One advantage of vertical
partitioning is that the partitions can be defined in such a way that the partition on each location
consists of the columns that are frequently used at that location, but not at other locations. For
example, if the huge table consist of columns for financial (income, total savings, unique_id) and
medical (unique_id, blood type, weight) information about citizens then the financial columns can
reside at the banks location where the medical columns reside at the hospitals location. Although
partitioned, the government is still able to combine all columns to fulfill its role as big brother.

Horizontal and vertical combined
The two ways of partitioning the table can be combined to create a horizontally and vertically
partitioned table. This means that the table is split in at least three parts, namely by first creating a
vertical split based on the columns and a horizontal split of these parts based on the rows.

ELP - Extendible Logistics Protocol 94 / 170 M. Snoek - TU/e

Copies
The second kind of storing a database or table at more locations is by creating multiple copies of it,
also known as replication. This means that a table is available locally at all locations and users can
perform actions, such as retrieving or updating data, from and to a table. Updates to a table at one
location need to be propagated to the other locations. Concurrent use of the same table at multiple
locations involves concurrency problems such as two users that would like to use (read or write)
the same value simultaneously. A local DBMS uses transactions to solve this problem, but one can
imagine that distributed transactions are more complex and are also affected by connectivity and
communication cost aspects. Having multiple locations with the same table can provide a higher
availability and capacity, because if one node fails this doesn't necessarily mean that the data of
the table is completely unavailable and the database usage is distributed among the nodes. The
latter implies that database systems load is distributed requiring less expensive hardware at each
location.

Transparency and general advantages
Both kinds of storing data at multiple locations are assumed to be transparent to the users of the
distributes database system. For partitioning, this means that if tables of multiple locations need to
be combined, this is performed transparently. Another example is that if a record is removed at one
location, it also is at other locations when using vertical partitioning.

For replication, transparency means that if a user reads or writes data it can assume that all data it
works on is up-to-date and updates are propagated transparently. In other words, a user should
theoretically not be able to recognize whether he/she is using a local DBMS or a distributed one.
The word 'theoretically' here means that, for example, communication delays are ignored.

Distributed databases have several general advantages over centralized databases, namely [ke7]
[WikiDD]:

● Capacity and performance: increasing the number of copies increases the capacity of total
users while heavy usage of one user at one location doesn't affect the systems load for
others at other locations.

● Availability: if the database system of one location is 'down' then users at other locations
can still continue to use it.

● Costs: multiple small computers with a comparable capacity of one large computer are
cheaper than one large computer. This also applies for the scalability.

● Localized: it is possible to physically store data near to those users that use it most. This
follows organizational structures and also saves costs (communication delays).

9.3 Distributed database requirements

9.3.1 Introduction
In paragraph 9.2 it is pointed out that data of, for example, transportables is equal at all nodes.
From this it is trivial that replication is the kind of distributed database that suites this property.
Instead of mentioning all entities of the CDM that are considered equal in the two groups and
different variants of network topologies, only the transportable entity is mentioned from now on,
because other entities are analogue. This chapter will thus only focus on this entity as 'shared
transportable' or 'shared data' with replication as kind of distributed database.

9.3.2 Requirements
There exist many different variants of replicated distributed database systems. In order to decide
which variant is suitable for the synchronization of shared transportable data some requirements
have to be defined. Using these requirements it is possible to choose the existing replication

ELP - Extendible Logistics Protocol 95 / 170 M. Snoek - TU/e

Q301
Q303

Q301

technique to use for ELP. The requirements can be split into two categories, namely those that
apply on every database system to ensure the integrity of data and those that are specific for
distributed databases. To ensure integrity of the data in a database, there exist four properties that
have to be met, which are also known as the ACID properties: Atomicity, Consistency, Isolation
and Durability.

Atomicity: everything or nothing
The atomicity property defines that all operations in a transaction are performed or none are. It is
not possible that a transaction is performed partially. This implies that database systems have to
be able to keep track of what is/was going on at each moment to be able to recover from a failure
that can occur at an arbitrary moment. Transactions that are not finished at the moment that a
database system crashes have to be committed or rolled back during the recovery. [RQD001]

Consistency: stale reads
This problem arises when a database value is not yet updated at all nodes and the value is read
(and used) by a node that has not been updated. If updates are serialized and propagated
synchronously to all nodes then this problem doesn't appear. [RQD002]

Isolation: serialization and conflicts
Conflicts can be described as an event that occurs when two or more nodes update the same
database value at the same time. If the update is not propagated synchronous then a conflict can
appear and at least one update has to be discarded and another is kept [Dahlin et al.]. This implies
that information can get lost and can be considered as not desirable. A solution can be to serialize
all updates to the same database value where all updates are performed sequentially. [RQD003]

Durability: completed transactions persist
Once a transaction is committed, it is not possible to become in a state where this transaction is
not considered committed due to, for example, system failures. This implies that even during a
failure recovery it is known which transactions are completed in reflection to atomicity. Both
durability and atomicity use persistent storage to ensure their properties by storing old values and
decisions. [RQD004]

As an addition to the ACID properties, the following requirements are defined for the distributed
aspect:

Support for nodes being unavailable
Due to, for example, communication problems, it is possible that a node is unavailable for some
time. The network of nodes can consist of mobile nodes that are not able to communicate for some
time. It is however a taken for granted that all nodes are available 50% of the time. [RQD005]

Any node can update the data
Every node that is part of the distributed database system has to be able to change the data. To be
more precise, a node must be able to update or request an update of the data shared between the
nodes. This implies that none of the nodes is explicitly 'read-only'. On the other hand, a rights
management technique on top of the replication technique can revoke the rights of a node to
update the data. [RQD006]

Simple propagation of updates
The propagation of the updates has to be relatively simple to increase the performance. It is
assumed that complex propagation techniques require more communication. This has a drawback
on the performance, especially if non high-speed networks are used. A higher performance can
decrease the number of stale reads (if the replication technique allows this) and also decrease the
time an object is locked. [RQD007]

ELP - Extendible Logistics Protocol 96 / 170 M. Snoek - TU/e

Q301
Q503

Q302

Suitable for non high-speed networks
The network of nodes can consist of mobile nodes or other kind of nodes without high-speed
communication means. High-speed is relative term because of economical and geographical
reasons as well as improving communication techniques. Communication using non high-speed
networks is however defined as communication using analog modems as well as ISDN modems
over telephone lines. The reason for this requirement is to create a technology that is also easy
accessible for companies located in more deserted areas where only telephone lines are available
for communication. Another reason is that it creates a possible fall back when modern
communication means such as ADSL and DOCSIS, i.e. cable modems, fail. In short, it has to be
possible to use the replication system using communication means that provide a data transfer
speed of 64 kilobits per second. The main difference between this requirement and RQD005 is that
the latter focuses on availability while this requirement focuses on throughput; it is not excluded
that a less available node (mobile node) can also have a low throughput (GPRS). [RQD008]

Real-time addition and removal of nodes
The network of nodes that share data about a transportable is built during the outsourcing of
orders. This implies that the network has to be able to grow when an order is outsourced and
shrinks when an outsourced order is canceled. If a transport company has completed its part of the
transport then it is technically not required to be part of the network anymore. To simplify the
processes of outsourcing it is now assumed that they stay part of the network. The distributed
database system must support the addition and removal of nodes and therefore should not be
based on a static network of nodes. The addition and removal of nodes is therefore a property that
needs to be analyzed for each variant. [RQD009]

Update rights management
It has to be possible to permit updates from a node as well as revoke this privilege. One of the
reasons for this is to decrease the change of faulty updates by nodes that already executed their
part of the transport. This implies two properties of the distributed database system. First, it implies
that there is a kind of hierarchy between the nodes that share data of a transportable. Second, it
implies that there has to be a technique to grant or revoke rights to/from a node. However, this
rights management technique has to be seen as an extra layer on top of the distributed database.
[RQD010]

Support for removing data from the replication
The data of transportables can be considered volatile due to business process reasons. The use
cases in chapter 5 describe the transport of goods from the original location to the final destination.
When the goods, that are described as transportables, reach their final destination then the
business process described in paragraph 6.3.3 indicates that the sending of progress messages
stops. Since a progress message can change the data of a transportable, this implies that this data
is not likely to change after the goods have been delivered. After a while this data would only serve
for analytical purposes and there is not a real need to keep the replication in tact. To relieve the
administration of the replication it has to be possible to stop the replication of data. This doesn't
mean that the data is deleted at the involved nodes, only that updates are not longer propagated.
The data can still be needed for future tasks, such as statistics, that would not be possible if it was
deleted. [RQD011]

9.3.3 Requirements as two layers
The eleven requirements described in the previous paragraph can be used to divide the distributed
database system into two layers. The first layer represents a working distributed database with a
static number of nodes and no additional facilities such as rights management mentioned by
RQD010. Requirements RQD001 to RQD008 are focused on this first layer. Additionally RQD009
to RQD011 are focused on the second layer that is on top of the first layer. This second layer
represents additional functionality to the distributed database that is required by more ELP specific
properties, such as the addition of a node what occurs when an order is outsourced. In fact, the

ELP - Extendible Logistics Protocol 97 / 170 M. Snoek - TU/e

Q401

first layer creates a distributed database base that is required by the second layer. Paragraph 9.4
focuses on the the first layer followed by paragraph 9.5 that focuses on the addition of the second
layer.

9.4 Layer 1: database replication
Replication can be described as the process of sharing data with ensuring the consistency at all
participants that share this data (it is 'equal' and up-to-date at all nodes). When it possible for
participants to change the data then it should be changed for all other participants that access the
data. An information system that reads and/or writes the data should not have to be aware of the
fact that the data is replicated, what means that the use of replication is transparent to the users of
the system as described earlier.

Replicated distributed database systems use propagation to perform updates at all nodes. An
update of an object has to be propagated to all nodes. Updates can be propagated using three
kinds of replication techniques, namely eager, lazy and two-tier replication [Gray et al.] [Wiesmann
et al.]

9.4.1 Eager replication
The primary property of eager replication is that starting a local transaction automatically involves a
transaction at all nodes. This means that, just like local transactions, objects can be locked during
a transaction. The three steps of eager replication are almost equal to those of a local transaction
except that an update is performed at all nodes. These steps are: starting a transaction by a client,
that is in fact a transaction at all nodes that can update the data, then update the object at all
nodes and commit/rollback the transaction. The result is an update at all nodes or no update at all.

The propagation of the updates can be done using two update schemes. The primary aspect of the
first scheme is that an update of an object can only be invoked at one node, the so called master
that 'controls' the update. It is possible that different objects in one database have different
masters. If a client would like to update an object then it starts a transaction at the master node.
This node updates the object comparable to a centralized database using locking and logs on
stable storage. After the master updated the object, but not yet committed the transaction to the
client, it sends the update to the other nodes to apply it. Finally, after being sure that all nodes
have applied the update using Two Phase Commit (2PC) [Silberschatz], it commits the transaction
to the client. There are two situations in which the transaction is aborted, namely when the master
isn't able to update the object and when the result of the 2PC procedure isn't successful. The first
situation can occur because of, for example, another transaction involving the object is active while
the second can occur because of a node being unavailable. The result of the update is either
successful or unsuccessful at all nodes. This update scheme is called 'eager replication with
master updates'.

The second update scheme differs mainly from the first one because of the possibility to update an
object at all nodes instead of one. In other words, there exists no master node for an object. The
scheme starts with a client starting a transaction at a local database server that consists of locking
an object. This server now requests a lock on the object at all other nodes. If all other nodes
granted the lock then a message is sent to the other nodes to perform the update and it makes
sure that it is executed by all nodes using 2PC. The transaction is now committed to the client
when the 2PC procedure was successful. This update scheme is called 'eager replication with
group updates'.

ELP - Extendible Logistics Protocol 98 / 170 M. Snoek - TU/e

The two update schemes are illustrated below [Wiesmann et al.], where the arrow in and out of the
client represent the start and commit of its transaction and the gray arrows represent a time line:

Figure 9.5 – eager replication with Master Updates using three nodes (replicas)

The master of the object is Replica 1 that first performs the update and then applies is at Replica 2
and 3. The 2PC block, that in fact includes the application of the update but drawn separate for
simplicity, ensures that all node perform the update of not.

Figure 9.6 – eager replication with Group Updates using three nodes (replicas)

Replica 1 first initiates a lock on the object at Replica 2 and 3. Then the update is performed at all
nodes what is made sure by 2PC. The main difference with master updates is that a client can also
start a transaction at Replica 2 or 3 instead of only at Replica 1.

The locking steps within eager replication with group updates is until now considered as a lock at
all nodes simultaneously. Some disadvantages of this technique are that no updates are possible
when a node is unavailable (for a longer time) and that it involves communication with all nodes.
There exist several alternatives [Silberschatz] that take away some of these disadvantages
although they introduce other disadvantages:

● Single Lock Manager: instead of requesting a lock at all nodes, a lock is only required at
one specific node, namely the Lock Manager. This implies that every database only has to
have the lock granted by the Lock Manager instead of all nodes. A lock is only granted by
the Lock Manager to one node at a time while 2PC still ensures that the update is
performed at all nodes. This method saves communication and creates a less complex
locking procedure and deadlock handling. Two disadvantages are that the Lock Manager
can be a potential bottleneck and is a single point of failure.

● Multiple Lock Managers: this method is like the Single Lock Manager method, but now the
objects are distributed over multiple lock managers. This approach decreases the chance
of a possible bottleneck, but increases the chance of a lock manager being unavailable
when all lock managers have an equal failure rate. Another disadvantage is the increase of
deadlocks [Silberschatz].

● Majority Locking: instead of requesting and waiting for a granted lock from other nodes, this
method reduces the number of nodes from which a lock needs to be granted. The number
of nodes from which a lock needs to be granted is defined as at least half the number of
nodes plus one. This implies that the advantage grows when the number of nodes
increases. Another advantage is that it is possible to update objects as long as more than

ELP - Extendible Logistics Protocol 99 / 170 M. Snoek - TU/e

Client

Replica 1

Replica 2

Replica 3

Update

Apply

Apply Tw
o

Ph
as

e
C

om
m

it

Client

Client Client

Replica 1

Replica 2

Replica 3

Update

Update

Update Tw
o

Ph
as

e
C

om
m

it

50% of the nodes is available. Disadvantages are that it is quite complex compared to the
previous methods and requires more communication. Also, deadlock handling involves a
more complex algorithm.

● Biased Locking: this locking method distinguishes read-locks from write-locks. Read-locks
can be granted easily by every node and only one read-lock is required. This creates the
possibility for fast read actions from the database and doesn't require all nodes to be
available. However, there is a drawback on the performance of writes, because an update
requires a write-lock granted by all nodes just as the initial locking method of eager
replication with group updates. This implies all nodes need to be available to perform an
update.

9.4.2 Lazy replication
The main difference between eager and lazy replication is the moment when the client is informed
about the commit or rollback of its transaction. Lazy replication uses only one replica to determine
whether a transaction is committed instead of synchronization between all nodes. The steps of lazy
replication are: starting a transaction at a node, update the object at that node and commit/rollback
the transaction. After the commit at that node, the other nodes are updated.

Lazy replication has the same update schemes as eager replication, namely master and group
updates. When the replication uses master updates then there is only one owner of the object that
is used to update that object and this node always contains the most recent value of the object.
After the update transaction at the master, it updates the values at the other nodes, the slaves.
Using group updates there is no owner, or master, of an object. This means that an object can be
updated at an arbitrary node instead of one specific master node. After the update transaction, the
node updates the object at all other nodes.

The latter update scheme has an extra step, the reconciliation step, to ensure that all nodes agree
on the value of the object because it is possible that two nodes update the same object at the
same time. The conflict that can appear, is solved in this last step using a conflict solving algorithm
such as described by [Greenwald et al]. The update schemes of lazy replication are illustrated
below [Wiesmann et al.].

Figure 9.7 – lazy replication with Master Updates using three nodes (replicas)

Replica 1 is the master of the object and thus all updates on this object are done by Replica 1 what
ensures serialization of the updates. It is however possible that the object is updated at Replica 1,
but not yet propagated to Replica 2 and 3. Clients that read the object at those nodes read the old
value of the object, i.e. a stale read.

ELP - Extendible Logistics Protocol 100 / 170 M. Snoek - TU/e

Client Client

UpdateReplica 1

Replica 2

Replica 3

Apply

Apply

Q302

Figure 9.8 – lazy replication with Group Updates using three nodes (replicas)

The serialization that is guaranteed by performing all update transactions at one master in the
previous figure, is unavailable when using group updates. It is now possible to update the object at
Replica 1 and 3 simultaneously. This results in a conflict when both nodes are propagating their
updates. A reconciliation block is used to decide which update will be accepted and which will be
undone.

9.4.3 Two Tier replication
Requirement RQP002 introduced the requirement of nodes being unavailable. The two tier
replication described by [Grey et al.] refers to these nodes as mobile nodes that suffer the same
disadvantage of not being available all the time. When this requirement has to be met, eager
replication doesn't supply a solution, because reads and writes both involve a transaction where all
nodes need to be available.

Lazy replication allows nodes to be unavailable, but both of its update schemes introduce a
specific disadvantage that also makes it less suitable to be used. The master update scheme has
the disadvantage that a disconnected node cannot update an object that is not mastered by itself.
The group update scheme allows this, but suffers from conflict resolving.

The two tier replication solution is based on both update schemes for lazy replication where nodes
are categorized into mobile and base nodes. Base nodes are considered by be always connected
and thus available while mobile nodes are disconnected most of the time. Equal to lazy replication
with master updates, an object is mastered at exactly one node that can also be a mobile node but
is usually a base node.

A replicated object at a mobile node can be a master or a tentative version. A master version is
one that is equal to that of the master while a tentative version is an object updated locally at the
mobile node but not yet at the master node. There are also two kinds of transaction, namely base
and tentative transactions. Base transactions are transactions at those that work on a master
object and involve one mobile node at maximum. Tentative transactions are performed on local
tentative data and have to be redone later at the base nodes.

Several kinds of situations are now considered to illustrate the versions and transactions. If a base
node would like to perform an update on an object that is mastered by itself or by another base
node then the update scheme is equal to that of lazy replication with master updates. Since most
objects are mastered by base nodes, this provides serialization without conflict resolving and
versions will therefore usually be master versions.

The main difference between two tier and lazy replication with master updates is that now a node
is able to perform an update while not being able to connect to the master node, what is mentioned
as a disadvantage of the that update scheme. In this case an object is updated locally using a
tentative transaction resulting in a tentative version of this object. The term tentative refers to the
fact that conclusions made from the value of the object can be undone. A mobile node has to
connect to a base node to redo its tentative transactions and to update its objects to the master

ELP - Extendible Logistics Protocol 101 / 170 M. Snoek - TU/e

Client Client

Replica 1

Replica 2

Replica 3

Update

Apply

Apply R
ec

on
ci

lia
tio

n

Q302

Q304

version. When a mobile node is connected to the network, it first sends updates of objects that are
mastered by it. Next, it sends all its tentative transactions and accepts updates from the base
node. The base node is able to make a conclusion whether a tentative transaction can be
performed successfully or not and informs the mobile node about this. For the base node to be
able to make these conclusions there is a rule called the scope rule [Grey et al.]: a tentative
transaction may only involve objects mastered at a base node or at the mobile node that originated
the tentative transaction. This rule implies that when a mobile node connects to a base node, the
base node is able to communicate with the node mastering the object and thus make a conclusion
that is reported back to the mobile node. If two objects involved in one tentative transaction are
mastered at two different mobile nodes then this cannot be guaranteed, because the second
mobile node can be unavailable, leaving the transaction tentative and thus unable to decide
whether it can be committed or has to be rolled back. A tentative transaction, that failed during the
execution of it by the base node, is considered as a problem of the mobile node that can decide to
optionally redo it on the master version of the object or reconcile it with the user that knows it is
using tentative transactions while disconnected.

9.4.4 General aspects of replication techniques
Before being able to compare the properties, advantages and disadvantages of the replication
techniques of the previous, three general aspects of the replication techniques are considered.
These aspects are scalability and blocking, availability of nodes and complexity.

Scalability and blocking
Several factors play a role in scalability and blocking, where a scale-up introduces more blocking.
Eager replication doesn't only block a local database, but also all the others. When the number of
nodes and operations increase as well as the number of blocks then the deadlock rate grows
dramatically, namely as a third power of the number of nodes and the fifth power of the number of
operations [Grey et al.].

Lazy replication with group updates doesn't suffer these deadlock rates, because locks aren't
made system wide. Instead of a growing number of deadlocks, this replication kind suffers from a
growing reconciliation rate. The reconciliation rate grows, just like the deadlock rate with eager
replication, by a third power. This rate increases even more when mobile nodes are part of the
network.

Lazy replication with master updates has the advantage of having a lock at only one (master)
node, but is not suitable when mobile nodes exist. The deadlock rate for this kind of replication is
quadratically, what is lower than that of eager replication.

Two tier replication has base nodes that use lazy replication with master updates and therefore
have a deadlock rate that is also quadratically. Unfortunately, this kind of replication also suffers
from reconciliation, because it is suitable for mobiles nodes that use tentative transactions.

