
 Eindhoven University of Technology

MASTER

Automated schema matching for Universal Data Services

Maas, T.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/58d78605-7246-4857-8048-b83000cc1753


Technische Universiteit Eindhoven 

Department of Mathematics and Computer Science 

 

 

 

Automated schema matching 
for Universal Data Services 

By 

Tjeerd Maas 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Supervisors 

ir. R. den Adel  dr. A.T.M. Aerts 
Master Thesis, Eindhoven, April 2009 



Abstract 
 
In data warehousing the ETL process is a well known mechanism used for data 
integration. Data is extracted from sources, transformed to fit the targets needs 
and loaded to the target. However to get to this stage a transformation model 
is created by a consultant. This is an intensive and time consuming process. 
URBIDATA is a company in Eindhoven which also uses this process. 
 
This thesis examines the possibility to automate this process in some way. It 
researches whether the automated generation of a transformation model could 
be possible. The main goal is to construct a prototype of a toolkit that can do 
this and be very flexible and configurable at the same time. 
 
WMgen was designed and tested on a subset of the Westland data models for 
this purpose. The results show promising results in generating a transformation 
model. Such a model should still be presented to the consultant first for 
validation, but takes away a lot of effort.



Preface 
 
This thesis concludes my studies at the Department of Mathematics and 
Computer Science at Eindhoven University of Technology in the Information 
Systems area of expertise.  
 
I would like to thank my supervisor at URBIDATA bv, Robin den Adel and Hein 
Corstens for their tutoring in the area of Geometric data processing and 
Universal Data Services. Secondly I would like to thank my supervisor at 
Eindhoven University of Technology, Ad Aerts and the other members of the 
assessment committee, Geert-Jan Houben and Natalia Sidorova. 
 
Finally I would like to thank my girlfriend Monique, my family and friends for 
their constant nagging and putting a stick behind the door, but seriously thank 
you guys for everything. Lastly I would like to apologize to my band for missing 
some rehearsals. 42. 
 
Tjeerd Maas 
 



TABLE OF CONTENTS 

1 INTRODUCTION 7 
1.1 URBIDATA 7 
1.2 UDS 7 

1.2.1 The Meta Data Manager 8 
1.2.2 The Universal Data Integrator 9 
1.2.3 Queue 9 
1.2.4 The Broker 9 

1.3 Extract Transform Load 9 
1.4 Environment 10 
1.5 Problem description 10 
1.6 Problem analysis 11 
1.7 Overview 12 

2 AUTOMATED DATA INTEGRATION 13 
2.1 Scenario 13 

2.1.1 UDS Architecture 13 
2.1.2 “Selling” UDS 15 

2.2 Weaving Models 15 
2.2.1 Attribute to Attribute 17 
2.2.2 Transformations 17 
2.2.3 Operations 18 
2.2.4 Automated Weaving Model Generation 18 

2.3 Schema Matching 19 
2.3.1 Structure Matching 20 
2.3.2 Semantic Matching 21 

3 FRAMEWORK DESIGN 23 
3.1 Semantic Web 23 
3.2 Concept 23 
3.3 Syntactic Scorer Types 25 

3.3.1 Matching algorithms 28 
3.4 Ontologies 33 
3.5 Machine Learning 34 
3.6 Topic Maps 34 
3.7 Semantic Scorer Types 35 

3.7.1 The use of weaving models 37 
3.7.2 The use of an ontology 38 
3.7.3 The use of machine learning 38 

3.8 Combining scorer results 39 



4 IMPLEMENTATION 40 
4.1 UDS WMgen Prototype 40 
4.2 Data Types 41 

4.2.1 Data Representation Models 41 
4.2.2 Messages 42 
4.2.3 Thesaurus 43 

4.3 Architecture 44 
4.4 Dependencies 46 
4.5 Using WMgen 46 
4.6 Setup and Configuration 47 

5 PROTOTYPE RESULTS 48 
5.1 Test Case 48 
5.2 Expected results 48 
5.3 Synonym Creation 50 

5.3.1 Input 50 
5.3.2 Results 50 

5.4 The String Match Scorer 51 
5.4.1 Input 51 
5.4.2 Results 51 

5.5 The Object Structure Scorer 52 
5.5.1 Results 52 

5.6 The Semantic Scorer 53 
5.6.1 Input 53 
5.6.2 Results 53 

5.7 The Score Comparer 53 
5.7.1 Input 53 
5.7.2 Results 53 

5.8 Varying testparameters 55 
5.8.1 Adding/removing Scorers and Algorithms 55 
5.8.2 Threshold 57 
5.8.3 Weights 58 

5.9 Discussion of results 59 
6 CONCLUSION AND FUTURE WORK 60 

6.1 Conclusion 60 
6.2 Future work 60 
6.3 Project evaluation 61 

REFERENCES 62 
 

 
 



 

Page 6 

Revisions 
 
Date Version Input from Details 
2008-04-08 0.1 T. Maas Initial version 
2008-05-14 0.2 T. Maas Finished until section 4 
2008-06-23 0.3 T. Maas Section 4 first draft 
2008-07-07 0.4 T. Maas Added sections 1.4 & 1.5. 

Processed revisions for v0.2. 
Added descriptions about UDS 
components (subsections 1.2). 
Added Weaving Model definition 
(section 2.2). 
Added domain descriptions of 
[0..1] for the algorithms in 3.3.1. 
Updated all sections in 4, added 
section 4.2.2.2 about the History 
Information Object. 
Added sections 1 through 6. 

2008-08-25 0.6 T. Maas Complete restructuring 
2008-09-17 0.7 T. Maas Fixed bookmarks. 

Added appendices. 
Restructured Problem Description. 
Restructured chapter 3, headings. 
Restructured chapter 4. 

2008-10-16 0.8 T. Maas Added introductions 
2009-04-09 0.9 T. Maas Final results added 
2009-04-15 1.0 T. Maas Final version. 

Added preface and abstract. 
Fixed references. 
Added appendices. 
Added variation tests. 

2009-04-18 1.1 T.Maas Minor explanatory additions to 
chapter 5. 
Minor changes in layout. 

 
 
 
 
 



 

Page 7 

1 INTRODUCTION 

Before we start describing the problem of automated schema matching for 
Universal Data Services for which the research is described in this document, 
we will give a description of the environment of Universal Data Services and we 
will introduce some other relevant terminology for this domain of research such 
as Semantic Web and ontologies. We start with a description of the company 
URBIDATA, for whom this research project was executed. In section 1.2 we will 
describe Universal Data Services. This is followed by a description of some 
relevant terminology and finally we will give a problem description.  

1.1 URBIDATA 
The application of modern data processing equipment in companies and 
governmental organizations keeps expanding and because of that, production 
processes are transforming into information processes. Therefore companies 
tend to use a lot of different information systems. Consequently both people 
and computer systems need to communicate to reach certain goals. A need for 
data-exchange and integration arises. 
 
URBIDATA is a company that specializes in data integration with focuses on web 
services, operational data stores and data warehousing. Their primary focus is 
spatial data integration for government, cities and municipalities. 
To realize this integration URBIDATA constructs information factories in 
cooperation with their clients. 
 
An information factory [8] is a system that converts data into information units. 
The data is processed with various methods in order to enrich it: 
• Data formats are converted 
• Relevant data is selected 
• Names, definitions and classifications are transformed 
• Data from different sources is aggregated  
• Data is integrated into a structured environment (a data model). 
 
Government agencies use many different software packages. Each software 
package fills some administrative need for information and each software 
package probably has its own data source with its own data model. To create a 
more structured and centralized environment data warehousing and data 
integration are useful tools. URBIDATA offers a toolset to these agencies, so 
this can be achieved. The next section will explain something more about this 
toolset: Universal Data Services (UDS). 

1.2 UDS 
URBIDATA’s primary goal is to help their clients with integration and metadata 
annotation of their data sources. To achieve their goal URBIDATA has 
developed a package called UDS for collecting data from various data sources 
and storing it in a more generic way using standardized target data models.  
 
Many business processes have their own data structure and often these 
processes need to interact and exchange information. For each connection 
between business processes an interpreter is needed. The result is called a 
“Spaghetti” structure (Figure 1), which has a mangle of connections with all 
different interfaces. The goal of UDS is to create a centralized “Ravioli” system 
(Figure 2) where UDS provides all interfaces between the sources and enriches 



 

Page 8 

the data with more information. This is achieved by adding metadata to the 
information already available. Metadata is data about data; for example the 
author, file size or creation date of a document. In Figure 2 the operational 
datastore filled by UDS resides in the center.  
 

 
Figure 1: With n systems there are at least 

n(n -1) interfaces 

 
Figure 2: With n systems and UDS there 

are 2n interfaces 

 
Obviously the terms “Spaghetti” and “Ravioli” refer to the number of 
connections within each model. The pasta spaghetti has many strings, you are 
unable to see where each string starts or ends; whereas in the pasta ravioli, 
you would be able to pick up a piece of ravioli very easily. 
 
Reducing the number of connections improves the maintainability of the 
system, because there is less communication needed between components. A 
fully connected “Spaghetti” system has at least ( )1−⋅ nn  interfaces; each 
component has at least one connection with all other components. A “Ravioli” 
system needs at most n⋅2  interfaces; each component is connected with the 
ODS (Operational Data Store) component in the center and the ODS component 
is connected with each component. 
 
UDS currently provides 4 components: the Meta Data Manager (MDM), the 
Universal Data Integrator (UDI), Queue and the Broker. Each service has its 
unique function within UDS to ensure the “Ravioli” structure. 

1.2.1 THE META DATA MANAGER 
The purpose of the Meta Data Manager (MDM) is to manage data on the 
sources that are being used by UDS. It also provides a user interface which 
enables the user to enter more specific information about data sources and 
their objects and attributes.  
 
A data model is a representation that describes the data structure of a source. 
MDM analyses the data structure of the data sources and enables the user to 
add more specific information to that data model in the form of metadata. For 
example the name of the author of a file can be added to the meta database, or 
the date when a source was added the integration process, or a short 
description of the source. Just about anything containing data can be a source, 
for example data repositories, XML files, AUTOCAD files, etc. The MDM can also 



 

Page 9 

be used to execute search queries on the metadata, for example finding the 
origins of certain data sets within the integration process. Finally attributes can 
be selected from source models and transformations can be created and 
operations selected.  

1.2.2 THE UNIVERSAL DATA INTEGRATOR 
With the UDI (Universal Data Integrator) a user can perform transformations on 
data using the metadata that was described using the MDM. In the UDI the 
transformation models are designed as follows:  

• Transformations and operations can be executed on the selected 
attributes.  

• Finally the data that was created can be integrated into the UDI data 
store.  

 
The UDI works according to the STOI principle. See Section 1.3 for more details 
on STOI. The steps described above are captured in the form a process.  

1.2.3 QUEUE 
The Queue component acts as a scheduler. In the Queue component the 
processes defined in the UDI can be scheduled. The UDS Queue component 
handles the communication between the different UDS components and makes 
sure that they are synchronized, which prevents data from getting corrupted 
because multiple instances were operating on the same data.  

1.2.4 THE BROKER 
Last but not least the UDS Broker is the part of the system that acts as an 
Enterprise Service Bus (ESB) [16]. An ESB enables components to 
communicate with each other without dependencies, but by an event-driven 
and standards-based messaging engine. This makes UDS even more flexible; it 
uses this form of communication so different components can be “plugged into” 
the Broker.  
 
Conclusively the Broker itself essentially is a kind of translation mechanism that 
translates incoming data into a format that is supported by UDS. For example 
when a new component is added to UDS, the Broker will interpret the output of 
this new component and translate it to a format that the already existing 
components in UDS can use.  

1.3 EXTRACT TRANSFORM LOAD 
Data integration and data warehousing is generally based on the ETL principle 
[17]: 

• Extracting data from sources 
• Transforming the data to fit the business needs 
• Loading the data into a data warehouse 

 
UDS also uses this principle; with the MDM users can create transformation and 
integration processes that can become very complex, but are mostly ordered in 
an ETL fashion. URBIDATA defines this as STOI: 

• Selection 
• Transformation & Operation 
• Integration 

 



 

Page 10 

So ETL and STOI are actually the same. Selection is the process where a subset 
of data is selected from a data source for integration; Extract does this as well. 
Transformation & Operation uses metadata from a transformation model to 
transform the data to fit the target data model; Transform from ETL does this 
as well. Finally Integration writes the data to the target database; Load does 
this as well. The only difference that might be mentioned is that their semantic 
emphases are different, whereas Extract focuses on the actual extraction of the 
data, Select focuses on the selection process which data is going to be 
extracted from the source. 
  
Next to classic ETL there is Spatial ETL, which does the same for spatial data.  
Spatial data is nothing more than geographic information. However this kind of 
data is more complex. It can contain geometric models, images and maps. 

1.4 ENVIRONMENT 
The MDM was originally created using Borland Delphi 7 and the Borland 
Database Engine (BDE). When Borland announced that they were planning to 
terminate the support for the BDE and a new geographical metadata standard 
(ISO19115) was introduced, the decision was taken to redesign MDM 
completely.  
 
During this redesign process a number of problems needed to be solved. The 
Borland Database Engine was removed and a database independent structure 
was designed in order to enable MDM to interact with different kinds of 
database management systems. Also the metadata database structure was 
updated to meet the current standards; the CEN metadata standard needed to 
be replaced with the ISO19115 metadata standard. 

1.5 PROBLEM DESCRIPTION 
The thesis project was initially about adding transformations, operators and 
processes to the redesigned MDM. However there is also need for innovation.  
 
Adding transformations and processes to an installation of UDS manually is a 
very time consuming process. Therefore research is necessary to discover 
whether some sort of automation is possible and also whether some form of 
machine learning might be useful in the automation process.  
 
The initial study of the problem made clear that the focus of the project had to 
be smaller than initially anticipated. The research that would have to be done in 
order to automate the entire integration process would be too much time 
consuming to be able to finish within the time span of the project. After some 
deliberation with the project supervisors it was decided that automated schema 
matching would become the focus of the project. Of course this also implies 
that a way to store generated matchings needs to be researched, but this is not 
the main focus of this project.  
 



 

Page 11 

Automated schema matching is a first step toward automated integration. In 
order to be able to identify transformation rules first the matching between two 
models needs to be known. In this thesis the research that was done on the 
subject of schema matching and a basic framework for automated schema 
matching for UDS are described. Also a prototype was developed in order to 
demonstrate the use of automated schema matching. A description of future 
development necessary to complete automation of integration processes can be 
found in section 6.2. 

1.6 PROBLEM ANALYSIS 
In order to automate an entire integration process, a number of problems 
needs to be solved. First of all, a data model consists of objects and attributes. 
These objects and attributes need to be matched against the target model that 
we have in mind. Fortunately URBIDATA uses standard target models, which 
has the advantage that the structure of the target model is well documented. 
But still this matching process can become very difficult since there is in 
principle no knowledge of the structure source model. The structure of the 
source model can differ a great deal from the structure of the target model. For 
example the source data model could have an object containing a person’s 
name and another object containing the person’s address, while the target data 
model contains an object representing a person which also contains the 
person’s address. A human being can construct such matchings using natural 
insight, but when large data models are in play this consumes a lot of time. If 
this matching process is automated however, it has to be taken into account 
which types of reasoning a human being, often unconsciously, applies when 
creating a matching between two data models. What are those types of 
reasoning? Can they be automated, and if so, how can this be done? Can 
existing techniques such as semantic maps, machine learning, semantic web 
and ontologies be of any help here?  
 
If a matching is found, it needs to be stored somehow. This turned out to be no 
trivial matter. As was mentioned before, matchings can be very complex in 
structure. In order to enable easy retrieval of matchings, thought has to be put 
into a structured way of storing matchings. Also, since it is never 100 percent 
sure that an automatically generated matching is correct, it is necessary to ask 
for user feedback on a generated matching. Therefore a user friendly way of 
presenting a matching is needed. An intuitive way of storing matchings would 
therefore be a great help in presenting the matching in an intuitive way to the 
user. Another question that arises is what should be done when a user does not 
approve a generated matching. Should a new matching be generated based on 
user feedback, or should we store not only the most likely matching but also 
some other, less likely but possible matchings, or should the user fix the 
matching?  
 
