
 Eindhoven University of Technology

MASTER

Cost allocation and cooperation stability in spare parts inventory pooling

Karsten, F.J.P.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7c0793fa-b554-4de7-b572-301bb92e80b4

 i

Eindhoven, May 2009

BSc Industrial Engineering & Management Science — TU/e 2006
Student identity number 513114

in partial fulfilment of the requirements for the degree of

Master of Science

in Operations Management and Logistics

Supervisors:
dr. M. Slikker, TU/e, OPAC
prof. dr. ir. G.J. van Houtum , TU/e, OPAC

Cost allocation and cooperation
stability in spare parts inventory

pooling

by
Frank Karsten

 ii

TUE. Department Technology Management.
Series Master Theses Operations Management and Logistics

Subject headings: game theory; balancedness; lateral transshipments; inventory pooling;
spare parts

 iii

Abstract

Companies that stock low-demand expensive spare parts for complex machines can
cooperate with other companies that stock the same parts by inventory pooling. This may
be implemented via keeping own stockpoints but allowing lateral transshipments in case
a demand cannot be satisfied by its own stockpoint. A reduction in total system costs can
be achieved this way. This paper deals with the problem of how to distribute these costs
between cooperating companies, using cooperative game theoretical models. An
investigation on existence of stable cost allocations and selection of proper cost
allocations is made.

 iv

Preface

This Master Thesis is the result of my graduation project of the Master program
Operations Management and Logistics at Eindhoven University of Technology (TU/e).
The project took place from October 2008 to April 2009 within the Operations, Planning,
Accounting, and Control (OPAC) group of the Industrial Engineering & Innovation
Sciences department of the TU/e.

First of all, I would like to thank Marco Slikker, my first supervisor, for your guidance
and all the time you invested in my project. I greatly appreciate your constructive
feedback, valuable suggestions, critical remarks and helpful ideas and I learned a lot from
all the discussions we had. You also helped me to stay on the right track during my
project. I would also like to express my thanks to Geert-Jan van Houtum, my second
supervisor, for your knowledge and your feedback on my reports. Furthermore, I am
grateful to both of you for helping me in my choice on whether to continue the research
as a PhD after this project.

Finally, I would like to thank my family for their love and support. And thanks also go
out to my fellow students and friends. Without you, my years of study at the university in
Eindhoven would not have been as pleasant and enjoyable as they have been.

Frank Karsten

Eindhoven, May 2009

 v

Summary

Topic introduction

Equipment-intensive “high-tech” industries are often confronted with the difficult task of
maintaining high availability of their systems. To combat costly downtimes, spare parts
for these machines are kept on stock, such that a failed component can be replaced
quickly. Lateral transshipments between locations (also referred to as inventory pooling)
represent an effective strategy to improve a company’s system availability while reducing
the total system costs. Lateral transshipments are used to satisfy a demand at a location
that is out of stock from another location with a surplus of on-hand inventory.

In settings where each location constitutes an independent company, the analysis of cost
sharing amongst the participating companies in a pooling group becomes important.
Game theoretic models are appropriate for this. A cooperative spare parts pooling game is
characterized by a cost function that determines for a group of cooperating players (a
coalition) the yearly expected costs they will have to pay. When we venture into the topic
of cost distributions, an important concept is the core; the set of cost allocations that
allocate all costs fully and in such a way that no coalition has to pay more than they
would have had to pay by acting alone. So, if the core is non-empty, then it is possible to
split costs in such a way that no coalition has an incentive to leave the grand coalition
(the one including all players) and form a smaller coalition on its own.

Problem statement and research questions

We made the following problem statement:
The scientific literature currently gives no insight into the non-emptiness of the core in a

spare parts pooling game and there is insufficient knowledge about proper cost

allocation policies that are proven to be in the core of the cooperative game. This lack of

managerial insights may impede profitable collaboration on spare parts pooling.

Based on this, we posed the following research questions:
Research question 1a: Does a simple spare parts pooling game, with the base-stock levels
already pre-determined at arbitrary values, have a non-empty core?
Research question 1b: Does a simple spare parts pooling game, where the base-stock
levels are not yet determined and can still be jointly optimized, have a non-empty core?
Research question 2: What is a proper cost allocation policy for a simple spare parts
pooling game?
Research question 3: Can we generalize results to a more complex setting?

 vi

Mathematical model

The most important assumptions made in the spare parts inventory model are:

• If a spare part fails, it is replaced with a spare part if one is on stock at the
corresponding company. If no spare part is available at the corresponding company
when the part fails, but another cooperating company has a surplus on-hand
inventory, a lateral transshipment is used. Full pooling is assumed.

• If none of the cooperating companies has a part available, an emergency supply is
instigated and the failed machine goes down until the emergency part arrives.

• A failed part is immediately sent into repair (therefore, the inventory system at one
company can be seen as being controlled by a base stock policy), after which it is
returned to the company.

• There are two relevant types of costs: holding costs and emergency (downtime and
shipment) costs. Transshipment (downtime and shipment) costs are assumed to be
zero in order to simplify calculations. These parameters, together with given base-
stock levels, make up a cost function that gives the expected yearly costs for a
coalition of companies.

We discern two cases:

• Base-stock levels are already pre-determined at fixed arbitrary values.

• Base-stock levels can be jointly optimized within a coalition. Then their characteristic
costs are found by using the cost-minimizing base-stock levels.

Research question 1: The cores of simple spare parts pooling games

When we assume that base-stock levels are fixed, we proved that:

• For a game where all companies have the same demand rate and the same fixed base-
stock levels (other parameters may be asymmetrical), the core is non-empty.

• For a game where all companies have the same emergency costs and the same
demand rates (and possibly different base-stock levels), the core is non-empty.

When we assume that base-stock levels are to-be-optimized, we proved that:

• For a game where companies are fully identical, the imputation set (the set of all
individually rational efficient cost allocations) is non-empty. But a non-empty
imputation set does not always imply a non-empty core.

• For a three-player game where companies are fully identical with realistic real-life
base-stock levels, the core is non-empty.

Based on the results of a numerical experiment, we conjectured that any game associated
with a spare parts inventory situation where all companies have the same emergency
costs has a non-empty core. Games with empty cores have also been found. These are
rare, but most often found for games associated with spare parts inventory situations in
which the emergency costs differed largely between companies, and where companies
had very low repair rates and/or very high holding cost rates. In these games, emergency
costs dominate holding costs and companies with low emergency costs take spare parts
that would have better been saved for companies with high emergency costs.

 vii

Research question 2: Cost allocations

There is a trade-off between (i) simplicity, (ii) always being in the core, (iii) fairness
(various fairness properties appropriate for the spare parts setting were defined, e.g., if a
company gets a higher demand rate, it should not be allocated less costs). Many
allocation methods were considered and tested in a large numerical experiment, but so far
no policy was found that satisfies all three requirements. Currently, no allocation rule is
available that that easily handles the intricacies of large-scale cooperations of
asymmetrical companies well. Two allocations rules that performed reasonably well and
that can specifically be applied to spare parts pooling games are:

Allocation SPLIT: Total holding costs are allocated based on the demand rate of each
company. Each company pays their own local emergency costs.
The Shapley value: A well-established allocation rule in game theory literature. The idea
is to allocate total costs based on the average contribution made to each possible coalition
to which a company could belong.

Observations that we can draw from the results of the numerical experiment are:

• For games with 2 companies and/or games with fixed base-stock levels, the
Shapley value was often in the core (compared to other allocation rules).

• For games with 3 or 4 companies and/or games with to-be-optimized base-stock
levels, allocation rule SPLIT relatively often gave core elements.

Research question 3: Can we generalize results to a more complex setting?

We investigated a setting where transshipment costs were non-negligible with a small
numerical experiment. Initial findings indicate that adding transshipment costs does not
have a large effect on non-emptiness of the core. However, the cost allocation methods
considered above less often produced core elements. However, we stress that this was a
very limited study. We also investigated a setting with a smart partial pooling rather than
full pooling. Initial findings indicate that using this partial pooling approach leads to
significantly fewer games with empty cores. Finally, allocation rules SPLIT and the
Shapley value performed best for these more complex settings.

 viii

Table of contents

Abstract .. iii
Preface.. iv
Summary... v
Table of contents.. viii
Chapter 1: Introduction ... 1

1.1: Introduction to spare parts and METRIC .. 1
1.2: Literature overview of lateral transshipments models... 1
1.3: Introduction to cooperative game theory and the core concept 3
1.4 Literature overview of cost allocations... 4

Chapter 2: Research proposal ... 6
2.1: Problem statement.. 6
2.2: Research objectives and research questions .. 6
2.3. Layout of the report ... 8

Chapter 3: Spare parts inventory situations .. 9
3.1. Assumptions... 9
3.2 General spare parts inventory situation... 10
3.3 More restrictive spare parts inventory situation classes 10
3.4 Reasonable numerical values.. 11

Chapter 4: Simple spare parts pooling games... 13
4.1. Introduction.. 13
4.2 Stock-out probability for a simple spare parts inventory situation 13
4.3 Structure of the cost function.. 15
4.4. Characteristic cost function for a simple spare parts pooling game with fixed
base-stock levels ... 16
4.5. Characteristic cost function for a simple spare parts pooling game with to-be-
optimized stock levels... 16
4.6 Example games ... 17

Chapter 5: The core of simple spare parts pooling games .. 19
5.1: Simple pooling games with fixed base-stock levels .. 19

5.1.1: Situations with identical λ and S ... 19
5.1.2: Situations with identical λ, and cemer ... 20

5.2: Simple pooling games with to-be-optimized stock levels 22
5.3: Examples of games with empty cores.. 25
5.4: Numerical experiment.. 26
5.4.1 Setup of the numerical experiment: spare parts inventory situations 26
5.4.2 Setup of the numerical experiment: rule on base-stock levels......................... 28
5.4.3 Results of the numerical experiment: Simple pooling games with to-be-
optimized base-stock levels .. 28
5.4.4 Results of the numerical experiment: Simple pooling games with fixed base-
stock levels.. 30
5.4.5: Results of the numerical experiment: 2-player games.................................... 33
5.5 Chapter summary.. 34

Chapter 6: Cost allocation in simple spare parts pooling games 36
6.1. Proposed cost allocations... 36

 ix

6.2. Properties of cost allocations ... 38
6.2.1 Efficiency... 38
6.2.2 Stability.. 39
6.2.3 Monotonicity (in λ, in h, and in cemer) .. 39
6.2.4 Symmetry... 43
6.2.5 Demand dummy property .. 44
6.2.6 Final remarks on cost allocation fairness... 45
6.3 Numerical experiment on cost allocations.. 46

Chapter 7: More complex settings .. 51
7.1 Steady state probabilities for a general spare parts inventory situation.............. 51
7.2. Characteristic cost functions of general pooling games 52
7.3: Numerical experiment - cores and cost allocations in general spare parts pooling
games .. 53
7.4 Steady state probabilities for a simple spare parts inventory situation with partial
pooling .. 55
7.5. Characteristic cost functions of simple partial pooling games 56
7.6: Numerical experiment - cores and cost allocations in simple partial pooling
games .. 57

Chapter 8: Conclusions ... 59
8.1: Conclusions regarding the research questions ... 59
8.2: Directions for future research .. 61

References... 62
Appendix 1: Literature overview of lateral transshipment models................................... 64
Appendix 2: Game Theory.. 67
Appendix 3: Justification of assumptions ... 70
Appendix 4: Classes of spare parts inventory situations .. 72
Appendix 5: Realistic parameter values for spare parts inventory situations................... 73
Appendix 6: The Erlang loss function is decreasing in multiplication. 74
Appendix 7: Proof to Lemma 5.4 ... 76
Appendix 8: Program description ... 79
Appendix 9: Example games for section 5.4 .. 89
Appendix 10: All cost allocations... 93
Appendix 11: Proof to Lemma 6.3 ... 95
Appendix 12: Algorithms needed to calculate cost functions of a general spare parts
pooling game... 97
Appendix 13: Algorithms needed to calculate cost functions of a simple partial pooling
game.. 102

 1

Chapter 1: Introduction

In this chapter, an overview of relevant literature is given. In section 1.1, we introduce

the spare parts inventory problem and a well-known model: METRIC. In section 1.2, we

review spare parts inventory models with lateral transshipments. In section 1.3, we

introduce cooperative game theory and the core concept. In section 1.4, we review the

literature on cost allocations.

1.1: Introduction to spare parts and METRIC

Equipment-intensive “high-tech” industries such as airlines, nuclear power plants,
medical equipment manufacturers, and complex lithography machines are often
confronted with the difficult task of maintaining high availability of their systems. A
random failure of just one component can cause the system to go down. To combat these
costly downtimes, spare parts for these machines are kept on stock, such that a failed
component can be replaced quickly. However, spare parts tend to be quite expensive,
which leads to a trade-off between downtimes and inventory investment. As such,
important questions to answer are: how many of each spare part should be acquired and
kept on stock? And in case the complex machines are geographically dispersed, where
should the spare parts be placed?

Spare part inventory systems have been analyzed quite extensively in the literature. An
appropriate mathematical model to study the repairable spare parts stocking problem is
METRIC (Multi-Echelon Technique for Recoverable Item Control) developed by
Sherbrooke (1968). This model considers multi-location inventory systems. For each
location we use a base-stock level of S, or one-for-one replenishment, i.e. a failed part
will be added back to the spares stock after it is repaired. This can be seen as an (S-1,S)
ordering policy. METRIC can help to determine optimal base-stock levels during the
acquisition phase of repairable components. Key elements of the METRIC analysis are
the assumptions that a location faces Poisson distributed failures (with subsequent
demand for spare parts) and that all locations have ample repair capacity. These
assumptions facilitate the analysis. See Sherbrooke (2004) and Rustenburg et al. (2003)
for more information on METRIC-type models.

1.2: Literature overview of lateral transshipments models

Lateral transshipments between locations (also referred to as inventory pooling) represent
an effective strategy to improve a company’s system availability while reducing the total
system costs, particularly in cases where the transshipment costs are low compared to the
downtime costs. Pooling refers to an arrangement in which different locations cooperate
by sharing their inventories. Lateral transshipments are used to satisfy a demand at a
location that is out of stock from another location with a surplus of on-hand inventory.

 2

The basic METRIC model does not allow lateral transshipments. However, lateral
transshipment models have been analyzed quite extensively in the literature. Of the
lateral transshipment models available in the literature, we are interested in those models
with characteristics that are typical for METRIC (applicable to repairable expensive spare
parts): one-for-one replenishment, continuous review policies, and Poisson demands. A
comprehensive review of these inventory models is provided in Appendix 1. A short
overview and classification of the models used in these papers is given in Table 1.1.

Table 1.1: A brief review of the literature on METRIC-type models with transshipments. In the column “costs

considered”, (BOmax) and (Wj,max) implies that downtime/backorder costs are not considered but rather

shipment and holding costs are minimized subject to a maximum on backorders (BOmax) or waiting times

(Wj,max). In the column “delayed laterals allowed”, “yes” means that a lateral transshipment is instigated when a

repaired spare part arrives at a certain location while another location has a spare part in backorder, and “pro-

active laterals” means that lateral transshipments are allowed before a location faces demand while out of stock.

Paper Number
of
echelons

Number
of items

Lateral
transship-
ment time

Backorders
or
emergency
shipment

Costs con-
sidered

Delayed
laterals
allowed?

Type of
pooling

Lateral
transshipment
sourcing rule

Remarks

Lee (1987) 2 Single Negligible Backorders Holding,
backorder,
transship

No complete
pooling;
N groups

random or
maximum
stock

Focus on modeling
outstanding orders;
identical locations

Axsäter
(1990)

2 Single Negligible Backorders None No complete
pooling;
N groups

random Focus on modeling
effective demand
rate; exponential µ

Alfredsson
and
Verrijdt
(1999)

2 Single Non-
negligible,
but
identical
for all local
warehouses

Emergency
shipment

Holding,
replenish,
transship,
emergency,
waiting
penalty

No complete
pooling

random Only one pooling
group; uses
Markov analysis

Kukreja et
al (2001)

1 Single Negligible Backorders Holding,
transship,
(BOmax)

No complete
pooling

Lowest
transshipment
cost

Show that service
performance is not
very sensitive to
the type of repair
time distribution

Grahovac
and
Chakravar-
ty (2001)

2 Single Non-
negligible,
determinis-
tic

Backorders
and
emergency
shipment

Holding,
shipment,
waiting

pro-
active
laterals

complete
pooling

random Retailers place
emergency orders
once inventory is ≤
trigger level

Wong et al
(2005a)

1 Single Depends on
distance

Backorder Holding,
transship,
downtime

Yes complete
pooling

Closest
neighbor

Multi-hub setting
applicable to
airline industry

Wong et al
(2006)

1 Multi Depends on
item

Emergency
shipment

Holding,
transship,
emergency,
(Wj,max)

No complete
pooling

N/A (only 2
companies)

System approach

Wong et al
(2007a)

1 Single Depends on
distance

Backorder Holding,
transship,
downtime

Yes Partial
pooling

Closest
neighbor

Game theoretic
models used

Wong et al
(2007b)

2 Multi Depends on
distance

Emergency
shipment

Holding,
transship,
emergency,
(Wj,max)

No complete
pooling

Closest
neighbor

Shows that two-
echelon system is
not worthwhile
when transship-
ments possible

Kranen-
burg & Van
Houtum
(2008)

1 Multi Depends on
distance

Emergency
shipment

Holding,
transship,
emergency,
(Wj,max)

No From
main
ware-
houses
only

From main
warehouses
only

Show that only a
small number of
main local
warehouses is
sufficient

 3

1.3: Introduction to cooperative game theory and the core concept

So far, we have silently assumed centralized control, in which there is only one company
with a central planner with the objective to minimize the total system costs. As the use of
lateral transshipments generally1 reduces system costs, this central planner will force all
locations to use them. However, in settings where each location constitutes an
independent company2, each company will only agree to pool their spare parts with other
companies if doing so will bring more profits to himself. In such a case, the analysis of
the cost sharing amongst the participating companies in a pooling group becomes
important. Game theoretic models are appropriate for this.

The following preliminary on cooperative game theory and the core concept is taken
from Slikker (2007). Cooperative game theory primarily deals with joint profits that can
be obtained by groups of players if they coordinate their actions. Let us assume we have
n different companies that stock spare parts and that can cooperate via lateral
transshipments. In game theory, these companies are referred to as players, with
N={1,2,…,n} the set of players. A subset of N is called a coalition and is denoted by M.
The grand coalition refers to M=N. The costs of the coalition M (i.e., the total holding,
shipment, and downtime costs made by all companies in this pooling group) can be stated
in a single number (in $) and are freely transferable between the players of M (this means
that companies can make transfer payments to each other). The costs payable by the
group of cooperating players M is denoted as c(M), i.e. c is the characteristic cost

function that assigns to every nonempty coalition M ⊆ N a value c(M). A pair (N,c)

constitutes a cooperative game. If ∑ ∈
≤

Ni
Ncic)(})({ then cooperation is beneficial for

the grand coalition as a whole.

We now return to the interesting issue of how to distribute the total system costs to each
member of a pooling group. Individual companies will, after all, be primarily interested
in the individual benefits they can get out of a pooling arrangement. These allocations
can be represented with an allocation vector ∈x �

N, which specifies for each player i∈N
the costs that this player will have to pay if all players cooperate (i.e., they form the grand
coalition). There are a couple of interesting conditions that allocation vectors can satisfy:

• Efficiency: ∑
∈

=
Ni

i Ncx)(

• Individual rationality: })({icxi ≤ for all i∈N.

• Stability: ∑
∈

≤
Mi

i Mcx)(for all M ⊆ N.

The first condition (efficiency) says that all the costs created are in fact split fully among
members of the grand coalition.

1 If transshipment costs are too high, the use of transshipments may actually increase costs. Furthermore, if
full pooling is used while companies have different downtime costs, this may also have adverse effects, as
will be shown in Chapter 5.
2 A real life example may be multiple airline companies, who use the same type of aircrafts and
independently stock the same spare parts at separate locations.

 4

The second condition (individual rationality) implies that the costs allocated to a player
are at most as much as what he had to pay by staying alone. The third condition (stability)
says that the costs allocated to any subset of players should be at most as much as what
they had to pay by only cooperating together. The set of all individually rational and
efficient allocations is called the imputation set. The set of all stable and efficient
allocations is called the core. The core is a subset of the imputation set.

This well-established core concept can be used to “solve” the problem of obtaining a cost
allocation that all players can accept. If the core of a game is non-empty, then the total
costs for the grand coalition can be distributed to each player in such a way that the costs
allocated to any coalition are not larger than the costs that this coalition would have had
to pay while acting independently. So, if the costs are split according to a core-element
then no coalition has an incentive to leave the grand coalition and form a smaller
coalition on its own. Non-emptiness of the core is therefore an important property.

We will now describe the concept of balancedness. A game has a non-empty core if and

only if it is balanced. Define for all NM ⊆ the vector M
e by 1=M

ie for all Mi ∈ and

0=M
ie for all MNi \∈ . Let N2 denote the set consisting of all subsets of N.

A map]1,0[}0{\2: →/Nκ is called a balanced map if: ∑
/∈

=
oM

NM

N

eeM
\2

)(κ .

A game (N,c) is balanced if for every balanced map κ : ∑
/∈

≥
oM N

NcMcM
\2

)()()(κ .

In Appendix 2, all balancedness conditions for games with 3 and 4 players are stated.

1.4 Literature overview of cost allocations

If the core of a game is non-empty but consists of more than one element, an interesting
question is “which core element should we choose to fairly allocate costs to each pooling
member?” In this section, we will first describe two cost allocations that are well-
established in the literature: the Shapley value and the nucleolus (descriptions based on
Slikker, 2007 and Young, 1994, which provides interesting properties of these cost
allocations). Subsequently, we provide a brief overview of relevant studies on inventory
pooling and/or cost allocation.

The Shapley value),(cNΦ is the unique allocation method that is efficient, symmetric,

charges zero players nothing, and is additive (see Appendix 2 for definitions):

()∑
⊆

−∪⋅
−−⋅

=Φ
}\{

)(}){(
|!|

)!1|(||!|
),(

iNM

i MciMc
N

MNM
cN for all iœN.

The nucleolus),(cNν is the unique allocation x that maximizes the vector θ(x) lexico-

graphically, where θ(x) has the satisfactions of payoff vector x to coalition M ⊆ N,

∑
∈

−
Mi

ixMc)(, ordered increasingly. See Appendix 2 for a more detailed explanation.

 5

Hartman and Dror (1996) suggested three criteria to judge the value of an allocation
method:

• Stability (the allocation is in the core of the cooperative game);

• Justifiability (the allocation methods for a cost and benefit game are consistent;
i.e. each player’s benefit is equal to his individual costs minus his allocated cost);

• Polynomial computability (a computationally easy algorithm).
It was shown that the Shapley value (for a convex game) and the nucleolus satisfy the
first two conditions, but they require computations of order O(2n).

To the best of our knowledge, Wong et al. (2007a) is the first study in the context of
spare parts pooling that deals with cost allocations. Four cost allocation policies are
proposed:

• Allocate the inventory holding cost based on the number of spare parts stocked at
each company; allocate the downtime cost based on the local downtime at each
company; and a lateral transportation cost is always paid by the receiving
company.

• Allocate the inventory holding cost and lateral transportation cost based on the
demand rate of each company; and allocate the downtime cost based on the local
downtime at each company.

• Allocate the total cost based on the demand rate of each company.

• The Shapley value.
They apply these four cost allocation policies to a numerical example of a three-company
pooling problem, and all four give cost allocations that are in the core of the game. Note
that they do not prove non-emptiness of the core, nor do they show that these allocation
policies will always be in the core for any input parameters, nor are explanations for the
choice of these allocation policies provided. Afterwards, they analyze a non-cooperative
setting and a setting with imperfect information. The future research directions identified
in their paper provide the inspiration for the research proposal in the next chapter.

Kilpi et al. (2008), who study cooperative strategies for the availability service of repairable

aircraft components, mention three cost allocations:

• Share the benefits according to annual demand volume.

• Share the benefits to obtain equal relative savings from joining the pool.

• Share the benefits according to relative incremental pool contribution.
Unfortunately, no clear definitions of these allocations are provided. The first allocation
is similar to the third allocation of Wong et al. (2007a), except that benefits rather than
costs are allocated.