Availability of nodes, connectivity
In a distributed database system a node can be unavailable due to many reasons such as power
failure or lost connectivity. When a distributed database system needs all nodes to work then
availability is an important issue. This is the case when using eager replication, but there exist
several techniques to keep an eager distributed database system limited available without all
nodes being available. Lazy and two tier replication are less reliant on nodes being available while
still having a workable situation, especially with two tier replication, that is designed to have mobile
nodes with poor connectivity.

Complexity
The replication alternatives have different complexity rates when it comes to transaction
management, propagating difficulties such as reconciliation and preventing or solving deadlocks

ELP - Extendible Logistics Protocol 102 / 170 M. Snoek - TU/e

[Grey et al]. Eager replication has complex transaction management, but doesn't suffer
reconciliation. Lazy replication has less complex transaction management, but suffers from
complex reconciliation when using group updates. Lazy replication with master updates is the least
complex alternative, because it uses local transactions at the master and doesn't suffer from
reconciliation. Two tier replication has complex tentative transactions that involve reconciliation, but
this only applies for objects updated by mobile nodes.

9.4.5 Replication techniques compared
The previous paragraphs described several alternatives for replicated distributed databases and
the different characteristics of their update schemes. In order to make a decision on which
replicated database alternative presents the best solution for ELP and the two groups of network
topologies, a comparison has to be made. This paragraph focuses on this comparison in three
ways, namely:

● Which requirements of layer 1 (RQD001 to RQD008) are met?
● What specific advantages/disadvantages do the alternatives have for the first group that

follows the order scheme and for the second group that doesn't?
● What practical remarks can be made?

First, the requirements are put together into one table to create an overview:

Property Eager Mst. Upd. Eager Gr. Upd. Lazy Mst. Upd. Lazy Gr. Upd. Two Tier
Data integrity

(RQD001-RQD004)

Atomicity*

Consistency* x x x

Isolation* x x

Durability*

Distributed data
(RQD005-008)

Support for nodes being
unavailable / Availability*

x** x** ■■*** ■■■ ■■■

Any node can update the
data*

Suitable for non high-
speed networks*

■ ■ ■■■ ■■**** ■■****

Simple propagation of
updates / Complexity*

■ ■ ■■■ ■■ ■■

Scalability* ■ ■ ■■ ■ ■■

* x - Absent;- Present; ■ - Poor; ■■ - Mediocre; ■■■ - Good
** Biased Locking creates a limited read-only system that is not considered acceptable
*** Assumed that different objects are mastered by different nodes
**** Reconciliation consumes bandwidth

Table 9.1 – properties of alternative replications techniques

Earlier paragraphs described that communication networks enable nodes to send each other
progress messages. These messages can be used for one of the replication techniques. The best
suitable replication techniques for each group can be given by combining the properties of the
group with the properties of the replication techniques.

ELP - Extendible Logistics Protocol 103 / 170 M. Snoek - TU/e

Q301
Q503

Group 1: following the order scheme
One important aspect of this group is that a node only 'shares' data with nodes in its parent-child
relationship what will usually result in a replicated database with two nodes. This is always true for
TransportableTrack/OutsourceTrack combinations. However, it is possible that a parent has more
than one child and both children are not aware of each other. Assuming that the parent would like
that the data of the transportable is equal at all involved nodes, i.e. itself and all its children, then
this assumption rules out both eager replication techniques as well as lazy replication with group
updates. The reason for this is that these replication techniques consist of communication between
all nodes that isn't possible, because two children of the same parent are not aware of each other.

The only possibilities left are lazy replication with master updates and two tier replication. The latter
is based on the first one with additional techniques, such as tentative transactions, to enable
mobile nodes to be part of the replicated database. Both techniques require one master for each
object in the distributed database. The parent is the only node that all involved nodes are aware of
and thus this node has to be the master of the objects. This implies that if a child would like to
update an object, it starts a transaction at the parent. After committing, the parent updates the
object at all children. This supports the business situation in which an outsourcing company keeps
control over what is executed. Considering the properties of table 9.1, the choice between lazy
replication with master updates or two tier replication depends mainly on the presence of nodes
with limited connectivity (mobile nodes). The decision for the best suitable replication technique is
made in favor of two tier replication due to requirement RQD005.

A remark can be made about the TransportableTrack/OutsourceTrack combinations in which
always exactly two nodes are part of the replicated distributed database. This wouldn't rule out the
eager replication techniques, but the possibility of nodes being unavailable also leads to the
decision to use two tier replication.

It has to be pointed out that this approach is conform the local-commits of paragraph 9.1.2. It is
also possible to use two tier replication for tree-commit. This results in a string of nodes starting
transactions at their parent up to the root. If the root commits the transaction then so do the
children in the string down to the node that originated the update. If all nodes are base nodes, this
can work well, but if one of the nodes is a mobile node then a tentative transaction exists, leaving
nodes in uncertainty. Since group one primarily uses TransportableTrack/OutsourceTrack pairs to
inform other nodes about updates, the tree-commit will rarely be used and therefore local-commits
is assumed to be acceptable (TransportableTrack/OutsourceTrack pairs are only local-commit).

Group 2: not following the order scheme
The most important aspects of the second group are that the data of the tranportable is 'shared'
among all nodes and that they are all able communicate with each other. This means that, in
comparison to the first group, none of the replication techniques are ruled out for communication
reasons. However, nodes being unavailable lead to the same two replication techniques being
suitable for this group, namely lazy replication with master updates and two tier replication where
two tier has the better support for this property. The decision for the best suitable replication
technique is therefore also made in favor of two tier replication.

Choosing two tier replication for group two leaves one question, namely, which node is the master?
Because every network topology and order tree starts with a root node this implies that this node
will be the master at that point. This node also carries the greatest responsibility for being
accountable and should therefore also be the one with the most accurate (master) data. The
conclusion is that the root is the master node when using two tier replication in group two.

Practical remark
The major difference between the two candidates that use lazy replication, namely two tier and
master updates, is that two tier is the better choice when mobile nodes exist. In contract, master
updates is the better choice when they don't, because this replication technique supports isolation.

ELP - Extendible Logistics Protocol 104 / 170 M. Snoek - TU/e

However, the advantage of isolation is not very big due to how updates are performed in practice:
in practice there will usually be one transport company at a time that executes a part of the
transport. This implies that situations where more than one node changes an object simultaneously
are not likely to exist. Therefore the advantage of isolation is also not likely to be worth it while
excluding mobile nodes from being part of the network.

Another practical remark that has to be made is the scalability property of each replication
technique (RQD009). All replication techniques have a poor or mediocre score on this property.
This implies that none of the techniques is suitable for situations with many nodes. Fortunately, two
tier replication, that is considered the best replication technique for both groups, has a mediocre
score on this property. Whether the scalability can become a problem depends heavily on the
environment, such as resources (hardware, communication lines), and the reconciliation rate.
Running a simulation that matches day-to-day usage can indicate whether the mediocre score
becomes a problem.

Best suitable replication technique in case of high availability
Two tier replication is concluded as best solution for both groups. The reason to choose this
replication technique is mainly because of requirement RQD005. If it is assumed that all nodes
have a high availability then the best solution can be different.

The arguments that led to the conclusion of the first group indicated that most of the replication
takes part between two nodes. As it is now assumed that these two nodes have a high availability,
the eager replication techniques would definitely be candidates for a solution, because the network
never expands to more than two nodes what prevents a large amount of deadlocks. The only
property that can prevent this solution from being the most suitable is the bandwidth and latency of
the communication network.

Eager replication is no candidate as a solution for the second group, because there is no limit on
the amount of nodes being part of the network and, as described earlier, the deadlock rate grows
by a third power of this number. Since lazy replication with master updates provides, just like eager
replication, isolation, this would be most suitable solution for group two if all nodes have a high
availability.

9.5 Layer 2: Dynamic replication participants and rights management
The previous paragraph provides solutions for the first layer that provides a working distributed
database with a static number of nodes and no additional facilities. The second layer can be put on
top of this layer to provide additional facilities that are mentioned by requirements RQD009 to
RQD011. This paragraph therefore focuses on these three requirements:

● Real-time addition and removal of nodes (RQD009)
● Update rights management (RQD010)
● Support for removing data from the replication (RQD011)

9.5.1 Real-time addition and removal of nodes
A transport company outsourcing (a part of) an order adds a node to the order tree. This also
involves adding this node to the network topology and the replication. The building steps in
addition of the new node to the network are described in an earlier paragraph, leaving the addition
to the replication left (RQD009). The addition of a node to a distributed network using replication
can be described as adding a new node to the replication of an object. Since the best suitable
replication technique of both groups is two tier replication, there exists one node mastering the
object. The following situation describes the addition of new node:

The master of object X is master M. Node A is part of the replication and would like to add node B

ELP - Extendible Logistics Protocol 105 / 170 M. Snoek - TU/e

Q402

to it. For the addition to be successful, two assumptions are made, namely that M is willing to add
node B and that node B is willing to replicate an object mastered by M. The addition of B has to be
performed in real-time implying that it is added during the normal operation of M and thus
interfering with the transactions management at M. The result of the addition is that node B is part
of the replication and has an accurate value of object X. The value of X has to be accurate,
because M has to know from which point in time (version of X) it has to apply updates at node B (X
is the most accurate version). The only way of assuring that the value of B is accurate is by
examining it during a transaction at M. Initializing object X at node B requires that B is actually
added to the replication (in reflection to the assumptions made). The conclusion is that either B has
become part of the replication and M knows that at that point B has the most accurate value of X
-or- non of these are true. A clear method of assuring this is by adding node B during a (special
kind) of transaction at M.

The addition of B to the replication involves three nodes, namely A, B and M, that all require the
addition to be committed or not. The well-known Two Phase Commit (2PC) protocol can be used to
be sure whether the addition has been successful instead of being sure that an update has been
successful.

Let T be a transaction that is initiated by node A containing the request of node B becoming part of
the replication. During this transaction, master M as well as node B, write the same version of
object X to stable storage including a record at M that node B has this specific version of X. This
ensures that when 2PC succeeds, master M can continue to operate as it would when B was
already part of the replication. In other words, M knows the version of object X at B and thus when
it has to apply updates at B. The addition of node B using 2PC is illustrated in detail in appendix H
that also includes a graphical representation of the 2PC steps performed by all involved nodes.

The removal of nodes can be done using an analogue algorithm. In fact, when this algorithm
doesn't contain of any step to actually remove the replicated data, but only the fact that it is
replicated, it presents a solution for the requirement to support the removal of data from the
replication, mentioned by RQD011.

9.5.2 Rights management
The last requirement of paragraph 9.3 that is not yet taken in consideration is update rights
management (RQD010). This requirement prescribed that it has to be possible to grant and revoke
rights of one or more nodes to update data that is 'shared' by these nodes. This implied that there
has to some kind of hierarchy between those nodes. This part of the chapter focuses on this last
requirement by considering three alternatives that can be used for granting and revoking rights.

Before focusing on the possibilities for implementing a rights management technique, the hierarchy
of the two groups is examined. The first group consists of many small hierarchies between every
child and its parent. The child here cares the responsibility and if this child decides to also
outsource its order then this is of no interest for the parent. This is also supported by the data of a
transportable not being 'shared' between all nodes. From this it can be concluded that the first
group has no real reason to have a grant/revoke rights management technique, because if a node
outsources its order, it would definitely grant rights to the child since it wouldn't receive its progress
information otherwise. A practical remark that can be made on this, is that it is assumed that a
company only has power over its own business and no influence on the company it outsourced its
order to, see paragraph 6.5. Another (trivial) agreement can be that a company, that is not the root
nor a leaf in the order tree, is obliged to update its shared data in such a way that progress
message are propagated to all companies involved.

In contrast to the first group, the nodes in the second group all share data of the same
transportable. This means that every node can update that update that data, even if it is already

ELP - Extendible Logistics Protocol 106 / 170 M. Snoek - TU/e

Q006
Q404
Q508

finished with its part of the transport for a long time. The possible agreements between companies
as described in paragraph 6.5, can contain an agreement that only the root company in the order
tree is allowed to change an order after it has finished or change the original location and final
destination. This means that there is a good reason for a rights management technique in the
second group. This part is therefore only relevant for the second group.

Granting and revoking
Paragraphs 8.1 briefly describes the creation of the order trees of use case 3 and 4. An order tree
describes what company outsourced (a part of) an order to another company and always starts
with a company in the root that received the order from the client. As mentioned in the goals of the
use cases in paragraph 5.1, outsourcing of an order also handles over the responsibility of the
order. When multiple companies are involved in executing the order then they will all update the
data of the transportable for the progress that is made by them. However, since only one company
is really executing the transport at a time so there is no need for all the companies in the order tree
to be able to change the data of the transportable at the same time. The company that is executing
the order also doesn't like this, because this company caries the responsibility of the goods at that
time and doesn't like interference by other companies that are changing the data. In short it can be
said that when a company hasn't got any reason to change the data then it should not be able to
do so.

To create a rights management solution there has to be focus on the companies that carry
responsibility at a moment. This is illustrated using the figure below.

Figure 9.9 – initial order tree without rights management

First, only company A has the responsibility of the order. This company is also the one that always
carries the responsibility of the order to the client, even when it is outsourced. During the next
steps the order is outsourced and an order tree as displayed above can be drawn. In this case,
company D is responsible for the transport of the goods from the original location to the warehouse
of company E. Next, E has to transport the goods to the warehouse of company C and company
has to deliver the goods at the final destination. When company D is executing its transport then
there is no need for company E and C to change the data of the transportable. To provide this
situation, A grants update-rights to B followed by B granting these rights to D. Altogether there is a
“grant track” from A to D as displayed by the thick blue line in figure 9.10 below on the left.

Figure 9.10.a-b – order tree with a grant track from A to D (9.10.a); order tree with a grant track from A to E
(9.10.b)

ELP - Extendible Logistics Protocol 107 / 170 M. Snoek - TU/e

A

B C

D E

A

B C

D E

A

B C

D E

Q403

After delivering the goods at the warehouse of company E, company D updates the data of the
transportable and its job has finished. This implies that D doesn't need its update-rights anymore.
Therefore they should be revoked by the company that granted them, i.e. company B. This
company now grants these rights to company E what results in the order tree in figure 9.10.b
above. The companies that are able to update the data are now A, B and E. Although the other
companies are not able to update the data, the do receive updates of it. The next steps would be
that B revokes the rights from E, A revokes the rights from B and grants them to C.

The following rules are used to grant and revoke update-rights from and and to other companies
using a tree structure with companies as nodes:

1. The root node always has update-rights
2. Any node can grant rights to its children
3. Any node can revoke rights from its children
4. When a nodes' rights are revoked the so are the rights of its children (it it has any)

It is not prohibited to have a situation where all nodes have update-rights. Also, it is not prohibited
to revoke rights from a node that is going to or is already executing (a part of) the transport, but
this would not be a suitable situation.

As an addition to update-rights there can also be outsource-rights that define whether a node is
allowed to outsource its order. The appliance of these outsource-rights can be analogue to the
update-rights.

Rights administration
Using the rights management solution, described in the previous paragraph, it is possible to have
update-rights granted to exactly those companies that are responsible for the execution at a
certain point in time due to the grant track in the order tree. To apply the rights management
solution there has to be a guard that allows or rejects updates of the data. There are several
alternatives to introduce a guard which are discussed in the next paragraphs. The three
alternatives are:

● External single guard
● Internal guard group
● Internal single guard

External single guard
When this alternative is used then there exists a single external party, i.e. a party that is not
represented by a node in the order tree, to control the update-rights. This guard must be initialized
by the root node to create a record of the data together with the trivial initial rights. When a node is
added, initially by the root node, to the order tree then this is registered at the guard together with
the rights that are granted to it by the root node. The next step can be that the added node is also
adding another node, for example company D in figure 9.10.a. This can only be done if any added
child (by the root node) is aware of the guard to register new nodes and granted rights. In short it
can be said that when a node is added to the order tree then it has to be provided with the
information about the existence of the external guard and every added node is registered at it. This
results in a guard knowing all the nodes, their relation to each other and the rights that are granted.
The guard is also able to perform the the last rule that is mentioned in the previous paragraph.
When a node would like to update the data then the guard can easily decide whether the update is
allowed or not. This decision of the guard can easily be requested by the root mastering the data
and actually performing the update.

ELP - Extendible Logistics Protocol 108 / 170 M. Snoek - TU/e

Internal guard group
This alternative uses the nodes of the order tree to control the rights management. This is done by
negotiation of the nodes that are part of a grant track. When a node, for example company B in
figure 9.10.a, would like to grant update-rights to a new node, company D, then it requests this
from the members of the grant track, i.e. in this case only company A. If company A accepts this
grant-request then company D is able to perform updates and vice versa if A rejected the request.
When there are more companies in the grant track then there are several alternatives for the
decision making. One could be that all nodes have to accept and another can be that the majority
has to accept the grant-request. A revoke of update-rights is not negotiated and is accepted
immediately to prevent a node being aggravating.

Internal single guard
This alternative is analogue to the previously mentioned External single guard alternative. Instead
of having an external party that has to function as a guard, a node of the order tree performs this
role. The node that performs this role has to be the root node, because this is the first node that
can add another node and defines the rights of this new node. Together with the rules for granting
and revoking this implies that it is the only node that is always present in a grant track.

Advantages and disadvantage
The three described alternatives will all be able to administrate the rights that are granted and
revoked within the order tree. To choose the best alternative, the advantages and disadvantages
of them need to be compared.

The External single guard has an advantage that the guard has a dedicated role that has no
interest in the context of the order tree and the execution of the order (unbiased). Another
advantage is that this alternative is not complex. A disadvantages is that it is an extra node that
has to be able to communicate (and understand) with all the nodes in the order tree. It is not
acceptable to be unavailable.

The Internal group guard has one big advantage over the other alternatives which is that it
introduces a democracy for granting and revoking rights. However, this is not of any use because
rule number two defines that every node can grant rights to its children as long as it has these
rights itself. A disadvantage of this alternative is that the democratic process adds (unneeded)
complexity. Another disadvantage is that every node in the grant track has to be available for a leaf
to grant rights.

The last alternative, Internal single guard, has the advantage that it is not an extra party that
introduces the extra risk of a party being unavailable as in the first alternative. Other advantages
are that this alternative is not complex and that the root node, that has the responsibility to the
client, has a complete view on the grant tracks. A disadvantage of this alternative is that it can
cheat, because the guard has an interest in the context and is the only node that keeps track of the
rights. However, it would not need to cheat, because the root node is already able to revoke
update-rights from all the other nodes in the order tree.

The recommended alternative would be Internal single guard, as it is not complex and in
agreement with the rules for granting and revoking update-rights. The root node also is the master
when two tier or master updates replication is used, resulting in one node that controls and
performs the updates what is in line with it carrying the final responsibility to client.

9.6 Summary and final design decisions
This chapter is the last chapter that focused on the design of ELP. Therefore it is first summarized
followed by final design decisions based on the chapter 7 through 9 that focused on technological
aspects to create an information system that implements the business processes of chapter 6.

ELP - Extendible Logistics Protocol 109 / 170 M. Snoek - TU/e

9.6.1 Summary
Using the CDM it is possible to describe the contents of an order for a company that outsources an
order to one or more other companies. All these companies have their own part of the transport
track that they have to execute using the TransportTrack entity. If a company outsources an order
then it has additional information described by the OutsourceTrack entity to know which part of the
transport track is outsourced to which company. This OutsourceTrack information has an equality
relation with the TransportTrack entity of the company that the order is outsourced to. The
information that has to be equal for all involved companies, such as the goods specification and
TrancportTrack/OutsourceTrack equalities, is kept up-to-date using a distributed database
technology.

During the execution of a transport a delay can occur. Companies that are downstream in the flow
of goods scheme can be informed about this by either changing the TransportableTrack or
Transportable information, respectively depending on the network topology group. The latter
suffers the disadvantage of publishing confidential information, although this was already the case
for the second group.

To propagate changes of information between all companies, the information at all companies is
seen as a distributed database with identical copies at two or more nodes. Changes to this
information can be propagated using three replication techniques, namely eager replication, lazy
replication and two-tier replication. Eager replication is not suitable for ELP because problems
occur when communication channels are not available. Lazy replication and two-tier replication
have better support for communication channels being unavailable. If mobile nodes exist within the
distributed database then two-tier replication is the best option, while lazy replication (with 'master
updates') is the better option when they don't.

Both two-tier and lazy replication have a single node that masters a piece of information. It is not
always preferred if every node can update this information any time what can be limited by
introducing a rights management technique. There are three alternative techniques, namely
external single guard, internal group guard and internal single guard. Internal single guard is the
recommended alternative, because it not complex and in line with responsibilities and both suitable
replication techniques.

9.6.2 Final design decisions
Several of the design decisions of paragraph 4.2.7 have influenced the research and the results of
chapter 7 to 9. Chapter 7 described the idea to introduce a Common Data Model (CDM) for
transportation industry that can be used to represent information in a uniform way. This information
is, usually, stored in a local database using a proprietary data model. The proprietary data model of
the two software product of Global Data Exchange can be mapped to the CDM of chapter 7. This
enables at least two Transport Management System products to exchange information. In general,
two or more information systems can only exchange information if they both understand and
support the same way of describing information that is required to conduct electronic business.
This is exactly what the CDM provides.

