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Abstract 
 
Companies that stock low-demand expensive spare parts for complex machines can 
cooperate with other companies that stock the same parts by inventory pooling. This may 
be implemented via keeping own stockpoints but allowing lateral transshipments in case 
a demand cannot be satisfied by its own stockpoint. A reduction in total system costs can 
be achieved this way. This paper deals with the problem of how to distribute these costs 
between cooperating companies, using cooperative game theoretical models. An 
investigation on existence of stable cost allocations and selection of proper cost 
allocations is made. 
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Summary 
 
Topic introduction 
 
Equipment-intensive “high-tech” industries are often confronted with the difficult task of 
maintaining high availability of their systems. To combat costly downtimes, spare parts 
for these machines are kept on stock, such that a failed component can be replaced 
quickly. Lateral transshipments between locations (also referred to as inventory pooling) 
represent an effective strategy to improve a company’s system availability while reducing 
the total system costs. Lateral transshipments are used to satisfy a demand at a location 
that is out of stock from another location with a surplus of on-hand inventory. 
 
In settings where each location constitutes an independent company, the analysis of cost 
sharing amongst the participating companies in a pooling group becomes important. 
Game theoretic models are appropriate for this. A cooperative spare parts pooling game is 
characterized by a cost function that determines for a group of cooperating players (a 
coalition) the yearly expected costs they will have to pay. When we venture into the topic 
of cost distributions, an important concept is the core; the set of cost allocations that 
allocate all costs fully and in such a way that no coalition has to pay more than they 
would have had to pay by acting alone. So, if the core is non-empty, then it is possible to 
split costs in such a way that no coalition has an incentive to leave the grand coalition 
(the one including all players) and form a smaller coalition on its own. 
 
Problem statement and research questions 
 
We made the following problem statement: 
The scientific literature currently gives no insight into the non-emptiness of the core in a 

spare parts pooling game and there is insufficient knowledge about proper cost 

allocation policies that are proven to be in the core of the cooperative game. This lack of 

managerial insights may impede profitable collaboration on spare parts pooling. 

 
Based on this, we posed the following research questions: 
Research question 1a: Does a simple spare parts pooling game, with the base-stock levels 
already pre-determined at arbitrary values, have a non-empty core? 
Research question 1b: Does a simple spare parts pooling game, where the base-stock 
levels are not yet determined and can still be jointly optimized, have a non-empty core? 
Research question 2: What is a proper cost allocation policy for a simple spare parts 
pooling game? 
Research question 3: Can we generalize results to a more complex setting? 
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Mathematical model 
 
The most important assumptions made in the spare parts inventory model are: 

• If a spare part fails, it is replaced with a spare part if one is on stock at the 
corresponding company. If no spare part is available at the corresponding company 
when the part fails, but another cooperating company has a surplus on-hand 
inventory, a lateral transshipment is used. Full pooling is assumed. 

• If none of the cooperating companies has a part available, an emergency supply is 
instigated and the failed machine goes down until the emergency part arrives. 

• A failed part is immediately sent into repair (therefore, the inventory system at one 
company can be seen as being controlled by a base stock policy), after which it is 
returned to the company. 

• There are two relevant types of costs: holding costs and emergency (downtime and 
shipment) costs. Transshipment (downtime and shipment) costs are assumed to be 
zero in order to simplify calculations. These parameters, together with given base-
stock levels, make up a cost function that gives the expected yearly costs for a 
coalition of companies. 

 
We discern two cases: 

• Base-stock levels are already pre-determined at fixed arbitrary values. 

• Base-stock levels can be jointly optimized within a coalition. Then their characteristic 
costs are found by using the cost-minimizing base-stock levels.  

 
Research question 1: The cores of simple spare parts pooling games 
 
When we assume that base-stock levels are fixed, we proved that: 

• For a game where all companies have the same demand rate and the same fixed base-
stock levels (other parameters may be asymmetrical), the core is non-empty. 

• For a game where all companies have the same emergency costs and the same 
demand rates (and possibly different base-stock levels), the core is non-empty. 

 
When we assume that base-stock levels are to-be-optimized, we proved that: 

• For a game where companies are fully identical, the imputation set (the set of all 
individually rational efficient cost allocations) is non-empty. But a non-empty 
imputation set does not always imply a non-empty core. 

• For a three-player game where companies are fully identical with realistic real-life 
base-stock levels, the core is non-empty. 

 
Based on the results of a numerical experiment, we conjectured that any game associated 
with a spare parts inventory situation where all companies have the same emergency 
costs has a non-empty core. Games with empty cores have also been found. These are 
rare, but most often found for games associated with spare parts inventory situations in 
which the emergency costs differed largely between companies, and where companies 
had very low repair rates and/or very high holding cost rates. In these games, emergency 
costs dominate holding costs and companies with low emergency costs take spare parts 
that would have better been saved for companies with high emergency costs. 
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Research question 2: Cost allocations 
 
There is a trade-off between (i) simplicity, (ii) always being in the core, (iii) fairness 
(various fairness properties appropriate for the spare parts setting were defined, e.g., if a 
company gets a higher demand rate, it should not be allocated less costs). Many 
allocation methods were considered and tested in a large numerical experiment, but so far 
no policy was found that satisfies all three requirements. Currently, no allocation rule is 
available that that easily handles the intricacies of large-scale cooperations of 
asymmetrical companies well. Two allocations rules that performed reasonably well and 
that can specifically be applied to spare parts pooling games are: 
 
Allocation SPLIT: Total holding costs are allocated based on the demand rate of each 
company. Each company pays their own local emergency costs. 
The Shapley value: A well-established allocation rule in game theory literature. The idea 
is to allocate total costs based on the average contribution made to each possible coalition 
to which a company could belong. 
 
Observations that we can draw from the results of the numerical experiment are: 

• For games with 2 companies and/or games with fixed base-stock levels, the 
Shapley value was often in the core (compared to other allocation rules). 

• For games with 3 or 4 companies and/or games with to-be-optimized base-stock 
levels, allocation rule SPLIT relatively often gave core elements. 

 
Research question 3: Can we generalize results to a more complex setting? 
 
We investigated a setting where transshipment costs were non-negligible with a small 
numerical experiment. Initial findings indicate that adding transshipment costs does not 
have a large effect on non-emptiness of the core. However, the cost allocation methods 
considered above less often produced core elements. However, we stress that this was a 
very limited study. We also investigated a setting with a smart partial pooling rather than 
full pooling. Initial findings indicate that using this partial pooling approach leads to 
significantly fewer games with empty cores. Finally, allocation rules SPLIT and the 
Shapley value performed best for these more complex settings. 
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Chapter 1: Introduction 
 

In this chapter, an overview of relevant literature is given. In section 1.1, we introduce 

the spare parts inventory problem and a well-known model: METRIC. In section 1.2, we 

review spare parts inventory models with lateral transshipments. In section 1.3, we 

introduce cooperative game theory and the core concept. In section 1.4, we review the 

literature on cost allocations. 

 

1.1: Introduction to spare parts and METRIC 

 
Equipment-intensive “high-tech” industries such as airlines, nuclear power plants, 
medical equipment manufacturers, and complex lithography machines are often 
confronted with the difficult task of maintaining high availability of their systems. A 
random failure of just one component can cause the system to go down. To combat these 
costly downtimes, spare parts for these machines are kept on stock, such that a failed 
component can be replaced quickly. However, spare parts tend to be quite expensive, 
which leads to a trade-off between downtimes and inventory investment. As such, 
important questions to answer are: how many of each spare part should be acquired and 
kept on stock? And in case the complex machines are geographically dispersed, where 
should the spare parts be placed? 
 
Spare part inventory systems have been analyzed quite extensively in the literature. An 
appropriate mathematical model to study the repairable spare parts stocking problem is 
METRIC (Multi-Echelon Technique for Recoverable Item Control) developed by 
Sherbrooke (1968). This model considers multi-location inventory systems. For each 
location we use a base-stock level of S, or one-for-one replenishment, i.e. a failed part 
will be added back to the spares stock after it is repaired. This can be seen as an (S-1,S) 
ordering policy. METRIC can help to determine optimal base-stock levels during the 
acquisition phase of repairable components. Key elements of the METRIC analysis are 
the assumptions that a location faces Poisson distributed failures (with subsequent 
demand for spare parts) and that all locations have ample repair capacity. These 
assumptions facilitate the analysis. See Sherbrooke (2004) and Rustenburg et al. (2003) 
for more information on METRIC-type models.  
 

1.2: Literature overview of lateral transshipments models 

 
Lateral transshipments between locations (also referred to as inventory pooling) represent 
an effective strategy to improve a company’s system availability while reducing the total 
system costs, particularly in cases where the transshipment costs are low compared to the 
downtime costs. Pooling refers to an arrangement in which different locations cooperate 
by sharing their inventories. Lateral transshipments are used to satisfy a demand at a 
location that is out of stock from another location with a surplus of on-hand inventory.  
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The basic METRIC model does not allow lateral transshipments. However, lateral 
transshipment models have been analyzed quite extensively in the literature. Of the 
lateral transshipment models available in the literature, we are interested in those models 
with characteristics that are typical for METRIC (applicable to repairable expensive spare 
parts): one-for-one replenishment, continuous review policies, and Poisson demands. A 
comprehensive review of these inventory models is provided in Appendix 1. A short 
overview and classification of the models used in these papers is given in Table 1.1. 
 
Table 1.1: A brief review of the literature on METRIC-type models with transshipments. In the column “costs 

considered”, (BOmax) and (Wj,max) implies that downtime/backorder costs are not considered but rather 

shipment and holding costs are minimized subject to a maximum on backorders (BOmax) or waiting times 

(Wj,max). In the column “delayed laterals allowed”, “yes” means that a lateral transshipment is instigated when a 

repaired spare part arrives at a certain location while another location has a spare part in backorder, and “pro-

active laterals” means that lateral transshipments are allowed before a location faces demand while out of stock. 

Paper Number 
of 
echelons 

Number 
of items 

Lateral 
transship-
ment time 

Backorders 
or 
emergency 
shipment 

Costs con-
sidered 

Delayed 
laterals 
allowed? 

Type of 
pooling 

Lateral 
transshipment 
sourcing rule 

Remarks 

Lee (1987) 2 Single Negligible Backorders Holding, 
backorder, 
transship 

No complete 
pooling; 
N groups 

random or 
maximum 
stock 

Focus on modeling 
outstanding orders; 
identical locations 

Axsäter 
(1990) 

2 Single Negligible Backorders None No complete 
pooling; 
N groups 

random Focus on modeling 
effective demand 
rate; exponential µ 

Alfredsson 
and 
Verrijdt 
(1999) 

2 Single Non-
negligible, 
but 
identical 
for all local 
warehouses 

Emergency 
shipment 

Holding, 
replenish, 
transship, 
emergency, 
waiting 
penalty 

No complete 
pooling 

random Only one pooling 
group; uses 
Markov analysis 

Kukreja et 
al (2001) 

1 Single Negligible Backorders Holding, 
transship, 
(BOmax) 

No complete 
pooling 

Lowest 
transshipment 
cost 

Show that service 
performance is not 
very sensitive to 
the type of repair 
time distribution 

Grahovac 
and 
Chakravar-
ty (2001) 

2 Single Non-
negligible, 
determinis-
tic 

Backorders 
and 
emergency 
shipment 

Holding, 
shipment, 
waiting 

pro-
active 
laterals 

complete 
pooling 

random Retailers place 
emergency orders 
once inventory is ≤ 
trigger level 

Wong  et al 
(2005a) 

1 Single Depends on 
distance 

Backorder Holding, 
transship, 
downtime 

Yes complete 
pooling 

Closest 
neighbor 

Multi-hub setting 
applicable to 
airline industry 

Wong  et al 
(2006) 

1 Multi Depends on 
item 

Emergency 
shipment 

Holding, 
transship, 
emergency,
(Wj,max) 

No complete 
pooling 

N/A (only 2 
companies) 

System approach 

Wong et al 
(2007a) 
 

1 Single Depends on 
distance 

Backorder Holding, 
transship, 
downtime 

Yes Partial 
pooling 

Closest 
neighbor 

Game theoretic 
models used 

Wong  et al 
(2007b) 

2 Multi Depends on 
distance 

Emergency 
shipment 

Holding, 
transship, 
emergency, 
(Wj,max) 

No complete 
pooling 

Closest 
neighbor 

Shows that two-
echelon system is 
not worthwhile 
when transship-
ments possible 

Kranen-
burg & Van 
Houtum 
(2008) 

1 Multi Depends on 
distance 

Emergency 
shipment 

Holding, 
transship, 
emergency, 
(Wj,max) 

No From 
main 
ware-
houses 
only 

From main 
warehouses 
only 

Show that only a 
small number of 
main local 
warehouses is 
sufficient 
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1.3: Introduction to cooperative game theory and the core concept 

 
So far, we have silently assumed centralized control, in which there is only one company 
with a central planner with the objective to minimize the total system costs. As the use of 
lateral transshipments generally1 reduces system costs, this central planner will force all 
locations to use them. However, in settings where each location constitutes an 
independent company2, each company will only agree to pool their spare parts with other 
companies if doing so will bring more profits to himself. In such a case, the analysis of 
the cost sharing amongst the participating companies in a pooling group becomes 
important. Game theoretic models are appropriate for this. 
 
The following preliminary on cooperative game theory and the core concept is taken 
from Slikker (2007). Cooperative game theory primarily deals with joint profits that can 
be obtained by groups of players if they coordinate their actions. Let us assume we have 
n different companies that stock spare parts and that can cooperate via lateral 
transshipments. In game theory, these companies are referred to as players, with 
N={1,2,…,n} the set of players. A subset of N is called a coalition and is denoted by M. 
The grand coalition refers to M=N. The costs of the coalition M (i.e., the total holding, 
shipment, and downtime costs made by all companies in this pooling group) can be stated 
in a single number (in $) and are freely transferable between the players of M (this means 
that companies can make transfer payments to each other). The costs payable by the 
group of cooperating players M is denoted as c(M), i.e. c is the characteristic cost 

function that assigns to every nonempty coalition M ⊆ N a value c(M). A pair (N,c) 

constitutes a cooperative game. If ∑ ∈
≤

Ni
Ncic )(})({  then cooperation is beneficial for 

the grand coalition as a whole. 
 
We now return to the interesting issue of how to distribute the total system costs to each 
member of a pooling group. Individual companies will, after all, be primarily interested 
in the individual benefits they can get out of a pooling arrangement. These allocations 
can be represented with an allocation vector ∈x �

N, which specifies for each player i∈N 
the costs that this player will have to pay if all players cooperate (i.e., they form the grand 
coalition). There are a couple of interesting conditions that allocation vectors can satisfy: 

• Efficiency: ∑
∈

=
Ni

i Ncx )(  

• Individual rationality: })({icxi ≤  for all i∈N. 

• Stability: ∑
∈

≤
Mi

i Mcx )(  for all M ⊆ N. 

 
The first condition (efficiency) says that all the costs created are in fact split fully among 
members of the grand coalition.  

                                                 
1 If transshipment costs are too high, the use of transshipments may actually increase costs. Furthermore, if 
full pooling is used while companies have different downtime costs, this may also have adverse effects, as 
will be shown in Chapter 5. 
2 A real life example may be multiple airline companies, who use the same type of aircrafts and 
independently stock the same spare parts at separate locations. 
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The second condition (individual rationality) implies that the costs allocated to a player 
are at most as much as what he had to pay by staying alone. The third condition (stability) 
says that the costs allocated to any subset of players should be at most as much as what 
they had to pay by only cooperating together. The set of all individually rational and 
efficient allocations is called the imputation set. The set of all stable and efficient 
allocations is called the core. The core is a subset of the imputation set.  
 
This well-established core concept can be used to “solve” the problem of obtaining a cost 
allocation that all players can accept. If the core of a game is non-empty, then the total 
costs for the grand coalition can be distributed to each player in such a way that the costs 
allocated to any coalition are not larger than the costs that this coalition would have had 
to pay while acting independently. So, if the costs are split according to a core-element 
then no coalition has an incentive to leave the grand coalition and form a smaller 
coalition on its own. Non-emptiness of the core is therefore an important property.  
 
We will now describe the concept of balancedness. A game has a non-empty core if and 

only if it is balanced. Define for all NM ⊆  the vector M
e  by 1=M

ie  for all Mi ∈  and 

0=M
ie  for all MNi \∈ . Let N2  denote the set consisting of all subsets of N.  

A map ]1,0[}0{\2: →/Nκ  is called a balanced map if: ∑
/∈

=
oM

NM

N

eeM
\2

)(κ .  

A game (N,c) is balanced if for every balanced map κ : ∑
/∈

≥
oM N

NcMcM
\2

)()()(κ . 

In Appendix 2, all balancedness conditions for games with 3 and 4 players are stated. 
 

1.4 Literature overview of cost allocations 

 
If the core of a game is non-empty but consists of more than one element, an interesting 
question is “which core element should we choose to fairly allocate costs to each pooling 
member?” In this section, we will first describe two cost allocations that are well-
established in the literature: the Shapley value and the nucleolus (descriptions based on 
Slikker, 2007 and Young, 1994, which provides interesting properties of these cost 
allocations). Subsequently, we provide a brief overview of relevant studies on inventory 
pooling and/or cost allocation. 
 

The Shapley value ),( cNΦ  is the unique allocation method that is efficient, symmetric, 

charges zero players nothing, and is additive (see Appendix 2 for definitions): 

( )∑
⊆

−∪⋅
−−⋅

=Φ
}\{

)(}){(
|!|

)!1|(||!|
),(

iNM

i MciMc
N

MNM
cN  for all iœN. 

 

The nucleolus ),( cNν  is the unique allocation x that maximizes the vector θ(x) lexico-

graphically, where θ(x) has the satisfactions of payoff vector x to coalition M ⊆ N, 

∑
∈

−
Mi

ixMc )( , ordered increasingly. See Appendix 2 for a more detailed explanation. 
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Hartman and Dror (1996) suggested three criteria to judge the value of an allocation 
method: 

• Stability (the allocation is in the core of the cooperative game); 

• Justifiability (the allocation methods for a cost and benefit game are consistent; 
i.e. each player’s benefit is equal to his individual costs minus his allocated cost); 

• Polynomial computability (a computationally easy algorithm). 
It was shown that the Shapley value (for a convex game) and the nucleolus satisfy the 
first two conditions, but they require computations of order O(2n). 
 
To the best of our knowledge, Wong et al. (2007a) is the first study in the context of 
spare parts pooling that deals with cost allocations. Four cost allocation policies are 
proposed: 

• Allocate the inventory holding cost based on the number of spare parts stocked at 
each company; allocate the downtime cost based on the local downtime at each 
company; and a lateral transportation cost is always paid by the receiving 
company. 

• Allocate the inventory holding cost and lateral transportation cost based on the 
demand rate of each company; and allocate the downtime cost based on the local 
downtime at each company. 

• Allocate the total cost based on the demand rate of each company. 

• The Shapley value. 
They apply these four cost allocation policies to a numerical example of a three-company 
pooling problem, and all four give cost allocations that are in the core of the game. Note 
that they do not prove non-emptiness of the core, nor do they show that these allocation 
policies will always be in the core for any input parameters, nor are explanations for the 
choice of these allocation policies provided. Afterwards, they analyze a non-cooperative 
setting and a setting with imperfect information. The future research directions identified 
in their paper provide the inspiration for the research proposal in the next chapter. 
 
Kilpi et al. (2008), who study cooperative strategies for the availability service of repairable 

aircraft components, mention three cost allocations: 

• Share the benefits according to annual demand volume. 

• Share the benefits to obtain equal relative savings from joining the pool. 

• Share the benefits according to relative incremental pool contribution. 
Unfortunately, no clear definitions of these allocations are provided. The first allocation 
is similar to the third allocation of Wong et al. (2007a), except that benefits rather than 
costs are allocated.  
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Chapter 2: Research proposal 
 
In this chapter, we give an overview of the proposed research. In section 2.1, we 

formulate a problem statement. In section 2.2, we formulate research questions, which 

flow naturally from the problem statement. In section 2.3, we lay out the contents of the 

remainder of this thesis. 

  

2.1: Problem statement 

 
In the previous chapter, it was shown that the issue of lateral transshipments in spare 
parts inventory systems has been a fruitful area of research. However, there is currently a 
lack of knowledge regarding the stability of cooperation and fair allocation of costs 
among individual companies that stock spare parts and that can cooperate by means of 
lateral transshipments. Wong et al. (2007a) have recognized the need to address this 
problem, but do not attend to the matter of core non-emptiness. They merely state: “Many 
previous studies have shown that pooling is beneficial in most cases having non-extreme 
situations ... Moreover, increased savings are realized when more companies are 
involved. Consequently, most games associated to the spare part pooling have a non-
empty core.” While this supports the notion that the imputation set of a spare parts 
pooling game is non-empty, non-emptiness of the core is not a foregone conclusion yet. 
And while Wong et al. (2007a) provide examples of cost allocation policies, no policy is 
developed that is proven to be in the core of the game. They do identify these issues as 
future research directions, however. 
 
Based on these observations, we make the following problem statement: 
The scientific literature currently gives no insight into the non-emptiness of the core in a 

spare parts pooling game and there is insufficient knowledge about proper cost 

allocation policies that are proven to be in the core of the cooperative game. This lack of 

managerial insights may impede profitable collaboration on spare parts pooling. 

 

2.2: Research objectives and research questions 

 
Now that the problem has been stated, we formulate research questions which aim to 
provide a solution to this problem. During the research, we will look at two types of 
situations, which will be introduced first: 
 
Situation FIX: Every company has already chosen their base-stock levels and they are 
fixed, i.e. they cannot be altered anymore after a company would join a coalition. This 
situation could come up when companies consider a short-term cooperation and the costs 
of buying and/or selling expensive spare parts to optimize base-stock levels just for that 
short time period are too high. This situation could also happen when the spare part in 
question is not in production anymore and hence changing inventory levels is practically 
impossible. 
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Situation OPT: The companies have not yet determined their base-stock levels and/or 
they can still be jointly optimized, i.e. for each coalition an optimal (cost-minimizing) 
base-stock vector (which contains the base-stock levels of all companies in a coalition) 
can be found. This situation could come up when companies want to go for a long-term 
cooperation and/or when a new complex machine is installed for which no spare parts 
have yet been bought. 
 
The goal of the proposed research is to answer the following questions: 
 
Research question 1a: Does a simple3 spare parts pooling game, with the base-stock 
levels already pre-determined at arbitrary values, have a non-empty core? 

• Is the imputation set non-empty for any combination of input values? 

• Is the core non-empty for any combination of input values? 

• If not, what are sufficient conditions for non-emptiness? 
 
Research question 1b: Does a simple spare parts pooling game, where the base-stock 
levels are not yet determined and can still be jointly optimized, have a non-empty core? 

• Is the imputation set non-empty for any combination of input values? 

• Is the core non-empty for any combination of input values? 

• If not, what are sufficient conditions for non-emptiness? 
 
Research question 2: What is a proper cost allocation policy for a spare parts pooling 
game? 

• What are relevant criteria of stability, fairness and simplicity that are appropriate 
for a cost allocation in the context of spare parts pooling? 

• What is a cost allocation policy for a simple spare parts pooling game, with pre-
determined arbitrary base stock levels, that adheres to these criteria? 

• What is a cost allocation policy for a simple spare parts pooling game, with to-be-
optimized base stock levels, that adheres to these criteria? 

 
Research question 3: Can we generalize results to a more complex setting? 

• What insights can we provide regarding stability of cooperation and proper cost 
allocations for a game with non-negligible lateral transshipment costs and for a 
game with a partial pooling approach? 

 

 

 

                                                 
3 We aim to provide a mathematical proof for non-emptiness of the core for the most complex spare parts 
pooling game that we can still properly analyze within the time frame of this project. Hence, a simple spare 
parts pooling game is one associated with a single-echelon spare parts inventory system, consisting of N  
companies with the same repair rates (but potentially non-identical in other parameters), with negligible 
lateral transshipment times. This will all be described more clearly/formally in subsequent chapters. 



 8 

2.3. Layout of the report 

 
The remainder of the report is structured as follows. Chapter 3 provides an overview of 
the modeling assumptions and defines the concept of spare parts inventory situations. 
Chapter 4 details the characteristic cost function of simple spare parts pooling games and 
finishes with an example game. We deal with research question 1 in Chapter 5. This 
chapter investigates the core of simple spare parts pooling games; it provides certain 
proofs of non-emptiness and includes a large numerical experiment. We deal with 
research question 2 in Chapter 6. This chapter introduces interesting cost allocations and 
cost allocation properties, and includes a large numerical experiment. We deal with 
research question 3 in Chapter 7. This chapter details the characteristic cost function of a 
general spare part pooling game and a spare part partial pooling game and includes a 
small numerical experiment. We end with conclusions in Chapter 8.  
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Chapter 3: Spare parts inventory situations 
 
In this chapter we introduce spare parts inventory situations. In section 3.1, we provide 

an overview of the assumptions that are used throughout this thesis. In sections 3.2 and 

3.3, we define spare parts inventory situations. In section 3.4 we provide reasonable 

values for the input parameters.  

 

3.1. Assumptions 

 
The spare parts inventory model analyzed in this thesis can be characterized as a single-
echelon, multi-location, single-item model. The main assumptions on the spare parts 
inventory model throughout this thesis are as follows (for a justification of these 
assumptions, see Appendix 3):   
 

• Demand process: Failures (demands for spare parts) occur according to independent 
Poisson processes with constant rate (i.e. there is an infinite source of failures), 
although each company may have a different rate. If a part fails, it is replaced with a 
spare part if one is on stock at the corresponding company. We consider only one 
type of spare part (i.e. a single-item model). 

• Cooperation process: If no spare part is available at the corresponding company 
when the part fails, but another cooperating company has a surplus on-hand 
inventory, a lateral transshipment is used from the neighbor that leads to the lowest 
transshipment costs (with ties broken by sourcing from the neighbor with largest 
stock on-hand). Complete pooling is applied between cooperating companies4.  

• Repair process: A failed part is immediately sent into repair (therefore, the inventory 
system at one company i can be seen as being controlled by a base stock policy with 

base-stock level ∈iS �0) and repair lead times are independent and exponentially 

distributed. Repaired parts are returned to the company that fulfilled the demand for 
the spare part. All parts are perfectly repairable and there is no condemnation.  

• Emergency supply: If none of the cooperating companies has a part available, an 
emergency supply is instigated from an outside infinite source and the machine with 
the failed part goes down until the emergency part arrives. It is assumed that the 
expected emergency (downtime and shipment) costs are smaller than the expected 
downtime costs during a repair, but larger than the expected lateral (downtime and 
shipment) costs. The failed part is lost to the emergency supplier and does not return 
to the inventory system. 

• Cost parameters: There are three relevant types of costs. The first is holding costs, 
which refers to the yearly capital and storage costs per unit on stock. These costs are 
incurred when the unit is in the on-hand inventory, but also when it is in repair. The 
second type of costs is the expected emergency (downtime and shipment) costs. This 
is the expected total costs incurred when an emergency shipment has to be done.  

                                                 
4 This assumption of complete pooling will be relaxed in Sections 7.4-7.6 only. 
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The third type of costs is the expected transshipment (downtime and shipment) costs. 
This is the expected total costs incurred when a lateral transshipment has to be done. 
Note that the total cost for emergency and lateral transshipments includes both 
downtime costs and transportation costs. These are combined in a single parameter in 
order to keep the number of parameters as low as possible while not significantly 
diminishing the richness of the model. 

• Goal of individual companies: Each company aims to minimize expected yearly 
costs. We have an infinite horizon. 

 

3.2 General spare parts inventory situation 

 
A general spare parts inventory situation is a single-echelon situation where several 
companies stock a certain spare part, in order to combat costly downtimes of their 
machines. Lateral transshipments between cooperating companies can be used. A general 
spare parts inventory situation is uniquely characterized by the set of companies, the 
demand and repair rates of each company, and the holding, emergency, and 
transshipment costs of each company. We denote the set of all spare parts inventory 

situations with Γ . Let Γ∈ϕ  denote an actual instance. Then ϕ  can be represented by a 

tuple: ( )NjNi

trans

Ni

emer

NiiNiiNii iji
cchN ∈∈∈∈∈∈ ,)(,)(,)(,)(,)(,: µλϕ , where: 

N : the set of companies, 

iλ   : the exponential demand rate at company Ni ∈ , 

iµ   : the exponential repair rate at company Ni ∈ , 

ih   : the holding cost per unit on stock per unit of time at company Ni ∈ , 
emer

i
c   : the expected total costs incurred when an emergency shipment to at company 

Ni ∈  is done, including both downtime costs and shipment costs, 
trans

ij
c  : the expected total costs incurred when a lateral transshipment from company 

Ni ∈  to Nj ∈  is done, including both downtime costs and shipment costs. 

 
Note that base-stock levels are not contained in spare parts inventory situations (because 
when we consider a situation where the base-stock levels are to-be-optimized, they are 
not input parameters like the variables above). 
 

3.3 More restrictive spare parts inventory situation classes 

 
We can lower the complexity of analyzing a general spare parts inventory situation by 
assuming certain parameters to be identical for all companies and/or by assuming that 
lateral transshipments are free and instantaneous. It is easier to make definite statements 
for these less complex situations and we will do that in subsequent chapters. We need 
some additional notation for this, however. 
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Class of simple spare parts inventory situation: Γ⊂Γsimple  

For every simplesimple Γ∈ϕ , transshipments are assumed to be free and instantaneous, i.e. 

0=trans

ij
c  for all Nji ∈, . Furthermore, repair rates are assumed to be identical for all 

companies as well, i.e. µµµ == ji  for all Nji ∈, . Hence, a simple spare parts inventory 

situation can be represented by a tuple: ( )Ni

emer

NiiNiisimple i
chN ∈∈∈= )(,)(,,)(, µλϕ .5 

 

Class of simple spare parts inventory sit. with identical c
emer

: simplecidsimple emer Γ⊂Γ
:,

 

For every emeremer cidsimplecidsimple :,:,
Γ∈ϕ , the emergency costs are assumed to be identical for 

all companies. It can be represented a tuple: ( )emer

NiiNiicidsimple
chNemer ,)(,,)(,

:, ∈∈= µλϕ . 

 

Class of simple fully identical spare parts inventory situation: simpleallidsimple Γ⊂Γ :,  

For every allidsimpleallidsimple :,:, Γ∈ϕ , all parameters are assumed to be identical for all 

companies. It can be represented a tuple: ( )emer

allidsimple chN ,,,,:, µλϕ = .6 

 
We can also define many classes of spare parts inventory situations “in between” the 
above ones, i.e. where some parameters are assumed to be identical for all companies, 
whereas other parameters are allowed to be different between companies. The definition 
of these follows along the same lines as above. For reference, they can be found in 
Appendix 4. The above classes, however, are pivotal in this thesis. Particularly, in 
chapters 4 through 6 we limit ourselves to games associated with simple spare parts 
inventory situations.  
 

3.4 Reasonable numerical values 

 
One might wonder what realistic values for these characteristic parameters could be. 
Selection of reasonable values will be relevant later in this thesis when we do numerical 
experiments. A literature study has been done in order to find good bounds for real-life 
company parameters. A number of articles were selected that present either real-life data 
or that include parameter values that should, according to the article, be representative of 
real-life data, for various industries using spare parts. The results of this literature study 
can be found in Appendix 5. 
 