When the correct matching is found, a transformation model needs to be 
created. The transformation model states the rules for conversion of the source 
data model to the target data model. These rules are called transformations. A 
transformation can be fairly simple; creating a copy. However a transformation 
can become complex very fast; for example attribute specific substring 
replacements, computations, interpreting and merging. Sometimes two 
attributes need to be merged into one attribute. Consider for example a postal 
code attribute containing the four numbers of a postal code and another 
attribute containing the two letters. In the target model these may need to be 
merged into one postal code attribute. Also type conversions may occur. 



 

Page 12 

Consider for instance a currency that is represented as a float in the source 
model and that needs to be represented by a specific currency type (such as 
Euros) in the target models. These are just a few examples of the extensive list 
of possible transformations. Again we can note that a human being constructs 
these transformations based on natural insight, mostly based on knowledge 
that was obtained earlier. This suggests that some sort of knowledge base will 
be necessary in order to automate the process of creating a transformation 
model. What knowledge exactly does this knowledge base have to contain? 
What is the best way to represent this knowledge base? And what are the 
reasoning rules that need to be defined in order to be able to use this 
knowledge base to automatically create a transformation model? These are all 
questions that need to be handled when automating this part of the process.  

1.7 OVERVIEW 
The remainder of this document describes the research that was done in the 
area of automated data integration, the design, implementation details and 
testing of a component that automates the data integration in UDS and an 
evaluation of the solution that was offered in this document as well as an 
evaluation of the project. The research that was done in the area of automated 
data integration can be found in chapter 2. The scenario at Urbidata is 
described, weaving models are introduced as a way to represent the integration 
of models and the process of schema matching is explained. Chapter 3 give a 
sketch of the framework design. The usage of semantic web concepts, machine 
learning and topic maps is described, algorithms that can be used for structure 
matching are given and the use of weaving models, ontologies and machine 
learning in semantic matching is explained. Finally it is described how the 
results structure matching and semantic matching can be combined into one 
model. Chapter 4 describes implementation details such as data types, 
architecture, and dependencies. Chapter 4 also gives a description of how to set 
up, configure and use the component. An evaluation of the component, 
including a test scenario, is described in chapter 5. Chapter 6 concludes with 
the results of the project, a description of future work and an evaluation of the 
project.  



 

Page 13 

2 AUTOMATED DATA INTEGRATION 

This chapter describes research concerning automated data integration. In 
section 1 the scenario of this particular project is described. Section 2 describes 
weaving models as a way to represent integration between models. In section 
3, the process of schema matching based on structure and semantics is 
described. This section also explains the use of user feedback, topic maps and 
value matching on metadata in this project.  

2.1 SCENARIO 
The setup of a data integration project at a client is a time consuming process. 
UDS allows the user to set up an operational data store manually. The 
remainder of this section will describe this scenario in detail. The next sections 
describe how this process could be automated. 

2.1.1 UDS ARCHITECTURE 
UDS is built using a client-server architecture using services in an Enterprise 
Service Bus environment. Figure 3 shows a model of the high level architecture 
of UDS. UDS can be divided into three blocks. The UDS Client, containing the 
user interfaces for the user, the UDS Server, containing the main components 
for communication with the databases, and the UDS Enterprise Service Bus, 
containing some components for communication between the services and 
client and server components. 
 
In the Services block the Integrator engine is the most important component. It 
reads data from the data source and imports them to the UDS Oracle Spatial 
Database or exports data from the UDS Oracle Spatial Database to data 
targets. Moreover it transforms data when necessary.  
 



 

Page 14 

UDS Enterprise Service Bus

UDS Client UDS Services

Client integrator

Metadata Manager
GUI

Integrator engine

Source
/Target

Source

Target

Broker

QueuInterface Database 
(Oracle Spatial)

Queue
Source

Metadata Manager 
Webservice

Metadata Manager 
Engine

WSWS WS

Metadatabase
(RDBMS 

independent)

 
Figure 3: UDS High Level Architecture 

 
The Integrator engine has a direct link with the Queue component. The Queue 
component schedules the tasks for the Integrator Engine. The reason for this is 
that for example the load of the system is lower when an integration process is 
started at night, when it is less likely to have a lot of database transactions 
going on.  
 
Finally the Integrator engine communicates via the MDM Webservice with the 
MDM engine. The MDM engines task is to save the metadata that was collected 
over the data from the data sources to the Metadatabase. These descriptor 
fields can be filled out by the user, using the Metadata Manager GUI. In the 
Metadata Manager GUI the user is also able to define the transformation rules 
for the integration process. 
 
The setting in Figure 3 is the most recent setup of UDS. The need existed to be 
able to put new MDM GUI’s on top of the MDM engine; for example web-based 
GUI’s. Therefore the webservice is a communication component handling the 
communication between the MDM engine and other components. In this 
scenario it is much easier to replace components; not just a GUI, but the 
Integrator engine as well. 
 
The collection of interfaces like the MDM webservice and the UDS Broker is 
called the Enterprise Service Bus. An ESB uses an event driven and standard-
based messaging engine to provide an abstraction layer for communication 
between different components. 



 

Page 15 

2.1.2  “SELLING” UDS 
A scenario where UDS is placed with a customer would look as follows. The 
customer would contact URBIDATA to set up UDS. In cooperation with an 
URBIDATA consultant each data source that the customer wants to integrate 
needs to be inspected thoroughly; for each source a schema is needed that tells 
the integrator how to interpret the data model of the source and what to do 
with it. Defining these schemata is a very time consuming process and can take 
up to several months. 
 
URBIDATA has a set of standardized data models available, for example the 
NEN3610 [20] as source data model and RSGB [21], BAG (Basic registration for 
Addresses and Buildings) [22] and the ENC-S57 (GIS) standard [23] as target 
data model. These standards have been registered by Dutch or international 
authorities. Government agencies are strongly advised to use these standards. 
The goal of using the data standards is to structure data and information 
collection. 

2.2 WEAVING MODELS 
In order to automate schema matching a representation of matchings is 
needed. UDS already uses transformation models, which are triples of the 
following form:  
 
{ } { } { }( )AttributestionstransformaAttributes ,, .  

 
We will introduce the notion of a weaving model, which enables us to use this 
existing transformation model and extend it in order to serve our goal of 
automating schema matching.  
In [3] model weaving is defined as “a generic way to establish element 
correspondence”.  Weaving models can be used to translate source models into 
a target model. A weaving model is a schema that defines the relationship 
between two data models [3] (Figure 4). Such a schema defines exactly which 
source attributes corresponds to what target attribute and in what way. 
Because these schemata are considered as models, namely weaving models, 
they can be enriched with metadata. Therefore the mappings between source 
and target models gain in expressiveness. Furthermore since mappings are 
considered as models the mappings also become more generic and gain in 
flexibility. They can easily be updated, data can be altered, metadata can be 
altered, added or removed, etc. A transformation model for instance does not 
have this flexibility because its structure is predetermined; it consists solely of a 
set of source attributes, a set of target attributes and the transformations, no 
extra information can be added.  
 



 

Page 16 

Weaving
Model

Target
Datamodel

Source
Datamodel

 
Figure 4: a standard weaving model situation 

 
UDS uses transformation models. A weaving model can be used by the MDM to 
suggest an initial transformation model. Since there is no accepted formal 
definition of a weaving model [3], we will define the structure of a weaving 
model as is most convenient for this project.  
 
We assume a data model to be a directed graph ),( AVG = . The set of vertices 
V  denotes model elements. A model element from V  has an identifier and a 
value. The identifiers are URIs and the element value is allowed to be of any 
data type. The set of directed edges A  denotes associations between model 
elements. 
 
As stated before a weaving model connects two data models using a mapping. 
Let ),(1 AVDM =  and )','(2 AVDM =  be the source and target data model 

respectively. Given elements Ve ∈1  and '2 Ve ∈ , the connection ),( 21 ee  is 

denoted by the triple ),,( 21 eWme , where Wm  is a directed graph; 
),( AwVwWm = . A complete weaving model consists of a set of these triples; 

the resulting graph is not connected. Figure 5 depicts such a directed graph; 
attributes and structure are explained in more detail in section 3.7.1. 
 

 
Figure 5: A weaving model directed graph 

 



 

Page 17 

The following examples and all further examples used in this thesis contain 
Dutch words, because real strings from existing data models are used. 
 
For example two source attributes POSTK_A and POSTK_N represent a postal 
code and the target attribute is PC. Then the weaving model could look 
something like  
 

PC  CONCAT(POSTK_A, POSTK_N) 
 
This expression specifies that the value of the target attribute PC is constructed 
from the concatenation of the values of the two source attributes POSTK_A and 
POSTK_N. 
 
Below in Figure 6 the example is depicted as a directed graph, where 

{ }NPOSTKAPOSTKV _,_=  and { }PCV =' . 

Then with the elements Ve ∈1  and '2 Ve ∈  two triples can be created 

),,_( 1 PCVwAPOSTK  and ),,_( 1 PCVwNPOSTK . 
 
Where ),(1 AwVwWm =  with 

{ }
{ }ScoreVwVerifiedVwCONCATTransfVwAw

VerifiedScoreCONCATTransfVwVw
,,,,)(,

,),(,

111

1

=

=
  

 
Figure 6: A weaving model for PC  CONCAT(POSTK_A, POSTK_N) 

2.2.1 ATTRIBUTE TO ATTRIBUTE 
One of the simplest and most common forms of data model conversion is to 
copy the value of one attribute to another. 
For example STRAATKODE to STR_CODE 

 
STR_CODE  STRAATKODE 



 

Page 18 

2.2.2 TRANSFORMATIONS 
A transformation is the situation where some action is taken on one or more 
source attributes to alter their values in a certain way, before the values are 
copied to the target attribute. 
An example of this would be the concatenation example from above or for 
example the following transformation on a single source attribute 
 
 HOEK_HUISNR  REPLACE(“,”; ”.”; VRY_VELD2) 
 
This carries out a substring replacement on the values of VRY_VELD2 to 
produce the value for HOEK_HUISNR. 

2.2.3 OPERATIONS 
An operation is actually exactly the same as a transformation. However UDS 
still distinguishes these two. A transformation can be carried out during each 
step of a data model integration process and an operation is carried out in bulk 
after the integration process. Bulk means all data has to be read before the 
operation can be executed instead of one data element at a time.  
 
An example of a weaving model operation is the generation of unique MD5 
identifiers. MD5 is a cryptographic hash function. A MD5 hash is usually 
expressed as a 32-character string of hexadecimal numbers. Assuming all data 
is unique, then hashes are unique, making it easy to use them as identifiers. 
 
 MD5_ID  MD5(self) 

2.2.4 AUTOMATED WEAVING MODEL GENERATION 
To reduce the time on customer projects the generation of the weaving models 
could be automated instead of creating weaving models manually. For this to 
work introduce a few assumptions. 
 
First the target data models that URBIDATA uses are mostly standardized data 
models. These models are tweaked when the customer specifically asks for it.  
Secondly it is assumed that the source data models are completely random and 
do not contain any metadata whatsoever. Therefore there is no need to 
incorporate the use of stored metadata on the target data models and the focus 
will be on the structure of the source data models.  
 
A weaving model is a solution to the problem of how to store a schema 
matching, as was noted in section 1.6. The decision was made to store not just 
the most likely matching, but also some less likely matchings. Since in a 
weaving model the score of each connection is stored, it is possible to retrieve 
generated weaving models in order of most likely matching to less likely 
matching. Also we noted the problem of necessary user feedback on generated 
matchings. A solution to this problem is presented in section 2.3.2.1.   
 
This thesis will focus on two branches of weaving model generation; schema 
matching based on structure and schema matching based on semantics. These 
will be discussed in the following section. 



 

Page 19 

2.3 SCHEMA MATCHING 
A schema (in this case a data model) consists of objects and objects consist of 
attributes. This is the general structure of a data model. For example a simple 
relational database has tables (objects) and each table consists of fields 
(attributes). 
Now suppose we have two arbitrary data models A and B, of which we want to 
map A to B. In the beginning we do not know which object from A needs to be 
mapped to which object from B (Figure 7). So it might be wise to work with 
elimination to find out where each attribute should be mapped to. 
In the elimination method initially all objects are assumed to be potentially 
equal and during this process the mismatches are removed one at a time. 
 
 

 
Figure 7: Mapping two arbitrary data models on object level 

 
 
However, to know whether two objects match, the schema needs to be 
evaluated on an attribute level (Figure 8). As a result of connecting all objects, 
all attributes are initially connected as well. 
 
 

 
Figure 8: Mapping two arbitrary data models on attribute level 

 



 

Page 20 

Now a score is given to each connection. The mapping, a set of connections, 
with the highest score would be the most probable mapping, the mapping with 
the one to highest score a bit less probable and so on. 
 
Now a method is needed to give a score to each connection. As was mentioned 
in section 1.6, human beings can create matchings based on natural insight. 
How do they actually do this? One way of comparing source and target 
attributes to each other is on the basis of their structure. This results in 
structure matching, which is described in section 2.3.1. Human beings are also 
able to compare the meaning of a source attribute to that of a target attribute. 
This results in semantic matching, which is described in section 2.3.2.  

2.3.1 STRUCTURE MATCHING 
In this section several methods are described that can be used in order to 
match a source data model to a target data model based on their structure. 
These methods of matching are used to score connections between attributes.  
 
A way to score a connection between two attributes is string comparison. The 
name of each object and the fieldname of each attribute could be compared to 
any other name of a target object or fieldname of a target attribute.  
 
Another way to score a connection is by means of type matching. When two 
attributes have the same or a similar type, some value is added to the score. 
For example when the type of the source attribute is a string of a constant 
length and the target is a string of variable length, we can assume that their 
types match. 
 
These scores are used to create scores on an objectlevel. Therefore creating 
mappings which contain semantics. Following that scoremodels can be created 
from these mappings. To add more value to the score of the object connections 
the highest total score of the attribute connections from one object to another 
is evaluated. To get the highest total score a search is conducted for the 
optimal mapping of attributes between two objects that has the maximum sum 
of the score of those attributes. 
 

 
Figure 9: Comparing the maximum score of attribute connections results in a mapping 

 
Schema matching results in a simple mapping. It suggests WHERE data should 
be integrated, not HOW it is to be integrated. Therefore a Semantic History is 
used that can achieve a HOW. 



 

Page 21 

2.3.2 SEMANTIC MATCHING 
In the past years URBIDATA has set up operational datastores of mid offices in 
many UDS projects. Each of these projects has a large amount of 
transformation rules for integrating data sources. This information can be very 
useful in determining a weaving model and which source attributes relate to 
which target attributes and how they relate. 
 
Each source data model in combination with a set of transformation rules and a 
target data model gives us a lot of information how future data models can be 
integrated. A weight property is used for each source attribute, transformation 
rule, target attribute combination to determine the most common used 
combination and match these combinations against new scenarios. We will call 
this method History Matching.  
 
In order to design such a semantic matching component, storage and retrieval 
of previously generated weaving models needs to be taken into account. An 
ontology is a nice way of dealing with storage and retrieval of semantically 
annotated objects such as weaving models. In order to assign appropriate 
weights to history objects machine learning techniques are used to update 
weights after each successfully completed integration project. Section 3.4 will 
elaborate on the usage of machine learning techniques and ontologies in history 
matching.   
 
The next section describes two important methods used in History Matching, 
user feedback and value matching. Furthermore we will describe a standard for 
storing data about data models, which is useful during History Matching. 

2.3.2.1 USER FEEDBACK 
To make the history matching method work, a database is needed containing 
relevant data and weaving models of previous projects. Relevant means that 
the evaluation of the information domain with new projects should result into a 
weaving model as complete as possible. 
 