One of the specific design decisions for ELP related to the CDM is to support entities that are
required to (partially) outsource orders as well as to be able to Track and Trace them. Using the
TransHolder entity of the CDM the latter is even possible when goods are contained into other
goods such as sea containers. This part of the CDM design is innovative although participants
have to agree on set of rules (appendix F) and it has to emphasized that the success of it can be
influenced by the fact that outsourcing and exchanging information about progress crosses
company borders, see paragraph 6.5.

Although it is not certain whether all existing TMS product are able to map their proprietary data
model to the CDM, the CDM is considered as a good starting point to provide a base to describe

ELP - Extendible Logistics Protocol 110 / 170 M. Snoek - TU/e

entities that exist in TMS products. Chapter 9 shows that the design of the CDM provides all the
required entities and attributes to exchange progress information if outsourcing is involved,
enabling users of ELP to be held accountable and to provide real-time Track & Trace information.

One of the properties of the CDM design that is not used in chapter 8 or 9 is the possibility to
extend it with user-specific attribute requirements and extensions. Although the design decision
cause 12 in paragraph 4.2.7 described this as a design decision that increases flexibility and
possible acceptance, there exists no sign of it to be required. Altogether, the design decisions that
influence the design of the CDM are not all equally relevant (11, 13 and 14 show their relevance
while design decision 12 doesn't).

Chapter 8 focuses on possible network topologies that can be used to create communication
networks as well as alternatives to send progress messages depending on network topology
properties. The main aspect of this chapter is that it introduces two categories with a different
communication strategy. The first category consists only of one-to-one communication between an
order outsourcing/accepting pair. The second category consist of one-to-many communication
between almost all involved participants. These two different groups created an unforeseen split in
solutions that was not thought of when the design decisions were made. In fact, the design
decision whether the first or the second group communication strategy provides a better solution is
still open, because only the two alternatives are given with their advantages and disadvantages. In
general, the first category stays closer to practice while the second category provides a better (no
conflict, faster, more reliable, less complex) technological solution. A great technological solution
can be worthless if it is unacceptable for the participants from a business point of view, creating a
slight but yet unfounded preference for the first category.

One design decision of chapter 9 solved many problems, especially on the subject of conflict. This
design decision is to have one master nodes that ensures serialization of updates. In fact, the
tweaks to the local-commit in paragraph 9.1.2 and the suggestion to use local-commits up to the
root in paragraph 9.4.5 illustrates that lazy replication with master updates can be considered the
best distributed database design for ELP if no mobile base nodes exist. If they do, then two-tier,
what can be considered an altered version of lazy replication with master updates, is considered
the best design decision between the available replication techniques. Two-tier however, disables
the 'local-commits up to the root' idea of paragraph 9.4.5 if a node within the chain is a mobile
node. This is why lazy replication with master updates including the 'local-commits up to the root'
idea suites the first category of communication best. If the second communication category is
preferred then this addition is not necessary.

At the end chapter 9, design decision 10 is taken into consideration. The given alternatives provide
ways to control the ability of participants to make changes to data that is of interest to many
participants. This design decision and the presented alternatives are considered a valuable
addition, especially because it can exist on top of the suitable replication techniques (lazy
replication with master updates and two-tier) and is in line with the responsibilities.

ELP - Extendible Logistics Protocol 111 / 170 M. Snoek - TU/e

10 ELP Prototype
The previous chapters described the existing solutions, design decisions, standard business
processes, Common Data Model, exchange of information, communication solutions, replication
techniques for synchronization and rights management. All these designs and solutions can be
used to develop an ELP prototype. It is not possible to create a full implementation of ELP,
because several essential parts, such as full standard business process specifications, are not
available.

The ELP prototype can especially support those parts that have been described in more technical
detail. These parts are the CDM, communication solutions and replication techniques. Naturally, a
prototype that implements these parts should take the design decisions in chapter 4 in
consideration. This chapter focuses on the development of the ELP prototype and includes goals
that one would like to achieve, the prototype architecture and implementation details. The next
paragraph first focuses on the goals that one would like to be achieve.

10.1 Goals of the ELP prototype
Before and after implementing a prototype, several questions can be asked about it, namely
[Borysowich]:

A) What is actually prototyped?
B) What type of prototype is going to be made?
C) What can be learned from the implementation of the prototype that can be used in a real

implementation?
D) Which design decisions can easily be adopted and which cause problems in a real

implementation?
E) Is it possible to measure performance using the prototype as a simulation?

First, questions A and B are answered in this paragraph. Next the design and implementation
details of the ELP prototype are given followed by the answers to questions C, D and E. There
exist a number of prototype types [Borysowich] that all have a typical purpose. The purpose of the
ELP prototype is to test the key functions of the event-based business process 'Provide Status
Information', because this is one of the design decisions of ELP that distinguishes it from existing
solutions and chapters 7, 8 and 9 provide detailed information that can be used. The type of
prototype is therefore a Vertical Prototype that has the general characteristics of demonstrating a
working, but incomplete, system for key functions. The prototype uses the contents and decisions
of chapters 7 through 9 to see whether these are suitable to create a successfully working
prototype.

The scope of the ELP prototype is limited to the key functionality of the addition of a new node to
create or extend a replicative situation and the ability to update a replicated object by every node.
An instance of the entities of chapter 7 can be used as object, for example a client. To define more
precisely what will be part of the prototype it is possible to divide the design decisions into two
categories, namely those that are taken into consideration and those that aren't.

Design decisions used within the prototype

Design decisions 3, 4 and 5
These three design decisions consist of ELP using messages between participants that are
formatted using XML and can be transmitted using several transport methods, such as HTTP and
SMTP.

Design decisions 6

ELP - Extendible Logistics Protocol 112 / 170 M. Snoek - TU/e

The ELP prototype uses the ELP Name Service as a registry to look up information that is needed
to communicate with a node identified by its ELP Identifier.

Design decisions 7 and 1
The ELP prototype is only used for the specific part of 'Provide information status' where changes
to an object, that contains 'current location information', are sent to other nodes.

Design decisions 9 and 13
All the participants that use the ELP prototype need to have accurate information. This is achieved
by using a replication technique that propagates updates and that allows determination of the most
accurate value of an object. The number of nodes that replicate an object can be increased in real
time.

Design decisions not used within the prototype

Design decisions 1, 2, 8, 10, 11, 12, 14 and 15
The ELP prototype only supports a part of the business process to provide status information and
therefore none of the other business processes as well as specifications of custom business
processes. Neither does it support the extension of the data model and transport up-scaling. The
ELP functions that are described by these design decisions all require that most of the other
design decisions have been implemented. Since these design decisions would only be refinements
and additions to the key functions they will be not part of the prototype.

10.2 ELP Prototype Architecture
Before the key functionality can be implemented in the prototype it is required to create an
architecture that consists of all the components that will be part of the implementation. There are
many requirements and design decisions that would lead to a complex architecture. Although not
every requirement and design decision will be part of the ELP prototype, it still consists of many
parts, such as communication interfaces, data storage and business logic.

A design pattern that is available for complex applications is the Model-View-Controller design
pattern that has been designed by [Reenskaug] in 1979 and adopted by many international
organizations, for example Sun Microsystems [MVC-pattern]. This pattern makes a complex
application more manageable and improves maintainability and extendability. This is done by
separating business and control logic from the data presentation. The application is hereby divided
into three layers, namely the model, view and controller layer. Although originally designed for
object oriented Smalltalk applications with a user interface, it is also very suitable for the ELP
prototype. The three layers have the following characteristics, but are not very strict, leaving some
flexibility to the designer. Naturally, it is possible that multiple parts of the application belong to one
layer.

Model layer
The definition of the model layer given by [Reenskaug] is: a Model is an active representation of an
abstraction in the form of data in a computing system.

The model layer manages data of the application. Therefore the primary property of the model
layer is that it encapsulates the state of the application. The model in the ELP prototype typically
manages the connection and queries to the database.

View layer
The definition of the view layer given by [Reenskaug] is: to any given Model there is attached one
or more Views, each View being capable of showing one or more pictorial representations of the
Model on the screen and on hardcopy. A View is also able to perform such operations upon the

ELP - Extendible Logistics Protocol 113 / 170 M. Snoek - TU/e

Model that is reasonably associated with that View.

The view layer consists of the interface to the users of the application where it can present data in
one or more forms. Changes in the model or controller don't necessarily imply changes in the
interfaces. Although the documentation of Sun Microsystems about the MVC pattern focuses on
web browsers that use the interfaces, the users of the interfaces of the application can also be
automated systems. In the ELP prototype, the view layer takes care of the communication and
formatting of messages.

Controller layer
The initial design of the MVC Pattern by [Reenskaug] did not consist of a Controller. Instead, an
Editor was defined: an Editor is an interface between a user and one or more views. It provides the
user with a suitable command system, for example in the form of menus that may change
dynamically according to the current context. It provides the Views with the necessary coordination
and command messages.

The Editor is replaced by a Controller and extended with a (new) more specific Editor that is not
described in detail here [Reenskaug]. The controller layer is in fact the glue between the model
layer and the view layer and defines the applications behavior. It takes care of executing business
logic in response to a received requests of the view layer. The result of the business logic executed
is afterwards passed to the view layer to create a reply to the earlier received message. Changes
in the state are passed to the model layer to become persistent.

The three layers of the MVC design pattern clearly introduce separation of concerns. As long as
the interfaces between the three layers remain the same, the three layers can be developed,
changed and maintained independently by separate groups of developers that all have their own
specialty.

Now that the common characteristics of the three layers have been given, it is possible to divide
the design decisions into the three layers. Design decisions 3, 4, 5 consist of information about
formatting messages and communication between nodes. This information is therefore part of the
view layer that can represent multiple interfaces. This is especially useful for the decision to
support multiple transport methods. Received messages of the view layer are passed to the
controller layer that doesn't care how the messages have been received. Also, when a message
needs to be sent to another node, design decision 6 describes that the ELP Name Service is used
to find out which communication means are available and how that node can be reached. This is
also not of any interest to the controller and thus the ELPNS functionality will be in the view layer.

The other design decisions that will be used in the prototype can be distinguished by whether they
are involved in the administration and enforcement of object replication or that they are involved in
business processes, such as making changes to an object to provide information to the other
nodes. All of this functionality belongs to the controller layer although they will be in separate parts
of it. Finally the model layer takes care of persistent state changes. The MVC design pattern is
used to create the ELP prototype architecture that is illustrates in the following figure.

ELP - Extendible Logistics Protocol 114 / 170 M. Snoek - TU/e

Figure 10.1 – ELP prototype architecture

The MVC design pattern has many similarities with the Three Tier Software Architecture [Sadoski].
One of the differences is that the MVC design pattern allows the view layer to use the model layer
directly. Although the ELP prototype in its current form doesn't require this functionality, it can be
useful for the final implementation. Two examples of the view layer using the model layer are the
request of message templates from a storage facility and the use of an administration containing
information about ELP identifier lookups for caching purposes.

The following three sections describe the functionality of the ELP prototype for every layer.

View Layer
The view layer of the ELP architecture consists of gates that take care of communication with
external participants, for example other transport companies, and internal parts, for example the
local information system of a transport company. In short, the view layer provides and internal and
external communication interface.

The external communication gate provides at least one method (SendMessage) that enables the
action manager to send a message to an external receiver. This method therefore requires two
parameters, namely the address (ELP Identifier) and the message. Regardless of the transport
that is going to be used to send the message, the messages sent by the action manager are
always formatted identically. The role of the view layer is to alter the presented information
(message) in such a way that it conforms the format that is expected and usable by its user, in this
case the receiver. Although no reformatting might be required, it can be used to introduce
functionality to be able to send messages according to, for example, RosettaNet message formats.

After the reformatting by the external communication gate it can be required for a specific transport
gate that the message needs to be reformatted again to comply with technical requirements of that
gate. An example of the latter reformatting is done by the SMTP gate that has to encode the

ELP - Extendible Logistics Protocol 115 / 170 M. Snoek - TU/e

WAN

HTTP
Gate

SOAP
Gate

SMTP
Gate

...
Gate

External communication gate

Internal communication gate
Message In-Queue

Action Manager

Local application

RPC
Gate

Session Handler

Message Out-Queue
Authentication

Handler
Replication

Handler
Synchronization

Handler

Business
Process
Handler

ELPNS
Service

Connection management
storage facility

Replication management
storage facility

B.P.
storage facility

V
ie

w
 la

ye
r

M
od

el
la

ye
r

Co
nt

ro
lle

r l
ay

er

OLE
Gate

Q106

Unicode XML message to Base64 due to the limited number of characters of the ASCII character
set that can be used within e-mail messages, namely 127 characters. Receiving messages is also
done by the transport specific gates and the external communication gate. Receiving a message
has exactly the reversed formatting process as sending a message.

It has been mentioned that an ELP identifier is used to address a message. The advantage of this
is that an ELP identifier is independent of the transport method used. This introduces separation of
concerns between the view- and the controller layer about message addressing, because the
controller layer can always use a single type of destination address regardless of the transport
method used. If the SendMessage method of the external communication gate is called using the
two arguments then it needs to lookup the ELP identifier from the ELP Name Service. The ELP
Name Service provides the external communication gate the information about possible transport
methods and requirements to use them. The ELP Name Service is described in more detail later
on in this chapter.

The following figure illustrates the sending and reformatting of the external communication part of
the view layer.

Figure 10.2 – sending a message using the external communication gate

If a message is received from one of the transport method specific gates then it ends up in the
message in-queue of the external communication interface. After the message is enqueued, an
event is called at the action manager to inform it about the presence of a received message. The
action manager can handle this message immediately, but it is also possible that it postpones the
handling of the message due to, for example, a high system load.

If a message can not be delivered to the intended receiver, this influences the flow of the current
business process or business logic used for replication. In these cases the session handler is
notified about this failure. The functionality of the session handler is described in more detail within
the paragraph about the controller layer.

Another part of the view layer is the internal communication interface. This interface functions as
anchor for existing applications to integrate ELP functionality. If ELP is used as middleware then
this interface can consist of Remote Procedure Calls. Naturally, if ELP is integrated more deeply
within an application then it can consist of interfaces that are more specific for the development
and system environment.

ELP - Extendible Logistics Protocol 116 / 170 M. Snoek - TU/e

→ Gate specif ic data including
the message

→ Ref ormatted message and
address inf ormation required

by the SMTP Gate

→ Message f rom
Ext. Comm. Gate
← Transport method

specif ic encoded
message

→ Lookup ELP Identif ier
← Lookup result including

inf ormation about the SMTP
transport method

→ Message f rom
Action Manager
← Ref ormatted

message using XSLT
translation

Action
Manager

External
communication

gate

ELPNS
Service

XSLT
Translation

SMTP
Gate

Message
Encoding

WAN

→ Message and the ELP
Identif ier

Controller
Layer

View
Layer

Q506

Controller layer
The controller layer consists of two sublayers, namely the Action Manager and its helpers. The
action manager is the the central communication part that performs several important tasks:

● Creation and initialization of all surrounding handlers and interfaces
● Creation and initialization of data storage facilities used by ELP
● Transfer received messages from the external communication interface to the session

handler
● Transfer messages that have to be sent to the external communication interface
● Trigger the resending of messages at the session handler
● Transfer received messages to the correct action handler (replication, synchronization and

business process)
● Transfer messages that have to be sent from the action handlers to the session out-queue
● Transfer messages from the internal communication interface to the correct action handler

and vice versa

An 'action' can be defined as communication between two or more nodes to implement a specific
functionality. Examples of actions are “Update object X at node Y” and “Add node Y to the
replication of object Z”.

In short, it can be said that the action manager functions as a coordinated intersection between all
its surrounding handlers and interfaces. The surrounding handlers are referred to as action
handlers.

Session Handler
The session handler takes care of the building of a session between two ELP nodes. Before the
two nodes can communicate with each other in a functional way ('action'), they first have to set up
a session. One node requests a session at the other node. This node can agree or disagree on the
set up of the session. There exists a separation of message categories, namely those that are
used to set up a session and those that are used within actions. The session handler knows which
messages are used to set up a session and the sequential order of them. However, the action
messages belong to functionality of one of the action handlers and the contents of them is out of
the scope of the session handler. In short, the session handler handles session messages by
initiating messages and sending replies, while it only functions as a gateway when it comes to
action messages.

The session handler records all the last incoming, outgoing and to-send (out-queue) messages of
the session. The action manager asks the session handler on a frequent basis for messages that
have to be sent, although this can also be done using events. These messages are handed over to
the external communication interface for further processing. An incoming message is stored for
every session together with the result of the event that was executed due to the contents of the
message.

The session handler takes care of retrying of already sent messages. The session handler stores
the last sent message for every session. If there is no response from the other node within a
certain amount of time then it resends the message. If a message is received twice by a node (a
node knows its last received message) then it sends a notification that the message has been
already received and that the retry attempts can stop. The session handler uses sequence
numbers for every non-session (i.e. action) message so that it can distinguish old from new
messages. If a message is delayed for a long time and a retry-message has already reached the
node then it can use the sequence number to know that it has received an outdated message.

If the session handler has successfully set-up session(s), which are required by the action
handlers, then it notifies the action manager which, in turn, notifies the correct action handler for
the active action waiting for the session(s). If authentication is required then this handler will be the

ELP - Extendible Logistics Protocol 117 / 170 M. Snoek - TU/e

authentication handler. If a session fails during the execution of a business process or replication
action, for example due to time-outs, then the action handler is notified in an analogous way so
that it can undo any temporary changes. Additionally, a session is automatically closed after a
certain time of inactivity, regardless of whether an action has finished successfully or not.

The main goal of a session is to provide an authenticated and reliable communication channel that
can be used by an action handler without them knowing anything about the underlying techniques
used. On the other hand, the session handler has no knowledge about the functionality that is
implemented using the sending and receiving of action messages.

Authentication Handler
The authentication handler is an action handler that takes care of the authentication of a session. If
a session requires authentication then the authentication handler tries to authenticate the session
using a password that is required for the other ELP node. If a session has been authenticated (or
failed) then it notifies the action manager that it can start the action that was waiting for the
authentication (or to abort it).

Replication Handler
The replication handler handles all messages that are involved in the building/destroying of
replication structures. This handler can add slaves to a replication or can accept to be a slave in
another replication. The following items are part of the replication handler functionality:

– Another master of a data structure would like the node to become a slave of a replication
– The node would like add another site to the replication
– The access control to data structures (assignment and revocation of write access)

Synchronization Handler
The synchronization handler handles all messages that are involved in the synchronization of a
data object. The synchronization handler must have the ability to receive a message from the
internal communication interface that tells this handler which data object is updated and should be
propagated. This handler also receives messages from the external communication interface that
can tell the synchronization handler to update certain data objects.

Business Process Handler
The business process handler takes care of the business processes supported by ELP. One of the
mentioned business processes is to inform other ELP users about the progress of the execution of
an order. To be able to this, it is assumed that there already exists replicated data that is used for
this purpose, see chapter 9. This replication is set-up by the replication handler and the
synchronization is controlled by the synchronization handler. To give a better total view on the,
previously described, helpers (handler) of the controller, the following example shows which task is
performed when the location of a transportable is changed.

First, the following basic assumption is made:
● Transportable X is a replicated object at nodes A and B where A is the master
● There doesn't exist any active session between the two nodes
● Authentication between the nodes is required and the authentication information is present
● Both nodes have an ELP identifier and a transport method that is supported by the other

node
● All messages between the nodes arrive normally (no delays or loss of messages, etc)

The scope of this example is node B that would like to change the location of transportable X. This
involves starting the business process to update the progress information. This business process is
started by a request to initiate it which is received through the internal communication gate by the
business process handler. This handler requests the update of the data of the transportable at the
synchronization handler. This handler is aware of the other nodes that are present in the

ELP - Extendible Logistics Protocol 118 / 170 M. Snoek - TU/e

replication; in this case only node A. It is emphasized that the business process handler simply
requests the update and the replication of it is not of any concern of this handler (principle of
separation of concerns).

The synchronization handler is aware of the fact that the data of transportable X is mastered by
node A and that the lazy master replication with group updates requires that the update is
performed at the master. To be able to this, a communication session has to be started between
node A and B. This session takes care of several aspects that the synchronization handler takes
for granted, such as the re-sending of messages if they are assumed to be lost. The
synchronization handler requests a session with node A at the session handler. The session
handler initiates this session with node A by sending a session request message to it. Node A
replies to this request with a message that authentication is required. The session handler now
requests the required authentication information for node A from the authentication handler.
Assuming that this information is provided, the session is created successfully and now functions
as a carrier for ELP messages.

The successful creation of the session is reported back to the synchronization handler that
requested it. The synchronization handler uses the session handler to send messages to node A
and received messages are passed through to the synchronization handler. This implies that the
session handler has to be aware of which helper is using a session and that the helper is aware of
which session it is using. For simplicity, within the prototype it is assumed that every helper only
performs one operation simultaneously and that only one session exists between two nodes. The
message types are simply used to forward received messages to the intended helper. After the
synchronization handler has updated the data of transportable X at node A (and therefore also
locally), it reports this result back to the business process handler that was still waiting for the
operation to be completed. This results in a successfully executed business process.

At this point the synchronization handler and the business process handler both respectively
finished their update operation and businesses process. The only thing left is the session between
node A and B. This session will be automatically closed by one of the session handlers after a
period of inactivity. This functionality saves the overhead of creating a new (authenticated) session
for every business process that frequently involve the same nodes.