 

                                                 
5 We slightly abuse notation here for convenience. In order to make Γsimple a proper subset of Γ, we would 

actually have to keep the tuple structure identical, i.e. still including  
trans

ij
c  (=0 for all Nji ∈, ). Hence, 

the tuple as given in the main text should be seen as a easy shorthand notation of the correct tuple shown in 
this footnote. Similar remarks can also be made for the other tuples. 
6 We remark that base-stock levels are not contained in spare parts inventory situations. So, even for a 
simple fully identical spare parts inventory situation, companies may have different base-stock levels. 
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Based on the values we found in the literature, we selected a minimum and maximum 
value for each parameter that should provide reasonable bounds for real-life values. 
These values were rounded and adjusted slightly to get round values and/or to make them 
usable for the numerical experiments7. They can be found in Table 3.1. We remark that in 
the articles reviewed, emergency costs and transshipment costs were often split up in 
multiple distinct parts. In our model, only the total emergency shipment and total lateral 
transshipment costs are relevant, so we added up parts in order to arrive at a usable total. 
Similarly, we transformed λ/µ into µ. 
 
Table 3.1: Minimum and maximum values for each spare parts inventory situation 

parameter that should provide reasonable bounds for real-life values.  

Parameter name and 
unit 

Minimum value Maximum value 

λ (demands per year) 0.5 50 

µ (repairs per year) 1.67 500 

h ($ per unit per year) 400 28000 

c
emer ($ per  

emergency shipment) 
2600 78000 

c
trans ($ per lateral 

transshipment) 
300 18000 

                                                 
7 We required that the calculation time for the optimization algorithm that is used in the numerical 
experiments was limited. For example, we did not want extremely low holding costs as inputs, since then 
the optimization algorithm for situation OPT - which works like a “smart enumeration” algorithm - would 
need to check too large state spaces including “solutions” where companies hold a very large inventory (as 
low holding costs intuitively lead to high optimal base-stock levels). 
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Chapter 4: Simple spare parts pooling games  
 
In this chapter we define simple spare parts pooling games, which are introduced in 

section 4.1. In section 4.2, we define the stock-out probability. Sections 4.3, 4.4, and 4.5 

will handle characteristic cost functions. In Section 4.6 an example game is shown.  

 

4.1. Introduction 

 
A spare parts pooling game is defined by two elements. The first element is a spare parts 
inventory situation and the second element is a “rule on base-stock levels”. As mentioned 
in section 2.2, there are two situations that we consider in this thesis: 
Situation FIX: Every company has already chosen their base-stock levels and they are 
fixed, i.e. they cannot be altered anymore after a company would join a coalition. In this 
case, the “rule on base-stock levels” is a fixed base-stock vector S that represents the 
chosen base-stock levels of all companies. Hence, in this case, a game can be associated 
with a given spare parts inventory situation and a given base-stock vector. 
Situation OPT: The companies have not yet determined their base-stock levels and they 
can still be jointly optimized, i.e. the “rule on base-stock levels” is that for each coalition 
an optimal (cost-minimizing) base-stock vector S can be found. Hence, in this case, a 
game can be associated with just a given spare parts inventory situation. 
 

In this section we will look at the class of simple spare parts inventory situations, simpleΓ  

and describe the characteristic cost functions of simple spare parts pooling games
8 that 

can be associated with it. First, we will need an expression for the fraction of time in 
which no company has any spare parts on stock and an expression for the expected costs 
per unit of time that companies will face. 
 

4.2 Stock-out probability for a simple spare parts inventory situation 

 
Consider a simple spare parts inventory situation (recall that this is a situation with 

identical µ and negligible transshipment costs) and a coalition NM ⊆ . Let MS  be the 

sum of the chosen base-stock levels of all companies in M together9. Let ∑ ∈
=

Mi iM λλ  

be the total demand rate for all companies in M together. 
 
 

                                                 
8 Throughout this thesis, the term simple spare parts pooling game refers to a game associated with a 
simple spare parts inventory situation (and, for situation FIX, a base-stock vector as well). So it is a specific 
type of spare parts pooling game, for which all statements in the first paragraph of Section 4.1 still hold. 
9 This can be due to an optimal cost-minimizing choice or a non-optimal “dumb” choice for the base-stock 
levels; for the analysis of the stock-out probability this does not matter. Only the total base-stock level of 
all companies combined is relevant. Which part is stocked at which company does not matter for the stock-
out probability, as they can be shipped back and forth instantaneously at no cost. 
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Since transshipments are free, companies have an identical exponential repair process, 
and complete pooling is applied, the system behavior may be described by a one-
dimensional Markov process with state x, where x represents the on-hand inventory at all 

companies together ( MSx ≤≤0 ).This is represented in Figure 4.1. 

 

 
Figure 4.1: The Markov process of a simple spare parts inventory situation. 
 
Note that this Markov process corresponds to an M/M/SM/SM queue, also known as a loss 

system with no additional waiting buffer, where µλρ /MM =  units of traffic are offered 

to SM servers. The steady-state probability of being in state x=0 (which is the probability 
that a new demand arriving at the pooling group has to be fulfilled via an emergency 
channel because all spare parts are in repair) is equal to the well-known Erlang loss 
probability (see e.g., Kulkarni, 1999 or Zeng, 2003): 
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Note that if companies would have different repair rates, then the state space would have 
to be extended in order to accommodate the information on the location of each part in 
repair and then equation (4.1) would not hold. That is the reason why we limit ourselves 
to simple spare parts inventory situations (i.e., with identical µ) in this chapter. 
 
The Erlang loss function has several useful properties, which are captured in the 
following Lemma’s. These properties will be used in the next chapter in proofs of non-
emptiness of the cores of games. 
 
Lemma 4.1: The Erlang loss function is non-decreasing in ρ. 
Proof: See problem 2 in Whitt (2002).  
 

Lemma 4.2: The Erlang loss function is decreasing in multiplication, i.e. ),(0 tStρπ  is 

strictly decreasing in 0≥t . 
Proof: See the appendix in Schmidt & Whitt (1981). Furthermore, see Appendix 6 for a 
different proof methodology, which was independently derived and may be of 
independent interest. 
 
Lemma 4.3: The Erlang loss function is a convex function of S (for every ρ>0).  
Proof: See Theorem 1 in Jagers & van Doorn (1986). 
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Lemma 4.4: ),(0 Sρπ  can be computed recursively by: 

1)0,(0 ≡ρπ  and 
)1,(

)1,(
),(

0

0
0

−⋅+

−⋅
=

SS

S
S

ρπρ

ρπρ
ρπ  for Sœ�. 

Proof: See problem 2 in Whitt (2002). 
 

4.3 Structure of the cost function 

 

Let simpleϕ  be a simple spare parts inventory situation and consider coalition NM ⊆ . Let 

the base-stock vector for this coalition be S∈�0
M. Figure 4.2 graphically shows all input 

parameters that are relevant for costs calculation for this type of game.  
 

 
Figure 4.2: The relevant parameters graphically represented for a situation with 3 

cooperating companies (M={1,2,3}). Dashed arrows indicate a possible transshipment 

route. Bold arrows indicate demands and repairs. 

 
The total expected costs per unit of time that coalition M  has to pay is: 

∑∑
∈∈

⋅







+⋅=Κ

Mi

iM
M

Mi

ii

S
pSShMsimple ,)( 0

;

µ

λ
π

ϕ
, where10:    (4.2) 

ih     : the holding cost per stocked part per unit of time at company i. 

µ     : The exponential repair rate. 

∑
∈

=
Mi

iM SS   : The sum of the base-stock levels of all companies in M together. 

∑
∈

=
Mi

iM λλ    : The total demand rate for all companies in M together. 

),(0 M
M S
µ

λ
π  : The fraction of time in which the on-hand inventory at all    

companies in M together is zero, given by equation (4.1). 
emer

iii cp ⋅= λ  : The expected total cost per unit of time, in which the on-hand 

inventory at all companies in M together is zero, for emergency 
shipments to company i. 

                                                 
10 Note that (4.2) holds for every simplesimple Γ∈ϕ , hence also for every element of  subsets of  simpleΓ . 

Company 1 
emerchS 111 ;;

Company 2 
emerchS 222 ;;  

Company 3 
emer

chS 333 ;;

λ1 

µ µ µ 

λ2 λ3 
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4.4. Characteristic cost function for a simple spare parts pooling 
game with fixed base-stock levels 

 
We consider a situation in which the base-stock levels are already pre-determined 

(situation FIX). Let simpleϕ  be a simple spare parts inventory situation and let the chosen 

fixed base-stock vector be S∈�0
N. With the combination of simpleϕ  and S we can associate 

a simple spare parts pooling game (with fixed base-stock levels) ( )cN ,  that is defined by 

)()(
;

MMc
Ssimpleϕ

Κ=  and K given by equation (4.2). 11 

 

4.5. Characteristic cost function for a simple spare parts pooling 
game with to-be-optimized stock levels 

 
We consider a situation in which the base-stock levels are not determined yet and can still 

be jointly optimized (Situation OPT). Let simpleϕ  be a simple spare parts inventory 

situation. Consider a coalition NM ⊆ . This coalition can choose the base-stock levels 

for every company Mi ∈ . Let the base-stock vector chosen be S∈�0
M. The combination 

of simpleϕ  and S leads to a certain expected costs per time unit )(
;

M
Ssimpleϕ

Κ . An optimal 

base-stock vector for coalition M is S opt

M  with minimal cost )(
;

M
opt
Msimple Sϕ

Κ . So, with 

simpleϕ  we can associate a simple spare parts pooling game (with to-be-optimized base-

stock levels) ( )cN ,  that is defined by ( ))()(
;

0

MMinMc
S

NS

simple

M

ϕ
Κ=

∈
 and K given by 

equation (4.2).12  
 
A clarification is needed on the concept of an optimal base-stock vector. It can often 
happen that there are multiple optimal (cost-minimizing) base-stock vectors, especially 
when all companies have identical holding cost rates. An example of such a case is given 
in the next section. Later on in this thesis we require a single well-defined optimal base-
stock vector. We construct this unique optimal base-stock vector for coalition M, 

S *

M (φsimple), by taking an optimal base-stock vector with the lowest possible total sum of 

base-stock levels and then allocating the base-stock levels to the companies with the 
lowest holding cost rates in M as evenly as possible, with remaining items allocated to 
companies with the lowest index first. See the example in the next section for an 
illustration. A more formal definition can be found in Appendix 8. 

                                                 
11 We slightly abuse notation here (as K is a function ∗Γ � →M

� rather than ∗Γ � →N
�) in order to 

avoid excessive notation. The proper definition is )()(
)(;

MMc
SS M

simpleϕ
Κ= , where for all NM ⊆  the 

base-stock vector of coalition M, SM
 (S)∈�0

M is defined via i

M

i SS =  for all i∈M. 
12 We have silently assumed that no company has a holding cost rate of 0, since in that case it would be 
optimal to have an infinitely large base-stock level at that company, which is obviously practically 
infeasible and not well-defined. 
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We shall now construct an easier variation of the cost function (4.2) that can simplify 
notation used in proofs in the next chapter. We use two insights: 

• Recall that for the stock-out probability 0π only the total sum of base-stock levels 

of all companies combined is relevant; which part is stocked at which company 
does not matter, as they can be shipped back and forth instantaneously at no cost. 

• For an optimal base-stock vector of coalition M, a company that has a higher 
holding cost rate than another company in M, will certainly have a base-stock 
level of 0, i.e. only companies that have the lowest holding cost rate in M can 
have positive base-stock levels. Therefore, for the total holding costs, only the 
total sum of base-stock levels of all companies combined is relevant. 

As such, only the total sum of base-stock levels of all companies combined, tot

MS œ�0, is 

relevant for the cost function and we can construct an easier variant of (4.2): 

( ) ∑
∈

⋅+⋅=Κ
Mi

i

tot

MM

tot

M

S

tot pSShM
tot
Msimple ,/)( 0min

;
µλπ

ϕ
, where )|min(min Mihh i ∈=  (4.3) 

 

This means that with simpleϕ  we can associate a simple spare parts pooling game (with to-

be-optimized base-stock levels) ( )cN ,  that is defined by ( ))()(
;

0

MMinMc
tot
Msimple

tot
M

S

tot
NS

ϕ
Κ=

∈
 

and Ktot given by equation (4.3). Note that this cost function definition is identical (albeit 
formulated differently) to the definition given earlier in this section. The optimal sum of 

base-stock levels for coalition M is *tot

MS (φ) (formally defined in Appendix 8). 

 

4.6 Example games 

 
In this section we provide an example in which we apply the formulas and concepts 
introduced in this chapter. Consider the 3-player simple spare parts inventory situation 

emeremer cidsimplecidsimple :,:,
Γ∈ϕ with identical cemer ( )emer

NiiNii chN ,)(,,)(, ∈∈ µλ  with N={1,2,3}, 

λ1=0.5, λ2=5, λ3=50, µ=25, h1=2000, h2=28000, h3=2000, and cemer=13000. So company 3 
has a very high demand rate while company 1 has a very low demand rate. Furthermore, 
company 1 and 3 have low holding costs while company 2 has high holding costs. 
 
Example costs calculation 
Suppose that we have situation FIX with base-stock vector S given by S1=4, S2=0, S3=4. 
The costs of coalition {1,2} are given by (values are rounded to two decimals): 
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Example game with fixed base-stock levels 
We can do similar calculations for each coalition in N. The spare parts pooling game 

associated with emercidsimple :,
ϕ  and S, (N,c), is described by (values are rounded): 

c({1})   = 8,000.00; c({2})   = 65,000.00;  c({3})      = 69,904.76; 
c({1,2})    = 8,005.60; c({1,3})    = 16,598.91; c({2,3})    = 91,372.34;  
c({1,2,3})  = 17,147.16. 
Note that this spare parts pooling game is balanced, i.e. it has a non-empty core. This can 
be shown in two different ways. 

• There is at least one element in the core, e.g., an allocation x1=154.48, 
x2=1,544.79, x3=15,447.89 is in the core (it adheres to efficiency and stability). 

• All balancedness conditions (see Appendix 2) hold, i.e.: 
c({1,2,3})=17,147.16 ≤ c({1})+c({2})+c({3})   =142,904.76 
c({1,2,3})=17,147.16 ≤ 0.5·c({1,2})+0.5·c({1,3})+0.5·c({2,3}) =57,988.43 
c({1,2,3})=17,147.16 ≤ c({3})+c({1,2})    =77,910.36 
c({1,2,3})=17,147.16 ≤ c({2})+c({1,3})    =81,598.91 
c({1,2,3})=17,147.16 ≤ c({1})+c({2,3})    =99,372.34 

 
Example game with to-be-optimized base-stock levels 
Now suppose that we have situation OPT, so base-stock vectors are to-be-optimized. The 

spare parts pooling game associated with emercidsimple :,
ϕ , (N,c) (and, implicitly, the rule to 

optimize base-stock vectors), is described by (values are rounded to two decimals): 

c({1})   = 2,127.45 (with *}1{

tot
S =1 and S *

}1{  given by (S *

}1{ )1=1) 

c({2})   = 38,833.33 (with *}2{

tot
S =1 and S *

}2{  given by (S *

}2{ )2=1) 

c({3})      = 16,236.56 (with *}3{

tot
S =7 and S *

}3{  given by (S *

}3{ )3=7) 

c({1,2})    = 5,390.69 (with *}2,1{

tot
S =2 and S *

}2,1{  given by (S *

}2,1{ )1=2 and (S *

}2,1{ )2=0) 

c({1,3})    = 16,374.08 (with *}3,1{

tot
S =7 and S *

}3,1{  given by (S *

}3,1{ )1=4 and (S *

}3,1{ )3=3) 

c({2,3})    = 17,078.76 (with *}3,2{

tot
S =8 and S *

}3,2{  given by (S *

}3,2{ )2=0 and (S *

}3,2{ )3=8) 

c({1,2,3})  = 17,147.16 (with *tot

NS =8 and S *

N  given by (S *

N )1=4, (S *

N )2=0, (S *

N )3=4) 

 
Note that this spare parts pooling game is also balanced, i.e. it has a non-empty core. For 
example, allocation x1=154.48, x2=1544.79, x3=15447.89 is in the core. 
 
We remark that the optimal base-stock vector for coalition {2,3} clearly puts all stock at 
the company with the lower holding cost rate. Furthermore, note that in the optimal base-
stock vectors of coalitions {1,3} and {1,2,3} the base-stock levels are allocated as equally 
as possible to the companies with the lowest holding costs rates in M, with remaining 
items allocated to companies with the lowest index (i.e. company 1) first. An algorithm to 

find *tot

MS  and S *

M  for all NM ⊆  is used in the numerical experiments of the subsequent 

chapters and is described in Appendix 8. Finally, we remark that the S that was chosen 

for situation FIX is identical to S *

N . Hence, the costs of the grand coalition for both 

games are the same. But costs for subsets of N are not the same for both games. 
Particularly, company 1 is stocking too much for its own good in situation FIX. 
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Chapter 5: The core of simple spare parts pooling games 
 
At the end of the last chapter, we saw example games that had non-empty cores. In this 

chapter we attempt to answer research question 1 (“Does a simple spare parts pooling 

game always have a non-empty core?”). In section 5.1, we cover simple pooling games 

with fixed base-stock levels and in section 5.2, we cover simple pooling game with to-be-

optimized base-stock levels. In these sections, we shall provide certain proofs of core 

non-emptiness. In section 5.3, we provide counter-examples showing that for games 

associated with certain classes of spare parts inventory situations, the core is not always 

non-empty. Section 5.4 describes a large numerical experiment that investigates core 

non-emptiness further. We summarize all findings in section 5.5. 
 

5.1: Simple pooling games with fixed base-stock levels 

 
In this section, we give proofs that games associated with certain types of simple spare 
parts inventory situations and base-stock vectors in fact always have non-empty cores. 
Recall that for simple spare parts inventory situations, transshipments are assumed to be 
free and repair rates are assumed to be identical. 
 

5.1.1: Situations with identical λ and S 

 

Let λϕ :,idsimple  be a simple spare parts pooling game (with identical λ) and let S be a base-

stock vector with identical base-stock levels for each company, i.e. Si=S for all Ni ∈ . 
The associated simple spare parts pooling game has a non-empty core, as stated in the 
following theorem. We remark that this holds for any number of companies that may 
have different holding cost rates and/or emergency (shipment and downtime) costs. 
 

Theorem 5.1: Let λλϕ :,:, idsimpleidsimple Γ∈  and let S∈�0
N be fixed with Si=S for all Ni ∈ . 

The associated spare parts pooling game (N,c) has a non-empty core. 
Proof: 

Let || MM ⋅= λλ  and let || MSSM ⋅=  for all NM ⊆ . Let emer

ii cp ⋅= λ  for all Ni ∈ . 

Let x∈�
N be a cost allocation vector with ( ) iNNii pSShx ⋅+⋅= ,/0 µλπ  for all Ni ∈ . 

We will show that x is (a) efficient and (b) stable, and hence x is a core element. 

Efficiency follows from ( )∑ ∑∑
∈ ∈∈

=⋅+⋅=
Ni Ni

iNN

Ni

ii NcpSShx )(,/0 µλπ . 

In order to prove stability, i.e. ∑
∈

≤
Mi

i Mcx )(  for all M ⊆ N, let M ⊆ N  and start with: 

( ) ( )MMNN SS ,/,/ 00 µλπµλπ ≤ .        (5.1) 

(5.1) holds by Lemma 4.2. Multiply (5.1) by ∑
∈Mi

ip  and then add Sh
Mi

i ⋅∑
∈

: 

( ) ( ) ∑∑∑∑
∈∈∈∈

⋅+⋅≤⋅+⋅
Mi

iMM

Mi

i

Mi

iNN

Mi

i pSShpSSh ,/,/ 00 µλπµλπ     (5.2) 
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(5.2) is equivalent to∑
∈

≤
Mi

i Mcx )( . We conclude x is stable. This completes the proof. 

� 
 
Note that our proof is based on showing a core element. This particular allocation is easy 
to administer, as each company simply pays its own holding costs and its own local 
emergency (downtime and shipment) costs. There are no transfer costs. We will return to 
cost allocations in more detail in the next chapter. 
 

5.1.2: Situations with identical λ, and cemer 

 

Now, let emercidsimple ,:, λ
ϕ  be a simple spare parts pooling game with identical λ and cemer and 

let S be a base-stock vector. The associated simple spare parts pooling game has a non-
empty core, as stated in Theorem 5.2. We remark that this holds for any number of 
companies that may have different holding costs rates and/or base-stock levels. First, 
however, we need to state two lemmas that will be used in the proof of Theorem 5.2. 
These involve balanced maps, for which a definition can be found in Section 1.3. 
Throughout this section, 2N denotes the set consisting of all subsets of some player set N. 
 
Lemma 5.1: Let N be a player set, let κ :2N

\«→[0,1] be a balanced map and let f(i) be a 

function f:N→�. Then: ∑∑ ∑
∈/∈ ∈

=⋅
NioM Mi

ififM
N

)()()(
\2

κ . 

Proof: 

Let 




∈

∈
=

MNi

Mi
e

M

i
\,0

,1
.  

For all Ni ∈ : ∑
/∈

=⋅
oM

M

i
N

eM
\2

1)(κ .        (5.3) 

(5.3) holds by definition of κ  as a balanced map. 

Multiply both sides of (5.3) by )(if , then sum both sides of (5.3) over all Ni ∈ : 

∑∑∑
∈∈/∈

=⋅⋅
NiNi

M

i

oM

ififeM
N

)()()(
\2

κ .       (5.4) 

Note that ∑ ∑
∈ ∈

=⋅
Ni Mi

M

i ifife )()( . So, rewriting the left side of (5.4) completes the proof. 

� 
 
Lemma 5.1 implies the following relations that will be used in later proofs in this section: 

•  ∑
/∈

=⋅
oM N

NMM
\2

||||)(κ  (take 1)( =if ). 

• ∑∑∑
∈∈/∈

⋅=⋅⋅
Ni

ii

Mi

ii

oM

ShShM
N \2

)(κ (take ii Shif ⋅=)( ). 

• ∑∑∑
∈∈/∈

=⋅
Ni

i

Mi

i

oM

SSM
N \2

)(κ (take iSif =)( ). 
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The following lemma considers the stock-out probability in a simple spare parts 

inventory situation with identical demand rates λϕ :,idsimple . For notational ease, we use 

µλρ /= . Lemma 5.2 states that the weighed combination of total stock-out probabilities 

of all coalitions NM ⊆  is at least as large as the total stock-out probabilities of the grand 

coalition. Formally this is captured in equation (5.5). 
 

Lemma 5.2: Let N be a player set, κ :2N
\«→[0,1] be a balanced map, Sœ�0

N and let ρ>0.  

Then: 







⋅⋅≥








⋅⋅⋅ ∑∑ ∑

∈/∈ ∈ Ni

i

oM Mi

i NSNMSMM
N

ρπρπκ ||  ,  ||||  ,  ||)(
\2

00   (5.5) 

Proof: 

First we define five variables. a is the right-hand side of equation (5.5) and e is the left-
hand side of equation (5.5). We compare a and e to variables b, c and d, using properties 

of the Erlang loss function 0π , in order to eventually show that ae ≥ . 









⋅⋅= ∑

∈Ni

i NSNa ρπ ||  ,  || 0  











⋅⋅⋅⋅⋅=











⋅⋅⋅=

∑ ∑

∑ ∑

/∈ ∈

/∈ ∈

ρκπ

ρκπ

||  ,  
||

||

||

||
)(||

||  ,  )(||

\2

0

\2

0

NS
M

N

N

M
MNc

NSMNb

oM Mi

i

oM Mi

i

N

N

 









⋅⋅⋅⋅⋅= ∑∑

∈/∈

ρπκ ||  ,  
||

||

||

||
)(|| 0

\2

NS
M

N

N

M
MNd

Mi

i

oM N

 









⋅⋅⋅= ∑∑

∈/∈

ρπκ ||  ,  ||)( 0

\2

MSMMe
Mi

i

oM N

 

By Lemma 5.1, a=b. Furthermore, clearly b=c. By convexity of ( )ρπ ,0 S  in S (by Lemma 

4.3) and because 1
||

||
)(

\2

=⋅∑
/∈ oM N N

M
Mκ  by Lemma 5.1, cd ≥ . Because ( )ρπ ttS ,0  is 

strictly decreasing in 0≥t  (by Lemma 4.2), and because both |N| terms cancel out, de ≥ . 
Hence, we conclude ae ≥ . 
� 
 

Theorem 5.2: Let emeremer cidsimplecidsimple ,:,,:, λλ
ϕ Γ∈  and let S∈�0

N. The associated spare parts 

pooling game (N,c) has a non-empty core. 
Proof:    
Let κ :2N

→[0,1] be a balanced map. By Lemma 5.2 we have: 









⋅⋅≥








⋅⋅⋅ ∑∑ ∑

∈/∈ ∈ Ni

i

oM Mi

i NSNMSMM
N

ρπρπκ ||  ,  ||||  ,  ||)(
\2

00     (5.6) 

Multiply both sides of (5.6) by emer
cp ⋅= λ , then add ∑

∈

⋅
Ni

ii Sh  to both sides to obtain: 
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∑ ∑∑∑∑
/∈ ∈∈∈∈

⋅







⋅⋅+⋅≥⋅








⋅⋅⋅+⋅

oM Ni

i

Ni

ii

Mi

i

Ni

ii
N

pNSNShpMSMMSh
\2

00 || , |||| , ||)( ρπρπκ  (5.7) 

 
By Lemma 5.1, we can rewrite the holding cost terms on the left side of (5.7) to obtain: 

pNSNShpMSMShM
Ni

i

Ni

ii

oM Mi

i

Mi

ii
N

⋅







⋅⋅+⋅≥








⋅







⋅⋅+⋅⋅ ∑∑∑ ∑∑

∈∈/∈ ∈∈

ρπρπκ || , |||| , ||)( 0

\2

0  (5.8) 

Note that (5.8) is identical to: 

)()(
\2

McM
oM N

∑
/∈

⋅κ ≥ )(Nc          (5.9) 

As κ  was arbitrarily chosen, equation (5.9) holds for any balanced map. Hence, equation 
(5.9) states that the game is balanced and therefore we conclude it has a non-empty core. 
� 
 

5.2: Simple pooling games with to-be-optimized stock levels 

 
In this section, we give proofs that games associated with certain types of simple spare 

parts inventory situations have non-empty cores. Let allidsimple :,ϕ  be a simple fully identical 

spare parts pooling game. The associated spare parts pooling game has a non-empty 
imputation set, as stated in the following lemma. We remark that this holds for any 
number of companies. 
 

Lemma 5.3: Let allidsimpleallidsimple :,:, Γ∈ϕ . The associated spare parts pooling game (N,c) 

has a non-empty imputation set. 
Proof: 

Recall that *tot

MS  denotes the optimal base-stock level sum for coalition NM ⊆ .  

Let || NN ⋅= λλ . Let iœN. We start with: 









≤







⋅ *,*||, }{0}{0

tot

i

tot

i
N SSN

µ

λ
π

µ

λ
π        (5.10) 

(5.10) holds by Lemma 4.2. Multiply (5.10) by emer
c⋅λ  and then add *}{

tot

iSh ⋅ to obtain: 

emertot

i

tot

i

emertot

i
Ntot

i cSShcSNSh ⋅⋅







+⋅≤⋅⋅








⋅+⋅ λ

µ

λ
πλ

µ

λ
π *,**||,* }{0}{}{0}{

   (5.11) 

Multiply (5.11) by |N| and rewrite to obtain: 









⋅⋅








+⋅⋅≤⋅⋅








⋅+⋅⋅ ∑

∈

emertot

i

tot

i

Ni

emertot

i
Ntot

i cSShNcSNNSh λ
µ

λ
πλ

µ

λ
π *,*||*||,||* }{0}{}{0}{

 (5.12) 

We remark that the since all companies are identical, ** }{}{

tot

j

tot

i SS =  for all Nji ∈, . 

Hence, (5.12) is equivalent to: 

)}({})({)(
*; }{:,

||*
}{

;:,

∑∑
∈∈

=Κ≤Κ
⋅

NjNj

S

tottot jcjN
tot

jallidsimple

N
tot
i

Sallidsimple ϕ
ϕ
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Observing )()()(
||*

}{
;:,*;:,

NNNc
Ntot

i
Sallidsimple

tot
N

Sallidsimple

tottot

⋅

Κ≤Κ=
ϕϕ

 and thus ∑
∈

≤
Nj

jcNc })({)(  

completes the proof. 
� 
 

In Lemma 5.3, the optimal *tot

MS  could take on any value. We will now limit us to games 

associated with more restrictive rules on base-stock levels, so that we can make a definite 
statement about the core of a less complex game. Particularly, we set the following limit: 

*tot

MS ≤ 20· || M  for all NM ⊆ . Furthermore, we limit the number of companies to three.  

 
This maximum on the base-stock level is not constraining for practical situations, since 
the spare parts, for which pooling via lateral transshipments is interesting, are 
characterized by low demand rates, high holding costs, and low optimal base-stock levels 
(see e.g., Wong (2006) for representative sample numerical values of base-stock levels). 
The reason for setting this maximum lies in the proof methodology13.  
 

Let 3||,:, =Nallidsimpleϕ  be a simple fully identical spare parts pooling game with N={1,2,3}. 

Lemma 5.4 states that if *}2,1{

tot
S  is odd, then the stock-out probability for three companies 

using a randomized base-stock vector of *5.1 }2,1{

tot
S⋅  is at most as large as the stock-out 

probability for companies 1 and 2. This is subsequently used in Theorem 5.3, which 

states that the spare parts pooling game, associated with 3||,:, =Nallidsimpleϕ  and the limit of 

*tot

MS ≤ 20· || M  for all NM ⊆ , has a non-empty core.  

 

Lemma 5.4: Let ρ>0 and let }39,37,...,5,3,1{*}2,1{ ∈tot
S . Then: 

( ) ( ) ( )*,25.0*5.1,3
2

1
5.0*5.1,3

2

1
}2,1{0}2,1{0}2,1{0

tottottot
SSS ρπρπρπ ≤+⋅+−⋅ .  (5.13) 

Proof: See Appendix 714. 
 

Theorem 5.3: Let 3||,:,3||,:, == Γ∈ NallidsimpleNallidsimpleϕ  such that tot

MS *≤20· || M  for all NM ⊆ . 

The associated spare parts pooling game (N,c) has a non-empty core. 

                                                 
13 We wish to take *5.1 }2,1{}3,2,1{

tottot
SS =  because then when you compare the two coalitions, the holding 

costs per company are the same. This approach does not work nicely when *}2,1{

tot
S  is an odd number, since 

you can then only choose 5.0*5.1 }2,1{ −⋅ tot
S  and 5.0*}2,1{ +tot

S  as integer values. We can still make a 

useful statement regarding stock-out probabilities for this situation in Lemma 5.4, but can only numerically 

verify this for some *}2,1{

tot
S . 

14 Note that it will very likely also hold for odd values of *}2,1{

tot
S >39, but this has not been verified yet. 