However new projects might contain data model objects that haven’t already 
been added to the history. The idea is to offer the user a provisional match. 
Such a match is given to the user with a certainty between 0 and 1. The user 
can now easily see which transformation matches need evaluation. When an 
evaluation has been approved by a user, the history is updated using machine 
learning techniques so the information can be used in future matches.  
 
This user feedback can also serve as a method for general approval or dismissal 
of the matchings in a weaving model. As was stated in section 1.6 user 
feedback is necessary since we can not guarantee 100% correctness of the 
automatically generated weaving model. User feedback is now used for 
approval of automatically generated weaving models as well as for supervising 
the learning process in the history component.  



 

Page 22 

2.3.2.2 VALUE MATCHING 
In value matching, metadata is added to the history items that define a regular 
expression which describes the values of previous data models. This way we 
can extend the semantic database that is used in history matching.  
 
An object contains attributes with values. The result of a group of attribute 
values is a set of strings. All values of all types of attributes are converted to 
strings. This makes it easier to compare the values in general. The set of 
strings can be converted to a regular expression by tokenizing the characters.  
For example if we look at the result of the group for the attribute postcode, we 
get a set of strings (5993AX, 5612LC, 5616GB, 5612AZ). If we tokenize this set 
we get 5{4}, 9{1}/6{3}, 9{1}/1{3}, 3{1}/2{2}/6{1}, A{2}/L{1}/G{1}, 
X{1}/C{1}/B{1}/Z{1}, the number between the accolades indicate the 
number of times the character was encountered on that position. 
Therefore the regular expression probably would be [0-9]{4}[A-Z]{2}, which 
means 4 numbers followed by 2 capital letters. Such a regular expression can 
be stored in metadata of an attribute and matched against future values of that 
attribute. 
 



 

Page 23 

3 FRAMEWORK DESIGN 

Chapter 2 describes several methods and algorithms to construct a weaving 
model from source and target data models. These methods and algorithms are 
part of the framework Weaving Model Generator (WMgen). The purpose of this 
framework is to generate a weaving model that contains certainties as 
metadata, so the user can evaluate the model. This chapter provides a detailed 
design of the WMgen.  
 
Section 1 describes the use of semantic web concepts in this design. In section 
2, a conceptual, high level design is given. Section 3 gives a detailed 
description of structure matching in WMgen and sections 4 through 7 describe 
semantic matching in WMgen in detail. Section 8 concludes with a description of 
how structure matching and semantic matching are combined to create one 
model.   

3.1 SEMANTIC WEB 
The worldwide web is designed to be used by humans, not by computers. 
Semantic Web enables computers to use information that is stored on the web 
without help from a user. As its name states, it enables computers to have a 
sense of the semantics of the data stored on the web. Using the technology of 
Semantic Web, meaning can be added to the content of a web page, making it 
possible for machines to process knowledge using deductive reasoning and 
inference. This way, Semantic Web facilitates automated information gathering, 
which will prove useful in this project.  
 
Semantic web uses technologies such as Extensible Markup Language (XML), 
Resource Description Framework (RDF) and Web Ontology Language (OWL). 
XML can be used to tag information; a user can define his own tag such as “zip 
code” or “street name”, enabling a program or script to interpret the data as a 
zip code or a street name. But since a user can define his own tag, the writer of 
the program or script that interprets the XML written by the user needs to know 
which tags the user uses and what he uses them for. Here, RDF and ontologies 
come into play. RDF expresses meaning encoded in sets of triples. Within these 
triples it is expressed that objects have properties with a specific value. For 
instance the object John has the property that he lives somewhere and the 
value of where he lives is Eindhoven. The triple (“John”, “lives in”, “Eindhoven”) 
then expresses the meaning that John lives in Eindhoven. Using RDF, 
essentially means that we are now able to express the meaning of a 
relationship between two objects defined by tags in XML. But there is still the 
problem that we do not know what the meaning of those objects (defined by 
the tags) is. Semantics need to be defined for the keywords that are used as 
tags in XML. This is done in an ontology. [7] 

3.2 CONCEPT 
The final product of this project will be a prototype, a stand-alone piece of 
software capable of generating a weaving model correctly for a certain set of 
data models. It will be implemented as a Java web service. The in- and outputs 
will be in XML format. Java has been chosen for its platform independence and 
because it is the programming language that is becoming more and more 
important in future products of URBIDATA. Several libraries for database 
communication, algorithms and data model conversion techniques will be used. 
More on implementation issues in chapter 4. 



 

Page 24 

 
The Weaving Model Generator takes two data models as input. The output is a 
weaving model which is presented to the user. The user then evaluates the 
model. The corrected weaving model can then be used as input to the WMgen 
to update the history. 
 
The history information is basically stored in an ontology. Therefore a RDF 
knowledge base is needed for storing, inferencing and querying ontologies. In 
short, it is a database for ontologies. 
 
Figure 10 gives a graphical representation of the WMgen framework and how it 
interacts with users. The WMgen takes two data model representations as input 
and outputs a weaving model representation. This weaving model is presented 
to the user via a user interface that clearly shows the certainties of the 
connections. The user then evaluates the presented model and the acceptation 
information is added to the history, which is used by the WMgen. 

 
Figure 10: WMgen framework user interaction 

In the thesis project the components of the WMgen can be split up into  
syntactic scorers, which are scorers using string and structure matching 
algorithms, and semantic scorers, which contain scorers that use semantics to 
reason about models, having for example history matching and value matching 
algorithms. 
 
Figure 11 is a graphical representation that shows these 2 types of components 
for the WMgen. The components operate individually, so new components and 
match methods can easily be added to the WMgen. 
 
Then there is the final component, the weaving model comparer. This 
component takes the results of the subcomponents and compares the scores of 
the resulting weaving models to determine the weaving model with the highest 
overall score. 



 

Page 25 

 
Figure 11: High level model of the WMgen scorers and comparer 

In the following sections the Syntactic and the Semantic Scorer types are 
described. Finally the Weaving model comparer is described.  

3.3 SYNTACTIC SCORER TYPES 
This section will explain more about the schema matching done by syntactic 
scorers of the type. Syntactic scorers use the structure of the model to 
construct weving models. These components takes a source attribute or object 
name and a target attribute or object name as input and give a score as output. 
The two attributes can differ in two ways. For example consider the following 
source and target objects 
 

ADR5_WOONPLAATS  SA_WOONPLAATS 
ADR5_STRAAT   SA_OPENBARERUIMTE 
ADR5_ADRESCYCLUS  SA_NUMMERAANDUIDING 

 
As can be seen from the examples the object names might be completely 
different words and another possibility is that they contain prefixes, 
underscores and abbreviations. To compare strings, that differ in such a way 
that a computer could not tell that they are actually the same, there is a need 
for some kind of translation mechanism. A thesaurus is some kind of dictionary 
that stores synonyms and homonyms of words. The thesaurus can be used to 
generate more matches with the target attribute to enrich score (Figure 12). 
Only the creation of synonyms for the source attribute is required, because the 
target attribute resides in a fixed standardized model.  



 

Page 26 

 

 
Figure 12: Creating a better score by using a thesaurus 

Also it can be assumed that object and attribute names might contain prefixes. 
It is less likely to find synonyms for strings with (random) prefixes. Therefore 
these prefixes should be removed. To find a prefix all object names or all 
attribute names from an object are compared. If the first n characters of each 
string is the same, this is called a prefix. 
 
The Syntactic Scorer’s task is to give an estimate score of a match between two 
attributes or two objects. To achieve this first a thesaurus as described above is 
used to create better matches. After all synonyms have been generated, the 
source to target connections are passed through a series of score algorithms 
that independently add score to the matching process.  
 



 

Page 27 

  
Figure 13: Syntactic Scoring using schema comparison algorithms 

 
Figure 13 depicts the behavior of the Syntactic Scorer with two examples of 
scoring algorithms that were used for this project. For future purposes more 
algorithms might be added to get a more accurate score. 
 

 



 

Page 28 

 
Figure 14: A pseudo code algorithm for the Syntactic Scorer Types 

Figure 14 gives a more detailed description of what happens in Syntactic 
Scorers. Syntactic Scorers create a score listing for each possible weaving 
model rather than the weaving model with the highest score, because more 
scorer modules can be used to generate other scored matchings. In a later 
stadium these score listings can be compared to determine the best weaving 
model. 

3.3.1 MATCHING ALGORITHMS 
The main function of the Syntactic Scorers is to score all the connections 
between the source and target data model on a structure level. Basic metadata 
information like field names, field types and object and attribute relations, is 
used to create matchings. This is done using the algorithms described below. 

3.3.1.1 JARO & JARO-WINKLER 
First we present the Jaro distance which is a method used in record linkage 
especially in order to check for spelling deviations. The Jaro-Winkler distance  
[1] is a variant on the Jaro distance. Given two strings, the Jaro-Winkler 
distance gives a result between 0 and 1, the higher the result the more similar 
the two strings are. 
 
The classic Jaro distance dj is calculated as follows: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
++=

m
tm

s
m

s
md j

213
1

 

 
Where  
 

• s1 and s2 are the two strings. 
• m is the number of matching characters between s1 and s2 with a limit 

on characters that have positions not farther apart than 
 

( )
1

2
,max 21 −⎥

⎦

⎥
⎢
⎣

⎢ ss
 

 
• t is the number of transpositions, which is the number of matching 

characters on different positions divided by two. 
 



 

Page 29 

The Jaro-Winkler distance uses a prefix scale which gives more favorable 
ratings to strings that match from the beginning for a set prefix length l.  
So the Jaro-Winkler distance dw is: 
 

( )( )jjw dpldd −⋅⋅+= 1  

 
Where 
 

• dj is the Jaro distance of the two strings. 
• l is the length of the common prefix with a maximum of length 4. 
• p is a constant scaling factor. The standard value for this constant is 0.1. 

 
With example strings s1 STRAATKODE and s2 STR_CODE, we find 
 

• 6=m  (STR, ODE) within the match window of 4 
• 101 =s  

• 82 =s  

• 0=t  

• Then 7833.0
60
47

6
06

8
6

10
6

3
1

==⎟
⎠
⎞

⎜
⎝
⎛ −

++=jd  

 
Thus the Jaro-Winkler distance, considering a prefix length 3=l  (STR), would 
be ( )( ) 8483.07833.011.037833.0 =−⋅⋅+=wd  
 

  S T R A A T K O D E 
S 1 0 0 0 0 0 0 0 0 0 
T 0 1 0 0 0 1 0 0 0 0 
R 0 0 1 0 0 0 0 0 0 0 
_ 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 0 
O 0 0 0 0 0 0 0 1 0 0 
D 0 0 0 0 0 0 0 0 1 0 
E 0 0 0 0 0 0 0 0 0 1 

Figure 15: The Jaro-Winkler matching window of size 4 for the example  

3.3.1.2 LEVENSHTEIN 
One method that could be used is approximate string matching. There are 
several approximate string matching algorithms. The Levenshtein distance [2] 
algorithm is the most popular algorithm. For the WMgen we will use the 
Levenshtein algorithm. Vladimir Levenshtein described this distance in 1965. It 
represents how similar two strings are by the minimum number of operations 
needed to transform one string into another. The operations Levenshtein 
contains are insertion, deletion and substitution. 



 

Page 30 

For example with s1 = STRAATKODE and s2 = STR_CODE, the Levenshtein 
distance would be 4, because STRAATKODE can be transformed to STR_CODE 
by two substitutions (SUB(A, _); SUB(A, C)) and two deletions (DEL(T); 
DEL(K)). Levenshtein calculates a (m+1, n+1) matrix where the bottom right 
value represents the distance. The matrix for this value is depicted in Figure 16.  
 
Basically this means that the algorithm walks through a distance matrix d by 
iteration. When we initiate [ ] 00,0 =d , the value in each position can be 
calculated as follows: 
 
[ ] ( )

[ ] [ ] [ ] [ ]( )],[1,1,11,,1,1min,:0,
],0[

]0,[

10][][, 21

jicjidjidjidjidji
jjd

iid

elsejsisifjic

+−−+−+−=>
=
=

→==

 

 
 

   S T R _ C O D E
 0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7
T 2 1 0 1 2 3 4 5 6
R 3 2 1 0 1 2 3 4 5
A 4 3 2 1 1 2 3 4 5
A 5 4 3 2 2 2 3 4 5
T 6 5 4 3 3 3 3 4 5
K 7 6 5 4 3 4 4 4 5
O 8 7 6 5 4 4 4 5 5
D 9 8 7 6 5 5 5 4 5
E 10 9 8 7 6 6 6 5 4

Figure 16: Levenshtein distance STRAATKODE to STR_CODE 

So the Levenshtein distance in this example equals 4. To determine a score 
within the domain [0,1], the distance is divided by the maximum length of the 
two strings. Thus 
 

[ ] [ ]
( ) ( )( ) 6.0

10
41

,max
,1,

21

21
21 =−=−=

sstrlensstrlen
ssnlevenshteissscore  

3.3.1.3 SOUNDEX 
Other methods of string matching are phonetic algorithms, which compare 
strings by the way they sound. SoundEx [14], developed by Robert Russell and 
Margaret Odell, is such an algorithm. It is based on the pronunciation of the 
English language. SoundEx tries to code strings in such a way that they have 
the same representation when they sound similar. Here an adaptation [13] of 



 

Page 31 

SoundEx for the Dutch language is presented, because most of the data models 
used by URBIDATA use the Dutch language. 
 
The English algorithm takes the following steps to encode a string: 

• The first letter is kept. 
• Letters that sound the same are replaced by numbers using the 

following table: 
 

b, f, p, v 1
c, g, j, k, q, s, x, z 2
d, t 3
l 4
m, n 5
r 6

 
• All characters that are not in the table are removed. 
• All double adjacent numbers are removed from the resulting string. 
• The resulting string is limited to a maximum of 4 characters. 
• Zero’s are added to the resulting string until the string equals 4 

characters. 
 
The Dutch variant is similar; a replacement step is added and the lookup table 
is altered; now the steps to encode a string are denoted as: 

• The first letter is kept. 
• Carry out the following string replacements as a conversion between 

English and Dutch sounds: 
•  

QU KW 
SCH SEE 
KS,KX XX 
KC,CK KK 
DT,TD TT 
CH GG 
SZ SS 
IJ YY 

 
• Letters that sound the same are replaced by numbers using the 

following table: 
 

b, p 1
c, g, s, k, z, q 2
d, t 3
f,v,w 4
l 5
m, n 6
r 7
x 8

 
• All characters that are not in the table are removed. 
• All double adjacent numbers are removed from the resulting string. 
• The resulting string is limited to a maximum of 4 characters. 
• Zero’s are added to the resulting string until the string equals 4 

characters. 
 



 

Page 32 

So again with the example STRAATKODE and STR_CODE, the SoundEx codes 
are S373(23) and S372(3) respectively.  
 
As can be seen the results of SoundEx aren’t easily comparable to other string 
matching algorithms. Therefore Jaro-Winkler is used as presented in section 
3.3.1.1 on the SoundEx codes for the source and target attribute names to 
determine a score within the [0,1] domain. 
In the example the score for SoundEx using JaroWinkler to compare the two 
codes will yield 0.9381. 

3.3.1.4 TYPE MATCHING 
Type matching is a simple mapping algorithm. The matching of two types has a 
score value that represents the result of the match. The result is at most 1 
when two types are equal.  
 
The other scores are deducted from a data type hierarchy. The data types as 
currently used in UDS are used as a basis. Figure 17 depicts a hierarchy where 
a type is a subtype when connected to another type, where binary object is the 
highest type and string (fixed) and string (var) are equal, but different. 
 

ID NAAM 
1 Integer 
2 Floating point 
6 Spatial 
7 Boolean 
8 Datum 
10 Currency 
11 String 
12 Virtual String 
13 Spatial Point 
14 Spatial Polyline 
15 Spatial Polygon 
16 SQL Timestamp 
17 Spatial Annotation 
18 Spatial Symbol 
19 Spatial Cover   

Figure 17: Oracle data type hierarchy 

 
We use Figure 17 to construct a table; the score of a comparison between two 
types equals ½distance. So for example the score of a boolean/float comparison 
equals ½2 = ¼, and the score from string to binary object equals ½. However 
the score from binary object to string equals 0, because this conversion is 
difficult therefore there is a one way directed arrow.  