 6

Chapter 2: Research proposal

In this chapter, we give an overview of the proposed research. In section 2.1, we

formulate a problem statement. In section 2.2, we formulate research questions, which

flow naturally from the problem statement. In section 2.3, we lay out the contents of the

remainder of this thesis.

2.1: Problem statement

In the previous chapter, it was shown that the issue of lateral transshipments in spare
parts inventory systems has been a fruitful area of research. However, there is currently a
lack of knowledge regarding the stability of cooperation and fair allocation of costs
among individual companies that stock spare parts and that can cooperate by means of
lateral transshipments. Wong et al. (2007a) have recognized the need to address this
problem, but do not attend to the matter of core non-emptiness. They merely state: “Many
previous studies have shown that pooling is beneficial in most cases having non-extreme
situations ... Moreover, increased savings are realized when more companies are
involved. Consequently, most games associated to the spare part pooling have a non-
empty core.” While this supports the notion that the imputation set of a spare parts
pooling game is non-empty, non-emptiness of the core is not a foregone conclusion yet.
And while Wong et al. (2007a) provide examples of cost allocation policies, no policy is
developed that is proven to be in the core of the game. They do identify these issues as
future research directions, however.

Based on these observations, we make the following problem statement:
The scientific literature currently gives no insight into the non-emptiness of the core in a

spare parts pooling game and there is insufficient knowledge about proper cost

allocation policies that are proven to be in the core of the cooperative game. This lack of

managerial insights may impede profitable collaboration on spare parts pooling.

2.2: Research objectives and research questions

Now that the problem has been stated, we formulate research questions which aim to
provide a solution to this problem. During the research, we will look at two types of
situations, which will be introduced first:

Situation FIX: Every company has already chosen their base-stock levels and they are
fixed, i.e. they cannot be altered anymore after a company would join a coalition. This
situation could come up when companies consider a short-term cooperation and the costs
of buying and/or selling expensive spare parts to optimize base-stock levels just for that
short time period are too high. This situation could also happen when the spare part in
question is not in production anymore and hence changing inventory levels is practically
impossible.

 7

Situation OPT: The companies have not yet determined their base-stock levels and/or
they can still be jointly optimized, i.e. for each coalition an optimal (cost-minimizing)
base-stock vector (which contains the base-stock levels of all companies in a coalition)
can be found. This situation could come up when companies want to go for a long-term
cooperation and/or when a new complex machine is installed for which no spare parts
have yet been bought.

The goal of the proposed research is to answer the following questions:

Research question 1a: Does a simple3 spare parts pooling game, with the base-stock
levels already pre-determined at arbitrary values, have a non-empty core?

• Is the imputation set non-empty for any combination of input values?

• Is the core non-empty for any combination of input values?

• If not, what are sufficient conditions for non-emptiness?

Research question 1b: Does a simple spare parts pooling game, where the base-stock
levels are not yet determined and can still be jointly optimized, have a non-empty core?

• Is the imputation set non-empty for any combination of input values?

• Is the core non-empty for any combination of input values?

• If not, what are sufficient conditions for non-emptiness?

Research question 2: What is a proper cost allocation policy for a spare parts pooling
game?

• What are relevant criteria of stability, fairness and simplicity that are appropriate
for a cost allocation in the context of spare parts pooling?

• What is a cost allocation policy for a simple spare parts pooling game, with pre-
determined arbitrary base stock levels, that adheres to these criteria?

• What is a cost allocation policy for a simple spare parts pooling game, with to-be-
optimized base stock levels, that adheres to these criteria?

Research question 3: Can we generalize results to a more complex setting?

• What insights can we provide regarding stability of cooperation and proper cost
allocations for a game with non-negligible lateral transshipment costs and for a
game with a partial pooling approach?

3 We aim to provide a mathematical proof for non-emptiness of the core for the most complex spare parts
pooling game that we can still properly analyze within the time frame of this project. Hence, a simple spare
parts pooling game is one associated with a single-echelon spare parts inventory system, consisting of N
companies with the same repair rates (but potentially non-identical in other parameters), with negligible
lateral transshipment times. This will all be described more clearly/formally in subsequent chapters.

 8

2.3. Layout of the report

The remainder of the report is structured as follows. Chapter 3 provides an overview of
the modeling assumptions and defines the concept of spare parts inventory situations.
Chapter 4 details the characteristic cost function of simple spare parts pooling games and
finishes with an example game. We deal with research question 1 in Chapter 5. This
chapter investigates the core of simple spare parts pooling games; it provides certain
proofs of non-emptiness and includes a large numerical experiment. We deal with
research question 2 in Chapter 6. This chapter introduces interesting cost allocations and
cost allocation properties, and includes a large numerical experiment. We deal with
research question 3 in Chapter 7. This chapter details the characteristic cost function of a
general spare part pooling game and a spare part partial pooling game and includes a
small numerical experiment. We end with conclusions in Chapter 8.

 9

Chapter 3: Spare parts inventory situations

In this chapter we introduce spare parts inventory situations. In section 3.1, we provide

an overview of the assumptions that are used throughout this thesis. In sections 3.2 and

3.3, we define spare parts inventory situations. In section 3.4 we provide reasonable

values for the input parameters.

3.1. Assumptions

The spare parts inventory model analyzed in this thesis can be characterized as a single-
echelon, multi-location, single-item model. The main assumptions on the spare parts
inventory model throughout this thesis are as follows (for a justification of these
assumptions, see Appendix 3):

• Demand process: Failures (demands for spare parts) occur according to independent
Poisson processes with constant rate (i.e. there is an infinite source of failures),
although each company may have a different rate. If a part fails, it is replaced with a
spare part if one is on stock at the corresponding company. We consider only one
type of spare part (i.e. a single-item model).

• Cooperation process: If no spare part is available at the corresponding company
when the part fails, but another cooperating company has a surplus on-hand
inventory, a lateral transshipment is used from the neighbor that leads to the lowest
transshipment costs (with ties broken by sourcing from the neighbor with largest
stock on-hand). Complete pooling is applied between cooperating companies4.

• Repair process: A failed part is immediately sent into repair (therefore, the inventory
system at one company i can be seen as being controlled by a base stock policy with

base-stock level ∈iS �0) and repair lead times are independent and exponentially

distributed. Repaired parts are returned to the company that fulfilled the demand for
the spare part. All parts are perfectly repairable and there is no condemnation.

• Emergency supply: If none of the cooperating companies has a part available, an
emergency supply is instigated from an outside infinite source and the machine with
the failed part goes down until the emergency part arrives. It is assumed that the
expected emergency (downtime and shipment) costs are smaller than the expected
downtime costs during a repair, but larger than the expected lateral (downtime and
shipment) costs. The failed part is lost to the emergency supplier and does not return
to the inventory system.

• Cost parameters: There are three relevant types of costs. The first is holding costs,
which refers to the yearly capital and storage costs per unit on stock. These costs are
incurred when the unit is in the on-hand inventory, but also when it is in repair. The
second type of costs is the expected emergency (downtime and shipment) costs. This
is the expected total costs incurred when an emergency shipment has to be done.

4 This assumption of complete pooling will be relaxed in Sections 7.4-7.6 only.

 10

The third type of costs is the expected transshipment (downtime and shipment) costs.
This is the expected total costs incurred when a lateral transshipment has to be done.
Note that the total cost for emergency and lateral transshipments includes both
downtime costs and transportation costs. These are combined in a single parameter in
order to keep the number of parameters as low as possible while not significantly
diminishing the richness of the model.

• Goal of individual companies: Each company aims to minimize expected yearly
costs. We have an infinite horizon.

3.2 General spare parts inventory situation

A general spare parts inventory situation is a single-echelon situation where several
companies stock a certain spare part, in order to combat costly downtimes of their
machines. Lateral transshipments between cooperating companies can be used. A general
spare parts inventory situation is uniquely characterized by the set of companies, the
demand and repair rates of each company, and the holding, emergency, and
transshipment costs of each company. We denote the set of all spare parts inventory

situations with Γ . Let Γ∈ϕ denote an actual instance. Then ϕ can be represented by a

tuple: ()NjNi

trans

Ni

emer

NiiNiiNii iji
cchN ∈∈∈∈∈∈ ,)(,)(,)(,)(,)(,: µλϕ , where:

N : the set of companies,

iλ : the exponential demand rate at company Ni ∈ ,

iµ : the exponential repair rate at company Ni ∈ ,

ih : the holding cost per unit on stock per unit of time at company Ni ∈ ,
emer

i
c : the expected total costs incurred when an emergency shipment to at company

Ni ∈ is done, including both downtime costs and shipment costs,
trans

ij
c : the expected total costs incurred when a lateral transshipment from company

Ni ∈ to Nj ∈ is done, including both downtime costs and shipment costs.

Note that base-stock levels are not contained in spare parts inventory situations (because
when we consider a situation where the base-stock levels are to-be-optimized, they are
not input parameters like the variables above).

3.3 More restrictive spare parts inventory situation classes

We can lower the complexity of analyzing a general spare parts inventory situation by
assuming certain parameters to be identical for all companies and/or by assuming that
lateral transshipments are free and instantaneous. It is easier to make definite statements
for these less complex situations and we will do that in subsequent chapters. We need
some additional notation for this, however.

 11

Class of simple spare parts inventory situation: Γ⊂Γsimple

For every simplesimple Γ∈ϕ , transshipments are assumed to be free and instantaneous, i.e.

0=trans

ij
c for all Nji ∈, . Furthermore, repair rates are assumed to be identical for all

companies as well, i.e. µµµ == ji for all Nji ∈, . Hence, a simple spare parts inventory

situation can be represented by a tuple: ()Ni

emer

NiiNiisimple i
chN ∈∈∈=)(,)(,,)(, µλϕ .5

Class of simple spare parts inventory sit. with identical c
emer

: simplecidsimple emer Γ⊂Γ
:,

For every emeremer cidsimplecidsimple :,:,
Γ∈ϕ , the emergency costs are assumed to be identical for

all companies. It can be represented a tuple: ()emer

NiiNiicidsimple
chNemer ,)(,,)(,

:, ∈∈= µλϕ .

Class of simple fully identical spare parts inventory situation: simpleallidsimple Γ⊂Γ :,

For every allidsimpleallidsimple :,:, Γ∈ϕ , all parameters are assumed to be identical for all

companies. It can be represented a tuple: ()emer

allidsimple chN ,,,,:, µλϕ = .6

We can also define many classes of spare parts inventory situations “in between” the
above ones, i.e. where some parameters are assumed to be identical for all companies,
whereas other parameters are allowed to be different between companies. The definition
of these follows along the same lines as above. For reference, they can be found in
Appendix 4. The above classes, however, are pivotal in this thesis. Particularly, in
chapters 4 through 6 we limit ourselves to games associated with simple spare parts
inventory situations.

3.4 Reasonable numerical values

One might wonder what realistic values for these characteristic parameters could be.
Selection of reasonable values will be relevant later in this thesis when we do numerical
experiments. A literature study has been done in order to find good bounds for real-life
company parameters. A number of articles were selected that present either real-life data
or that include parameter values that should, according to the article, be representative of
real-life data, for various industries using spare parts. The results of this literature study
can be found in Appendix 5.

5 We slightly abuse notation here for convenience. In order to make Γsimple a proper subset of Γ, we would

actually have to keep the tuple structure identical, i.e. still including
trans

ij
c (=0 for all Nji ∈,). Hence,

the tuple as given in the main text should be seen as a easy shorthand notation of the correct tuple shown in
this footnote. Similar remarks can also be made for the other tuples.
6 We remark that base-stock levels are not contained in spare parts inventory situations. So, even for a
simple fully identical spare parts inventory situation, companies may have different base-stock levels.

 12

Based on the values we found in the literature, we selected a minimum and maximum
value for each parameter that should provide reasonable bounds for real-life values.
These values were rounded and adjusted slightly to get round values and/or to make them
usable for the numerical experiments7. They can be found in Table 3.1. We remark that in
the articles reviewed, emergency costs and transshipment costs were often split up in
multiple distinct parts. In our model, only the total emergency shipment and total lateral
transshipment costs are relevant, so we added up parts in order to arrive at a usable total.
Similarly, we transformed λ/µ into µ.

Table 3.1: Minimum and maximum values for each spare parts inventory situation

parameter that should provide reasonable bounds for real-life values.

Parameter name and
unit

Minimum value Maximum value

λ (demands per year) 0.5 50

µ (repairs per year) 1.67 500

h ($ per unit per year) 400 28000

c
emer ($ per

emergency shipment)
2600 78000

c
trans ($ per lateral

transshipment)
300 18000

7 We required that the calculation time for the optimization algorithm that is used in the numerical
experiments was limited. For example, we did not want extremely low holding costs as inputs, since then
the optimization algorithm for situation OPT - which works like a “smart enumeration” algorithm - would
need to check too large state spaces including “solutions” where companies hold a very large inventory (as
low holding costs intuitively lead to high optimal base-stock levels).

 13

Chapter 4: Simple spare parts pooling games

In this chapter we define simple spare parts pooling games, which are introduced in

section 4.1. In section 4.2, we define the stock-out probability. Sections 4.3, 4.4, and 4.5

will handle characteristic cost functions. In Section 4.6 an example game is shown.

4.1. Introduction

A spare parts pooling game is defined by two elements. The first element is a spare parts
inventory situation and the second element is a “rule on base-stock levels”. As mentioned
in section 2.2, there are two situations that we consider in this thesis:
Situation FIX: Every company has already chosen their base-stock levels and they are
fixed, i.e. they cannot be altered anymore after a company would join a coalition. In this
case, the “rule on base-stock levels” is a fixed base-stock vector S that represents the
chosen base-stock levels of all companies. Hence, in this case, a game can be associated
with a given spare parts inventory situation and a given base-stock vector.
Situation OPT: The companies have not yet determined their base-stock levels and they
can still be jointly optimized, i.e. the “rule on base-stock levels” is that for each coalition
an optimal (cost-minimizing) base-stock vector S can be found. Hence, in this case, a
game can be associated with just a given spare parts inventory situation.

In this section we will look at the class of simple spare parts inventory situations, simpleΓ

and describe the characteristic cost functions of simple spare parts pooling games
8 that

can be associated with it. First, we will need an expression for the fraction of time in
which no company has any spare parts on stock and an expression for the expected costs
per unit of time that companies will face.

4.2 Stock-out probability for a simple spare parts inventory situation

Consider a simple spare parts inventory situation (recall that this is a situation with

identical µ and negligible transshipment costs) and a coalition NM ⊆ . Let MS be the

sum of the chosen base-stock levels of all companies in M together9. Let ∑ ∈
=

Mi iM λλ

be the total demand rate for all companies in M together.

8 Throughout this thesis, the term simple spare parts pooling game refers to a game associated with a
simple spare parts inventory situation (and, for situation FIX, a base-stock vector as well). So it is a specific
type of spare parts pooling game, for which all statements in the first paragraph of Section 4.1 still hold.
9 This can be due to an optimal cost-minimizing choice or a non-optimal “dumb” choice for the base-stock
levels; for the analysis of the stock-out probability this does not matter. Only the total base-stock level of
all companies combined is relevant. Which part is stocked at which company does not matter for the stock-
out probability, as they can be shipped back and forth instantaneously at no cost.

 14

Since transshipments are free, companies have an identical exponential repair process,
and complete pooling is applied, the system behavior may be described by a one-
dimensional Markov process with state x, where x represents the on-hand inventory at all

companies together (MSx ≤≤0).This is represented in Figure 4.1.

Figure 4.1: The Markov process of a simple spare parts inventory situation.

Note that this Markov process corresponds to an M/M/SM/SM queue, also known as a loss

system with no additional waiting buffer, where µλρ /MM = units of traffic are offered

to SM servers. The steady-state probability of being in state x=0 (which is the probability
that a new demand arriving at the pooling group has to be fulfilled via an emergency
channel because all spare parts are in repair) is equal to the well-known Erlang loss
probability (see e.g., Kulkarni, 1999 or Zeng, 2003):

=

∑
=

M

M

S

y

y

M

M

S

M

MM

y

S
S

0

0

!

!
),(

ρ

ρ

ρπ (4.1)

Note that if companies would have different repair rates, then the state space would have
to be extended in order to accommodate the information on the location of each part in
repair and then equation (4.1) would not hold. That is the reason why we limit ourselves
to simple spare parts inventory situations (i.e., with identical µ) in this chapter.

The Erlang loss function has several useful properties, which are captured in the
following Lemma’s. These properties will be used in the next chapter in proofs of non-
emptiness of the cores of games.

Lemma 4.1: The Erlang loss function is non-decreasing in ρ.
Proof: See problem 2 in Whitt (2002).

Lemma 4.2: The Erlang loss function is decreasing in multiplication, i.e.),(0 tStρπ is

strictly decreasing in 0≥t .
Proof: See the appendix in Schmidt & Whitt (1981). Furthermore, see Appendix 6 for a
different proof methodology, which was independently derived and may be of
independent interest.

Lemma 4.3: The Erlang loss function is a convex function of S (for every ρ>0).
Proof: See Theorem 1 in Jagers & van Doorn (1986).

SM 0

SM·µ

λM

(SM-1)·µ

λM

1 2

(SM-2)·µ

λM

…

µ

λM

 15

Lemma 4.4:),(0 Sρπ can be computed recursively by:

1)0,(0 ≡ρπ and
)1,(

)1,(
),(

0

0
0

−⋅+

−⋅
=

SS

S
S

ρπρ

ρπρ
ρπ for Sœ�.

Proof: See problem 2 in Whitt (2002).

4.3 Structure of the cost function

Let simpleϕ be a simple spare parts inventory situation and consider coalition NM ⊆ . Let

the base-stock vector for this coalition be S∈�0
M. Figure 4.2 graphically shows all input

parameters that are relevant for costs calculation for this type of game.

Figure 4.2: The relevant parameters graphically represented for a situation with 3

cooperating companies (M={1,2,3}). Dashed arrows indicate a possible transshipment

route. Bold arrows indicate demands and repairs.

The total expected costs per unit of time that coalition M has to pay is:

∑∑
∈∈

⋅

+⋅=Κ

Mi

iM
M

Mi

ii

S
pSShMsimple ,)(0

;

µ

λ
π

ϕ
, where10: (4.2)

ih : the holding cost per stocked part per unit of time at company i.

µ : The exponential repair rate.

∑
∈

=
Mi

iM SS : The sum of the base-stock levels of all companies in M together.

∑
∈

=
Mi

iM λλ : The total demand rate for all companies in M together.

),(0 M
M S
µ

λ
π : The fraction of time in which the on-hand inventory at all

companies in M together is zero, given by equation (4.1).
emer

iii cp ⋅= λ : The expected total cost per unit of time, in which the on-hand

inventory at all companies in M together is zero, for emergency
shipments to company i.

10 Note that (4.2) holds for every simplesimple Γ∈ϕ , hence also for every element of subsets of simpleΓ .

Company 1
emerchS 111 ;;

Company 2
emerchS 222 ;;

Company 3
emer

chS 333 ;;

λ1

µ µ µ

λ2 λ3

 16

4.4. Characteristic cost function for a simple spare parts pooling
game with fixed base-stock levels

We consider a situation in which the base-stock levels are already pre-determined

(situation FIX). Let simpleϕ be a simple spare parts inventory situation and let the chosen

fixed base-stock vector be S∈�0
N. With the combination of simpleϕ and S we can associate

a simple spare parts pooling game (with fixed base-stock levels) ()cN , that is defined by

)()(
;

MMc
Ssimpleϕ

Κ= and K given by equation (4.2). 11

4.5. Characteristic cost function for a simple spare parts pooling
game with to-be-optimized stock levels

We consider a situation in which the base-stock levels are not determined yet and can still

be jointly optimized (Situation OPT). Let simpleϕ be a simple spare parts inventory

situation. Consider a coalition NM ⊆ . This coalition can choose the base-stock levels

for every company Mi ∈ . Let the base-stock vector chosen be S∈�0
M. The combination

of simpleϕ and S leads to a certain expected costs per time unit)(
;

M
Ssimpleϕ

Κ . An optimal

base-stock vector for coalition M is S opt

M with minimal cost)(
;

M
opt
Msimple Sϕ

Κ . So, with

simpleϕ we can associate a simple spare parts pooling game (with to-be-optimized base-

stock levels) ()cN , that is defined by ())()(
;

0

MMinMc
S

NS

simple

M

ϕ
Κ=

∈
 and K given by

equation (4.2).12

A clarification is needed on the concept of an optimal base-stock vector. It can often
happen that there are multiple optimal (cost-minimizing) base-stock vectors, especially
when all companies have identical holding cost rates. An example of such a case is given
in the next section. Later on in this thesis we require a single well-defined optimal base-
stock vector. We construct this unique optimal base-stock vector for coalition M,

S *

M (φsimple), by taking an optimal base-stock vector with the lowest possible total sum of

base-stock levels and then allocating the base-stock levels to the companies with the
lowest holding cost rates in M as evenly as possible, with remaining items allocated to
companies with the lowest index first. See the example in the next section for an
illustration. A more formal definition can be found in Appendix 8.

11 We slightly abuse notation here (as K is a function ∗Γ � →M

� rather than ∗Γ � →N
�) in order to

avoid excessive notation. The proper definition is)()(
)(;

MMc
SS M

simpleϕ
Κ= , where for all NM ⊆ the

base-stock vector of coalition M, SM
 (S)∈�0

M is defined via i

M

i SS = for all i∈M.
12 We have silently assumed that no company has a holding cost rate of 0, since in that case it would be
optimal to have an infinitely large base-stock level at that company, which is obviously practically
infeasible and not well-defined.

 17

We shall now construct an easier variation of the cost function (4.2) that can simplify
notation used in proofs in the next chapter. We use two insights:

• Recall that for the stock-out probability 0π only the total sum of base-stock levels

of all companies combined is relevant; which part is stocked at which company
does not matter, as they can be shipped back and forth instantaneously at no cost.

• For an optimal base-stock vector of coalition M, a company that has a higher
holding cost rate than another company in M, will certainly have a base-stock
level of 0, i.e. only companies that have the lowest holding cost rate in M can
have positive base-stock levels. Therefore, for the total holding costs, only the
total sum of base-stock levels of all companies combined is relevant.

As such, only the total sum of base-stock levels of all companies combined, tot

MS œ�0, is

relevant for the cost function and we can construct an easier variant of (4.2):

() ∑
∈

⋅+⋅=Κ
Mi

i

tot

MM

tot

M

S

tot pSShM
tot
Msimple ,/)(0min

;
µλπ

ϕ
, where)|min(min Mihh i ∈= (4.3)

This means that with simpleϕ we can associate a simple spare parts pooling game (with to-

be-optimized base-stock levels) ()cN , that is defined by ())()(
;

0

MMinMc
tot
Msimple

tot
M

S

tot
NS

ϕ
Κ=

∈

and Ktot given by equation (4.3). Note that this cost function definition is identical (albeit
formulated differently) to the definition given earlier in this section. The optimal sum of

base-stock levels for coalition M is *tot

MS (φ) (formally defined in Appendix 8).

4.6 Example games

In this section we provide an example in which we apply the formulas and concepts
introduced in this chapter. Consider the 3-player simple spare parts inventory situation

emeremer cidsimplecidsimple :,:,
Γ∈ϕ with identical cemer ()emer

NiiNii chN ,)(,,)(, ∈∈ µλ with N={1,2,3},

λ1=0.5, λ2=5, λ3=50, µ=25, h1=2000, h2=28000, h3=2000, and cemer=13000. So company 3
has a very high demand rate while company 1 has a very low demand rate. Furthermore,
company 1 and 3 have low holding costs while company 2 has high holding costs.

Example costs calculation
Suppose that we have situation FIX with base-stock vector S given by S1=4, S2=0, S3=4.
The costs of coalition {1,2} are given by (values are rounded to two decimals):

() ()

()

60.8005

71500107.83800071500
!