The proof provides a methodology to numerically check the validity of the statement for any odd value of 

*}2,1{

tot
S , and this has been done up to 39. This was deemed a large enough value for practical purposes 

(furthermore, larger numbers result in factorial overflows that computers / calculators can’t handle). 
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Proof:  
We will show balancedness by proving each balancedness condition individually, i.e.: 

(1) })3({)2({})1({})3,2,1({ cccc ++≤ . 

(2) })3,2({5.0})3,1({5.0})2,1({5.0})3,2,1({ cccc ⋅+⋅+⋅≤  

(3) })1({})3,2({})2({})3,1({})3({})2,1({})3,2,1({ ccccccc +=+=+≤  

 
(1) follows directly from Lemma 5.3. 
 
For (2) we use the property that all companies are identical, so it suffices to show 

})2,1({5.1})3,2,1({ cc ⋅≤ . We then discern between (2a) *}2,1{

tot
S  is even (2b) *}2,1{

tot
S  is odd. 

In case (2a) *}2,1{

tot
S  is even, we start with: 









≤







⋅ *,

2
*5.1,

3
}2,1{0}2,1{0

tottot
SS

µ

λ
π

µ

λ
π        (5.14) 

(5.14) holds by Lemma 4.2. Multiply (5.14) by ∑
∈

⋅
}2,1{i

emer
cλ , then add *}2,1{

tot
Sh ⋅ , then 

multiply by 1.5 to obtain: 











⋅⋅








+⋅⋅≤⋅⋅








⋅+⋅⋅ ∑∑

∈∈ }2,1{

}2,1{0}2,1{}2,1{0}2,1{ *,
2

*5.1*5.1,
3

*5.1
i

emertottot

Ni

emertottot cSShcSSh λ
µ

λ
πλ

µ

λ
π  (5.15) 

(5.15) is equivalent to })2,1({5.1)(
5.1*

}2,1{
;3||,:,

cN
totSNallidsimple

tot ⋅≤Κ
⋅=ϕ

. Finally, since 

)()(
5.1*

}2,1{
;3||,:,

NNc
totSNallidsimple

tot

⋅=

Κ≤
ϕ

, we have })2,1({5.1)( cNc ⋅≤ . 

 

In case (2b) *}2,1{

tot
S  is odd, let 5.0*5.1 }2,1{ −⋅=− tot

SS  and 5.0*5.1 }2,1{ +⋅=+ tot
SS . Then: 









≤








+






 +− *,
2

,
3

2

1
,

3

2

1
}2,1{000

tot
SSS

µ

λ
π

µ

λ
π

µ

λ
π      (5.16) 

(5.16) holds by Lemma 5.4. Multiply (5.16) by ∑
∈

⋅
}2,1{i

emer
cλ , then add *}2,1{

tot
Sh ⋅ , then 

multiply by 1.5 and re-arrange terms to obtain: 











⋅⋅








+⋅⋅≤









⋅⋅








+⋅⋅+








⋅⋅








+⋅⋅

∑

∑∑

∈

∈

++

∈

−−

}2,1{

}2,1{0}2,1{

00

*,
2

*5.1

,
3

2

1
,

3

2

1

i

emertottot

Ni

emer

Ni

emer

cSSh
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We show (3) by using })3({2})2({})1({})2,1({ cccc ⋅=+≤  (by Lemma 5.3 and due to the 

property that all companies are identical). Therefore, })3({})2,1({})2,1({5.1 ccc +≤⋅ . We 

just showed for (2) that })2,1({5.1})3,2,1({ cc ⋅≤ . Hence, })3({})2,1({})3,2,1({ ccc +≤ . 

This completes the proof. 
� 
 

5.3: Examples of games with empty cores 

 
Now, by Theorems 5.1, 5.2, and 5.3 we have shown that games associated with certain 
classes of simple spare parts pooling situations and certain rules on base-stock levels 
always have a non-empty core. However, this does not hold for all simple spare parts 
pooling games. In this section, we provide three counter-examples that show that games 
associated with certain classes of simple spare parts pooling situations and certain rules 
on base-stock levels do not always have a non-empty core. After these examples are 
given, an explanation on why their cores are empty is provided. 
 
Example 5.1: A game associated with a spare parts inventory situation in Gsimple,id:h and 
fixed identical base-stock levels can have an empty core. 

Consider the 2-player simple spare parts inventory situation hidsimple :,1 Γ∈ϕ  with N={1,2}, 

µ=0.03, h=0; emerc1 =100, emerc2 =0; λ1=0.01, λ2=1. So company 1 has very high emergency 

costs while company 2 has very low emergency costs, while the demand rate of company 
2 is much higher. Suppose that we have situation FIX with base-stock vector S given by 
S1=5, S2=5. The associated spare parts pooling game is described by (values rounded): 
 c({1})=2.46·10-05;  c({2})=0;  c({1,2})=0.71. 
Clearly, the core of this game is empty. 
 
Example 5.2: A game associated with a spare parts inventory situation in Gsimple,id:λ,h and 
fixed different base-stock levels can have an empty core. 

Consider the 2-player simple spare parts inventory situation hidsimple ,:,2 λϕ Γ∈  with 

N={1,2}, µ=0.03, h=0; emerc1 =100, emerc2 =0; λ=1. So company 1 has very high emergency 

costs while company 2 has very low emergency costs. Suppose that we have situation 
FIX with base-stock vector S given by S1=25, S2=1. The associated simple spare parts 
pooling game is described by (values are rounded to two decimals):  
c({1})=30.63;   c({2})=0;  c({1,2})=61.89. 
Clearly, the core of this game is empty. 
 
Example 5.3: A game associated with a spare parts inventory situation in  Gsimple,id:λ,h and 
to-be-optimized base-stock levels can have an empty core. 

Consider the 2-player simple spare parts inventory situation hidsimple ,:,3 λϕ Γ∈  with 

N={1,2}, µ=5; h=25000; emerc1 =120000, emerc2 =3000; λ=2.5. So company 1 has very high 

emergency costs while company 2 has very low emergency costs. Suppose that we have 
situation OPT, so base-stock vectors are to-be-optimized. The associated simple spare 
parts pooling game is described by (values are rounded to two decimals):  
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c({1})  =73,076.92  ( *}1{

tot
S =2);    

c({2})  =7,500.00  ( *}2{

tot
S =0);    

c({1,2}) =94,218.75  ( *}2,1{

tot
S =3). 

Clearly, the core of this game is empty. 
 
An intuitive explanation behind these counter-examples would be as follows. Company 2 
has very low emergency costs and hence very low total costs by itself. But its demand 
rate is at least as high as the demand rate of company 1. If we combine both companies in 
a coalition, then company 2 adds a lot of demand strain to the pooling stock, while it does 
not face high emergency costs. Every time a demand for company 2 comes in and it is 
fulfilled from the pooling stock, this takes away stock which company 1 – with very high 
downtime costs – could put to better use. It would actually be better to not use lateral 
transshipments at all. So, the main problem in these examples lies in the full pooling 
approach that is assumed. 
 

5.4: Numerical experiment 

 
We now know that for certain classes of simple spare parts pooling games it is possible 
that the core of the associated game is empty. But how often does this happen? Do we 
only encounter empty cores when we choose extreme and unrealistic parameter values? 
Or will games with non-empty cores also exist for cases with parameters that are 
representative of real-life cases? In this section, we present a numerical experiment that 
aims to answer these questions. The calculations are carried out by a Java program, which 
is described in Appendix 8. 
 

5.4.1 Setup of the numerical experiment: spare parts inventory 
situations 

 
Recall that a simple spare parts inventory situation is uniquely characterized by the set of 
companies, the repair rate, the demand rates of each company, the holding costs and the 
emergency (shipment and downtime) costs of each company. Table 5.1 shows all 
attainable parameter values in the first part of the experiment. For the number of 
companies, we use two values: three companies and four companies. A three-company 
situation is big enough to study the game theoretical nuances, and a four-company 
situation can provide insight into a larger cooperation. We remark that we will study two-
company situations later in Section 5.4.5, but we focus on 3 and 4 players first. For the 
other input parameters, Table 5.1 only shows an index. Each index (like All-Min and 
DIFF1) refers to a “rule” on how the values of that parameter are set for each company. 
Table 5.2 shows for each index the corresponding “rule” on the parameter values of each 
company. This “rule” sets the parameter value of each company to either a minimum, 
low, standard, high, or maximum value. For each input parameter, the actual values 
corresponding to minimum, low, standard, high, and maximum are given in Table 5.3. 
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Table 5.1: All attainable parameter values in the experiment. 
Parameter name and unit Number of values 

|N| 2 (three, four) 

λ (demands per year) 8 (All-Min, All-Low, All-Standard, All-High, All-Max, DIFF1, DIFF2, DIFF3) 

µ (repairs per year) 5 (All-Min, All-Low, All-Standard, All-High, All-Max) 

h ($ per unit per year) 8 (All-Min, All-Low, All-Standard, All-High, All-Max, DIFF1, DIFF2, DIFF3) 

cemer ($ per emergency 
shipment) 

8 (All-Min, All-Low, All-Standard, All-High, All-Max, DIFF1, DIFF2, DIFF3) 

 
Table 5.2: For each index, the “rules” on how the values of a parameter are set for 

each company. When N={1,2,3}, only the first three company values are used.  
Index Value for 

company 1 
Value for 
company 2 

Value for 
company 3 

Value for company 
4 (if needed) 

All-Min Minimum value Minimum value Minimum value Minimum value 

All-Low Low value Low value Low value Low value 

All-Standard Standard value Standard value Standard value Standard value 

All-High High value High value High value High value 

All-Max Maximum value Maximum value Maximum value Maximum value 

DIFF1 Minimum value Standard value Maximum value High value 

DIFF2 High value Low value Standard value Standard value 

DIFF3 Low value Maximum value Low value Low value 

 
Table 5.3: For each input parameter, the actual values corresponding to minimum, 

low, standard, high, and maximum. 
Parameter name and 
unit 

Minimum 
value 

Low value Standard value High value Maximum 
value 

λ (demands per year) 0.5 2.5 5 10 50 

µ (repairs per year) 1.67 12.5 25 50 500 

h ($ per unit per 
year) 

400 2000 4000 8000 28000 

cemer ($ per emer-
gency shipment) 

2600 6500 13000 26000 78000 

 

For each of the input parameters covered in Table 5.3, the minimum and maximum 
values are based on the literature study that was presented in section 3.4. We selected the 
“standard” values such that they are approximately the same orders of magnitude away 
from the minimum and maximum values.15 We selected a “low” value to be half the 
standard value, and a “high” value to be twice the standard value. As such, DIFF2 should 
give realistic differences of a factor 4 amongst companies (realistic according to the 
papers covered in Appendix 5). DIFF1 gives extremely large differences amongst 
companies (although parameter values are still within the reasonable bounds of Table 
3.1), and DIFF3 has the special property that at least two companies still have the same 
parameter value (with just one company being vastly different from the others). With all 
the combinations of the parameters described in Table 5.1, we have in total 
2x8x5x8x8=5120 spare part inventory situations.  
 

                                                 
15 That is, (the standard value) / (the minimum value) should be approximately the same as (the maximum 
value) / (the standard value). 
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One of these will serve as an example to illustrate the naming conventions: a situation 
where |N|=3, λ has value All-Low (hence λ1=2.5, λ 2=2.5, λ 3=2.5), µ has value All-Min 
(hence µ1=1.67, µ 2=1.67, µ 3=1.67), h has value DIFF2 (hence h 1=8000, h 2=2000, h 

3=4000), and cemer has value DIFF3 (hence  emerc1  =6500, emerc2 =78000, emer
c3 =6500).16  

 

5.4.2 Setup of the numerical experiment: rule on base-stock levels 

 
Recall that with one simple spare parts inventory situation we can associate one simple 
spare parts pooling game (with to-be-optimized base-stock levels). Furthermore, with the 
combination of this simple spare parts inventory situation and some base-stock vector S 
we can associate another simple spare parts pooling game (with fixed base-stock levels). 
In this numerical experiment we use five types of base-stock vectors for the situation with 

fixed base-stock levels. In their definition, we use ( )∑ ∈
=

Ni iNSUM SS * .17 

• S *

N : The base-stock level of each company is equal to the optimal cost-

minimizing base-stock level when it is in the grand coalition. 

• S
indiv: The base-stock level of each company is equal to the optimal base-stock 

level when it would be acting alone; ( )
ii

indiv

i SS *

}{=  for all iœN. 

• S
high: The base-stock level of each company is equal to SSUM/|N|, rounded down, 

then plus two;   2||/ += NSS SUM

high

i  for all iœN. 

• S
low: The base-stock level of each company is equal to SSUM/|N|, rounded down, 

then minus one if possible;  ( )1||/,0max −= NSS SUM

low

i  for all iœN. 

• S
mix: indivmix SS 11 = ; highmix SS 22 = ; lowmix

SS 33 = ; and if |N|=4 then indivmix SS 44 = . 

Note that Sindiv and S *

N  and Smix can yield different base-stock levels amongst companies, 

whereas in the other two types of base-stock vectors all companies have identical base-
stock levels. We remark that each of the 5120 spare parts inventory situations can be 
associated with one game with to-be-optimized base-stock levels and five games with 
fixed base-stock levels. 
 

5.4.3 Results of the numerical experiment: Simple pooling games with 
to-be-optimized base-stock levels 
 

Out of 5120 cases, 5018 had non-empty cores (98.0%), with 97.9% for 3-player games 
and 98.1% for 4-player games. Every game associated with a simple spare parts 
inventory situation for which all companies had identical emergency costs (i.e., one in 

emercidsimple :,
Γ ) had a non-empty core. This is in line with Theorem 5.3.  

                                                 
16 We remark that the company having the highest value is a different one for DIFF1, DIFF2, and DIFF3, 
i.e. in this example company 1 has the highest holding cost rate while company 2 has the highest 
emergency costs. This hopefully allows more interaction and different results between situations. 
17 See Section 4.5 and/or Appendix 8 for more detail on how the unique optimal base-stock vector for 

coalition MŒN , S
*

M , is found. 
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Furthermore, interestingly, every game associated with a simple spare parts inventory 
situation for which all companies were not only allowed to have different emergency 
costs, different holding costs, and different demand rates but forced to be non-identical in 
all these respects (i.e., one where the index of λ, h, and c

emer was DIFF1, DIFF2, or 
DIFF3) had a non-empty core as well18. Only when we set companies to be identical on 
at least either λ or h and force their c

emer to be different, do we encounter associated 
games with empty cores. Results for these types of spare parts inventory situations are 
shown in Table 5.4. Figure 5.1 through Figure 5.4 show the percentage of associated 
games with empty cores for various input parameter values. A discussion and explanation 
of the pivotal observations is given at the end of Section 5.4.4. 
 
Table 5.4: Percentage of associated games with empty cores differentiated for 

classes of simple spare parts inventory situations 
Parameters that are set to 
be different (others are 
identical) 

Corresponding parameter 
indexes 

Percentage of 
associated games 
with empty cores 

Percentage of 
associated games with 
empty imputation set 

c
emer c

emerœ{DIFF1,DIFF2,DIFF3}; 
λ,µ,hœ{All-Min, All-Low, All-
Standard, All-High, All-Max } 

8.93% 4.67% 

c
emer and λ c

emer,λœ{DIFF1,DIFF2,DIFF3}; 
µ,hœ{All-Min, All-Low, All-
Standard, All-High, All-Max } 

7.33% 3.33% 

c
emer and h c

emer,hœ{DIFF1,DIFF2,DIFF3}; 
µ,λ œ{All-Min, All-Low, All-
Standard, All-High, All-Max } 

0.44% 0.00% 
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Figure 5.1: Results for each value index of λ. Figure 5.2: Results for each value index of µ. 

 

                                                 
18 Note that there were only 33 games for which cemer,h,λ œ{DIFF1,DIFF2,DIFF3}, so the sample size on 
which this statement is based was fairly small. As such, not finding any empty cores for this subset may be 
just due to the specific parameter values chosen. No conjecture on some generic property is implied. 
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Figure 5.3: Results for each value index of h. Figure 5.4: Results for each value index of c

emer
. 

 

5.4.4 Results of the numerical experiment: Simple pooling games with 
fixed base-stock levels 

 
Out of 25600 cases, 25272 had non-empty cores (98.7%), with 98.6% for 3-player games 
and 98.8% for 4-player games. Every game associated with a simple spare parts 
inventory situation for which all companies had identical emergency costs (i.e., one in 

emercidsimple :,
Γ ) and any fixed base-stock vector had a non-empty core. Furthermore, every 

game associated with simple spare parts inventory situations for which companies had 
different emergency costs, identical λ and identical base-stock levels, had a non-empty 
core. Only when we set companies to be different on cemer and at least different on λ or 
base-stock levels, do we encounter associated games with empty cores. This is in line 
with Theorems 5.1 and 5.2. Results for these types of spare parts inventory situations are 
shown in Table 5.5. Figure 5.5 through Figure 5.9 show the percentage of associated 
games with empty cores for various input parameter values. Afterwards, a discussion and 
explanation of the pivotal observations is provided. 
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Figure 5.5: Results for each value index of λ. Figure 5.6: Results for each value index of µ. 
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Figure 5.9: Results for each base-stock vector type 

 

Table 5.5: Percentage of associated games with empty cores differentiated for 

classes of spare parts inventory situations and type of base-stock vectors 
Parameters that 
are set to be 
different (others 
are identical) 

Identical base-
stock levels for all 
companies or 
possibly different? 

Corresponding parameter indexes Percentage 
of associated 
games with 
empty cores 

Percentage of 
associated games 
with empty 
imputation set 

c
emer and λ Identical c

emer,λœ{DIFF1,DIFF2,DIFF3}; 
µ,hœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

high or S=S
low 2.89 % 1.00 % 

c
emer and λ and h Identical c

emer,λ,hœ{DIFF1,DIFF2,DIFF3}; 
µœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

high or S=S
low 0.93 % 0 % 

c
emer Can be different c

emerœ{DIFF1,DIFF2,DIFF3}; 
µ,h,λœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

indiv or S=SN* or S=S
mix 6.22 % 3.64 % 

c
emer and λ Can be different c

emer,λœ{DIFF1,DIFF2,DIFF3}; 
µ,hœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

indiv or S=SN* or S=S
mix 7.26 % 2.59 % 

c
emer and h Can be different c

emer,hœ{DIFF1,DIFF2,DIFF3}; 
µ,λœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

indiv or S=SN* or S=S
mix 2.30 % 0.74 % 

c
emer and λ and h Can be different c

emer,λ,hœ{DIFF1,DIFF2,DIFF3}; 
µœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

indiv or S=SN* or S=S
mix 3.46 % 0.49 % 
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We can make several interesting observations in this numerical experiment that hold for 
both situations OPT and FIX: 

• c
emer has a marked influence on whether the core of an associated game is empty or 

not (see Figure 5.4 and 5.8). If companies all have the exact same c
emer, then this 

numerical experiment suggests that the core of an associated game will be non-empty. 
This will later be captured formally in a conjecture. Empty cores are most often found 
for games associated with spare parts inventory situations in which the emergency 
costs differed largely between companies. The logic behind this has already been 
discussed in the counter-examples of Section 5.3; when demand for a company with a 
very low cemer comes in, it is fulfilled from the pooling stock, but when subsequently 
demand for a company with a very high cemer comes in, it may be that all available 
stock have been consumed by the company with the low cemer. Once pooling stock 
gets low, fulfillling every demand of the company with the low cemer via emergency 
shipment may give lower costs than full pooling. So, the main problem seems to lie in 
the full pooling approach that is assumed. 

• The demand rate does not appear to be an important factor in whether we get an 
empty or non-empty core; Figure 5.1 and Figure 5.5 do not show a large effect. 

• An empty core does not always imply an empty imputation set (see Table 5.4 and 
5.5). Therefore, the game theoretical view does add something interesting. 

• The games associated with simple spare parts inventory situations for which 
companies have identical, but very low repair rates and/or identical, but very high 
holding cost rates surprisingly often have empty cores. An intuitive explanation for 
this is that in these situations, the marginal added value of putting another spare part 
on stock is low. You have to pay lots of holding costs and/or the part is in repair for 
most of the time. This means that emergency costs will likely be dominant in the cost 
function, which amplifies the effect that cemer has (as described in the first point in this 
list). This concept is illustrated in more detail in example games in Appendix 9. 
There, a game is given with an empty core and it is shown that setting the repair rate 
to be very high or setting the holding cost rate to be very low instead leads to a game 
with a non-empty core (and the holding costs are dominant in the latter two). 

 
The following observation only applies to situation OPT:  

• Consider the classes Gsimple,id:h and Gsimple. This numerical experiment indicates that 
the former has more associated games with an empty core than the latter. An intuitive 
explanation of why setting holding cost rates to be different can lead to a balanced 
game is that this adds an additional way of obtaining cost savings. For example, if 
h1>h2 then putting companies 1 and 2 together in a coalition implies that the spare 
parts needed for company 1 can now be stored more cheaply at company 2. If h1 
would have been the same as h2, there would be no such benefit of cooperation. 

 
The following observation only applies to situation FIX: 

• Games for which companies had non-identical base-stock levels had more empty 
cores than games for which companies had identical base-stock levels. Particularly, 
S

indiv and Smix relatively often led to empty cores. Finding a clear explanation for this 
is left as a future research direction. 
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5.4.5: Results of the numerical experiment: 2-player games 

 
Recall that in section 5.3 we gave counter-examples of 2-player games. We now focus on 
sub-games of the 3-player games considered in the numerical experiment.  
With each 3-player game, we can limit the characteristic cost function to player sets 
{1,2}, {1,3}, and {2,3} to construct 2-player sub-games. Two interesting questions arise: 

• If the core of the three-player game is empty, then will we always find a two-
player sub-game whose core is also empty? In other words, if things go wrong for 
three players, then is this always due to a problem that exists for two players? 

• If the core of the three-player game is non-empty, then is it possible to find a two-
player sub-game whose core is empty? If this happens, then the three-player game 
is not totally balanced. 

 
The results of the numerical experiment with respect to these 2-player games are given 
for situation OPT in Table 5.6 and for situation FIX in Table 5.7. Interestingly, no game 
was found for which all three sub-games had an empty core. Furthermore, for both 
situations OPT and FIX, it was most likely that if the core of the 3-player game was 
empty that 2 sub-games had an empty core, and that if the core of the 3-player game was 
non-empty that 0 sub-games had an empty core. 
 
Table 5.6: Results for 2-player games in situation OPT. The value in the table is the 

percentage of 3-player games with empty core (column 1) or non-empty core 

(column 2) with the number of sub-games with an empty core depending on the row. 

 Core of the 3-player 
game is empty 

Core of the 3-player 
game is non-empty 

3 sub-games had an empty core 0% 0% 

2 sub-games had an empty core 77.77% 0.04% 

1 sub-games had an empty core 20.37% 0.60% 

0 sub-games had an empty core 1.85% 99.36% 

 
Table 5.7: Results for 2-player games in situation FIX. The value in the table is the 

percentage of 3-player games with empty core (column 1) or non-empty core 

(column 2) with the number of sub-games with an empty core depending on the row. 

 Core of the 3-player 
game is empty 

Core of the 3-player 
game is non-empty 

3 sub-games had an empty core 0% 0% 

2 sub-games had an empty core 44.44% 0.05% 

1 sub-games had an empty core 39.44% 0.55% 

0 sub-games had an empty core 16.11% 99.40% 

 
In Appendix 9, three examples can be found: one where the core of the 3-player game 
was empty but none of the sub-games had empty cores; one where the core of the 3-
player game was non-empty but two sub-games had empty cores; and one where the core 
of the 3-player game was empty but two sub-games also had empty cores.  
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This 2-player sub-game research showed that if the core of the three-player game is 
empty, then we will not always find a two-player sub-game whose core is also empty, i.e. 
if things go wrong for three players, then this is not always already due to a problem that 
exists for two players (although this is often the case). Furthermore, even if the core of 
the three-player game is non-empty, the three-player game is not always totally balanced. 
 

5.5 Chapter summary 

 
In this chapter, we have seen proofs that games associated with certain classes of spare 
parts inventory situations will always have non-empty cores. We have also seen 
counterexamples showing that games associated with certain classes of simple spare parts 
inventory situations will not always have non-empty cores.  
 
A numerical experiment has led to interesting observations. One of those will now be 
formally captured in a conjecture. Based on the observations in this numerical 
experiment, we conjecture that any simple spare parts pooling game (situation FIX or 
situation OPT), associated with any simple spare parts inventory situation in which 
companies have identical emergency costs, has a non-empty core. 
 

Conjecture 5.1: Let emercidsimple :,
Γ∈ϕ . Let S∈�0

N be fixed. Then: 

(i)  The spare parts pooling game (N,c) associated with ϕ  and S has a non-empty core.  

(ii) The spare parts pooling game (N,c) associated with ϕ  also has a non-empty core.  

 
We now provide a structured overview of what we know for games associated with each 
class of spare parts inventory situation in Tables 5.8 (for situations with to-be-optimized 
base stock levels) and 5.9 (for situations with fixed base-stock vectors). 
 
Table 5.8: Summary of what we know on the cores of simple spare parts pooling 

games for situation OPT 
Class of spare 
parts inventory 
situation 

Parameters that may be different 
between companies 

What do we know about the core of the 
associated game? 

emerchidsimple ,,:, λ
Γ  - If |N|=3 and 

tot

MS ≤20· || M , core is non-empty 

(Theorem 5.3). Else, conjecture 5.1 applies 

emerchidsimple ,:,
Γ  Demand rates Conjectured to be non-empty (Conjecture 5.1) 

emercidsimple ,:, λ
Γ  Holding cost rates Conjectured to be non-empty (Conjecture 5.1) 

emercidsimple :,
Γ  Demand rates, holding cost rates Conjectured to be non-empty (Conjecture 5.1) 

hidsimple ,:, λΓ  Emergency costs Counter-example of empty core 5.3 

hidsimple :,Γ  Emergency costs,  demand rates Counter-example of empty core 5.3 

λ:,idsimpleΓ  Emergency costs, holding cost rates Counter-example of empty core 5.3 

simpleΓ  Emergency costs,  demand rates, 
holding cost rates 

Counter-example of empty core 5.3 
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Table 5.9: Summary of what we know on the cores of spare parts pooling games for 

situation FIX
19

 
Class of spare 
parts pooling 
game 

Identical base-stock levels for all 
companies or possibly different? 

What do we know about the core of the 
associated game? 

emerchidsimple ,,:, λ
Γ  Identical Non-empty (Theorem 5.1 and 5.2) 

emerchidsimple ,:,
Γ  Identical Conjectured to be non-empty (Conjecture 5.1) 

emerchidsimple ,,:, λ
Γ  Different Non-empty (Theorem 5.2) 

emerchidsimple ,:,
Γ  Different Conjectured to be non-empty (Conjecture 5.1) 

hidsimple ,:, λΓ  Identical Non-empty (Theorem 5.1) 

hidsimple :,Γ  Identical Counter-example of empty core 5.1 

hidsimple ,:, λΓ  Different Counter-example of empty core 5.2 

hidsimple :,Γ  Different Counter-example of empty core 5.1 or 5.2 

                                                 
19 Note that the results for any spare parts inventory situation in which h is indentical will be the same as 
any spare parts inventory situation in which h is different between companies. It can be easily verified that 
holding cost terms will always cancel out against each other in all balancedness equations and hence do not 
affect whether a core is empty or not. The reason why e.g. figure 5.7 shows different results for different 
indexes of h is that the base-stock vectors chosen are based on h and we compare S(h), h combinations with 
S(h’),h’ combinations rather than S(h),h combinations with S(h),h’ combinations. 
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Chapter 6: Cost allocation in simple spare parts pooling 
games 
 
In this chapter we attempt to answer research question 2 (“What is a proper cost 

allocation policy for a simple spare parts pooling game?”). In section 6.1, we first 

propose four cost allocations. In section 6.2, we define useful properties and see whether 

these cost allocations adhere to it. In section 6.3, we perform a numerical experiment on 

cost allocations and draw some conclusions regarding stability of allocation rules.  

 

6.1. Proposed cost allocations 

 
In this section, we define four cost allocations that will form the basis of this chapter. 
These cost allocations are taken from a much larger list of potential cost allocations that 
originated from the literature or from a brainstorm session. All of these cost allocations 
can be found in Appendix 10. The four cost allocations that will be presented now were 
selected mainly because they performed well in a numerical experiment, i.e. in a 
relatively large percentage of games these allocations were in the core. Some results of 
this numerical experiment will be shown in Section 6.3. While the idea behind all four 
cost allocations can be applied both to games with to-be-optimized base-stock levels and 
to games with fixed base-stock levels, the formulas and behavior can differ. Therefore, in 
definitions in this chapter we make a distinction between situations OPT and FIX.  

For situation OPT, we have an allocation rule defined as a function →Γ:OPTf �
N.  

For situation FIX, we have an allocation rule defined as a function ∗Γ:FIXf � →N
�

N. 

Finally, we remark that cost allocations allocate expected yearly costs, not realized yearly 
costs (as the characteristic cost function is also defined as expected yearly costs).  
 
Allocation rule AL: An allocation of total costs based on the demand rate of each 
company.  

Formula for situation FIX: Let simpleΓ∈ϕ  and S∈�0
N. Then, for all iœN : 

,(ϕFIX

i
AL S ∑

∈

⋅=
Nj

ji

S
NK λλϕ /)() ,  . 

Formula for situation OPT: Let simpleΓ∈ϕ . Then, for all iœN : 

=)(ϕOPT

iAL  ,(ϕFIX

i
AL S )(* ϕN ). 

 
This is cost allocation policy 3 in Wong et al. (2007) and is quite easy to understand and 
administer. Simplicity of a cost allocation rule is somewhat subjective, but we suggest 
that this allocation rule is the simplest of all rules presented here. The demand rate turned 
out to be the most important information for cost allocations; in the numerical 
experiment, allocating based on demand rates gave more core elements than allocating 
based on holding cost rates or emergency costs. 
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Allocation rule SPLIT: An allocation where holding costs are allocated based on 
demand rates and emergency costs based on the demand rate times emergency costs. 

Formula for situation FIX: Let simpleΓ∈ϕ  and S∈�0
N. Then, for all iœN : 

,(ϕFIX

i
SPLIT S emer

ii

Nj

j

Nj

j

Nj

jj

Nj

j

i cSSh ⋅⋅+









⋅⋅= ∑

∑
∑

∑ ∈

∈

∈

∈

λ
µ

λ

π
λ

λ
),() 0 . 

Formula for situation OPT: Let simpleΓ∈ϕ . Then, for all iœN : 

,()( ϕϕ FIXOPT

ii
SPLITSPLIT =  S )(* ϕN ). 

 
This allocation is the result of a brainstorm experiment (Appendix 10) in which many 
similar allocations were tried, but this particular allocation turned out to be in the core 
most often. The amount of spare parts that has to be held on stock for a company is based 
on his demand rate, so allocating holding costs based on demand rate makes sense 
intuitively (and allocating costs this way gave more core elements than allocating holding 
costs based on holding cost rates in the numerical experiment). The total emergency costs 

is dependent on emer

ii c⋅λ  and therefore this term is used. 