3.3.1.5 OBJECT STRUCTURE 
The Object Structure algorithm differs from the other algorithms used in the 
Match Scorer, because it uses the current attribute connection scores to 
calculate a score for object connections.  
 
It takes the average score a of the set of attribute connection scores c between 
two objects o1, o2 and multiplies it by the number of attribute connections that 



 

Page 33 

have a score above a predetermined threshold t divided by the total number of 
attributes that o1 and o2 share. The threshold can be adjusted to get better 
results from object structure analysis. 
 
For the Object Structure score we now find 

( )

attributesossattributesoss
tscss

ascorestructureobject

oohStringMatca

.2:#.1:#
::#

__

,

2222

111

21

∈+∈
>∈

⋅=

=

 

So to compare two objects using the object structure algorithm we use for 
example the score model depicted in Figure 18. Then if the threshold 5.0=t , 
Suppose ( ) 71.02__,1__ == oToShStringMatca , then 

4733.0
3
271.0__ =⋅=scorestructureobject . 

 
Figure 18: Object structure example 

3.4 ONTOLOGIES 
In philosophy the term ontology is used as a theory that defines the nature of 
existence, a theory that states what types of things exist. In Semantic Web, 
ontologies are used to define what things are; it defines to which class of 
objects an object belongs and what type of relations it can have with other 
objects.  
 
Using the example of John who lives in Eindhoven, we can specify that “John” is 
a person, “Eindhoven” is a city and that persons can have the “lives in” relation 
with a city. Defining relations between objects and restraints on what types of 
relations are possible between objects (for instance a city object can not have a 
“lives in” relation with a person object) makes it possible for a machine to 
interpret and manipulate the information that it has access to. [7] 
 
There is no need for the writer of a program or script to know what the custom 
tags of an author of a document represent, because the program itself is able 
to access the meaning of the document’s content through RDF and ontologies. 
The writer’s only concern is what information he would like his program to find 
and manipulate, not how someone else has encoded this information.  



 

Page 34 

3.5 MACHINE LEARNING 
As the term states, machine learning is a technique that is used in order to give 
machines the capability to learn. Learning here includes the learning of a wide 
variety of tasks in a large number of domains. It could be defined in general as 
the learning of an ability to perform new tasks or to perform old tasks better 
than before. This learning process is guided by changes produced during the 
learning process and by the learning process [9]. 
 
There are several paradigms that can be identified in machine learning. The 
four major paradigms are inductive learning, analytic learning, genetic 
algorithms and connectionist learning methods.  
 
The inductive learning technique is based on induction of a general concept 
from existing instances of the concept and counterexamples which are not 
instances of the concept. Basically inductive learning is learning from examples. 
 
Analytic learning in contrast uses few examples to learn from. It uses the 
underlying domain theory of the problem and deductive reasoning based on 
past experience in problem solving to guide the solving of a new problem 
instance.  
 
The genetic learning paradigm was inspired by Darwinian natural selection and 
mutations in biological reproduction. New problem instances are tested against 
some sort of objective function in order to decide which already existing 
concepts survive.  
 
The connectionist paradigm is also known as neural networks or parallel 
distributed systems. Some sort of learning algorithm, Boltzmann or back 
propagation for example are very well known ones, is used to calculate a credit 
assignment to every problem instance. Weights are readjusted with every 
evaluation of a new problem instance. The big difference between the 
connectionist approach and the three other approaches is that the connectionist 
approach evaluates a pattern of input in a holistic manner. Problem instances 
are represented as patterns of activation over a network consisting of simple 
elements that can only produce one type of output; they either produce output 
(fire) or they do not. These simple elements are called neurons [9].  

3.6 TOPIC MAPS 
Topic maps provide a way of structuring semantic relations between information 
objects. They can be used to qualify content of information objects in order to 
provide some sort of categorization, to link objects to each other in order to 
enable efficient navigation, to create a certain view of a set of objects based on 
filtering and to structure a set of objects [11].  
 
Topic maps consist of topics (which can denote any kind of object). An instance 
of such a topic is called an occurrence. The power of topic maps lies in the fact 
that topics play roles in associations. They are related to each other in a certain 
fashion. These relations are called associations and, like the topics themselves, 
they also have a name [10].  
 
In section 3.4 we have introduced the notion of an ontology. An ontology is a 
kind of topic map where objects are occurrences, classes of objects are topics 
and their relations are associations.  



 

Page 35 

3.7 SEMANTIC SCORER TYPES 
The main function of the Semantic Scorers is to score all the connections 
between the source and target data model on a semantic level. In this project 
this scoring is limited to the history of previous projects. In the future more 
matching methods based on semantics can be added, such as value matching 
which was already mentioned in 2.3.2.2 
 
Just like the Syntactic Scorers, the Semantic Scorers takes source and target 
attributes as input and returns a total score listing. Figure 20 depicts a graphic 
representation of the Semantic Scorers. Again the thesaurus is used to 
generate synonyms from the source attribute. After the connections between 
attributes have been created by adding new synonyms, these connections are 
mapped to the matches in the history.  
 
The Semantic Scorer essentially works in the same way as a Syntactic. Figure 
19 describes in more detail what happens in a Semantic Scorer. We will 
describe the algorithm used for history matching in more detail, as well as the 
algorithm for updating the history database. 
 

 
 

 
Figure 19: A pseudo code algorithm for the Semantic Scorer Types 

In order to compare attribute connections to connections that were used in 
previous projects, there is need for some kind of mechanism to store 
connections used in previous projects. First of all, a representation is necessary 



 

Page 36 

for these projects. Weaving models are used to represent the connections 
between source and target models. A more detailed description of how weaving 
models represent these connections is provided in section 3.7.1. Secondly, a 
representation for the history of projects is needed as well, in order to be able 
to match current connections to the weaving models already created in the 
past. The history is represented by an ontology, as is described in section 3.7.2. 
Finally a method is needed to compare current connections to connections 
stored in the history and a method to update the history once a new project is 
completed successfully. For this, machine learning techniques will be used. This 
is described in detail in section 3.7.3. 
 
To achieve this we use a supervised learning algorithm, which is a machine 
learning technique, to create labeled mappings by feeding the algorithm 
training data. This training data should be precise and concise. This data is used 
to correctly classify future mappings. 
 

 
Figure 20: High level Semantic Scorer model 

 
The history mappings are weighted; the higher a weight the more likely the 
stored connection in the history database was the correct one. 
 



 

Page 37 

A stored history item is stored as a triple, containing three objects; the source 
attribute, the target attribute and a history information object.  
 

HATAS ,,  

 
This history information object contains at least 
• weight information, how relevant an attribute connection is within the 

history. 
• a regular expression, representing values of source attribute in past 

projects. 
• a transformation list, a list of required transformations to fit the source 

attribute to the target attribute. 
To create better results in the future the history information object can be 
expanded. 
 
A query for the Semantic Scorers inputs on the history will return a weight, if it 
exists. This weight is assigned to the attribute connection. The regular 
expression could be used to check the values from the source object; if the 
regular expression matches these values, the weight is added to the current 
weight of the attribute connection. 
 
The result of the Semantic Scorer is a weighted weaving model. For each 
source attribute the connection with the highest weight should be the best 
option. 

3.7.1 THE USE OF WEAVING MODELS 
In section 2.2 the concept of weaving models was introduced. We have chosen 
to represent the connection between source and target data model by a 
weaving model because these connections contain metadata. A weaving model 
is a graph and it therefore supplies the ability to store metadata belonging to 
each connection. A connection between source attribute sa  and target attribute 
ta  is represented by the triple ( )taWmsa ,,  where Wm  is the weaving model. 
Wm  is a directed graph consisting of a set of vertices Vw  and a set of edges 
Ew  and a set of associations Aw .  
 
Vw  is constructed as follows: for every connection there is a vertex 
representing that connection and a vertex for every type of metadata that we 
want to add to the weaving model.  
 
Ew  consists of an edge from the vertex representing a connection to every 
vertex representing a metadata field attached to that connection.  
 
Aw  is a set of associations connecting the attributes of the source model to the 
correct vertices in Wm  and connecting the vertices in Wm  to the correct 
attributes in the target model. There is an association between an attribute a  
in the source model and a vertex v  in Wm  if and only if a  is connected to 
some attribute in the target model via the connection denoted by v  – that is 
via the connection that contains the particular metadata that is attached to 
vertex v . Furthermore, there is an association between a vertex v  in Wm  and 
an attribute a in the target model if and only if there is a connection from some 
attribute in the source model to a via the connection denoted by v .  



 

Page 38 

3.7.2 THE USE OF AN ONTOLOGY 
For this project, the ontology as depicted in Figure 21 was constructed. The 
history matching algorithm uses this ontology to look up the certainty of a 
connection based on instantiations of this connection in previous projects. The 
certainty of connections in this ontology is updated after each successful 
completion of an integration project.   
 

 
Figure 21: A History Information Object ontology representation 

3.7.3 THE USE OF MACHINE LEARNING 
Since the history is updated using approved weaving models, the learning is 
done inductively based on correct examples, no counterexamples are used. 
Counterexamples were not used since in the scope of this project they do not 
exist. Since any connection is possible there are no false connections. The 
inductive learning process is incremental. The set of weaving models which is 
the output of a completed integration project is used as a learning example for 
the history.  
 
In updating the history, also a holistic connectionist approach [9] is used. As 
can be seen in the ontology that was designed for this project, a weaving model 
can be matched to a history information object by comparing not only source 
and target attributes, but also transformations, source and target object and 
data model. For our purposes a very simple updating rule is sufficient; if all of 
these properties of a weaving model match with the properties of a history 
information object, then the weights of this history information object are 
incremented by 1. Using this updating rule it is achieved that the more 
instances of a weaving model occur in integration projects, the higher the 
weight of the corresponding history information object will become.  
 



 

Page 39 

 
Figure 22: A pseudo code algorithm for a history matching algorithm 

3.8 COMBINING SCORER RESULTS 
Figure 11 shows how each scorer component is connected to the Weaving 
Model Comparer, which is the part of the system that grades the outcomes of 
the scorers and decides which weaving model should be presented to the user. 
The Score Comparer uses the output of the different scorers, the syntactic and 
the semantic scorer, to calculate a weighted average score for the connection 
between the source and the target attribute.  
 
For example the output of a history scorer is more important than the object 
syntactic, because the history is more likely to produce a relevant score. 
Therefore its result should weigh more in calculating the combined weaving 
model.  
 
Furthermore, using the scores and the transformations obtained from the 
semantic scorer, it creates a weaving model for source and target attribute that 
can be presented to the user in order to be verified manually.  
 

 
Figure 23: Weaving model comparer 

 
The Weaving Model Comparer process will undergo the following steps to reach 
its goal: 

- Remove the connections of all input weaving models with a score below 
a give threshold. 

- Combine all remaining connections into one weaving model. 
- Remove duplicate connections by evaluating which one has the highest 

score. 



 

Page 40 

4 IMPLEMENTATION 

This chapter describes the implementation details for the WMgen prototype. 
The WMgen prototype consists of different scorer types, that calculate a score 
based on for instance the structure (for a syntactic type scorer) or the 
semantics (for a semantic type scorer) of source and target model. This score is 
determined by the different algorithms that are executed in each scorer type. 
These scores are then combined and a single weaving model is generated. The 
design for this process was described in the previous chapter. This chapter 
describes how this design can be fit into an overall design of the WMgen 
component including conversion of XML input and output, data types, the use of 
a thesaurus, etc.  
 
In section 1, communication with UDS is described. Section 2 describes the 
data types that were designed in order to construct the prototype. This section 
also provides details about XML input format, implementation of the history 
using RDF, the use of the EuroWordNet thesaurus and creation of synonyms 
based on translation procedures such as removing prefixes. Section 3 describes 
the architecture of the prototype. Dependencies of WMgen are given in section 
4. Section 5 explains how to use WMgen. Setup and configuration are described 
in section 6.  

4.1 UDS WMGEN PROTOTYPE 
The WMgen will be part of the Enterprise Service Bus depicted in Figure 3. It 
will communicate with MDM Engine and MDM Client, both also depicted in 
Figure 3, via web services.  
 
The Weaving Model Generator communicates with the MDM Client. It outputs a 
weaving model, which is visualized by the MDM Client as a transformation 
model with certainties attached to each transformation. The user is now able to 
correct and verify the model and save it to the metadata. The verified model is 
returned to the WMgen which uses it to update its history information. 
 
The design of the Weaving Model Generator will be described in the rest of this 
chapter. The data model that was used will be described in section 4.2, section 
4.2.3 describes the used thesaurus and in section 4.3 the architecture will be 
described. Finally, in section 4.5 and 4.6 the setup of the prototype will be 
explained.  
 

 
Figure 24: WMgen Setup 



 

Page 41 

4.2 DATA TYPES 
In this section the data model of WMgen will be described. This data model 
consists of two separate models. DataModel is the class hierarchy for the XML 
input describing the datasources. ReturnModel is the class hierarchy for the 
output of scorer objects and WMgen itself.  

4.2.1 DATA REPRESENTATION MODELS 

4.2.1.1 DATAMODEL 
A data model consists of a set of objects and it has a name. An object consists 
of a set of attributes and it has a name. Finally, an attribute has a type and it 
also has a name. We choose to add an extra datastructure next to DataModel, 
DataModelObject and DataModelAttribute, as can be seen in Figure 25. This 
datastructure represents the name of each of these three datastructures. This 
provides a simple solution for creating and storing the synonyms of a name and 
the original name in case in early processing, prefixes were removed. A more 
detailed description of the DataModel datastructure is provided in the remainder 
of this section.  
 

 
Figure 25: Class diagram for DataModel structure representation 



 

Page 42 

4.2.1.2 RETURNMODEL 
WMgen returns a set of weavingmodels. We represent a weaving model by the 
class Connection, as depicted in Figure 26. Such a connection has a score, 
which represents the certainty of the connections correctness. It also can have 
a TransformationList which defines how the source object should be 
transformed to fit in the target object. A weaving model, represented by the 
class Connection, has a source and a target, a score and a list of 
transformations.  
 
The actual output of WMgen is an instantiation of the class AbstractReturnModel 
which, as mentioned above, consists of a set of instantiations of the 
Connections class. In designing the architecture of WMgen it was proven useful 
to also use this datastructure to represent intermediate score-calculations.  
 
A minor alteration was necessary though, since also intermediate scores 
between objects are calculated. Therefore, two subclasses of 
AbstractReturnModel were created. The subclass ScoreModel is used to 
represent intermediate calculations which can be weavingmodels between 
either two attributes or two objects. The subclass WeavingModel now 
represents the actual output, which is a set of weavingmodels of which source 
and target are restricted to attributes.  

 
Figure 26: Class diagram for a ReturnModel (WeavingModel/ScoreModel) 

4.2.2 MESSAGES 
As part of the UDS Enterprise Service Bus WMgen communicates with the MDM 
and Sesame using messages. This section describes the global structure of 
these messages. 



 

Page 43 

4.2.2.1 XML 
The WMgen uses XML, describing the source and target data models, as input. 
The XML needs to be of a specific format in order for the WMgen to interpret it. 
The XML format follows the model as described in appendix B. The output that 
is created by the WMgen follows the WeavingModel as described in appendix C.  
 
WMgen can also have XML as input that contains a weaving model. In this case 
there has been interaction with the user in order to update the weights of the 
existing history data. The input XML has the same format as the output XML 
from an execution of WMgen with source and target data models as input, 
except for the added field “verified” which contains a Boolean value. This value 
represents whether the user marked a connection as being correct. An example 
is given in appendix D. When WMgen is executed on an XML containing a 
weaving model, the history is updated accordingly and no output is generated.  

4.2.2.2 HISTORY INFORMATION OBJECT 
History Information Objects (HIO) are part of the History Matcher, which stores 
a weighted weaving model. This semantic information is stored using a RDF 
database. The databases purpose is to support future semantic broadening of 
the History Information Object. WMgen uses the Sesame framework 16.  
 