22.0

!4

22.0
8000715004,22.08000

,})2,1({})2,1({

5-
4

0

4

0

2121
21

02211

;
:,

=

⋅⋅+=⋅

+=⋅+=

⋅+⋅⋅

+

+
+⋅+⋅=Κ=

∑
=y

y

emeremer
S

y

ccSSShShc
emercidsimple

π

λλ
µ

λλ
π

ϕ

 18

Example game with fixed base-stock levels
We can do similar calculations for each coalition in N. The spare parts pooling game

associated with emercidsimple :,
ϕ and S, (N,c), is described by (values are rounded):

c({1}) = 8,000.00; c({2}) = 65,000.00; c({3}) = 69,904.76;
c({1,2}) = 8,005.60; c({1,3}) = 16,598.91; c({2,3}) = 91,372.34;
c({1,2,3}) = 17,147.16.
Note that this spare parts pooling game is balanced, i.e. it has a non-empty core. This can
be shown in two different ways.

• There is at least one element in the core, e.g., an allocation x1=154.48,
x2=1,544.79, x3=15,447.89 is in the core (it adheres to efficiency and stability).

• All balancedness conditions (see Appendix 2) hold, i.e.:
c({1,2,3})=17,147.16 ≤ c({1})+c({2})+c({3}) =142,904.76
c({1,2,3})=17,147.16 ≤ 0.5·c({1,2})+0.5·c({1,3})+0.5·c({2,3}) =57,988.43
c({1,2,3})=17,147.16 ≤ c({3})+c({1,2}) =77,910.36
c({1,2,3})=17,147.16 ≤ c({2})+c({1,3}) =81,598.91
c({1,2,3})=17,147.16 ≤ c({1})+c({2,3}) =99,372.34

Example game with to-be-optimized base-stock levels
Now suppose that we have situation OPT, so base-stock vectors are to-be-optimized. The

spare parts pooling game associated with emercidsimple :,
ϕ , (N,c) (and, implicitly, the rule to

optimize base-stock vectors), is described by (values are rounded to two decimals):

c({1}) = 2,127.45 (with *}1{

tot
S =1 and S *

}1{ given by (S *

}1{)1=1)

c({2}) = 38,833.33 (with *}2{

tot
S =1 and S *

}2{ given by (S *

}2{)2=1)

c({3}) = 16,236.56 (with *}3{

tot
S =7 and S *

}3{ given by (S *

}3{)3=7)

c({1,2}) = 5,390.69 (with *}2,1{

tot
S =2 and S *

}2,1{ given by (S *

}2,1{)1=2 and (S *

}2,1{)2=0)

c({1,3}) = 16,374.08 (with *}3,1{

tot
S =7 and S *

}3,1{ given by (S *

}3,1{)1=4 and (S *

}3,1{)3=3)

c({2,3}) = 17,078.76 (with *}3,2{

tot
S =8 and S *

}3,2{ given by (S *

}3,2{)2=0 and (S *

}3,2{)3=8)

c({1,2,3}) = 17,147.16 (with *tot

NS =8 and S *

N given by (S *

N)1=4, (S *

N)2=0, (S *

N)3=4)

Note that this spare parts pooling game is also balanced, i.e. it has a non-empty core. For
example, allocation x1=154.48, x2=1544.79, x3=15447.89 is in the core.

We remark that the optimal base-stock vector for coalition {2,3} clearly puts all stock at
the company with the lower holding cost rate. Furthermore, note that in the optimal base-
stock vectors of coalitions {1,3} and {1,2,3} the base-stock levels are allocated as equally
as possible to the companies with the lowest holding costs rates in M, with remaining
items allocated to companies with the lowest index (i.e. company 1) first. An algorithm to

find *tot

MS and S *

M for all NM ⊆ is used in the numerical experiments of the subsequent

chapters and is described in Appendix 8. Finally, we remark that the S that was chosen

for situation FIX is identical to S *

N . Hence, the costs of the grand coalition for both

games are the same. But costs for subsets of N are not the same for both games.
Particularly, company 1 is stocking too much for its own good in situation FIX.

 19

Chapter 5: The core of simple spare parts pooling games

At the end of the last chapter, we saw example games that had non-empty cores. In this

chapter we attempt to answer research question 1 (“Does a simple spare parts pooling

game always have a non-empty core?”). In section 5.1, we cover simple pooling games

with fixed base-stock levels and in section 5.2, we cover simple pooling game with to-be-

optimized base-stock levels. In these sections, we shall provide certain proofs of core

non-emptiness. In section 5.3, we provide counter-examples showing that for games

associated with certain classes of spare parts inventory situations, the core is not always

non-empty. Section 5.4 describes a large numerical experiment that investigates core

non-emptiness further. We summarize all findings in section 5.5.

5.1: Simple pooling games with fixed base-stock levels

In this section, we give proofs that games associated with certain types of simple spare
parts inventory situations and base-stock vectors in fact always have non-empty cores.
Recall that for simple spare parts inventory situations, transshipments are assumed to be
free and repair rates are assumed to be identical.

5.1.1: Situations with identical λ and S

Let λϕ :,idsimple be a simple spare parts pooling game (with identical λ) and let S be a base-

stock vector with identical base-stock levels for each company, i.e. Si=S for all Ni ∈ .
The associated simple spare parts pooling game has a non-empty core, as stated in the
following theorem. We remark that this holds for any number of companies that may
have different holding cost rates and/or emergency (shipment and downtime) costs.

Theorem 5.1: Let λλϕ :,:, idsimpleidsimple Γ∈ and let S∈�0
N be fixed with Si=S for all Ni ∈ .

The associated spare parts pooling game (N,c) has a non-empty core.
Proof:

Let || MM ⋅= λλ and let || MSSM ⋅= for all NM ⊆ . Let emer

ii cp ⋅= λ for all Ni ∈ .

Let x∈�
N be a cost allocation vector with () iNNii pSShx ⋅+⋅= ,/0 µλπ for all Ni ∈ .

We will show that x is (a) efficient and (b) stable, and hence x is a core element.

Efficiency follows from ()∑ ∑∑
∈ ∈∈

=⋅+⋅=
Ni Ni

iNN

Ni

ii NcpSShx)(,/0 µλπ .

In order to prove stability, i.e. ∑
∈

≤
Mi

i Mcx)(for all M ⊆ N, let M ⊆ N and start with:

() ()MMNN SS ,/,/ 00 µλπµλπ ≤ . (5.1)

(5.1) holds by Lemma 4.2. Multiply (5.1) by ∑
∈Mi

ip and then add Sh
Mi

i ⋅∑
∈

:

() () ∑∑∑∑
∈∈∈∈

⋅+⋅≤⋅+⋅
Mi

iMM

Mi

i

Mi

iNN

Mi

i pSShpSSh ,/,/ 00 µλπµλπ (5.2)

 20

(5.2) is equivalent to∑
∈

≤
Mi

i Mcx)(. We conclude x is stable. This completes the proof.

�

Note that our proof is based on showing a core element. This particular allocation is easy
to administer, as each company simply pays its own holding costs and its own local
emergency (downtime and shipment) costs. There are no transfer costs. We will return to
cost allocations in more detail in the next chapter.

5.1.2: Situations with identical λ, and cemer

Now, let emercidsimple ,:, λ
ϕ be a simple spare parts pooling game with identical λ and cemer and

let S be a base-stock vector. The associated simple spare parts pooling game has a non-
empty core, as stated in Theorem 5.2. We remark that this holds for any number of
companies that may have different holding costs rates and/or base-stock levels. First,
however, we need to state two lemmas that will be used in the proof of Theorem 5.2.
These involve balanced maps, for which a definition can be found in Section 1.3.
Throughout this section, 2N denotes the set consisting of all subsets of some player set N.

Lemma 5.1: Let N be a player set, let κ :2N

\«→[0,1] be a balanced map and let f(i) be a

function f:N→�. Then: ∑∑ ∑
∈/∈ ∈

=⋅
NioM Mi

ififM
N

)()()(
\2

κ .

Proof:

Let

∈

∈
=

MNi

Mi
e

M

i
\,0

,1
.

For all Ni ∈ : ∑
/∈

=⋅
oM

M

i
N

eM
\2

1)(κ . (5.3)

(5.3) holds by definition of κ as a balanced map.

Multiply both sides of (5.3) by)(if , then sum both sides of (5.3) over all Ni ∈ :

∑∑∑
∈∈/∈

=⋅⋅
NiNi

M

i

oM

ififeM
N

)()()(
\2

κ . (5.4)

Note that ∑ ∑
∈ ∈

=⋅
Ni Mi

M

i ifife)()(. So, rewriting the left side of (5.4) completes the proof.

�

Lemma 5.1 implies the following relations that will be used in later proofs in this section:

• ∑
/∈

=⋅
oM N

NMM
\2

||||)(κ (take 1)(=if).

• ∑∑∑
∈∈/∈

⋅=⋅⋅
Ni

ii

Mi

ii

oM

ShShM
N \2

)(κ (take ii Shif ⋅=)().

• ∑∑∑
∈∈/∈

=⋅
Ni

i

Mi

i

oM

SSM
N \2

)(κ (take iSif =)().

 21

The following lemma considers the stock-out probability in a simple spare parts

inventory situation with identical demand rates λϕ :,idsimple . For notational ease, we use

µλρ /= . Lemma 5.2 states that the weighed combination of total stock-out probabilities

of all coalitions NM ⊆ is at least as large as the total stock-out probabilities of the grand

coalition. Formally this is captured in equation (5.5).

Lemma 5.2: Let N be a player set, κ :2N
\«→[0,1] be a balanced map, Sœ�0

N and let ρ>0.

Then:

⋅⋅≥

⋅⋅⋅ ∑∑ ∑

∈/∈ ∈ Ni

i

oM Mi

i NSNMSMM
N

ρπρπκ || , |||| , ||)(
\2

00 (5.5)

Proof:

First we define five variables. a is the right-hand side of equation (5.5) and e is the left-
hand side of equation (5.5). We compare a and e to variables b, c and d, using properties

of the Erlang loss function 0π , in order to eventually show that ae ≥ .

⋅⋅= ∑

∈Ni

i NSNa ρπ || , || 0

⋅⋅⋅⋅⋅=

⋅⋅⋅=

∑ ∑

∑ ∑

/∈ ∈

/∈ ∈

ρκπ

ρκπ

|| ,
||

||

||

||
)(||

|| ,)(||

\2

0

\2

0

NS
M

N

N

M
MNc

NSMNb

oM Mi

i

oM Mi

i

N

N

⋅⋅⋅⋅⋅= ∑∑

∈/∈

ρπκ || ,
||

||

||

||
)(|| 0

\2

NS
M

N

N

M
MNd

Mi

i

oM N

⋅⋅⋅= ∑∑

∈/∈

ρπκ || , ||)(0

\2

MSMMe
Mi

i

oM N

By Lemma 5.1, a=b. Furthermore, clearly b=c. By convexity of ()ρπ ,0 S in S (by Lemma

4.3) and because 1
||

||
)(

\2

=⋅∑
/∈ oM N N

M
Mκ by Lemma 5.1, cd ≥ . Because ()ρπ ttS ,0 is

strictly decreasing in 0≥t (by Lemma 4.2), and because both |N| terms cancel out, de ≥ .
Hence, we conclude ae ≥ .
�

Theorem 5.2: Let emeremer cidsimplecidsimple ,:,,:, λλ
ϕ Γ∈ and let S∈�0

N. The associated spare parts

pooling game (N,c) has a non-empty core.
Proof:
Let κ :2N

→[0,1] be a balanced map. By Lemma 5.2 we have:

⋅⋅≥

⋅⋅⋅ ∑∑ ∑

∈/∈ ∈ Ni

i

oM Mi

i NSNMSMM
N

ρπρπκ || , |||| , ||)(
\2

00 (5.6)

Multiply both sides of (5.6) by emer
cp ⋅= λ , then add ∑

∈

⋅
Ni

ii Sh to both sides to obtain:

 22

∑ ∑∑∑∑
/∈ ∈∈∈∈

⋅

⋅⋅+⋅≥⋅

⋅⋅⋅+⋅

oM Ni

i

Ni

ii

Mi

i

Ni

ii
N

pNSNShpMSMMSh
\2

00 || , |||| , ||)(ρπρπκ (5.7)

By Lemma 5.1, we can rewrite the holding cost terms on the left side of (5.7) to obtain:

pNSNShpMSMShM
Ni

i

Ni

ii

oM Mi

i

Mi

ii
N

⋅

⋅⋅+⋅≥

⋅

⋅⋅+⋅⋅ ∑∑∑ ∑∑

∈∈/∈ ∈∈

ρπρπκ || , |||| , ||)(0

\2

0 (5.8)

Note that (5.8) is identical to:

)()(
\2

McM
oM N

∑
/∈

⋅κ ≥)(Nc (5.9)

As κ was arbitrarily chosen, equation (5.9) holds for any balanced map. Hence, equation
(5.9) states that the game is balanced and therefore we conclude it has a non-empty core.
�

5.2: Simple pooling games with to-be-optimized stock levels

In this section, we give proofs that games associated with certain types of simple spare

parts inventory situations have non-empty cores. Let allidsimple :,ϕ be a simple fully identical

spare parts pooling game. The associated spare parts pooling game has a non-empty
imputation set, as stated in the following lemma. We remark that this holds for any
number of companies.

Lemma 5.3: Let allidsimpleallidsimple :,:, Γ∈ϕ . The associated spare parts pooling game (N,c)

has a non-empty imputation set.
Proof:

Recall that *tot

MS denotes the optimal base-stock level sum for coalition NM ⊆ .

Let || NN ⋅= λλ . Let iœN. We start with:

≤

⋅ *,*||, }{0}{0

tot

i

tot

i
N SSN

µ

λ
π

µ

λ
π (5.10)

(5.10) holds by Lemma 4.2. Multiply (5.10) by emer
c⋅λ and then add *}{

tot

iSh ⋅ to obtain:

emertot

i

tot

i

emertot

i
Ntot

i cSShcSNSh ⋅⋅

+⋅≤⋅⋅

⋅+⋅ λ

µ

λ
πλ

µ

λ
π *,**||,* }{0}{}{0}{

 (5.11)

Multiply (5.11) by |N| and rewrite to obtain:

⋅⋅

+⋅⋅≤⋅⋅

⋅+⋅⋅ ∑

∈

emertot

i

tot

i

Ni

emertot

i
Ntot

i cSShNcSNNSh λ
µ

λ
πλ

µ

λ
π *,*||*||,||* }{0}{}{0}{

 (5.12)

We remark that the since all companies are identical, ** }{}{

tot

j

tot

i SS = for all Nji ∈, .

Hence, (5.12) is equivalent to:

)}({})({)(
*; }{:,

||*
}{

;:,

∑∑
∈∈

=Κ≤Κ
⋅

NjNj

S

tottot jcjN
tot

jallidsimple

N
tot
i

Sallidsimple ϕ
ϕ

 23

Observing)()()(
||*

}{
;:,*;:,

NNNc
Ntot

i
Sallidsimple

tot
N

Sallidsimple

tottot

⋅

Κ≤Κ=
ϕϕ

 and thus ∑
∈

≤
Nj

jcNc })({)(

completes the proof.
�

In Lemma 5.3, the optimal *tot

MS could take on any value. We will now limit us to games

associated with more restrictive rules on base-stock levels, so that we can make a definite
statement about the core of a less complex game. Particularly, we set the following limit:

*tot

MS ≤ 20· || M for all NM ⊆ . Furthermore, we limit the number of companies to three.

This maximum on the base-stock level is not constraining for practical situations, since
the spare parts, for which pooling via lateral transshipments is interesting, are
characterized by low demand rates, high holding costs, and low optimal base-stock levels
(see e.g., Wong (2006) for representative sample numerical values of base-stock levels).
The reason for setting this maximum lies in the proof methodology13.

Let 3||,:, =Nallidsimpleϕ be a simple fully identical spare parts pooling game with N={1,2,3}.

Lemma 5.4 states that if *}2,1{

tot
S is odd, then the stock-out probability for three companies

using a randomized base-stock vector of *5.1 }2,1{

tot
S⋅ is at most as large as the stock-out

probability for companies 1 and 2. This is subsequently used in Theorem 5.3, which

states that the spare parts pooling game, associated with 3||,:, =Nallidsimpleϕ and the limit of

*tot

MS ≤ 20· || M for all NM ⊆ , has a non-empty core.

Lemma 5.4: Let ρ>0 and let }39,37,...,5,3,1{*}2,1{ ∈tot
S . Then:

() () ()*,25.0*5.1,3
2

1
5.0*5.1,3

2

1
}2,1{0}2,1{0}2,1{0

tottottot
SSS ρπρπρπ ≤+⋅+−⋅ . (5.13)

Proof: See Appendix 714.

Theorem 5.3: Let 3||,:,3||,:, == Γ∈ NallidsimpleNallidsimpleϕ such that tot

MS *≤20· || M for all NM ⊆ .

The associated spare parts pooling game (N,c) has a non-empty core.

13 We wish to take *5.1 }2,1{}3,2,1{

tottot
SS = because then when you compare the two coalitions, the holding

costs per company are the same. This approach does not work nicely when *}2,1{

tot
S is an odd number, since

you can then only choose 5.0*5.1 }2,1{ −⋅ tot
S and 5.0*}2,1{ +tot

S as integer values. We can still make a

useful statement regarding stock-out probabilities for this situation in Lemma 5.4, but can only numerically

verify this for some *}2,1{

tot
S .

14 Note that it will very likely also hold for odd values of *}2,1{

tot
S >39, but this has not been verified yet.

The proof provides a methodology to numerically check the validity of the statement for any odd value of

*}2,1{

tot
S , and this has been done up to 39. This was deemed a large enough value for practical purposes

(furthermore, larger numbers result in factorial overflows that computers / calculators can’t handle).

 24

Proof:
We will show balancedness by proving each balancedness condition individually, i.e.:

(1) })3({)2({})1({})3,2,1({ cccc ++≤ .

(2) })3,2({5.0})3,1({5.0})2,1({5.0})3,2,1({ cccc ⋅+⋅+⋅≤

(3) })1({})3,2({})2({})3,1({})3({})2,1({})3,2,1({ ccccccc +=+=+≤

(1) follows directly from Lemma 5.3.

For (2) we use the property that all companies are identical, so it suffices to show

})2,1({5.1})3,2,1({ cc ⋅≤ . We then discern between (2a) *}2,1{

tot
S is even (2b) *}2,1{

tot
S is odd.

In case (2a) *}2,1{

tot
S is even, we start with:

≤

⋅ *,

2
*5.1,

3
}2,1{0}2,1{0

tottot
SS

µ

λ
π

µ

λ
π (5.14)

(5.14) holds by Lemma 4.2. Multiply (5.14) by ∑
∈

⋅
}2,1{i

emer
cλ , then add *}2,1{

tot
Sh ⋅ , then

multiply by 1.5 to obtain:

⋅⋅

+⋅⋅≤⋅⋅

⋅+⋅⋅ ∑∑

∈∈ }2,1{

}2,1{0}2,1{}2,1{0}2,1{ *,
2

*5.1*5.1,
3

*5.1
i

emertottot

Ni

emertottot cSShcSSh λ
µ

λ
πλ

µ

λ
π (5.15)

(5.15) is equivalent to })2,1({5.1)(
5.1*

}2,1{
;3||,:,

cN
totSNallidsimple

tot ⋅≤Κ
⋅=ϕ

. Finally, since

)()(
5.1*

}2,1{
;3||,:,

NNc
totSNallidsimple

tot

⋅=

Κ≤
ϕ

, we have })2,1({5.1)(cNc ⋅≤ .

In case (2b) *}2,1{

tot
S is odd, let 5.0*5.1 }2,1{ −⋅=− tot

SS and 5.0*5.1 }2,1{ +⋅=+ tot
SS . Then:

≤

+

 +− *,
2

,
3

2

1
,

3

2

1
}2,1{000

tot
SSS

µ

λ
π

µ

λ
π

µ

λ
π (5.16)

(5.16) holds by Lemma 5.4. Multiply (5.16) by ∑
∈

⋅
}2,1{i

emer
cλ , then add *}2,1{

tot
Sh ⋅ , then

multiply by 1.5 and re-arrange terms to obtain:

⋅⋅

+⋅⋅≤

⋅⋅

+⋅⋅+

⋅⋅

+⋅⋅

∑

∑∑

∈

∈

++

∈

−−

}2,1{

}2,1{0}2,1{

00

*,
2

*5.1

,
3

2

1
,

3

2

1

i

emertottot

Ni

emer

Ni

emer

cSSh

cSShcSSh

λ
µ

λ
π

λ
µ

λ
πλ

µ

λ
π

 (5.17)

(5.17) is equivalent to })2,1({5.1)(
2

1
)(

2

1 ;3||,:,;3||,:,

cNNQ
SNallidsimpleSNallidsimple

tottot ⋅≤Κ⋅+Κ⋅=
+

=
−

= ϕϕ

If)(
2

1
)(

2

1 ;3||,:,;3||,:,

NN
SNallidsimpleSNallidsimple

tottot

+
=

−
=

Κ⋅≤Κ⋅
ϕϕ

, then QN
SNallidsimple

tot ≤Κ
−

=

)(
;3||,:,ϕ

.

If)(
2

1
)(

2

1 ;3||,:,;3||,:,

NN
SNallidsimpleSNallidsimple

tottot

+
=

−
=

Κ⋅≥Κ⋅
ϕϕ

, then QN
SNallidsimple

tot ≤Κ
+

=

)(
;3||,:,ϕ

.

)()(
;3||,:,

NNc
SNallidsimple

tot

−
=

Κ≤
ϕ

 and)()(
;3||,:,

NNc
SNallidsimple

tot

+
=

Κ≤
ϕ

. Thus, })2,1({5.1)(cQNc ⋅≤≤ .

 25

We show (3) by using })3({2})2({})1({})2,1({ cccc ⋅=+≤ (by Lemma 5.3 and due to the

property that all companies are identical). Therefore, })3({})2,1({})2,1({5.1 ccc +≤⋅ . We

just showed for (2) that })2,1({5.1})3,2,1({ cc ⋅≤ . Hence, })3({})2,1({})3,2,1({ ccc +≤ .

This completes the proof.
�

5.3: Examples of games with empty cores

Now, by Theorems 5.1, 5.2, and 5.3 we have shown that games associated with certain
classes of simple spare parts pooling situations and certain rules on base-stock levels
always have a non-empty core. However, this does not hold for all simple spare parts
pooling games. In this section, we provide three counter-examples that show that games
associated with certain classes of simple spare parts pooling situations and certain rules
on base-stock levels do not always have a non-empty core. After these examples are
given, an explanation on why their cores are empty is provided.

Example 5.1: A game associated with a spare parts inventory situation in Gsimple,id:h and
fixed identical base-stock levels can have an empty core.

Consider the 2-player simple spare parts inventory situation hidsimple :,1 Γ∈ϕ with N={1,2},

µ=0.03, h=0; emerc1 =100, emerc2 =0; λ1=0.01, λ2=1. So company 1 has very high emergency

costs while company 2 has very low emergency costs, while the demand rate of company
2 is much higher. Suppose that we have situation FIX with base-stock vector S given by
S1=5, S2=5. The associated spare parts pooling game is described by (values rounded):
 c({1})=2.46·10-05; c({2})=0; c({1,2})=0.71.
Clearly, the core of this game is empty.

Example 5.2: A game associated with a spare parts inventory situation in Gsimple,id:λ,h and
fixed different base-stock levels can have an empty core.

Consider the 2-player simple spare parts inventory situation hidsimple ,:,2 λϕ Γ∈ with

N={1,2}, µ=0.03, h=0; emerc1 =100, emerc2 =0; λ=1. So company 1 has very high emergency

costs while company 2 has very low emergency costs. Suppose that we have situation
FIX with base-stock vector S given by S1=25, S2=1. The associated simple spare parts
pooling game is described by (values are rounded to two decimals):
c({1})=30.63; c({2})=0; c({1,2})=61.89.
Clearly, the core of this game is empty.

Example 5.3: A game associated with a spare parts inventory situation in Gsimple,id:λ,h and
to-be-optimized base-stock levels can have an empty core.

Consider the 2-player simple spare parts inventory situation hidsimple ,:,3 λϕ Γ∈ with

N={1,2}, µ=5; h=25000; emerc1 =120000, emerc2 =3000; λ=2.5. So company 1 has very high

emergency costs while company 2 has very low emergency costs. Suppose that we have
situation OPT, so base-stock vectors are to-be-optimized. The associated simple spare
parts pooling game is described by (values are rounded to two decimals):

 26

c({1}) =73,076.92 (*}1{

tot
S =2);

c({2}) =7,500.00 (*}2{

tot
S =0);

c({1,2}) =94,218.75 (*}2,1{

tot
S =3).