Model layer
The model layer of the ELP prototype only consists of storage facilities for the controller layer to
request and store data that is used within the helpers of the controller layer. These storage
facilities typically consist of connections to database systems. The advantage of the model layer is
that the controller layer doesn't need to be aware of any database system specific properties such
as SQL dialects. Although the architecture presumes that several database systems are used, the
ELP prototype only has one database system, because this suffices the narrow scope of the ELP
prototype.

10.3 ELP Name Service
The previous paragraph mentioned the ELP Name Service (ELPNS) that is described by design
decision 6. The communication with this service is done by a special part of the view layer that
provides ELP identifier lookup functionality and is put on the same level as the HTTP, SOAP and
SMTP gates. The reason for this is that the result of an ELP identifier lookup defines which gate(s)
can be used by the external communication gate. This paragraph describes the ELP Name Service
in more detail.

The ELP Name Service is a service that provides a translation from an ELP identifier to one or
more possible transport methods and their required information that can be used to communicate
with the node identified by the identifier. The ELP Name Service is a centralized service that

ELP - Extendible Logistics Protocol 119 / 170 M. Snoek - TU/e

functions as a central registry of ELP users and their possibilities to communicate with each other.
If a node would like to communicate with another node then it looks up the communication
information at the ELP Name Service and chooses one of the possible communication methods.
An ELP identifier lookup consists of the following two steps:

1. A node sends a lookup request to the ELP Name Service
2. The ELP Name Service replies with a collection of transport methods and the required

information to be able to use each of these methods

A typical example of the ELP identifier is “gdx”. A lookup result of this identifier can, for example,
consist of two transport methods, namely a STMP transport method with an e-mail address as
required information and a HTTP transport method with a URL, that has http as scheme, and
POST as request method. Although a single URI or URL can initially be considered sufficient for
the two transport methods it has the disadvantage that these descriptors cannot always provide all
the required information such as the HTTP request method.

Sending and receiving the ELP identifier and its lookup information can also be done using multiple
transport methods, although, because of its centralized characteristics, these are considered static
and comparable to the Internet Root Name Servers [RootDNS].

Despite that the example of the ELP Name Service only provides information that is meant to be
used for ELP purposes, it is possible to extend the service and the example in such a way that it
provides a more generic lookup service that can better suite future requirements and thus
extension of the protocol. This additional functionality is easily added by introducing two extra
lookup parameters, in addition to the ELP identifier, that describe the service and version of which
information is requested.

ELP Name Service Architecture and design
The architecture of the ELP Name Service has many similarities with the ELP prototype
architecture. It is also based on the MVC pattern, but has fewer components.

Figure 10.3 – ELP Name Service architecture

An XML formatted lookup message is received by one of the specific transport method gates (TCP,
HTTP). This request contains three parameters, namely the ELP identifier, the service identifier
and the version of the service. The lookup is then passed through to the communication interface
that in its turn passes it through to the lookup handler. The lookup handler checks the syntax and
the presence of required fields of the received message. If one of these checks has a negative

ELP - Extendible Logistics Protocol 120 / 170 M. Snoek - TU/e

ELP Identifier
database

Communication Gate

TCP
Gate

HTTP
Gate

WAN

Lookup Handler

Co
nt

ro
lle

r
la

ye
r

V
ie

w
la

ye
r

M
od

el
la

ye
r

result then an error message is sent to the requester. It has to be pointed out that the lookup
message always is an XML formatted message containing the three parameters specified by a
XML Document Type Definition and that no translation is required.

If a correct lookup message is received then the lookup handler requests the transport methods
and their parameters from the database based on the received ELP identifier, service and version.
If the database contains no records for the requested lookup then an error message is sent to the
requester. If it does contain one or more records, that describe transport methods and their
parameters to communicate with the node represented by the ELP identifier, then these records
are used to create a reply containing this information. It should always be possible to give a reply
to a requester using the gate that the lookup was received from. A TCP or HTTP connection is
simply not closed after the lookup has been received and can therefore be used to send the reply.
If a lookup request is received using SMTP then there has to be a reply-to e-mail address in the
received message. The administration of which lookup request is received from which gate using
which transport method parameters is done by the communication gate, but it requires no
persistent storage, because a failure of the ELP Name Service during operation will simply result in
an error or time-out at the requester. The only possibility for the requester to lookup the ELP
identifier is to try again (later).

The ELP Name Service message definitions given in appendix I can be used to give the following
example of meta messages sent during an ELP identifier lookup.

The following lookup message is sent to the ELP Name Service including the three required
parameters:

<lookupRequest>
<service>ELP</service>
<serviceVersion>1.0.0</serviceVersion>
<identifier>gdx</identifier>

</lookupRequest>

The following message is the reply of the ELP Name Service. It includes the parameters of the
original lookup request for the requester to be able to map the reply to its request. This is required
when the lookup is done using some transport method, such as SMTP, that has no connection
state that can be used for this purpose.

<lookupResult>
<service>ELP</service>
<serviceVersion>1.0.0</serviceVersion>
<identifier>gdx</identifier>
<resultList>

<result>
<transportMethod>HTTP</transportMethod>
<transportParameters>

<URL>http://www.somedomain.tld/cgi-bin/elp/elp.cgi</URL>
<requestMethod>POST</requestMethod>

</transportParameters>
</result>
<result>

<transportMethod>SMTP</transportMethod>
<transportParameters>

<mailTo>elp@somedomain.tld</mailTo>
<transportParameters>

</result>
</resultList>

</lookupResult>

From the reply it can easily be concluded that the ELP user identified by ELP identifier 'gdx'
supports two transport methods to receive ELP messages.

ELP - Extendible Logistics Protocol 121 / 170 M. Snoek - TU/e

10.4 ELP Prototype Implementation
Using the MVC pattern, a start as been made to develop a prototype of ELP that supports the key
functionality mentioned earlier. The prototype is developed using Borland Delphi that can be
considered as an object oriented version of the pascal development language. Global Data
Exchange uses a source convention that has many similarities with the MVC design pattern. The
source convention is used to split source code into five multi-tier categories:

● Presentation Objects (Po): objects within this category are used by the User Interface
● Data Objects (Do): objects within this category are used for (persistent) storage and

communication
● Business logic Objects (Bo): objects within this category are used to process logic without

having state
● Entity Objects (Eo): objects within this category represent data entities
● Collector Objects (Co): objects within this category are used to create and link objects of

the other categories to form a single functional unit

Two of the five categories, namely Eo and Co, are not present within the MVC design pattern. The
main reason for this can be that objects within Eo are used by parts of all layers and that Co is
generally the glue to link the three layers. Two of the remaining three categories can directly be
mapped to the three layers, namely Po to View and Bo to Controller. The main difference between
the categories and the MVC design pattern is the part whereto communication belongs. The MVC
design pattern includes this into the View layer, but within the five categories it is part of Do that is
comparable to the Model layer.

The prototype consists of seven instances of (inherited) objects (excluding the entity objects):

● TCoActionManager: the ELP prototype collector objects. This objects creates, initializes
and links most of the other objects.

● TDoELPStorageFirebird (inherited from TDoELPStorageBase): the objects that can
retrieve/store entity objects from/to persistent storage (Firebird DBMS). Other DBMS can
easily be supported by inheriting from TDoELPStorageBase without having to change
TCoActionManager.

● TBoSessionHandler: the ELP session handler that takes care of sessions used for
communication.

● TBoActionHandlerReplication (inherited from TBoActionHandlerBase): this action
handler takes care of adding and removing nodes to the replication of an object. Other
action handlers are all inherited from TBoActionHandlerBase to provide a common
presentation to the TCoActionManager.

● TDoCommExt: the object that represents the external communication gate. It creates,
initializes and links the following Gate and NameService objects.

● TDoELPGateHTTP (inherited from TDoELPGateBase): the object that takes care of
sending and receiving messages using the HTTP transport method. Multiple transports can
easily be implemented by inheriting from TDoELPGateBase.

● TDoELPNameService: the object that can lookup ELP identifiers at the central ELP Name
Service.

The following figure represents the creation and initialization of each object where an arrow means
“creates and initializes”. Despite of communication being part of the Do category, the three layers
are clear.

ELP - Extendible Logistics Protocol 122 / 170 M. Snoek - TU/e

Figure 10.4 – Object Oriented representation of the prototype

The creation and initialization of the objects is done in the order indicated by steps in the following
table. If the 'Results in' of step X indicates that it initiates other steps then X is finished after the
steps it initiated.

Step Consist of Results in

1 Creation and initialization of TCoActionManager instance. Collector Object that initiates steps 1, 2, 6 and 7.

2 Creation and initialization of TDoELPStorageFirebird instance. Persistent storage is available.

3 Creation and initialization of TDoCommExt instance. External communication gate with the message in-queue.
It initiates steps 4 and 5.

4 Creation and initialization of TDoELPNameService instance. TDoCommExt is able to lookup ELP identifiers.

5 Creation and initialization of TDoELPGateHTTP instance. HTTP server and client. ELP message can be received
and enqueued (not yet processed).

6 Creation and initialization of TBoSessionHandler instance. Action handlers can request sessions that are required for
communication.

7 Creation and initialization of TBoActionHandlerReplication
instance.

Actions that add/remove nodes from to/from a replication
can be performed. It registered the ELP messages it
handles at the action manager.

8 The TCoActionManager instance enables its functionality to
start processing the in- and out-queue of messages.

ELP prototype is up-and-running.

Table 10.1 – ELP prototype object creation and initialization steps

The eight steps of table 10.1 are performed in such an order that it is not possible for an instance
to call methods of an object that was not yet created and initialized. Since this is only a prototype, it
is assumed that every component functions and keeps functioning after it is initialized. This
assumption can not be made for a non-prototype implementation, for example because a database
connection can fail during operation.

Some parts of figure 10.1 are not present in figure 10.4 and are not included because of the
simplicity of the prototype. Two parts that are not present are the internal communication gate and
the Business process handler. These parts are left out, because no real business process is
implemented and the key functions (add/remove a node and update an object) can be simulated
by calls from a temporary prototype object that simulates calls that would have been coming from
the internal communication gate. Two other part that are not present are the authentication and
synchronization handlers. This first is left out, because it is assumed that actions don't require to
authenticate themselves at other nodes. The latter is left out, because it is never implemented due
to time restrictions although it was originally planned to be implemented. Finally, the
TDoELPNameService isn't completely implemented, but supports the lookup of three ELP identifier
hard-coded what implies that the ELP Name Service is also not implemented.

As mentioned in the previous paragraph, the prototype is not completely implemented as planned
due to time restrictions that would have been exceeded. Nevertheless, the ELP prototype
implementation has several working parts. First, all steps of table 10.1 are performed successfully.
This results in an application that can send/receive messages (external communication gate) and
forward received messages to the correct handler (action manager). The session handler is

ELP - Extendible Logistics Protocol 123 / 170 M. Snoek - TU/e

TCoActionManagerTDoCommExt

TDoELPGateHTTP

TDoELPNameService

TBoSessionHandler

TBoActionHandlerReplication

TDoELPStorageFirebird

View Layer

Model Layer

Controller Layer

completely implemented, including resending of messages, providing a reliable communication
layer to the action handlers. The session handler uses the database provided by
TDoELPStorageFirebird to store information about, for example, last received messages and
session states. The action handler TBoActionHandlerReplication is unfortunately only partly
implemented. However, it is implemented so far that it supports sending and receiving
communication with two other nodes, using sessions that are provided by the session handler.
Since the sending and receiving of at least a few kind of action messages works, it can be
concluded that it is possible for all other action handlers to send and receive action messages.

10.5 Prototype retrospect
The first paragraph of this chapter defined five questions of which two are answered before the
designing the ELP prototype and three can be answered afterwards. This paragraph is a retrospect
on the prototype that focuses on answers to the final three questions.

The primary objective of the prototype was make a conclusion whether the theoretical approaches
and conclusions of chapter 7 through 9 can be used to implement the key functionality that
consisted of one of the business processes of chapter 6. Unfortunately, the prototype was not
finished which resulted in not being able to make this conclusion with a great certainty. However, it
is possible to draw some conclusions from the prototype design and the parts that are
implemented. The ELP implementation that can be designed and implemented using the
knowledge of the ELP prototype chapter is referred to as the full ELP implementation.

It can be concluded that the MVC design pattern is suitable for the implementation of the full ELP
implementation. All parts of the prototype can be split into exactly one of the three layers and there
are no indications that the full ELP implementation should have a different architecture. Also, the
MVC design pattern is suitable for implementations based on the Po, Bo, Do, etc coding
conventions that are used by Global Data Exchange.

The illustration of the ELP architecture shows that the parts of the view layer can easily be split
vertically into two separate sub-layers, namely the External and Internal Communication Gate. One
of the advantages if this is the principle of separation-of-concerns that enables split development,
testing and installations. In fact, it possible to split more parts of the architecture what can be used
to make a conclusion about the extendability and practical limitations of the architecture. This can
be done by splitting every layer into the category 'more than one can exist' or 'only one can exist'.
The parts of the architecture that belong to the first category are all parts except those that have
state, thus the parts in the model layer. Another part that has practical limitations is the throughput
of the “WAN cloud” with trivial reasons and solutions. From this it can be concluded that the ELP
architecture is limited by the capacity of the parts in the model layer, although it is clear these parts
can be separated physically. To be more precise, the transactions at the storage facilities, that
guarantee a single state for each object to the other parts of the ELP architecture, form the
bottleneck.

The performance of the ELP prototype could not be measured, because it wasn't finished. The
session handler however, is tested with 250 concurrent clients creating and ending sessions. This
test showed no performance issues at a AMD Athlon64 3200+ computer with 1.5 gigabyte RAM.
From this test and the knowledge about the architecture limitations, it can be concluded that
performance limitations do not play a key role as long as the parts of the full ELP implementation
are developed as separate units that are, apart from IPC, able to communicate with each other
over a network connection.

The implementation result of the prototype cannot be considered as an implementation that
already can be used for communication about business processes. The reason for this is that it
currently functions as a base that provides communication between nodes. The actual business

ELP - Extendible Logistics Protocol 124 / 170 M. Snoek - TU/e

processes that should be part of the key functionality are not implemented, because of the
absence of the business-, synchronization-, and replication handler. The prototype did show that it
is possible to send and receive “action messages” implying that as long as the functionality of all of
these handlers is based on synchronous communication there is no indication that the complete
prototype implementation would have failed. Unfortunately, the functionality of these handlers is
based on the contents of chapters 7 through 9 and these designs and decisions could not be
tested using the prototype.

Altogether, no real drawbacks of the ELP prototype design and implementation appeared, although
this is doesn't lead to a conclusion about the primary objective of the prototype.

10.6 Summary

The ELP prototype is designed using the Model-View-Controller design pattern separating
business logic, persistent storage and user interfaces. The key functionality that one would like to
be implemented is to add/remove nodes to/from a replication and to update an object
(synchronization). The ELP prototype has to be able to lookup ELP identifiers at the ELP Name
Service. The ELP Name Service is also designed using the MVC design pattern and provides the
functionality to lookup transport methods for a given ELP identifier. The ELP prototype is made
using the source code conventions of Global Data Exchange, separating objects into specific
categories, that have many similarities with the MVC design pattern layers.

The implementation of the prototype is not completely finished due to time restrictions. It does
however support functionality to send/receive message, build complete sessions and exchange
messages used for business processes. The key functionality is not completely implemented, but
fortunately time restriction was the only aspect that prevented it from being implemented.

ELP - Extendible Logistics Protocol 125 / 170 M. Snoek - TU/e

11 Discussion and conclusions

11.1 Introduction

This thesis considered many aspects about the design of an information system that provides
functionality to exchange information about the execution of transportation orders. Within this final
chapter all findings are drawn together, discussed and a conclusion is made. The first paragraph
focuses on the discussion of findings of chapter 2 to 9. Next, an answer is given to the research
question of chapter 3 followed by the conclusion of this thesis.

11.2 Discussion of findings
Within chapter 2 it is assumed that outsourcing transportation creates a financial benefit for both
client and transport company. This benefit is derived from the more flexible capacity and
specialization of a transport company by being able to use transportation means of other
companies. The benefits of outsourcing are assumed to be present in all modern industrialized
countries around the world. Although this seems to be very reasonable, a remark can be made by
the fact that outsourcing involves multiple companies that all would like to make a profit. This
implies the total profit made can be higher than if only one transportation company was involved,
which casts a doubt on the assumption that a financial benefit is created, especially for the client.
However, from the fact that outsourcing is so common within the courier industry it is concluded
that the financial benefit for at least these companies is present.

Chapter 3 and 4 focused at the questions of which functional requirements had to be met and
whether existing solutions already provided solutions that are suitable. This latter question is
answered negatively resulting in design decisions for the new ELP information system. A legitimate
question that can be asked is whether the introduction of an additional information is justified,
because this increases the number of existing solutions to six what is in contrast with the
background of ELP, namely increasing the exchange of information between transport information
systems. It seems to be trivial that the more solutions to choose from, the more different
“languages” will be spoken, which can in fact decrease the exchange of information. Although this
seems to be true, chapter 4 mentioned that there are two major aspects that are not supported by
existing solutions, namely accurate information for all participants and support for outsourcing
between transportation companies. Exactly these two aspects need to be supported by an
information system for the transportation industry to increase the financial and operational benefits.
From this it is concluded that a new information system is justified.

Chapter 6 introduced the business processes of transport companies and its application to the use
cases of chapter 5. In practice, not every transport company will have identical business processes
raising the question whether designing an information system using these processes creates a
solution for the majority of transport companies. This is assumed to be true, because the collapsed
business processes of paragraph 6.1 are based on those of the existing solutions of chapter 4,
such as requesting quotations and placing orders. Some of the existing solutions are mature
standards that have proved that these business processes are common for many companies.

One of the parts of this thesis that can seriously be doubted is whether the CDM of chapter 7 is
really suitable and as commonly applicable as its name suggests. The question whether the CDM
is really suitable as a model that can be used by introducing two-way mapping functions cannot be
answered positively or negatively, because this requires more research of existing transport
management systems and their data models. At least it is possible to create those mapping
functions for both software products of Global Data Exchange enabling the use of ELP and its
CDM for the majority of courier companies in The Netherlands. An additional positive aspect of the

ELP - Extendible Logistics Protocol 126 / 170 M. Snoek - TU/e

CDM is the possibility to extend it with proprietary attributes that introduce more flexibility.

Another interesting part of chapter 7 is the exchange of information and the rules that have to be
followed to make sure that every company or information system has up-to-date information. It can
be questioned whether these rules are always followed in practice or what happens if they aren't.
Although assumed that rules are followed, it can be a part of future work to create some kind of
certification or quality mark on implementations of ELP.

Chapter 8 mentioned the assumption of the Internet as communication means. Several reasons
are given to indicate why this assumption doesn't hold. However, chances of implementations
being based on transport methods that use the Internet seem to be quite high as shown by the
prototype of chapter 10 and the transport methods of RosettaNet. This raises the question
whether, for example, the routing methods of chapter 8 present useful information for ELP
implementations. Although this information is not required to create implementations of ELP that
use Internet-based transport methods, the assumption of chapter 9, that a communication network
based on the theory of chapter 8 exists, is based on this communication principle.

The comparison of replication techniques in chapter 9 showed that scalability had a best score of
mediocre and even lower for some of the techniques. Due to this it can be questioned whether
distributed database systems in fact provide a suitable propagation method for ELP. Although the
scalability of the techniques is one of the disadvantages, ELP fortunately has a practical limit on
the number of companies involved when an order is outsourced. Considering the outsourcing
between courier companies in The Netherlands (a few participants), it is not very likely that the
number of nodes within a replication exceeds the number where scalability problems can occur.

As far as the abbreviation ELP is concerned, the E of Extendible only plays a small role within the
CDM subject. However, if RosettaNet did have some support for custom business processes, the
term Extendible was in place for that existing solution. The supported business processes of
RosettaNet are very suitable as a basis for ELP and if future research defines the exact ELP
business processes, the term Extendible can become more valuable if ELP does supports custom
business processes.

11.3 Answer to the research question

This paragraph is dedicated to answering the research question. Although the research question is
quite general, it is possible to give an answer using the research that is done and described in this
thesis. Before answering the research question, it is repeated:

How can an information system be designed that provides general functionality to exchange
information about the execution of the transport of goods and give the possibility to extend it with
proprietary elements?

In the research question, three elements can be distinguished. The first element is the functionality
to exchange information. The second element is the subject about what information is exchanged
and the third element is the possibility to support proprietary elements within this exchange. From
this it is clear that 'exchange of information' is the key element in the research question.

The three elements can be used to answer the research question by answering the questions:

● What information is exchanged?
● How is this information exchanged?
● How can this exchange be extended to support proprietary elements?

ELP - Extendible Logistics Protocol 127 / 170 M. Snoek - TU/e

The information system, as meant by the research question, is called ELP which is an abbreviation
for Extendible Logistics Protocol. The information that is exchanged, is information that is required
during the business processes of transport companies. To provide an answer to the research
question, it has to be clear what the business processes of a transportation company are,
especially when orders are outsourced. By examining these business processes, the information
that is required to be exchanged can be extracted and modeled into a universal data model that is
suitable for many transport companies. This is why chapters 6 is dedicated to the subject of
business processes followed by chapter 7 that is dedicated to the Common Data Model.