Each entry, a HIO, in the database contains source attribute and target 
attribute references and meta information like name and type. Beside a 
transformation list, the HIO also has a weight which is a counter. Each time a 
user verifies a transformation model using the UDI client, the weight of the 
corresponding HIO is incremented by 1. When matching new connections to the 
history, the algorithm evaluates the weight; the higher the weight, the more 
likely it is that its corresponding HIO represents the correct attribute 
transformation list for that new connection. 
 
When a user has verified a transformation model, the model is returned to the 
WMgen and the HIOs are updated. The database thus contains a merger of all 
weaving models. 

4.2.3 THESAURUS 
WMgen uses a Thesaurus in order to be able to not only compare the actual 
names of attributes, objects and data models to each other, but also compare 
synonyms of pairs of names to each other. This will result in greater accuracy of 
scores for matchings. A Thesaurus delivers these synonyms to WMgen. 
WordNet is the most frequently used Thesaurus.  
 
EuroWordNet is a Thesaurus that offers implementations of WordNet in some 
European languages, including Dutch. In this project the EuroWordNet 
Thesaurus is used, because URBIDATA works with municipalities in the 
Netherlands. In general these municipalities work with data models that use 
Dutch terms. If in the future WMgen will also need to be used for data models 
that use other languages, then language recognition software might be needed 
to recognize which WordNet variant should be used.  

4.2.3.1 TRANSLATION PROCEDURES 
Before the Thesaurus is used to look up synonyms for a model name, object 
name or attribute name, some translation procedures are executed in order to 
account for prefixes, underscores and abbreviations in a model. Prefixes are 



 

Page 44 

substrings of n characters, for a certain natural number n, that are used as the 
first n characters for every name in a certain group. If for instance for a certain 
object, every attribute name starts with the substring “STR_”, then “STR_” is a 
prefix. Prefixes can be found in model names, object names and attribute 
names. When these prefixes are left out in the matching process, this could 
result in a more accurate score for this model. Therefore, before the thesaurus 
is used, a synonym is created for every name that possesses a prefix, 
consisting of all characters of the original name minus the prefix.  
 
We can find prefixes as follows. Start with the first name of a group (for 
instance of a group of attributes). Compare this name to the second name and 
find out how many of the first characters of these two names are the same. 
Then compare the third name of this group to the substring that was find in the 
previous step and find out how many of the first characters of these two strings 
are the same. Continue with this process until all names are compared. The 
substring that is left over after the last comparison is a prefix for this group of 
models, objects or attributes.  
 
Because all object and attribute names are necessary in order to find prefixes, 
removal of prefixes is done when creating the class model from the input XML 
(see section 4.3).  
 
Abbreviations are defined only for target data models. For source data models 
there is no knowledge about the possible use of abbreviations, so defining any 
translations for abbreviations used in source models is not possible. For target 
models the used abbreviations are defined in the documentations of the 
standard that was used for the target model. These abbreviations and their 
meaning, their translation, need to be defined in the configuration file (see 
section 4.6 for more details on the syntax and use of the configuration file). A 
synonym is created for every name that contains an abbreviation, using the 
translation of the abbreviation in stead of the abbreviation.  

4.3 ARCHITECTURE 
The process of creating a weaving model is as follows. The algorithms are 
executed and their output scores are combined to an overall score of each 
scorer. Therefore classes that represent algorithms and classes that represent 
scorers are necessary. The output of the scores is combined to form the output 
weaving model, for this a class that represents the score combine procedure is 
needed.  
 
Furthermore, which algorithms and scorers are used and in which order they 
are used is defined in a configuration file. This configuration forms the guideline 
according to which the WMgen component executes the process of forming a 
weaving model. A class is needed that represents the guidelines for this process 
as defined in the configuration file.  
 
Finally WMgen needs to deal with XML input and output. For this classes are 
used that represent the translation procedures for XML input to the datamodel 
as depicted in 4.2.1.1 and for the created weaving model as depicted in 4.2.1.2 
to XML output.  
 



 

Page 45 

Figure 27: WMgen prototype system architecture 

 
The resulting system architecture is depicted in Figure 27. The main method for 
the system is of course Main. The input is a filename containing an XML 
description of the source and target datamodels. These models are then parsed 
by XMLToClass and passed ScorerInitiator. The ScorerInitiator results in a set of 
ReturnModels, which are converted to a WeavingModel bij the 
ReturnModelComparer. This WeavingModel is passed to ClassToXML and 
converted back to a WeavingModel XML format. 
 
The scores for a comparison are determined by the class InterfaceScorers. This 
class implements certain types of scorers, namely syntactic and semantic 
scorers. Each scorer is configured by the configuration file, that defines which 
algorithms should be used. Also each scorer has a priority. For example the 
StringMatchScorer should be executed before the StructureScorer, that uses 
the StringMatchScorer's results. The scorers used for the thesis project setting 
are described in 3.3 and 3.7. More types of scorers can be added in the future 
to generate better matchings.  
 
A score is determined by algorithms that are described in this document. The 
algorithms are implemented in the child-classes of InterfaceAlgorithm. Each 
algorithm belongs to a scorer. An algorithm object determines the score for a 
comparison between two objects. These two objects can be for example a 
DataModel, a DataModelObject, a DataModelAttribute or even a string. The 



 

Page 46 

algorithms used for the thesis project setting are described in 3.3.1. More 
algorithms can be added in the future.  
 
Furthermore, the ScoreModels that are created by InterfaceScorer are 
compared in the class ReturnModelComparer. In this class, the optimal 
WeavingModel for the source- and targetmodels is determined.  
 
Finally, the XMLToClass class implements an operation in order to generate a 
class model that can be used in the WMgen prototype and the ClassToXML class 
implements an operation in order to generate an XML file from the weaving 
model that was created by the WMgen prototype. 

4.4 DEPENDENCIES 
The Weaving Model Generator uses several external libraries. It uses libraries 
that implement matching algorithms, a Thesaurus and a repository of 
previously generated weaving models in order to enable history matching.  
 
The implementations of all of the matching algorithms that are described in this 
document are available in the Simmetrics (uk.ac.shef.wit.simmetrics) library. 
Algorithms, not only matching algorithms from the Simmetrics library or other 
libraries, but also newly designed algorithms, can be added as an extension of 
the AbstractAlgorithm class in the future.  
 
The Thesaurus that is used in the DataModelName class in order to generate 
synonyms is the Dutch variant of EuroWordNet.  
 
The history matching algorithm uses a repository (as described in 4.2.2.2) of 
previously generated weaving models. The Sesame 2 library is needed in order 
to be able to communicate with this repository.  

4.5 USING WMGEN 
Now that we have explained the WMgen architecture all that is left to point out 
is how to operate the WMgen system. As described before the WMgen system 
needs an XML of the format described in section 4.2.2.1 as input. WMgen will 
then generate a weaving model that is to be presented to the Client Integrator. 
The Client Integrator will visualize the model. The user can then verify whether 
the model is correct by evaluating the scores of each transformation and the 
transformation itself. This verified model can then again be used as an input for 
WMgen which will store the verified model in the history repository.  
 
For example one method for letting a user evaluate a transformation model is 
to present each transformation with a colored certainty (see Figure 28); the 
lower the certainty the more red the box will be and the higher the certainty 
the more green the box will be. Each certainty is accompanied with a checkbox. 
If a certainty is above a certain threshold, the checkbox is checked; this is 
usually the case. The user is now able to evaluate the transformation model; 
check a box to indicate that a transformation is accepted and uncheck a box 
otherwise. A good user would update the transformation accordingly and then 
send a 100% correct model to WMgen; this ensures better results from the 
HistoryMatcher.  



 

Page 47 

 
Figure 28: A MDM transformation model evaluation interface example 

4.6 SETUP AND CONFIGURATION 
The WMgen prototype is a stand-alone component. The user is able to pass XML 
data models as command line arguments to WMgen. The UDI must also use the 
WMgen component like this. In the future this might be done by event driven 
messaging, but for this prototype command line arguments suffice. 
 
WMgen can be configured using a XML configuration file as depicted in Figure 
29. The most important part of the configuration file describes which scorers 
should be used and which algorithms each scorer invokes. This way scorers and 
algorithms are easily added or removed from the weaving model generation 
process. 
 
Furthermore each scorer has a priority. Scorers with a higher priority are 
executed before scorers with a lower priority. Priorities range from 1 to infinity; 
1 being the highest priority. 
 
This configuration file should be in the same directory as WMgen. Newly created 
scorers and algorithms should implement the InterfaceScorer and 
InterfaceAlgorithm classes, as described in section 4.3. 
 
 
<?xml version="1.0" encoding="utf-8" ?> 
<CONFIGURATION> 
 <SCORERS> 
 <SCORER CLASSNAME=”classname_1” PRIORITY=”1” WEIGHT=”1”> 
  <USES> 
   <ALGORITHM> 
    <CLASSNAME>classname_2</CLASSNAME> 
    <WEIGHT>weight_2</WEIGHT> 
   </ALGORITHM> 
   : 
   : 
   <ALGORITHM> 
    <CLASSNAME>classname_n</CLASSNAME> 
    <WEIGHT>weight_n</WEIGHT> 
   </ALGORITHM> 
  </USES> 
 <SCORER> 
 : 
 : 
 <SCORER CLASSNAME=”classname_3” PRIORITY=”4” WEIGHT=”1”>. . . .</SCORER> 

</SCORERS> 
<THRESHOLD>0.5</THRESHOLD> 

</CONFIGURATION> 
 

Figure 29: A WMgen configurationfile 



 

Page 48 

5 PROTOTYPE RESULTS 

In this section a test case is described that was used to test the units of the 
WMgen prototype that are relevant for this research project. Part of a 
transformation model created during a successfully completed UDS integration 
project [18] will be used. In section 5.1 the test case that is used throughout 
this chapter is described. Section 5.2 shows the output that should be 
expected. The used tests and their outcome are described in sections 5.3 
through 5.8.  

5.1 TEST CASE 
Figure 30 depicts the partial target data model, taken from the UDS integration 
project for municipality of Westland, which was used for testing of the 
prototype. The target data model is named “[GIS] SA Adres” and it contains 
three objects that consist of several attributes. GIS is a reference to one of the 
standards mentioned in 2.1.2.  
 

GG_OpenbareRuimte

PS ID

ES1 ID_WPL
ID_BAG_A1101
STR_CODE

I1 NM_A1110
IND_GECONST
STRNM_PTT
STRNM_BOCO
DAT_BEG
DAT_END
IND_IN_ONDZK

I1 WPL_A1115
TY_A1117
DAT_DOC
NR_MUT
STS_A1119

GG_Woonplaats

PS ID

ID_BAG_A1103
NM_ A1170
GEOM_A1171
GEOSYMBOOLTYPE
IND_GECONST
DAT_BEG
DAT_END
IND_IN_ONDZK
DAT_DOC
NR_MUT
STS_A1179

GG_Nummeraanduiding

PS ID

ES1 ID_OPR
ID_BAG_A1102
GEOM
GEOSYMBOOLTYPE
ID_ADR
VOLGNR

I1 HUISNR_A1120
IND_GECONST

I1 HUISLTR_A1130
I1 TOEV_A1140
I1 AAND

PC
HOEK_HUISNR
DAT_BEG
DAT_END
IND_IN_ONDZK

I1 WPL_A1161
I1 OPR_A1165

STR_CODE
TY_A1166
DAT_DOC
NR_MUT
STS_A1169
X
Y

 
Figure 30: Partial target data model of the Westland GIS project 

5.2 EXPECTED RESULTS 
In Figure 31 the objects of the target data model (the right column) as well as 
the source data model (the left column) are listed. Figure 32 depicts part of the 
actual transformation model that was used in the Westland project for this part 
of the source and target model. These figures can be used as a reference for 
evaluating the performance of the prototype; they can be compared to the 
actual prototype results and serve as the expected results. 
 



 

Page 49 

Figure 32 lists the attribute names below each name of the object that they are 
a part of. The object names are printed in bold. The object and attribute names 
of the source model are listed in the leftmost column, the object and attribute 
names of the target model are listed in the rightmost column and in the center 
column the transformations are listed.  
 
[IMP] Adr4All [GIS] SA Adres 
ADR5_WOONPLAATS SA_WOONPLAATS 
ADR5_STRAAT SA_OPENBARERUIMTE 
ADR5_ADRESCYCLUS SA_NUMMERAANDUIDING 

Figure 31: Partial transformation model on an object level of the Westland GIS project 

 
ADR5_WOONPLAATS  SA_WOONPLAATS 
WOONPLKODE = ID_BAG_A1103 
WOONPLBOCO = NM_A1170 
DDINGANG = DAT_BEG 
DDEINDE = DAT_END 
   
ADR5_STRAAT  SA_OPENBARERUIMTE 
STRAATKODE = STR_CODE 
STRAATKODE = “straat” TY_A1117 
STRAATBOCO = STRNM_BOCO 
STRAAT_OFF = NM_A1110 
STRAAT_PTT = STRNM_PTT 
DDINGANG = DAT_BEG 
DDEINDE = DAT_END 
   
ADR5_ADRESCYCLUS  SA_NUMMERAANDUIDING 
WOONPLKODE = WPL_A1161 
STRAATKODE = STR_CODE 
DDINGANG = DAT_BEG 
DDEINDE = DAT_END 
ADRESNR = ID_ADR 
VOLGNR = VOLGNR 
AAND = AAND 
HUISNR = HUISNR_A1120 
HUISLT = HUISLTR_A1130 
TOEV = TOEV_A1140 
POSTK_A 
POSTK_N 

CONCAT PC 

X_KOORD = X 
Y_KOORD = Y 
VRY_VELD2 REPLACE(“,”; ”.”) HOEK_HUISNR 

Figure 32: Partial transformation model on attribute level of the Westland GIS project 



 

Page 50 

5.3 SYNONYM CREATION 
A few attributes are used from the test case described in the previous section to 
test the output of the synonym creation process.  

5.3.1 INPUT 
The input for this test case consists of the attributes depicted in Figure 33. 
Combinations of source and target attributes are used, because the lists of 
synonyms created for the source and the target attributes are expected to 
resemble each other. Testing these combinations then enables us to verify this 
expectation.  
 
The source and target attributes STRAATKODE and STR_CODE were chosen 
because of the abbreviation “STR” and the underscore in “STR_CODE”. The 
combination DDEINDE and DAT_END was chosen in order to find out what 
happens to the abbreviation DD, which – like DAT - stands for date. 
Furthermore “EINDE” means END in Dutch. The POSTK_A, POSTK_N, PC 
combination is interesting because PC is an abbreviation for postal code, but 
POSTK is not. Finally, the combination WOONPLKODE, WPL_A1161 is 
interesting because “WPL” is an abbreviation, but “A1161” does not mean 
anything.  
 
STRAATKODE STR_CODE 
DDEINDE DAT_END 
POSTK_A 
POSTK_N 

PC 

WOONPLKODE WPL_A1161 

Figure 33: Input attributes for synonym creation test case 

5.3.2 RESULTS 
The output for the synonyms generated by the DataModelName object as 
described in 4.2.1.1 is depicted in Figure 34 for the attributes used in the test 
case described in section 5.3.1. This output does not view the results generated 
using the thesaurus, because the outcome can not be predicted at this time as 
just the sample database for EuroWordNet is available. 
 

Original 
attribute name 

Output 

STRAATKODE STRAATKODE 
STR_CODE STRAATCODE 
DDEINDE DDEINDE 
DAT_END DATUMEND 
POSTK_A POSTKA 
POSTK_N POSTKN 
PC POSTCODE 
WOONPLKODE WOONPLKODE 
WPL_A1161 WOONPLAATSA1161 

Figure 34: Output for synonym creation 



 

Page 51 

5.4 THE STRING MATCH SCORER 
We use a few attributes from the test case described in section 5.1 to test the 
output of the string match scorer.  