 
Allocation rule BL: An allocation of total benefits based on the demand rate of each 
company: 

Formula for situation FIX: Let simpleΓ∈ϕ  and S∈�0
N. Then, for all iœN : 

,(ϕFIX

i
BL S 










Κ−Κ⋅−Κ= ∑

∑ ∈

∈

)(})({})({) ;;;
Nji

S

Nj

S

Nj

j

iS ϕϕϕ

λ

λ
. 

Formula for situation OPT: Let simpleΓ∈ϕ . Then, for all iœN : 











Κ−Κ⋅−Κ= ∑

∑ ∈

∈

)(})({})({)( )(;)(;)(; **
}{

*
}{ NjiBL Nji

i

S

Nj

S

Nj

j

iSOPT ϕϕϕϕϕϕ

λ

λ
ϕ . 

 
Based on Kilpi et al. (2008), allocating benefits ensures that (if the imputation set is non-
empty) no individual company will have to pay more costs than when working alone.  
 
The Shapley value:   

Formula for situation FIX: Let simpleΓ∈ϕ  and S∈�0
N. Then, for all iœN : 

,(ϕiΦ S ( )∑
⊆

Κ−∪Κ⋅
−−⋅

=
}{\

;; )(}){(
|!|

)!1|(||!|
)

iNM

SS
MiM

N

MNM ϕϕ . 

Formula for situation OPT: Let simpleΓ∈ϕ . Then, for all iœN :  

( )∑
⊆

Κ−∪Κ⋅
−−⋅

=Φ ∪

}{\

)(;)(;
)(}){(

|!|

)!1|(||!|
)(

**
}{

iNM

SS

i MiM
N

MNM
MiM ϕϕϕϕ

ϕ . 

 
This allocation is in “game terms” rather than in “spare parts inventory situation terms”. 
The Shapley value is a well-established allocation in game theory literature, however. 
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In this chapter our focus is on trying to find a cost allocation rule that: 
(i)  is easy to grasp, easy to calculate, and applicable to spare parts pooling games 
(ii) adheres to various fairness properties 
(iii) is always in the core (if non-empty) of a simple spare parts pooling game. 
 
We remark that we will not cover the nucleolus (see Appendix 2) here, although the 
nucleolus is always in the core (if the core is non-empty). However, it is relatively hard to 
calculate (Hartman&Dror, 1996; Sankaran, 1991). We posit that the four allocation rules 
presented in this section, in our opinion, do adhere to the above property (i), as opposed 
to the nucleolus. The nucleolus can act as a fall-back option if none of the four allocation 
rules proposed here can be shown to be in the core of a simple spare parts pooling game. 
 

6.2. Properties of cost allocations 

 
We now provide a list of properties that may be desirable for cost allocations to have. 
Efficiency and stability are clearly important and well-established in game theory 
literature; the set of all stable and efficient allocations is called the core. The other 
properties are fairness properties that are applicable to spare parts pooling games and that 
may help to select a fair cost allocation. 
 

6.2.1 Efficiency 

 
An allocation rule is efficient if all costs incurred are fully split. Formally: 

Definition for situation OPT: An allocation rule fOPT is efficient if for all simpleΓ∈ϕ : 

∑
∈

=
Ni

SOPT
NKf N

i
)()( )(, * ϕϕϕ . 

Definition for situation FIX: An allocation rule fFIX is efficient if for all simpleΓ∈ϕ  and all 

S∈�0
N : ∑

∈Ni

FIX

i
f ,(ϕ S )() , NK Sϕ= . 

 
Lemma 6.1: Allocation rules ALFIX, SPLITFIX, BLFIX, Φ FIX, ALOPT, SPLITOPT, BLOPT, 
and Φ OPT are efficient. 
Proof: 

Let simpleΓ∈ϕ  and let S∈�0
N. 

We will first show efficiency for the Shapley value. We will use a result from the 
literature, but in order to be able to use it we need to transform the Shapley value defined 

as a function of a simple spare parts inventory situation, iΦ , to the Shapley value defined 

as a function of a game, game

iΦ  (as defined in Section 1.4). 

Let the game associated with ϕ  be (N,cOPT) and the game associated with ϕ  and S be 

(N,cFIX). Now, for iœN : )(),( ϕOPTOPTgame

ii
cN Φ=Φ  and ,(),( ϕFIXFIXgame

ii
cN Φ=Φ S). 
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Since game

iΦ  satisfies efficiency in terms of a game (see Appendix 2), it follows that 

allocation rules Φ FIX and Φ OPT are efficient. 

As for FIX
AL , it is easy to show directly in one step that ,(ϕ∑

∈Ni

FIX

i
AL S )() , NK Sϕ= . 

Furthermore: ∑
∈Ni

FIX

i
SPLIT ,(ϕ S ∑∑∑∑

∈∈∈∈

=⋅⋅+⋅=
Ni

Semer

ii

Ni

i

Ni

i

Ni

ii NKcSSh )(),/() ,

0

ϕλµλπ . 

Furthermore: ∑
∈Ni

FIX

i
BL ,(ϕ S )()(})({})({) ;;;;

NNii
SS

Ni

S

Ni

S ϕϕϕϕ Κ=







Κ−Κ−Κ= ∑∑

∈∈

. 

Using the above, we also have =)(ϕOPT

iAL ,(ϕFIX

i
AL S )(* ϕN ) = )()(, *

NK NS ϕϕ  and 

,()( ϕϕ FIXOPT

ii
SPLITSPLIT =  S )(* ϕN )= )()(, *

NK NS ϕϕ . 

Finally: )()(})({})({)( )(;)(;)(;)(; ***
}{

*
}{ NNiiBL NNii

i

SS

Ni

S

Ni

S

Ni

OPT ϕϕϕϕϕϕϕϕ
ϕ Κ=








Κ−Κ−Κ= ∑∑∑

∈∈∈

 

� 
 

6.2.2 Stability 

 

Definition for situation OPT: An allocation rule fOPT is stable if for all simpleΓ∈ϕ  : 

∑
∈

≤
Mi

SOPT
MKf M

i
)()( )(, * ϕϕϕ  for all M ⊆ N. 

Definition for situation FIX: An allocation rule fFIX is stable if for all simpleΓ∈ϕ  and all 

S∈�0
N :  ∑

∈Mi

FIX

i
f ,(ϕ S )() , MK Sϕ≤  for all M ⊆ N. 

 
We will investigate stability for games associated with certain classes of spare parts 
inventory situations in section 6.3. 
 

6.2.3 Monotonicity (in λ, in h, and in cemer) 

 
We shall only define Monotonicity in λ in order to be brief. Definitions for Monotonicity 
in h and Monotonicity in cemer are obtained by replacing all instances of λ with h or cemer , 
respectively in the following definition. Intuitively, an allocation rule is monotone in λ if, 
keeping everything else equal, an increase in the demand rate of a company does not 
result in a decrease of the costs allocated to him. For a single company, his cost function 
when acting alone is non-decreasing in λ, h, and cemer and it seems reasonable to require 
the same for cost allocations in bigger coalitions. Formally: 
 

Definition for situation OPT:  Suppose simpleΓ∈',ϕϕ  such that 'ϕ  is identical to ϕ  in all 

respects, except that for some iœN : λi is higher in 'ϕ  than λi in ϕ . Then, an allocation 

rule fOPT is monotonic in λ if: )()'( ϕϕ OPTOPT

ii
ff ≥ . 
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Definition for situation FIX:  Suppose simpleΓ∈',ϕϕ  such that 'ϕ  is identical to ϕ  in all 

respects, except that for some iœN : λi is higher in 'ϕ  than λi in ϕ . Let S∈�0
N. Then, an 

allocation rule fFIX is monotonic in λ if: ,'(ϕFIX

i
f S ,() ϕFIX

i
f≥ S). 

 
Lemma 6.2: Allocation rules ALFIX and ALOPT are monotonic in λ, in h, and in cemer. 
Proof: 

Let simpleΓ∈ϕ , let NM ⊆ , let S∈�0
M , and let Ni ∈ . Suppose simpleΓ∈'ϕ  such that 'ϕ  is 

identical to ϕ  in all respects, except that either λi is higher in 'ϕ  than λi in ϕ . In the 

remainder of this proof, we will first show some properties about the characteristic cost 
functions and subsequently combine these to complete the proof. 

  Part 1: We will first show that )()( ;;' NN SS ϕϕ Κ≥Κ . 







= ∑∑

∈∈ Mi

i

Mi

i SB ,/0 µλπ  is non-

decreasing in λi by Lemma 4.1. Therefore, ∑∑
∈∈

⋅⋅+⋅=Κ
Mi

emer

ii

Mi

ii

S cBShM λϕ )(;  is easily 

seen to be non-decreasing in iλ , hence )()( ;;' NN SS ϕϕ Κ≥Κ . 

  Part 2: We show )()( )(;)'(;' **

NN NN SS ϕϕϕϕ Κ≥Κ . We start with )()( )'(;)'(;' **

NN NN SS ϕϕϕϕ Κ≥Κ , 

which holds by Part 1. Observe )()( )(;)'(; **

NN NN SS ϕϕϕϕ Κ≥Κ , by definition of )(* ϕNS  as a 

cost-minimizing base-stock vector. Hence, )()( )(;)'(;' **

NN NN SS ϕϕϕϕ Κ≥Κ . 

  Part 3: Obviously, ∑
∈Nj

ji λλ /  is non-decreasing in iλ . 

Using the definitions of ,(ϕFIX

i
AL S) and )(ϕOPT

iAL , we complete the proof with: 

By part 1 and 3: ,'(ϕFIX

i
AL S )≤ ,(ϕFIX

i
AL S ). By part 2 and 3: )()'( ϕϕ OPT

i

OPT

i ALAL ≥ . 

The proof for monotonicity in h and in cemer goes analogously to the above. 
� 
 
We will now posit two conjectures on whether certain allocation rules adhere to 
monotonicity properties. These conjectures are based on a check added to all games of 
the numerical experiment of section 6.3, where for each spare parts inventory situations 
three additional spare parts inventory situations were created, in which either λ1, h1, or 

emerc1 , respectively, were doubled and the cost allocations for these were compared to the 

cost allocations for the original ones. For allocations that adhered to monotonicity 
properties in all of these cases, the following conjectures are stated. 
 
Conjecture 6.1: Allocation rules Φ OPT, Φ FIX and SPLITFIX  are monotonic in λ, in h and 
in cemer. 
 
Conjecture 6.2: Allocation rules BLOPT and BLFIX are monotonic in h and in cemer.  
 
We will now present an example (6.1) showing that allocation rule SPLITOPT is not 
always monotonic in h.  
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The idea behind this example is that an increase in the holding costs of a company can 
result in a lower optimal base-stock level and hence both lower total holding costs and 
higher total emergency costs (as the probability of having a stock-out has increased). 
Since allocation rule SPLITOPT allocates holding costs and emergency costs in different 
fashion, it may be that one part decreases greatly while the other part increases only 
slightly. Subsequently, we present an example (6.2) showing that allocation rule 
SPLITOPT is not always monotonic in λ and an example (6.3) showing that allocation rule 
SPLITOPT is not always monotonic in cemer. The idea behind these examples is very 
similar to the first one. 
 
Example 6.1: Allocation rule SPLITOPT is not always monotonic in h 

Consider the 2-player simple spare parts inventory situation simpleΓ∈1ϕ  with N={1,2}, 

µ=500, h1=400; h2=28000; emerc1 =10, emerc2 =50,000; λ1=5, λ2=0.05. Suppose that we have 

situation OPT. The associated simple spare parts pooling game is described by:  
c({1}) = 50.0;   c({2})= 2500.0;   c({1,2}) = 425.5; 

We remark that for 0** }2{}1{ == tottot
SS  and 1*}2,1{ =tot

S . Allocation SPLITOPT (φ1) results in 

SPLIT OPT

1
(φ1)=396.54 and SPLIT OPT

2 (φ1)=28.96. 

Now, consider the 2-player simple spare parts inventory situation simpleΓ∈2ϕ  which is 

identical to 1ϕ  except that the holding cost rate of company 1 has increased: h1 is now 

28000 instead. Suppose that we have situation OPT. The associated game is described by: 
c({1}) = 50.0;   c({2})= 2500.0;   c({1,2}) = 2550.0; 

We remark that 0*** }2,1{}2{}1{ === tottottot
SSS . Allocation SPLITOPT (φ2) results in 

SPLIT OPT

1
(φ2)=50.0 and SPLIT OPT

2
(φ2)=2500.0. 

As )()( 12 11
ϕϕ OPTOPT

SPLITSPLIT < , SPLITOPT does not always satisfy monotonicity in h. 

 
Example 6.2: Allocation rule SPLITOPT is not always monotonic in λ 

Consider the 2-player simple spare parts inventory situation hidsimple :,3 Γ∈ϕ  with N={1,2}, 

µ=1.67, h=28000; emerc1 =2600, emerc2 =78000; λ1=10, λ2=5. Suppose that we have situation 

OPT. The associated simple spare parts pooling game is described by:  
c({1}) = 26,000;  c({2}) = 182,721.67;  c({1,3}) = 343,904.73. 

We remark that for 8*  ,5*  ,0* }2,1{}2{}1{ === tottottot
SSS . Allocation SPLITOPT(φ3) results in 

SPLIT OPT

1
(φ3)=156,827.28 and SPLIT OPT

2
(φ3)=187,077.35. 

Now, consider the 2-player simple spare parts inventory situation hidsimple ,,4 Γ∈ϕ  which is 

identical to 3ϕ  except that the demand rate of company 1 has increased: λ1 is now 20 

instead. Suppose that we have situation OPT. The associated game is described by:  
c({1}) =52,000;  c({2}) = 182,721.67;  c({1,3}) = 442,000. 

We remark that for 5*  ,0** }2{}2,1{}1{ === tottottot
SSS . Allocation SPLITOPT(φ4) results in 

SPLIT OPT

1
(φ4)=52,000, SPLIT OPT

2 (φ4)=390,000. 

As )()( 34 11
ϕϕ OPTOPT

SPLITSPLIT < , SPLITOPT does not always satisfy monotonicity in λ. 
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Example 6.3: Allocation rule SPLITOPT is not always monotonic in cemer 

Consider the 3-player simple spare parts inventory situation hidsimple ,:,5 λϕ Γ∈  with 

N={1,2,3}, µ=25, h=400; emerc1 =26000, emerc2 =6500; emer
c3 =13000; λ=2.5. Suppose that we 

have situation OPT. The associated simple spare parts pooling game is described by: 
c({1}) = 1094.12;   c({2})= 873.53;   c({3}) = 947.06; 
c({1,2}) = 1288.7;   c({1,3}) = 1306.44;   c({2,3}) = 1253.22; 

c({1,2,3}) = 1579.31 (with 3*}3,2,1{ =tot
S ). 

We have SPLIT OPT

1
(φ5)=616.8; SPLIT OPT

2 (φ5)=454.2; SPLIT OPT

3 (φ5)=508.4.  

Now, consider the 3-player simple spare parts inventory situation hidsimple ,:,6 λϕ Γ∈  which 

is identical to 5ϕ  except that the emergency costs of company 1 has increased: emerc1  is 

now 52000 instead. Suppose that we have situation OPT. The associated simple spare 
parts pooling game is described by:  
c({1}) = 1219.6;   c({2})= 873.53;   c({3}) = 947.06; 
c({1,2}) = 1359.66;   c({1,3}) = 1377.4;   c({2,3}) = 1253.22; 

c({1,2,3}) = 1644.69 (with 4*}3,2,1{ =tot
S ). 

We have SPLIT OPT

1
(φ6)=565.84; SPLIT OPT

2 (φ6)=537.40; SPLIT OPT

3 (φ6)=541.46.  

As )()( 56 11
ϕϕ OPTOPT

SPLITSPLIT < , SPLITOPT does not satisfy monotonicity in cemer. 

 
We will now present an example (6.4) showing that allocation rule BLOPT is not always 
monotonic in λ. The idea behind this example is that an increase in the demand rate of a 
company will result in higher costs of the grand coalition, but more benefits allocated to 
the company with the higher demand rate (hence it has to pay less costs). Subsequently, 
we present an example (6.5) showing that allocation rule BLFIX is not always monotonic 
in λ. The idea behind this example is very similar to the previous one. 
We remark that Allocation BLOPT is not monotonic in λ while Allocation ALOPT is 
monotonic in λ by Lemma 6.2. Therefore, these two rules can give different allocations.  
Hence, the method of allocating costs based on demand rates are different for a cost game 
and a benefit game and therefore allocations AL(φ) and BL(φ) do not adhere to the 
justifiability criterion of Hartman and Dror (1996). 
 
Example 6.4: Allocation rule BLOPT is not always monotonic in λ 

Consider once again the 3-player simple spare parts inventory situation 5ϕ  (see Example 

6.3). We have BL OPT

1
(φ5)=649.0, BL OPT

2 (φ5)=428.4, BL OPT

3 (φ5)=501.9. 

Now, consider the 3-player simple spare parts inventory situation hidsimple ,:,7 λϕ Γ∈  which 

is identical to 5ϕ  except that the demand rate of company 1 has increased: λ1 is now 5 

instead. Suppose that we have situation OPT. The associated game is described by:  
c({1}) = 1341.92;   c({2})= 873.53;   c({3}) = 947.06; 
c({1,2}) = 1636.57;   c({1,3}) = 1640.63;   c({2,3}) = 1253.22; 
c({1,2,3}) = 1727.82. 

Allocation BLOPT(φ7) results in BL OPT

1
(φ7)=624.6, BL OPT

2 (φ7)=514.9, BL OPT

3 (φ7)=588.4. 

As )()( 57 11
ϕϕ OPTOPT

BLBL < , BLOPT does not always satisfy monotonicity in λ. 
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Example 6.5: Allocation rule BLFIX is not always monotonic in λ 

Consider the 3-player simple spare parts inventory situation emerchidsimple ,,:,8 λ
ϕ Γ∈  with 

N={1,2,3}, µ=25, h=4000; emer
c =13000; λ=5. Suppose that we have situation FIX with 

base-stock vector S given by S1=2, S2=3, S3=0. The associated game is described by: 
c({1}) = 9,065.57;   c({2})= 12,070.96;   c({3}) = 65,000.0; 
c({1,2}) = 20,007.44;   c({1,3}) = 15,027.03;   c({2,3}) = 12,930.23; 
c({1,2,3}) = 20,069.35 

We have BL FIX

1
( 8ϕ ,S)=-12,956.82, BL FIX

2 ( 8ϕ ,S)=-9,951.43, BL FIX

3
( 8ϕ ,S)=42,977.61. 

 

Now, consider the 3-player simple spare parts inventory situation emerchidsimple ,:,9 Γ∈ϕ  

which is identical to 8ϕ  except that the demand rate of company 1 has increased: 1λ is 

now 10 instead. Suppose that we have situation FIX. The simple spare parts pooling 

game associated with 9ϕ  and S is described by: 

c({1}) = 15,027.03;   c({2})= 12,070.96;   c({3}) = 65,000.0; 
c({1,2}) = 20,069.35;   c({1,3}) = 27,719.1;   c({2,3}) = 12,930.23; 
c({1,2,3}) = 20,319.07 

We have BL FIX

1
( 9ϕ ,S)=-20,862.43, BL FIX

2 ( 9ϕ ,S)=-5,873.77, BL FIX

3
( 9ϕ ,S)=47,055.27. 

 

As FIX
BL

1
( 9ϕ ,S) FIX

BL
1

< ( 8ϕ ,S), BLFIX does not always satisfy monotonicity in λ. 

 

6.2.4 Symmetry 

 
An allocation rule is symmetric if the costs allocated to companies with identical 
parameters are identical. Formally: 

Definition for situation OPT:  Let simpleΓ∈ϕ  such that λi=λj, hi=hj, and emer

j

emer

i cc =  for 

some i,jœN . Then, an allocation rule fOPT is symmetrical if OPT

if (ϕ ) = OPT

jf (ϕ ). 

Definition for situation FIX:  Let simpleΓ∈ϕ  such that λi=λj, hi=hj, and emer

j

emer

i cc =  for 

some i,jœN . Let S∈�0
N  such that Si=Sj. Then, an allocation rule fFIX is symmetrical if 

FIX

if (ϕ ,S) = FIX

jf  (ϕ ,S). 

 
It is obvious why this is a fair criterion; if two companies are exactly the same then they 
should be treated equally. We will show in Lemma 6.3 that all allocations proposed in 
section 6.1 are symmetric. However, interestingly, an important allocation does not 
always adhere to it. This particular allocation rule, A-localOPT, does not require any 
transfer payments, i.e. each company pays its own local holding and local emergency 
costs (included in Appendix 9, and the same as allocation policy 1 in Wong et al., 2007): 

A-local OPT

i
(φ) ( ) ( ) emer

ii

Nj
j

Nj

jii cSSh
NN

⋅⋅+⋅= ∑∑
∈∈

λµλπ ),/( *

0

* .  

In the following example (6.6), we see that even if companies have the same input 
parameters, their optimal base-stock level need not be the same for both companies. 
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Particularly, if the optimal sum of base-stock levels for the grand coalition is not 
dividable by the number of players, then at least one company will get a higher base-
stock level than another. In that case, allocation rule A-localOPT will allocate more local 
(holding) costs to that company than to another. In the numerical experiment, this cost 
allocation was often not in the core; not always being symmetric could account for this. 
 
Example 6.6: An allocation without any transfer payments is not always symmetrical. 

Consider the 2-player simple spare parts inventory situation emerchidsimple ,,:,10 λ
ϕ Γ∈  with 

N={1,2}, µ=25, h=400; emer
c =6500; λ=2.5. Suppose that we have situation OPT.  

The associated spare parts pooling game is described by:  
c({1}) = 873.53;   c({2})= 873.53;   c({1,2}) = 1235.48. 

We remark that for the grand coalition the optimal base-stock vector S *

N
 is ( )

1

*

N
S =2 and 

( )
2

*

N
S =1. A-localOPT(φ10) yields A-local OPT

1
(φ10)=817.74; A-local OPT

2
=417.74. 

These values are not the same and hence A-localOPT does not always satisfy symmetry.  
 
Lemma 6.3: Allocation rules ALFIX, SPLITFIX, BLFIX, Φ FIX, ALOPT, SPLITOPT, BLOPT, 
and Φ OPT are symmetric. 
Proof:  
The proof is fairly straightforward and follows easily from the cost allocation formulas. 
The full proof can be found in Appendix 11. 
� 
 

6.2.5 Demand dummy property 

 
An allocation rule adheres to the demand dummy property if a player with no demand 
rate is not allocated positive costs. Formally: 
Definition for situation OPT:  An allocation rule fOPT adheres to the demand dummy 

property if for all simpleΓ∈ϕ  with 0=iλ  for some iœN : f OPT

i (ϕ )≤0.  

Definition for situation FIX:  An allocation rule fFIX adheres to the demand dummy 

property if for all simpleΓ∈ϕ  with 0=iλ  for some iœN and all S∈�0
N : f FIX

i (ϕ ,S)≤0.  

 
The fairness of this property might also seem obvious; a player without any demand 
strain does not face any emergency costs and does not need to hold any stock for himself. 
However, suppose that we have situation FIX and there is a storage company that does 
not face demand for spare parts, but that can contribute to a cost reduction for other 
players because it can store spare parts very cheaply. Then if this storage company 
chooses a base-stock level of more than zero, it will face holding costs if acting alone 
(note that this will be different for situation OPT, as then the storage company will 
always choose a base-stock level of zero when acting alone). In such a case, an allocation 
rule that allocates positive costs to the storage company can still be in the core. We will 
now present an example (6.7) where this could happen. 
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Example 6.7: Allocation rules BLFIX and FFIX do not always adhere to the demand 
dummy property. 
In this example, company 2 is an airline that faces demand for spare parts and company 1 
is a storage company that does not face demand for spare parts, but that can store those 
parts more cheaply than the airline company. Suppose that we have situation FIX with 
base-stock vector S given by S1=3, S2=3. Consider the 2-player simple spare parts 

inventory situation emercidsimple :,11 Γ∈ϕ  with N={1,2}, µ=25, h1=400, h2=2000; emer
c =6500; 

λ1=0, λ2=2.5. The associated spare parts pooling game is described by:  
c({1})=1200.0; c({2})=6002.45; c({1,2})=7200.00002. 

The Shapley value gives Φ FIX

1 (φ11,S)=1198.77, Φ FIX

2 (φ11,S)=6001.23.  

Allocation BLFIX gives BL FIX

1  (φ11,S)=1200, BL FIX

1  (φ11,S)=6000. 

 
Lemma 6.3: Allocations rules AL

OPT
, AL

FIX
, SPLIT

OPT
, and SPLIT

FIX adhere to the 

demand dummy property. 

Proof: 

It is readily seen from the cost allocation formulas that if λi=0, then the costs allocated to 
player i is zero. 
� 
  
Lemma 6.4: Allocations rules Φ OPT

 and BL
OPT

 adhere to the demand dummy 

property. 

Proof: 

Let φœGsimple. Let iœN. Suppose λi=0. 
First we show that Φ OPT adheres to the demand dummy property. Let }/{iNM ⊆ .  

Observe that ( ) ( )MciMc ≤∪ }{ , as adding a player without any demand strain to a 

coalition can not increase costs. Hence, ( ) ( ) 0}{ ≤−∪ MciMc . 

Furthermore 0
|!|

)!1|(||!|
≥

−−⋅

N

MNM
. 

Hence, ( ) 0)(}){(
|!|

)!1|(||!|

}\{

≤−∪⋅
−−⋅

∑
⊆ iNM

MciMc
N

MNM
 and therefore Φ OPT

i (ϕ )≤0. 

Now we show that BLOPT
 adheres to the demand dummy property. Observe that c({i})=0, 

as choosing a base-stock level of zero is optimal. Hence, 00})({)( =−= icBL
OPT

i ϕ . 

� 
 

6.2.6 Final remarks on cost allocation fairness 

 
In Table 6.1 an overview is given of the four cost allocations and their fairness properties. 
It is readily seen that allocation rules ALOPT and ALFIX adhere to all fairness properties. 
For the other allocation rules, no such definite statement can be made. In fact, for some 
allocation rules we have shown counter-examples indicating that they do not always 
adhere to some fairness properties.  
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Table 6.1: Cost allocations and whether they adhere to properties or not 
Allocation 
rule 

Monotonic in λ Monotonic in h Monotonic 
in cemer 

Symmetric Demand dummy 
property 

ALOPT Yes Yes Yes Yes Yes 

SPLITOPT No No No Yes Yes 

BLOPT No Conjectured Conjectured Yes Yes 

Φ OPT) Conjectured Conjectured Conjectured Yes Yes 

ALFIX Yes Yes Yes Yes Yes 

SPLITFIX Conjectured Conjectured Conjectured Yes Yes 

BLFIX No Conjectured Conjectured Yes No 

Φ FIX Conjectured Conjectured Conjectured Yes No 

 

6.3 Numerical experiment on cost allocations 

 
In this section, we study the stability property of all allocations proposed in section 6.1, 
by means of a numerical experiment. All attainable parameter values in this experiment 
are very similar to the ones used in the experiment of the previous chapter. Table 5.1 
shows all attainable parameter indexes, Table 5.2 shows all attainable parameter rules, 
and Table 5.3 shows all actual values, with one addition: we also look at |N|=2 and in that 
case, only the first two columns of Table 5.2 are used. As such, we generated 46080 
games and subsequently selected only those games with a non-empty core. For each of 
these games, we determined (a) what type of simple spare parts inventory situation and 
what type of rule on base-stock levels it was associated with and (b) for each of the four 
cost allocations rules, whether it was in the core or not. The results are shown in Table 
6.2 (separated for the number of players and type of game) and in Figures 6.1 - 6.4 
(separated for class of spare parts inventory situation and rule on base-stock levels).  
 
Table 6.2: Percentage of games for which a cost allocation is in the core, 

differentiated for N and type of game. Note that there were more games of situation 

FIX than OPT; hence values in the first three columns are skewed towards that. 

Allocation rule 
% in core 
for |N|=2 

% in core 
for |N|=3 

% in core 
for |N|=4 

% in core for games of 
situation OPT 

% in core for games of 
situation FIX 

Average 

AL 62.02% 58.73% 54.31% 86.74% 44.21% 58.35% 

BL 100% 52.09% 44.22% 58.43% 63.18% 65.44% 

The Shapley value 100% 63.22% 56.59% 82.69% 68.55% 73.27% 

SPLIT 68.28% 65.32% 61.34% 94.01% 53.74% 64.98% 

 
Observations that we can draw from the results of the numerical experiment are: 

• None of the cost allocations considered were stable for all of the test cases. 

• All four allocations considered here are less often in the core for larger games (i.e. more 
players) than for smaller games. This indicates that the allocation rules have trouble 
handling the intricacies of large-scale cooperations. 

• For games with 3 or 4 companies and/or games with to-be-optimized base-stock levels, 
allocation SPLIT was most often in the core (compared to the other allocation rules). 

• For games with 2 companies and/or games with fixed base-stock levels, allocation rules 
BL and the Shapley value were most often in the core (compared to the other rules). 
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• While allocation rules ALFIX and ALOPT satisfy all fairness criteria put forward in 
section 6.2 and are quite simple as well, they give less often a core element than the 
other allocation rules. A problem with allocating costs based on demand rates is that 
this is short-sighted; you only take into account differences between demand rates 
amongst companies. When demand rates are identical but companies differ highly on 
other parameters, you get an equal split, which is not smart when companies are 
actually highly different. 
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Figure 6.1: Results for Allocation AL

OPT
 (in blue) and AL

FIX
 (in purple and yellow). 
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Figure 6.2: Results for the Shapley value. 
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Figure 6.3: Results for Allocation SPLIT

OPT
 (in blue; on the left of each group) and 

SPLIT
FIX

 (in purple and yellow; middle and right of each group). 
 

0

10

20

30

40

50

60

70

80

90

100

% in core

lambda

identical;

h

identical;

cEMER

identical

lambda

different;

h

identical;

cEMER

identical

lambda

identical;

h

different;

cEMER

identical

lambda

different;

h

different;

cEMER

identical

lambda

identical;

h

identical;

cEMER

different

lambda

different;

h

identical;

cEMER

different

lambda

identical;

h

different;

cEMER

different

lambda

different;

h

different;

cEMER

different

Class of spare parts inventory situation

% associated games for which Allocation B-λ was in the core Situation

OPT

Situation

FIX with

possibly

different

base-stock

levels
Situation

FIX with

identical

base-stock

levels

 
Figure 6.4: Results for Allocation BL

OPT
 (in blue; on the left of each group) and 

BL
FIX

 (in purple and yellow; middle and right of each group). 
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We will now posit three lemma’s showing that for games associated with certain classes 
of simple spare parts inventory situations and/or rules on base-stock levels, certain cost 
allocation rules give core elements. 
 

Lemma 6.5: Let allidsimple :,Γ∈ϕ . Let S∈�0
N  with Si=Sj for all i,jœN. 

(i) If the game associated with φ has a non-empty core, then allocations ALOPT(ϕ ), 

BLOPT(ϕ ), FOPT(ϕ ), and SPLITOPT(ϕ ) are elements of its core. 

(ii) If the game associated with S and ϕ  has a non-empty core, then ALFIX(ϕ ,S), 

BLFIX(ϕ ,S), FFIX(ϕ ,S), and SPLITFIX(ϕ ,S) are elements of its core. 