Having a business processes model and the information that is required to be exchanged, the next
step is to actually exchange this information as indicated by the second element. To be able to
exchange information there has to be a way to communicate electronically. The main question
about communication is which participants communicate with each other when an order is
(repeatedly) outsourced? Chapter 8 provides several alternatives that enable participants to
communicate, without being limited to one assumption about restrictions on which participants are
allowed to communicate with, because solutions are given for many alternatives. The alternatives
have different advantages (and disadvantages) on the properties of the complexity of adding
nodes, the distance between nodes, the requirement of routing and the publishing of confidential
information. There exist correlations between these properties, for example, a low complexity of
adding nodes results in a higher distance between them and vice versa. Requirements that cannot
be realized at the same time are a low complexity of adding nodes and direct communication
channels, a low complexity of adding nodes and a distance of O(1), and only communication with
direct business partners and a distance lower than O(n). The introduction of “trusted nodes” and
“buffer nodes” increases security and reliability. All alternatives enable the participants to place
orders and receive progress information, independent of whether a company would only like to
communicate with its direct business partner or not.

It would be too strict to consider the second question only as a way to ask for communication
between participants. From the business processes and information to be exchanged, it became
clear that in fact many participants are using equal (shared) information that needs to be accurate
for all of them to execute their operational business processes as smooth as possible. To provide
this accuracy and the ability for each participant to make changes there has to be a technology
that provides propagation of updates and the prevention of conflicts. This is why chapter 9 is
dedicated to the subject of distributed databases as solution for these requirements. Apart from
providing the ability to make changes for every participant, it also provides a solution to prevent
participants from making (undesired) changes.

The third question involves an extension to the provided design elements of the information system
to exchange information. Unfortunately there exists no chapter that is dedicated to this
requirement, except for one paragraph about additional requirements and extension on attributes
of entities. However, the messages that are used for the business processes of chapter 6 are not
yet defined what enables the possibility to introduce specialized messages for custom business
processes. These custom business processes are not limited to, for example, order placing and
can therefore also be defined to exchange proprietary elements that are additions to the
predefined business processes. Although the third element is not provided by this thesis, the
design of ELP anticipated on this by leaving some additional future research on those subjects that
could provide it, for example the support for custom business processes and the suitability of the
CDM. This implies that this element is not excluded, but only not supported at this moment.

Designing an information system costs a lot of effort and it would be a waste of knowledge if no
existing solutions were analyzed. This is why (reusable) knowledge is obtained from a research of
existing solutions as provided by chapter 4. This obtained knowledge is used throughout chapters
6 to 10 to use many advantages and avoid many disadvantages. Overall it influenced the design of
ELP in such a way that is advised to keep the electronic messages for business processes close to
RosettaNets' message for (future) compatibility with one of the preferred existing solutions.

ELP - Extendible Logistics Protocol 128 / 170 M. Snoek - TU/e

11.4 Conclusion

The transportation of goods appears all over the world by road, rail and air. Especially in countries
with a high prosperity many goods are transported from manufacturers to the demanding
customers. Within transportation, the manufacturer, one or more transport companies and the
receiver are the main participants. Transport companies frequently outsource their orders, because
this brings in cost savings, more flexible capacity and the possibility to offer specializations that a
company itself can't. These companies use many different Transport Management Software (TMS)
products that are available for this large industry. These products enable them to create an
increase in efficiency, error prevention and service provided to their customers. The latter is mainly
achieved by offering accurate Track & Trace information. Existing software product barely offer
functionality to exchange information between transport companies in a common way. The main
question that can be asked is: how can the software product be altered to support the exchange of
information to also make use of the advantages of TMS products when an order is outsourced?

When outsourcing comes into place there exist business processes at more than one company
that require information to be exchanged, which can be done using Electronic Data Interchange
(EDI). Research on existing public EDI solutions showed that none of the existing solutions has
dedicated support for outsourcing and offering accurate progress information. This implies that
none of the existing solutions is suitable to answer the main question. The best suitable existing
solution, RosettaNet, doesn't support the possibility to extend it with custom functionality to add
these requirements. However, the electronic messages for business processes are suitable and in
line with the business processes of this thesis. Due to this, these electronic messages are
recommended to be used as initial concept for ELP and be completed where needed. This enables
instant support for many common business processes and utilizes the valuable knowledge and
semantics of the electronic message of these business processes. In short, it is recommended to
re-use as many aspects of RosettaNet as possible for ELP to benefit from the effort and knowledge
of the RosettaNet EDI standard.

The electronic messages of RosettaNet don't support all the data that is required to exchange data
when EDI is used for outsourcing of transport orders. To take care of this, it is required that these
data model requirements are prescribed in such a way they are compatible with as many TMS
products as possible. Considering that it is not likely that existing TMS products model the data
required for business processes equally, the Common Data Model of this thesis offers a suitable
model to ensure that these products represent data in electronic messages in a way that they can
all understand. Unfortunately, due to the fact that the CDM design is based on the products of
Global Data Exchange and RosettaNet, it is only possible to conclude that it is suitable for courier
companies, but not that it is suitable for a wider range of transport companies. This is why
additional research needs to be done to see whether its models of orders, goods, track and trace
information, etc are suitable to be mapped to and from other TMS product. This research can also
show whether the support for extending and requiring attributes is a valuable feature or that it is
not suitable in practice and therefore should be ignored.

To provide accurate progress information, fast and reliable communication means are desired. The
current penetration of broadband Internet connectivity in western countries is at such a high level
that this is considered a decent basis to provide a communication network for ELP. This takes
away several technical communication aspects such as routing. Possible (virtual) communication
networks of ELP participants can be split into two categories. The first category exists of small
communication networks that only consist of order placing/accepting pairs of participants (one-to-
one). The second category exists of all participants that can all directly send each other messages
(one-to-many, implying that they are aware of each other), because the Internet is considered a
suitable communication means. At this point it is not clear whether every participant will accept that
communication takes place between all participants due to, for example, confidentiality. This is
why, at this point, only the first category is assumed to be acceptable although this has negative

ELP - Extendible Logistics Protocol 129 / 170 M. Snoek - TU/e

consequences for the progress information provisioning for downstream nodes and possible
conflict during updates. Additional research can provide a better view on the acceptance of the
second category. This research can also provide information about the awareness of transport
companies what technical and operational consequences outsourcing can have, because the
business processes exceed company borders.

The supply of accurate progress information to all involved transport companies has many
similarities with distributed databases where also all nodes have equal information and changes
(progress) are propagated to all other nodes. Since one of the biggest barriers for distributed
databases is the increase of the number of nodes (scalability), it is concluded that the first category
of communication networks is an advantage for ELP. From the two suitable methods of replication
for ELP, lazy replication with master updates method is considered the most suitable. The reasons
for this that it is easier to implement and stays closer to the KISS principle. Although two-tier has
advantages when mobile nodes exist, it is recommended that they use their limited connectivity to
communicate with a buffer node that is part of the ELP lazy-master replication. The knowledge
about two-tier can still be used, because two-tier replication can be used between the mobile
device and the buffer node.

The ELP prototype introduced confidence about a design that can be used for a full ELP
implementation that uses the techniques described in this thesis. This is based on the assumption
that all communication is done in a synchronized way. Due to the conclusion that electronic
messages should stay close to RosettaNets' electronic messages, this assumption is considered
legitimate, because RosettaNet is based on synchronous communication. Another aspect of the
ELP prototype that is useful, is the ELP Name Service. The reason for this is that RosettaNet also
supports multiple transport methods, in line with the goal of the ELP Name Service.

The designs that are provided in this thesis offer a preliminary solution that can be used to answer
the main question. The advantages that transport companies can get from the use of information
technology as well as outsourcing can be combined into an even larger advantage. For this to
become reality, additional research needs to be done on existing TMS product data models (and
their support business processes) as well as on acceptance of (company border crossing)
business processes on the subject of communication and operational issues.

ELP - Extendible Logistics Protocol 130 / 170 M. Snoek - TU/e

12 Future research
Throughout this thesis there exist several subjects that require more attention in the future.
Examples of this are parts that are defined to be out of scope for now, possible problems that
might occur and additional research that need to be done on uncertainties. This chapter
summarizes these aspects that would create valuable additions that can be done in the future.

12.1 Functional requirements and business processes
Table 4.1 of chapter 4 defined a list of functional requirements that have a “low” of “very low”
importance and therefore left out of this thesis. This doesn't imply that they can be ignored. A part
of these functional requirements are about the negotiation, cancellation and reservation of orders.
At this moment these functional requirements are considered not to required by ELP, because it is
assumed that an order is always accepted and financial aspects are out of scope. Other functional
requirements that are not taken into consideration are those on the subject of management reports
and legal issues. To create a mature standard, future work should include these subjects.

Paragraph 6.3.1 introduced the problem of circular quotation requests. A given possible solution
that is given, is to use unique identifiers for transportables that need to be transported. This
enables transport companies to detect whether a circular quotation request appears. However, at
this point in the business process there doesn't exist any 'shared data' of the transportable what
can not stop a transport company to use new identifiers for each transportable and treat it as an
order that is not yet outsourced. Future research can provide a better technical solution or a set of
rules that includes that these unique identifiers are not allowed to be changed.

12.2 The Common Data Model
The CDM is primarily based on the two existing software products of Global Data Exchange. Next,
this model is altered to support logistic business processes of companies that are not dedicated to
the courier industry. It is assumed that the CDM provides a model that can be used to map
information from/to existing proprietary data models. Future research needs to be done to change
this assumption to a well founded conclusion.

The business processes of ELP cross company borders and therefore create more uncertainties
for companies that outsource orders. These uncertainties are related to operational and technical
obligations that participants have. To limit the uncertainties it can be valuable future work to
develop a certification or quality mark that can be assigned to implementations of ELP. This can
introduce more confidence, because participants' implementations guarantee that correct
information is transmitted and the set of rules is obeyed.

12.3 Exchanging information
The Common Data Model provides an extended model to describe information that is exchanged
during the business processes. However, this thesis doesn't describe any electronic message
aspects that are are used to conduct electronic business. Future research has to define these
messages where the messages of RosettaNet can be used as starting point. This research can
also include the introduction of messages that can be used to support custom business processes,
extending ELP with custom extensions.

Chapter 8 defined two categories for communication. No real conclusion is made about which
alternative provides the solution to be used, depending on whether communication with other, not
directly involved, participants is acceptable in practice. Future research can provide an answer to
this question. Fortunately, all described alternatives provide a communication network that can be
used to place orders and receive progress information.

ELP - Extendible Logistics Protocol 131 / 170 M. Snoek - TU/e

12.4 ELP Prototype
The ELP prototype assumes that it always in a successful state, what means that communication
means, resources and databases are always available and function flawless. It is trivial that this
assumption doesn't hold when an ELP implementation is used in a production environment. This
implies that a full ELP implementation must take this in consideration and support failures during
operation. An approach to this can be to introduce a special state property of the Action Manager
that is (indirectly) updated and consulted by the other components. For example, this property can
be used by components to halt correctly and re-initialize if useful.

ELP - Extendible Logistics Protocol 132 / 170 M. Snoek - TU/e

13 Appendix A – Subquestions index
The following table contains all the subquestions of chapter 3 together with a reference to a
paragraph in which the subquestion is answered and/or related to the context.

Identifier Subquestion Paragraph

Q001 Why would users like to exchange information? 4.1.1

Q002 Which business processes are the users involved in? 4.1.1

Q003 What information is going to be exchanged during the business processes? 6.2.1; 7.3.1

Q004 What responsibility during conducting business processes does every participant have and are these
responsibilities equally distributed?

4.1.2; 4.1.5; 5.1; 8.3;
8.4.2; 9.1.1

Q005 How valuable is an information system to exchange information to the participants? 2.2

Q006 How is the ownership of information organized? 9.6.2

Q007 What legal aspects, such as confidentiality, authentication and digital signatures, are involved in the business
processes?

4.1.6; 8.3; 9.1.1; 9.1.2

Q101 What solutions are currently available? 4.2

Q102 Is there any need for a new information system? 4.2.6

Q103 What is the maturity and acceptance of existing solutions? 4.2.6

Q104 Which properties of existing solutions are desired in a new information system? 4.2.7

Q105 Which desired properties of a new information system existing solutions not provide? 4.2.6; 4.2.7

Q106 How compatible should a new information system be with existing information systems? 4.2.6; 10.2

Q107 What barriers can be expected for a new information system to be accepted? 4.2.1; 4.2.6; 8.3

Q108 Which investments are required for a new information system compared to existing solutions? 4.2.6

Q109 What legal aspects, such as licenses and patents, are involved? 4.2.2

Q201 Is this system only applicable within the transportation industry? 2.2, 3.2

Q202 What extendability can be expected of ELP? 7.2.2

Q203 Is is possible to design the system in such a way that it provides functionality to exchange business process
information in general, for example by introducing multiple layers?

4.2.4; 4.2.6

Q204 How can the information system be designed to not strictly limit its participants to standard business processes
to increase acceptance and compatibility?

4.2.4; 4.2.7; 7.2.2.2

Q301 What are the requirements for availability, security, accuracy and performance of the exchange of information? 8.2; 8.3; 9.2; 9.3; 9.4.5

Q302 Is it possible that participants do not agree on the information they exchange and how can these conflict be
prevented or solved?

9.1.2; 9.3; 9.4.2; 9.4.3

Q303 How can a participant continue to work while not being able communicate with other participants and are there
any limitations to this?

9.2

Q304 How can it be prevented that all participants fully rely on the other participants being available? 9.4.3

Q401 Are business processes limited to an exact number of participants? 9.3

Q402 How can participants be added to business processes? 9.6.1

Q403 How is the responsibility organized when a participant would like to add another participant that is unknown to
the existing participants?

9.6.2

Q404 How are the rights and relationships between participants managed? 9.6.2

Q405 How is the administration of participants set-up? 9.6

Q406a Does every participant know about all other participants? 8.4.2

Q406b Is it required that every participant is able to communicate with all other participants for every business
process?

8.4.2

Q501 How is communication between participants set-up? 8.1

Q502 What kinds of communication means are suitable? 8.1

Q503 What are the consequences if the information system fails? 8.2; 9.3; 9.4.5

Q504 Which techniques can be used to exchange information between participants? 9.1.1

Q505 What are the consequences of different locale settings worldwide? 4.2.3

Q506 Is is possible to supply ELP functionality as middleware? 4.2.7; 10.2

Q507 Which existing technological standards can be used to simplify implementations and increase compatibility? 4.2.6

Q508 Are centralized external coordinators needed or can they be avoided? 8.3; 9.6.2

ELP - Extendible Logistics Protocol 133 / 170 M. Snoek - TU/e

14 Appendix B – EDIFACT and XML message comparison
The following example illustrates the difference in size of an EDIFACT message and a comparable
XML message that only consists of the second segment of the EDIFACT message [StylusStudio]:

EDIFACT XML
UNA:+.? '
UNB+UNOA:3+STYLUSSTUDIO:1+DATADIRECT:1+20051107:1159+6002'
UNH+SSDD1+ORDERS:D:03B:UN:EAN008'
BGM+220+BKOD99+9'
DTM+137:20051107:102'
NAD+BY+5412345000176::9'
NAD+SU+4012345000094::9'
LIN+1+1+0764569104:IB'
QTY+1:25'
FTX+AFM+1++XPath 2.0 Programmer?'s Reference'
LIN+2+1+0764569090:IB'
QTY+1:25'
FTX+AFM+1++XSLT 2.0 Programmer?'s Reference'
LIN+3+1+1861004656:IB'
QTY+1:16'
FTX+AFM+1++Java Server Programming'
LIN+4+1+0596006756:IB'
QTY+1:10'
FTX+AFM+1++Enterprise Service Bus'
UNS+S'
CNT+2:4'
UNT+22+SSDD1'
UNZ+1+6002'

<EDIFACT>
 <UNB>
 <UNB01>
 <UNB0101><!--0001: Syntax identifier-->UNOA<!--UN/ECE level A--></UNB0101>
 <UNB0102><!--0002: Syntax version number-->4<!--Version 4--></UNB0102>
 </UNB01>
 <UNB02>
 <UNB0201><!--0004: Interchange sender identification-->STYLUSSTUDIO</UNB0201>
 <UNB0202><!--0007: Identification code qualifier-->1<!--DUNS (Data Universal Numbering
System)--></UNB0202>
 </UNB02>
 <UNB03>
 <UNB0301><!--0010: Interchange recipient identification-->DATADIRECT</UNB0301>
 <UNB0302><!--0007: Identification code qualifier-->1<!--DUNS (Data Universal Numbering
System)--></UNB0302>
 </UNB03>
 <UNB04>
 <UNB0401><!--0017: Date-->20051107</UNB0401>
 <UNB0402><!--0019: Time-->1159</UNB0402>
 </UNB04>
 <UNB05><!--0020: INTERCHANGE CONTROL REFERENCE-->6002</UNB05>
 </UNB>
....

Table 14.1 – EDIFACT versus XML message

The first segment of the EDIFACT message is not present in the XML message, because it
describes special syntax characters within the EDIFACT message. The size of the EDIFACT
message compared to the size of the full XML message shows that in this example the relation is
approximately 9 to 100 (9%).

ELP - Extendible Logistics Protocol 134 / 170 M. Snoek - TU/e

15 Appendix C – Functional requirements and existing
solutions

Nr. Design decision Refers to existing
solution(s)

Refers to
requirement(s)

1. ELP supports, but should not be limited to, the
following standard business processes: 'Request
quote', 'Place order' and 'Provide status information'

RosettaNet,
EDIFACT, papiNet

RQFuncInf3,
RQFuncInf3,
RQFuncBus1,
RQFuncBus1,
RQFuncLeg1

11. ELP provides a data structure for entities required by
the standard business processes

PapiNet, RosettaNet RQFuncInf1,
RQFuncInf2,
RQFuncInf3,
RQFuncInf3,
RQFuncBus1,
RQFuncBus1,
RQFuncLeg1

Table 15.1 – functional requirements and existing solutions

ELP - Extendible Logistics Protocol 135 / 170 M. Snoek - TU/e

16 Appendix D - Brief Business Process Modeling Notation

The business process models that are given in this document are based on the Business Process
Modeling Notation Specification version 06-02-01 [BPMN]. This part of the appendix only describes
the modeling objects that are used within this document and doesn't supply a full description of the
BPMN specification. The figures and descriptions are figures and fragments taken from [BPMN].
The copyright of the figures and most of the text fragments belongs to the Object Management
Group [OMG].

Events
An event is something that “happens” during the course of a business process. These events affect
the flow of the process and usually have a cause (trigger) or an impact (result). Events are circles
with open centers to allow internal markers to differentiate different triggers or results. There are
three types of Events, based on when they affect the flow: Start, Intermediate, and End.

Object Description
Start

The Start Event indicates where a particular Process will start. In terms of
Sequence Flow, the Start Event starts the flow of the Process, and thus, will not
have any incoming Sequence Flow—no Sequence Flow can connect to a Start
Event.
Stop

As the name implies, the End Event indicates where a process will end. In terms of
Sequence Flow, the End Event ends the flow of the Process, and thus, will not
have any outgoing Sequence Flow—no Sequence Flow can connect from an End
Event.
Message start event

A message arrives from a participant and triggers the start of the Process.

Message intermediate event

A message arrives from a participant and triggers the Event. This causes the
Process to continue if it was waiting for the message, or changes the flow for
exception handling. In Normal Flow, Message Intermediate Events can be used for
sending messages to a participant. If used for exception handling it will change the
Normal Flow into an Exception Flow.
Timer intermediate event

A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that
will trigger the Event. If used within the main flow it acts as a delay mechanism. If
used for exception handling it will change the Normal Flow into an Exception Flow.
Within this document is only used to create an Exeception Flow.
Compensation intermediate event

This is used for compensation handling--both setting and performing compensation.
It call for compensation if the Event is part of a Normal Flow. It reacts to a named
compensation call when attached to the boundary of an activity.

ELP - Extendible Logistics Protocol 136 / 170 M. Snoek - TU/e

Object Description
Cancel intermediate event

This type of Intermediate Event is used within a Transaction Sub-Process. This
type of Event MUST be attached to the boundary of a Sub-Process. It SHALL be
triggered if a Cancel End Event is reached within the Transaction Sub-Process. It
also SHALL be triggered if a Transaction Protocol “Cancel” message has been
received while the Transaction is being performed.

Table 16.1 – BPMN events

Activities
An activity is a generic term for work that company performs. An activity can be atomic or non-
atomic (compound).

Activity Description
Task Object

A Task is an atomic activity that is included within a Process. A Task
is used when the work in the Process is not broken down to a finer
level of Process Model detail.
Multiple Instances

The task or sub process is executed by multiple instances. The task
or sub process must have a descriptor in the upper left corner
describing the instances.
Collapsed Sub Process

The details of the Sub-Process are not visible in the Diagram. A
“plus” sign in the lower-center of the shape indicates that the activity
is a Sub-Process and has a lower-level of detail.
Forking

BPMN uses the term “fork” to refer to the dividing of a path into two
or more parallel paths (also known as an AND-Split). It is a place in
the Process where activities can be performed concurrently, rather
than sequentially.