5.4.1 INPUT 
The input for this test case consists of the attributes depicted in Figure 35.  
 

Source attribute Target attribute 
STRAATKODE STR_CODE 
HUISNR HUISNR_A1120 
WOONPLBOCO NM_A1170 
STRAAT_PTT STRNM_PTT 

Figure 35: Input attributes for string matching test case 

Again the running example STRAATKODE and STR_CODE is used. The other 
cases are chosen for the following reasons. The target of HUISNR has a postfix, 
WOONPLBOCO and NM_A1170 are completely different and STRAAT_PTT and 
STRNM_PTT will differ in the middle when NM is replaced by NAAM. 

5.4.2 RESULTS 
Since the string match scorer needs to output the average of the outcome of 
the Jaro Winkler algorithm described in section 3.3.1.1, the Levenshtein 
algorithm described in section 3.3.1.2 and the SoundEx algorithm described in 
section 3.3.1.3. Figure 36 depicts the outcome for each algorithm used by the 
string match scorer as well as the total average, which is the actual outcome of 
the scorer. This test was done as a unit test, therefore no abbreviations or 
synonyms were generated, the scores are solely based on the input strings. 
  
Source 
attribute 

Target 
attribute 

Jaro 
Winkler

Levenshtein Soundex String match 
scorer 

STRAATKODE STR_CODE 0.8483 0.6 0.9667 0.8050 
HUISNR HUISNR_A1120 0.9333 0.5 1.0000 0.8111 
WOONPLBOCO NM_A1170 0.4083 0.0 0.5556 0.3213 
STRAAT_PTT STRNM_PTT 0.8448 0.7 0.9333 0.8260 

Figure 36: String Match Scorer output for string matching test case 

As a comparison we have depicted the results for the string match scorer as 
used in the final prototype, which uses abbreviations and synonyms in Figure 
37. 
 
We can clearly see higher scores for STRAATKODE, HUISNR and STRAAT_PTT. 
WOONPLBOCO has a slightly lower score. This can be ascribed to the fact that 
the strings already differ a lot, but when the NM abbreviation is replaced in 
NM_A1170 by NAAM, the strings differ 2 characters more than before. 
This negative change is an anomaly however; even a human consultant would 
have trouble matching these two string without more information. 



 

Page 52 

 
Source attribute Target attribute String match 

scorer 
STRAATKODE STR_CODE 0.879316 
HUISNR HUISNR_A1120 0.874074 
WOONPLBOCO NM_A1170 0.319753 
STRAAT_PTT STRNM_PTT 0.867711 

Figure 37: String Match Scorer output using abbreviations and synonyms 

5.5 THE OBJECT STRUCTURE SCORER 
The objects from the test case described in section 5.1 are used to test the 
output of the syntactic. ScoreModels generated by scorers with a higher priority 
(in this case the string matcher scorer) are used in as input for the syntactic 
algorithm.  

5.5.1 RESULTS 
Figure 38 shows the scores between each object pair. The scores are calculated 
by taking the number of attribute scores na from the input scoremodels above 
a certain threshold (in this case 0.5), dividing this number by the total number 
of child attributes ta in the two objects and finally multiplying it with the string 
match sm between the two object strings using the same algorithms (3.3.1.1-
3.3.1.3) as the string match scorer. 
 
i.e. ADR5_WOONPLAATS and SA_WOONPLAATS is calculated as follows: 
 

340385.090769225.0
16
6

=⋅=⋅ sm
ta
na

 

 
Source Object Target Object String 

Match 
Nr above 
threshold 

Score 

ADR5_WOONPLAATS SA_WOONPLAATS 0.90769225 6 0.340385
ADR5_WOONPLAATS SA_OPENBARERUIMTE 0.58464056 6 0.175392

ADR5_WOONPLAATS SA_NUMMERAANDUIDING 0.51637430 6 0.103275
ADR5_STRAAT SA_WOONPLAATS 0.55788660 10 0.309937

ADR5_STRAAT SA_OPENBARERUIMTE 0.52168750 22 0.521688
ADR5_STRAAT SA_NUMMERAANDUIDING 0.56485910 14 0.247126

ADR5_ADRESCYCLUS SA_WOONPLAATS 0.49903846 9 0.166346

ADR5_ADRESCYCLUS SA_OPENBARERUIMTE 0.38888893 12 0.150538

ADR5_ADRESCYCLUS SA_NUMMERAANDUIDING 0.38888893 28 0.265583
Figure 38: Output for object structure test case 

The scores generated by the object structure scorer seem to be low. However 
we can clearly see that the highest scores also resemble the correct object 
connections.  



 

Page 53 

5.6 THE SEMANTIC SCORER 
A few attributes from the test case described in section 5.1 are used to test the 
output of the semantic scorer.  

5.6.1 INPUT 
Before the testing starts, we make sure that the outcome of the test case is 
stored in the history. Now, if we try to match the attributes listed in Figure 39, 
it is expected that the correct transformations are returned. These 
transformations are described in the results section.  
 
Source attribute Target attribute 
STRAATKODE TY_A1117 
POSTK_A 
POSTK_N 

PC 

VRY_VELD2 HOEK_HUISNR 

Figure 39: Input attributes for semantic scorer test case 

5.6.2 RESULTS 
The transformations that are listed in Figure 40 are the results of the semantic 
scorer. The score values seem to be irrelevant, because they always equal 1. 
However this is to be expected as the user has verified these connections in the 
past to be correct. The scores are used to increase the total score of a 
connection in the ReturnModelComparer component of the prototype. 
 
Source attribute Target attribute Transformation Score 
STRAATKODE TY_A1117 = “straat” 1 

POSTK_A 
POSTK_N 

PC CONCAT 1 

VRY_VELD2 HOEK_HUISNR REPLACE(“,”; ”.”) 1 

Figure 40: Output for semantic scorer test case 

5.7 THE SCORE COMPARER 

5.7.1 INPUT 
The set score models generated from the various scorers as depicted in Figure 
37, Figure 38 and Figure 40 is the input of the ReturnModelComparer. 
The ReturnModelComparer first filters all connections below a certain threshold 
(given by the user in a configuration file), then merges the remaining 
connections into one weaving model and finally removes duplicate connections. 

5.7.2 RESULTS 
Figure 41 depicts the final result using a threshold of 0.5 and weights of 1. The 
weights with value 1 mean that each algorithm and scorer is considered equally 
capable. Also the threshold makes the score comparer drop results with a score 
lower than 0.5; however the resulting weaving model may still contain lower 
results than 0.5, because these values are calculated from the remaining score 
connections. 
 



 

Page 54 

If this weaving model is compared against the expected model depicted in 5.2, 
some mistakes are revealed; in Figure 41 these are printed italic. These 
mistakes can be categorized in four types of wrong results: 
 
- Connection seems ok at first, but is actually wrong. For example ADRESNR 

and HOEK_HUISNR are very similar. A human could easily make the same 
mistake. 

- Connections that have similar properties easily can be wrongfully outputted, 
because they also result in similar scores. For example DDINGANG and 
DAT_BEG/DAT_END. 

- Mismatches. For example STRAAT_OFF and STR_CODE. 
- Missing results. For example WOONPLKODE and ID_BAG_A1103. 
 
User evaluation of the resulting weaving model, checking its correctness and 
updating it accordingly, should eliminate these mistakes in future runs. The 
history will become more detailed, whereas these prototype runs were executed 
with a history containing four history objects. Also better semantic evaluations 
of the data, using for example value matching as mentioned in section 2.3.2.2, 
will improve performance. 
 

Figure 41: Output weaving model for the score comparer with threshold 0.5 

Source Attribute Target Attribute Transformations Score 
ADR5_ADRESCYCLUS.AAND SA_NUMMERAANDUIDING.AAND  0.632791

ADR5_ADRESCYCLUS.ADRESNR SA_NUMMERAANDUIDING.HOEK_HUISNR  0.448725
ADR5_ADRESCYCLUS.DDEINDE SA_NUMMERAANDUIDING.DAT_END  0.509180

ADR5_ADRESCYCLUS.DDINGANG SA_NUMMERAANDUIDING.DAT_END  0.537463
ADR5_ADRESCYCLUS.HUISLT SA_NUMMERAANDUIDING.HUISLTR_A1130  0.498532

ADR5_ADRESCYCLUS.HUISNR SA_NUMMERAANDUIDING.HUISNR_A1120  0.569828

ADR5_ADRESCYCLUS.POSTK_A SA_NUMMERAANDUIDING.PC CONCAT 0.622298

ADR5_ADRESCYCLUS.POSTK_N SA_NUMMERAANDUIDING.PC CONCAT 0.622298

ADR5_ADRESCYCLUS.STRAATKODE SA_NUMMERAANDUIDING.STR_CODE  0.572449

ADR5_ADRESCYCLUS.TOEV SA_NUMMERAANDUIDING.TOEV_A1140  0.512421

ADR5_ADRESCYCLUS.VOLGNR SA_NUMMERAANDUIDING.VOLGNR  0.632791

ADR5_ADRESCYCLUS.VRY_VELD2 SA_NUMMERAANDUIDING.HOEK_HUISNR REPLACE(","; ".") 0.632791

ADR5_ADRESCYCLUS.X_KOORD SA_NUMMERAANDUIDING.X  0.392977

ADR5_ADRESCYCLUS.Y_KOORD SA_NUMMERAANDUIDING.Y  0.392977

ADR5_STRAAT.DDEINDE SA_OPENBARERUIMTE.DAT_END  0.637233

ADR5_STRAAT.DDINGANG SA_OPENBARERUIMTE.DAT_BEG  0.665515

ADR5_STRAAT.STRAAT_OFF SA_OPENBARERUIMTE.STR_CODE  0.675473
ADR5_STRAAT.STRAAT_PTT SA_OPENBARERUIMTE.STRNM_PTT  0.694699

ADR5_STRAAT.STRAATBOCO SA_OPENBARERUIMTE.STRNM_BOCO  0.701747

ADR5_STRAAT.STRAATKODE SA_OPENBARERUIMTE.TY_A1117 ="straat" 0.760844

ADR5_WOONPLAATS.DDEINDE SA_WOONPLAATS.DAT_END  0.546581

ADR5_WOONPLAATS.DDINGANG SA_WOONPLAATS.DAT_END  0.574864



 

Page 55 

5.8 VARYING TESTPARAMETERS 
WMgen allows a number of parameters to be tweaked to reach the 
configuration that generates the best results. Scorers and Algorithms can be 
added/removed using a configuration file. Also each Scorer/Algorithm can be 
given a weight; this weight indicates the importance of a Scorer/Algorithm. 
Finally there is a threshold parameter; this parameter is used to remove scores 
that are lower than the threshold. 

5.8.1 ADDING/REMOVING SCORERS AND ALGORITHMS 
By varying the scorers in the configuration file we can adjust WMgen to try and 
generate better results. Figure 42 depicts the results of an analysis of these 
variations. The table is structured as follows. The top rows that are printed in 
bold are correct attribute connections as stated in Figure 32. The bottom rows 
which are not bold, are incorrect connections. When a cell contains a – symbol, 
it means that the resulting weaving model did not contain that attribute 
connection.  
 
We define: 

• The number of incorrect connections: 0:# >¬ scorebold  

• The number of missing connections: "":# −=scorebold  

• The number of correct connections: 0:# >scorebold  

 
When taking into account that String Match should have priority over Object 
Structure and Object Structure over History1, the following 4 scorer 
combinations can be tested: 
 

• String Match 
• String Match – Object Structure 
• String Match – History 
• String Match – Object Structure – History 

 
We are now able to count the number of faulty results, the number of missing 
correct results and the number of correct results per combination. By dividing 
the number of incorrect results by the number of correct results we get a 
measure for identifying the best configuration. The lower this score, the better; 
it means that there are a lot less faulty than correct generated connections. 
 

total
gmisincorrectmeasure

#
sin## +

=  

 
The String Match – Object Structure scorer combination got the best score 
0.217391. However if we evaluate the individual scores of the second result 
(String Match – Object Structure – History), we see that this combination of 
scorers has a larger number of unique source attributes. 
 
ADR5_ADRESCYCLUS.VRY_VELD2  A_NUMMERAANDUIDING.HOEK_HUISNR 
is a unique connection generated by the History Scorer, while 
                                          
1 The String Match Scorer should have priority over the Object Structure Scorer, because the 
Object Structure Scorer uses the weaving model generated by higher priority Scorers (in this case 
the String Match Scorer). 



 

Page 56 

ADR5_ADRESCYCLUS.DDINGANG  SA_NUMMERAANDUIDING.DAT_BEG is 
correctly identified by the SO combination, but missing in the SOH combination. 
The missing connection is of less importance, because these attributes are 
apparent in more than one object and are therefore more likely to be matched 
correctly on other occasions. Also the History Scorer uses learning algorithms 
and could learn that ADR5_ADRESCYCLUS.DDINGANG  
SA_NUMMERAANDUIDING.DAT_BEG is actually a correct match; the results of 
the String Match Scorer and Object Structure Scorer are not capable of 
generating the ADR5_ADRESCYCLUS.VRY_VELD2  
A_NUMMERAANDUIDING.HOEK_HUISNR connection in future runs. Therefore 
the SOH combination probably is a better choice. This result proves that adding 
more scorers might improve the scores even more. 
 

 
Figure 42: Variation test for Scorers 

 
We can also vary the algorithms in the configuration file and try to generate 
better results. Figure 43 depicts the results of an analysis of variations on the 
algorithms used by the String Match Scorer. We now find the following 
algorithm combinations that can be tested: 
 

• Jaro-Winkler 
• Levenshtein 
• SoundEx 
• Jaro-Winkler – Levenshtein 



 

Page 57 

• Jaro-Winkler – SoundEx 
• Levenshtein – SoundEx 
• Jaro-Winkler – Levenshtein - SoundEx 

 
Again we are now able to count the number of faulty results, the number of 
missing correct results and the number of correct results per combination.  
 
The combination of all algorithms generates the best results with an analysis 
score of 0.28. Again this result proves that adding more scorers might improve 
the scores even more. 
 

 
Figure 43: Variation test for String Match algorithms 

5.8.2 THRESHOLD 
The threshold is used to filter results with a lower score. Again we use a similar 
analysis procedure and generate results for threshold values 0.1 through 0.9. 
Figure 44 depicts the results of this analysis. It can be concluded that a 
threshold of 0.5 generates the best results, closely followed by a threshold of 
0.7 and 0.6. 



 

Page 58 

 
Figure 44: Variation test for threshold values 

5.8.3 WEIGHTS 
Scorers and Algorithms can be given weights in the configuration file. This is 
done to give a level of importance to a scorer or an algorithm. For example if 
one algorithm produces good results, but the returned score is just a bit lower 
than the score from another algorithm, then the weights can be tweaked to 
give the algorithm just a little more of an edge. 
 
In Figure 45 the results are depicted when the weights of the String Match 
Algorithms are tweaked. The table has a header with a code where a 1 stands 
for a weight of 2 and 0 stands for a weight of 1; with from left to right: 
 

• Jaro-Winkler 
• Levenshtein 
• SoundEx 

 
So for example 101 means a weight of 2 for Jaro-Winkler, a weight of 1 for 
Levenshtein and a weight of 2 for SoundEx. The distribution of the scores is 
calculated as follows: 
 

weightskk
weightsj

iweightsimultiplier

j

∈⋅
∈

=
∑

:#)()(  

 



 

Page 59 

So for the example we get the following distribution of multipliers: 
 

• Jaro-Winkler:  1.2 
• Levenshtein:  0.6 
• SoundEx:  1.2 

 
In Figure 45 the results are depicted with the various configurations of weights 
for the String Match algorithms. Again we can see better results for some 
configurations.  However the more correct results, the more faulty results and if 
there are less faulty results, then there are correct results missing. 
The best choice here is to choose the one in the middle, where the weights are 
equal (111 or 000). 
 

 
Figure 45: Variation test for String Match algorithm-weights 

5.9 DISCUSSION OF RESULTS 
The results generated are already pretty good even though not all suggested 
scorers were implemented in the prototype. For example value matching as 
mentioned in 2.3.2.2 and type matching (3.3.1.4) are not yet implemented. 
 