Proof: 
Since all companies are fully identical, c(M) is only dependent on |M|. Then, since the 
core is non-empty, an equal cost split (xi=c(N)/|N| for all iœN) will be a core element. 
Since by Lemma 6.3 allocation rules ALFIX, SPLITFIX, BLFIX, Φ FIX, ALOPT, SPLITOPT, 
BLOPT, and Φ OPT are all symmetrical, they result in core elements. 
���� 

 

Lemma 6.6: Let hidsimple ,:, λϕ Γ∈  and S∈�0
N  with S=Si=Sj for all i,jœN and let the 

associated simple spare parts pooling game be (N,c). Then SPLITFIX(ϕ ,S)œCore(N,c). 

Proof: 
Efficiency follows from Lemma 6.1, so it suffices to show stability: 

∑
∈Mi

FIX

i
SPLIT ,(ϕ S )() Mc≤  for all M ⊆ N, i.e (since λ and h are identical for all players): 

( ) ∑∑
∈∈
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In order to show that (6.1) holds for all M ⊆ N, we let M ⊆ N  and start with: 
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Equation (6.2) is equivalent to equation (6.1). This completes the proof. 
���� 

 

Lemma 6.7: Let emercidsimple ,:, λ
ϕ Γ∈  and S∈�0

N  with S=Si=Sj for all i,jœN and let the 

associated simple spare parts pooling game be (N,c). Then BLFIX(ϕ ,S)œCore(N,c). 

Proof: 
Efficiency follows from Lemma 6.1, so it suffices to show stability:  

∑
∈Mi

iBL ,(ϕ S )() Mc≤  for all M ⊆ N.        (6.3) 

Let M ⊆ N. We can rewrite the left part of inequality (6.3) as: 
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In order to show that (6.4) holds, we start with: 
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which holds by Lemma 4.2. We then multiply by || Mc
emer ⋅⋅λ  and subsequently add 

∑
∈

⋅
Mi

Sh  to complete the proof. 

���� 
 
The following conjectures are based on the results of the experiment (Figures 6.1 - 6.4): 

Conjecture 6.3: Let emercidsimple :,
Γ∈ϕ . If the associated simple spare parts pooling game 

(N,c) has a non-empty core, then ALOPT(ϕ ) and SPLITOPT(ϕ ) are core elements. 

Conjecture 6.4: Let emerchidsimple ,:,
Γ∈ϕ . If the associated simple spare parts pooling game 

(N,c) has a non-empty core, then FOPT(ϕ ) is a core element. 

Conjecture 6.5: Let emercidsimple ,:, λ
ϕ Γ∈  and S∈�0

N  with Si=Sj for all i,jœN.  Then 

FFIX(ϕ ,S) is a core element. 

 
In conclusion, unfortunately no cost allocation rule has been found so far that is always in 
the core (if non-empty) of a simple spare parts pooling game. No clear-cut practical 
recommendation can be made at this point, as there is a trade-off between stability, 
simplicity, and fairness of cost allocation rules. The stability property can be viewed as 
the most important (see, e.g., Hartman&Dror, 1996). Hence, companies may have to 
resort to using the nucleolus, particularly for situations with only a small number of 
companies, as then the computational complexity of the nucleolus is manageable. 
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Chapter 7: More complex settings 
 
In this chapter we attempt to answer research question 3 (“Can we generalize results to 

a more complex setting?”). First, we look at the class of general spare parts inventory 

situations G, for which we derive an expression of steady-state probabilities and describe 

the characteristic cost functions of spare parts pooling games that can be associated with 

it (Sections 7.1 and 7.2). Then we present a numerical experiment on these spare parts 

pooling games (Section 7.3). Subsequently, we look at a partial pooling approach, for 

which we derive an expression of steady-state probabilities and describe the 

characteristic cost functions of simple partial parts pooling (Sections 7.4 and 7.5). Then 

we present a numerical experiment on these simple partial pooling games (Section 7.6). 

 

7.1 Steady state probabilities for a general spare parts inventory 
situation 

 
Consider a general spare parts inventory situation Γ∈ϕ . The system behavior of a 

coalition NM ⊆ may be described by an |M|-dimensional Markov process with state 

x={x1,x2,…,x|M|}, where xi represents the on-hand inventory at company i, ii Sx ≤≤0 .  

We define for all iœM: xi-(x)= 




∈

=−

iMjifx

ijifx

j

j

\ 

 1
  and xi+(x)= 





∈

=+

iMjifx

ijifx

j

j

\ 

 1
 

 
All possible transitions of the Markov process are as follows (similar to Wong, 2007a): 
Transition 1 (regular demand): A failure of a part occurs at location i while xi>0; the state 
transition is x → xi-(x) and the transition rate is λi. 
Transition 2 (emergency supply): A failure of a part occurs at company i while xj=0 for 
all jœM; the state transition is x → x and the transition rate is λi. 
Transition 3 (repair complete): The repair of a part belonging to company i is completed; 
the state transition is x → xi+(x) and the transition rate is (Si-xi)·µi. 
 
All that remains is lateral transshipments. Transshipments to company i are sourced from 

the company j with the lowest transshipments costs to company i, trans

ji
c . Ties are broken 

by sourcing from the company with the highest current on-hand inventory, xj (note that 
the type of transshipment is probably not very important; see Tagaras, 1999). Formally, 
the function that determines which company in M\{i} will source a transshipment to 
company i in Markov state x, source(M,x,i), is defined as follows, using the set of 
feasible Companies with Lowest transshipment Costs, CLC, and the set of feasible 
Companies with Highest Inventory, CHI: 

,(MCLC x { })0},,{\()(,0},{\|), >∈∀≤>∈= k
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,(Msource x jMini
ixMCHIj ),,(

),
∈

= . 
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Transition 4 (lateral transshipment): A failure of a part occurs at location i while xi=0 and 
at least one other company jœM\i has xj>0. Select company j=source(M,x,i). The state 
transition is x → xj-(x) and the transition rate is λi. 
 

An example Markov chain for M={1,2,3}, with trans
c  identical for all transshipment 

routes and S given by S1=1, S2=2, S3=1, is pictured in Figure 7.1. 

  Figure 7.1: The example Markov chain. Red text implies lateral transshipments. 
 

From a Markov chain we can obtain the steady-state probabilities of being in state x, πx. 
According to Wong (2006), “since the number of states in our problem is not large, a 
direct method based on Gaussian elimination can be applied to determine π”.  
 

7.2. Characteristic cost functions of general pooling games 
 

Let ϕ œG and consider coalition NM ⊆ . Let the base-stock vector for this coalition be 

S∈�0
M. The total expected costs per unit of time that coalition M has to pay is: 

)(; MK Sϕ ∑ ∑∑∑
∈ ∈∈∈

⋅⋅+⋅⋅+⋅=
Mi

trans

iixMsource

Xx

is

Mi

emer

iii

Mi

i ccSh
M
i

M ),,,(

0

0 λπλπ  , where: (7.1) 

• 0M refers to the state in which xi=0 for all iœM. 

• M

iX 0  refers to the set consisting of all states for coalition M in which xi=0. 

• source(M,s,i) as defined in Section 7.1. 
We remark that equation (7.1) can be seen as an extension of cost function (4.2) to ϕ œG. 
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Characteristic cost function for a general spare parts pooling game with situation FIX 
Let ϕ œG and let the chosen fixed base-stock level vector be S∈�0

N. With the 

combination of ϕ  and S we can associate a spare parts pooling game ( )cN ,  that is 

defined by )()( ; MMc SϕΚ=  and K given by equation (7.1).  
 

Characteristic cost function for a general spare parts pooling game with situation OPT 
Let ϕ œG. Consider a coalition NM ⊆ , which can choose a base-stock vector S∈�0

M  

with associated expected costs per time unit )(; MSϕΚ , given by equation (7.1). The 

optimal base-stock vector for coalition M is S *
M  with minimal cost )(

*;
MK MSϕ . So, with 

ϕ  we can associate a spare parts pooling game (with to-be-optimized stock levels) ( )cN ,  

that is defined by ( ))()( ;

0

MMinMc
S

NS
M

ϕΚ=
∈

 and K given by equation (7.1). 

 

Calculation of these cost functions involves creating a Markov chain and calculating 
steady-state probabilities. Furthermore, calculating optimal costs when base-stock levels 
are to-be-optimized involves finding an optimal solution in an infinite space (which can 
be bounded and enumerated efficiently). The algorithms that do this are described in 
Appendix 12 (they may be of independent interest) and are implemented in Java. 

7.3: Numerical experiment - cores and cost allocations in general 
spare parts pooling games  
 

In this section, we do a numerical experiment on 3-company spare parts pooling games 
with parameters selected such that they are realistic for real-life situations. The 
methodology resembles the one used in the numerical experiment of Chapter 5. However, 
because adding lateral transshipment costs greatly increases computational complexity, 
we generated less games and we chose parameter values such that the computational time 
needed (particularly for games with to-be-optimized base-stock levels) was reduced. For 
When we have relatively low demand rates, low emergency costs, and low transshipment 
costs together with fast repair rates and high holding costs, it will be optimal to have low 
base-stock levels and the algorithm will not take a lot of time finding these. Therefore we 
take values in these ranges. We allow λ to take on multiple values, as λ is a crucial 
parameter for some cost allocation rules. We allow cemer to take on multiple values, as 
c

emer appeared to be the most important parameter in game balancedness. We will of 
course have games with to-be-optimized and with fixed base-stock levels (in the latter 
case, we will take the same, identical base-stock levels for all test cases). Finally, we 
have three different values for the transshipment costs: 

• All-Zero: this case actually corresponds to what is used in the previous chapters 
and acts as a reference. 

• All-Standard: transshipment costs are a non-zero identical fraction of emergency 

costs (we did this in order to avoid cases where emer

j

trans

ij cc > for some i,jœN, as 

that would imply that transshipments are too expensive to consider). 

• DIFF: this situation represents a case where companies 1 and 2 lie close together, 
while transportation time to company 3 is relatively long. 
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All values are shown in Table 7.1; this amounts to 24 games total. All numeric values 

except the ones for trans
c  have also been used in Chapter 5.  

 
Table 7.1: Selected values for the company parameters 
|N| 3 

λ All-Low (2.5) or DIFFLow (λ1=0.5, λ2=2.5, λ3=5) 

µ All-Standard (25) 

h All-High (8000) 

c
emer

 All-Low (6500) or DIFFLow ( 6500,2600,13000 321 === emeremeremer
ccc ) 

trans
c  All-Zero ( 0, =trans

jic ) or All-Standard ( emer

j

trans

ji cc ⋅= 2.0, ) or DIFF 

( emertrans
cc 22,1 01.0 ⋅= , emertrans

cc 11,2 01.0 ⋅= , emertrans
cc 33,1 8.0 ⋅= , emertrans

cc 11,3 8.0 ⋅= , 

emertrans
cc 33,2 8.0 ⋅= , emertrans

cc 22,3 8.0 ⋅= ) 

Rule on S To-be-optimized or Fixed (S1=2, S2=2, S3=2) 

 
Our focus of inquiry will be on the effect of the addition of transshipment costs, i.e.: 

• Is there a difference between how often games have empty cores for situations with 
negligible transshipment costs, non-zero transshipment costs, and highly different 
transshipment costs? 

• Is there a difference between how often the four cost allocations of Chapter 6 are in 
the core for situations with negligible transshipment costs, non-zero transshipment 
costs, and highly different transshipment costs? Note that allocation rules AL, BL, 
and the Shapley value can be applied right away to situations with non-zero 

transshipment costs - as they are stated in Section 6.1 in terms of )(, NK Sϕ - by simply 

extending them to ϕ œG (equation 7.1). However, Allocation SPLIT doesn’t take into 

account transshipment costs. Therefore, we make a small adjustment to get an 
Allocation SPT (name based on SPlit-Trans), in which total transshipment costs are 
allocated in similar fashion as total emergency costs: 

Formula for situation FIX: Let Γ∈ϕ  and S∈�0
N. Then, for all iœN : 
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Formula for situation OPT: Let Γ∈ϕ . For all iœN : ,()( ϕϕ FIXOPT

ii
SPTSPT = S )(* ϕN ).20 

 
The results of the numerical experiment are shown in Table 7.2. For all 24 games the core 
was non-empty. This would indicate that adding transshipment costs does not have a 
large effect on the balancedness of a game. Furthermore, allocation rule SPT performed 
best when transshipment costs were “All-Standard”, but was less often in the core when 
transshipment costs differed largely between companies.  

                                                 
20 Note that S )(* ϕN  has not been formally defined for simpleΓΓ∈ \ϕ yet. For, the method to obtain 

S )(* ϕN  is by using the algorithm described in Appendix 12. 
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Allocation rules AL and BL, which only take into account the demand rate parameter, 
often did not provide core elements when highly different transshipment costs are added 
as another complicating factor to the spare parts inventory situation. However, do note 
that this has been a very limited testbed that merely serves to give some first indications.  
 
Table 7.2: Results of the numerical experiment for general spare parts pooling games. 

trans
c  Core AL in core SPT in core Shapley 

value in core 
BL in core 

All-Zero 100% non-
empty 

5/8 games 6/8 games 5/8 games 4/8 games 

All-Standard 100% non-
empty 

3/8 games 6/8 games 5/8 games 4/8 games 

DIFF 100% non-
empty 

1/8 games 3/8 games 5/8 games 1/8 games 

 

7.4 Steady state probabilities for a simple spare parts inventory 
situation with partial pooling 

 

Consider a simple spare parts inventory situation simpleΓ∈ϕ  and a coalition NM ⊆ . Let 

the base-stock vector for this coalition be S∈�0
M. For the remainder of this chapter, we 

relax the assumption that companies employ full pooling. Instead, companies will use a 
partial pooling approach, will which now be explained. Recall that in a simple spare parts 
inventory situation, transshipments are free and companies have an identical exponential 
repair process. For the partial pooling approach that we will consider, only the total on-
hand inventory at all companies together (denoted with x) has to be known. Hence, the 
system behavior may be described by a one-dimensional Markov process with state x, 

MSx ≤≤0 , with ∑ ∈
=

Mi iM SS .  

 

The partial pooling process employs for each company Mi ∈  a trigger level Ti, 

Mi ST ≤≤0 . If a demand comes in for company i, if x>Ti then it is fulfilled from the 

pooling stock, else it is fulfilled by emergency shipment. When Ti=0 for all Mi ∈  then 

this is equivalent to full pooling. When Ti=SM for all Mi ∈  then this is equivalent to 
fulfilling every incoming demand by emergency shipment (and “wasted” pooling stock). 
 
An example is shown in Figure 7.2 for M={1,2,3}, SM=4, T1=4, T2=2, T3=0. Note that 

when emeremer
cc 13 >>  such an arrangement could make sense intuitively. 

 

 
Figure 7.2: The Markov process of an example situation with partial pooling. 
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All possible transitions of the Markov process are as follows: 
Transition 1 (demand): A failure of a part occurs at location i while x>Ti; the state 
transition is x →x-1 and the transition rate is λi. 
Transition 2 (emergency supply): A failure of a part occurs at company i while x≤Ti; the 
state transition is x → x and the transition rate is λi. 
Transition 3 (repair complete): The repair of a part is completed; the state transition is 
x→ x +1 and the transition rate is (SM-x)·µ. 
 
From a Markov chain we can obtain the steady-state probabilities of being in state x, πx. 
We remark that this partial pooling approach is different from the one used in Wong et al 
(2007a). They set a reserved stock level for a company, which will only supply a lateral 
transshipment to another company if its current inventory level is above its reserved stock 
level. However, we consider situations with negligible transshipment costs, for which it is 
optimal to put all stock at the company with the lowest holding cost rate. Using the 
partial pooling process of Wong et al (2007a), this company still cannot discern between 
a lateral transshipment request coming in from a neighbor company with high emergency 
costs (call this one A) and one with low emergency costs (call this one B). In our partial 
pooling process A may be given a spare part from stock whereas B is told that the spare 
parts stock are reserved for A instead, which appears to be a smarter approach. 
 

7.5. Characteristic cost functions of simple partial pooling games 

 

Let ϕ œG and consider coalition NM ⊆ . Let the base-stock vector for this coalition be 

S∈�0
M. Let the trigger levels for this coalition be T∈�0

M, Mi ST ≤≤0  for all Mi ∈ .  

The total expected costs per unit of time that coalition M has to pay is: 

)(;;
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cSh
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λπ  , where:    (7.2) 

• P(SM,Ti) refers to the set consisting of all states in MSx ≤≤0 for which iTx ≤ . 

 

An optimal trigger level vector for M with this S is T opt

M  with minimal cost:  

≡)(;
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S
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Characteristic cost function for a simple partial pooling game with situation FIX 

Let ϕ œG and let the chosen fixed base-stock level vector be S∈�0
N. With the 

combination of ϕ  and S we can associate a simple partial pooling game ( )cN ,  that is 

defined by )()( ;

, MKMc
S

optpp

ϕ=  and Kpp,opt given by equation (7.3).  

 
Characteristic cost function for a simple partial pooling game with situation OPT 

Let ϕ œG. Consider a coalition NM ⊆ , which can choose a base-stock vector S∈�0
M  

with associated expected costs per time unit )(;

, MK
S

optpp

ϕ , given by equation (7.3). An 

optimal base-stock vector for coalition M is S opt

M  with minimal cost )(
;

, MK
opt
MS

optpp

ϕ
.  
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So, with ϕ  we can associate a simple partial pooling game (with to-be-optimized stock 

levels) ( )cN , , defined by ( ))()( ;

,
0

MKMinMc
S

optpp
NS

M

ϕ

∈
=  and Kpp,opt given by equation (7.3). 

 
Algorithms that calculate these cost functions are described in Appendix 13 and are 
implemented in a Java application. 
 

7.6: Numerical experiment - cores and cost allocations in simple 
partial pooling games  

 
In this section, we do a numerical experiment on 3-company simple partial pooling 
games with parameters selected such that they are realistic for real-life situations. The 
methodology resembles the one used in the numerical experiment of Chapter 5. However, 
because adding the partial pooling approach increases computational complexity, we 
generated fewer games and selected value ranges in order to limit the necessary 
computational time, in similar fashion as Section 7.3. Furthermore, in Chapter 5 it 
seemed that due to the full pooling assumption, games associated with simple spare parts 
inventory situations in which companies had different emergency costs could have empty 
cores. We speculate that a smarter partial pooling approach alleviates this effect and 
hence leads to fewer games with empty cores.  Therefore, we limit our investigation to 
simple spare parts inventory situations with different emergency costs. We will also limit 
our investigation to games with to-be-optimized base-stock levels, as this allows us to 
fairly compare partial and full pooling approaches on the same spare parts inventory 
situations, without having to worry about the effect that fixed base-stock levels may have. 
All parameter indices used are shown in Table 7.3, where Table 5.2 shows for each index 
the corresponding “rule” on the parameter values of each company and Table 5.3 shows 
the actual corresponding values. This amounts to 240 spare parts inventory situations 
total. With each spare parts inventory situation we can associate one simple spare parts 
pooling game and one simple partial pooling game. 
  
Our focus of inquiry will be on the effect of the addition of partial pooling, i.e.: 

• Is there a difference between how often games have empty cores for situations with 
partial pooling and full pooling? 

• Is there a difference between how often the four cost allocations of Chapter 6 are in 
the core for situations with partial pooling and full pooling? For simple spare parts 
pooling games, we look at allocation rules ALOPT, BLOPT, SPLITOPT and FOPT (as 
defined in Section 6.1). For simple partial pooling games, we construct allocation 
rules AL-PPOPT, BL-PPOPT, and F-PPOPT, by replacing K with Kpp;opt in the definitions 
of ALOPT, BLOPT, and FOPT , respectively. However, once again allocation rule SPLIT 

is not as easily transformed. Therefore, let simpleΓ∈ϕ and define for all iœN: 

ϕ(OPT
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Table 7.3: Selected parameter indices for the company parameters 
|N| 3 

λ 4 (All-Low, All-Standard, All-High, DIFF2) 

µ 3 (All-Min, All-Low, All-Standard) 

h 4 (All-Standard, All-High, All-Max, DIFF2) 

c
emer

 5 (All-Low, All-Standard, All-High, DIFF1, DIFF2) 

Rule on S To-be-optimized 

 
The results of the numerical experiment are shown in Table 7.4. 20 out of 240 games 
with full pooling had empty cores. But no games with partial pooling had empty cores! 
This would indicate that using a partial pooling approach has a large effect on the 
balancedness of a game. Furthermore, it supports the idea that the full pooling approach 
was the main reason why we got games with empty cores in Chapter 5. Finally, allocation 
rule SP-PPOPT performed best for games with partial pooling, while all other allocation 
rules performed worse for games with partial pooling than for games with full pooling.  
 
Table 7.4: Results of the numerical experiment for partial pooling games. The third 

through seventh column consider only the games with non-empty cores and 

determine how often a certain allocation rule was in the core for that subset. 
Pooling process Core Rule ALOPT or 

AL-PPOPT 
Rule FOPT or  
F-PPOPT 

Rule SPLITOPT or 
SP-PPOPT 

Rule BLOPT or 
BL-PPOPT 

Full pooling 92% non-empty 85.9% in Core 99.5% in Core 93.6% in Core 78.6% in Core 

Partial pooling 100% non-empty 80.4% in Core 88.3% in Core 99.1% in Core 74.6% in Core 
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Chapter 8: Conclusions 
 
In Section 8.1, conclusions regarding the research questions are provided. In Section 8.2, 

suggestions for future research are made. 

 

8.1: Conclusions regarding the research questions 

 
The problem statement in this paper was: 
The scientific literature currently gives no insight into the non-emptiness of the core in a 

spare parts pooling game and there is insufficient knowledge about proper cost 

allocation policies that are proven to be in the core of the cooperative game. This lack of 

managerial insights may impede profitable collaboration on spare parts pooling. 

 
In order to provide a solution to this problem, three main research questions were 
formulated. We will now provide conclusions regarding each of these research questions.  
 
Research question 1a: Does a simple spare parts pooling game, with the base-stock levels 
already pre-determined at arbitrary values, have a non-empty core? 
 
We proved that: 

• For a game associated with a spare parts inventory situation where all companies 
have the same demand rate and the same fixed base-stock levels (other parameters 
may be asymmetrical), the core is non-empty. 

• For a game associated with a spare parts inventory situation where all companies 
have the same emergency costs and demand rates (and possibly different fixed base-
stock levels), the core is non-empty. 

 
Based on the results of a numerical experiment, we conjectured that any game associated 
with a spare parts inventory situation where all companies have the same emergency 
costs has a non-empty core. Games with empty cores have also been found. Empty cores 
are most often found for games associated with spare parts inventory situations in which 
the emergency costs differed largely between companies, and where companies had very 
low repair rates and/or very high holding cost rates. In these games, emergency costs 
dominate holding costs and companies with low emergency costs take spare parts that 
would have better been saved for companies with high emergency costs. 
 
Research question 1b: Does a simple spare parts pooling game, where the base-stock 
levels are not yet determined and can still be jointly optimized, have a non-empty core? 
 
We proved that: 

• For a game associated with a spare parts inventory situation where companies are 
fully identical, the imputation set is non-empty. But a non-empty imputation set does 
not always imply a non-empty core. 
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• For a three-player game associated with a spare parts inventory situation where 
companies are fully identical with realistic base-stock levels, the core is non-empty. 

 
Based on the results of a numerical experiment, we conjectured that any game associated 
with a spare parts inventory situation where all companies have the same emergency 
costs has a non-empty core. Games with empty cores have also been found, and the 
statements made for research question 1a also apply here. 
 
Research question 2: What is a proper cost allocation policy for a spare parts pooling 
game? 
 
There is a trade-off between (i) simplicity, (ii) always being in the core, (iii) fairness 
(various fairness properties appropriate for the spare parts setting were defined, e.g., if a 
company gets a higher demand rate, it should not be allocated less costs). Many 
allocation methods were considered and tested in a large numerical experiment, but so far 
no policy was found that satisfies all three requirements. Currently, no allocation rule is 
available that that easily handles the intricacies of large-scale cooperations of 
asymmetrical companies well. Two allocations rules that performed reasonably well and 
that can specifically be applied to spare parts pooling games are: 
Allocation SPLIT: Total holding costs are allocated based on the demand rate of each 
company. Each company pays their own local emergency costs. 
The Shapley value: A well-established allocation rule in game theory literature. 
  
Observations that we can draw from the results of the numerical experiment are: 

• For games with 2 companies and/or games with fixed base-stock levels, the 
Shapley value was often in the core (compared to other allocation rules). 

• For games with 3 or 4 companies and/or games with to-be-optimized base-stock 
levels, allocation rule SPLIT relatively often gave core elements. 

 
Lastly, the nucleolus, while (computationally) difficult, deserves consideration, since it is 
guaranteed to be in the core of the game. 
 
Research question 3: Can we generalize results to a more complex setting? 
 
We investigated a setting where transshipment costs were non-negligible with a small 
numerical experiment. Initial findings indicate that adding transshipment costs does not 
have a large effect on non-emptiness of the core. However, the cost allocation methods 
considered above less often produced core elements. However, we stress that this was a 
very limited study. We also investigated a setting with a smart partial pooling rather than 
full pooling. Initial findings indicate that using this partial pooling approach leads to 
significantly fewer games with empty cores. Finally, allocation rules SPLIT and the 
Shapley value performed best for these more complex settings. 
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8.2: Directions for future research 

 
We posit the following directions for further scientific research: 

• We conjectured that any game associated with a spare parts inventory situation where 
all companies have the same emergency costs has a non-empty core. A proof for this 
should be found.21 Furthermore, it is also reasonable to assume that the core will be 
non-empty if the emergency costs of the companies are very close to each other, so 
trying to find such conditions could also be interesting. 

• Similarly, we made several conjectures on properties of cost allocation rules in 
Chapter 6. A proof for those should be found as well. 

• More effort is needed to find better allocation rules, preferably one that is always in 
the core of a simple spare parts pooling game. 

• An interesting extension is to extend the single-echelon structure (this is identified as 
a future research direction in Wong et al., 2007a) to a structure with main and local 
warehouses. This can yield significant benefits for cooperating companies if setting 
up warehouses to allow for lateral transshipments is expensive, according to 
Kranenburg & Van Houtum (2008).  

• We have looked at expected costs rather than realized costs so far. Realization games 
may offer new insights. For example, for allocation rule AL, does it make sense for a 
given yearly realization of costs, to allocate these based on expected demand rates or 
on realized demand rates? 

• We have looked at a single-item situation so far. A multi-item approach could make 
the model and cooperation process richer. Investigating this could bring interesting 
new insights.  

                                                 
21 The work of Sandra van Wijk, doctoral candidate at the TU/e, who investigates for (what we call) 
situation FIX for which conditions full pooling is optimal, is related to this. 
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Appendix 1: Literature overview of lateral transshipment 
models 
 
This appendix gives a more in-depth summary of all models shown in Table 1.1. It is 
taken from the literature study preceding this thesis (Karsten, 2008). 
 
Lee (1987) considers emergency lateral transshipments in a two-echelon inventory 
system with one central warehouse and N local warehouses. The local warehouses are 
supplied from a central warehouse, which in turn is supplied from an infinite source. The 
local warehouses are grouped into a number of disjoint demand pooling groups. Lateral 
transshipments are made only within each group. The local warehouses in each group are 
identical, i.e. they face identical failure rates (this is the only paper considered in this 
section that makes this assumption). When a local warehouse is out of stock and faces 
demand, (emergency) lateral transshipments are used to obtain the item from another 
local warehouse in the same pooling group that has stock on hand. The local warehouse 
that sources the unit issues a replenishment order to the depot to restore its inventory 
level up to S. If all the local warehouses in the group are out of stock, then the demand is 
backordered. Transshipment times are assumed to be negligible. Lee provides 
approximations for the fraction of demand satisfied from the stock on hand, the fraction 
of demand that is satisfied by lateral transshipments, and the fraction of demand that is 
backordered. Lee also recognizes that it is important to establish a sourcing rule for 
lateral transshipments when there are more than two local warehouses in a pooling group. 
Three sourcing rules are suggested and Lee’s simulation results show only small 
differences between the sourcing rules:   

(i) The random sourcing rule, which chooses randomly from among the local 
warehouses that have stock.  

(ii) Choose the local warehouse with the maximum stock on hand (with ties 
broken by the random sourcing rule). 

(iii) Choose the local warehouse with the maximum stock on hand, with ties 
broken by selecting the local warehouse with the smallest number of 
outstanding orders waiting (with remaining ties broken randomly). 

 
Axsäter (1990) considers the exact same system as Lee. While Lee focused on modeling 
the outstanding orders, Axsäter emphasizes modeling the effective demand rate at a local 
warehouse in more detail. He distinguishes between two situations: when the on-hand 
inventory at a local warehouse is positive and when it is not positive. When the on-hand 
inventory is positive, the demand faced by the local warehouse equals the regular demand 
plus the demand from other warehouses in the same pooling group due to lateral 
transshipments. When the on-hand inventory is not positive, the only demand faced by 
the local warehouse is the backordered demand that cannot be filled by lateral 
transshipment. In Axsäter’s model, the local warehouses in each pooling group do not 
have to be identical, relaxing the assumption of identical warehouses made in Lee (1987). 
The random sourcing rule is used. The replenishment lead times are exponentially 
distributed, which allows the derivation of steady-state probabilities for the on-hand 
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inventory. Simulation results indicate that Axsäter’s model gives smaller errors than 
Lee’s model. 
 
Alfredsson & Verrijdt (1999) consider a two-echelon inventory system that allows 
(direct) emergency shipments. If demand at a local warehouse cannot be met by either 
stock at that local warehouse or stock at another local warehouse, an emergency shipment 
from the central warehouse is made (which is a faster transportation mode than regular 
replenishment). If the central warehouse is out of stock as well, an emergency shipment 
from an infinite source is made. With these emergency shipments, no customer demand is 
backordered. Furthermore, they extend the models of Axsäter and Lee by relaxing the 
assumption of negligible lateral transshipment times. They assume identical lateral 

transshipment times between local warehouses and assume that the customer initiating a 
lateral transshipment will continue to wait for this item, although the local warehouse 
could receive items earlier through normal replenishments while the customer is waiting. 
They allow non-identical local warehouses and assume that all local warehouses form 
one pooling group (the assumption of one pooling group is also made by all subsequent 
papers). They assume exponential lead times and show simulation results that indicate 
that the performance of the inventory system is insensitive to the lead time distribution. 
Using Markov analysis, they use a two-step procedure to first find estimates of the 
fraction of demand satisfied through emergency shipment from the central warehouse, the 
fraction of demand satisfied through emergency shipment from the infinite source, and 
the average delay at the central warehouse due to stock-outs. In the second step, they find 
estimates for the fraction of demand for each local warehouse satisfied from stock on 
hand and through lateral transshipment. 
 
Kukreja et al. (2001) relax the assumption of an exponential repair time distribution made 
in Axsäter (1990). They show that the service performance is not very sensitive to the 
type of repair time distribution. They also introduce a new sourcing rule: from the 
locations that have inventory on hand, transship from that location with the lowest 
transshipment cost to the location needing the unit. If transshipment costs are linearly 
related to the distance between two locations, this corresponds to a closest neighbor rule. 
 