Associated Compensation

Some activities produce complex effects or specific outputs. If the
outcome is determined to be undesirable by some specified criteria
(such as an order being canceled), then it will be necessary to “undo”
the activities. This is done using a associated compensation that is
connected to an Activity using a compensation marker.

Table 16.2 – BPMN activities

ELP - Extendible Logistics Protocol 137 / 170 M. Snoek - TU/e

+

Gateways
A Gateway is used to control the divergence and convergence of multiple Sequence Flow. Thus, it
will determine branching, forking, merging, and joining of paths.

Gateway Description
Exclusive Gateway: Data-Based

This Decision represents a branching point where Alternatives are
based on conditional expressions contained within the outgoing
Sequence Flow. Only one of the Alternatives will be chosen.

Exclusive Gateway: Event-Based

This Decision represents a branching point where Alternatives are
based on an Event that occurs at that point in the Process. The specific
Event, usually the receipt of a Message, determines which of the paths
will be taken. Other types of Events can be used, such as Timer. Only
one of the Alternatives will be chosen.

Join Gateway

BPMN uses the term “join” to refer to the combining of two or more
parallel paths into one path (also known as an AND-Join or
synchronization). A Parallel (AND) Gateway is used to show the joining
of multiple Flow.

Table 16.3 – BPMN gateways

Sequence Flows
A Sequence Flow is used to show the order that activities will be performed in a Process.

Sequence Flow Description
Normal Flow

Normal Sequence Flow refers to the flow that originates from a Start
Event and continues through activities via alternative and parallel paths
until it ends
at an End Event.
Conditional Flow

A Sequence Flow can have condition expressions that are evaluated at
runtime to determine whether or not the flow will be used. If the
conditional flow is outgoing from an activity, then the Sequence Flow
will have a mini-diamond at the beginning of the line (see figure to the
right). If the conditional flow is outgoing from a Gateway, then the line
will not have a mini-diamond.
Default Flow

For Data-Based Exclusive Decisions or Inclusive Decisions, one type of
flow is the Default condition flow. This flow will be used only if all the

ELP - Extendible Logistics Protocol 138 / 170 M. Snoek - TU/e

\

Sequence Flow Description
other outgoing conditional flow is not true at runtime. These Sequence
Flow will have a diagonal slash will be added to the beginning of the
line.
Exception Flow

Exception Flow occurs outside the Normal Flow of the Process and is
based upon an Intermediate Event that occurs during the performance
of the Process.

Message Flow

A Message Flow is used to show the flow of messages between two
entities that are prepared to send and receive them. In BPMN, two
separate Pools in the Diagram will represent the two entities.
Compensation Flow

Compensation Association occurs outside the Normal Flow of the
Process and is based upon an event (a Cancel Intermediate Event) that
is triggered through the failure of a Transaction or a Compensate Event.
The target of the Association must be marked as a Compensation
Activity.

Table 16.4 – BPMN sequence flows

Other Objects
The following objects do not fit into one of the previous categories.

Object Description
Data Object

Data Objects do not have any direct effect on the Sequence Flow or
Message Flow of the Process, but they do provide information about
what activities require to be performed and/or what they produce.

Text Annotation

Text Annotations are a mechanism for a modeler to provide additional
information for the reader of a BPMN Diagram.
Pool

A Pool represents a Participant in a Process. It is also acts as a
“swimlane” and a graphical container for partitioning a set of activities
from other Pools, usually in the context of B2B situations.

Table 16.5 – BPMN other objects

ELP - Extendible Logistics Protocol 139 / 170 M. Snoek - TU/e

17 Appendix E – CDM illustrations

The CDM illustrations in chapter 7 use several elements that represent entities, their relations and
attributes. The basic elements that are used are described in this appendix to promote correct
interpretation of the ER diagrams.

An entity is drawn using a yellow rectangle that contains the name of the entity. There are two
kinds of entities, namely strong and weak entities. Weak entities are displayed using light yellow
rectangles:

Figure 17.1 – CDM entities

The relationship between two entities is given using a purple diamond shape rhombus. The
rhombus contains a verb that describes the relationship between the two relations. To be sure that
the verb is understood correctly, the relation between two entities is read from left-to-right and from
top-to-bottom.

Figure 17.2 – relations between CDM entities

In the examples above is a relation displayed that should be read as 'An item is owned by a
person.' where an item cannot exists without the ownership by a person. The number of relations,
such as one-to-many, is given using numbers next to the entities outgoing lines. The following
figure illustrates that an item is always owned by exactly one person and that one person can own
zero or more items. The figure also illustrates how attributes are drawn using orange ovals and
primary keys using a bold and underlined font. When an attribute is a discriminating attribute of a
weak entity set then it is displayed bold and underlined with a dotted line.

Figure 17.3 – attributes of CDM entities

All entities, attributes and relationships can be found in appendix J where they are described in
more detail like type information, limitations and default values. Each entity and attribute is a data
structure, whereas a rhombus figure tells how those data structures refer to each other. For
example, a one-to-many relation will result in a list data structure to enable multiple references to
instances of an equal data structure.

ELP - Extendible Logistics Protocol 140 / 170 M. Snoek - TU/e

Strong Entity Weak Entity

Item PersonOwnedBy

Item PersonOwnedBy
10..n

Gender

Name

18 Appendix F – Rules for outsourcing and exchanging data
Chapter 7 described outsourcing using transportables, holders and transholders. These data
elements and (multilevel) outsourcing can be combined into a list of rules. These are as follows:

(1) A transportable is always contained in one holder. The initial holder is the origin. The final
holder is the destination.

(2) A holder can be contained in another holder.

(3) A holder can contain zero or more transportables and/or holders.

(4) A holder can be a transportable.

(5) If a holder is also a transportable (transholder) then the holder hasn't got a fixed location.

(6) The location of a transportable is always the location of the holder by which it is contained in.

(7) If a holder is contained in another holder then the location of the holder is always the location of
the holder by which it is contained.

(8) If a transholder is delivered at the final location then the holder of the transportables that are
contained in the transholder is changed to the holder that contains the transholder.

(9) If (a part of) the transport of a transportable is outsourced then it should be assumed that the
transport is done successfully.

(10) If the Remaining Track (RT) is outsourced to a single transport company then this transport
company is responsible for the pick-up at the current location and the delivery at the destination.

(11) If the 'From' location of a TransportableTrack of a transportable is a location of a holder that is
owned by a transport company then that transport company can assume that, if the holder of the
transportable is not already that holder, the transportable will be delivered at that location and
therefore be contained in that holder.

(12) If the Remaining Track is outsourced to multiple transport companies then the linked tracks of
these transport companies form the RT. Every transport company is responsible for their part of
the RT.

(13) The transport or a part of the transport of a transportable can be outsourced to another
transport company whereby all the data of the transportable is supplied to the executing company.
Both transport companies can identify the transportable with the same identifier.

(14) If a transport company accepts the (outsourced) transport of a transportable from another
transport company then this transport company could also outsource the transport.

(15) If (a part of) the transport of a transportable is outsourced then there is a synchronization
mechanism that makes sure that the shared data of the transportable is synchronized if one of the
companies changes data of the transportable. Every company has to be part of this
synchronization mechanism and is obliged to use it.

(16) If a transport company changes the holder of a transportable to a transholder then this
transport company has the knowledge that the transportable is contained in the transholder. If the
location of the transholder changes then this company also changes the data of the transportable.

ELP - Extendible Logistics Protocol 141 / 170 M. Snoek - TU/e

These rules are used to create a description of outsourcing that refers to them to illustrate why
every rule is needed. This explanation is graphically illustrated by figure 7.9 because the
explanation itself can be confusing.

 “transport company” is abbreviated to “company”.

A transportable of a customer, that will be identified as transportable-1, needs to be transported
from the customer to a destination. Initially the holder of transportable-1 is the origin (1). The
customer places an order at company A to transport the transportable. A truck drives to the
customer to pick-up the transportable. At the moment that transportable-1 is picked-up, the holder
of transportable-1 changes to the truck and, because of (6), the location of the transportable is the
same as the location of the truck.

The next step is the arrival of the truck at the warehouse of company A. The transportable is now
unloaded from the truck and stored in the warehouse which affects a change of the holder of the
transportable. The holder of the transportable changes from the truck to the warehouse.

A manager at company A decides to outsource the remaining transport to the destination (13).
Company A has several transportables in its warehouse that need to be delivered in the same area
as transportable-1. The transportation planner at company A decides to send all these
transportables on a pallet to a local delivery company in that area: Company C. Company C should
do the transport from their warehouse to the destination. Company A places an order at company
C to transport transportable-1 from their warehouse to the destination. Due to (9) and (11)
company C waits for the transportable to arrive in their warehouse.

Because of (15), both Company A and Company C share data about transportable-1. If one of
these companies changes data of transportable-1 then it is updated at the other company (15).
This implies that if company C delivers the transportable then company A knows about it. If the
customer would like to know some information about the delivery process then he could just get in
contact with company A to get this information. The customer can't see that the transport is
outsourced and company A always has recent information about the transport of transportable-1.

Company A knows that the next step is to make sure that transportable-1 is delivered at the
warehouse of company C to accomplish (12). The pallet, that contains transportable-1, is a holder
that is going to be sent to company C (4) (5). This makes the pallet a transportable and a holder,
i.e. a transholder. At the moment that transportable-1 is put upon the pallet, the holder of
transportable-1 changes from the warehouse to the pallet (1). The holder of the pallet is the
warehouse (2) and therefore the location of the transportable is the location of the warehouse (6)
(7). Transportable-1 is currently on the pallet in the warehouse of company A. The pallet is
identified by Transportable-2. Company C knows (15) that transportable-1 is contained in
transportable-2.

Company A decides not to transport the pallet to company C their selves but to outsource the
transport to company B. Company B will transport transportable-2, that contains transportable-1,
from company A to company C which accomplishes (12). Company A places an order at company
B to transport transportable-2 to company C. Now both company A and company B share data
about transportable-2 (15).

Company B picks-up transportable-2 at company A. The holder of transportable-2 changes from
the warehouse of company A to the truck of company B. Because of (16), the location of
transportable-1 is changed because the location of transportable-2 changed. This is done by
company A because this company knows that transportable-1 is contained in transportable-2. The
change of the location could be mentioned by company C because of (15). It can be concluded
that every change of the location of transportable-2 will lead to a change of the location of

ELP - Extendible Logistics Protocol 142 / 170 M. Snoek - TU/e

transportable-1 and can be mentioned by all companies that share the data of transportable-1.

Transportable-2 is stored at the warehouse of company B and later transported to company C.
These steps also involve changes of the holder and the location of transportable-2, but this is not
described in detail as this is analogue to the previous paragraphs.

Finally transportable-2 arrives at company C, which is the final destination of transportable-2.
Company C knows the holder of transportable-1, namely the just arrived transportable-2. Due to
(8) the holder of transportable-1 changes to the warehouse of company C and this accomplishes
(11). Company C changes the holder of transportable-1 to the warehouse of company C and (15)
implies that this change will be known by company A. If transportable-1 is delivered at the
destination then the holder will change to the destination and a POD will be supplied. This
information is also known at company A (15) so company A knows that the transport is done.

ELP - Extendible Logistics Protocol 143 / 170 M. Snoek - TU/e

19 Appendix G - Routing methods in detail
Paragraph 8.4 referred to several routing methods that this appendix describes in more detail.

Flooding
The primary aspects of the flooding method is that every incoming message is sent to every other
communication channel except the one the message is received from. If cycles exist in the network
then it is possible that a message is sent around forever. To prevent this from happening a flood
damping method is needed, such as a hop counter contained in every message that is increased
by one when it passes a node. The message is not routed anymore if a maximum hop count is
reached. Flooding guarantees that the shortest path is used, because every possible path is used.
This also implies that the chance of successful delivery is very high, because, if enough paths
exist, the message will even arrive if suddenly one path fails. However, the huge amount of
message sent across the network is a price that has to be paid and it also doesn't make it suitable
for every situation.

Distance-vector routing
This method introduces a weight function, such as delay, for every (indirect) communication
channel from one node to another. First, every node determines the weight, that is put in its routing
table, to every neighbor. This information is sent to every neighbor at certain intervals. The
receiving node inserts this information into its routing table by updating existing routes and adding
new ones. This updated routing table is also sent to its neighbors et cetera. At a certain time, this
results in every node knowing one or more paths to every other node including the route to choose
with the lowest weight.

The number of messages is certainly lower than that of the flooding method and it also results
using the best path, i.e. the path with the lowest weight. However, it also has a disadvantage,
namely that the news of a failing path is not spread very quickly. This can lead to the 'Count to
Infinity' problem [Doyle] where, in case of a failure, a node uses an alternative route. This node
doesn't know that it is still on the best route paths of one of the nodes providing an alternative
route. However, the alternative route only has a bit higher weight and so it changes its route table.
This results in the nodes on the alternative route to also increases their weight to the failed node.
This process continues 'forever' and thus explaining the name of the problem. A limit on the weight
can stop this process.

Link state routing
This method uses properties of both flooding and distance-vector routing. First, every node
constructs a table containing only its neighbors and their weight function result. This table is spread
to all other node in the network by using flooding. Every node is now quickly able to calculate an
optimal route to every other node in the network and this information is updated frequently. The
quick distribution of routing information and the knowledge about the whole path prevents the
'Count to Infinity' from happening. The number of packets sent using this method is less than that
of flooding, because only routing information is flooded instead of every message. Apart from the
higher number of messages required, there also exists another disadvantage, namely that of aging
of the routing information being flooded. All routers ignore duplicates or older versions of routing
information they received from a specific node, where the version is represented by a counter.
When a router is rebooted then it starts again at version 0. If no automatic aging method is used
then the other routers will accept new routing information only after the same period of time the
router was running before it was rebooted; this usually is a long time. An automatic aging method
speeds up this process by putting a TTL (time to live) on every piece of routing information
received. Routing information from a rebooted router is ignored until the TTL has been reached of
its old routing information. This implies that normally every router has to flood routing information
again within the TTL to prevent its routing information from being deleted by other routers.

ELP - Extendible Logistics Protocol 144 / 170 M. Snoek - TU/e

Hierarchical routing
Hierarchical routing is a method that can be put on top of the two previous routing methods. This
method divides a large network of communicating nodes into more small ones that are connected.
This connection exists between an 'exit' and an 'entry' node (or vice versa depending on the
message destination) of two different networks. The advantage of this method is that every node
has a smaller routing table, because within one smaller network, each node only has to know the
'exit' node that has the best route to another smaller network. Disadvantages of this method are
the possible longer paths and the higher traffic load between an 'exit'-'entry' pair.

Instead of only creating a hierarchy on one level, it is also possible to introduce multiple levels
where every level consists of several smaller networks. This can easily be illustrated by the Dutch
telephony number assignments. Utrecht is a big city where all telephone numbers start with 030.
Several villages around Utrecht also have a telephone number that start with 03, but followed by a
1, 2, 3, etc and are connected to Utrecht. The numbering plan around Eindhoven is analogue using
telephone numbers that start with 04. Here its possible to identify multiple small networks that
appear on the same level but are not connected, namely the 03(...) and the 04(...) networks. One
network level higher, these networks are connected to each other. If a citizen from a village around
Eindhoven makes a phone call (sends a message) to a number starting with 033, the phone call is
routed through, sequentially, Eindhoven, Utrecht and the village near Utrecht. In a network with N
routers, the optimal number of levels is ln(N) where the average increase of the path length can be
neglected [Tanenbaum].

Multidestination routing
This method of routing distinguishes itself by messages that can have more than one destination.
A node that would like to send a message with the same contents to more than one destination
simply adds these destinations to it. If a router receives this message then it sends a copy of it to
all the outgoing communication channels for which it knows that at least one of the destinations
can be reached. If multiple destinations can be reached by the same outgoing communication
channel then these destinations are added to the message before it is sent. For example, if a
router has two outgoing communication channels to respectively nodes D,E,F and K,L,M and it
receives a message with destinations D,E,F,K,L and M then it makes two copies with destinations
D,E,F and K,L,M respectively. Multidestination routing is in fact an addition to another routing
method, such as distance-vector routing, to support messages with multiple destinations.

The multidestination routing method assumes that there already exists a network that can be used
for sending messages to a single destination, e.g. a network with distance vector routing. The
advantage of introducing the multidestination routing is that it reduces the number of messages
across the network when a node frequently has to send message to more than one destination. It
is trivial that sending these message to the destinations separately involves more messages.

ELP - Extendible Logistics Protocol 145 / 170 M. Snoek - TU/e

20 Appendix H - 2PC node extension (two-tier replication)

ELP - Extendible Logistics Protocol 146 / 170 M. Snoek - TU/e

Node A (Coord.) Node B Master M

AddNode(B,M,X)

Start of transaction T

SEND AddNode(A,B,X)

RECV AddNode_OK(A,B,X)

SEND

SEND

RECV AddNodeInit_OK(A,M,X)

AddNodeInit(A,M,X)

SENDAddNodeInit_OK(A,M,X)

AddNode_OK(A,B,X)

T completed, start 2PC

AddNode_OK(A,B,X)

AddNodeInit_OK(A,M,X)

Prepare(T)

SEND

SEND

Prepare(T)

Prepare(T) RECV Ready(T)

Ready(T)RECV

SEND

SENDReady(T)

Ready(T)

Received msgs; Commit(T)

SEND

SEND RECV Commit(T)RECV Commit(T)

RECV

SEND
Message and/or conclusion saved to stable
storage

Receiv ed message and/or conclusion
saved to stable storage

Node sends message

Message acceptor

Text reference point

Legend

End of T and 2PC

1

1

2

3

4

Figure 20.1 – adding a new
node using transaction T
and 2PC

Figure 22.1 contains the actions performed by the involved nodes where the order is from top to
bottom. Transaction T consists of the following messages:

AddNode(A,B,X): Request from A to the master to add B to the replication of X
AddNodeOK(B,M,X): Agreement on the AddNode request where X is the accurate value of X
AddNodeInit(A,M,X): Request to the new node from A to add X mastered by M
AddNodeInit_OK(A,M,X): Agreement on the AddNodeInit request adding the value of X
Prepare(T), Ready(T), Commit(T): Messages used by 2PC

First, node A checks whether M agrees on adding B to the replication of X. Master M replies
successfully to this using AddNodeOK that includes the most accurate value of X. This information
is saved to stable storage by A. The master stored the version of M to stable storage to know that
this is the version sent to node A. Next, node A checks whether B agrees on becoming part of the
replication of X mastered by M. Node B responses successful to this what is also saved to stable
storage by A. At this point, all nodes agreed on transaction T (the addition of B) and M knows the
version of B. These are exactly the properties of the conclusion.

The figure illustrates a successful completion of transaction T, but T can also fail. From reference
point 1 object X is locked by M to ensure that A receives the accurate version and that X cannot be
removed meanwhile by another transaction (isolation property of the ACID properties). The lock on
X cannot exist too long, because it might be blocking other transactions. Master M is able to abort
(and rollback) T immediately until reference point 2 in which it stores its decision to follow the final
decision of T made by A. Locks at the other nodes are ignored, because updates can only be
performed by the master.

At reference point 3, node A knows whether B and M agree on T. If either of those responded
earlier with a 'disagree' message then node A could abort (and rollback) T at all location by
sending an abort message at any time during T. It is also possible that A aborts the at reference
point 3 even if both nodes agreed on T. After reference point 3, the decision of A is stored to stable
storage and starts the commit of T by all nodes using 2PC.

The 2PC protocol starts with requesting whether all sites are (still) willing to commit T. The replies
to these requests are used to make the decision whether T is going to be committed. If one of the
nodes responded with an Abort(T) message to the Prepare(T) message then A sends an Abort(T)
to all nodes aborting T. If all of the nodes responded with a Commit(T) message then A can decide
to commit or abort T until reference point 4 in which it decision is saves to stable storage. This
implies that the fate of the transaction has been sealed. This is the reason why node B and master
M store their decision to follow A (at reference point 2). The Commit(T) messages after reference
point 4 could also have been Abort(T) messages if A decided to abort T.

The 2PC has a blocking problem when then transaction coordinator, node A, fails at a certain point
[Silberschatz]. This point is when it fails after saving Ready(T) to stable stores by B and M and
before receiving Commit(T) or Abort(T) by one of those. These nodes are now waiting for the final
decision of A, that will never be made or received, while they are not allowed to abort T locally at
this point. One solution to this problem is using Three Phase Commit (3PC) in which a new
transaction coordinator can be assigned dynamically if B and M are still available and able to
communicate with each other. An analogue solution might be to put an expiration-period on T after
which M becomes the new transaction coordinator if T reached a blocked state. If A eventually
becomes available again after the expiration-period has passed then it has to request the fate of
the T at M.

A final remark has to be made for the situation in which only two nodes are involved, for example
the master and a node it would like to add. This situation will especially occur within the first group
that follows the order scheme. The described method using T and 2PC will now consist of two
nodes an becomes less complex, but still suitable for the addition.

ELP - Extendible Logistics Protocol 147 / 170 M. Snoek - TU/e

21 Appendix I - ELP Name Service message definitions

The following example is based on the message definitions on the next page.