Clearly, the core of this game is empty.

An intuitive explanation behind these counter-examples would be as follows. Company 2
has very low emergency costs and hence very low total costs by itself. But its demand
rate is at least as high as the demand rate of company 1. If we combine both companies in
a coalition, then company 2 adds a lot of demand strain to the pooling stock, while it does
not face high emergency costs. Every time a demand for company 2 comes in and it is
fulfilled from the pooling stock, this takes away stock which company 1 – with very high
downtime costs – could put to better use. It would actually be better to not use lateral
transshipments at all. So, the main problem in these examples lies in the full pooling
approach that is assumed.

5.4: Numerical experiment

We now know that for certain classes of simple spare parts pooling games it is possible
that the core of the associated game is empty. But how often does this happen? Do we
only encounter empty cores when we choose extreme and unrealistic parameter values?
Or will games with non-empty cores also exist for cases with parameters that are
representative of real-life cases? In this section, we present a numerical experiment that
aims to answer these questions. The calculations are carried out by a Java program, which
is described in Appendix 8.

5.4.1 Setup of the numerical experiment: spare parts inventory
situations

Recall that a simple spare parts inventory situation is uniquely characterized by the set of
companies, the repair rate, the demand rates of each company, the holding costs and the
emergency (shipment and downtime) costs of each company. Table 5.1 shows all
attainable parameter values in the first part of the experiment. For the number of
companies, we use two values: three companies and four companies. A three-company
situation is big enough to study the game theoretical nuances, and a four-company
situation can provide insight into a larger cooperation. We remark that we will study two-
company situations later in Section 5.4.5, but we focus on 3 and 4 players first. For the
other input parameters, Table 5.1 only shows an index. Each index (like All-Min and
DIFF1) refers to a “rule” on how the values of that parameter are set for each company.
Table 5.2 shows for each index the corresponding “rule” on the parameter values of each
company. This “rule” sets the parameter value of each company to either a minimum,
low, standard, high, or maximum value. For each input parameter, the actual values
corresponding to minimum, low, standard, high, and maximum are given in Table 5.3.

 27

Table 5.1: All attainable parameter values in the experiment.
Parameter name and unit Number of values

|N| 2 (three, four)

λ (demands per year) 8 (All-Min, All-Low, All-Standard, All-High, All-Max, DIFF1, DIFF2, DIFF3)

µ (repairs per year) 5 (All-Min, All-Low, All-Standard, All-High, All-Max)

h ($ per unit per year) 8 (All-Min, All-Low, All-Standard, All-High, All-Max, DIFF1, DIFF2, DIFF3)

cemer ($ per emergency
shipment)

8 (All-Min, All-Low, All-Standard, All-High, All-Max, DIFF1, DIFF2, DIFF3)

Table 5.2: For each index, the “rules” on how the values of a parameter are set for

each company. When N={1,2,3}, only the first three company values are used.
Index Value for

company 1
Value for
company 2

Value for
company 3

Value for company
4 (if needed)

All-Min Minimum value Minimum value Minimum value Minimum value

All-Low Low value Low value Low value Low value

All-Standard Standard value Standard value Standard value Standard value

All-High High value High value High value High value

All-Max Maximum value Maximum value Maximum value Maximum value

DIFF1 Minimum value Standard value Maximum value High value

DIFF2 High value Low value Standard value Standard value

DIFF3 Low value Maximum value Low value Low value

Table 5.3: For each input parameter, the actual values corresponding to minimum,

low, standard, high, and maximum.
Parameter name and
unit

Minimum
value

Low value Standard value High value Maximum
value

λ (demands per year) 0.5 2.5 5 10 50

µ (repairs per year) 1.67 12.5 25 50 500

h ($ per unit per
year)

400 2000 4000 8000 28000

cemer ($ per emer-
gency shipment)

2600 6500 13000 26000 78000

For each of the input parameters covered in Table 5.3, the minimum and maximum
values are based on the literature study that was presented in section 3.4. We selected the
“standard” values such that they are approximately the same orders of magnitude away
from the minimum and maximum values.15 We selected a “low” value to be half the
standard value, and a “high” value to be twice the standard value. As such, DIFF2 should
give realistic differences of a factor 4 amongst companies (realistic according to the
papers covered in Appendix 5). DIFF1 gives extremely large differences amongst
companies (although parameter values are still within the reasonable bounds of Table
3.1), and DIFF3 has the special property that at least two companies still have the same
parameter value (with just one company being vastly different from the others). With all
the combinations of the parameters described in Table 5.1, we have in total
2x8x5x8x8=5120 spare part inventory situations.

15 That is, (the standard value) / (the minimum value) should be approximately the same as (the maximum
value) / (the standard value).

 28

One of these will serve as an example to illustrate the naming conventions: a situation
where |N|=3, λ has value All-Low (hence λ1=2.5, λ 2=2.5, λ 3=2.5), µ has value All-Min
(hence µ1=1.67, µ 2=1.67, µ 3=1.67), h has value DIFF2 (hence h 1=8000, h 2=2000, h

3=4000), and cemer has value DIFF3 (hence emerc1 =6500, emerc2 =78000, emer
c3 =6500).16

5.4.2 Setup of the numerical experiment: rule on base-stock levels

Recall that with one simple spare parts inventory situation we can associate one simple
spare parts pooling game (with to-be-optimized base-stock levels). Furthermore, with the
combination of this simple spare parts inventory situation and some base-stock vector S
we can associate another simple spare parts pooling game (with fixed base-stock levels).
In this numerical experiment we use five types of base-stock vectors for the situation with

fixed base-stock levels. In their definition, we use ()∑ ∈
=

Ni iNSUM SS * .17

• S *

N : The base-stock level of each company is equal to the optimal cost-

minimizing base-stock level when it is in the grand coalition.

• S
indiv: The base-stock level of each company is equal to the optimal base-stock

level when it would be acting alone; ()
ii

indiv

i SS *

}{= for all iœN.

• S
high: The base-stock level of each company is equal to SSUM/|N|, rounded down,

then plus two; 2||/ += NSS SUM

high

i for all iœN.

• S
low: The base-stock level of each company is equal to SSUM/|N|, rounded down,

then minus one if possible; ()1||/,0max −= NSS SUM

low

i for all iœN.

• S
mix: indivmix SS 11 = ; highmix SS 22 = ; lowmix

SS 33 = ; and if |N|=4 then indivmix SS 44 = .

Note that Sindiv and S *

N and Smix can yield different base-stock levels amongst companies,

whereas in the other two types of base-stock vectors all companies have identical base-
stock levels. We remark that each of the 5120 spare parts inventory situations can be
associated with one game with to-be-optimized base-stock levels and five games with
fixed base-stock levels.

5.4.3 Results of the numerical experiment: Simple pooling games with
to-be-optimized base-stock levels

Out of 5120 cases, 5018 had non-empty cores (98.0%), with 97.9% for 3-player games
and 98.1% for 4-player games. Every game associated with a simple spare parts
inventory situation for which all companies had identical emergency costs (i.e., one in

emercidsimple :,
Γ) had a non-empty core. This is in line with Theorem 5.3.

16 We remark that the company having the highest value is a different one for DIFF1, DIFF2, and DIFF3,
i.e. in this example company 1 has the highest holding cost rate while company 2 has the highest
emergency costs. This hopefully allows more interaction and different results between situations.
17 See Section 4.5 and/or Appendix 8 for more detail on how the unique optimal base-stock vector for

coalition MŒN , S
*

M , is found.

 29

Furthermore, interestingly, every game associated with a simple spare parts inventory
situation for which all companies were not only allowed to have different emergency
costs, different holding costs, and different demand rates but forced to be non-identical in
all these respects (i.e., one where the index of λ, h, and c

emer was DIFF1, DIFF2, or
DIFF3) had a non-empty core as well18. Only when we set companies to be identical on
at least either λ or h and force their c

emer to be different, do we encounter associated
games with empty cores. Results for these types of spare parts inventory situations are
shown in Table 5.4. Figure 5.1 through Figure 5.4 show the percentage of associated
games with empty cores for various input parameter values. A discussion and explanation
of the pivotal observations is given at the end of Section 5.4.4.

Table 5.4: Percentage of associated games with empty cores differentiated for

classes of simple spare parts inventory situations
Parameters that are set to
be different (others are
identical)

Corresponding parameter
indexes

Percentage of
associated games
with empty cores

Percentage of
associated games with
empty imputation set

c
emer c

emerœ{DIFF1,DIFF2,DIFF3};
λ,µ,hœ{All-Min, All-Low, All-
Standard, All-High, All-Max }

8.93% 4.67%

c
emer and λ c

emer,λœ{DIFF1,DIFF2,DIFF3};
µ,hœ{All-Min, All-Low, All-
Standard, All-High, All-Max }

7.33% 3.33%

c
emer and h c

emer,hœ{DIFF1,DIFF2,DIFF3};
µ,λ œ{All-Min, All-Low, All-
Standard, All-High, All-Max }

0.44% 0.00%

0

0.5

1

1.5

2

2.5

3

%
 e

m
p

ty
 c

o
re

All-Min All-Low All-

Standard

All-High All-Max DIFF1 DIFF2 DIFF3

index of λ

% associated games with empty cores differentiated for index of λ

0

1

2

3

4

5

6

7

8

9

%
 e

m
p

ty
 c

o
re

All-Min All-Low All-Standard All-High All-Max

index of µ

% associated games with empty cores differentiated for index of µ

Figure 5.1: Results for each value index of λ. Figure 5.2: Results for each value index of µ.

18 Note that there were only 33 games for which cemer,h,λ œ{DIFF1,DIFF2,DIFF3}, so the sample size on
which this statement is based was fairly small. As such, not finding any empty cores for this subset may be
just due to the specific parameter values chosen. No conjecture on some generic property is implied.

 30

0

1

2

3

4

5

6

7

8

9

%
 e

m
p

ty
 c

o
re

All-Min All-Low All-

Standard

All-High All-Max DIFF1 DIFF2 DIFF3

index of h

% associated games with empty cores differentiated for index of h

0

2

4

6

8

10

12

%
 e

m
p

ty
 c

o
re

All-Min All-Low All-

Standard

All-High All-Max DIFF1 DIFF2 DIFF3

index of emergency costs

% associated games with empty cores differentiated for index of

emergency costs

Figure 5.3: Results for each value index of h. Figure 5.4: Results for each value index of c

emer
.

5.4.4 Results of the numerical experiment: Simple pooling games with
fixed base-stock levels

Out of 25600 cases, 25272 had non-empty cores (98.7%), with 98.6% for 3-player games
and 98.8% for 4-player games. Every game associated with a simple spare parts
inventory situation for which all companies had identical emergency costs (i.e., one in

emercidsimple :,
Γ) and any fixed base-stock vector had a non-empty core. Furthermore, every

game associated with simple spare parts inventory situations for which companies had
different emergency costs, identical λ and identical base-stock levels, had a non-empty
core. Only when we set companies to be different on cemer and at least different on λ or
base-stock levels, do we encounter associated games with empty cores. This is in line
with Theorems 5.1 and 5.2. Results for these types of spare parts inventory situations are
shown in Table 5.5. Figure 5.5 through Figure 5.9 show the percentage of associated
games with empty cores for various input parameter values. Afterwards, a discussion and
explanation of the pivotal observations is provided.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

%
 e

m
p

ty
 c

o
re

All-Min All-Low All-

Standard

All-High All-Max DIFF1 DIFF2 DIFF3

λ index

% associated games with empty cores differentiated for index of λ

0

1

2

3

4

5

6

%
 e

m
p

ty
 c

o
re

All-Min All-Low All-Standard All-High All-Max

index of µ

% associated games with empty cores differentiated for index of µ

Figure 5.5: Results for each value index of λ. Figure 5.6: Results for each value index of µ.

 31

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

%
 e

m
p

ty
 c

o
re

All-Min All-Low All-

Standard

All-High All-Max DIFF1 DIFF2 DIFF3

h index

% associated games with empty cores differentiated for index of h

0

1

2

3

4

5

6

7

%
 e

m
p

ty
 c

o
re

All-Min All-Low All-

Standard

All-High All-Max DIFF1 DIFF2 DIFF3

emergency costs index

% associated games with empty cores differentiated for index of

emergency costs

Figure 5.7: Results for each value index of h. Figure 5.8: Results for each value index of c

emer
.

0

0.5

1

1.5

2

2.5

3

3.5

%
 e

m
p

ty
 c

o
re

Sindiv SN* Shigh Slow Smix

base-stock vector type

% associated games with empty cores differentiated for base-stock

vector type

Figure 5.9: Results for each base-stock vector type

Table 5.5: Percentage of associated games with empty cores differentiated for

classes of spare parts inventory situations and type of base-stock vectors
Parameters that
are set to be
different (others
are identical)

Identical base-
stock levels for all
companies or
possibly different?

Corresponding parameter indexes Percentage
of associated
games with
empty cores

Percentage of
associated games
with empty
imputation set

c
emer and λ Identical c

emer,λœ{DIFF1,DIFF2,DIFF3};
µ,hœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

high or S=S
low 2.89 % 1.00 %

c
emer and λ and h Identical c

emer,λ,hœ{DIFF1,DIFF2,DIFF3};
µœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

high or S=S
low 0.93 % 0 %

c
emer Can be different c

emerœ{DIFF1,DIFF2,DIFF3};
µ,h,λœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

indiv or S=SN* or S=S
mix 6.22 % 3.64 %

c
emer and λ Can be different c

emer,λœ{DIFF1,DIFF2,DIFF3};
µ,hœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

indiv or S=SN* or S=S
mix 7.26 % 2.59 %

c
emer and h Can be different c

emer,hœ{DIFF1,DIFF2,DIFF3};
µ,λœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

indiv or S=SN* or S=S
mix 2.30 % 0.74 %

c
emer and λ and h Can be different c

emer,λ,hœ{DIFF1,DIFF2,DIFF3};
µœ{All-Min, All-Low, All-Standard, All-
High, All-Max }; S=S

indiv or S=SN* or S=S
mix 3.46 % 0.49 %

 32

We can make several interesting observations in this numerical experiment that hold for
both situations OPT and FIX:

• c
emer has a marked influence on whether the core of an associated game is empty or

not (see Figure 5.4 and 5.8). If companies all have the exact same c
emer, then this

numerical experiment suggests that the core of an associated game will be non-empty.
This will later be captured formally in a conjecture. Empty cores are most often found
for games associated with spare parts inventory situations in which the emergency
costs differed largely between companies. The logic behind this has already been
discussed in the counter-examples of Section 5.3; when demand for a company with a
very low cemer comes in, it is fulfilled from the pooling stock, but when subsequently
demand for a company with a very high cemer comes in, it may be that all available
stock have been consumed by the company with the low cemer. Once pooling stock
gets low, fulfillling every demand of the company with the low cemer via emergency
shipment may give lower costs than full pooling. So, the main problem seems to lie in
the full pooling approach that is assumed.

• The demand rate does not appear to be an important factor in whether we get an
empty or non-empty core; Figure 5.1 and Figure 5.5 do not show a large effect.

• An empty core does not always imply an empty imputation set (see Table 5.4 and
5.5). Therefore, the game theoretical view does add something interesting.

• The games associated with simple spare parts inventory situations for which
companies have identical, but very low repair rates and/or identical, but very high
holding cost rates surprisingly often have empty cores. An intuitive explanation for
this is that in these situations, the marginal added value of putting another spare part
on stock is low. You have to pay lots of holding costs and/or the part is in repair for
most of the time. This means that emergency costs will likely be dominant in the cost
function, which amplifies the effect that cemer has (as described in the first point in this
list). This concept is illustrated in more detail in example games in Appendix 9.
There, a game is given with an empty core and it is shown that setting the repair rate
to be very high or setting the holding cost rate to be very low instead leads to a game
with a non-empty core (and the holding costs are dominant in the latter two).

The following observation only applies to situation OPT:

• Consider the classes Gsimple,id:h and Gsimple. This numerical experiment indicates that
the former has more associated games with an empty core than the latter. An intuitive
explanation of why setting holding cost rates to be different can lead to a balanced
game is that this adds an additional way of obtaining cost savings. For example, if
h1>h2 then putting companies 1 and 2 together in a coalition implies that the spare
parts needed for company 1 can now be stored more cheaply at company 2. If h1
would have been the same as h2, there would be no such benefit of cooperation.

The following observation only applies to situation FIX:

• Games for which companies had non-identical base-stock levels had more empty
cores than games for which companies had identical base-stock levels. Particularly,
S

indiv and Smix relatively often led to empty cores. Finding a clear explanation for this
is left as a future research direction.

 33

5.4.5: Results of the numerical experiment: 2-player games

Recall that in section 5.3 we gave counter-examples of 2-player games. We now focus on
sub-games of the 3-player games considered in the numerical experiment.
With each 3-player game, we can limit the characteristic cost function to player sets
{1,2}, {1,3}, and {2,3} to construct 2-player sub-games. Two interesting questions arise:

• If the core of the three-player game is empty, then will we always find a two-
player sub-game whose core is also empty? In other words, if things go wrong for
three players, then is this always due to a problem that exists for two players?

• If the core of the three-player game is non-empty, then is it possible to find a two-
player sub-game whose core is empty? If this happens, then the three-player game
is not totally balanced.

The results of the numerical experiment with respect to these 2-player games are given
for situation OPT in Table 5.6 and for situation FIX in Table 5.7. Interestingly, no game
was found for which all three sub-games had an empty core. Furthermore, for both
situations OPT and FIX, it was most likely that if the core of the 3-player game was
empty that 2 sub-games had an empty core, and that if the core of the 3-player game was
non-empty that 0 sub-games had an empty core.

Table 5.6: Results for 2-player games in situation OPT. The value in the table is the

percentage of 3-player games with empty core (column 1) or non-empty core

(column 2) with the number of sub-games with an empty core depending on the row.

 Core of the 3-player
game is empty

Core of the 3-player
game is non-empty

3 sub-games had an empty core 0% 0%

2 sub-games had an empty core 77.77% 0.04%

1 sub-games had an empty core 20.37% 0.60%

0 sub-games had an empty core 1.85% 99.36%

Table 5.7: Results for 2-player games in situation FIX. The value in the table is the

percentage of 3-player games with empty core (column 1) or non-empty core

(column 2) with the number of sub-games with an empty core depending on the row.

 Core of the 3-player
game is empty

Core of the 3-player
game is non-empty

3 sub-games had an empty core 0% 0%

2 sub-games had an empty core 44.44% 0.05%

1 sub-games had an empty core 39.44% 0.55%

0 sub-games had an empty core 16.11% 99.40%

In Appendix 9, three examples can be found: one where the core of the 3-player game
was empty but none of the sub-games had empty cores; one where the core of the 3-
player game was non-empty but two sub-games had empty cores; and one where the core
of the 3-player game was empty but two sub-games also had empty cores.

 34

This 2-player sub-game research showed that if the core of the three-player game is
empty, then we will not always find a two-player sub-game whose core is also empty, i.e.
if things go wrong for three players, then this is not always already due to a problem that
exists for two players (although this is often the case). Furthermore, even if the core of
the three-player game is non-empty, the three-player game is not always totally balanced.

5.5 Chapter summary

In this chapter, we have seen proofs that games associated with certain classes of spare
parts inventory situations will always have non-empty cores. We have also seen
counterexamples showing that games associated with certain classes of simple spare parts
inventory situations will not always have non-empty cores.

A numerical experiment has led to interesting observations. One of those will now be
formally captured in a conjecture. Based on the observations in this numerical
experiment, we conjecture that any simple spare parts pooling game (situation FIX or
situation OPT), associated with any simple spare parts inventory situation in which
companies have identical emergency costs, has a non-empty core.

Conjecture 5.1: Let emercidsimple :,
Γ∈ϕ . Let S∈�0

N be fixed. Then:

(i) The spare parts pooling game (N,c) associated with ϕ and S has a non-empty core.

(ii) The spare parts pooling game (N,c) associated with ϕ also has a non-empty core.

We now provide a structured overview of what we know for games associated with each
class of spare parts inventory situation in Tables 5.8 (for situations with to-be-optimized
base stock levels) and 5.9 (for situations with fixed base-stock vectors).

Table 5.8: Summary of what we know on the cores of simple spare parts pooling

games for situation OPT
Class of spare
parts inventory
situation

Parameters that may be different
between companies

What do we know about the core of the
associated game?

emerchidsimple ,,:, λ
Γ - If |N|=3 and

tot

MS ≤20· || M , core is non-empty

(Theorem 5.3). Else, conjecture 5.1 applies

emerchidsimple ,:,
Γ Demand rates Conjectured to be non-empty (Conjecture 5.1)

emercidsimple ,:, λ
Γ Holding cost rates Conjectured to be non-empty (Conjecture 5.1)

emercidsimple :,
Γ Demand rates, holding cost rates Conjectured to be non-empty (Conjecture 5.1)

hidsimple ,:, λΓ Emergency costs Counter-example of empty core 5.3

hidsimple :,Γ Emergency costs, demand rates Counter-example of empty core 5.3

λ:,idsimpleΓ Emergency costs, holding cost rates Counter-example of empty core 5.3

simpleΓ Emergency costs, demand rates,
holding cost rates

Counter-example of empty core 5.3

 35

Table 5.9: Summary of what we know on the cores of spare parts pooling games for

situation FIX
19

Class of spare
parts pooling
game

Identical base-stock levels for all
companies or possibly different?

What do we know about the core of the
associated game?

emerchidsimple ,,:, λ
Γ Identical Non-empty (Theorem 5.1 and 5.2)

emerchidsimple ,:,
Γ Identical Conjectured to be non-empty (Conjecture 5.1)

emerchidsimple ,,:, λ
Γ Different Non-empty (Theorem 5.2)

emerchidsimple ,:,
Γ Different Conjectured to be non-empty (Conjecture 5.1)

hidsimple ,:, λΓ Identical Non-empty (Theorem 5.1)

hidsimple :,Γ Identical Counter-example of empty core 5.1

hidsimple ,:, λΓ Different Counter-example of empty core 5.2

hidsimple :,Γ Different Counter-example of empty core 5.1 or 5.2

19 Note that the results for any spare parts inventory situation in which h is indentical will be the same as
any spare parts inventory situation in which h is different between companies. It can be easily verified that
holding cost terms will always cancel out against each other in all balancedness equations and hence do not
affect whether a core is empty or not. The reason why e.g. figure 5.7 shows different results for different
indexes of h is that the base-stock vectors chosen are based on h and we compare S(h), h combinations with
S(h’),h’ combinations rather than S(h),h combinations with S(h),h’ combinations.

 36

Chapter 6: Cost allocation in simple spare parts pooling
games

In this chapter we attempt to answer research question 2 (“What is a proper cost

allocation policy for a simple spare parts pooling game?”). In section 6.1, we first

propose four cost allocations. In section 6.2, we define useful properties and see whether

these cost allocations adhere to it. In section 6.3, we perform a numerical experiment on

cost allocations and draw some conclusions regarding stability of allocation rules.

6.1. Proposed cost allocations

In this section, we define four cost allocations that will form the basis of this chapter.
These cost allocations are taken from a much larger list of potential cost allocations that
originated from the literature or from a brainstorm session. All of these cost allocations
can be found in Appendix 10. The four cost allocations that will be presented now were
selected mainly because they performed well in a numerical experiment, i.e. in a
relatively large percentage of games these allocations were in the core. Some results of
this numerical experiment will be shown in Section 6.3. While the idea behind all four
cost allocations can be applied both to games with to-be-optimized base-stock levels and
to games with fixed base-stock levels, the formulas and behavior can differ. Therefore, in
definitions in this chapter we make a distinction between situations OPT and FIX.

For situation OPT, we have an allocation rule defined as a function →Γ:OPTf �
N.

For situation FIX, we have an allocation rule defined as a function ∗Γ:FIXf � →N
�

N.

Finally, we remark that cost allocations allocate expected yearly costs, not realized yearly
costs (as the characteristic cost function is also defined as expected yearly costs).

Allocation rule AL: An allocation of total costs based on the demand rate of each
company.