Grahovac and Chakravarty (2001) investigate a two-echelon spare parts system with pro-

active lateral transshipments. Retailer orders can be either regular or emergency. 
Retailers place regular orders as long as their net inventory on hand is above a trigger 
level K. They place emergency orders when it becomes equal to or smaller than K. 
Emergency orders will be delivered from a randomly selected location at the lower 
echelon if the distributor is out of stock. 
 
Wong et al. (2005a) present a model for a multi-hub, multi-company system. The multi-

hub setting is applicable for machines that are not standing on a fixed location but rather 
move from one location (or hub) to another, like airplanes. This implies that part failures 
can happen randomly at any location. Furthermore, they extend the existing lateral 
transshipment models by allowing delayed lateral transshipments. When a location 
having no backorders receives a repaired part and at the same time at least one location in 
the pooling group has backorders, their model allows sending the repaired part to the 
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location having backorders. To find the optimal stocking levels, a two-stage solution is 
proposed. In the first stage, the demands at all hubs are aggregated and treated as if 
occurring at a single location. The optimal number of total spare parts is determined by 
minimizing the sum of inventory holding cost and downtime cost. In the second stage, a 
heuristic procedure is developed to find the optimal allocation of the total spare parts to 
minimize the total transshipment cost. 
 
Wong et al. (2006) consider a single-echelon, multi-item, two-location spare parts 
inventory system in which emergency shipments are allowed as response to stock-outs. 
They focus on minimizing the expected total system cost subject to a target level for the 
aggregate waiting time at each location. By using a multi-item perspective, they can use a 
system approach. Their solution procedure is based on Lagrangian relaxation. A greedy 
heuristic may also be used to find near-optimal base stock levels (see Karsten, 2006). It is 
acknowledged that companies can cooperate via lateral transshipments both by (a) using 
the lateral transshipments in daily practice and (b) by incorporating it in the initial 
stocking decision. 
 
Wong et al. (2007a) consider a single-echelon, single-item system with transshipments 
between local warehouses. If all the local warehouses are out of stock, then the demand is 
backordered. Partial pooling is used. Each company sets its reserved stock level and will 
only supply a lateral transshipment if its current on-hand inventory level is above its 
reserved stock level. Complete pooling and no pooling can be seen as the case with a 
reserved stock level of zero and a reserved stock level of S+1, respectively. Furthermore, 
the assumption of infinite sources of failures (which has been made in all previously 
mentioned papers) is violated. Instead, a finite number of machines that can fail are 
assumed, which is more reasonable for companies with a small number of machines. 
Moreover, they also use game theoretic models to analyze the cost allocation problem 
between individual companies. 
 
Wong et al. (2007b) tackle a two-echelon, multi-item setting in which emergency 
shipments are allowed as response to stock-outs. They focus on minimizing the expected 
total system cost subject to a target level for the aggregate waiting time at each location. 
They compared the performance of a two-echelon system to a single-echelon system in 
terms of total cost. A main finding is that a two-echelon system is only worth 
implementing when lateral transshipments between local warehouses are not possible. In 
systems with lateral transshipments, the policy of implementing a two-echelon system 
should be questioned, since its total cost is merely a little lower than the cost of a single-
echelon system, and the saving may eventually be offset by all additional management 
costs needed for the central warehouse. 
 
Kranenburg and Van Houtum (2009) introduce a distinction between main and regular 

local warehouses. Lateral transshipment is allowed from main local warehouses only. A 
practical advantage of this structure is that only a limited number of local warehouses has 
to be equipped to provide lateral transshipment, and it is a network structure that matches 
with observations in practice. They show that only a small number of main locals is 
sufficient to obtain most of the full pooling benefits. 
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Appendix 2: Game Theory 
 
In this Appendix, we give all balancedness conditions for games with 3 or 4 players. 
Furthermore, the nucleolus and Shapley value will be explained in more detail. 
 
Balancedness 
 
Balancedness was defined already in Section 1.3. We will now give all balancedness 
conditions for games with 3 or 4 players. 
 
For a game with |N|=3, if and only if all of the following conditions are satisfied, the core 
of the game is non-empty: 
c({1,2,3})≤c({1})+c({2})+c({3}) 
c({1,2,3})≤0.5c({1,2})+0.5c({1,3})+0.5c({2,3}) 
c({1,2,3})≤c({3})+c({1,2}) 
c({1,2,3})≤c({2})+c({1,3}) 
c({1,2,3})≤c({1})+c({2,3}) 
 
For a game with |N|=4, if and only if all of the following conditions are satisfied, the core 
of the game is non-empty: 
 
c({1,2,3,4})≤c({1,2})+c({3,4});  c({1,2,3,4})≤c({1,3})+c({2,4}) 
c({1,2,3,4})≤c({1,4})+c({2,3}) 
 
c({1,2,3,4})≤c({1,2,3})+c({4}); c({1,2,3,4})≤c({1,2,4})+c({3}) 
c({1,2,3,4})≤c({1,4,3})+c({2}); c({1,2,3,4})≤c({4,2,3})+c({1}) 
 
c({1,2,3,4})≤c({1,2})+c({3})+c({4}); c({1,2,3,4})≤c({1,3})+c({2})+c({4}) 
c({1,2,3,4})≤c({1,4})+c({2})+c({3}); c({1,2,3,4})≤c({2,3})+c({1})+c({4}) 
c({1,2,3,4})≤c({2,4})+c({1})+c({3}); c({1,2,3,4})≤c({3,4})+c({1})+c({2}) 
 
c({1,2,3,4})≤.5c({1,2,3})+.5c({1,2,4})+.5c({3,4}) 
c({1,2,3,4})≤.5c({1,3,4})+.5c({2,3,4})+.5c({1,2}) 
c({1,2,3,4})≤.5c({2,4,1})+.5c({2,4,3})+.5c({1,3}) 
c({1,2,3,4})≤.5c({2,3,1})+.5c({2,3,4})+.5c({1,4}) 
c({1,2,3,4})≤.5c({1,4,2})+.5c({1,4,3})+.5c({2,3}) 
c({1,2,3,4})≤.5c({1,3,2})+.5c({1,3,4})+.5c({2,4}) 
 
c({1,2,3,4})≤c({1})+c({2})+c({3})+c({4}) 
c({1,2,3,4})≤1/3c({1,2,3})+1/3c({1,2,4})+1/3c({1,3,4})+1/3c({2,3,4}) 
 
c({1,2,3,4})≤.5c({1,2})+.5c({1,3})+.5c({2,3})+ c({4}) 
c({1,2,3,4})≤.5c({1,2})+.5c({1,4})+.5c({2,4})+ c({3}) 
c({1,2,3,4})≤.5c({1,4})+.5c({1,3})+.5c({4,3})+ c({2}) 
c({1,2,3,4})≤.5c({4,2})+.5c({4,3})+.5c({2,3})+ c({1}) 
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c({1,2,3,4})≤.5c({1,2,3})+.5c({1,4})+.5c({2,4})+.5c({3}) 
c({1,2,3,4})≤.5c({1,4,3})+.5c({1,2})+.5c({2,4})+.5c({3}) 
c({1,2,3,4})≤.5c({2,4,3})+.5c({1,2})+.5c({1,4})+.5c({3}) 
c({1,2,3,4})≤.5c({1,2,4})+.5c({3,1})+.5c({3,2})+.5c({4}) 
c({1,2,3,4})≤.5c({1,3,4})+.5c({2,1})+.5c({2,3})+.5c({4}) 
c({1,2,3,4})≤.5c({2,3,4})+.5c({1,2})+.5c({1,3})+.5c({4}) 
c({1,2,3,4})≤.5c({1,2,3})+.5c({2,4})+.5c({3,4})+.5c({1}) 
c({1,2,3,4})≤.5c({1,2,4})+.5c({2,3})+.5c({3,4})+.5c({1}) 
c({1,2,3,4})≤.5c({1,3,4})+.5c({2,3})+.5c({2,4})+.5c({1}) 
c({1,2,3,4})≤.5c({2,1,3})+.5c({1,4})+.5c({3,4})+.5c({2}) 
c({1,2,3,4})≤.5c({2,1,4})+.5c({3,1})+.5c({3,4})+.5c({2}) 
c({1,2,3,4})≤.5c({2,3,4})+.5c({1,3})+.5c({1,4})+.5c({2}) 
 
c({1,2,3,4})≤2/3c({1,2,3})+1/3c({1,4})+1/3c({2,4})+1/3c({3,4}) 
c({1,2,3,4})≤2/3c({1,2,4})+1/3c({1,3})+1/3c({2,3})+1/3c({3,4}) 
c({1,2,3,4})≤2/3c({1,3,4})+1/3c({1,2})+1/3c({2,3})+1/3c({2,4}) 
c({1,2,3,4})≤2/3c({2,3,4})+1/3c({1,2})+1/3c({1,3})+1/3c({1,4}) 
 
Shapley value 
 

The Shapley value ),( cNΦ  is: 

( )∑
⊆

−∪⋅
−−⋅

=Φ
}\{

)(}){(
|!|

)!1|(||!|
),(

iNM

i MciMc
N

MNM
cN  for all iœN. 

 
The idea behind this method is that each member should be allocated a cost equal to the 
average contribution it makes to each coalition to which it could belong, where all 
coalitions are regarded as equally likely (Wong et al. 2007). It has the following 
properties (Slikker, 2007): 
 

Efficiency: For each coalitional game (N,c): ∑
∈

=Φ
Ni

i Nc )( . 

Additive: For two coalitional games (N,c) and (N,d) with the same player set: 

),(),(),( dNcNdcN Φ+Φ=+Φ . 

Symmetric: For each coalitional game (N,c) for any two players i,jœN that are symmetric 

in (N,c)22: ),(),( cNcN ji Φ=Φ . 

Zero-player property: For each coalitional game (N,c): 0),( =Φ cNi  for any player iœN 

for which )(}){( MciMc =∪  for all NM ⊆ . 

 
 
 
 
 

                                                 
22 Players i and j are symmetric in game (N,c) if }){(}){( jMciMc ∪=∪  for all },{\ jiNM ⊆  
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The nucleolus (by Slikker, 2007): 
 
The nucleolus is defined for games with a nonempty imputation set only. In order to 
define the nucleolus we first need the concepts of ‘ordering function’ and ‘lexicographic 

order’. If K is a finite set then the ordering function on �K is the function :Kη �
K
→�

|K|, 

defined by the following subsequent steps: }|min{)(1 Kjxx j

K ∈=η . Choosing Kj ∈1  

such that 
1

)(1 j

K
xx =η , we have }}{\|min{)( 12 jKjxx j

K ∈=η , etc. For ∈yx, �
|K| we say 

that x is lexicographically larger than y if there exists an s such that xi=yi for all i<s and 
xs>y. 
 
Now the nucleolus is defined as follows. For a payoff vector xœ�N define the satisfaction 

of coalition NM ⊆  as: ∑ ∈
−=

Mi
xMcxMs )(),( . Let θ(x) have the satisfactions of 

payoff vector x ordered increasingly, i.e. ))),((()( 2

NMxMsx
N

⊆=ηθ . Then the nucleolus 

v(N,c) is defined, if the imputation set is not empty, as the vector in the imputation set 
whose θ is lexicographically maximal. 
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Appendix 3: Justification of assumptions 
 
In this appendix, we defend the assumptions made in Section 3.1. 
 
Demand process 
(i) Failures occur according to independent Poisson processes with constant rate (i.e. 
there is an infinite source of failures). If a part fails, it is replaced with a spare part if one 
is on stock at the corresponding company. 
For many real-life complex technical systems, lifetimes of components are (close-to) 
exponential, so a Poisson failure process is reasonable. A company typically has an 
amount of expensive technical systems (such as airplanes) that operate at a constant rate, 
and whose failures are low in general. The assumption of constant Poisson failure rates 
for the whole set of technical systems at a company is standard in METRIC-type models. 
In practice this assumption may be violated, since when the number of systems down 
increases, then the number of items that may fail decreases and hence the demand rate 
will slow down. However, we do not allow long downtimes and particularly if the 
number of systems is large, it is reasonable to assume constant failure rates. 
(ii) We consider only one type of spare part (i.e. a single-item model). 
This assumption is made to simplify the analysis. A multi-item approach could make the 
model and cooperation process richer, but this is left as a future research direction. 
 
Cooperation process 
(iii) If no spare part is available when the part fails, but another cooperating company has 
a surplus on-hand inventory, a lateral transshipment is used. A lateral transshipment is 
used from the neighbor that leads to the lowest transshipment costs (with ties broken by 
sourcing from the neighbor with largest stock on-hand).  
This transshipment rule, a combination of rules found in the literature (see appendix 1), 
makes good use of available state information while not overly complicating the analysis. 
(iv) Complete pooling is applied.  
We assume that the companies cannot use partial pooling as in Wong et al. (2007a) in 
order to simplify the analysis. They show in a numerical experiment that in the 
cooperative optimal solution, all companies agree to use complete pooling anyway. 
 
Repair process  
(v) A failed part is immediately sent into repair (therefore, the inventory system at one 
company can be seen as being controlled by a base stock policy). 
An (Si-1,Si) policy is reasonable for recoverable items with high cost and low demand, as 
the fixed ordering costs are small relative to the price of the item. 
(vi) Repair lead times are exponential i.i.d..  
This assumption facilitates the analysis. It allows us to use a Markov process in the 
evaluation. Simulations by Alfredsson and Verrijdt (1999) and Kukreja et al. (2001) 
justify the assumption, as they show that the type of lead time distribution does not have 
a large effect on steady-state distributions. The repair lead times are i.i.d. variables, as 
there is assumed to be ample repair capacity and no queuing. 
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(vii) Repaired parts are returned to the company that fulfilled the demand for the part.  
This allows us to keep the inventory positions at constant levels at all companies. 
(viii) All parts are perfectly repairable and there is no condemnation.   
If not, then one may relax this assumption by assuming that a new part is procured in case 
repair is not possible for a failed part. 
 
Emergency supply:  
(ix) If none of the other warehouses has a part available, an emergency supply is 
instigated from an outside infinite source and the system goes down until it arrives.  
There is no redundancy or cannibalization in our model; the spare part is critical, so the 
system fails due to precisely one part. If not, then it is still reasonable to assume that a 
failed part has a bad effect on the performance of complex machine, so there may still be 
‘partial’ downtime costs. The emergency supplier being an infinite source is an 
assumption often made in related literature (see Table 1.1) and facilitates the analysis. 
(x) It is assumed that the emergency costs are smaller than the expected downtime costs 
during a repair, but larger than the total lateral costs.  
If the former would not be the case, emergency shipments would not be economically 
rational while our analysis “forces” them. If the latter would not be the case, lateral 
transshipments would not be worthwhile, while our analysis “forces” them. 
(xi) Failed part is lost to the emergency supplier; does not return to the inventory system. 
If not, total inventory in the system would keep on growing, complicating the analysis.  
 
Cost parameters:  
The cost parameters chosen encompass the costs analyzed in related studies (see 
Appendix 5). 
 

Goal of individual companies:  
(xii) Each company aims to minimize expected yearly costs. We have an infinite horizon. 
This allows us to use steady-state Markov chains. Spare parts for complex machines 
typically have long lifetimes, so a very long horizon is not unreasonable. 
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Appendix 4: Classes of spare parts inventory situations 
 

Class of simple spare parts inv. sit. (with identical λ): simpleidsimple Γ⊂Γ λ:,  

For every λλϕ :,:, idsimpleidsimple Γ∈ , the demand rates are assumed to be identical for all 

companies. It can be represented a tuple: ( )Ni

emer

Niiidsimple i
chN ∈∈= )(,)(,,,:, µλϕ λ . 

 

Class of simple spare parts inv. sit. (with identical h): simplehidsimple Γ⊂Γ :,  

For every hidsimplehidsimple :,:, Γ∈ϕ , the holding cost rates are assumed to be identical for all 

companies. It can be represented a tuple: ( )Ni

emer

Niihidsimple i
chN ∈∈= )(,,,)(,:, µλϕ . 

 

Class of simple spare parts inv. sit. (with id. λ and  c
emer

): simplecidsimple emer Γ⊂Γ
,:, λ

 

For every emeremer cidsimplecidsimple ,:,,:, λλ
ϕ Γ∈ , the demand rates and emergency costs are 

assumed to be identical for all companies. It can be represented a tuple: 

( )emer

Niicidsimple
chNemer ,)(,,,

,:, ∈= µλϕ
λ

. 

 

Class of simple spare parts inv. sit. (with id. h and c
eme

): simplechidsimple emer Γ⊂Γ
,:,

 

For every emeremer chidsimplechidsimple ,:,,:,
Γ∈ϕ , the holding cost rates and emergency costs are 

assumed to be identical for all companies. It can be represented a tuple: 

( )emer

Niichidsimple
chNemer ,,,)(,

,:,
µλϕ ∈= . 

 

Class of simple spare parts inv. sit. (with ident. λ and h): simplehidsimple Γ⊂Γ ,:, λ  

For every hidsimplehidsimple ,:,,:, λλϕ Γ∈ , the demand rates and holding cost rates are assumed to 

be identical for all companies. It can be represented a tuple: 

( )Nii

emer

icidsimple
chNemer ∈= ))(,,,,

,:,
µλϕ

λ
. 

 

Class of simple fully identical 3-player spare parts inv. sit.: allidsimpleNallidsimple :,3||,:, Γ⊂Γ =  

For every 3||,:,3||,:, == Γ∈ NallidsimpleNallidsimpleϕ , the set of companies is {1,2,3}. It can be 

represented by a tuple: ( )emer

Nallidsimple ch,,,3||,:, µλϕ == . 



 
7
3
 

A
p

p
e

n
d

ix
 5

: 
R

e
a
li
s
ti

c
 p

a
ra

m
e
te

r 
v
a
lu

e
s
 f

o
r 

s
p

a
re

 p
a
rt

s
 i
n

v
e

n
to

ry
 s

it
u

a
ti

o
n

s
 

 
S

o
u

rc
e 

λ
 (

p
er

 y
ea

r)
 

λ
 /
µ

 
h

 (
$
 p

er
 u

n
it

 p
er

 y
ea

r)
 

d
o
w

n
ti

m
e 

co
st

s 
($

 p
er

 u
n
it

 
d

o
w

n
 p

er
 h

o
u

r)
 

tr
an

sp
o
rt

 
co

st
s 

($
 

p
er

 h
o
u

r)
 

em
er

. 
su

p
p

ly
 

o
rd

er
in

g
 

co
st

s 
($

) 

T
im

e 
n

ee
d

ed
 

fo
r 

em
er

. 
sh

ip
. 
(h

o
u

r)
 

tr
an

ss
h
ip

 
o
rd

er
in

g
 

co
st

s 
($

) 

T
im

e 
n

ee
d

ed
 

fo
r 

la
t.

 t
ra

n
s-

sh
ip

. 
(h

o
u

r)
 

N
o
te

s 

W
o
n

g
 e

t 
al

. 
(2

0
0

7
a)

 

M
in

: 
0

.0
0
2
·2
·3

5
6
≈

1
.4

 
(S

ec
ti

o
n

 5
.2

) 
 M

ax
: 

0
.0

0
2
·1

5
·3

5
6
≈

1
0

.7
 

(S
ec

ti
o
n

 5
.2

) 

M
in

: 
1

.4
/(

0
.0

2
·3

5
6

)≈
 

0
.2

0
 (

S
ec

t 
5

.2
) 

 M
ax

: 
1

0
.7

/(
0
.0

2
·3

5
6

)≈
 

1
.5

1
 (

S
ec

t 
5

.2
) 

M
in

: 
1
0

,0
0

0
  

(S
ec

ti
o
n

 5
.2

) 
 M

ax
: 

2
0

,0
0

0
 

(S
ec

ti
o
n

 4
.2

) 

M
in

: 
1

,0
0
0

/2
4
≈

4
2

 
(S

ec
ti

o
n

 5
.2

) 
 M

ax
: 

1
0
,0

0
0

/2
4
≈

4
2
0

 
 (

S
ec

ti
o
n

 5
.2

) 

M
in

: 
1
0
0

 
(S

ec
t 

5
.2

) 
 M

ax
: 

1
,0

0
0

 
(S

ec
t 

5
.2

) 

N
/A

 
N

/A
 

N
/A

 
M

in
: 

2
 

(S
ec

ti
o
n

 4
.2

) 
 M

ax
: 

1
2

 
(S

ec
ti

o
n

 4
.2

) 

T
h

es
e 

p
ar

am
et

er
s 

w
er

e 
se

le
ct

ed
 s

u
ch

 t
h

at
 

th
ey

 a
re

 r
ea

li
st

ic
 f

o
r 

re
al

-l
if

e 
si

tu
at

io
n
s,

 a
t 

le
as

t 
fo

r 
th

e 
ai

rl
in

e 
in

d
u

st
ry

. 
D

em
an

d
 

ra
te

s 
m

ay
 d

if
fe

r 
a 

fa
ct

o
r 

5
 b

et
w

ee
n

 
co

m
p

an
ie

s;
 d

o
w

n
ti

m
e 

co
st

s 
a 

fa
ct

o
r 

2
 

b
et

w
ee

n
 c

o
m

p
an

ie
s;

 o
th

er
w

is
e 

co
m

p
an

ie
s 

ar
e 

id
en

ti
ca

l.
 

W
o
n

g
 e

t 
al

. 
( 

2
0
0
6

) 

M
in

: 
0
.0

0
2

9
·3

5
6

 ≈
 

1
.0

3
 (

T
ab

le
 4

) 
M

ax
: 

0
.0

4
5
7
·3

5
6

=
1
6

.2
7
 

(T
ab

le
 4

) 

M
in

: 
0

.0
0
2
9

/0
.0

2
1
7
≈

0
.1

3
  

(T
ab

le
 4

) 
M

ax
: 

0
.0

4
5
7

/0
.0

1
6
4
≈

2
.7

9
 (

T
ab

le
 4

) 

M
in

: 
2
5
0

0
0
·0

.2
=

5
0

0
0

  
(T

ab
le

 4
) 

M
ax

: 
1

4
3
4

5
0
·0

.2
≈

2
8

6
9
0

 
(T

ab
le

 4
) 

N
/A

 
5

0
 

(S
ec

ti
o
n

 
5

) 

5
0
0

 (
S

ec
ti

o
n

 
5

) 
2

4
 (

S
ec

ti
o
n
 

5
) 

N
/A

 
2

 (
S

ec
ti

o
n

 5
) 

S
ec

ti
o
n

 5
 a

n
d

 T
ab

le
 4

: 
S

am
p

le
 d

at
a 

fr
o
m

 
an

 a
ir

 c
ar

ri
er

 c
o
m

p
an

y
 l

o
ca

te
d

 i
n

 
B

ru
ss

el
s.

 T
h

e 
fo

cu
s 

w
as

 o
n
 s

y
st

em
s 

w
h

er
e 

th
e 

in
v
en

to
ry

 h
o
ld

in
g
 c

o
st

 i
s 

d
o
m

in
an

t 
in

 c
o
m

p
ar

is
o
n

 t
o
 t

h
e 

la
te

ra
l 

tr
an

ss
h
ip

m
en

t 
o
r 

em
er

g
en

cy
 s

u
p

p
ly

 c
o
st

. 
(w

h
ic

h
 s

h
o
u

ld
 b

e 
ab

o
u

t 
5

-1
0

 t
im

es
 h

ig
h

er
 

th
an

 l
at

er
al

 t
ra

n
ss

h
ip

m
en

t 
co

st
s)

. 
K

u
k

re
ja

 
et

 a
l.

 
(2

0
0

1
) 

M
in

:  
1
 (

T
ab

le
 2

) 
M

ax
: 

6
 (

T
ab

le
 2

) 
M

in
: 

1
/(

3
5
6

/(
5
·7

))
 

≈
0

.0
9

8
 (

T
ab

le
 2

) 
M

ax
:  

 
6

/(
3

5
6

/(
1
5
·7

))
 

≈
1

.7
7

 (
T

ab
le

 2
) 

M
in

: 
5
0
0
·0

.2
9
=

1
4
5

 
(S

ec
ti

o
n

 6
 &

 T
ab

le
 2

) 
M

ax
:  

3
0
0

0
·0

.2
9

=
8
7

0
 

(S
ec

ti
o
n

 6
 &

 T
ab

le
 2

) 

N
/A

 
N

/A
 

N
/A

 
N

/A
 

M
in

: 
1
0
0

 
(T

ab
le

 2
) 

M
ax

:  
6
0
0

 
(T

ab
le

 2
) 

N
/A

 
D

at
a 

o
ri

g
in

at
es

 f
ro

m
 a

 l
ar

g
e 

el
ec

tr
ic

 
u

ti
li

ty
 c

o
m

p
an

y
. 

D
em

an
d
 r

at
es

 m
ay

 d
if

fe
r 

a 
fa

ct
o
r 

6
 b

et
w

ee
n

 c
o
m

p
an

ie
s;

 o
th

er
w

is
e 

th
ey

 a
re

 i
d

en
ti

ca
l.

 

E
n
d

er
s 

(2
0
0

4
) 

M
in

: 
0

.0
0
1
7
·3

5
6
≈

0
.6

1
 

(S
ec

ti
o
n

 4
.8

.2
) 

M
ax

: 
 

0
.2

7
·3

5
6
≈

9
6
  

(S
ec

ti
o
n

 4
.8

.2
) 

M
in

: 
0

.6
1
/(

3
5
6

/7
) ≈

 
0

.0
1
2

 (
S

ec
t 

4
.8

.2
) 

M
ax

: 
 9

6
/(

3
5
6

/7
) 
≈

 
1

.8
9
 (

S
ec

t 
4

.8
.2

) 

M
in

: 
0
.2

5
·1

5
0
0

=
3
7

5
 

(S
ec

ti
o
n

 4
.8

.1
-2

) 
M

ax
:  

0
.2

5
·1

9
0
0

=
4
7

5
 

(S
ec

ti
o
n

 4
.8

.1
-2

) 

N
/A

 
N

/A
 

M
in

: 
5
0
0

  
(T

ab
le

 7
.4

) 
 M

ax
:  

1
0
0

0
 

(T
ab

le
 7

.4
) 

2
4
 (

S
ec

ti
o
n
 

4
.8

.1
) 

3
0
0

 
(T

ab
le

 
7

.4
) 

M
in

:  
0

.2
5
·2

4
=

6
 

(S
ec

t 
4

.8
.1

) 
M

ax
: 

0
.5
·2

4
=

1
2

 
(S

ec
t 

4
.8

.1
) 

D
at

a 
st

em
s 

fr
o
m

 A
S

M
L

. 
D

em
an

d
 r

at
es

 
m

ay
 d

if
fe

r 
a 

fa
ct

o
r 

4
 b

et
w

ee
n

 c
o
m

p
an

ie
s 

(S
ec

ti
o
n

 4
.8

.2
).

 

K
ra

n
en

b
u

rg
 &

 
v
an

 
H

o
u

tu
m

 
(2

0
0

9
) 

M
in

:  
0
.5

 (
T

ab
le

 1
) 

 M
ax

:  
5
0

 (
T

ab
le

 1
) 

M
in

: 
0

.5
/(

3
5
6

/1
4

)=
0

.0
0

2
 (

T
ab

le
 1

) 
M

ax
:  

5
0

/ 
(3

5
6

/1
4

) 
=

2
 (

T
ab

le
 1

) 

M
in

: 
2
0
0

0
·0

.2
5

=
5
0

0
 

(S
ec

ti
o
n

 6
) 

M
ax

:  
1

0
0

,0
0

0
·0

.2
5

=
2
5

,0
0
0

 
(S

ec
ti

o
n

 6
) 

N
/A

 
N

/A
 

1
0
0
0

 
(S

ec
ti

o
n

 7
) 

2
·2

4
=

4
8

 
(S

ec
ti

o
n

 7
) 

5
0
0

 
(S

ec
ti

o
n

 
7

) 

0
.5
·2

4
=

1
2

 
(S

ec
ti

o
n

 7
) 

D
at

a 
o
b

ta
in

ed
 f

ro
m

 A
S

M
L

. 
T

h
is

 d
at

a 
se

t 
co

n
st

it
u

te
s 

d
at

a 
fo

r 
al

l 
1
9

 l
o
ca

l 
w

ar
eh

o
u

se
s 

in
 t

h
e 

U
S

A
. 

S
E

L
E

C
-

T
E

D
 

V
A

L
U

E
 

M
in

: 
0
.5

 
M

ax
: 

5
0

 
M

in
: 

0
.0

1
 

M
ax

: 
3

 
(M

in
 a

n
d

 m
ax

 f
o
r 

µ
 o

b
ta

in
ed

 b
y
 

fi
x
in

g
 λ

=
5

; 
a 

“s
ta

n
d

ar
d

” 
v
al

u
e)

 

M
in

: 
4
0
0

 
M

ax
: 

2
8
0

0
0

 
cem

er
=

 T
im

e 
n

ee
d

ed
 f

o
r 

em
er

. 
sh

ip
 ·
 (

tr
an

sp
o
rt

 c
o
st

s 
+

 d
o
w

n
ti

m
e 

co
st

s)
 +

 e
m

er
. 

su
p
p

ly
 o

rd
er

in
g
 c

o
st

s.
 

M
in

im
u

m
 f

o
r 

cem
er
: 

2
4
 ·

 (
 4

2
 +

 5
0
 )

 +
 5

0
0

 ≈
 2

6
0
0

. 
M

ax
im

u
m

 f
o
r 

cem
er
: 

4
8
 ·

 (
 4

2
0

 +
 1

0
0

0
 )

 +
 1

0
0
0

 ≈
 7

8
0

0
0

. 

ctr
an

s =
 T

im
e 

n
ee

d
ed

 f
o
r 

la
t.

 t
ra

n
s-

sh
ip

. 
· 

(t
ra

n
sp

o
rt

 c
o
st

s 
+

 d
o
w

n
ti

m
e 

co
st

s)
 +

 t
ra

n
ss

h
ip

 o
rd

er
in

g
 c

o
st

s.
 

M
in

im
u

m
 :

 2
 ·
 (

 4
2

 +
 5

0
 )

 +
 1

0
0

 ≈
 3

0
0

. 
M

ax
im

u
m

: 
1

2
 ·

 (
 4

2
0
 +

 1
0
0

0
 )

 +
 6

0
0
 ≈

 1
8
0

0
0

. 

 



 74 

Appendix 6: The Erlang loss function is decreasing in 
multiplication.  
 
In this appendix we proof that the Erlang loss function is decreasing in multiplication, i.e. 

),(),( 00 bbxaax ππ ≤ , for ∈ba, �0 0, >≥ xba . This was stated in Lemma 4.2 and had 

already been proven (Schmidt & Whitt, 1981), but a different proof methodology can also 
be used.  
 

Lemma A6: ),(),( 00 bbxaax ππ ≤ , for ∈ba, �0 0, >≥ xba . 

 

Proof: 
 
For a=b, the proof is trivial and boils down to an equality. 

For b=0, 1),(0 =bbxπ . Furthermore, 1),(0 ≤aaxπ  since it is a probability. 

Thus, it suffices to show ),(),( 00 bbxaax ππ ≤  for b≥1 and a>b. 