Section 5.8 clearly shows that adding more scorers and algorithms leads to 
better weaving models. Obtained results are always dependent on how the 
parameters are set in the configuration; therefore this should not be neglected 
in the future. Varying these parameters is an essential part in generating good 
results. 
 
The generated weaving model already would save a user (in this case an 
URBIDATA consultant) a lot of time in setting up an integration process. Using 
the user’s feedback, giving visual interpretations as can be seen in Figure 28  
and updating the history will improve the score results. In short preliminary 
results are satisfactory and practice will reveal on which fronts even more 
improvement is possible. 



 

Page 60 

6 CONCLUSION AND FUTURE WORK 

This chapter provides a description of the results of this project. In section 1, it 
is evaluated whether the goals of this project were reached. Section 2 provides 
a recommendation of future work to be done, expanding the achievement of 
this project. Finally, in section 3, the project itself is evaluated.  

6.1 CONCLUSION 
The goal of this project was to research whether it is possible to automate the 
schema matching process in a data integration process. This research is part of 
the MDM redesign project at URBIDATA, in particular it was part of a research 
project concerning automated generation of transformation models in a data 
integration process. In this document, the design of a component, named 
WMgen, which enables automation of weaving model generation, is described. 
This automatic generation of weaving models is based on analysis of the source 
model and comparison to the outcome of previous integration projects. The 
design is made extendible; new matching algorithms and new score generators 
can be added easily.  
 
In section 1.6, it was mentioned that in order to automate the generation of 
weaving models, some analysis of human reasoning in the construction of 
weaving models and research into whether it is possible to automate this 
reasoning process was necessary. The reasoning process was divided into two 
parts: a structural analysis of the data and a semantic analysis of the data.  
 
It was however not possible, within the given time span of the project, to 
automate the creation of transformation models on the basis of automatically 
generated weaving models. This means that the WMgen component is a 
prototype that can be used in further research in order to automate creation of 
transformation models. More on this can be found in section 6.2  

6.2 FUTURE WORK 
As was mentioned in the previous section, the automatic generation of 
transformations is something that still needs to be researched. The difficulty 
here is how we can automatically find out what a transformation from one 
object to another looks like. For instance suppose we have hectares as data in 
the source model and we need square meters in the target model. How can we 
analyze these sorts of mappings such that we can automatically create the 
correct transformation?  
 
Furthermore, the time span of this project did not allow for a complete 
implementation of the redesign project. This project delivered the research that 
was necessary in order to automate the business process of creating weaving 
models. The implementation in the redesign project is something that still 
needs to be done; this research can serve as a basis for the implementation of 
the weaving model generation component in the redesign project.  
 
The automatic generation of weaving models itself can be expanded as follows; 
semantic scoring can be improved by automatically adding more metadata to 
the history and using this metadata in the matching process. If for instance we 
automatically add something like a description of the transformation to the 
history and we use this description in the matching process, we can more 
accurately rate the possibility that a current connection between a source and a 



 

Page 61 

target attribute is the connection that we seek based on the description in the 
history. We currently only use the weight that is stored in the history for a 
certain connection between attributes. Also the structure analysis is very 
dependent on the fact that meaningful names were used for models, objects 
and attributes. This dependency could be lessened by also using the actual 
values of attributes in the matching process. Also URBIDATA would like to be 
able to also automatically generate weaving models of data models that contain 
geometric data. This was beyond the scope of this project.  
 
Finally, some extra functionalities that will be necessary or at least very useful 
in the future are the support of different languages, language recognition, a 
user interface for supplying the system with feedback on the generated 
weaving model and an extension of MDM by using the FME [19] standard 
transformation library in generating transformation models. Safe software 
currently defines 273 transformation operators in 12 categories, which can be 
used to define a transformation knowledge base.  

6.3 PROJECT EVALUATION 
In this last section I would like to evaluate this research project. I will start by 
describing the experience of doing a research project within a company and 
what I have learned from this experience. Finally I will elaborate on some 
technical issues that I have researched, used and learned to handle.  
 
Performing a research project for a company often starts out with conflicting 
goals. The company would like to see results as soon as possible, but research 
does not give any usable results for the company until the end of the project is 
reached. Also the company tends to have very high expectations in absence of 
a deep understanding of the difficulty of the problem that needs to be resolved. 
Since at the start of this project I also suffered of a lack of deep understanding 
of the difficulty of the problem, it was for me to find out that the project as it 
was laid out in the beginning was too large. I had to cut out parts of the initial 
problem until only a piece of the original problem was left for which it was 
possible to come up with a solution within the time span of the project. This 
was done in deliberation with the supervisor at URBIDATA and the supervisor at 
TU/e. Concluding I can state that this was a valuable experience for me in how 
a Computer Science graduate is expected to operate in the environment of a 
company.  
 
As for the technical issues; I have learned a lot about data integration and the 
processes necessary to integrate large data models, I have learned how to 
model transformations between large data models and I have had some 
experience with the standards used in the geo-industry. Furthermore I have 
had some more practical experience with UML modeling and Java programming 
and I have gained basic knowledge of semantic web techniques.  
 
But the most valuable, and also the most time consuming, experience was 
scientific writing. In my experience it was very difficult to state in writing 
exactly what you mean to say. Some sentences in this document were changed 
over and over again until they were disambiguated and completely clear to the 
reader. This is an experience that will be valuable throughout the rest of my 
career.  



 

Page 62 

REFERENCES 

[1] W. E. Winkler. The state of record linkage and current research problems. 
Technical report, Statistical Research Division, U.S. Census Bureau, 
Washington, DC, 1999. 

 
[2] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions 

and reversals. Doklady Akademii Nauk SSSR, 163(4):845--848, 1965. 
 
[3] Didonet Del Fabro, M, Bézivin, J, Jouault, F, Valduriez, P. Applying Generic 

Model Management to Data Mapping. In proc. of BDA 2005, Saint-Malo, 
France, pp 343—355. 

 
[4] Del Fabro, M. D. and Valduriez, P. 2007. Semi-automatic model integration 

using matching transformations and weaving models. In Proceedings of the 
2007 ACM Symposium on Applied Computing (Seoul, Korea, March 11 - 15, 
2007). SAC '07. ACM, New York, NY, 963-970.  

 
[5] David Aumueller , Hong-Hai Do , Sabine Massmann , Erhard Rahm, Schema 

and ontology matching with COMA++, Proceedings of the 2005 ACM 
SIGMOD international conference on Management of data, June 14-16, 
2005, Baltimore, Maryland 

 
[6] Fellbaum, C. WordNet, an Electronic Lexical Database. MIT Press, 1998. 

Reference site: http://wordnet.princeton.edu/ 
 
[7] The Semantic Web, Tim Berners-Lee, James Hendler and Ora Lassila 

Scientific American may 17, 2001 
 
[8] Inmon, W. H., Imhoff, C., and Sousa, R. 2000 Corporate Information 

Factory. 2nd. John Wiley & Sons, Inc. 
 
[9] Paradigms for machine learning, Jaime G. Carbonell, School of Computer 

Science, Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A. 
 
[10] Steve Pepper. The TAO of Topic Maps 

http://www.ontopia.net/topicmaps/materials/tao.html  
 
[11] ISO 13250: Topic Maps. http://www.isotopicmaps.org.  
 
[12] ISO 19115: Geographic Information – Metadata. 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?c
snumber=26020 

 
[13] Ever wondered how Soundex works?, Patrick Sinke. 

http://technology.amis.nl/blog/?p=1079 
 
[14] Staff 2006. The Art of Computer Programming, by D.E. Knuth. Sci. 

Program. 14, 3,4 (Dec. 2006), 267-268. 
 
[15] Sesame Framework, Aduna. http://www.openrdf.org/ 
 
[16] Chappell, D. 2004 Enterprise Service Bus. O'Reilly Media, Inc. 
 



 

Page 63 

[17] Kimball, R., Reeves, L., Thornthwaite, W., Ross, M., and Thornwaite, W. 
1998 The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, 
Developing and Deploying Data Warehouses with CD Rom. 1st. John Wiley 
& Sons, Inc. 

 
[18] URBIDATA bv, 13 december 2006, Datamodel Gemeentebreed GIS - 

Gemeente Westland, Definitief Versie 2.4 
 
[19] Safe Software, FME Translator/Converter, http://www.safe.com/index.php 
 
[20] NEN 3610:2005 nl 'Basismodel Geo-informatie, 2005, 

http://www2.nen.nl/nen/servlet/dispatcher.Dispatcher?id=253335 
 
[21] Referentiemodel voor het Stelsel van Gemeentelijke Basisgegevens, 2008, 

http://www.egem-iteams.nl/rsgb 
 
[22] Basisregistratie voor Adressen en Gebouwen, 2008, http://www.egem-

iteams.nl/stuf 
 
[23] ArcGIS S-57 Electronical Navigation Chart Nautical Data Model, 2004, 

http://www.esri.com/news/arcnews/summer04articles/nautical-data-
model.html 



 

Page 64 

APPENDIX A – JavaDoc 
 
This appendix shows a summary of the Java Documentation generated for the 
development of the prototype. It highlights the most important functions and 
gives a more detailed view of the architecture described in chapter 4. 

DATAMODEL 
DataModel type class; this is the main class for a DataModel representation. It 
has a Name and consists of DataModelObjects. 
 
Attributes 
Attribute Notes Constraints and tags  
dataModelObjectList 
Set<DataModelObject>  
Private      

A DataModel consists of Objects. For example 
in a relational data model this could be a list of 
tables. 

Default:  
   
 

name DataModelName  
Private      

The Name of the DataModel. Default:  
   

 
Operations 
Method Notes Parameters 
addObject() void  
Public  

Adds a new DataModelObject named Name to 
the ObjectSet. 

DataModelObject 
dataModelObject  
[in]  

DataModel() void  
Public  

Constructor initializing the DataModel class. 
 

string name  
[in]  

DATAMODELOBJECT 
DataModelObject type class. It has a Name and consists of 
DataModelAttributes. 
 
Attributes 
Attribute Notes Constraints and tags  
dataModelAttributeList 
Set<DataModelAttribute>  
Private      

A DataModelObject consists of Attributes. For 
example in a relational data model this could 
be a field in a table. 

Default:  
   
 

name DataModelName  
Private      

The Name of the DataModelObject. Default:  
   

 
Operations 
Method Notes Parameters 
addAttribute() void  
Public  

Adds a new DataModelAttribute named Name 
with type Type to the AttributeSet. 
 

DataModelAttribute 
dataModelAttribute  
[in]  

DataModelObject() void  
Public  

Constructor initializing the DataModelObject 
class. 

string name  
[in]  

DATAMODELATTRIBUTE 
DataModelAttribute type class. It has a Name and Type. 
 
Attributes 
Attribute Notes Constraints and tags  
name DataModelName  
Private      

The Name of the DataModelAttribute. Default:  
   

type string  
Private      

The Type of the DataModelAttribute. The type 
is represented as a string to offer an simple 
expansion method for adding new types. This 
way type names can be compared without 
having to normalize types to basic types. Type 
support can now be handled by the various 
scorers and algorithms.  

Default:  
 



 

Page 65 

 
Operations 
Method Notes Parameters 
DataModelAttribute() 
void  
Public  

Constructor initializing the DataModelAttribute 
class. 
 

string name  
[in]  
string type  
[in]  

DATAMODELNAME 
DataModelName type class. It consists of the value for a DataModel, 
DataModelObject or DataModelAttribute Name and a list of synonyms for that 
value. 
 
Attributes 
Attribute Notes Constraints and tags  
originalValue string  
Private      

The originalValue with which the 
DataModelName object was created. This is 
usefull for future reference when the value 
attribute is changed. 

Default:  
   
 

synonymSet Set<String>  
Private      

A set of synonyms for the name Value. This set 
is used for creating better scores. For example 
the strings Street and Road are more similar 
than an algorithm is able to see. 

Default:  
   
 

value string  
Private      

The original actual name Value for a 
DataModel, DataModelObject or 
DataModelAttribute. 

Default:  
   
 

 
Operations 
Method Notes Parameters 
createSynonymSet() 
void  
Private  

Fixes underscore adaptations, translates 
abreviations and executes the thesaurus to 
create a synonymset of the value. 

 

DataModelName() void  
Public  

Constructor initializing the Name class. The 
Name class generates a list of synonyms using 
a thesaurus. 

string value  
[in]  

ABSTRACTRETURNMODEL 
AbstractReturnModel represents a class type for WeavingModel and ScoreModel 
objects. These objects are the result of the Scorer objects. 
 
Attributes 
Attribute Notes Constraints and tags  
connectionSet 
Set<Connection>  
Private      

A ReturnModel consists of Connections. For 
example a DataModelAttribute from a source 
DataModel and a DataModelAttribute from a 
target DataModel are connected. 

Default:  
   
 

 
Operations 
Method Notes Parameters 
addConnection() void  
Public  

Adds a new Connection between AObject1 and 
AObject2 with a score of AScore to the 
ConnectionSet. 
 

Object object1  
[in]  
Object object2  
[in]  
float score  
[in]  

ReturnModel() void  
Public  

Constructor. 
 

 

WEAVINGMODEL 
A WeavingModel is a special kind of ReturnModel which only has connections 
between two DataModelAttributes. 
 



 

Page 66 

Operations 
Method Notes Parameters 
addConnection() void  
Public  

Adds a new Connection object containing the 
score of the connection between a 
SourceDataModelAttribute and a 
TargetDataModelAttribute to the 
ConnectionList. 
 

DataModelAttribute 
sourceDataModelAttribute  
[in]  
DataModelAttribute 
targetDataModelAttribute  
[in]  
float score  
[in]  

SCOREMODEL 
A ScoreModel is a kind of ReturnModel that represents a model of scored 
connections between DataModels, DataModelObjects or DataModelAttributes. 

CONNECTION 
A Connection connects two objects DataModel, DataModelObject or 
DataModelAttributes to each other. Such a connection has a score, which 
represents the certainty of the connections correctness. It also can have a 
TransformationList which defines how the source object should be transformed 
to fit in the target object. 
 
Attributes 
Attribute Notes Constraints and tags  
score float  
Private      

The Score of a Connection. Default:  
   

sourceObject Object  
Private      

The source object of the connection. This can 
be a DataModel, DataModelObject or 
DataModelAttribute object. 

Default:  
   
 

targetObject Object  
Private      

The target object of the connection. This can 
be a DataModel, DataModelObject or 
DataModelAttribute object. 

Default:  
   
 

transformationList 
List<String>  
Private      

A list of transformations that describe how the 
source object should be transformed to fit the 
target object. Currently this is a simple 
StringList. In the future transformations might 
be represented as actual objects. 

Default:  
   
 

 
Operations 
Method Notes Parameters 
Connection() void  
Public  

Constructor initializing the Connection class. It 
represents the score of a connection between 
two objects. 
 

Object sourceAbstractDataModel  
[in]  
Object targetAbstractDataModel  
[in]  
float score  
[in]  

getTransformationList()
List<String>  
Public  

Returns the TransformationList. 
 

 

setTransformationList() 
void  
Public  

Sets the TransformationList 
 

List<String> transformationList  
[in]  
 

MAIN 
The Main method of the WMgen prototype. 
The input is a filename containing an XML description of the source and target 
datamodels. These models are then parsed by XMLToClass and passed 
ScorerInitiator. The ScorerInitiator results in a set of ReturnModels, which are 
converted to a WeavingModel bij the ReturnModelComparer. This WeavingModel 
is passed to ClassToXML and converted back to a WeavingModel XML format. 



 

Page 67 

 
Operations 
Method Notes Parameters 
Main() string  
Public  

The Main method/constructor. 
 

string fileName  
[in]  

SCORERINITIATOR 
The ScoreInitiator runs all scorers in the order of their priorities. Multiple 
scorers of the same priorities are started in threads. 
 