Formula for situation FIX: Let simpleΓ∈ϕ and S∈�0
N. Then, for all iœN :

,(ϕFIX

i
AL S ∑

∈

⋅=
Nj

ji

S
NK λλϕ /)() , .

Formula for situation OPT: Let simpleΓ∈ϕ . Then, for all iœN :

=)(ϕOPT

iAL ,(ϕFIX

i
AL S)(* ϕN).

This is cost allocation policy 3 in Wong et al. (2007) and is quite easy to understand and
administer. Simplicity of a cost allocation rule is somewhat subjective, but we suggest
that this allocation rule is the simplest of all rules presented here. The demand rate turned
out to be the most important information for cost allocations; in the numerical
experiment, allocating based on demand rates gave more core elements than allocating
based on holding cost rates or emergency costs.

 37

Allocation rule SPLIT: An allocation where holding costs are allocated based on
demand rates and emergency costs based on the demand rate times emergency costs.

Formula for situation FIX: Let simpleΓ∈ϕ and S∈�0
N. Then, for all iœN :

,(ϕFIX

i
SPLIT S emer

ii

Nj

j

Nj

j

Nj

jj

Nj

j

i cSSh ⋅⋅+

⋅⋅= ∑

∑
∑

∑ ∈

∈

∈

∈

λ
µ

λ

π
λ

λ
),() 0 .

Formula for situation OPT: Let simpleΓ∈ϕ . Then, for all iœN :

,()(ϕϕ FIXOPT

ii
SPLITSPLIT = S)(* ϕN).

This allocation is the result of a brainstorm experiment (Appendix 10) in which many
similar allocations were tried, but this particular allocation turned out to be in the core
most often. The amount of spare parts that has to be held on stock for a company is based
on his demand rate, so allocating holding costs based on demand rate makes sense
intuitively (and allocating costs this way gave more core elements than allocating holding
costs based on holding cost rates in the numerical experiment). The total emergency costs

is dependent on emer

ii c⋅λ and therefore this term is used.

Allocation rule BL: An allocation of total benefits based on the demand rate of each
company:

Formula for situation FIX: Let simpleΓ∈ϕ and S∈�0
N. Then, for all iœN :

,(ϕFIX

i
BL S

Κ−Κ⋅−Κ= ∑

∑ ∈

∈

)(})({})({) ;;;
Nji

S

Nj

S

Nj

j

iS ϕϕϕ

λ

λ
.

Formula for situation OPT: Let simpleΓ∈ϕ . Then, for all iœN :

Κ−Κ⋅−Κ= ∑

∑ ∈

∈

)(})({})({)()(;)(;)(; **
}{

*
}{ NjiBL Nji

i

S

Nj

S

Nj

j

iSOPT ϕϕϕϕϕϕ

λ

λ
ϕ .

Based on Kilpi et al. (2008), allocating benefits ensures that (if the imputation set is non-
empty) no individual company will have to pay more costs than when working alone.

The Shapley value:

Formula for situation FIX: Let simpleΓ∈ϕ and S∈�0
N. Then, for all iœN :

,(ϕiΦ S ()∑
⊆

Κ−∪Κ⋅
−−⋅

=
}{\

;;)(}){(
|!|

)!1|(||!|
)

iNM

SS
MiM

N

MNM ϕϕ .

Formula for situation OPT: Let simpleΓ∈ϕ . Then, for all iœN :

()∑
⊆

Κ−∪Κ⋅
−−⋅

=Φ ∪

}{\

)(;)(;
)(}){(

|!|

)!1|(||!|
)(

**
}{

iNM

SS

i MiM
N

MNM
MiM ϕϕϕϕ

ϕ .

This allocation is in “game terms” rather than in “spare parts inventory situation terms”.
The Shapley value is a well-established allocation in game theory literature, however.

 38

In this chapter our focus is on trying to find a cost allocation rule that:
(i) is easy to grasp, easy to calculate, and applicable to spare parts pooling games
(ii) adheres to various fairness properties
(iii) is always in the core (if non-empty) of a simple spare parts pooling game.

We remark that we will not cover the nucleolus (see Appendix 2) here, although the
nucleolus is always in the core (if the core is non-empty). However, it is relatively hard to
calculate (Hartman&Dror, 1996; Sankaran, 1991). We posit that the four allocation rules
presented in this section, in our opinion, do adhere to the above property (i), as opposed
to the nucleolus. The nucleolus can act as a fall-back option if none of the four allocation
rules proposed here can be shown to be in the core of a simple spare parts pooling game.

6.2. Properties of cost allocations

We now provide a list of properties that may be desirable for cost allocations to have.
Efficiency and stability are clearly important and well-established in game theory
literature; the set of all stable and efficient allocations is called the core. The other
properties are fairness properties that are applicable to spare parts pooling games and that
may help to select a fair cost allocation.

6.2.1 Efficiency

An allocation rule is efficient if all costs incurred are fully split. Formally:

Definition for situation OPT: An allocation rule fOPT is efficient if for all simpleΓ∈ϕ :

∑
∈

=
Ni

SOPT
NKf N

i
)()()(, * ϕϕϕ .

Definition for situation FIX: An allocation rule fFIX is efficient if for all simpleΓ∈ϕ and all

S∈�0
N : ∑

∈Ni

FIX

i
f ,(ϕ S)() , NK Sϕ= .

Lemma 6.1: Allocation rules ALFIX, SPLITFIX, BLFIX, Φ FIX, ALOPT, SPLITOPT, BLOPT,
and Φ OPT are efficient.
Proof:

Let simpleΓ∈ϕ and let S∈�0
N.

We will first show efficiency for the Shapley value. We will use a result from the
literature, but in order to be able to use it we need to transform the Shapley value defined

as a function of a simple spare parts inventory situation, iΦ , to the Shapley value defined

as a function of a game, game

iΦ (as defined in Section 1.4).

Let the game associated with ϕ be (N,cOPT) and the game associated with ϕ and S be

(N,cFIX). Now, for iœN :)(),(ϕOPTOPTgame

ii
cN Φ=Φ and ,(),(ϕFIXFIXgame

ii
cN Φ=Φ S).

 39

Since game

iΦ satisfies efficiency in terms of a game (see Appendix 2), it follows that

allocation rules Φ FIX and Φ OPT are efficient.

As for FIX
AL , it is easy to show directly in one step that ,(ϕ∑

∈Ni

FIX

i
AL S)() , NK Sϕ= .

Furthermore: ∑
∈Ni

FIX

i
SPLIT ,(ϕ S ∑∑∑∑

∈∈∈∈

=⋅⋅+⋅=
Ni

Semer

ii

Ni

i

Ni

i

Ni

ii NKcSSh)(),/() ,

0

ϕλµλπ .

Furthermore: ∑
∈Ni

FIX

i
BL ,(ϕ S)()(})({})({) ;;;;

NNii
SS

Ni

S

Ni

S ϕϕϕϕ Κ=

Κ−Κ−Κ= ∑∑

∈∈

.

Using the above, we also have =)(ϕOPT

iAL ,(ϕFIX

i
AL S)(* ϕN) =)()(, *

NK NS ϕϕ and

,()(ϕϕ FIXOPT

ii
SPLITSPLIT = S)(* ϕN)=)()(, *

NK NS ϕϕ .

Finally:)()(})({})({)()(;)(;)(;)(; ***
}{

*
}{ NNiiBL NNii

i

SS

Ni

S

Ni

S

Ni

OPT ϕϕϕϕϕϕϕϕ
ϕ Κ=

Κ−Κ−Κ= ∑∑∑

∈∈∈

�

6.2.2 Stability

Definition for situation OPT: An allocation rule fOPT is stable if for all simpleΓ∈ϕ :

∑
∈

≤
Mi

SOPT
MKf M

i
)()()(, * ϕϕϕ for all M ⊆ N.

Definition for situation FIX: An allocation rule fFIX is stable if for all simpleΓ∈ϕ and all

S∈�0
N : ∑

∈Mi

FIX

i
f ,(ϕ S)() , MK Sϕ≤ for all M ⊆ N.

We will investigate stability for games associated with certain classes of spare parts
inventory situations in section 6.3.

6.2.3 Monotonicity (in λ, in h, and in cemer)

We shall only define Monotonicity in λ in order to be brief. Definitions for Monotonicity
in h and Monotonicity in cemer are obtained by replacing all instances of λ with h or cemer ,
respectively in the following definition. Intuitively, an allocation rule is monotone in λ if,
keeping everything else equal, an increase in the demand rate of a company does not
result in a decrease of the costs allocated to him. For a single company, his cost function
when acting alone is non-decreasing in λ, h, and cemer and it seems reasonable to require
the same for cost allocations in bigger coalitions. Formally:

Definition for situation OPT: Suppose simpleΓ∈',ϕϕ such that 'ϕ is identical to ϕ in all

respects, except that for some iœN : λi is higher in 'ϕ than λi in ϕ . Then, an allocation

rule fOPT is monotonic in λ if:)()'(ϕϕ OPTOPT

ii
ff ≥ .

 40

Definition for situation FIX: Suppose simpleΓ∈',ϕϕ such that 'ϕ is identical to ϕ in all

respects, except that for some iœN : λi is higher in 'ϕ than λi in ϕ . Let S∈�0
N. Then, an

allocation rule fFIX is monotonic in λ if: ,'(ϕFIX

i
f S ,() ϕFIX

i
f≥ S).

Lemma 6.2: Allocation rules ALFIX and ALOPT are monotonic in λ, in h, and in cemer.
Proof:

Let simpleΓ∈ϕ , let NM ⊆ , let S∈�0
M , and let Ni ∈ . Suppose simpleΓ∈'ϕ such that 'ϕ is

identical to ϕ in all respects, except that either λi is higher in 'ϕ than λi in ϕ . In the

remainder of this proof, we will first show some properties about the characteristic cost
functions and subsequently combine these to complete the proof.

 Part 1: We will first show that)()(;;' NN SS ϕϕ Κ≥Κ .

= ∑∑

∈∈ Mi

i

Mi

i SB ,/0 µλπ is non-

decreasing in λi by Lemma 4.1. Therefore, ∑∑
∈∈

⋅⋅+⋅=Κ
Mi

emer

ii

Mi

ii

S cBShM λϕ)(; is easily

seen to be non-decreasing in iλ , hence)()(;;' NN SS ϕϕ Κ≥Κ .

 Part 2: We show)()()(;)'(;' **

NN NN SS ϕϕϕϕ Κ≥Κ . We start with)()()'(;)'(;' **

NN NN SS ϕϕϕϕ Κ≥Κ ,

which holds by Part 1. Observe)()()(;)'(; **

NN NN SS ϕϕϕϕ Κ≥Κ , by definition of)(* ϕNS as a

cost-minimizing base-stock vector. Hence,)()()(;)'(;' **

NN NN SS ϕϕϕϕ Κ≥Κ .

 Part 3: Obviously, ∑
∈Nj

ji λλ / is non-decreasing in iλ .

Using the definitions of ,(ϕFIX

i
AL S) and)(ϕOPT

iAL , we complete the proof with:

By part 1 and 3: ,'(ϕFIX

i
AL S)≤ ,(ϕFIX

i
AL S). By part 2 and 3:)()'(ϕϕ OPT

i

OPT

i ALAL ≥ .

The proof for monotonicity in h and in cemer goes analogously to the above.
�

We will now posit two conjectures on whether certain allocation rules adhere to
monotonicity properties. These conjectures are based on a check added to all games of
the numerical experiment of section 6.3, where for each spare parts inventory situations
three additional spare parts inventory situations were created, in which either λ1, h1, or

emerc1 , respectively, were doubled and the cost allocations for these were compared to the

cost allocations for the original ones. For allocations that adhered to monotonicity
properties in all of these cases, the following conjectures are stated.

Conjecture 6.1: Allocation rules Φ OPT, Φ FIX and SPLITFIX are monotonic in λ, in h and
in cemer.

Conjecture 6.2: Allocation rules BLOPT and BLFIX are monotonic in h and in cemer.

We will now present an example (6.1) showing that allocation rule SPLITOPT is not
always monotonic in h.

 41

The idea behind this example is that an increase in the holding costs of a company can
result in a lower optimal base-stock level and hence both lower total holding costs and
higher total emergency costs (as the probability of having a stock-out has increased).
Since allocation rule SPLITOPT allocates holding costs and emergency costs in different
fashion, it may be that one part decreases greatly while the other part increases only
slightly. Subsequently, we present an example (6.2) showing that allocation rule
SPLITOPT is not always monotonic in λ and an example (6.3) showing that allocation rule
SPLITOPT is not always monotonic in cemer. The idea behind these examples is very
similar to the first one.

Example 6.1: Allocation rule SPLITOPT is not always monotonic in h

Consider the 2-player simple spare parts inventory situation simpleΓ∈1ϕ with N={1,2},

µ=500, h1=400; h2=28000; emerc1 =10, emerc2 =50,000; λ1=5, λ2=0.05. Suppose that we have

situation OPT. The associated simple spare parts pooling game is described by:
c({1}) = 50.0; c({2})= 2500.0; c({1,2}) = 425.5;

We remark that for 0** }2{}1{ == tottot
SS and 1*}2,1{ =tot

S . Allocation SPLITOPT (φ1) results in

SPLIT OPT

1
(φ1)=396.54 and SPLIT OPT

2 (φ1)=28.96.

Now, consider the 2-player simple spare parts inventory situation simpleΓ∈2ϕ which is

identical to 1ϕ except that the holding cost rate of company 1 has increased: h1 is now

28000 instead. Suppose that we have situation OPT. The associated game is described by:
c({1}) = 50.0; c({2})= 2500.0; c({1,2}) = 2550.0;

We remark that 0*** }2,1{}2{}1{ === tottottot
SSS . Allocation SPLITOPT (φ2) results in

SPLIT OPT

1
(φ2)=50.0 and SPLIT OPT

2
(φ2)=2500.0.

As)()(12 11
ϕϕ OPTOPT

SPLITSPLIT < , SPLITOPT does not always satisfy monotonicity in h.

Example 6.2: Allocation rule SPLITOPT is not always monotonic in λ

Consider the 2-player simple spare parts inventory situation hidsimple :,3 Γ∈ϕ with N={1,2},

µ=1.67, h=28000; emerc1 =2600, emerc2 =78000; λ1=10, λ2=5. Suppose that we have situation

OPT. The associated simple spare parts pooling game is described by:
c({1}) = 26,000; c({2}) = 182,721.67; c({1,3}) = 343,904.73.

We remark that for 8* ,5* ,0* }2,1{}2{}1{ === tottottot
SSS . Allocation SPLITOPT(φ3) results in

SPLIT OPT

1
(φ3)=156,827.28 and SPLIT OPT

2
(φ3)=187,077.35.

Now, consider the 2-player simple spare parts inventory situation hidsimple ,,4 Γ∈ϕ which is

identical to 3ϕ except that the demand rate of company 1 has increased: λ1 is now 20

instead. Suppose that we have situation OPT. The associated game is described by:
c({1}) =52,000; c({2}) = 182,721.67; c({1,3}) = 442,000.

We remark that for 5* ,0** }2{}2,1{}1{ === tottottot
SSS . Allocation SPLITOPT(φ4) results in

SPLIT OPT

1
(φ4)=52,000, SPLIT OPT

2 (φ4)=390,000.

As)()(34 11
ϕϕ OPTOPT

SPLITSPLIT < , SPLITOPT does not always satisfy monotonicity in λ.

 42

Example 6.3: Allocation rule SPLITOPT is not always monotonic in cemer

Consider the 3-player simple spare parts inventory situation hidsimple ,:,5 λϕ Γ∈ with

N={1,2,3}, µ=25, h=400; emerc1 =26000, emerc2 =6500; emer
c3 =13000; λ=2.5. Suppose that we

have situation OPT. The associated simple spare parts pooling game is described by:
c({1}) = 1094.12; c({2})= 873.53; c({3}) = 947.06;
c({1,2}) = 1288.7; c({1,3}) = 1306.44; c({2,3}) = 1253.22;

c({1,2,3}) = 1579.31 (with 3*}3,2,1{ =tot
S).

We have SPLIT OPT

1
(φ5)=616.8; SPLIT OPT

2 (φ5)=454.2; SPLIT OPT

3 (φ5)=508.4.

Now, consider the 3-player simple spare parts inventory situation hidsimple ,:,6 λϕ Γ∈ which

is identical to 5ϕ except that the emergency costs of company 1 has increased: emerc1 is

now 52000 instead. Suppose that we have situation OPT. The associated simple spare
parts pooling game is described by:
c({1}) = 1219.6; c({2})= 873.53; c({3}) = 947.06;
c({1,2}) = 1359.66; c({1,3}) = 1377.4; c({2,3}) = 1253.22;

c({1,2,3}) = 1644.69 (with 4*}3,2,1{ =tot
S).

We have SPLIT OPT

1
(φ6)=565.84; SPLIT OPT

2 (φ6)=537.40; SPLIT OPT

3 (φ6)=541.46.

As)()(56 11
ϕϕ OPTOPT

SPLITSPLIT < , SPLITOPT does not satisfy monotonicity in cemer.

We will now present an example (6.4) showing that allocation rule BLOPT is not always
monotonic in λ. The idea behind this example is that an increase in the demand rate of a
company will result in higher costs of the grand coalition, but more benefits allocated to
the company with the higher demand rate (hence it has to pay less costs). Subsequently,
we present an example (6.5) showing that allocation rule BLFIX is not always monotonic
in λ. The idea behind this example is very similar to the previous one.
We remark that Allocation BLOPT is not monotonic in λ while Allocation ALOPT is
monotonic in λ by Lemma 6.2. Therefore, these two rules can give different allocations.
Hence, the method of allocating costs based on demand rates are different for a cost game
and a benefit game and therefore allocations AL(φ) and BL(φ) do not adhere to the
justifiability criterion of Hartman and Dror (1996).

Example 6.4: Allocation rule BLOPT is not always monotonic in λ

Consider once again the 3-player simple spare parts inventory situation 5ϕ (see Example

6.3). We have BL OPT

1
(φ5)=649.0, BL OPT

2 (φ5)=428.4, BL OPT

3 (φ5)=501.9.

Now, consider the 3-player simple spare parts inventory situation hidsimple ,:,7 λϕ Γ∈ which

is identical to 5ϕ except that the demand rate of company 1 has increased: λ1 is now 5

instead. Suppose that we have situation OPT. The associated game is described by:
c({1}) = 1341.92; c({2})= 873.53; c({3}) = 947.06;
c({1,2}) = 1636.57; c({1,3}) = 1640.63; c({2,3}) = 1253.22;
c({1,2,3}) = 1727.82.

Allocation BLOPT(φ7) results in BL OPT

1
(φ7)=624.6, BL OPT

2 (φ7)=514.9, BL OPT

3 (φ7)=588.4.

As)()(57 11
ϕϕ OPTOPT

BLBL < , BLOPT does not always satisfy monotonicity in λ.

 43

Example 6.5: Allocation rule BLFIX is not always monotonic in λ

Consider the 3-player simple spare parts inventory situation emerchidsimple ,,:,8 λ
ϕ Γ∈ with

N={1,2,3}, µ=25, h=4000; emer
c =13000; λ=5. Suppose that we have situation FIX with

base-stock vector S given by S1=2, S2=3, S3=0. The associated game is described by:
c({1}) = 9,065.57; c({2})= 12,070.96; c({3}) = 65,000.0;
c({1,2}) = 20,007.44; c({1,3}) = 15,027.03; c({2,3}) = 12,930.23;
c({1,2,3}) = 20,069.35

We have BL FIX

1
(8ϕ ,S)=-12,956.82, BL FIX

2 (8ϕ ,S)=-9,951.43, BL FIX

3
(8ϕ ,S)=42,977.61.

Now, consider the 3-player simple spare parts inventory situation emerchidsimple ,:,9 Γ∈ϕ

which is identical to 8ϕ except that the demand rate of company 1 has increased: 1λ is

now 10 instead. Suppose that we have situation FIX. The simple spare parts pooling

game associated with 9ϕ and S is described by:

c({1}) = 15,027.03; c({2})= 12,070.96; c({3}) = 65,000.0;
c({1,2}) = 20,069.35; c({1,3}) = 27,719.1; c({2,3}) = 12,930.23;
c({1,2,3}) = 20,319.07

We have BL FIX

1
(9ϕ ,S)=-20,862.43, BL FIX

2 (9ϕ ,S)=-5,873.77, BL FIX

3
(9ϕ ,S)=47,055.27.

As FIX
BL

1
(9ϕ ,S) FIX

BL
1

< (8ϕ ,S), BLFIX does not always satisfy monotonicity in λ.

6.2.4 Symmetry

An allocation rule is symmetric if the costs allocated to companies with identical
parameters are identical. Formally:

Definition for situation OPT: Let simpleΓ∈ϕ such that λi=λj, hi=hj, and emer

j

emer

i cc = for

some i,jœN . Then, an allocation rule fOPT is symmetrical if OPT

if (ϕ) = OPT

jf (ϕ).

Definition for situation FIX: Let simpleΓ∈ϕ such that λi=λj, hi=hj, and emer

j

emer

i cc = for

some i,jœN . Let S∈�0
N such that Si=Sj. Then, an allocation rule fFIX is symmetrical if

FIX

if (ϕ ,S) = FIX

jf (ϕ ,S).

It is obvious why this is a fair criterion; if two companies are exactly the same then they
should be treated equally. We will show in Lemma 6.3 that all allocations proposed in
section 6.1 are symmetric. However, interestingly, an important allocation does not
always adhere to it. This particular allocation rule, A-localOPT, does not require any
transfer payments, i.e. each company pays its own local holding and local emergency
costs (included in Appendix 9, and the same as allocation policy 1 in Wong et al., 2007):

A-local OPT

i
(φ) () () emer

ii

Nj
j

Nj

jii cSSh
NN

⋅⋅+⋅= ∑∑
∈∈

λµλπ),/(*

0

* .

In the following example (6.6), we see that even if companies have the same input
parameters, their optimal base-stock level need not be the same for both companies.

 44

Particularly, if the optimal sum of base-stock levels for the grand coalition is not
dividable by the number of players, then at least one company will get a higher base-
stock level than another. In that case, allocation rule A-localOPT will allocate more local
(holding) costs to that company than to another. In the numerical experiment, this cost
allocation was often not in the core; not always being symmetric could account for this.

Example 6.6: An allocation without any transfer payments is not always symmetrical.

Consider the 2-player simple spare parts inventory situation emerchidsimple ,,:,10 λ
ϕ Γ∈ with

N={1,2}, µ=25, h=400; emer
c =6500; λ=2.5. Suppose that we have situation OPT.

The associated spare parts pooling game is described by:
c({1}) = 873.53; c({2})= 873.53; c({1,2}) = 1235.48.

We remark that for the grand coalition the optimal base-stock vector S *

N
 is ()

1

*

N
S =2 and

()
2

*

N
S =1. A-localOPT(φ10) yields A-local OPT

1
(φ10)=817.74; A-local OPT

2
=417.74.

These values are not the same and hence A-localOPT does not always satisfy symmetry.

Lemma 6.3: Allocation rules ALFIX, SPLITFIX, BLFIX, Φ FIX, ALOPT, SPLITOPT, BLOPT,
and Φ OPT are symmetric.
Proof:
The proof is fairly straightforward and follows easily from the cost allocation formulas.
The full proof can be found in Appendix 11.
�

6.2.5 Demand dummy property

An allocation rule adheres to the demand dummy property if a player with no demand
rate is not allocated positive costs. Formally:
Definition for situation OPT: An allocation rule fOPT adheres to the demand dummy

property if for all simpleΓ∈ϕ with 0=iλ for some iœN : f OPT

i (ϕ)≤0.

Definition for situation FIX: An allocation rule fFIX adheres to the demand dummy

property if for all simpleΓ∈ϕ with 0=iλ for some iœN and all S∈�0
N : f FIX

i (ϕ ,S)≤0.

The fairness of this property might also seem obvious; a player without any demand
strain does not face any emergency costs and does not need to hold any stock for himself.
However, suppose that we have situation FIX and there is a storage company that does
not face demand for spare parts, but that can contribute to a cost reduction for other
players because it can store spare parts very cheaply. Then if this storage company
chooses a base-stock level of more than zero, it will face holding costs if acting alone
(note that this will be different for situation OPT, as then the storage company will
always choose a base-stock level of zero when acting alone). In such a case, an allocation
rule that allocates positive costs to the storage company can still be in the core. We will
now present an example (6.7) where this could happen.