 

Let a and b be positive integers with a>b. Furthermore, let },...,1,0{ bi ∈  be fixed for the 

moment. Then the following equation holds: 

( ) ( ) ibaba ⋅−≥− 1          (T.1) 

 
Add i to both sides, then divide both sides by (a/b) to obtain: 

( )
i

ba

bai
≥

−+
          (T.2) 

 
As (T.2) holds for all iœ{0,1,…,b}, for all yœ{0,1,…,b-1} it holds that: 
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+=+=

≥
−+ b

yi

b

yi

i
ba

bai

11

)(
         (T.3) 

 
Relabling the left product range and taking (a/b) out of the product shows that (T.3) is 
equivalent to: 

( ) ∏
∏

+=
−

−++= ≥
b

yi

yb

a

bayi
i

ba

i

1

1
         (T.4) 

 
Rewriting the products as a division of factorials shows that (T.3) is also equivalent to, 
for all y in {0,1,…,b-1}: 

( ) !

!

)!(

!

y

b

bayba

a
yb

≥
−+⋅

−
        (T.5) 

 
Note that for y= b, (T.5) corresponds to 1≥1. Hence (T.5) holds not only for all y in 
{0,1,…,b-1}, but moreover for all y in {0,1,…,b}.  
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Let x>0 and let yœ{0,1,…,b} be fixed for the moment. By multiplying (T.5) with y
x  and 

by dividing both sides by yb
b

− , it can be seen that it holds that: 

!
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)!(
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yb

y
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y
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        (T.6) 

 
As (T.6) holds for all yœ{0,1,…,b}, then it also holds that: 

 ∑∑
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Relabling the left sum range shows that (T.7) is equivalent to: 
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Adding non-negative terms to the left side gives: 
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Rearrange exponents to see that (T.9) is equivalent to: 
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Move the exponents and factorials that are independent of y outside the summations: 
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Raise both sides to the power (-1), then multiply both sides by b
x  to obtain: 

( )
( )

( )
( )

∑∑
==

⋅

≤

⋅
b

y

y

b

a

y

y

a

y

bx
b

bx

y

ax
a

ax

00 !
!

!
!

        (T.12) 

 

(T.12) is equivalent to ),(),( 00 bbxaax ππ ≤ . This completes the proof. 

� 
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Appendix 7: Proof to Lemma 5.4 
 

Lemma 5.4: Let x>0 and let }39,37,...,5,3,1{∈z . Then: 
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For all }39,37,...,5,3,1{∈z and for all }4,...,1,{ zzzy +∈ , it holds that: )()( yjyk ≤ . This 

has been numerically verified and can be easily checked.  
Therefore it also holds that: 
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(A.1) is equivalent to: 
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By Lemma A7, the following holds: 
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It is now easily seen that (A.5) is equivalent to 
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Lemma A7: Let x≥0, let A,Bœ�0 with B≥A, let aœ�A, and let bœ�B. Then: 
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Appendix 8: Program description 
In this appendix a description is given of the computer program (and the algorithms it 
implemented) that was used in the numerical experiments of chapter 5 and 6. The 
program was written in the Java language and a copy of the code can be obtained from 
the author upon request.  
 

First, however, for all simpleΓ∈ϕ  we will state a formal definition of S *

M (φ), the unique 

optimal base-stock vector for coalition MŒN (used in the computer program as well), and 

of )(* ϕtot

MS , the unique optimal base-stock vector sum for coalition MŒN. 

Formally, let simpleΓ∈ϕ  and consider coalition NM ⊆ . Define: 

• ( ))(),(
;

0

MArgMinMW
S

NS

simple

M

ϕ
ϕ Κ=

∈

: the set of optimal base-stock vectors for M, 

• [ ]),(|)(* MWwwMinS
Mi i

tot

M ϕϕ ∈= ∑ ∈
: lowest optimal sum of base-stock levels,  

• ( )i
Mi

hArgMinMCompMinH
∈

=),(ϕ  : set of players with the lowest holding costs rates. 

• V ),( Mϕ =  |),(|/)(* MCompMinHS
tot

M ϕϕ : the base-stock levels that can be evenly 

allocated to all companies in CompMinH. 

• W ),( Mϕ = ( )|),(|),()(* MCompMinHMVS tot

M ϕϕϕ ⋅− : the base-stock levels that 

remain to be allocated. 

• 




>

≤
=

),( if0

),( if1
),,(

MWi

MWi
MiX

ϕ

ϕ
ϕ : how the remaining base-stock levels are allocated. 

• Then S




∈+

∈
=

),( if),,(),(

),(\ if0
)(*

MCompMinHiMiXMV

MCompMinHNi
M

ϕϕϕ

ϕ
ϕ . 

 
Now, we will first introduce some variables that were used in the program: 

• SPIS is a simple spare parts inventory situation, i.e. a tuple 

( )Ni

emer

NiiNii i
chN ∈∈∈ )(,)(,,)(, µλ  (see Chapter 3). 

• RuleS contains the information on the base-stock levels used in the experiment. It 
is a tuple (Type, index, Sindiv, Sall, Shigh, Slow, Smix), where: 
o Type=A Boolean that indicates whether the base-stock vector is fixed (type 

“FIX”) or whether the base-stock level is to-be-optimized (type “OPT”) 
o index=This value is equal to 0 for type “OPT”, and equal to 1 through 5 for 

type “FIX”. It is equal to 1 when the base-stock vector should be set to Sindiv; 2 
when the base-stock vector should be set to Sall; 3 when the base-stock vector 
should be set to Shigh; 4 when the base-stock vector should be set to Slow; and 5 
when the base-stock vector should be set to Smix. 

o S
indiv, S

all, S
high, S

low, S
mix are base-stock vectors that are defined in section 

5.4.2. 
 
A flowchart that describes the main idea of the program is shown in figure A8.1. 
Afterwards, an explanation of each part of this flowchart is given. 
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Calculate 
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Figure A8.1: Flowchart of the program. Boxes indicate functions or code segments. 

The arrows indicate the flow of the program and indicate which function is called 

where. The variables on the arrows represent the inputs/outputs from functions. 

Red text represents a choice on which branch to follow next in the program. The 

part within the green box represents the part of the program that generates a game 

(and displays results on core and cost allocations) associated with the combination of 

one SPIS and one (index of) RuleS. 



 81 

Iterate over all SPIS 
This function (based on Table 5.2) generates one SPIS and uses it to start “Generate 
RuleS”. When all games corresponding to this SPIS and all (indices of) RuleS have been 
created and checked, this function generates the next SPIS and starts “Generate RuleS” 
again, until all SPIS have generated. 
 
Generate RuleS 
This generates a RuleS, in which it sets Type=”OPT” and index=0 and leaves the rest of 
the information in RuleS empty for now. It then uses SPIS and RuleS to start the part of 
the program that generates a game (and displays results on core and cost allocations) 
associated with the combination of one SPIS and one RuleS. 
 
For all M, calculate c(M) (Type OPT). Furthermore, calculate S

indiv
, S

all
, S

high
, S

low
, and 

S
mix

 

This function generates a cost vector cœ� }0\{2 /N

 (where }0{\2 /N is the number of non-

empty subsets of N) and iterates over all non-empty coalitions NM ⊆ . For each M, this 

function: 

• Calls the function “Starting at zero, increase S until SM* and c(M) found”, 
with SPIS and M, which eventually returns the optimal costs c(M) and the 
optimal base-stock vector SM*. 

• If |M|=1 then it sets i to be the element of M and then iMiindiv SS )( *= .  

• If M=N then it sets Sall= SM*. Furthermore, it now also calculates Shigh
, S

low
, 

and Smix (see section 5.4.2). 
 
Starting at zero, increase S until SM* and c(M) found 
The algorithm used in this function requires more in-depth explanation and is broken 
down in consecutive steps.  
 
STEP 1: 
First of all, the algorithm finds the set of companies with the minimum holding cost rate 

in M (called }|{ MjhhMiINhcompaniesM ji ∈∀≤∈= ). Obviously, a solution in which 

any stock is held by a company that is not in INhcompaniesM  can never be optimal, 

since allocating that stock to a company in INhcompaniesM instead would lead to lower 

holding costs and equal emergency costs. Furthermore, it is important to note that the 
costs are indifferent to the allocation of base stock levels over companies in 

companiesMINh , i.e. if for some spare parts inventory situation µϕ :,idsimpleΓ∈  and two 

base stock vectors S and S’ it holds that ∑∑
∈∈

=
INhcompaniesMi

i

INhcompaniesMi

i SS ' then =Κ )(; MSϕ  

)('; MSϕΚ . As such, we can use a simple algorithm that will only adjust the base-stock 

level of one company in companiesMINh while the base-stock level of any other 
company will stay zero in order to find an optimal solution.  

From INhcompaniesM , we select the company with the lowest index (i.e. company 1 

rather than company 2) and refer to this company as compMINh. 
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STEP 2: 
The algorithm then generates a base-stock vector S and sets the base-stock level of each 
company to zero. Then, the costs c(S) corresponding to this feasible solution when no 
parts are held on stock are obtained (in order to do this, it calls the function “Calculate 
costs” with SPIS, M, and S) and stored in the variable minCosts. It may be possible to 
obtain lower costs by increasing the base-stock level of compMINh. So, ScompMINh is 
increased by one and c(S) is obtained (once again via the function “Calculate costs”, 
which will be described later in this appendix). If those costs are lower than minCosts, 
then minCosts is set to c(S), ScompMINh is increased by one again and the corresponding 
costs are calculated again. This process repeats itself until c(S) is not lower than 
minCosts. Once that happens, the algorithm can stop as the optimal solution has been 
found: minCosts is the optimal costs and an optimal base-stock vector is the one that was 
used to obtain minCosts. Proof that this method truly finds the optimal costs is given in 
Theorem A8.1 below. 
Summarizing this process formally: 
Step 2a: Set Si=0 for all i in M. Obtain c(S) and set minCosts=c(S). 
Step 2b: Obtain c(S). Increase ScompMINh by 1. 
Step 2c: If c(S)<minCosts then set minCosts=c(S) and return to Step 2b. Otherwise, 
proceed to step 2d. 
Step 2d: minCosts is the optimal costs of coalition M and optimalTotalStock= ScompMINh-1. 
 
Note that during this algorithm, the base-stock level of any company other than 
compMINh remains 0 and only ScompMINh is increased. As such, we can use formula (4.3): 

( ) pSShM tottot

S

tot

totsimple ⋅+⋅=Κ ,)( 0min

;
ρπ

ϕ
, where: 

• Stot=ScompMINh 

• hmin=hcompMINh 

• 
µ

λ
ρ M=  

• ∑
∈

⋅=
Mi

emer

ii cp λ  

This simpler cost function will be used in Lemma A8.1 and Theorem A8.1. Lemma A8.1 

states that on the domain Stotœ�0 , )(
;

Mtotsimple S

tot

ϕ
Κ  will achieve a minimum. Theorem A8.1 

states that this minimum is a unique minimum, hence the first minimum we find by using 
the algorithm just described is the optimal solution. 
 

Lemma A8.1: Let simpleΓ∈ϕ  and let NM ⊆ . On the domain Stotœ�0 , )(;
MtotS

tot

ϕΚ  will 

achieve a minimum.  
Proof:  

Let =S  min/ hp . (noting that )(0;
Mtot

ϕΚ =p). Then: 

pSppShphpSShM
S

tot >+⋅=⋅+⋅≥⋅+⋅=Κ )),(1(),(/),()( 00minmin0min

; ρπρπρπϕ .  

Therefore, the function )(;
MtotS

tot

ϕΚ  is increasing in at least some part of its domain. Since 

it is not always decreasing, it will achieve a minimum.  
� 
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Theorem A8.1: Let simple∈ϕ . On the domain Stotœ�0 , )(;
MtotS

tot

ϕΚ  will achieve one unique 

minimum.  
Proof: 

By Lemma 4.4, ( )totS,0 ρπ  is convex in Stot.  

Therefore, ( ) pSShM tottot

S

tot
tot ⋅+⋅=Κ ,)( 0min

; ρπϕ  is also convex in Stot.  

A convex function will only have at most one minimum and by Lemma A8.1, this convex 
function does have a minimum.  
� 
 
STEP 3: 

If 1|| >INhcompaniesM , there may be multiple optimal base-stock vectors and one with 

an as-equal-as-possible distribution is chosen in this step. A formal definition of this was 
provided at the beginning of this Appendix. The idea is to iterate over all 

iœ INhcompaniesM  by first allocating an item to the first company in INhcompaniesM , 

then allocating an item to the second company, and so on. Once all companies have been 
given an item, start again with company 1 and repeat this process until optimalTotalStock 

has been allocated. A formal algorithmic description: 
Step 3a: Set optimalTotalStockRemaining= optimalTotalStock, then set (SM*)i=0 for all  
iœM. Set j=1. 
Step 3b: If jœcompaniesMINh and optimalTotalStockRemaining>0 then increase (SM*)i 
by one and decrease optimalTotalStockRemaining by one. 
Step 3c: If j<|M| then increase j by one and return to step 3b. If j=|M|, if 
optimalTotalStockRemaining=0 then proceed to step 4, otherwise set j=1 and return to 
step 3b. 
 
STEP 4: 
Return c(M)=minCosts and SM* 
 
Calculate costs 
We use the recursive formula to quickly calculate the Erlang loss probability (according 
to Lemma 4.5). A step-by-step breakdown of the calculations is: 

Step 1: Set 0π (0)=1. Set s=1. Set 
µ

λ

ρ
∑
∈= Mi

i

 

Step 2a: If ∑
∈

≤
Mi

iSs  then set 
1)1(

)1(
)(

0

0
0

+⋅−

⋅−
=

ρπ

ρπ
π

s

s
s . If ∑

∈

>
Mi

iSs  proceed to step 3. 

Step 2b: Increase s by one and return to step 2a. 

Step 3: The result to be returned is ∑∑∑
∈∈∈

⋅⋅







+⋅

Mi

emer

ii

Mi

i

Mi

ii cSSh λπ 0 .  

 
Set S based on RuleS 
This generates a base-stock vector S, and fills it with values according to index.  
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If index=1 then S is set to Sindiv; if index=2 then S is set to Sall; if index=3 then S is set to 
S

high; if index=4 then S is set to Sall; if index=5 then S is set to Smix. It then uses SPIS, 
RuleS, and S to start “For all M, calculate c(M) (Type FIX)”. 
 
For all M, calculate c(M) (Type FIX) 

This function generates a cost vector cœ� }0\{2 /N

 (where }0{\2 /N is the number of non-

empty subsets of N) and iterates over all non-empty coalitions NM ⊆ . For each M, this 

function calls the function “Calculate costs”, with SPIS, M, and S, which returns the 
optimal costs c(M). 
 
Check balancedness conditions of game (N,c). Check cost allocations. Display results. 
The balancedness conditions are hard-coded for |N|=3 and |N|=4 and can be found in 
Appendix 2. If at least one of the conditions do not hold, then it is displayed on screen 
that the core is empty. Otherwise, it is displayed on screen that the core is non-empty. 
For each cost allocation (they are given in Chapter 6), the costs are calculated that are 
allocated to each player and stored in xœ�N. Subsequently the program checks the 

stability conditions ∑
∈

≤
Mi

i Mcx )(  for all M ⊆ N. Whether a cost allocation is in the core 

or not is displayed on screen. 
 
Important note on rounding errors: 
It was discovered during testing of the program that these inequality checks can 
sometimes be affected by rounding errors. For example, an inequality was actually 25≤25 
(true), but due to rounding errors in computations it was reduced to 24.999999999999≤25 
instead (false). An investigation was made in the range of these rounding errors, and 
based on this, a check was added that determined whether the difference was less than 
0.00000001% or not. If the difference was this small, the two values were regarded as 
being equal in the balancedness and stability checks. 
 
Have all base-stock vectors been checked? and Increase index 
If type is “OPT” then type is set to “FIX” and the index is set to 1. Then use SPIS and 
RuleS to start the part of the program that generates a game again. 
If type is “FIX” and the index<5 then increase the index by 1. Then use SPIS and RuleS 
to start the part of the program that generates a game again. 
If type is “FIX” and the index=5 then all games associated with SPIS have been checked, 
so go back to “Iterate over all SPIS”. 
 
 
Program validation & verification 
 
The program has been verified to work correctly by: 

• Building up the program part by part. After a code segment or function was done, 
it was fed sample input and output was checked in order to see whether it did 
what it was supposed to do.  

• After the program was fully done, the logic of the code syntax was double-
checked. 
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• The results shown in chapter 5 and 6 (which were obtained by using this program) 
have been checked in order to determine whether they make sense. So far, no 
remarkably strange / clearly wrong results (for example, cases where the core is 
empty but a cost allocation was in the core) were obtained. 

• The algorithm should give the same output as the algorithm described in 
Appendix 11 (for cases with non-negligible transshipment costs) if we set 
transshipment costs to be zero in both programs. For a couple test cases (values 
found in Chapter 7), this turned out to be the case. 

• Furthermore, after the program was fully done, a couple test cases were used in 
order to check whether the entire program correctly calculated the game 
associated with a SPIS and SRule and correctly checked the balancedness 
conditions and cost allocations (using a testMode part of the program that did not 
iterate over all thousands of instances and that gave more output that could be 
used to verify the numbers). The output of the program was verified by doing all 
required calculations in parallel by hand or via an Excel sheet and comparing the 
results. The program gave the correct output for all test cases. They are included 
here for reference: 

 
Test case 1 - the standard identical case - Input: 
Spare parts inventory situation: N={1,2,3}; λ1= λ2=λ3=5, µ=25, h1=h2=h3=4000, 

13000321 === emeremeremer
ccc . 

SRule: Type=”OPT”; index=0. 
Program output: 
Costs of coalition {3} = 9065.57 with optimal base-stock levels: Sopt[3]=2   
Costs of coalition {2} = 9065.57 with optimal base-stock levels: Sopt[2]=2   
Costs of coalition {2,3} = 12930.23 with optimal base-stock levels: Sopt[2]=2  Sopt[3]=1   
Costs of coalition {1} = 9065.57 with optimal base-stock levels: Sopt[1]=2   
Costs of coalition {1,3} = 12930.23 with optimal base-stock levels: Sopt[1]=2  Sopt[3]=1   
Costs of coalition {1,2} = 12930.23 with optimal base-stock levels: Sopt[1]=2  Sopt[2]=1   
Costs of coalition {1,2,3}= 15865.64 with optimal base-stock levels: Sopt[1]=1  Sopt[2]=1  Sopt[3]=1  
The core is non-empty. 
All allocations of chapter 6 are implemented in this program and each of them gives a symmetric allocation 
that is in the core: x(1)=5288.55   x(2)=5288.55   x(3)=5288.55 
Sindiv={2,2,2}, Sall={1,1,1}, Shigh={3,3,3}, Slow={0,0,0}, Smix={2,3,0}. 

 
Test case 2 - the standard identical case with fixed base-stock levels - Input: 
The same spare parts inventory situation as test case 1. 
SRule: Type=”FIX”; index=2, Sall={1,1,1}. 
Program output: 
Costs of coalition {3}     = 14833.33 with optimal base-stock levels: Sopt[3]=1   
Costs of coalition {2}     = 14833.33 with optimal base-stock levels: Sopt[2]=1   
Costs of coalition {2,3}   = 15027.03 with optimal base-stock levels: Sopt[2]=1  Sopt[3]=1   
Costs of coalition {1}     = 14833.33 with optimal base-stock levels: Sopt[1]=1   
Costs of coalition {1,3}   = 15027.03 with optimal base-stock levels: Sopt[1]=1  Sopt[3]=1   
Costs of coalition {1,2}   = 15027.03 with optimal base-stock levels: Sopt[1]=1  Sopt[2]=1   
Costs of coalition {1,2,3} = 15865.64 with optimal base-stock levels: Sopt[1]=1  Sopt[2]=1  Sopt[3]=1   
The core is non-empty. 
All allocations of chapter 6 are implemented in this program and each of them gives a symmetric allocation 
that is in the core: x(1)=5288.55   x(2)=5288.55   x(3)=5288.55. 
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Test case 3 - the standard identical case with inequal base-stock levels - Input: 
The same spare parts inventory situation as test case 1. 
SRule: Type=”FIX”; index=5, Smix={2,3,1}. 
Program output: 
Costs of coalition {3}     = 65000.0 with optimal base-stock levels: Sopt[3]=0   
Costs of coalition {2}     = 12070.96 with optimal base-stock levels: Sopt[2]=3   
Costs of coalition {2,3}   = 12930.23 with optimal base-stock levels: Sopt[2]=3  Sopt[3]=0   
Costs of coalition {1}     = 9065.57 with optimal base-stock levels: Sopt[1]=2   
Costs of coalition {1,3}   = 15027.03 with optimal base-stock levels: Sopt[1]=2  Sopt[3]=0   
Costs of coalition {1,2}   = 20007.44 with optimal base-stock levels: Sopt[1]=2  Sopt[2]=3   
Costs of coalition {1,2,3} = 20069.35 with optimal base-stock levels: Sopt[1]=2  Sopt[2]=3  Sopt[3]=0   
The core is non-empty. 
All allocations of chapter 6 are implemented in this program. Not all give the same allocation, but none of 
them is in the core. 
An allocation of total costs based on the demand rate of each company: 
x(1)=6689.783511008859   x(2)=6689.783511008859   x(3)=6689.783511008859    
An allocation of total costs based on the holding costs of each company: 
x(1)=6689.783511008859   x(2)=6689.783511008859   x(3)=6689.783511008859    
An allocation of total costs based on the cEMER of each company: 
x(1)=6689.783511008859   x(2)=6689.783511008859   x(3)=6689.783511008859    
An allocation where each company pays its own local holding and downtime/emergency costs: 
x(1)=8023.116844342192   x(2)=12023.116844342192   x(3)=23.116844342192053    
The Shapley value allocation rule: 
x(1)=-1604.5190111887823   x(2)=-1150.2227815334531   x(3)=22824.09232574881    
An allocation of total costs based on the half the lambda and half lambda*cEMER of each company: 
x(1)=6689.783511008858   x(2)=6689.783511008858   x(3)=6689.783511008858    
An allocation of total costs based on lambda*cEMER of each company: 
x(1)=6689.783511008858   x(2)=6689.783511008858   x(3)=6689.783511008858    
An allocation where holding costs are allocated based on h and downtime/emergency costs based on 
lambda*cEMER: 
x(1)=6689.783511008858   x(2)=6689.783511008858   x(3)=6689.783511008858    
An allocation where holding costs are allocated based on h and downtime/emergency costs based on 
lambda: 
x(1)=6689.783511008858   x(2)=6689.783511008858   x(3)=6689.783511008858    
An allocation where holding costs are allocated based on h and downtime/emergency costs based on half 
lambda and half lambda*cEMER: 
x(1)=6689.783511008858   x(2)=6689.783511008858   x(3)=6689.783511008858    
An allocation where holding costs are allocated based on lambda and downtime/emergency costs based on 
lambda*cEMER: 
x(1)=6689.783511008858   x(2)=6689.783511008858   x(3)=6689.783511008858    
An allocation where holding costs are allocated based on lambda and downtime/emergency costs based on 
half lambda and half lambda*cEMER: 
x(1)=6689.783511008858   x(2)=6689.783511008858   x(3)=6689.783511008858    
An allocation of total BENEFITS based on the demand rate of each company: 
x(1)=-12956.820874893256   x(2)=-9951.433946695102   x(3)=42977.60535461494    
An allocation of total BENEFITS equally amongst companies: 
x(1)=-12956.82087489326   x(2)=-9951.433946695106   x(3)=42977.605354614934    
An allocation of total BENEFITS according to the Shapley value: 
x(1)=-1604.5190111887805   x(2)=-1150.2227815334518   x(3)=22824.092325748818    
An allocation based on relative distance from individually optimal S: 
x(1)=0.0   x(2)=6689.783511008859   x(3)=13379.567022017718    
An allocation based on relative distance from global optimal S: 
x(1)=5017.337633256644   x(2)=10034.675266513288   x(3)=5017.337633256644    
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Test case 4 - inequal holding cost rates - Input: 
Spare parts inventory situation: N={1,2,3}; λ1= λ2=λ3=5, µ=25, h1=400, h2=4000, 

h3=28000, 13000321 === emeremeremer
ccc . 

SRule: Type=”OPT”; index=0. 
Program output: 
Costs of coalition {3}     = 38833.33 with optimal base-stock levels: Sopt[3]=1   
Costs of coalition {2}     = 9065.57 with optimal base-stock levels: Sopt[2]=2   
Costs of coalition {2,3}   = 12930.23 with optimal base-stock levels: Sopt[2]=3  Sopt[3]=0   
Costs of coalition {1}     = 1270.96 with optimal base-stock levels: Sopt[1]=3   
Costs of coalition {1,3}   = 1692.96 with optimal base-stock levels: Sopt[1]=4  Sopt[3]=0   
Costs of coalition {1,2}   = 1692.96 with optimal base-stock levels: Sopt[1]=4  Sopt[2]=0   
Costs of coalition {1,2,3} = 2069.35 with optimal base-stock levels: Sopt[1]=5  Sopt[2]=0  Sopt[3]=0   
The core is non-empty. 
All cost allocations were calculated correctly (they are not shown here in order to bring this appendix down 
to a manageable size). 
Sindiv={3,2,1}, Sall={5,0,0}, Shigh={3,3,3}, Slow={0,0,0}, Smix={3,3,0}. 
 

Test case 5 - inequal demand rates - Input: 
Spare parts inventory situation: N={1,2,3}; λ1=0.5, λ2=5, λ3=50, µ=25, h1=h2=h3=4000, 

13000321 === emeremeremer
ccc . 

SRule: Type=”FIX”; index=1, Sindiv={1,2,7}. 
Program output: 
Costs of coalition {3}     = 30236.56 with optimal base-stock levels: Sopt[3]=7   
Costs of coalition {2}     = 9065.57 with optimal base-stock levels: Sopt[2]=2   
Costs of coalition {2,3}   = 36263.60 with optimal base-stock levels: Sopt[2]=2  Sopt[3]=7   
Costs of coalition {1}     = 4127.45 with optimal base-stock levels: Sopt[1]=1   
Costs of coalition {1,3}   = 32598.91 with optimal base-stock levels: Sopt[1]=1  Sopt[3]=7   
Costs of coalition {1,2}   = 12101.84 with optimal base-stock levels: Sopt[1]=1  Sopt[2]=2   
Costs of coalition {1,2,3} = 40062.79 with optimal base-stock levels: Sopt[1]=1  Sopt[2]=2  Sopt[3]=7   
The core is non-empty. 
All cost allocations were calculated correctly (they are not shown here in order to bring this appendix down 
to a manageable size). 

 
Test case 6 - inequal emergency costs - Input: 
Spare parts inventory situation: N={1,2,3}; λ1=λ2=λ3=5, µ=25, h1=h2=h3=4000, 

78000,13000,2600 321 === emeremeremer
ccc . 

SRule: Type=”FIX”; index=1, Shigh={3,3,3}. 
Program output: 
Costs of coalition {3}     = 12425.76 with optimal base-stock levels: Sopt[3]=3   
Costs of coalition {2}     = 12070.96 with optimal base-stock levels: Sopt[2]=3   
Costs of coalition {2,3}   = 24001.74 with optimal base-stock levels: Sopt[2]=3  Sopt[3]=3   
Costs of coalition {1}     = 12014.19 with optimal base-stock levels: Sopt[1]=3   
Costs of coalition {1,3}   = 24001.54 with optimal base-stock levels: Sopt[1]=3  Sopt[3]=3   
Costs of coalition {1,2}   = 24000.30 with optimal base-stock levels: Sopt[1]=3  Sopt[2]=3   
Costs of coalition {1,2,3} = 36000.01 with optimal base-stock levels: Sopt[1]=3  Sopt[2]=3  Sopt[3]=3   
The core is non-empty. 
All cost allocations were calculated correctly. 
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Test case 7 - four companies - Input: 
Spare parts inventory situation: N={1,2,3,4}; λ1=λ2=λ3=λ4=5, µ=25, h1=h2=h3=h4=4000, 

13000,78000,13000,2600 4321 ==== emeremeremeremer
cccc . 

SRule: Type=”OPT”; index=0. 
Program output: 
Costs of coalition {4}       = 9065.57 with optimal base-stock levels: Sopt[4]=2   
Costs of coalition {3}       = 12425.76 with optimal base-stock levels: Sopt[3]=3   
Costs of coalition {3,4}     = 15255.81 with optimal base-stock levels: Sopt[3]=2  Sopt[4]=1   
Costs of coalition {2}       = 9065.57 with optimal base-stock levels: Sopt[2]=2   
Costs of coalition {2,4}     = 12930.23 with optimal base-stock levels: Sopt[2]=2  Sopt[4]=1   
Costs of coalition {2,3}     = 15255.81 with optimal base-stock levels: Sopt[2]=2  Sopt[3]=1   
Costs of coalition {2,3,4}   = 17541.67 with optimal base-stock levels: Sopt[2]=2  Sopt[3]=1  Sopt[4]=1   
Costs of coalition {1}       = 6166.67 with optimal base-stock levels: Sopt[1]=1   
Costs of coalition {1,4}     = 12216.22 with optimal base-stock levels: Sopt[1]=1  Sopt[4]=1   
Costs of coalition {1,3}     = 14883.72 with optimal base-stock levels: Sopt[1]=2  Sopt[3]=1   
Costs of coalition {1,3,4}   = 17387.50 with optimal base-stock levels: Sopt[1]=2  Sopt[3]=1  Sopt[4]=1   
Costs of coalition {1,2}     = 12216.22 with optimal base-stock levels: Sopt[1]=1  Sopt[2]=1   
Costs of coalition {1,2,4}   = 14834.80 with optimal base-stock levels: Sopt[1]=1  Sopt[2]=1  Sopt[4]=1   
Costs of coalition {1,2,3}   = 17387.50 with optimal base-stock levels: Sopt[1]=2  Sopt[2]=1  Sopt[3]=1   
Costs of coalition {1,2,3,4} = 20093.11 with optimal base-stock levels: Sopt[1]=1  Sopt[2]=1  Sopt[3]=1  
Sopt[4]=1   
The core is non-empty. 
All cost allocations were calculated correctly. 
Sindiv={1,2,3,2}, Sall={1,1,1,1}, Shigh={3,3,3,3}, Slow={0,0,0,0}, Smix={1,3,0,2}. 
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Appendix 9: Example games for section 5.4 
 
In the Appendix, we provide example games that illustrate concepts discussed in Section 
5.4.4 (as an illustration why low repair rates and/or low holding costs relatively often lead 
to games with empty cores) and in Section 5.4.5 (2-player subgames). 
 
An illustration why low repair rates and/or low holding costs relatively often lead to 

games with empty cores 
 
We present example games 9.1, 9.2, and 9.3 below. Example 9.1 will be a game with an 
empty core associated with a spare parts inventory situations for which companies have 
identical, but very low repair rates and identical, but very high holding cost rates. For 
example 9.2, we change the spare part pooling game by setting the repair rate to be very 
high instead and thanks to this change, the core of the associated game is non-empty. And 
for example 9.3, we change the original spare part pooling game by setting the holding 
cost rate to be very low instead and thanks to this change, the core of the associated game 
is non-empty. We keep track of how big of a factor the holding costs play in the cost 
function. We can observe that in examples 9.1, emergency costs are dominant (and since 
they differ quite a bit between companies, this leads to an empty core), while in examples 
9.2 and 9.3 the holding costs are dominant (and therefore the annoying effect of different 
c

emer between companies is lessened).  
 