The following lookup message is sent to the ELP Name Service including the three required
parameters:

<lookupRequest>
<service>ELP</service>
<serviceVersion>1.0.0</serviceVersion>
<identifier>gdx</identifier>

</lookupRequest>

The following message is the reply of the ELP Name Service. It includes the parameters of the
original lookup request for the requester to be able to map the reply to its request. This is required
when the lookup is done using some transport method, such as SMTP, that has no connection
state that can be used for this purpose.

<lookupResult>
<service>ELP</service>
<serviceVersion>1.0.0</serviceVersion>
<identifier>gdx</identifier>
<resultList>

<result>
<transportMethod>HTTP</transportMethod>
<transportParameters>

<URL>http://www.somedomain.tld/cgi-bin/elp/elp.cgi</URL>
<requestMethod>POST</requestMethod>

</transportParameters>
</result>
<result>

<transportMethod>SMTP</transportMethod>
<transportParameters>

<mailTo>elp@somedomain.tld</mailTo>
<transportParameters>

</result>
</resultList>

</lookupResult>

From the reply it can easily be concluded that the ELP user identified by ELP identifier 'gdx'
supports two transport methods to receive ELP messages.

ELP - Extendible Logistics Protocol 148 / 170 M. Snoek - TU/e

ELP Name Service message definitions and technical details

There exist three different message that can be identified by their different root elements. These
root elements are lookupRequest, lookupResult and lookupError.

Messages

● Message: lookupRequest

Element Type Default Multiple Remarks
service Simple ASCII string, maximum

length is 128 characters
“” No, single

occurrence
required

The identifier of the
service. Currently
statically defined as
“ELP”.

serviceVersion Three decimals (>=0, <=255)
seperated with a single dot.

1.0.0 No, single
occurrence
required

The version of the
service. Currently
statically defined as
“1.0.0”.

identifier Simple ASCII string, maximum
length is 128 characters

“” No, single
occurrence
required

The ELP identifier

● Message: lookupResult

Element Type Default Multiple Remarks
service Simple ASCII string, maximum

length is 128 characters
“” No, single

occurrence
required

The identifier of the
service. Currently
statically defined as
“ELP”.

serviceVersion Three decimals (>=0, <=255)
seperated with a single dot.

1.0.0 No, single
occurrence
required

The version of the
service. Currently
statically defined as
“1.0.0”.

identifier Simple ASCII string, maximum
length is 128 characters

“” No, single
occurrence
required

The ELP identifier

resultList Element node 'resultList' N/A No, single
occurrence
required

Result list container
element

● Message: lookupError

Element Type Default Multiple Remarks
message Simple ASCII string, maximum

length is 255characters
“” No, single

occurrence
required

Describes the error
occurred.

number One decimals (>=1, <=255)
identifying the error

N/A No, single
occurrence
required

Error number (1=Syntax
Error, 2=ELP Identifier
not found)

ELP - Extendible Logistics Protocol 149 / 170 M. Snoek - TU/e

Elements

● Element: resultList

Element Type Default Multiple Remarks
result Element node 'result' N/A Yes, at

least one
required

Single result container
element

● Element: result

Element Type Default Multiple Remarks
transportMethod Simple ASCII string,

maximum length is 64
characters

“” No, single
occurrence
required

Transport method
identifier

transportParameters Element node
'transportparameters'

N/A No, zero or
one
occurrence
possible

Specific element
describing required
information for the
transport method

● Element: transportParameters

The transportParameters element consists of elements that are specific for the value of the
transportMethod element. This elements in fact consists of another XML based document. Two
possibilities are given below.

Elements of transportParameters when the value of transportMethod is ”HTTP”

Element Type Default Multiple Remarks
URL Simple constant String, maximum

length is 2048 characters
“” No, single

occurrence
required

Only “http” and “https”
schemes are valid.

method Simple constant String, based on
RFC 2616 request methods

POST No, single
occurrence
required

“POST” and “GET” are
the only valid methods.
“POST” is preferred.

Elements of transportParameters when the value of transportMethod is ”SMTP”

Element Type Default Multiple Remarks
mailTo Simple constant String, based on

RFC 2822 addr-spec specification
“” No, single

occurrence
required

E-mail address

TCP/IP gate

The ELP Name Service service provider can be reached using TCP/IP on the Internet. The default
port of this service is 6150. The host that provides the service is currently not defined as a
temporary implementation is used.

ELP - Extendible Logistics Protocol 150 / 170 M. Snoek - TU/e

22 Appendix J - CDM Entity Details
This appendix provides detailed information about the entities and attributes that are mentioned in chapter 7.

22.1 Base types and requirements
Every data structure of an entity is defined by a table that describes its attributes together with their types,
information about being required, default value and a description. First the base types and possibilities for
the 'required' columns used are defined.

Type Description
PosInt Positive integer within the range of 0 to 231-1

Int Integer within the range of -231 to 231-1

NegInt Negative integer within the range of -231 to -1

Float 32bit floating point value

String[x] String of maximum length x characters (Unicode)

Boolean Derived from Int. 0 is False, True otherwise.

UUID Universally Unique Identifier (OSF, version 4)

ISO-3166-1 Two character ISO country code (alpha-2)

ISO-8601 Date and/or time based on ISO-8601 standard. If a
type refers to ISO-8601 then it must indicate if date
and/or time is/are mentioned.

A date is represented as:
YYYY-MM-DD
Example: 2006-04-16

A time is represented as:
hh:mm:ss
Example: 13:04:10

The combination of date and time is represented as:
YYYY-MM-DDThh:mm:ss
Example:
2004-04-16T13:04:10

All dates and times are in UTC and therefore no time
zones are needed and daylight saving time is not
taken in consideration what means that all times are
in standard time.

List of ... An ordered list of the type indicated. The order is
indicated by the 'Index' attribute of type Int starting at
0.

The values of the 'required' columns of entities have one of the following abbreviations:

M: Mandatory
The attribute is mandatory and needs to be present. If an attribute is mandatory then the default value is
absent.

O: Optional
The attribute is optional and the user is free to provide this data of this attribute.

ELP - Extendible Logistics Protocol 151 / 170 M. Snoek - TU/e

A: Advised
The attribute is optional, but is it is highly recommended to provide the data for this attribute, even when this
implies the use of extra resources.

C: Conditional
The presence of this attribute depends on the presence or value of another attribute of the data structure.
The condition is given in the description column and must be able to be processed by an automated system.

22.2 Client entity
Term
A natural person or a company.

Definition
An entity that describes a person or institution created to conduct business or non-profit activities.

Description
A client would like to have transportables transported from one or more origins to one or more destinations.
A client can be a natural person, a company or an institute. A client requests a service or product by placing
an order at a company.

If the client is a company then it can also be a transport company that is outsourcing its business. This is
also the case if the company is a transportation broker. The transportation broker becomes the client of a
transport company or even another transportation broker.

Data structure

Attribute Type Req Default Description
ID UUID M N/A Identifier of the client.

Name String[50] M N/A Name of the client.

Address Address M N/A Address of the client.

Connectivity Connectivity M N/A Connectivity of the client.

CommerceNumber String[24] C “” Commerce number issued by the
Chamber of Commerce. If
CommerceCity or
CommerceCountry is given then
CommerceNumber has to be
given.

CommerceCity String[100] C “” City where the Chamber of
Commerce is settled. If a
CommerceCity is given then
CommerceCountry has to be
given as well.

CommerceCountry ISO-3166-1 C “” A country code of two characters.
If a CommerceCountry is given
then CommerceCity has to be
given as well.

TaxCode String[24] O “” Tax code issued by the
government

ContactPerson String[50] O “” The contactperson at the
company

ELP - Extendible Logistics Protocol 152 / 170 M. Snoek - TU/e

22.2.1 Additional attribute types of Client

Address

Term
Address

Definition
An entity that describes a fixed location on earth.

Description
An address expresses is a fixed location of a home, business or other building on the earth.

Data structure

Attribute Type Req Default Description
Street String[200] M N/A A streets' name

Number String[20] M N/A A number at the street

Premise String[200] O “” A premise

PostalCode String[50] O “” A postal code

City String[100] M N/A A city

State String[100] O “” A state

Country ISO-3166-1 M N/A A country

Connectivity

Term
Connectivity

Definition
Connectivity contains information how to reach a business or natural person using telecommunication.

Description
Connectivity contains information that can be used to communicate with another party over a distance.

Data structure

Attribute Type Req Default Description
Email String[320] O “” An email address with full domain

qualifier

Phone String[16] O “” A phone number as recommended by
ITU-T E.164 including the + prefix

Fax String[16] O “” A phone number as recommended by
ITU-T E.164 including the + prefix

Cellphone String[16] O “” A phone number as recommended by
ITU-T E.164 including the + prefix

Website String[2048] O “” An URL including the scheme name
(e.g. 'http')

ELP - Extendible Logistics Protocol 153 / 170 M. Snoek - TU/e

22.3 Order entity

Term
Order

Definition
A request from a client to a transportation company or transportation broker to transport transportables from
one or more origins to one or more destinations.

Description
An order is sent from a client to a transportation company or transportation broker. The client would like to
have some transportables transported from one location to another by the transportation company. The
transportables are picked up at one or more origins and are transported to one or more destinations. The
client has to present information about the origin(s) and destination(s). Also, the client has to give properties
of the transportables that have to be transported. These properties can include size, weight, time aspects,
etc. See the definition of transportables for all properties of a transportable.

Data structure

Attribute Type Req Default Description
ID UUID M N/A Identifier of the order

ClientID UUID M N/A Identifier of the client of the order

Moment ISO-8601 (date
and time)

M N/A The moment in time that the
order is received.

ReferencePerson String[100] O “” The name of the person that acts
as a reference at the client. If the
transportation company has any
questions about the order then
this person acts as
contactperson. The value of this
attribute is usually the attribute
'ContactPerson' of the Company
data structure.

22.4 Transportable entity

Term
Transportable

Definition
Transportables are all physical materials that can be transported from one location to another location.

Description
One transportable can contain one or more physical materials also referred to as goods. They can be in
every form, like raw, fluid, packet, parcels, etc. All transportables finally have a POP and POD which can
also be 'unknown'.

A transportable always has one origin and one final destination. A transportation company doesn't per se
pick up the transportable at the origin and deliver it at the final destination, i.e. the pick up and the delivery is
not done by the same transportation company. A transportable can be transported through a track of
locations. Every transportable therefore has a tracking list of locations where it has been stored (see holder).
Each of these intermediate storage activities can involve a POD.

ELP - Extendible Logistics Protocol 154 / 170 M. Snoek - TU/e

Data structure

Attribute Type Req Default Description
ID UUID M N/A Unique identifier

Holder UUID M N/A The holder where the transportable
is stored in or transported by

PartsQuantity Integer O 1 Describes the number of parts in the
transportable

Packing TransportablePacking M N/A Type of packing

LocationOrigin RouteLocation C NULL The location that gives the origin of
the transportable. At least the
LocationOrigin or the LocationReturn
must be given. If both attributes are
given then the LocationReturn
prevails for return.

LocationReturn RouteLocation C NULL In case the transportable could not
be delivered, it has to be returned to
this location. At least the
LocationOrigin or the LocationReturn
must be given. If both attributes are
given then the LocationReturn
prevails for return.

LocationNext RouteLocation O NULL The next location where the
transportable will to be delivered.
This could be a intermediate
location. If this attribute is not given
then it is not known what the next
location will be, i.e. it can be the final
destination but that it not sure.

LocationFinal RouteLocation M N/A The location where the transportable
finally needs to be delivered.

Dimension TransportableDimension O NULL A data structure that tells the
dimensions of the transportable.

ADR ADRInformation O NULL A data structure that gives
information about dangerous goods.

TemperatureRange TemperatureRange O NULL A data structure that gives a
temperature range wherein the
transportable needs to be
transported

Priority Int M 0 Priority in a range of -100 to +100.
-100 is the lowest possible priority, 0
is normal priority, +100 the highest
priority

Comment String[1024] O “” Arbitrary comment for the
transportable

ContentDescription String[1024] O “” Description of the contents of the
transportable

ContentValue Float C “” Value of the content of the
transportable. If this attribute is
present then the attribute
ContentValueConcurrency needs to
be present also.

ELP - Extendible Logistics Protocol 155 / 170 M. Snoek - TU/e

Attribute Type Req Default Description
ContentValueCurrency ISO-4217 Code C “” Three characters code of the

currency of the content value. If this
attribute is present then the attribute
ContentValue needs to be present
also.

Reference String[255] O “” A reference for the transportable that
is usually defined by the sender or
the receiver.

22.4.1 Additional attribute types of Transportable

TransportablePacking

Term
TransportablePacking

Definition
An enumerated type of packing where goods could be packed in.

Description
When transporting goods they are often packed in a kind of packing. This enumeration type gives common
kinds of packing.

Data structure

Packing Description
UNDEFINED Packaging unknown

ENVELOPE Postage envelope

PARCEL A parcel, usually packaging for several ordered items

ISOPALLET A pallet with goods, the pallet has dimensions 100x120x12 cm

EURPALLET A pallet with goods, the pallet has dimensions 80x120x12 cm

BAG A bag with goods, for example a postbag

BARREL A barrel, for example with fluid

TUBE A packaging that has a tubular shape

ISOCONTAINER A shipping container based on ISO container dimensions

BOX A packaging that is bigger than a parcel

RAW Raw materials, for example coal or grit

Route Location

Term
RouteLocation

Definition
A location on a route where a transportation company has to load or unload goods.

Description
A transportation company visits one or more location on a route to load or unload goods. Loading and

ELP - Extendible Logistics Protocol 156 / 170 M. Snoek - TU/e

unloading are referred to as a task that has to be performed at the location. The RouteLocation defines
where the goods have to be loaded or unloaded.

Every RouteLocation has a a list of time windows when the task is preferred to be executed. The
RouteLocation also has a time window when the task is scheduled by the transportation company to be
executed. Finally, the RouteLocation has a time window then the task is actually executed.

It is possible to add a instruction to the RouteLocation gives more specific information about the execution of
the task. If the task is executed then a POP (loading) or POD (unloading) is defined.

Data structure

Attribute Type Req Default Description
Company Client M N/A Information about the company

where the operation has to be
performed

TaskOperation TaskOperation M N/A Indicated the operation that
needs to be performed

TaskRequested List of TimeWindow A NULL Time windows that tell when the
operation is requested to be
performed

TaskEstimated TimeWindow O NULL The time window when the
operation is expected

TaskPlanned TimeWindow O NULL The time window when the
operation is planned.

TaskActual TimeWindow O NULL The time window when the
operation was done

Instruction String[1024] O “” Extra instructions for the
operation

Reference String[100] O “” A reference that is needed at the
location of Company.

POE ProofOfExecution O NULL POP or POD of the task. The
value of TaskOperation defines
whether the value of POE is a
POP or a POD.

Transportable Dimension

Term
TransportableDimension

Definition
Combination of values, that can be abbreviated by an enumerated attribute, for several units which combined
give information about the dimension of a transportable.

Description
A TransportableDimension gives information about the size of a transportable. It is possible to use standard
sizes as well as custom sizes. If a standard size is used then the Measurement, Height, Width, Depth,
Diameter, Liquid and Cubic attribute can be ignored. If a custom size is given using TransportableDimension
then the value of enumerated type Measurement indicates which other attributes are required.

ELP - Extendible Logistics Protocol 157 / 170 M. Snoek - TU/e

Data structure

Attribute Type Req Default Description
StandardSize StandardSize C NULL If a transportable has a standard size then it is not

needed to specify any dimensions. If it hasn't a
standard size then it needs to have dimensions.

Measurement Measurement C NULL Kind of measurement (cubic, etc). If a StandardSize
is given then this attribute is ignored.

Height Float C 0 Height of the transportable in meters. If a
StandardSize is given then this attribute is ignored.
This attribute is mandatory if the value of
Measurement indicates this.

Width Float C 0 Width of the transportable in meters. If a
StandardSize is given then this attribute is ignored.
This attribute is mandatory if the value of
Measurement indicates this.

Depth Float C 0 Depth of the transportable in meters. If a
StandardSize is given then this attribute is ignored.
This attribute is mandatory if the value of
Measurement indicates this.

Diameter Float C 0 Diameter of the transportable in meters. If a
StandardSize is given then this attribute is ignored.
This attribute is mandatory if the value of
Measurement indicates this.

Liquid Float C 0 Amount of liquid of the transportable in liters. If a
StandardSize is given then this attribute is ignored.
This attribute is mandatory if the value of
Measurement indicates this.

Cubic Float C 0 Cubic size of the transportable in square meters. If
a StandardSize is given then this attribute is
ignored. This attribute is mandatory if the value of
Measurement indicates this.

Weight Float O 0 Weight in kilogram

FixedOrientation Boolean O 0 If the transportable may only be rotated around the
vertical axis then it has a fixed orientation and
should the value be true. A glass of water is a
typical transportable with a fixed orientation.

ADR Information

Term
ADRInformation

Definition
European agreement for the identification of dangerous goods which are transported.

Description
ADR is an abbreviation for 'Accord européen relatif au transport international des marchandises
Dangereuses par Route' what is an identification system for dangerous goods. An ADR sign consists of two
attributes, namely the Kemler code and the Identification Number of the good given by the United Nations.

ELP - Extendible Logistics Protocol 158 / 170 M. Snoek - TU/e

Data structure

Attribute Type Req Default Description
KemlerCode String[4] M N/A The Kemler code of the ADR specification

UNNr String[4] M N/A The UN number of the ADR specification

Range of temperature

Term
TemperatureRange

Definition
A temperature range that consists of a minimum and a maximum temperature.

Description
A temperature range that consists of a minimum and a maximum temperature. If only a single temperature is
meant then the minimum temperature and the maximum temperature are equal. The minimum temperature
can never exceed the maximum temperature.

Data structure

Attribute Type Req Default Description
TemperatureMinimum Int M N/A Minimum temperature of the

range in degree Celcius

TemperatureMaximum Int M N/A Maximum temperature of the
range in degree Celcius

22.4.2 Additional attribute types of Transportable/RouteLocation

TaskOperation

Term
TaskOperation

Definition
Enumerated type that defines the operation of a task.

Description
Enumerated type that defines the operation of a task.

Data structure

TaskOperation Description
UNKNOWN Unknown task

LOAD Goods have to be loaded

UNLOAD Goods have to be unloaded

ELP - Extendible Logistics Protocol 159 / 170 M. Snoek - TU/e

Time Window

Term
TimeWindow

Definition
A time window that is defined by a starting and ending point.

Description
A TimeWindow describes a period in time. The ending point has to be the same or later in time than the
starting point. The time between the starting and ending point is the time window. If a single point in time is
meant then the starting and ending point are equal.

Data structure

Attribute Type Req Default Description
TimeBegin ISO-8601 (date and

time)
M N/A Begin of the time window

TimeEnd ISO-8601 (date and
time)

M N/A End of the time window

Proof Of Execution

Term
ProofOfExecution

Definition
Proof Of Execution is a proof of pick-up or delivery of goods.

Description
The Proof Of Execution has a name, moment in time and a signature of the natural person that approved the
pick-up or delivery.

Data structure

Attribute Type Req Default Description
Name String[50] M N/A Name of the person who signed

for the execution

Moment ISO-8601 (date
and time)

M N/A Moment of execution

Signature String[8192] M N/A Signature of execution, format
specification yet unknown

Standard sizes

Term
StandardSize

Definition
An enumerated type of sizes of transportables which are commonly known and usually recognized by a
standard organization.

ELP - Extendible Logistics Protocol 160 / 170 M. Snoek - TU/e

Description
A size of a transportable that is commonly known and usually recognized by a standard organization such as
ISO. Typical standard sizes are sea containers and pallets.

Data structure

StandardSize Description
ISOTAINER20H Shipping container of 20 ft length and 9 ft 6 height

ISOTAINER40H Shipping container of 40 ft length and 9 ft 6 height

ISOTAINER45H Shipping container of 45 ft length and 9 ft 6 height

ISOTAINER48H Shipping container of 48 ft length and 9 ft 6 height

ISOTAINER53H Shipping container of 53 ft length and 9 ft 6 height

ISOTAINER20L Shipping container of 20 ft length and 4 ft 3 height

ISOTAINER40L Shipping container of 40 ft length and 4 ft 3 height

ISOTAINER45L Shipping container of 45 ft length and 4 ft 3 height

ISOTAINER48L Shipping container of 48 ft length and 4 ft 3 height

ISOTAINER53L Shipping container of 53 ft length and 4 ft 3 height

ISOPALLET24 ISO Pallet (100x120x12 cm) with a maximum height of 24 inches including
pallet height

ISOPALLET36 ISO Pallet (100x120x12 cm) with a maximum height of 36 inches including
pallet height

ISOPALLET50 ISO Pallet (100x120x12 cm) with a maximum height of 50 inches including
pallet height

ISOPALLET70 ISO Pallet (100x120x12 cm) with a maximum height of 70 inches including
pallet height

ISOPALLET72 ISO Pallet (100x120x12 cm) with a maximum height of 72 inches including
pallet height

ISOPALLET77 ISO Pallet (100x120x12 cm) with a maximum height of 77 inches including
pallet height

ISOPALLET79 ISO Pallet (100x120x12 cm) with a maximum height of 79 inches including
pallet height

EURPALLET60 EUR Pallet (80x120x12 cm) with a maximum height of 60 centimetre
including pallet height

EURPALLET95 EUR Pallet (80x120x12 cm) with a maximum height of 95 centimetre
including pallet height

EURPALLET125 EUR Pallet (80x120x12 cm) with a maximum height of 125 centimetre
including pallet height

EURPALLET178 EUR Pallet (80x120x12 cm) with a maximum height of 178 centimetre
including pallet height

EURPALLET185 EUR Pallet (80x120x12 cm) with a maximum height of 185 centimetre
including pallet height

EURPALLET190 EUR Pallet (80x120x12 cm) with a maximum height of 190 centimetre
including pallet height

EURPALLET200 EUR Pallet (80x120x12 cm) with a maximum height of 200 centimetre
including pallet height

ULD2C Unit Load Device (aircraft) container of 120 ft3 / 3.4 m3

ULD3C Unit Load Device (aircraft) container of 153 ft3 / 4.3 m3

ELP - Extendible Logistics Protocol 161 / 170 M. Snoek - TU/e

StandardSize Description
ULD6C Unit Load Device (aircraft) container of 316 ft3 / 8.8 m3

ULD8C Unit Load Device (aircraft) container of 243 ft3 / 6.9 m3

ULD11C Unit Load Device (aircraft) container of 253 ft3 / 7.2 m3

ULD8P Unit Load Device (aircraft) pallet of 243 ft3 / 6.9 m3

ULD11P Unit Load Device (aircraft) pallet of 253 ft3 / 7.2 m3

Measurement

Term
Measurement

Definition
Measurement is an enumerated type that indicates which values are required to define a specific dimension.