 45

Example 6.7: Allocation rules BLFIX and FFIX do not always adhere to the demand
dummy property.
In this example, company 2 is an airline that faces demand for spare parts and company 1
is a storage company that does not face demand for spare parts, but that can store those
parts more cheaply than the airline company. Suppose that we have situation FIX with
base-stock vector S given by S1=3, S2=3. Consider the 2-player simple spare parts

inventory situation emercidsimple :,11 Γ∈ϕ with N={1,2}, µ=25, h1=400, h2=2000; emer
c =6500;

λ1=0, λ2=2.5. The associated spare parts pooling game is described by:
c({1})=1200.0; c({2})=6002.45; c({1,2})=7200.00002.

The Shapley value gives Φ FIX

1 (φ11,S)=1198.77, Φ FIX

2 (φ11,S)=6001.23.

Allocation BLFIX gives BL FIX

1 (φ11,S)=1200, BL FIX

1 (φ11,S)=6000.

Lemma 6.3: Allocations rules AL

OPT
, AL

FIX
, SPLIT

OPT
, and SPLIT

FIX adhere to the

demand dummy property.

Proof:

It is readily seen from the cost allocation formulas that if λi=0, then the costs allocated to
player i is zero.
�

Lemma 6.4: Allocations rules Φ OPT

 and BL
OPT

 adhere to the demand dummy

property.

Proof:

Let φœGsimple. Let iœN. Suppose λi=0.
First we show that Φ OPT adheres to the demand dummy property. Let }/{iNM ⊆ .

Observe that () ()MciMc ≤∪ }{ , as adding a player without any demand strain to a

coalition can not increase costs. Hence, () () 0}{ ≤−∪ MciMc .

Furthermore 0
|!|

)!1|(||!|
≥

−−⋅

N

MNM
.

Hence, () 0)(}){(
|!|

)!1|(||!|

}\{

≤−∪⋅
−−⋅

∑
⊆ iNM

MciMc
N

MNM
 and therefore Φ OPT

i (ϕ)≤0.

Now we show that BLOPT
 adheres to the demand dummy property. Observe that c({i})=0,

as choosing a base-stock level of zero is optimal. Hence, 00})({)(=−= icBL
OPT

i ϕ .

�

6.2.6 Final remarks on cost allocation fairness

In Table 6.1 an overview is given of the four cost allocations and their fairness properties.
It is readily seen that allocation rules ALOPT and ALFIX adhere to all fairness properties.
For the other allocation rules, no such definite statement can be made. In fact, for some
allocation rules we have shown counter-examples indicating that they do not always
adhere to some fairness properties.

 46

Table 6.1: Cost allocations and whether they adhere to properties or not
Allocation
rule

Monotonic in λ Monotonic in h Monotonic
in cemer

Symmetric Demand dummy
property

ALOPT Yes Yes Yes Yes Yes

SPLITOPT No No No Yes Yes

BLOPT No Conjectured Conjectured Yes Yes

Φ OPT) Conjectured Conjectured Conjectured Yes Yes

ALFIX Yes Yes Yes Yes Yes

SPLITFIX Conjectured Conjectured Conjectured Yes Yes

BLFIX No Conjectured Conjectured Yes No

Φ FIX Conjectured Conjectured Conjectured Yes No

6.3 Numerical experiment on cost allocations

In this section, we study the stability property of all allocations proposed in section 6.1,
by means of a numerical experiment. All attainable parameter values in this experiment
are very similar to the ones used in the experiment of the previous chapter. Table 5.1
shows all attainable parameter indexes, Table 5.2 shows all attainable parameter rules,
and Table 5.3 shows all actual values, with one addition: we also look at |N|=2 and in that
case, only the first two columns of Table 5.2 are used. As such, we generated 46080
games and subsequently selected only those games with a non-empty core. For each of
these games, we determined (a) what type of simple spare parts inventory situation and
what type of rule on base-stock levels it was associated with and (b) for each of the four
cost allocations rules, whether it was in the core or not. The results are shown in Table
6.2 (separated for the number of players and type of game) and in Figures 6.1 - 6.4
(separated for class of spare parts inventory situation and rule on base-stock levels).

Table 6.2: Percentage of games for which a cost allocation is in the core,

differentiated for N and type of game. Note that there were more games of situation

FIX than OPT; hence values in the first three columns are skewed towards that.

Allocation rule
% in core
for |N|=2

% in core
for |N|=3

% in core
for |N|=4

% in core for games of
situation OPT

% in core for games of
situation FIX

Average

AL 62.02% 58.73% 54.31% 86.74% 44.21% 58.35%

BL 100% 52.09% 44.22% 58.43% 63.18% 65.44%

The Shapley value 100% 63.22% 56.59% 82.69% 68.55% 73.27%

SPLIT 68.28% 65.32% 61.34% 94.01% 53.74% 64.98%

Observations that we can draw from the results of the numerical experiment are:

• None of the cost allocations considered were stable for all of the test cases.

• All four allocations considered here are less often in the core for larger games (i.e. more
players) than for smaller games. This indicates that the allocation rules have trouble
handling the intricacies of large-scale cooperations.

• For games with 3 or 4 companies and/or games with to-be-optimized base-stock levels,
allocation SPLIT was most often in the core (compared to the other allocation rules).

• For games with 2 companies and/or games with fixed base-stock levels, allocation rules
BL and the Shapley value were most often in the core (compared to the other rules).

 47

• While allocation rules ALFIX and ALOPT satisfy all fairness criteria put forward in
section 6.2 and are quite simple as well, they give less often a core element than the
other allocation rules. A problem with allocating costs based on demand rates is that
this is short-sighted; you only take into account differences between demand rates
amongst companies. When demand rates are identical but companies differ highly on
other parameters, you get an equal split, which is not smart when companies are
actually highly different.

0

10

20

30

40

50

60

70

80

90

100

% in core

lambda

identical;

h

identical;

cEMER

identical

lambda

different;

h

identical;

cEMER

identical

lambda

identical;

h

different;

cEMER

identical

lambda

different;

h

different;

cEMER

identical

lambda

identical;

h

identical;

cEMER

different

lambda

different;

h

identical;

cEMER

different

lambda

identical;

h

different;

cEMER

different

lambda

different;

h

different;

cEMER

different

Class of spare parts inventory situation

% associated games for which Allocation A-λ was in the core Situation

OPT

Situation

FIX with

possibly

different

base-stock

levels
Situation

FIX with

identical

base-stock

levels

Figure 6.1: Results for Allocation AL

OPT
 (in blue) and AL

FIX
 (in purple and yellow).

0

10

20

30

40

50

60

70

80

90

100

% in core

lambda

identical;

h

identical;

cEMER

identical

lambda

different;

h

identical;

cEMER

identical

lambda

identical;

h

different;

cEMER

identical

lambda

different;

h

different;

cEMER

identical

lambda

identical;

h

identical;

cEMER

different

lambda

different;

h

identical;

cEMER

different

lambda

identical;

h

different;

cEMER

different

lambda

different;

h

different;

cEMER

different

Class of spare parts inventory situation

% associated games for which Shapley value was in the core Situation

OPT

Situation

FIX with

possibly

different

base-stock

levels
Situation

FIX with

identical

base-stock

levels

Figure 6.2: Results for the Shapley value.

 48

0

10

20

30

40

50

60

70

80

90

100

% in core

lambda

identical;

h

identical;

cEMER

identical

lambda

different;

h

identical;

cEMER

identical

lambda

identical;

h

different;

cEMER

identical

lambda

different;

h

different;

cEMER

identical

lambda

identical;

h

identical;

cEMER

different

lambda

different;

h

identical;

cEMER

different

lambda

identical;

h

different;

cEMER

different

lambda

different;

h

different;

cEMER

different

Class of spare parts inventory situation

% associated games for which Allocation split was in the core Situation

OPT

Situation

FIX with

possibly

different

base-stock

levels
Situation

FIX with

identical

base-stock

levels

Figure 6.3: Results for Allocation SPLIT

OPT
 (in blue; on the left of each group) and

SPLIT
FIX

 (in purple and yellow; middle and right of each group).

0

10

20

30

40

50

60

70

80

90

100

% in core

lambda

identical;

h

identical;

cEMER

identical

lambda

different;

h

identical;

cEMER

identical

lambda

identical;

h

different;

cEMER

identical

lambda

different;

h

different;

cEMER

identical

lambda

identical;

h

identical;

cEMER

different

lambda

different;

h

identical;

cEMER

different

lambda

identical;

h

different;

cEMER

different

lambda

different;

h

different;

cEMER

different

Class of spare parts inventory situation

% associated games for which Allocation B-λ was in the core Situation

OPT

Situation

FIX with

possibly

different

base-stock

levels
Situation

FIX with

identical

base-stock

levels

Figure 6.4: Results for Allocation BL

OPT
 (in blue; on the left of each group) and

BL
FIX

 (in purple and yellow; middle and right of each group).

 49

We will now posit three lemma’s showing that for games associated with certain classes
of simple spare parts inventory situations and/or rules on base-stock levels, certain cost
allocation rules give core elements.

Lemma 6.5: Let allidsimple :,Γ∈ϕ . Let S∈�0
N with Si=Sj for all i,jœN.

(i) If the game associated with φ has a non-empty core, then allocations ALOPT(ϕ),

BLOPT(ϕ), FOPT(ϕ), and SPLITOPT(ϕ) are elements of its core.

(ii) If the game associated with S and ϕ has a non-empty core, then ALFIX(ϕ ,S),

BLFIX(ϕ ,S), FFIX(ϕ ,S), and SPLITFIX(ϕ ,S) are elements of its core.

Proof:
Since all companies are fully identical, c(M) is only dependent on |M|. Then, since the
core is non-empty, an equal cost split (xi=c(N)/|N| for all iœN) will be a core element.
Since by Lemma 6.3 allocation rules ALFIX, SPLITFIX, BLFIX, Φ FIX, ALOPT, SPLITOPT,
BLOPT, and Φ OPT are all symmetrical, they result in core elements.
����

Lemma 6.6: Let hidsimple ,:, λϕ Γ∈ and S∈�0
N with S=Si=Sj for all i,jœN and let the

associated simple spare parts pooling game be (N,c). Then SPLITFIX(ϕ ,S)œCore(N,c).

Proof:
Efficiency follows from Lemma 6.1, so it suffices to show stability:

∑
∈Mi

FIX

i
SPLIT ,(ϕ S)() Mc≤ for all M ⊆ N, i.e (since λ and h are identical for all players):

() ∑∑
∈∈

⋅⋅
⋅

+⋅⋅≤

⋅⋅

⋅
+⋅⋅

Mi

emer

i

Mi

emer

i cMS
M

MShcNS
N

NSh
N

λ
µ

λ
πλ

µ

λ
π |)|,

||
(|||)|,

||
(||

||

1
00

 (6.1)

In order to show that (6.1) holds for all M ⊆ N, we let M ⊆ N and start with:

⋅

⋅
≤

⋅

⋅
SM

M
SN

N
||,

||
||,

||
00

µ

λ
π

µ

λ
π , which holds by Lemma 4.2.

Multiplying by ∑
∈

⋅
Mi

emer

icλ and subsequently adding || MSh ⋅⋅ gives:

∑∑
∈∈

⋅⋅

⋅

⋅
+⋅⋅≤⋅⋅

⋅

⋅
+⋅⋅

Mi

emer

i

Mi

emer

i cSM
M

MShcSN
N

MSh λ
µ

λ
πλ

µ

λ
π ||,

||
||||,

||
|| 00

 (6.2)

Equation (6.2) is equivalent to equation (6.1). This completes the proof.
����

Lemma 6.7: Let emercidsimple ,:, λ
ϕ Γ∈ and S∈�0

N with S=Si=Sj for all i,jœN and let the

associated simple spare parts pooling game be (N,c). Then BLFIX(ϕ ,S)œCore(N,c).

Proof:
Efficiency follows from Lemma 6.1, so it suffices to show stability:

∑
∈Mi

iBL ,(ϕ S)() Mc≤ for all M ⊆ N. (6.3)

Let M ⊆ N. We can rewrite the left part of inequality (6.3) as:

 50

∑
∈Mi

iBL ,(ϕ S ∑ ∑
∑∈ ∈

∈

−⋅−=

Mi Nj

Nj

Ncjcic)(})({})({)
λ

λ

emer

Mi

i

emeremeremer

Mi

i

Ni

emer

i

emer

Ni

i

emer

Mi

i

Mi Nj

cMSN
N

Sh

cSN
N

McSMcSMSh

cNSN
N

ShcSNSh
N

M
cSMSh

Ncjc
N

M
ic

⋅⋅⋅⋅
⋅

+⋅=

⋅⋅⋅
⋅

⋅+⋅⋅⋅−⋅⋅⋅+⋅=

⋅⋅⋅⋅

⋅
−⋅−⋅⋅⋅+⋅⋅−⋅⋅⋅+⋅=

−⋅−=

∑

∑

∑∑∑

∑ ∑

∈

∈

∈∈∈

∈ ∈

λ
µ

λ
π

λ
µ

λ
πλ

µ

λ
πλ

µ

λ
π

λ
µ

λ
πλ

µ

λ
πλ

µ

λ
π

||)||,
||

(

)||,
||

(||),(||),(||

||)||,
||

(),(||
||

||
),(||

)(})({
||

||
})({

0

000

000

Furthermore, the right part of (6.3) is: emer

Mi

i cMSM
M

ShMc ⋅⋅⋅⋅
⋅

+⋅=∑
∈

λ
µ

λ
π ||)||,

||
()(0

Hence, the following inequality (6.4) is identical to (6.1):

emer

Mi

i

emer

Mi

i cMSM
M

ShcMSN
N

Sh ⋅⋅⋅⋅
⋅

+⋅≤⋅⋅⋅⋅
⋅

+⋅ ∑∑
∈∈

λ
µ

λ
πλ

µ

λ
π ||)||,

||
(||)||,

||
(00 (6.4)

In order to show that (6.4) holds, we start with:

⋅

⋅
≤

⋅

⋅
SM

M
SN

N
||,

||
||,

||
00

µ

λ
π

µ

λ
π ,

which holds by Lemma 4.2. We then multiply by || Mc
emer ⋅⋅λ and subsequently add

∑
∈

⋅
Mi

Sh to complete the proof.

����

The following conjectures are based on the results of the experiment (Figures 6.1 - 6.4):

Conjecture 6.3: Let emercidsimple :,
Γ∈ϕ . If the associated simple spare parts pooling game

(N,c) has a non-empty core, then ALOPT(ϕ) and SPLITOPT(ϕ) are core elements.

Conjecture 6.4: Let emerchidsimple ,:,
Γ∈ϕ . If the associated simple spare parts pooling game

(N,c) has a non-empty core, then FOPT(ϕ) is a core element.

Conjecture 6.5: Let emercidsimple ,:, λ
ϕ Γ∈ and S∈�0

N with Si=Sj for all i,jœN. Then

FFIX(ϕ ,S) is a core element.

In conclusion, unfortunately no cost allocation rule has been found so far that is always in
the core (if non-empty) of a simple spare parts pooling game. No clear-cut practical
recommendation can be made at this point, as there is a trade-off between stability,
simplicity, and fairness of cost allocation rules. The stability property can be viewed as
the most important (see, e.g., Hartman&Dror, 1996). Hence, companies may have to
resort to using the nucleolus, particularly for situations with only a small number of
companies, as then the computational complexity of the nucleolus is manageable.

 51

Chapter 7: More complex settings

In this chapter we attempt to answer research question 3 (“Can we generalize results to

a more complex setting?”). First, we look at the class of general spare parts inventory

situations G, for which we derive an expression of steady-state probabilities and describe

the characteristic cost functions of spare parts pooling games that can be associated with

it (Sections 7.1 and 7.2). Then we present a numerical experiment on these spare parts

pooling games (Section 7.3). Subsequently, we look at a partial pooling approach, for

which we derive an expression of steady-state probabilities and describe the

characteristic cost functions of simple partial parts pooling (Sections 7.4 and 7.5). Then

we present a numerical experiment on these simple partial pooling games (Section 7.6).

7.1 Steady state probabilities for a general spare parts inventory
situation

Consider a general spare parts inventory situation Γ∈ϕ . The system behavior of a

coalition NM ⊆ may be described by an |M|-dimensional Markov process with state

x={x1,x2,…,x|M|}, where xi represents the on-hand inventory at company i, ii Sx ≤≤0 .

We define for all iœM: xi-(x)=

∈

=−

iMjifx

ijifx

j

j

\

 1
 and xi+(x)=

∈

=+

iMjifx

ijifx

j

j

\

 1

All possible transitions of the Markov process are as follows (similar to Wong, 2007a):
Transition 1 (regular demand): A failure of a part occurs at location i while xi>0; the state
transition is x → xi-(x) and the transition rate is λi.
Transition 2 (emergency supply): A failure of a part occurs at company i while xj=0 for
all jœM; the state transition is x → x and the transition rate is λi.
Transition 3 (repair complete): The repair of a part belonging to company i is completed;
the state transition is x → xi+(x) and the transition rate is (Si-xi)·µi.

All that remains is lateral transshipments. Transshipments to company i are sourced from

the company j with the lowest transshipments costs to company i, trans

ji
c . Ties are broken

by sourcing from the company with the highest current on-hand inventory, xj (note that
the type of transshipment is probably not very important; see Tagaras, 1999). Formally,
the function that determines which company in M\{i} will source a transshipment to
company i in Markov state x, source(M,x,i), is defined as follows, using the set of
feasible Companies with Lowest transshipment Costs, CLC, and the set of feasible
Companies with Highest Inventory, CHI:

,(MCLC x { })0},,{\()(,0},{\|), >∈∀≤>∈= k

trans

ki

trans

jij xjiMkccxiMjji .

,(MCHI x { }}){\),,(()(),,,(|), jixMCLCkxxixMCLCjji kj ∈∀≥∈= .

,(Msource x jMini
ixMCHIj),,(

),
∈

= .

 52

Transition 4 (lateral transshipment): A failure of a part occurs at location i while xi=0 and
at least one other company jœM\i has xj>0. Select company j=source(M,x,i). The state
transition is x → xj-(x) and the transition rate is λi.

An example Markov chain for M={1,2,3}, with trans
c identical for all transshipment

routes and S given by S1=1, S2=2, S3=1, is pictured in Figure 7.1.

 Figure 7.1: The example Markov chain. Red text implies lateral transshipments.

From a Markov chain we can obtain the steady-state probabilities of being in state x, πx.
According to Wong (2006), “since the number of states in our problem is not large, a
direct method based on Gaussian elimination can be applied to determine π”.

7.2. Characteristic cost functions of general pooling games

Let ϕ œG and consider coalition NM ⊆ . Let the base-stock vector for this coalition be

S∈�0
M. The total expected costs per unit of time that coalition M has to pay is:

)(; MK Sϕ ∑ ∑∑∑
∈ ∈∈∈

⋅⋅+⋅⋅+⋅=
Mi

trans

iixMsource

Xx

is

Mi

emer

iii

Mi

i ccSh
M
i

M),,,(

0

0 λπλπ , where: (7.1)

• 0M refers to the state in which xi=0 for all iœM.

• M

iX 0 refers to the set consisting of all states for coalition M in which xi=0.

• source(M,s,i) as defined in Section 7.1.
We remark that equation (7.1) can be seen as an extension of cost function (4.2) to ϕ œG.

 53

Characteristic cost function for a general spare parts pooling game with situation FIX
Let ϕ œG and let the chosen fixed base-stock level vector be S∈�0

N. With the

combination of ϕ and S we can associate a spare parts pooling game ()cN , that is

defined by)()(; MMc SϕΚ= and K given by equation (7.1).

Characteristic cost function for a general spare parts pooling game with situation OPT
Let ϕ œG. Consider a coalition NM ⊆ , which can choose a base-stock vector S∈�0

M

with associated expected costs per time unit)(; MSϕΚ , given by equation (7.1). The

optimal base-stock vector for coalition M is S *
M with minimal cost)(

*;
MK MSϕ . So, with

ϕ we can associate a spare parts pooling game (with to-be-optimized stock levels) ()cN ,

that is defined by ())()(;

0

MMinMc
S

NS
M

ϕΚ=
∈

 and K given by equation (7.1).

Calculation of these cost functions involves creating a Markov chain and calculating
steady-state probabilities. Furthermore, calculating optimal costs when base-stock levels
are to-be-optimized involves finding an optimal solution in an infinite space (which can
be bounded and enumerated efficiently). The algorithms that do this are described in
Appendix 12 (they may be of independent interest) and are implemented in Java.

7.3: Numerical experiment - cores and cost allocations in general
spare parts pooling games

In this section, we do a numerical experiment on 3-company spare parts pooling games
with parameters selected such that they are realistic for real-life situations. The
methodology resembles the one used in the numerical experiment of Chapter 5. However,
because adding lateral transshipment costs greatly increases computational complexity,
we generated less games and we chose parameter values such that the computational time
needed (particularly for games with to-be-optimized base-stock levels) was reduced. For
When we have relatively low demand rates, low emergency costs, and low transshipment
costs together with fast repair rates and high holding costs, it will be optimal to have low
base-stock levels and the algorithm will not take a lot of time finding these. Therefore we
take values in these ranges. We allow λ to take on multiple values, as λ is a crucial
parameter for some cost allocation rules. We allow cemer to take on multiple values, as
c

emer appeared to be the most important parameter in game balancedness. We will of
course have games with to-be-optimized and with fixed base-stock levels (in the latter
case, we will take the same, identical base-stock levels for all test cases). Finally, we
have three different values for the transshipment costs:

• All-Zero: this case actually corresponds to what is used in the previous chapters
and acts as a reference.

• All-Standard: transshipment costs are a non-zero identical fraction of emergency

costs (we did this in order to avoid cases where emer

j

trans

ij cc > for some i,jœN, as

that would imply that transshipments are too expensive to consider).

• DIFF: this situation represents a case where companies 1 and 2 lie close together,
while transportation time to company 3 is relatively long.

 54

All values are shown in Table 7.1; this amounts to 24 games total. All numeric values

except the ones for trans
c have also been used in Chapter 5.

Table 7.1: Selected values for the company parameters
|N| 3

λ All-Low (2.5) or DIFFLow (λ1=0.5, λ2=2.5, λ3=5)

µ All-Standard (25)

h All-High (8000)

c
emer

 All-Low (6500) or DIFFLow (6500,2600,13000 321 === emeremeremer
ccc)

trans
c All-Zero (0, =trans

jic) or All-Standard (emer

j

trans

ji cc ⋅= 2.0,) or DIFF

(emertrans
cc 22,1 01.0 ⋅= , emertrans

cc 11,2 01.0 ⋅= , emertrans
cc 33,1 8.0 ⋅= , emertrans

cc 11,3 8.0 ⋅= ,

emertrans
cc 33,2 8.0 ⋅= , emertrans

cc 22,3 8.0 ⋅=)

Rule on S To-be-optimized or Fixed (S1=2, S2=2, S3=2)

Our focus of inquiry will be on the effect of the addition of transshipment costs, i.e.:

• Is there a difference between how often games have empty cores for situations with
negligible transshipment costs, non-zero transshipment costs, and highly different
transshipment costs?

• Is there a difference between how often the four cost allocations of Chapter 6 are in
the core for situations with negligible transshipment costs, non-zero transshipment
costs, and highly different transshipment costs? Note that allocation rules AL, BL,
and the Shapley value can be applied right away to situations with non-zero

transshipment costs - as they are stated in Section 6.1 in terms of)(, NK Sϕ - by simply

extending them to ϕ œG (equation 7.1). However, Allocation SPLIT doesn’t take into

account transshipment costs. Therefore, we make a small adjustment to get an
Allocation SPT (name based on SPlit-Trans), in which total transshipment costs are
allocated in similar fashion as total emergency costs:

Formula for situation FIX: Let Γ∈ϕ and S∈�0
N. Then, for all iœN :

,(ϕFIX

i
SPT S

∑ ∑

∑
∑ ∑∑

∑
∈ ∈

∈

∈ ∈∈

∈

⋅

⋅

⋅

⋅⋅+⋅⋅+

⋅⋅=

Nk Nj

trans

kjk

Nj

trans

iji

Mj

trans

jjxMsource

Xx

js

emer

ii

Nj

jj

Nj

j

i

c

c

ccSh
N
j

N

,

,

),,,(

0

0)
λ

λ

λπλπ
λ

λ

Formula for situation OPT: Let Γ∈ϕ . For all iœN : ,()(ϕϕ FIXOPT

ii
SPTSPT = S)(* ϕN).20

The results of the numerical experiment are shown in Table 7.2. For all 24 games the core
was non-empty. This would indicate that adding transshipment costs does not have a
large effect on the balancedness of a game. Furthermore, allocation rule SPT performed
best when transshipment costs were “All-Standard”, but was less often in the core when
transshipment costs differed largely between companies.