Attributes 
Attribute Notes Constraints and tags  
dataModelList1 
Set<DataModel>  
Private      

The set of source DataModels. Default:  
   
 

dataModelList2 
Set<DataModel>  
Private      

The set of target DataModels. Default:  
   
 

returnModelList 
Set<AbstractReturnModel>  
Private      

The set of ReturnModels calculated by the 
scorers invoked by the scoreAll method. 

Default:  
   
 

 
Operations 
Method Notes Parameters 
scoreAll() void  
Public  

Initiates all scorers and gets the returned 
ReturnModels. 

 

ScoreInitiator() void  
Public  

Constructor. 
 

Set<DataModel> dataModelList1  
[in]  
Set<DataModel> dataModelList2  
[in]  

INTERFACESCORER 
InterfaceScorer is an interface for a scorer object. A scorer object determines 
the score for a comparison between two DataModel objects. Each scorer is 
configured by the config file, that defines which algorithms should be used. Also 
each scorer has a priority. For example the StringMatchScorer should be 
executed before the StructureScorer, that uses the StringMatchScorer's results. 
 
Attributes 
Attribute Notes Constraints and tags  
dataModel1 DataModel  
Private      

The source DataModel. Default:  
   

dataModel2 DataModel  
Private      

The target DataModel. Default:  
  

priority int  
Private      

The priority of the scorer. Default:  
   

 
Operations 
Method Notes Parameters 
score() 
AbstractReturnModel  
Public  

Compares the source and target DataModel 
and returns a ReturnModel i.e. a ScoreModel or 
a WeavingModel. 
 

DataModel dataModel1  
[in]  
DataModel dataModel2  
[in]  

STRINGMATCHSCORER 
The StringMatchScorer compares DataModelAttribute names and types. 



 

Page 68 

STRUCTURESCORER 
The StructureScorer calculates the score of an DataModelObject compared to 
DataModelAttribute scores. 

SEMANTICSCORER 
The SemanticScorer compares the DataModels to the history of previously 
constructed WeavingModels. It returns a scored WeavingModel. 

INTERFACEALGORITHM 
InterfaceAlgorithm is an interface for an algorithm object. Each algorithm 
belongs to a scorer. An algorithm object determines the score for a comparison 
between two objects. These two objects can be for example a DataModel, a 
DataModelObject, a DataModelAttribute or even a string. 
 
Operations 
Method Notes Parameters 
score() float  
Public  

Abstract score method that returns a score 
between two objects. These objects can be 
anything; two strings, two DataModelAttributes 
or even two objects of different types. 
 

Object object1  
[in]  
Object object2  
[in]  

JAROWINKLERALGORITHM 
JaroWinklerAlgorithm implements AbstractAlgorithm. It calculates the score 
between two DataModelName objects by using JaroWinkler on the name and 
the synonyms. 
 
Operations 
Method Notes Parameters 
score() float  
Public  

Implements the score method of 
AbstractAlgorithm. The inputs are two 
DataModelName objects. 
 

DataModelName name1  
[in]  
DataModelName name2  
[in]  

LEVENSHTEINALGORITHM 
LevenshteinAlgorithm implements AbstractAlgorithm. It calculates the score 
between two DataModelName objects by using Levenshtein distance on the 
name and the synonyms. 
 
Operations 
Method Notes Parameters 
score() float  
Public  

Implements the score method of 
AbstractAlgorithm. The inputs are two 
DataModelName objects. 
 

DataModelName name1  
[in]  
DataModelName name2  
[in]  

SOUNDEXALGORITHM 
SoundExAlgorithm implements AbstractAlgorithm. It calculates the score 
between two DataModelName objects by generating the Dutch SoundEx codes 
for the name and synonyms and then calculating the JaroWinkler score between 
each two source and target codes. 
 
Operations 
Method Notes Parameters 
score() float  
Public  

Implements the score method of 
AbstractAlgorithm. The inputs are two 

DataModelName name1  
[in]  



 

Page 69 

Method Notes Parameters 
DataModelName objects. 
 

DataModelName name2  
[in]  

TYPEMATCHERALGORITHM 
TypeMatcherAlgorithm implements AbstractAlgorithm. It calculates the score of 
a comparison between two DataModelAttribute FType fields. 
 
Operations 
Method Notes Parameters 
score() float  
Public  

Implements the score method of 
AbstractAlgorithm. The inputs are two strings. 
 

string type1  
[in]  
string type2  
[in]  

OBJECTSTRUCTUREMATCHERALGORITHM 
ObjectStructureMatcherAlgorithm implements AbstractAlgorithm. It calculates 
the score of a comparison between a source DataModelObject and target 
DataModelObjects by looking at the ScoreModels for the DataModelAttributes of 
those objects. 
 
Operations 
Method Notes Parameters 
score() float  
Public  

Implements the score method of 
AbstractAlgorithm. The inputs are a source 
DataModelObject and a Scoremodel. 
 

DataModelObject 
dataModelObject  
[in]  
ScoreModel scoreModel  
[in]  

HISTORYMATCHERALGORITHM 
HistoryMatcherAlgorithm implements AbstractAlgorithm. It calculates the score 
of a comparison using a history database between two DataModelAttributes and 
retrieves a Set of Transformation strings from that history database. 
 
Attributes 
Attribute Notes Constraints and tags  
transformationList 
List<String>  
Private      

The transformations retrieved from the History 
Database 

Default:  
   

 
Operations 
Method Notes Parameters 
getTransformationList()
List<String>  
Public  

Return the TransformationList. 
 

 

score() float  
Public  

Implements the score method of 
AbstractAlgorithm. The inputs are two 
DataModelAttribute objects. 
 

DataModelAttribute 
dataModelAttribute1  
[in]  
DataModelAttribute 
dataModelAttribute2  
[in]  

RETURNMODELCOMPARER 
ReturnModelComparer takes a set of ReturnModels and converts them to a 
WeavingModel by reviewing the best score combinations. 
 
Operations 
Method Notes Parameters 
ReturnModelComparer() 
WeavingModel  

Constructor. 
 

Set<AbstractReturnModel> 
returnModelList  



 

Page 70 

Method Notes Parameters 
Public  [in]  

XMLTOCLASS 
Converts the input XML to the DataModel class structure. 
 
Operations 
Method Notes Parameters 
fixPrefixes() void  
Private  

Removes unnecessary prefixes from 
DataModelName values throughout a 
DataModel object. 

 

XMLToClass() DataModel  
Public  

Constructor. 
 

string fileName  
[in]  

CLASSTOXML 
Converts the resulting WeavingModel to XML and outputs it to the system out. 
 
Operations 
Method Notes Parameters 
ClassToXML() void  
Public  

Constructor. 
 

WeavingModel weavingModel  
[in]  

 



 

Page 71 

APPENDIX B – XML FOR INPUT DATAMODELS 
 
This appendix contains the XML schema which describes the input data model 
feed for the WMgen prototype. 
 
 
<?xml version="1.0" encoding="utf-8" ?> 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 
 <xsd:simpleType name="KindType"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="source"/> 
   <xsd:enumeration value="target"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 
 <xsd:element name="DATAMODELS" type="DataModelsType"/> 
 
 <xsd:complexType name="DataModelsType"> 
  <xsd:sequence> 
   <xsd:element name="DATAMODEL" type="DataModelType"/> 
  </xsd:sequence> 
 </xsd:complexType> 
  
 <xsd:complexType name="DataModelType"> 
  <xsd:element name="OBJECTS" type="ObjectsType"/> 
  <xsd:attribute name="NAME" type="xsd:string"/> 
  <xsd:attribute name="KIND" type="KindType"/> 
 </xsd:complexType> 
  
 <xsd:complexType name="ObjectsType"> 
  <xsd:sequence> 
   <xsd:element name="OBJECT" type="ObjectType"/> 
  </xsd:sequence> 
 </xsd:complexType> 
  
 <xsd:complexType name="ObjectType"> 
  <xsd:element name="ATTRIBUTES" type="AttributesType"/> 
  <xsd:attribute name="NAME" type="xsd:string"/> 
 </xsd:complexType> 
  
 <xsd:complexType name="AttributesType"> 
  <xsd:sequence> 
   <xsd:element name="ATTRIBUTE" type="AttributeType"/> 
  </xsd:sequence> 
 </xsd:complexType> 
  
 <xsd:complexType name="AttributeType"> 
  <xsd:element name="NAME" type="xsd:string"/> 
  <xsd:element name="TYPE" type="xsd:string"/> 
 </xsd:complexType> 
  
</xsd:schema> 
 

 



 

Page 72 

The XML schema can be interpreted as depicted in the example below. 
 
 
<?xml version="1.0" encoding="utf-8" ?> 
<DATAMODELS> 
 <DATAMODEL NAME=”datamodel_1” KIND=”source”> 
  <OBJECTS> 
  <OBJECT NAME=”object_1”> 
   <ATTRIBUTES> 
   <ATTRIBUTE> 
    <NAME>attribute_1</NAME> 
    <TYPE>type_1</TYPE> 
   </ATTRIBUTE> 
   : 
   : 
   <ATTRIBUTE> 
    <NAME>attribute_n</NAME> 
    <TYPE>type_n</TYPE> 
   </ATTRIBUTE> 
   </ATTRIBUTES> 
  </OBJECT> 
  : 
  : 
  </OBJECTS> 
 </DATAMODEL> 
 <DATAMODEL NAME=”datamodel_2” KIND=”target”> 
 : 
 : 
 </DATAMODEL> 
</DATAMODELS> 
 

 



 

Page 73 

APPENDIX C – XML FOR OUTPUT WEAVINGMODELS 
 
This appendix contains the XML schema which describes the weaving model for 
the output of the WMgen prototype. The XML output can then be converted to a 
simple transformation model. 
 
 
<?xml version="1.0" encoding="utf-8" ?> 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 
 <xsd:simpleType name="KindType"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="source"/> 
   <xsd:enumeration value="target"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 
 <xsd:element name="WEAVINGMODEL" type="WeavingModelType"/> 
 
 <xsd:complexType name="WeavingModelType"> 
  <xsd:element name="CONNECTIONS" type="ConnectionsType"/> 
 </xsd:complexType> 
  
 <xsd:complexType name="ConnectionsType"> 
  <xsd:sequence> 
   <xsd:element name="CONNECTION" type="ConnectionType"/> 
  </xsd:sequence> 
 </xsd:complexType> 
  
 <xsd:complexType name="ConnectionType"> 
  <xsd:element name="SOURCEATTRIBUTES" type="AttributesType"/> 
  <xsd:element name="TARGETATTRIBUTES" type="AttributesType"/> 
  <xsd:element name="TRANSFORMATIONS" 
type="TransformationsType"/> 
  <xsd:element name="SCORE" type="xsd:float"/> 
  <xsd:element name="VERIFIED" type="xsd:boolean"/> 
 </xsd:complexType> 
  
 <xsd:complexType name="AttributesType"> 
  <xsd:sequence> 
   <xsd:element name="ATTRIBUTE" type="AttributeType"/> 
  </xsd:sequence> 
  <xsd:attribute name="KIND" type="KindType"/> 
 </xsd:complexType> 
 
 <xsd:complexType name="AttributeType"> 
  <xsd:sequence> 
   <xsd:element name="DATAMODEL" type="xsd:anyURI"/> 
   <xsd:element name="OBJECT" type="xsd:anyURI"/> 
   <xsd:element name="ATTRIBUTE" type="xsd:anyURI"/> 
  </xsd:sequence> 
 </xsd:complexType> 
  
 <xsd:complexType name="TransformationsType"> 
  <xsd:sequence> 
   <xsd:element name="TRANSFORMATION" type="xsd:string"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 
</xsd:schema> 
 

 



 

Page 74 

The XML schema can be interpreted as depicted in the example below. 
 
 
<?xml version="1.0" encoding="utf-8" ?> 
<WEAVINGMODEL> 
 <CONNECTIONS> 
 <CONNECTION> 
  <SOURCEATTRIBUTES> 
  <SOURCEATTRIBUTE> 
   <DATAMODEL>datamodel_1</DATAMODEL> 
   <OBJECT>object_1</OBJECT> 
   <ATTRIBUTE>attribute_1</ATTRIBUTE> 
  </SOURCEATTRIBUTE> 
  : 
  : 
  <SOURCEATTRIBUTE> 
   <DATAMODEL>datamodel_n</DATAMODEL> 
   <OBJECT>object_n</OBJECT> 
   <ATTRIBUTE>attribute_n</ATTRIBUTE> 
  </SOURCEATTRIBUTE> 
  </SOURCEATTRIBUTES> 
  <TARGETATTRIBUTES> 
  <TARGETATTRIBUTE> 
   <DATAMODEL>datamodel_1</DATAMODEL> 
   <OBJECT>object_1</OBJECT> 
   <ATTRIBUTE>attribute_1</ATTRIBUTE> 
  </TARGETATTRIBUTE> 
  : 
  : 
  <TARGETATTRIBUTE> 
   <DATAMODEL>datamodel_n</DATAMODEL> 
   <OBJECT>object_n</OBJECT> 
   <ATTRIBUTE>attribute_n</ATTRIBUTE> 
  </TARGETATTRIBUTE> 
  </TARGETATTRIBUTES> 
  <TRANSFORMATIONS> 
  <TRANSFORMATION>transformation_1</TRANSFORMATION> 
  : 
  : 
  <TRANSFORMATION>transformation_n</TRANSFORMATION> 
  </TRANSFORMATIONS> 
  <SCORE>1</SCORE> 
 </CONNECTION> 
 : 
 : 
 <CONNECTION> 
  <SOURCEATTRIBUTES>. . . .</SOURCEATTRIBUTES> 
  <TARGETATTRIBUTES>. . . .</TARGETATTRIBUTES> 
  <TRANSFORMATIONS>. . . .</TRANSFORMATIONS> 
  <SCORE>1</SCORE> 
 </CONNECTION> 
 </CONNECTIONS> 
</WEAVINGMODEL> 
 

 



 

Page 75 

APPENDIX D – XML FOR INPUT WEAVINGMODELS 
 
This appendix contains an XML example for feedback weaving models as 
described in section 2.3.2.1. The XML basically follows the same schema as 
described in appendix C with a difference that the VERIFIED-tag is added. Such 
an input weaving model enables users to update the history knowledge base of 
WMgen. VERIFIED indicates whether the user thought the transformation rule 
was correct and SCORE indicates the certainty percentage of the user. Also a 
CONNECTION can be changed by a user, this enables the user to add new 
information or change old information in the history knowledge base. 
 
 
<?xml version="1.0" encoding="utf-8" ?> 
<WEAVINGMODEL> 
 <CONNECTIONS> 
 <CONNECTION> 
  <SOURCEATTRIBUTES>. . . .</SOURCEATTRIBUTES> 
  <TARGETATTRIBUTES>. . . .</TARGETATTRIBUTES> 
  <TRANSFORMATIONS>. . . .</TRANSFORMATIONS> 
  <SCORE>1</SCORE> 
             <VERIFIED>true</VERIFIED> 
 </CONNECTION> 
 : 
 : 
 <CONNECTION> 
  <SOURCEATTRIBUTES>. . . .</SOURCEATTRIBUTES> 
  <TARGETATTRIBUTES>. . . .</TARGETATTRIBUTES> 
  <TRANSFORMATIONS>. . . .</TRANSFORMATIONS> 
  <SCORE>1</SCORE> 
             <VERIFIED>false</VERIFIED> 
 </CONNECTION> 
 </CONNECTIONS> 
</WEAVINGMODEL> 
 

 



 

Page 76 

APPENDIX E – THE COMPLETE WESTLAND DATAMODEL 
 
This appendix contains the complete model of the Westland project carried out 
by URBIDATA. A subset of this model was used in the test cases depicted in 
chapter 5. 
 

 
 


	Abstract
	Preface
	Table of contents
	Revisions
	1. Introduction
	2. Automated data integration
	3. Framework design
	4. Implementation
	5. Prototype results
	6. Conclusion and future work
	References
	Appendix A – JavaDoc
	Appendix B - For input datamodels
	Appendix C - XML for output weaving models
	Appendix D – XML for input weaving models
	Appendix E - The complete Westland datamodel