Example 9.1 

Consider the 3-player simple spare parts inventory situation hidsimple ,:,7 λϕ Γ∈  with 

N={1,2,3}, λ has value All-Standard (hence λ=5), µ has value All-Min (hence µ=1.67), h 

has value All-Max (hence h=28000), and cemer has value DIFF3 (hence emerc1 =6500, 
emerc2 =78000, emer

c3 =6500). Suppose that we have situation OPT. The associated spare 

parts pooling game is described by c(M), given in table 9.1.  
 
Table 9.1: Cost function (column 2), optimal total base-stock level sum (column 3), 

and the percentage of the cost function that is defined by the holding cost (column 4) 

for example 9.1. 
Coalition M c(M) *tot

MS  Holding cost percentage, i.e. 

( ) %100*)(/* McSh tot

M⋅  

{1} 32,500.0 0 0% 

{2} 182,721.67 5 77% 

{3} 32,500.0 0 0% 

{1,2} 273,856.26 7 72% 

{1,3} 65,000.0 0 0% 

{2,3} 273,856.26 7 72% 

{1,2,3} 353,645.09 9 71% 

The core (and the imputation set) is empty, since c({1,2,3}) = 353645.09 > 
c({1})+c({2})+c({3}) = 247721.67. 
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Example 9.2 

Consider the 3-player simple spare parts inventory situation hidsimple ,:,8 λϕ Γ∈ , which is the 

same as 7ϕ  (used in the previous example), with one exception: µ has value All-Max 

(hence µ=500) instead. Suppose that we have situation OPT. The associated spare parts 
pooling game is described by c(M), given in table 9.2. 
 
Table 9.2: Cost function (column 2), optimal total base-stock level sum (column 3), 

and the percentage of the cost function that is defined by the holding cost (column 4) 

for example 9.2. 
Coalition M c(M) *tot

MS  Holding cost percentage, i.e. 

( ) %100*)(/* McSh tot

M⋅  

{1} 28,321.78 1 99% 

{2} 31,861.39 1 88% 

{3} 28,321.78 1 99% 

{1,2} 36,284.31 1 77% 

{1,3} 29,274.51 1 96% 

{2,3} 36,284.31 1 77% 

{1,2,3} 41,252.43 1 68% 

The core is non-empty. For example, x1=10,000, x2=21,252.43, x3=10,000 is a core 
element. 
 
Example 9.3 

Consider the 3-player simple spare parts inventory situation hidsimple ,:,9 λϕ Γ∈ , which is the 

same as 7ϕ  (used in example 9.1), with one exception: h has value All-Min (hence 

h=400) instead. Suppose that we have situation OPT. The associated spare parts pooling 
game is described by c(M), given in table 9.3. 
 

Table 9.3: Cost function (column 2), optimal total base-stock level sum (column 3), 

and the percentage of the cost function that is defined by the holding cost (column 4) 

for example 9.3. 
Coalition M c(M) *tot

MS  Holding cost percentage, i.e. 

( ) %100*)(/* McSh tot

M⋅  

{1} 3461.66 8 92% 

{2} 4311.66 10 93% 

{3} 3461.66 8 92% 

{1,2} 6370.02 15 94% 

{1,3} 5529.8 12 87% 

{2,3} 6370.02 15 94% 

{1,2,3} 8211.84 19 93% 

The core is non-empty. For example, x1=2,500, x2=3211.84, x3=2,500 is a core element. 
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Two-player sub-games 
 
In example 9.4, the core of the 3-player game is empty, but this is not due to a problem 
that already exists in a 2-player sub-game, i.e. none of the sub-games had empty cores 
(this is unlikely to happen, according to Table 5.6). In example 9.5, the core of the 3-
player game is non-empty, but this is despite problems with 2-player sub-games, i.e. two 
sub-games do have empty cores (this is unlikely to happen, according to Table 5.7). 
Lastly, in example 9.6, the core of the 3-player game is empty and two sub-games also 
have empty cores (this is likely to happen, according to Table 5.6).  
 
Example 9.4 

Consider the 3-player simple spare parts inventory situation hidsimple ,:,4 λϕ Γ∈  with 

N={1,2,3}, µ=1.67, h=8000; emerc1 =26000, emerc2 =6500; emer
c3 =13000; λ=0.5.  

Suppose that we have situation OPT, so base-stock levels are to-be-optimized. The 
associated spare parts pooling game is described by (values are rounded to two decimals):  

c({1})   = 10,995.39 (with *tot

MS =1);  c({2})   =  3,250.0 (with *tot

MS =0) 

c({3})      =  6,500.0 (with *tot

MS =0); c({1,2})    =  14,086.14 (with *tot

MS =1) 

c({1,3})    =  15,303.37 (with *tot

MS =1);  c({2,3})    =  9,750.0 (with *tot

MS =0) 

c({1,2,3})  =  18,764.98 (with *tot

MS =1). 

Note that the core of this game is empty, since: c({1,2,3}) = 18,764.98 > c({2})+c({1,3}) 
= 18553.37. Note that the imputation set is non-empty, since; c({1,2,3}) = 18764.98 < 
c({1})+c({2})+c({3}) = 20745.39. If we limit ourselves to a subgame with player set 
{1,2}, since c({1,2}) = 14,086.14 < c({1})+c({2}) = 14,245.39, the core is non-empty. 
Similarly, the core of the subgame with player set {1,3} and the core of the subgame with 
player set {2,3} is non-empty. 
 
Example 9.5 

Consider the 3-player simple spare parts inventory situation hidsimple :,5 Γ∈ϕ  with 

N={1,2,3}, µ=25, h=8000; emerc1 =2600, emerc2 =13000; emer
c3 =78000; λ1=2.5, λ2=50, λ3=2.5. 

Suppose that we have situation FIX with base-stock vector S given by S1=0, S2=4, S3=1. 
The associated spare parts pooling game is described by (values are rounded):  
c({1}) = 6,500.0;   c({2})= 93,904.76;   c({3}) = 25,727.27; 
c({1,2}) = 101,460.49;  c({1,3}) = 41,583.33;   c({2,3}) = 75,952.29; 
c({1,2,3}) = 81,555.08 
The core is non-empty. For example, x1=6,055.08, x2=55,500, x3=20,000 is a core 
element.  If we limit ourselves to a subgame with player set {1,2}, since c({1,2}) = 
101,460.49 > c({1})+c({2}) = 100,404.76, the core is empty. Similarly, the core of the 
subgame with player set {1,3} is empty. The core of the subgame with player set {2,3}, 
however, is non-empty. 
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Example 9.6 

Consider the 3-player simple spare parts inventory situation hidsimple ,:,6 λϕ Γ∈  with 

N={1,2,3}, µ=1.67, h=4000; emerc1 =2600, emerc2 =13000; emer
c3 =78000; λ=5. Suppose that 

we have situation OPT. The associated spare parts pooling game is described by (values 
are rounded to two decimals):  

c({1})   = 13,000.0 (with *tot

MS =0);   c({2})  =  27,120.28 (with *tot

MS =5) 

c({3})      =  35,139.95 (with *tot

MS =8);  c({1,2})    =  41,454.51 (with *tot

MS =8) 

c({1,3})    =  52,524.77 (with *tot

MS =12); c({2,3})    =  53,108.61 (with *tot

MS =12) 

c({1,2,3})  =  69,099.63 (with *tot

MS =16). 

The core is empty, since: c({1,2,3}) = 69,099.63 > c({1})+c({2,3}) = 66,108.61. Note 
that the imputation set is non-empty as c({1,2,3}) = 69,099.63 < c({1})+c({2})+c({3}) = 
75,260.23. If we limit ourselves to a subgame with player set {1,2}, since c({1,2}) = 
41454.51 > c({1})+c({2}) = 40120.28, the core is empty. Similarly, the core of the 
subgame with player set {1,3} is empty. The core of the subgame with player set {2,3}, 
however, is non-empty. 
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Appendix 10: All cost allocations 
 
We now provide a list of cost allocation rules that intuitively may seem reasonable. The 
ones that are defined already in Chapter 6 are not included here. For each cost allocation 
rule, we show the percentage of games for which it gave a core element in the numerical 

experiment of Chapter 6 over 46080 games. For all these formulas, let simpleΓ∈ϕ , let 

(N,c) be the associated game and let iœN. We will only provide the formula for a game 
with to-be-optimized base-stock levels and formulas for games with fixed base-stock 
levels should follow naturally from the description given, unless noted otherwise. 
 
Allocation AH (51%): An allocation of total costs based on the holding costs rate of 

each company: AH
OPT

i
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Allocation AC (45%): An allocation of total costs based on the emergency (shipment 

and downtime) costs of each company: AC
OPT
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Allocation A-local (55%): An allocation where each company pays its own local 

holding and emergency costs: A-local OPT

i
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Allocation HALF (57%): An allocation of total costs based on the half the demand rate 
and half the demand rate times emergency costs of each company:  

HALF
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Allocation ALC (57%): An allocation of total costs based on the demand rate times 

emergency costs of each company: ALC
OPT
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Allocation SPLITH1 (63%): An allocation where holding costs are allocated based on 
holding cost rates and emergency costs based on the demand rate times emergency costs: 

SPLITH1
OPT
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Allocation SPLITH2 (57%): An allocation where holding costs are allocated based on 
holding cost rates and emergency costs based on the demand rate:  

SPLITH2
OPT

i
(φ) = ( ) ( )

∑
∑∑∑

∑
∈

∈∈∈

∈

⋅+









⋅⋅

Nj

j

i

Nj
j

Nj

j

Nj
jj

Nj

j

i

NN
SSh

h

h

λ

λ
µλπ ),/( *

0

*  

 



 94 

Allocation SPLITH3 (57%): An allocation where holding costs are allocated based on 
holding cost rates and emergency costs based on half the demand rate and half the 
demand rate times emergency costs:  

SPLITH3
OPT
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Allocation SPLITL (60%): An allocation where holding costs are allocated based on 
demand rates and emergency costs based on half the demand rate and half the demand 
rate times emergency costs: 

SPLITL
OPT
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Allocation MARGINAL (52%): An allocation of total costs based on the square root of 
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Appendix 11: Proof to Lemma 6.3 
 
Lemma 6.3: Allocation rules ALFIX, SPLITFIX, BLFIX, Φ FIX, ALOPT, SPLITOPT, BLOPT, 
and Φ OPT are symmetric. 
Proof:  

Let simpleΓ∈ϕ  such that λi=λj, hi=hj, and emer

j

emer

i cc =  for some i,jœN . Let S∈�0
N and let 

S
identical∈�0

N such that Si=Sj. Let the game associated with ϕ  be (N,cOPT) and the game 

associated with ϕ  and S be (N,cFIX). 

 
Step 1 (ALFIX and ALOPT):  

FIX

iAL (ϕ ,S) =
∑∑
∈∈

⋅=⋅

Nk

k

jS

Nk

k

iS
NKNK

λ

λ

λ

λ ϕϕ )()( ,, = FIX

jAL  (ϕ ,S).  

By the above, we have FIX

iAL (ϕ , Sidentical) = FIX

jAL (ϕ ,Sidentical) and hence ALFIX is 

symmetric. By the above, we also have OPT

iAL (ϕ ) = FIX

iAL (ϕ , S *

N (φ)) = 
FIX

jAL (ϕ ,S *

N (φ)) = OPT

jAL (ϕ ) and hence ALOPT is symmetric. 

 
Step 2 (SPLITFIX and SPLITOPT): 

FIX

iSPLIT (ϕ ,S) = =⋅⋅+







⋅⋅ ∑

∑
∑

∑ ∈

∈

∈

∈

emer

ii

Nk

k
Nk

k

Nk

kk

Nk

k

i cSSh λ
µ

λ

π
λ

λ
),(0  

FIX

jSPLIT (ϕ ,S) = emer

jj

Nk

k
Nk

k

Nk

kk

Nk

k

j
cSSh ⋅⋅+








⋅⋅ ∑

∑
∑

∑ ∈

∈

∈

∈

λ
µ

λ

π
λ

λ
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By the above, we have FIX

iSPLIT (ϕ , Sidentical) = FIX

jSPLIT (ϕ ,Sidentical) and hence 

SPLITFIX is symmetric. By the above, we also have OPT

iSPLIT (ϕ )= FIX

iSPLIT (ϕ , S *

N (φ)) 

= OPT

jSPLIT (ϕ )= FIX

jSPLIT (ϕ , S *

N (φ)) and hence SPLITOPT is symmetric. 

 
Step 3 (BLFIX and BLOPT): 

,(ϕFIX

i
BL S

identical 







Κ−Κ⋅−Κ= ∑

∑ ∈

∈

)(})({})({) ;;;
Nki
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λ

λ
= 
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Nkj

identicalidenticalidentical S
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Hence BLFIX is symmetric. To show BLOPT is symmetric, we use )()( *

}{

*

}{ ϕϕ ji SS = : 
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
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Step 4 (FFIX and FOPT): 

In similar fashion as Lemma 6.1, we use for iœN : )(),( ϕOPTOPTgame

ii
cN Φ=Φ  and 

,(),( ϕFIXFIXgame

ii
cN Φ=Φ S). Since game

iΦ  satisfies symmetry in terms of a game (see 

Appendix 2), and since }){(}){( ,, jMKiMK SS ∪=∪ ϕϕ  for all },{\ jiNM ⊆ , it follows 

that allocation rules Φ FIX and Φ OPT are symmetric. 
� 
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Appendix 12: Algorithms needed to calculate cost 
functions of a general spare parts pooling game 
 
Calculation of the cost functions for general spare parts pooling game (which are covered 
in Chapter 7) involves creating a Markov chain and calculating steady-state probabilities. 
Furthermore, calculating optimal costs when base-stock levels are to-be-optimized 
involves finding an optimal solution in an infinite space (which can be bounded and 
enumerated efficiently). The algorithms that do this are described in this Appendix and 
are implemented in a Java application. Particularly Algorithm A1, A2, and A3 are 
important, while the other algorithms describe program implementations. 
 
Algorithm A8: Calculating the minimum costs of a coalition M when S is to-be-

optimized. 

Necessary input: MjMi

trans

Mi

emer

MiiMiiMii iji
cchM ∈∈∈∈∈∈ ,)(,)(,)(,)(,)(, µλ . 

Step 1 (sorting): Sort all the companies in decreasing order of hi, such that h1≥h2≥h|M| 
(this will increase computation speed due to the way Algorithm A2 operates). 
Step 2a (initializing): Create Sœ�0

M such that Si=0 for all i in M.   

Step 2b (initializing): Set costWhenNothingOnStock=∑
∈

⋅
Mi

i

emer

ic λ . 

Step 2c (initializing): Set minCosts=costWhenNothingOnStock and set Sopt=S. 
Step 3a (find next feasible base-stock vector S): Use algorithm A2 to set S to the next 
vector. If this algorithm returns “no feasible base-stock vectors that have not been already 
checked remain” then proceed to step 4. 
Step 3b (calculate costs of S): Use algorithm A3 to set currentCosts. 
Step 3c (check whether this is an improvement): If currentCosts<minCosts then set 
minCosts=currentCosts and set Sopt=S. Either way, subsequently return to step 3a. 
Step 4 (end): The optimal base-stock vector is Sopt and the associated minimum costs are 
minCosts. 
 
Algorithm A2: Find the next feasible base-stock vector S. 

Necessary input: S,minCosts, MiihM ∈)(, . 

Explanation: The cost function consists of a part holding costs that are increasing in S 
and of a part emergency/lateral costs that are positive. Consider a base-stock vector S for 
which the holding costs are already higher than the current minCosts of a coalition M. 
Then we know that S can never yield the optimal solution (in this case it is also not 
necessary to go through the computational effort of constructing the Markov chain and 
calculating emergency/lateral shipment and downtime costs). Furthermore, for this S, we 

will know that any S worse , for which S ≥worse

i Si for all i in M, can never yield the optimal 

solution either and is hence not feasible. We will use an approach that provides 
subsequent feasible base-stock vectors in lexicographic order. How this works may best 
be illustrated by an example. Let M={1,2,3} and h={600,300,200}. Algorithm A1 starts 
with S={0,0,0} and minCosts=1000 (i.e. emergency shipment costs when nothing is on 
stock). Assume for this example that S={0,0,0} and minCosts=1000 is the optimal 
solution (usually, this is not the case and minCosts will decrease as we iterate). 
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Now, algorithm A2 returns subsequently {1,0,0}, {0,1,0}, {1,1,0}, {0,2,0}, (0,3,0}, 
{0,0,1}, {1,0,1}, {0,1,1}, {0,2,1}, {0,0,2}, {0,1,2}, {0,0,3}, {0,0,4}, and “no feasible 
base-stock vectors that have not been already checked remain”.  
  
Step 1 (initializing): Set i=1. 
Step 2a (increase base-stock level): Set Si=Si+1. 

Step 2b (calculate holding costs): Set holdingCosts=∑
∈

⋅
Mi

ii Sh . 

Step 3 (check whether this is a feasible base-stock vector): If holdingCosts<minCosts 
then proceed to Step 5. Else, set Sj=0 for all },...,2,1{ ij ∈  and continue to Step 4. 

Step 4 (continue the iteration): Set i=i+1. If i≤M return to Step 2a, else proceed to Step 5. 
Step 5 (end): If Si=0 for all i in M then return “no feasible base-stock vectors that have 
not been already checked remain”. Else, return S. 
 

Algorithm A3: Calculating the costs of a coalition M for a given S. 

Necessary input: S, MjMi

trans

Mi

emer

MiiMiiMii iji
cchM ∈∈∈∈∈∈ ,)(,)(,)(,)(,)(, µλ . 

Explanation: Note that a Markov state is defined by x, where xi is the on-hand inventory 
at company i. The variable index pinpoints a Markov state by an integer number; this is 
explained in more detail in algorithm A6. index ranges from 1 to maxIndex. 
Transshipments to company i are selected as follows. Source from the company j with the 

lowest transshipments costs to company i, trans

ji
c . Break ties by sourcing from the 

company with the highest current on-hand inventory, xj. Break remaining ties by sourcing 
from the company with the lowest index, j. 

Step 1 (initializing): Set maxIndex=∏
∈

+
Mi

iS )1( . 

Step 2 (calculating the steady-state probabilities): Use Algorithm A4 to populate the 
Markov chain. Then use algorithm A5 to calculate the steady-state probabilities π. 

Step 3 (holding costs): Set costs= i

Mi

i Sh ⋅∑
∈

. 

Step 4 (emergency shipment costs): Set costs=costs emer

ii

Mi

c⋅⋅+∑
∈

λπ1 .23  

Step 5a (transshipments; initializingA): Set index=2. 
Step 5b (transshipments; find state): Use algorithm A6 to obtain the state x corresponding 
to index. 
Step 5c (transshipments; initializingB): Set i=1. 
Step 5d (transshipments; select companies that need transshipments in this state): If xi=0, 
perform steps 5e and 5f. Else, proceed to step 5g. 

                                                 
23 Notation clarification: 1π  is the steady-state probability of being in a state where xi=0 for all i in M. We 

have used 0π  for this in Chapter 4 and 
M0π  in Chapter 7. In these algorithms we will pinpoint a Markov 

state with an integer number and due to the method chosen for this, the state where xi=0 for all i in M 
corresponds to the integer number 1. 
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Step 5e (transshipments; find company j that will source transshipment): Set 

)}(min)\(|{
)\(

trans

ji
iMj

trans

ji cciMjjJJ
∈

=∧∈= . Set )}(max|{ j
JJj

j xxJJjjJ
∈

=∧∈= . Set 

)min(Jj = . 

Step 5f (transshipments; add costs): Set costs=costs+ trans

jiiindex c⋅⋅ λπ . 

Step 5g (transshipments; iterationB): Set i=i+1. If i≤M return to Step 5d, else proceed to 
step 5h. 
Step 5h (transshipments; iterationA): Set index=index+1. If index≤MaxIndex return to 
Step 5b, else proceed to step 6. 
Step 6 (end): Return costs. 
 
Algorithm A4: Populating the Markov chain. 

Necessary input: S, MjMi

trans

MiiMii ij
cM ∈∈∈∈ ,)(,)(,)(, µλ . 

Explanation: This algorithm sets the steady-state state occupancy equations of the 
Markov chain in the variable Matrix. They will be used to calculate the steady-state 
probabilities π in algorithm A5. The variable index pinpoints a Markov state by an integer 
number; this is explained in more detail in algorithm A6. index ranges from 1 to 
maxIndex. The transition rate from state X to state Y is MatrixY,X. The sum of all transition 
rates out of state X is –MatrixX,X. MatrixX,MaxIndex+1=0 for all }1,...,2,1{ −∈ MaxIndexX . 

MatrixMaxIndex,X=1 for all }1,...,2,1{ +∈ MaxIndexX  (this is the property that the sum of all 

steady-state occupancies is 1 and “overwrites” the superfluous equations for state 
MaxIndex). Hence, a “row” },...,2,1{ MaxIndexZ ∈  of Matrix corresponds to the steady-

state occupancy equation 1,

1

, +

=

=⋅∑ MaxIndexZ

MaxIndex

index

indexZindex MatrixMatrixπ . 

Step 1 (initializing): Set maxIndex=∏
∈

+
Mi

iS )1( . Set 0, =YXMatrix  for all 

},...,2,1{ MaxIndexX ∈  and for all }1,...,2,1{ +∈ MaxIndexY . Set index=1. 

Step 2 (find state): Use algorithm A6 to obtain the state x corresponding to index. 
Step 3a (regular demands; initializing): Set i=1. 
Step 3b (regular demands; select companies that face regular demands in this state): If 
xi>0, perform steps 3c, 3d and 3e. Else, proceed to step 3f. 

Step 3c (regular demands; add transition out): Set iindexindexindexindex MatrixMatrix λ−= ,, . 

Step 3d (regular demands; find the index of the state with one less on-hand inventory for 

company i): Set j

temp

j xx =  for all j in M. Subsequently set 1−= temp

i

temp

i xx . Then use 

algorithm A7 to obtain the temp
index  corresponding to state xtemp. 

Step 3e (regular demands; add transition in): Set iindexindexindexindex
temptemp MatrixMatrix λ+=

,,
. 

Step 3f (regular demands; iteration): Set i=i+1. If i≤M return to Step 3b, else proceed to 
step 4a. 
Step 4a (transshipments; initializing): Set i=1. 
Step 4b (transshipments; select companies that need transshipments in this state): If 
index≠1 (i.e. the state where no company has any on-hand inventory) and xi=0, perform 
steps 4c, 4d, 4e and 4f. Else, proceed to step 4g. 
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Step 4c (transshipments; find company j that will source transshipment): Set 

)}(min)\(|{
)\(

trans

ji
iMj

trans

ji cciMjjJJ
∈

=∧∈= . Set )}(max|{ j
JJj

j xxJJjjJ
∈

=∧∈= . Set 

)max(Jj = . 

Step 4d (transshipments; add transition out): Set iindexindexindexindex MatrixMatrix λ−= ,, . 

Step 4e (transshipments; find the index of the state with one less on-hand inventory for 

company j): Set k

temp

k xx =  for all k in M. Subsequently set 1−= temp

j

temp

j xx . Then use 

algorithm A7 to obtain the temp
index  corresponding to state xtemp. 

Step 4f (transshipments; add transition in): Set iindexindexindexindex
temptemp MatrixMatrix λ+=

,,
. 

Step 4g (transshipments; iteration): Set i=i+1. If i≤M return to Step 4b, else proceed to 
step 5. 
Step 5a (repairs; initializing): Set i=1. 
Step 5b (repairs; select companies that get repairs in this state): If xi<Si, perform steps 5c, 
5d and 5e. Else, proceed to step 5f. 

Step 5c (repairs; add transition out): Set ( )iiiindexindexindexindex xSMatrixMatrix −⋅−= µ,, . 

Step 5d (repairs; find the index of the state with one more on-hand inventory for company 

i): Set j

temp

j xx =  for all j in M. Subsequently set 1+= temp

i

temp

i xx . Then use algorithm A7 

to obtain the temp
index  corresponding to state xtemp. 

Step 5e (repairs; add transition in): Set ( )iiiindexindexindexindex
xSMatrixMatrix temptemp −⋅+= µ

,,
. 

Step 5f (repairs; iteration): Set i=i+1. If i≤M return to Step 5b, else proceed to step 6. 
Step 6 (normalizing equation): Set MatrixMaxIndex,X=1 for all }1,...,2,1{ +∈ MaxIndexX . 

Step 7 (end): Return Matrix. 
 
Algorithm A5: Gaussian Elimination to calculate the steady-state probabilities 
Necessary input: Matrix, m. 
Explanation: Recall from algorithm A4 that a “row” },...,2,1{ MaxIndexZ ∈  of Matrix is 

the steady-state occupancy equation 1,

1

, +

=

=⋅∑ MaxIndexZ

MaxIndex

index

indexZindex MatrixMatrixπ . For 

notational ease, let m=MaxIndex. This Gaussian elimination algorithm takes a set of m 
equations with m unknowns: π1 through πm. It first eliminates π1 from all equations below 
the first, then eliminates π2 from all equations below the second, etc. This forward-
elimination puts the system into triangular form. The second part of the algorithm, back-
substitution, consists of solving for the unknowns in reverse order. Since Gaussian 
Elimination is a well-known algorithm, only a brief description will be given here. 
Step 1a (forward elimination; initializing): Set i=1 and set j=1. 

Step 1b (forward elimination; find pivot): Set ( ))(maxarg ,
},...,2,1{

jk
miik

MatrixabsMaxi
++∈

= . 

Step 1c (forward elimination; row operations): If 0, ≠jiMatrix  then swap rows i and 

Maxi, subsequently divide each entry in row i by jiMatrix , , subsequently for all 

},...,2,1{ miir ++∈  subtract ⋅jrMatrix , (row i of Matrix) from (row r of Matrix), and 

finally set i=i+1. 
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Step 1d (iteration): Set j=j+1. If mi ≤  and 1+≤ mj  then return to step 1b, else proceed 

to step 2a. 
Step 2a (backwards elimination; initializing): Set r=m. 
Step 2b (backwards elimination; start calculation): Set πr=Matrixr,m+1. Set k=m. 

Step 2c (backw. el.; iterative calculation): If rk +≥ 1  then set krkrr Matrix ,⋅−= πππ , 

subsequently set k=k-1 and finally do step 2c again; else proceed to step 2d. 
Step 2d (backw. el.; iteration): Set r=r-1. If 1≥r  return to step 2b, else proceed to step 3. 
Step 3 (end): Return π. 
 
Algorithm A6: Obtaining the Markov state corresponding to its index number. 
Necessary input: index, M, S. 

Explanation: We can pinpoint an array x of integers, 0≤xi≤Si, Mi ∈ , with a unique 

index by the following formula: ( )∑ ∏
= +=











+⋅+=

M

i

M

ij

ji Sxindex
1 1

11  (where the empty 

product is 1), i.e. index iterates over all states in a semi-lexicographic way. We will 
illustrate how this formula works via an example. Let M=3 and let S={2,4,9}. The 
minimum index is 1 and corresponds to x={0,0,0}. Index 2 corresponds to x={0,0,1}, 
index 10 corresponds to x={0,0,9} and index 11 corresponds to x={0,1,0}. State 
x={0,3,6} corresponds to index 1+(3·10)+(6)=37. State x={2,4,9} corresponds to the 
maximum index: 1+(2·5·10) +(4·10)+(9)=150. For this S, 150 is used in other algorithms 
as the variable MaxIndex; it is the number of states in the Markov chain. Finding the state 
corresponding to an index number (i.e. the goal of this algorithm) is slightly more 
difficult and uses the notion of a vector indexEquivalent. indexEquivalenti basically says 
that in order to reach a state with xi=1 and xj=0 for all j≠i, we would have had to go over 
indexEquivalenti indices previously. For example, if S={2,4,9} then in order to reach 
x={0,1,0} we previously had {0,0,0}, {0,0,1}, …, {0,0,9}, which is 10 states and in order 
to reach x={1,0,0} we previously had (4+1) ·(9+1) states, so indexEquivalent3=50.  

Step 1 (initializing): For all i in M, set xi=0 and set ∏
+=

+=
M

ij

ji SalentindexEquiv
1

1 (where 

the empty product is 1). Set i=1. 
Step 2a (check whether the array associated with this remaining index reached an 
increase of arrayi): If index>indexEquivalenti then proceed to step 2b. Else proceed to 
step 2c. 
Step 2b (decrease remaining index and increase array): Set index=index-indexEquivalenti, 
and subsequently set xi=xi+1. Finally, return to step 2a. 
Step 2c (iteration): Set i=i+1. If i≤M, return to step 2a. Else proceed to step 3. 
Step 3 (end): return x. 
 
Algorithm A7: Obtaining the index number corresponding to its Markov state. 
Necessary input: x, M, S. 

Step 1 (calculation): Return ( )∑ ∏
= +=











+⋅+

M

i

M

ij

ji Sx
1 1

11  (where the empty product is 1). 
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Appendix 13: Algorithms needed to calculate cost 
functions of a simple partial pooling game 
 
Calculation of the cost functions for simple partial parts pooling game (which are covered 
in Chapter 7) involves creating a Markov chain and calculating steady-state probabilities. 
Furthermore, calculating optimal costs when base-stock levels are to-be-optimized 
involves finding an optimal solution in an infinite space (which can be bounded and 
enumerated efficiently). The algorithms that do this are quite briefly described in this 
Appendix and are implemented in a Java application. The description will be brief and 
informal, as most can already be inferred from slightly adjusting the algorithms that were 
presented in Appendices 8 and 12. 
 
Algorithm A8: Calculating the minimum costs of a coalition M when S is to-be-

optimized. 

Necessary input: Mi

emer

MiiMii i
chM ∈∈∈ )(,)(,,)(, µλ . 

This part is extremely similar to the part “Starting at zero, increase S until SM* and c(M) 

found“ described in Appendix 8. However, it obtains minCosts via a call to Algorithm A9 
instead. 
 
Algorithm A9: Calculating the costs of a coalition M for a given S. 

Necessary input: S, Mi

emer

MiiMii i
chM ∈∈∈ )(,)(,,)(, µλ . 

This algorithm starts by creating a vector Tœ�0
M such that Ti=0 for all i in M  and 

calculating ∑
∈

=
Mi

iSStot . It then obtains a Markov chain via Algorithm A10 and finds 

steady-state probabilities π using Gaussian elimination. It then calculates corresponding 

costs using equation (7.3). Then it obtains the next T for which Mi ST ≤≤0  for all 

Mi ∈ , finds π  and calculates costs again via (7.3). This continues until all T for which 

Mi ST ≤≤0  have been checked and the minimum costs found for all those is returned. 

  
Algorithm A10: Populating the Markov chain. 

Necessary input: Stot, MiiMii TM ∈∈ )(,,)(, µλ . 

This function iterates over all states 0≤x≤Stot. For each state, it adds the transition types 
described in Section 7.4 to a Matrix containing the steady-state state occupancy equations 
of the Markov chain. So, this algorithm is very similar to Algorithm A4 (see Appendix 
12), albeit with less complex transition types and with a simpler state space. 
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