20 Note that S)(* ϕN has not been formally defined for simpleΓΓ∈ \ϕ yet. For, the method to obtain

S)(* ϕN is by using the algorithm described in Appendix 12.

 55

Allocation rules AL and BL, which only take into account the demand rate parameter,
often did not provide core elements when highly different transshipment costs are added
as another complicating factor to the spare parts inventory situation. However, do note
that this has been a very limited testbed that merely serves to give some first indications.

Table 7.2: Results of the numerical experiment for general spare parts pooling games.

trans
c Core AL in core SPT in core Shapley

value in core
BL in core

All-Zero 100% non-
empty

5/8 games 6/8 games 5/8 games 4/8 games

All-Standard 100% non-
empty

3/8 games 6/8 games 5/8 games 4/8 games

DIFF 100% non-
empty

1/8 games 3/8 games 5/8 games 1/8 games

7.4 Steady state probabilities for a simple spare parts inventory
situation with partial pooling

Consider a simple spare parts inventory situation simpleΓ∈ϕ and a coalition NM ⊆ . Let

the base-stock vector for this coalition be S∈�0
M. For the remainder of this chapter, we

relax the assumption that companies employ full pooling. Instead, companies will use a
partial pooling approach, will which now be explained. Recall that in a simple spare parts
inventory situation, transshipments are free and companies have an identical exponential
repair process. For the partial pooling approach that we will consider, only the total on-
hand inventory at all companies together (denoted with x) has to be known. Hence, the
system behavior may be described by a one-dimensional Markov process with state x,

MSx ≤≤0 , with ∑ ∈
=

Mi iM SS .

The partial pooling process employs for each company Mi ∈ a trigger level Ti,

Mi ST ≤≤0 . If a demand comes in for company i, if x>Ti then it is fulfilled from the

pooling stock, else it is fulfilled by emergency shipment. When Ti=0 for all Mi ∈ then

this is equivalent to full pooling. When Ti=SM for all Mi ∈ then this is equivalent to
fulfilling every incoming demand by emergency shipment (and “wasted” pooling stock).

An example is shown in Figure 7.2 for M={1,2,3}, SM=4, T1=4, T2=2, T3=0. Note that

when emeremer
cc 13 >> such an arrangement could make sense intuitively.

Figure 7.2: The Markov process of an example situation with partial pooling.

4 0

4·µ

λ3

3·µ

λ3

1 2

2·µ

λ2+ λ3

µ

λ2+λ3

3

 56

All possible transitions of the Markov process are as follows:
Transition 1 (demand): A failure of a part occurs at location i while x>Ti; the state
transition is x →x-1 and the transition rate is λi.
Transition 2 (emergency supply): A failure of a part occurs at company i while x≤Ti; the
state transition is x → x and the transition rate is λi.
Transition 3 (repair complete): The repair of a part is completed; the state transition is
x→ x +1 and the transition rate is (SM-x)·µ.

From a Markov chain we can obtain the steady-state probabilities of being in state x, πx.
We remark that this partial pooling approach is different from the one used in Wong et al
(2007a). They set a reserved stock level for a company, which will only supply a lateral
transshipment to another company if its current inventory level is above its reserved stock
level. However, we consider situations with negligible transshipment costs, for which it is
optimal to put all stock at the company with the lowest holding cost rate. Using the
partial pooling process of Wong et al (2007a), this company still cannot discern between
a lateral transshipment request coming in from a neighbor company with high emergency
costs (call this one A) and one with low emergency costs (call this one B). In our partial
pooling process A may be given a spare part from stock whereas B is told that the spare
parts stock are reserved for A instead, which appears to be a smarter approach.

7.5. Characteristic cost functions of simple partial pooling games

Let ϕ œG and consider coalition NM ⊆ . Let the base-stock vector for this coalition be

S∈�0
M. Let the trigger levels for this coalition be T∈�0

M, Mi ST ≤≤0 for all Mi ∈ .

The total expected costs per unit of time that coalition M has to pay is:

)(;;
MK

TS

pp

ϕ ∑ ∑∑
∈ ∈∈

⋅⋅+⋅=
Mi TSPp

emer

iipi

Mi

i

iM

cSh
),(

λπ , where: (7.2)

• P(SM,Ti) refers to the set consisting of all states in MSx ≤≤0 for which iTx ≤ .

An optimal trigger level vector for M with this S is T opt

M with minimal cost:

≡)(;

, MK
S

optpp

ϕ)()(;;

},..,1,0{

;;
MKMinMK

TS

pp
ST

TS

pp M
M

opt
M ϕϕ

∈
= . (7.3)

Characteristic cost function for a simple partial pooling game with situation FIX

Let ϕ œG and let the chosen fixed base-stock level vector be S∈�0
N. With the

combination of ϕ and S we can associate a simple partial pooling game ()cN , that is

defined by)()(;

, MKMc
S

optpp

ϕ= and Kpp,opt given by equation (7.3).

Characteristic cost function for a simple partial pooling game with situation OPT

Let ϕ œG. Consider a coalition NM ⊆ , which can choose a base-stock vector S∈�0
M

with associated expected costs per time unit)(;

, MK
S

optpp

ϕ , given by equation (7.3). An

optimal base-stock vector for coalition M is S opt

M with minimal cost)(
;

, MK
opt
MS

optpp

ϕ
.

 57

So, with ϕ we can associate a simple partial pooling game (with to-be-optimized stock

levels) ()cN , , defined by ())()(;

,
0

MKMinMc
S

optpp
NS

M

ϕ

∈
= and Kpp,opt given by equation (7.3).

Algorithms that calculate these cost functions are described in Appendix 13 and are
implemented in a Java application.

7.6: Numerical experiment - cores and cost allocations in simple
partial pooling games

In this section, we do a numerical experiment on 3-company simple partial pooling
games with parameters selected such that they are realistic for real-life situations. The
methodology resembles the one used in the numerical experiment of Chapter 5. However,
because adding the partial pooling approach increases computational complexity, we
generated fewer games and selected value ranges in order to limit the necessary
computational time, in similar fashion as Section 7.3. Furthermore, in Chapter 5 it
seemed that due to the full pooling assumption, games associated with simple spare parts
inventory situations in which companies had different emergency costs could have empty
cores. We speculate that a smarter partial pooling approach alleviates this effect and
hence leads to fewer games with empty cores. Therefore, we limit our investigation to
simple spare parts inventory situations with different emergency costs. We will also limit
our investigation to games with to-be-optimized base-stock levels, as this allows us to
fairly compare partial and full pooling approaches on the same spare parts inventory
situations, without having to worry about the effect that fixed base-stock levels may have.
All parameter indices used are shown in Table 7.3, where Table 5.2 shows for each index
the corresponding “rule” on the parameter values of each company and Table 5.3 shows
the actual corresponding values. This amounts to 240 spare parts inventory situations
total. With each spare parts inventory situation we can associate one simple spare parts
pooling game and one simple partial pooling game.

Our focus of inquiry will be on the effect of the addition of partial pooling, i.e.:

• Is there a difference between how often games have empty cores for situations with
partial pooling and full pooling?

• Is there a difference between how often the four cost allocations of Chapter 6 are in
the core for situations with partial pooling and full pooling? For simple spare parts
pooling games, we look at allocation rules ALOPT, BLOPT, SPLITOPT and FOPT (as
defined in Section 6.1). For simple partial pooling games, we construct allocation
rules AL-PPOPT, BL-PPOPT, and F-PPOPT, by replacing K with Kpp;opt in the definitions
of ALOPT, BLOPT, and FOPT , respectively. However, once again allocation rule SPLIT

is not as easily transformed. Therefore, let simpleΓ∈ϕ and define for all iœN:

ϕ(OPT

i
PPSP − ()

∑
∑∑

∑
∈

∈
∈

∈

∈

⋅

⋅
⋅

⋅−+

⋅⋅=

Nj

emer

jj

emer

ii

Nj

jj

S

optpp
NS

Nj

jj

Nj

j

i

c

c
ShNKMinSh

M λ

λ

λ

λ ϕ)() ;

,
0

 58

Table 7.3: Selected parameter indices for the company parameters
|N| 3

λ 4 (All-Low, All-Standard, All-High, DIFF2)

µ 3 (All-Min, All-Low, All-Standard)

h 4 (All-Standard, All-High, All-Max, DIFF2)

c
emer

 5 (All-Low, All-Standard, All-High, DIFF1, DIFF2)

Rule on S To-be-optimized

The results of the numerical experiment are shown in Table 7.4. 20 out of 240 games
with full pooling had empty cores. But no games with partial pooling had empty cores!
This would indicate that using a partial pooling approach has a large effect on the
balancedness of a game. Furthermore, it supports the idea that the full pooling approach
was the main reason why we got games with empty cores in Chapter 5. Finally, allocation
rule SP-PPOPT performed best for games with partial pooling, while all other allocation
rules performed worse for games with partial pooling than for games with full pooling.

Table 7.4: Results of the numerical experiment for partial pooling games. The third

through seventh column consider only the games with non-empty cores and

determine how often a certain allocation rule was in the core for that subset.
Pooling process Core Rule ALOPT or

AL-PPOPT
Rule FOPT or
F-PPOPT

Rule SPLITOPT or
SP-PPOPT

Rule BLOPT or
BL-PPOPT

Full pooling 92% non-empty 85.9% in Core 99.5% in Core 93.6% in Core 78.6% in Core

Partial pooling 100% non-empty 80.4% in Core 88.3% in Core 99.1% in Core 74.6% in Core

 59

Chapter 8: Conclusions

In Section 8.1, conclusions regarding the research questions are provided. In Section 8.2,

suggestions for future research are made.

8.1: Conclusions regarding the research questions

The problem statement in this paper was:
The scientific literature currently gives no insight into the non-emptiness of the core in a

spare parts pooling game and there is insufficient knowledge about proper cost

allocation policies that are proven to be in the core of the cooperative game. This lack of

managerial insights may impede profitable collaboration on spare parts pooling.

In order to provide a solution to this problem, three main research questions were
formulated. We will now provide conclusions regarding each of these research questions.

Research question 1a: Does a simple spare parts pooling game, with the base-stock levels
already pre-determined at arbitrary values, have a non-empty core?

We proved that:

• For a game associated with a spare parts inventory situation where all companies
have the same demand rate and the same fixed base-stock levels (other parameters
may be asymmetrical), the core is non-empty.

• For a game associated with a spare parts inventory situation where all companies
have the same emergency costs and demand rates (and possibly different fixed base-
stock levels), the core is non-empty.

Based on the results of a numerical experiment, we conjectured that any game associated
with a spare parts inventory situation where all companies have the same emergency
costs has a non-empty core. Games with empty cores have also been found. Empty cores
are most often found for games associated with spare parts inventory situations in which
the emergency costs differed largely between companies, and where companies had very
low repair rates and/or very high holding cost rates. In these games, emergency costs
dominate holding costs and companies with low emergency costs take spare parts that
would have better been saved for companies with high emergency costs.

Research question 1b: Does a simple spare parts pooling game, where the base-stock
levels are not yet determined and can still be jointly optimized, have a non-empty core?

We proved that:

• For a game associated with a spare parts inventory situation where companies are
fully identical, the imputation set is non-empty. But a non-empty imputation set does
not always imply a non-empty core.

 60

• For a three-player game associated with a spare parts inventory situation where
companies are fully identical with realistic base-stock levels, the core is non-empty.

Based on the results of a numerical experiment, we conjectured that any game associated
with a spare parts inventory situation where all companies have the same emergency
costs has a non-empty core. Games with empty cores have also been found, and the
statements made for research question 1a also apply here.

Research question 2: What is a proper cost allocation policy for a spare parts pooling
game?

There is a trade-off between (i) simplicity, (ii) always being in the core, (iii) fairness
(various fairness properties appropriate for the spare parts setting were defined, e.g., if a
company gets a higher demand rate, it should not be allocated less costs). Many
allocation methods were considered and tested in a large numerical experiment, but so far
no policy was found that satisfies all three requirements. Currently, no allocation rule is
available that that easily handles the intricacies of large-scale cooperations of
asymmetrical companies well. Two allocations rules that performed reasonably well and
that can specifically be applied to spare parts pooling games are:
Allocation SPLIT: Total holding costs are allocated based on the demand rate of each
company. Each company pays their own local emergency costs.
The Shapley value: A well-established allocation rule in game theory literature.

Observations that we can draw from the results of the numerical experiment are:

• For games with 2 companies and/or games with fixed base-stock levels, the
Shapley value was often in the core (compared to other allocation rules).

• For games with 3 or 4 companies and/or games with to-be-optimized base-stock
levels, allocation rule SPLIT relatively often gave core elements.

Lastly, the nucleolus, while (computationally) difficult, deserves consideration, since it is
guaranteed to be in the core of the game.

Research question 3: Can we generalize results to a more complex setting?

We investigated a setting where transshipment costs were non-negligible with a small
numerical experiment. Initial findings indicate that adding transshipment costs does not
have a large effect on non-emptiness of the core. However, the cost allocation methods
considered above less often produced core elements. However, we stress that this was a
very limited study. We also investigated a setting with a smart partial pooling rather than
full pooling. Initial findings indicate that using this partial pooling approach leads to
significantly fewer games with empty cores. Finally, allocation rules SPLIT and the
Shapley value performed best for these more complex settings.

 61

8.2: Directions for future research

We posit the following directions for further scientific research:

• We conjectured that any game associated with a spare parts inventory situation where
all companies have the same emergency costs has a non-empty core. A proof for this
should be found.21 Furthermore, it is also reasonable to assume that the core will be
non-empty if the emergency costs of the companies are very close to each other, so
trying to find such conditions could also be interesting.

• Similarly, we made several conjectures on properties of cost allocation rules in
Chapter 6. A proof for those should be found as well.

• More effort is needed to find better allocation rules, preferably one that is always in
the core of a simple spare parts pooling game.

• An interesting extension is to extend the single-echelon structure (this is identified as
a future research direction in Wong et al., 2007a) to a structure with main and local
warehouses. This can yield significant benefits for cooperating companies if setting
up warehouses to allow for lateral transshipments is expensive, according to
Kranenburg & Van Houtum (2008).

• We have looked at expected costs rather than realized costs so far. Realization games
may offer new insights. For example, for allocation rule AL, does it make sense for a
given yearly realization of costs, to allocate these based on expected demand rates or
on realized demand rates?

• We have looked at a single-item situation so far. A multi-item approach could make
the model and cooperation process richer. Investigating this could bring interesting
new insights.

21 The work of Sandra van Wijk, doctoral candidate at the TU/e, who investigates for (what we call)
situation FIX for which conditions full pooling is optimal, is related to this.

 62

References

• Alfredsson, P., Verrijdt, J. (1999), ‘Modeling emergency supply flexibility in a two-
echelon inventory system’, Management Science, 45, 1416–1431.

• Axsäter, S. (1990), ‘Modelling emergency lateral transshipments in inventory
systems’, Management Science 36, 1329–1338.

• Enders, P. (2004), ‘Spare parts inventory control in a multi-item, two-echelon
network with lateral and emergency shipments’, M.Sc. Thesis, Eindhoven University
of Technology.

• Grahovac, J., Chakravarty, A. (2001), ’Sharing and lateral transshipment of inventory
in a supply chain with expensive low-demand items’, Management Science 47, 579–
594.

• Hartman, B.C., Dror, M. (1996), ‘Cost allocation in continuous-review inventory
models’, Naval Research Logistics 43, 549–561.

• Jagers, A.A. & van Doorn, E.A. (1986), “On the continued Erlang loss function”,
Operations Research Letters, 5-1.

• Karsten, F. (2006), ‘Exact optimization for two-echelon inventory systems with an
aggregate mean waiting time constraint per local warehouse’, B.Sc. Thesis,
Eindhoven University of Technology

• Karsten (2008), “Master Thesis Preparation II – Research Proposal”, TU/e.

• Kilpi, J., Töyli, J., and Vepsäläinen, A. (2009), Cooperative strategies for the
availability service of repairable aircraft components, International Journal of
Production Economics 117, 360-370.

• Kranenburg A., van Houtum G.J. (2009), ‘A new partial pooling structure for spare
parts networks’, European Journal of Operations Research, To appear

• Kukreja, A., Schmidt, C.P., Miller, D.M. (2001), ‘Stocking decisions for low-usage
items in a multilocation inventory system’, Management Science 47, 1371–1383.

• Kulkarni V. (1999), “Modeling, Analysis, Design, and Control of Stochastic
Systems”, Springer, p. 264

• Lee, H.L. (1987), ‘A multi-echelon inventory model for repairable items with
emergency lateral transshipments’, Management Science 33, 1302–1316.

• Messerli E.J. (1972), Bell System Technical Journal, 51, p. 951-953.

• Rustenburg, J.W., Van Houtum, G.J., Zijm, W.H.M. (2003), ‘Exact and approximate
analysis of multi-echelon, multi-indenture spare parts systems with commonality’, In:
Shantikumar, J.G., Yao, D.D., Zijm, W.H.M. (Eds.), ‘Stochastic Modeling and
Optimization of Manufacturing Systems and Supply Chains’, Kluwer, Boston, Ch. 7.

• Sankaran, J. K. (1991), On Finding the Nucleolus of an N-Person Cooperative Game,
International Journal of Game Theory, 19:329-338.

• Sherbrooke, C.C. (1968), ‘METRIC: a multi-echelon technique for recoverable item
control’, Operations Research, 16, 122–141.

• Sherbrooke, C.C. (2004), ‘Optimal Inventory Modeling of Systems’, Kluwer, Boston.

• Slikker, M. (2007), ‘Game theory with application to supply chain management’,
Lecture notes Eindhoven University of Technology.

 63

• Smith, D.R. & Whitt, W. (1981), “Resource sharing for efficiency in traffic systems”,
The Bell System Technical Journal, 60-1

• Tagaras, G. (1999), Pooling in multi-location periodic inventory distribution systems,
Omega International Journal of Management Science 27, 39–59.

• Wong, H., Cattrysse, D., Van Oudheusden, D. (2005), ‘Stocking decisions for
repairable spare parts pooling in a multi-hub system’, International Journal of
Production Economics 93–94, 309–317.

• Wong, H., Van Houtum, G.J., Cattrysse, D. and Van Oudheusden, D. (2006), ‘Multi-
item spare parts systems with lateral transshipments and waiting time constraints’,
European Journal of Operational Research, 171, 1071–1093.

• Wong H., Van Oudheusden D., Cattrysse D. (2007a), ‘Cost allocation in spare parts
inventory pooling’, Transportation Research Part E, 43, 370–386

• Wong H., Van Oudheusden, D. and Cattrysse, D. (2007b), 'Two-echelon multi-item
spare parts systems with, emergency supply flexibility and waiting time constraints',
IIE Transactions, 39:11, 1045-1057

• Young, H.P. (1994), ‘Cost Allocation’, In: Aumann, R.J., Hart, S. (Eds.), ‘Handbook
of Game Theory with Economic Applications’, Elsevier, Amsterdam.

• Whitt (2002), “IEOR 6707: Lecture Notes Advanced Topics in Queuing Theory”

• Zeng G. (2003), ”Two Common Properties of the Erlang-B Function, Erlang-C
Function, and Engset Blocking Function”, Mathematical and Computer Modelling,
37, 1287-1296.

 64

Appendix 1: Literature overview of lateral transshipment
models

This appendix gives a more in-depth summary of all models shown in Table 1.1. It is
taken from the literature study preceding this thesis (Karsten, 2008).

Lee (1987) considers emergency lateral transshipments in a two-echelon inventory
system with one central warehouse and N local warehouses. The local warehouses are
supplied from a central warehouse, which in turn is supplied from an infinite source. The
local warehouses are grouped into a number of disjoint demand pooling groups. Lateral
transshipments are made only within each group. The local warehouses in each group are
identical, i.e. they face identical failure rates (this is the only paper considered in this
section that makes this assumption). When a local warehouse is out of stock and faces
demand, (emergency) lateral transshipments are used to obtain the item from another
local warehouse in the same pooling group that has stock on hand. The local warehouse
that sources the unit issues a replenishment order to the depot to restore its inventory
level up to S. If all the local warehouses in the group are out of stock, then the demand is
backordered. Transshipment times are assumed to be negligible. Lee provides
approximations for the fraction of demand satisfied from the stock on hand, the fraction
of demand that is satisfied by lateral transshipments, and the fraction of demand that is
backordered. Lee also recognizes that it is important to establish a sourcing rule for
lateral transshipments when there are more than two local warehouses in a pooling group.
Three sourcing rules are suggested and Lee’s simulation results show only small
differences between the sourcing rules:

(i) The random sourcing rule, which chooses randomly from among the local
warehouses that have stock.

(ii) Choose the local warehouse with the maximum stock on hand (with ties
broken by the random sourcing rule).

(iii) Choose the local warehouse with the maximum stock on hand, with ties
broken by selecting the local warehouse with the smallest number of
outstanding orders waiting (with remaining ties broken randomly).

Axsäter (1990) considers the exact same system as Lee. While Lee focused on modeling
the outstanding orders, Axsäter emphasizes modeling the effective demand rate at a local
warehouse in more detail. He distinguishes between two situations: when the on-hand
inventory at a local warehouse is positive and when it is not positive. When the on-hand
inventory is positive, the demand faced by the local warehouse equals the regular demand
plus the demand from other warehouses in the same pooling group due to lateral
transshipments. When the on-hand inventory is not positive, the only demand faced by
the local warehouse is the backordered demand that cannot be filled by lateral
transshipment. In Axsäter’s model, the local warehouses in each pooling group do not
have to be identical, relaxing the assumption of identical warehouses made in Lee (1987).
The random sourcing rule is used. The replenishment lead times are exponentially
distributed, which allows the derivation of steady-state probabilities for the on-hand

 65

inventory. Simulation results indicate that Axsäter’s model gives smaller errors than
Lee’s model.

Alfredsson & Verrijdt (1999) consider a two-echelon inventory system that allows
(direct) emergency shipments. If demand at a local warehouse cannot be met by either
stock at that local warehouse or stock at another local warehouse, an emergency shipment
from the central warehouse is made (which is a faster transportation mode than regular
replenishment). If the central warehouse is out of stock as well, an emergency shipment
from an infinite source is made. With these emergency shipments, no customer demand is
backordered. Furthermore, they extend the models of Axsäter and Lee by relaxing the
assumption of negligible lateral transshipment times. They assume identical lateral

transshipment times between local warehouses and assume that the customer initiating a
lateral transshipment will continue to wait for this item, although the local warehouse
could receive items earlier through normal replenishments while the customer is waiting.
They allow non-identical local warehouses and assume that all local warehouses form
one pooling group (the assumption of one pooling group is also made by all subsequent
papers). They assume exponential lead times and show simulation results that indicate
that the performance of the inventory system is insensitive to the lead time distribution.
Using Markov analysis, they use a two-step procedure to first find estimates of the
fraction of demand satisfied through emergency shipment from the central warehouse, the
fraction of demand satisfied through emergency shipment from the infinite source, and
the average delay at the central warehouse due to stock-outs. In the second step, they find
estimates for the fraction of demand for each local warehouse satisfied from stock on
hand and through lateral transshipment.

Kukreja et al. (2001) relax the assumption of an exponential repair time distribution made
in Axsäter (1990). They show that the service performance is not very sensitive to the
type of repair time distribution. They also introduce a new sourcing rule: from the
locations that have inventory on hand, transship from that location with the lowest
transshipment cost to the location needing the unit. If transshipment costs are linearly
related to the distance between two locations, this corresponds to a closest neighbor rule.