Description
There are different kind of dimensions such as cubic meters for coals and the combination of diameter and
height for a coil. Measurement indicates which kind of dimension is given and what attributes are required for
that kind of dimension.

Data structure

Measurement Description Required size attributes
CUBIC The volume is given by the size Cubic

HWD The Height, Width and Depth are given by the
size

Height, Width Depth

DH The Diameter and Height are given by the size Diameter, Height

LIQUID The amount of fluid is given by the size Liquid

22.5 TransportableTrack entity

Term
TransportableTrack

Definition
A (part of a) route of a transportable that has no influence on the original location or final destination.

Description
The data structure of a transportable practically only contains information about the origin, destination and
history. To give information about a part of the track of the transportable it is possible use
TransportableTrack. If a transport company only needs to do a part of whole transport track then a
TransportableTrack can be added to a transportable. This information cannot be included in Transportable,
because a track differs for every transport company involved in the whole transportation process while the
information about the transportable is equal.

ELP - Extendible Logistics Protocol 162 / 170 M. Snoek - TU/e

Data structure

Attribute Type Req Default Description
TransportableID UUID M N/A Identifier of the transportable where this

track is attached to.

LocationFrom RouteLocation O NULL Location where the transportable needs to
be picked up if differtent from
LocationOrigin

LocationNext RouteLocation O NULL Location where the transportable needs to
be delivered if different from LocationFinal

LocationReturn RouteLocation O NULL Location where the transportable needs to
be returned if different from LocationReturn
of the transportable.

22.6 LocationMoment entity

Term
LocationMoment

Definition
A LocationMoment defines a moment that a transportable was at a specific location.

Description
The LocationMoment data structure is used to describe a specific location with a reference to a
transportable. This defines the moment that the transportable was physically at that location at that moment.
Optionally a reference to a holder can be given to be able to provide more information about the location.

Data structure

Attribute Type Req Default Description
TransportableID UUID M N/A Identifier of the transportable where this

LocationMoment refers to.

Location Location M N/A Geographic coordinates or address to
uniquely identify the location on earth. The
value of this attribute indicates where the
transportable was located.

Moment ISO-8601 (date
and time)

M N/A Moment that the transportable was at the
location

HolderID UUID O NULL Holder entity that can provide more
information about the location.

22.6.1 Additional attribute types of LocationMoment

Location

Term
Location

Definition
A location consists of a GeoLocation, an Address or both with the purpose to uniquely identify a fixed
location on earth.

ELP - Extendible Logistics Protocol 163 / 170 M. Snoek - TU/e

Description
Both an address and the combination of longitude and latitude can identify a fixed location on earth.
Sometimes it could not be known what the address is, but it isn't known what the coordinates are. The
opposite could also occur. It is sure that a Location attribute will uniquely identify a location on earth although
it is not sure whether this is done by a coordinate and/or a address. If both an address and coordinates are
given they have to identify the same location on earth.

Data structure

Attribute Type Req Default Description
Address Address C NULL An address that identifies a location. Either the

Address attribute or the GeoLocation attribute
needs to be given. Both are only allowed if they
identify the same location.

GeoLocation GeoLocation C NULL A coordinate on earth that identifies a location.
Either the Address attribute or the GeoLocation
attribute needs to be given. Both are only
allowed if they identify the same location.

GeoLocation

Term
GeoLocation

Definition
A GeoLocation is the location on earth in decimal degrees based on WGS84.

Description
A GeoLocation consists of two floating point numbers. These numbers tell the latitude and the longitude in
decimal degrees.

Data structure

Attribute Type Req Default Description
Latitude Float M N/A Latitude coordinate North

Longitude Float M N/A Longitude coordinate East

22.7 Holder entity

Term
Holder

Definition
A holder is a resource that contains one or more transportables or other holders.

Description
A holder has a fixed or variable location and contains transportables or other holders. Typical examples of
holders are warehouses, vehicles, persons, shipping containers and pallets. All these holders contain
transportables. A holder is a long-lived resource.

Every holder can be contained by another holder. Typical example of this is a pallet that is contained by a
vehicle. The location of the vehicle is therefore the location of the pallet.

ELP - Extendible Logistics Protocol 164 / 170 M. Snoek - TU/e

Data structure

Attribute Type Req Default Description
ID UUID M N/A Unique identifier of the holder

Category HolderCategory M OTHER Category of the holder

Subcategory HolderSubcategory M OTHER Subcategory of the holder

Description String[150] O “” A description of the holder.

FixedLocation Boolean M N/A True if a holder is always at the same
location (like a building). False if a holder
can move (like a car).

Location Location M NULL Geographic coordinates or address to
uniquely identify the location on earth. The
value of this attribute indicates where the
holder is located.

22.7.1 Additional attribute types of Holder

Holder Category

Term
HolderCatergory

Definition
An enumerated type that gives the category of a holder.

Description
An enumerated type that gives the category of a holder.

Data structure

Categorie Description
OTHER Not defined or unknown category

BUILDING The holder is a building like a warehouse or a
storage facility

PERSON A natural person

ROADTRANSPORT Means of transport that drives on roads like trucks.

WATERTRANSPORT Means of transport that goes over water like boats.

AIRTRANSPORT Means of transport that goes through the air like an
aircraft.

RAILTRANSPORT Means of transport that drives on a track like trains.

ENCAPSULATION The holder is used for encapsulation of other
holders/transportables like shipping containers.

SPECIAL Special predefined holder in the transportation
proces

ELP - Extendible Logistics Protocol 165 / 170 M. Snoek - TU/e

Holder Subcategory

Term
HolderSubcategory

Definition
An enumerated type that identifies a subcategory of a category of a holder.

Description
A holder belongs to a category and a subcategory. Categories are more general than subcategories.

Data structure

Subcategory Category Description
OTHER OTHER A subcategory that is not defined or unknown

STORAGEROOM BUILDING 'Small' size part of a building used for storage

DEPOT BUILDING 'Medium' size building or large part of a building for
storage

WAREHOUSE BUILDING 'Big' size building completely dedicated to storage of
goods

PERSON PERSON A human person that can carry a transportable, for
example a mailman

CAR ROADTRANSPORT A passenger car used for transport

SMALLCARGOVAN ROADTRANSPORT A small cargo van where the cargo space is not
separated from the driver for example a Volkswagen
Caddy

CARGOVAN ROADTRANSPORT A cargo van with a bigger cargo space that is usually
separated from the driver, for example a Mercedes Vito
or a Ford E350

BIGCARGOVAN ROADTRANSPORT A cargo van that is longer and higher than a cargo van,
for example a Mercedes Sprinter or Volkwagen LT

CUBEVAN ROADTRANSPORT A van with a specially build up cargo space that is cube-
shaped

STEPVAN ROADTRANSPORT A special cargo van with the size of a cargo van or a big
cargo van that has a special door that makes it easy to
step in and out of the car

STRAIGHTTRUCK ROADTRANSPORT A truck where the cabin and the cargo space can not be
separated

TRAILER ROADTRANSPORT A trailer that is part of a tractor trailer combination

PICKUPTRUCK ROADTRANSPORT A truck with a separate cabin en cargo bed of few square
meters. The cargo bed is surrounded by short rigid sides
and an opening rear gate.

BIKE ROADTRANSPORT A cycle

MOTORCYCLE ROADTRANSPORT A motorcycle

GONDOLACAR RAILTRANSPORT An open railroad car for raw materials

BOXCAR RAILTRANSPORT A closed railroad car that carries general freight

FLATCAR RAILTRANSPORT A flat and open railroad car for example for transporting
wood or other freight that would not fit in a flatcar. These
cars are also used for transporting sea containers.

ELP - Extendible Logistics Protocol 166 / 170 M. Snoek - TU/e

Subcategory Category Description
HOPPERCAR RAILTRANSPORT An open railroad car like a gondola car with special

openings at the bottom or sides to load/unload

TANKCAR RAILTRANSPORT A railroad car to transport liquefied loads

STOCKCAR RAILTRANSPORT A railroad car to transport livestock

CONTAINERWELLCAR RAILTRANSPORT A railroad car made for the transport of sea containers.
The container is placed in a gondola that is very close to
the rail. This lowers the point of gravity and enabled
double-stacking of containers.

COILCAR RAILTRANSPORT A railroad car specialized for coils like steel coils

ROADRAILERCAR RAILTRANSPORT A railroad car specialized for loading trailers of tractor
trailer combinations

CARGOPLANE AIRTRANSPORT A specialized plane for transporting cargo

CIVILPLANE AIRTRANSPORT A plane that is used for civilian as well as cargo
transports

BARGE WATERTRANSPORT A cargo ship that goes inland

BULKCARRIER WATERTRANSPORT A cargo sea ship

CONTAINERSHIP WATERTRANSPORT A cargo sea ship that is specially made for the
transportation of sea containers

TANKER WATERTRANSPORT A sea ship that is specially made for the transport of
fluids, most likely oil

ISOCONTAINER ENCAPSULATION A shipping container based on ISO container dimensions

ORIGIN SPECIAL The origin where the goods are coming from

DESTINATION SPECIAL The final destination of the goods

LOST SPECIAL The goods are lost

LOSTANDTRACKING SPECIAL The goods are lost but at this moment there is an active
tracking process to find the goods.

ELP - Extendible Logistics Protocol 167 / 170 M. Snoek - TU/e

23 Bibliography

[Alpern et al.] Recognizing safety and liveness, Bowen Alpern, Fred B. Schneider, Cornell
University; 1986

[ANSIX12] American National Standards Institute ASC X12 standard; http://www.x12.org

[BPMN] Business Process Modeling Notation, http://www.bpmn.org/

[Borysowich] Prototyping: Types of Prototypes; Craig Borysowich; Imagination Edge Inc; 2007;
http://it.toolbox.com/blogs/enterprise-solutions/prototyping-types-of-prototypes-14927

[Caldwell] Graph Theory Glossery; Dr. Chris K. Caldwall; University of Tennessee; 1995

[Camarinha] Distributed database overview; Prof. L.M. Camarinha-Matos; UNINOVA – New
University of Lisbon; http://www.uninova.pt/~cam/is/ddb.doc

[CourierExchange] Transport Exchange Group LTD; 80 Scrubs Lane; London; UK;
http://www.courierexchange.co.uk/

[CoverPages-RN] RosettaNet Technology Report; Robin Cover; Cover Pages and OASIS; 2004;
http://xml.coverpages.org/rosettaNet.html

[Dahlin et al.] Data Synchronization for Distributed Simulations, Mike Dahlin, Aslan Brooke,
Muralidhar Narasimhan, Bruce Porter, University of Texas; 2001

[DHL-EDI] DHL Logbook; Electronic Data Interchange; http://www.dhl-
discoverlogistics.com/cms/en/course/technologies/connection/edi.jsp

[Doyle] Foundations of Computer Networking; Dr. John F Doyle; Indiana University Southeast; fall
2007; B438 Syllabus

[ebXML] Electronic business Extensible Markup Language; Suit of specifications to conduct
business over the Internet; http://www.ebxml.org

[ebXML-RS] ebXML Requirement Specification version 1.0.6; Michael C. Rawlins et al.;
UN/CEFACT and OASIS; 2001

[ebXML-TAS] ebXML Technical Architecture Specification version 1.0.4; Anders Grangeard et al.;
UN/CEFACT and OASIS; 2001

[EDIFACT] Electronic Data Interchange for Administration, Commerce and Transport; UNECE;
http://www.unece.org/trade/untdid/welcome.htm

[EDIFICE] European User Group for the Electronics Industry; European RosettaNet User Group;
http://www.edifice.org/

[ELPIF-patent] United States Patent 20030191677 ; filed March 27th 2002; published October 9th

2003; http://www.freepatentsonline.com/y2003/0191677.html

[freebxml] freebXML, a royalty-free open source ebXML registry project;
http://ebxmlrr.sourceforge.net/

ELP - Extendible Logistics Protocol 168 / 170 M. Snoek - TU/e

http://www.x12.org/
http://ebxmlrr.sourceforge.net/
http://www.freepatentsonline.com/y2003/0191677.html
http://www.edifice.org/
http://www.unece.org/trade/untdid/welcome.htm
http://www.ebxml.org/
http://www.dhl-discoverlogistics.com/cms/en/course/technologies/connection/edi.jsp
http://www.dhl-discoverlogistics.com/cms/en/course/technologies/connection/edi.jsp
http://xml.coverpages.org/rosettaNet.html
http://www.courierexchange.co.uk/
http://www.uninova.pt/~cam/is/ddb.doc
http://it.toolbox.com/blogs/enterprise-solutions/prototyping-types-of-prototypes-14927
http://www.bpmn.org/

[Gray et al.] The dangers of Replication and a Solution, Jim Gray, Pat Helland, Microsoft; Patrick
O'Neil, UMB; Dennis Shasha, NYU; 1996

[Greenwald et al.] Agreeing to Agree: Conflict Resolution for Optimistically Replicated Data,
Michael B. Greenwald, Sanjeev Khanna, Keshav Kunal, Benjamin C. Pierce, Alan Schmitt, DISC;
2006

[Intellicom] Intellicom B.V.; Aalsmeerweg 79; Amsterdam; NL; http://www.intellicom.nl/

[ISO] International Organization for Standardization; Located in Geneva Switzerland;
http://www.iso.org/iso/search.htm?qt=&searchSubmit=Search

[ke7] Distributed Processing and Distributed Databases; King Edward VII School; United Kingdom
http://learningat.ke7.org.uk/itweb/year13/distproc2.htm

[Koolwaaij] XML Hype of Hoop?; Johan Koolwaaij; Telematica Institute; 2000;
https://doc.telin.nl/dsweb/Get/File-10901/XML%20hype%20of%20hoop%20(Ned).ppt

[Linz] An Introduction to Formal Languages and Automata, 2nd edition, Peter Linz, University of
California; 1997

[MVC-pattern] Model-View-Controller design pattern; Java Blueprints; Sun Microsystems;
http://java.sun.com/blueprints/patterns/MVC-detailed.html

[OASIS] Organization for the Advancement of Structured Information Standards; http://www.oasis-
open.org

[OMG] Object Management Group, http://www.omg.org/

[papiNet] Paper Industry Network providing a standard for automation between these companies;
http://www.papinet.org

[papiNet-v230] Paper Industry Network messages for electronic communication version 2.30;
http://www.papinet.org/index.php?id=101

[PCMagGateway] PC Magazine, the independent guide to technology;
http://www.pcmag.com/encyclopedia_term/0,2542,t=gateway&i=43670,00.asp ; spring 2008

[Reenskaug] The original MVC reports; Trygve Reenskaug; University of Oslo; 1979;
http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf

[RootDNS] Internet Root nameservers; http://en.wikipedia.org/wiki/Root_nameserver

[RosettaNet] RosettaNet; http://www.rosettanet.org/

[RosettaNet-CSP] RosettaNet Overview of Clusters, Segments and PIPs version 02.04.00;
RosettaNet Program Office; 2008; http://portal.rosettanet.org/cms/export/sites/default/RosettaNet/
Downloads/RStandards/ClustersSegmentsPIPsOverview_23April2008.pdf

[RosettaStone] The Rosetta Stone; http://en.wikipedia.org/wiki/Rosetta_Stone

[Sadoski] Three Tier Software Architecture; D. Sadoski and S. Comella-Dorda; Carnegie Mellon
University SEI; 2000; http://www.sei.cmu.edu/str/descriptions/threetier.html

[Silberschatz] Database System Concepts, A. Silberschatz, H. Korth, Bell Laboratories; S.

ELP - Extendible Logistics Protocol 169 / 170 M. Snoek - TU/e

http://www.sei.cmu.edu/str/descriptions/threetier.html
http://en.wikipedia.org/wiki/Rosetta_Stone
http://portal.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/ClustersSegmentsPIPsOverview_23April2008.pdf
http://portal.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/ClustersSegmentsPIPsOverview_23April2008.pdf
http://www.rosettanet.org/
http://en.wikipedia.org/wiki/Root_nameserver
http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf
http://www.papinet.org/index.php?id=101
http://www.papinet.org/
http://www.omg.org/
http://www.oasis-open.org/
http://www.oasis-open.org/
http://java.sun.com/blueprints/patterns/MVC-detailed.html
https://doc.telin.nl/dsweb/Get/File-10901/XML%20hype%20of%20hoop%20%5C(Ned%5C).ppt
http://learningat.ke7.org.uk/itweb/year13/distproc2.htm
http://www.iso.org/iso/search.htm?qt=&searchSubmit=Search
http://www.intellicom.nl/

Sudershan, IIT; 3rd Edition 1997

[ShiwaFu] A Practical Approach to Web-Based Internet EDI; Shiwa Fu et al.; IBM T.J. Watson
Research Center; 1999

[StylusStudio] EDIFACT Sample Converted to XML;
http://www.stylusstudio.com/EDI/EDIFACT_example.html

[UDDI] OASIS Standard for Universal Description Discovery and Integration; http://uddi.xml.org

[UMM] UN/CEFACT Modeling Methodology; http://www.unece.org/cefact/umm/umm_index.htm

[Wiesmann et al.] Understanding Replication in Databases and Distributed Systems; M.
Wiesmann, F. Pedone, A. Schiper, EPFL; B. Kemme, G. Alonso, ETHZ; 2000

[Tanenbaum] Computernetwerken; A. S. Tanenbaum; 2nd edition 1997; ISBN 9039505578

[TanenbaumProxy] Computernetwerken; A. S. Tanenbaum; 2nd edition 1997; ISBN 9039505578;
Chapter 7: The application layer

[Tedim-LDI] Advantages of XML/EDI in logistics data interchange; P. Malmi, A. Lantonen; TEDIM;
Ministry of Transport and Communication of Finland; 1999; http://www.tedim.com/default.asp?
file=821

[TLNNOV06] Leveranciers transport management software
http://www.tln.nl/media/Consultancy/Leveranciers/Transportmanagement_systemen.pdf

[WikiDD] Wikipedia, Distributed Database, Summer 2008
http://en.wikipedia.org/wiki/Distributed_database

[WikiGateway] Wikipedia, http://en.wikipedia.org, subject 'Gateway (telecommunications)'; spring
2008

[WikiProxy] Wikipedia, http://en.wikipedia.org, subject 'Proxy server'; spring 2008

[Zhang] ELPIF: An E-Logistics Processes Integration Framework Based in Web Services; Liang-
Jie Zhang et al.; IBM T.J. Watson Research Center; 2001

ELP - Extendible Logistics Protocol 170 / 170 M. Snoek - TU/e

http://en.wikipedia.org/wiki/Distributed_database
http://www.tedim.com/default.asp?file=821
http://www.tedim.com/default.asp?file=821
http://www.unece.org/cefact/umm/umm_index.htm
http://uddi.xml.org/
http://www.stylusstudio.com/EDI/EDIFACT_example.html

	Acknowledgment
	Table of contents
	List of illustrations
	1. Abstract
	2. Introduction
	3. Research question
	4. The approach to the ELP design
	5. Use cases to describe outsourcing
	6. Business processes analyses
	7. Data structures as support for business processes
	8. Communication between companies
	9. Exchanging progress information
	10. ELP Prototype
	11. Discussion and conclusions
	12. Future research
	13. Appendix A – Subquestions index
	14. Appendix B – EDIFACT and XML message comparison
	15. Appendix C – Functional requirements and existingsolutions
	16. Appendix D - Brief Business Process Modeling Notation
	17. Appendix E – CDM illustrations
	18. Appendix F – Rules for outsourcing and exchanging data
	19. Appendix G - Routing methods in detail
	20. Appendix H - 2PC node extension (two-tier replication)
	21. Appendix I - ELP Name Service message definitions
	22. Appendix J - CDM Entity Details
	23. Bibliography