Grahovac and Chakravarty (2001) investigate a two-echelon spare parts system with pro-

active lateral transshipments. Retailer orders can be either regular or emergency.
Retailers place regular orders as long as their net inventory on hand is above a trigger
level K. They place emergency orders when it becomes equal to or smaller than K.
Emergency orders will be delivered from a randomly selected location at the lower
echelon if the distributor is out of stock.

Wong et al. (2005a) present a model for a multi-hub, multi-company system. The multi-

hub setting is applicable for machines that are not standing on a fixed location but rather
move from one location (or hub) to another, like airplanes. This implies that part failures
can happen randomly at any location. Furthermore, they extend the existing lateral
transshipment models by allowing delayed lateral transshipments. When a location
having no backorders receives a repaired part and at the same time at least one location in
the pooling group has backorders, their model allows sending the repaired part to the

 66

location having backorders. To find the optimal stocking levels, a two-stage solution is
proposed. In the first stage, the demands at all hubs are aggregated and treated as if
occurring at a single location. The optimal number of total spare parts is determined by
minimizing the sum of inventory holding cost and downtime cost. In the second stage, a
heuristic procedure is developed to find the optimal allocation of the total spare parts to
minimize the total transshipment cost.

Wong et al. (2006) consider a single-echelon, multi-item, two-location spare parts
inventory system in which emergency shipments are allowed as response to stock-outs.
They focus on minimizing the expected total system cost subject to a target level for the
aggregate waiting time at each location. By using a multi-item perspective, they can use a
system approach. Their solution procedure is based on Lagrangian relaxation. A greedy
heuristic may also be used to find near-optimal base stock levels (see Karsten, 2006). It is
acknowledged that companies can cooperate via lateral transshipments both by (a) using
the lateral transshipments in daily practice and (b) by incorporating it in the initial
stocking decision.

Wong et al. (2007a) consider a single-echelon, single-item system with transshipments
between local warehouses. If all the local warehouses are out of stock, then the demand is
backordered. Partial pooling is used. Each company sets its reserved stock level and will
only supply a lateral transshipment if its current on-hand inventory level is above its
reserved stock level. Complete pooling and no pooling can be seen as the case with a
reserved stock level of zero and a reserved stock level of S+1, respectively. Furthermore,
the assumption of infinite sources of failures (which has been made in all previously
mentioned papers) is violated. Instead, a finite number of machines that can fail are
assumed, which is more reasonable for companies with a small number of machines.
Moreover, they also use game theoretic models to analyze the cost allocation problem
between individual companies.

Wong et al. (2007b) tackle a two-echelon, multi-item setting in which emergency
shipments are allowed as response to stock-outs. They focus on minimizing the expected
total system cost subject to a target level for the aggregate waiting time at each location.
They compared the performance of a two-echelon system to a single-echelon system in
terms of total cost. A main finding is that a two-echelon system is only worth
implementing when lateral transshipments between local warehouses are not possible. In
systems with lateral transshipments, the policy of implementing a two-echelon system
should be questioned, since its total cost is merely a little lower than the cost of a single-
echelon system, and the saving may eventually be offset by all additional management
costs needed for the central warehouse.

Kranenburg and Van Houtum (2009) introduce a distinction between main and regular

local warehouses. Lateral transshipment is allowed from main local warehouses only. A
practical advantage of this structure is that only a limited number of local warehouses has
to be equipped to provide lateral transshipment, and it is a network structure that matches
with observations in practice. They show that only a small number of main locals is
sufficient to obtain most of the full pooling benefits.

 67

Appendix 2: Game Theory

In this Appendix, we give all balancedness conditions for games with 3 or 4 players.
Furthermore, the nucleolus and Shapley value will be explained in more detail.

Balancedness

Balancedness was defined already in Section 1.3. We will now give all balancedness
conditions for games with 3 or 4 players.

For a game with |N|=3, if and only if all of the following conditions are satisfied, the core
of the game is non-empty:
c({1,2,3})≤c({1})+c({2})+c({3})
c({1,2,3})≤0.5c({1,2})+0.5c({1,3})+0.5c({2,3})
c({1,2,3})≤c({3})+c({1,2})
c({1,2,3})≤c({2})+c({1,3})
c({1,2,3})≤c({1})+c({2,3})

For a game with |N|=4, if and only if all of the following conditions are satisfied, the core
of the game is non-empty:

c({1,2,3,4})≤c({1,2})+c({3,4}); c({1,2,3,4})≤c({1,3})+c({2,4})
c({1,2,3,4})≤c({1,4})+c({2,3})

c({1,2,3,4})≤c({1,2,3})+c({4}); c({1,2,3,4})≤c({1,2,4})+c({3})
c({1,2,3,4})≤c({1,4,3})+c({2}); c({1,2,3,4})≤c({4,2,3})+c({1})

c({1,2,3,4})≤c({1,2})+c({3})+c({4}); c({1,2,3,4})≤c({1,3})+c({2})+c({4})
c({1,2,3,4})≤c({1,4})+c({2})+c({3}); c({1,2,3,4})≤c({2,3})+c({1})+c({4})
c({1,2,3,4})≤c({2,4})+c({1})+c({3}); c({1,2,3,4})≤c({3,4})+c({1})+c({2})

c({1,2,3,4})≤.5c({1,2,3})+.5c({1,2,4})+.5c({3,4})
c({1,2,3,4})≤.5c({1,3,4})+.5c({2,3,4})+.5c({1,2})
c({1,2,3,4})≤.5c({2,4,1})+.5c({2,4,3})+.5c({1,3})
c({1,2,3,4})≤.5c({2,3,1})+.5c({2,3,4})+.5c({1,4})
c({1,2,3,4})≤.5c({1,4,2})+.5c({1,4,3})+.5c({2,3})
c({1,2,3,4})≤.5c({1,3,2})+.5c({1,3,4})+.5c({2,4})

c({1,2,3,4})≤c({1})+c({2})+c({3})+c({4})
c({1,2,3,4})≤1/3c({1,2,3})+1/3c({1,2,4})+1/3c({1,3,4})+1/3c({2,3,4})

c({1,2,3,4})≤.5c({1,2})+.5c({1,3})+.5c({2,3})+ c({4})
c({1,2,3,4})≤.5c({1,2})+.5c({1,4})+.5c({2,4})+ c({3})
c({1,2,3,4})≤.5c({1,4})+.5c({1,3})+.5c({4,3})+ c({2})
c({1,2,3,4})≤.5c({4,2})+.5c({4,3})+.5c({2,3})+ c({1})

 68

c({1,2,3,4})≤.5c({1,2,3})+.5c({1,4})+.5c({2,4})+.5c({3})
c({1,2,3,4})≤.5c({1,4,3})+.5c({1,2})+.5c({2,4})+.5c({3})
c({1,2,3,4})≤.5c({2,4,3})+.5c({1,2})+.5c({1,4})+.5c({3})
c({1,2,3,4})≤.5c({1,2,4})+.5c({3,1})+.5c({3,2})+.5c({4})
c({1,2,3,4})≤.5c({1,3,4})+.5c({2,1})+.5c({2,3})+.5c({4})
c({1,2,3,4})≤.5c({2,3,4})+.5c({1,2})+.5c({1,3})+.5c({4})
c({1,2,3,4})≤.5c({1,2,3})+.5c({2,4})+.5c({3,4})+.5c({1})
c({1,2,3,4})≤.5c({1,2,4})+.5c({2,3})+.5c({3,4})+.5c({1})
c({1,2,3,4})≤.5c({1,3,4})+.5c({2,3})+.5c({2,4})+.5c({1})
c({1,2,3,4})≤.5c({2,1,3})+.5c({1,4})+.5c({3,4})+.5c({2})
c({1,2,3,4})≤.5c({2,1,4})+.5c({3,1})+.5c({3,4})+.5c({2})
c({1,2,3,4})≤.5c({2,3,4})+.5c({1,3})+.5c({1,4})+.5c({2})

c({1,2,3,4})≤2/3c({1,2,3})+1/3c({1,4})+1/3c({2,4})+1/3c({3,4})
c({1,2,3,4})≤2/3c({1,2,4})+1/3c({1,3})+1/3c({2,3})+1/3c({3,4})
c({1,2,3,4})≤2/3c({1,3,4})+1/3c({1,2})+1/3c({2,3})+1/3c({2,4})
c({1,2,3,4})≤2/3c({2,3,4})+1/3c({1,2})+1/3c({1,3})+1/3c({1,4})

Shapley value

The Shapley value),(cNΦ is:

()∑
⊆

−∪⋅
−−⋅

=Φ
}\{

)(}){(
|!|

)!1|(||!|
),(

iNM

i MciMc
N

MNM
cN for all iœN.

The idea behind this method is that each member should be allocated a cost equal to the
average contribution it makes to each coalition to which it could belong, where all
coalitions are regarded as equally likely (Wong et al. 2007). It has the following
properties (Slikker, 2007):

Efficiency: For each coalitional game (N,c): ∑
∈

=Φ
Ni

i Nc)(.

Additive: For two coalitional games (N,c) and (N,d) with the same player set:

),(),(),(dNcNdcN Φ+Φ=+Φ .

Symmetric: For each coalitional game (N,c) for any two players i,jœN that are symmetric

in (N,c)22:),(),(cNcN ji Φ=Φ .

Zero-player property: For each coalitional game (N,c): 0),(=Φ cNi for any player iœN

for which)(}){(MciMc =∪ for all NM ⊆ .

22 Players i and j are symmetric in game (N,c) if }){(}){(jMciMc ∪=∪ for all },{\ jiNM ⊆

 69

The nucleolus (by Slikker, 2007):

The nucleolus is defined for games with a nonempty imputation set only. In order to
define the nucleolus we first need the concepts of ‘ordering function’ and ‘lexicographic

order’. If K is a finite set then the ordering function on �K is the function :Kη �
K
→�

|K|,

defined by the following subsequent steps: }|min{)(1 Kjxx j

K ∈=η . Choosing Kj ∈1

such that
1

)(1 j

K
xx =η , we have }}{\|min{)(12 jKjxx j

K ∈=η , etc. For ∈yx, �
|K| we say

that x is lexicographically larger than y if there exists an s such that xi=yi for all i<s and
xs>y.

Now the nucleolus is defined as follows. For a payoff vector xœ�N define the satisfaction

of coalition NM ⊆ as: ∑ ∈
−=

Mi
xMcxMs)(),(. Let θ(x) have the satisfactions of

payoff vector x ordered increasingly, i.e.))),((()(2

NMxMsx
N

⊆=ηθ . Then the nucleolus

v(N,c) is defined, if the imputation set is not empty, as the vector in the imputation set
whose θ is lexicographically maximal.

 70

Appendix 3: Justification of assumptions

In this appendix, we defend the assumptions made in Section 3.1.

Demand process
(i) Failures occur according to independent Poisson processes with constant rate (i.e.
there is an infinite source of failures). If a part fails, it is replaced with a spare part if one
is on stock at the corresponding company.
For many real-life complex technical systems, lifetimes of components are (close-to)
exponential, so a Poisson failure process is reasonable. A company typically has an
amount of expensive technical systems (such as airplanes) that operate at a constant rate,
and whose failures are low in general. The assumption of constant Poisson failure rates
for the whole set of technical systems at a company is standard in METRIC-type models.
In practice this assumption may be violated, since when the number of systems down
increases, then the number of items that may fail decreases and hence the demand rate
will slow down. However, we do not allow long downtimes and particularly if the
number of systems is large, it is reasonable to assume constant failure rates.
(ii) We consider only one type of spare part (i.e. a single-item model).
This assumption is made to simplify the analysis. A multi-item approach could make the
model and cooperation process richer, but this is left as a future research direction.

Cooperation process
(iii) If no spare part is available when the part fails, but another cooperating company has
a surplus on-hand inventory, a lateral transshipment is used. A lateral transshipment is
used from the neighbor that leads to the lowest transshipment costs (with ties broken by
sourcing from the neighbor with largest stock on-hand).
This transshipment rule, a combination of rules found in the literature (see appendix 1),
makes good use of available state information while not overly complicating the analysis.
(iv) Complete pooling is applied.
We assume that the companies cannot use partial pooling as in Wong et al. (2007a) in
order to simplify the analysis. They show in a numerical experiment that in the
cooperative optimal solution, all companies agree to use complete pooling anyway.

Repair process
(v) A failed part is immediately sent into repair (therefore, the inventory system at one
company can be seen as being controlled by a base stock policy).
An (Si-1,Si) policy is reasonable for recoverable items with high cost and low demand, as
the fixed ordering costs are small relative to the price of the item.
(vi) Repair lead times are exponential i.i.d..
This assumption facilitates the analysis. It allows us to use a Markov process in the
evaluation. Simulations by Alfredsson and Verrijdt (1999) and Kukreja et al. (2001)
justify the assumption, as they show that the type of lead time distribution does not have
a large effect on steady-state distributions. The repair lead times are i.i.d. variables, as
there is assumed to be ample repair capacity and no queuing.

 71

(vii) Repaired parts are returned to the company that fulfilled the demand for the part.
This allows us to keep the inventory positions at constant levels at all companies.
(viii) All parts are perfectly repairable and there is no condemnation.
If not, then one may relax this assumption by assuming that a new part is procured in case
repair is not possible for a failed part.

Emergency supply:
(ix) If none of the other warehouses has a part available, an emergency supply is
instigated from an outside infinite source and the system goes down until it arrives.
There is no redundancy or cannibalization in our model; the spare part is critical, so the
system fails due to precisely one part. If not, then it is still reasonable to assume that a
failed part has a bad effect on the performance of complex machine, so there may still be
‘partial’ downtime costs. The emergency supplier being an infinite source is an
assumption often made in related literature (see Table 1.1) and facilitates the analysis.
(x) It is assumed that the emergency costs are smaller than the expected downtime costs
during a repair, but larger than the total lateral costs.
If the former would not be the case, emergency shipments would not be economically
rational while our analysis “forces” them. If the latter would not be the case, lateral
transshipments would not be worthwhile, while our analysis “forces” them.
(xi) Failed part is lost to the emergency supplier; does not return to the inventory system.
If not, total inventory in the system would keep on growing, complicating the analysis.

Cost parameters:
The cost parameters chosen encompass the costs analyzed in related studies (see
Appendix 5).

Goal of individual companies:
(xii) Each company aims to minimize expected yearly costs. We have an infinite horizon.
This allows us to use steady-state Markov chains. Spare parts for complex machines
typically have long lifetimes, so a very long horizon is not unreasonable.

 72

Appendix 4: Classes of spare parts inventory situations

Class of simple spare parts inv. sit. (with identical λ): simpleidsimple Γ⊂Γ λ:,

For every λλϕ :,:, idsimpleidsimple Γ∈ , the demand rates are assumed to be identical for all

companies. It can be represented a tuple: ()Ni

emer

Niiidsimple i
chN ∈∈=)(,)(,,,:, µλϕ λ .

Class of simple spare parts inv. sit. (with identical h): simplehidsimple Γ⊂Γ :,

For every hidsimplehidsimple :,:, Γ∈ϕ , the holding cost rates are assumed to be identical for all

companies. It can be represented a tuple: ()Ni

emer

Niihidsimple i
chN ∈∈=)(,,,)(,:, µλϕ .

Class of simple spare parts inv. sit. (with id. λ and c
emer

): simplecidsimple emer Γ⊂Γ
,:, λ

For every emeremer cidsimplecidsimple ,:,,:, λλ
ϕ Γ∈ , the demand rates and emergency costs are

assumed to be identical for all companies. It can be represented a tuple:

()emer

Niicidsimple
chNemer ,)(,,,

,:, ∈= µλϕ
λ

.

Class of simple spare parts inv. sit. (with id. h and c
eme

): simplechidsimple emer Γ⊂Γ
,:,

For every emeremer chidsimplechidsimple ,:,,:,
Γ∈ϕ , the holding cost rates and emergency costs are

assumed to be identical for all companies. It can be represented a tuple:

()emer

Niichidsimple
chNemer ,,,)(,

,:,
µλϕ ∈= .

Class of simple spare parts inv. sit. (with ident. λ and h): simplehidsimple Γ⊂Γ ,:, λ

For every hidsimplehidsimple ,:,,:, λλϕ Γ∈ , the demand rates and holding cost rates are assumed to

be identical for all companies. It can be represented a tuple:

()Nii

emer

icidsimple
chNemer ∈=))(,,,,

,:,
µλϕ

λ
.

Class of simple fully identical 3-player spare parts inv. sit.: allidsimpleNallidsimple :,3||,:, Γ⊂Γ =

For every 3||,:,3||,:, == Γ∈ NallidsimpleNallidsimpleϕ , the set of companies is {1,2,3}. It can be

represented by a tuple: ()emer

Nallidsimple ch,,,3||,:, µλϕ == .

7
3

A
p

p
e

n
d

ix
 5

:
R

e
a
li
s
ti

c
 p

a
ra

m
e
te

r
v
a
lu

e
s
 f

o
r

s
p

a
re

 p
a
rt

s
 i
n

v
e

n
to

ry
 s

it
u

a
ti

o
n

s

S

o
u

rc
e

λ
 (

p
er

 y
ea

r)

λ
 /
µ

h

 (
$
 p

er
 u

n
it

 p
er

 y
ea

r)

d
o
w

n
ti

m
e

co
st

s
($

 p
er

 u
n
it

d

o
w

n
 p

er
 h

o
u

r)

tr
an

sp
o
rt

co

st
s

($

p
er

 h
o
u

r)

em
er

.
su

p
p

ly

o
rd

er
in

g

co
st

s
($

)

T
im

e
n

ee
d

ed

fo
r

em
er

.
sh

ip
.
(h

o
u

r)

tr
an

ss
h
ip

o
rd

er
in

g

co
st

s
($

)

T
im

e
n

ee
d

ed

fo
r

la
t.

 t
ra

n
s-

sh
ip

.
(h

o
u

r)

N
o
te

s

W
o
n

g
 e

t
al

.
(2

0
0

7
a)

M
in

:
0

.0
0
2
·2
·3

5
6
≈

1
.4

(S

ec
ti

o
n

 5
.2

)
 M

ax
:

0
.0

0
2
·1

5
·3

5
6
≈

1
0

.7

(S
ec

ti
o
n

 5
.2

)

M
in

:
1

.4
/(

0
.0

2
·3

5
6

)≈

0
.2

0
 (

S
ec

t
5

.2
)

 M
ax

:
1

0
.7

/(
0
.0

2
·3

5
6

)≈

1
.5

1
 (

S
ec

t
5

.2
)

M
in

:
1
0

,0
0

0

(S
ec

ti
o
n

 5
.2

)
 M

ax
:

2
0

,0
0

0

(S
ec

ti
o
n

 4
.2

)

M
in

:
1

,0
0
0

/2
4
≈

4
2

(S

ec
ti

o
n

 5
.2

)
 M

ax
:

1
0
,0

0
0

/2
4
≈

4
2
0

 (

S
ec

ti
o
n

 5
.2

)

M
in

:
1
0
0

(S

ec
t

5
.2

)
 M

ax
:

1
,0

0
0

(S

ec
t

5
.2

)

N
/A

N

/A

N
/A

M

in
:

2

(S
ec

ti
o
n

 4
.2

)
 M

ax
:

1
2

(S

ec
ti

o
n

 4
.2

)

T
h

es
e

p
ar

am
et

er
s

w
er

e
se

le
ct

ed
 s

u
ch

 t
h

at

th
ey

 a
re

 r
ea

li
st

ic
 f

o
r

re
al

-l
if

e
si

tu
at

io
n
s,

 a
t

le
as

t
fo

r
th

e
ai

rl
in

e
in

d
u

st
ry

.
D

em
an

d

ra
te

s
m

ay
 d

if
fe

r
a

fa
ct

o
r

5
 b

et
w

ee
n

co

m
p

an
ie

s;
 d

o
w

n
ti

m
e

co
st

s
a

fa
ct

o
r

2

b
et

w
ee

n
 c

o
m

p
an

ie
s;

 o
th

er
w

is
e

co
m

p
an

ie
s

ar
e

id
en

ti
ca

l.

W
o
n

g
 e

t
al

.
(

2
0
0
6

)

M
in

:
0
.0

0
2

9
·3

5
6

 ≈

1
.0

3
 (

T
ab

le
 4

)
M

ax
:

0
.0

4
5
7
·3

5
6

=
1
6

.2
7

(T
ab

le
 4

)

M
in

:
0

.0
0
2
9

/0
.0

2
1
7
≈

0
.1

3

(T
ab

le
 4

)
M

ax
:

0
.0

4
5
7

/0
.0

1
6
4
≈

2
.7

9
 (

T
ab

le
 4

)

M
in

:
2
5
0

0
0
·0

.2
=

5
0

0
0

(T

ab
le

 4
)

M
ax

:
1

4
3
4

5
0
·0

.2
≈

2
8

6
9
0

(T

ab
le

 4
)

N
/A

5

0

(S
ec

ti
o
n

5

)

5
0
0

 (
S

ec
ti

o
n

5

)
2

4
 (

S
ec

ti
o
n

5
)

N
/A

2

 (
S

ec
ti

o
n

 5
)

S
ec

ti
o
n

 5
 a

n
d

 T
ab

le
 4

:
S

am
p

le
 d

at
a

fr
o
m

an

 a
ir

 c
ar

ri
er

 c
o
m

p
an

y
 l

o
ca

te
d

 i
n

B

ru
ss

el
s.

 T
h

e
fo

cu
s

w
as

 o
n
 s

y
st

em
s

w
h

er
e

th
e

in
v
en

to
ry

 h
o
ld

in
g
 c

o
st

 i
s

d
o
m

in
an

t
in

 c
o
m

p
ar

is
o
n

 t
o
 t

h
e

la
te

ra
l

tr
an

ss
h
ip

m
en

t
o
r

em
er

g
en

cy
 s

u
p

p
ly

 c
o
st

.
(w

h
ic

h
 s

h
o
u

ld
 b

e
ab

o
u

t
5

-1
0

 t
im

es
 h

ig
h

er

th
an

 l
at

er
al

 t
ra

n
ss

h
ip

m
en

t
co

st
s)

.
K

u
k

re
ja

et

 a
l.

(2

0
0

1
)

M
in

:
1
 (

T
ab

le
 2

)
M

ax
:

6
 (

T
ab

le
 2

)
M

in
:

1
/(

3
5
6

/(
5
·7

))

≈
0

.0
9

8
 (

T
ab

le
 2

)
M

ax
:

6

/(
3

5
6

/(
1
5
·7

))

≈
1

.7
7

 (
T

ab
le

 2
)

M
in

:
5
0
0
·0

.2
9
=

1
4
5

(S

ec
ti

o
n

 6
 &

 T
ab

le
 2

)
M

ax
:

3
0
0

0
·0

.2
9

=
8
7

0

(S
ec

ti
o
n

 6
 &

 T
ab

le
 2

)

N
/A

N

/A

N
/A

N

/A

M
in

:
1
0
0

(T

ab
le

 2
)

M
ax

:
6
0
0

(T

ab
le

 2
)

N
/A

D

at
a

o
ri

g
in

at
es

 f
ro

m
 a

 l
ar

g
e

el
ec

tr
ic

u

ti
li

ty
 c

o
m

p
an

y
.

D
em

an
d
 r

at
es

 m
ay

 d
if

fe
r

a
fa

ct
o
r

6
 b

et
w

ee
n

 c
o
m

p
an

ie
s;

 o
th

er
w

is
e

th
ey

 a
re

 i
d

en
ti

ca
l.

E
n
d

er
s

(2
0
0

4
)

M
in

:
0

.0
0
1
7
·3

5
6
≈

0
.6

1

(S
ec

ti
o
n

 4
.8

.2
)

M
ax

:

0
.2

7
·3

5
6
≈

9
6

(S
ec

ti
o
n

 4
.8

.2
)

M
in

:
0

.6
1
/(

3
5
6

/7
) ≈

0

.0
1
2

 (
S

ec
t

4
.8

.2
)

M
ax

:
 9

6
/(

3
5
6

/7
)
≈

1

.8
9
 (

S
ec

t
4

.8
.2

)

M
in

:
0
.2

5
·1

5
0
0

=
3
7

5

(S
ec

ti
o
n

 4
.8

.1
-2

)
M

ax
:

0
.2

5
·1

9
0
0

=
4
7

5

(S
ec

ti
o
n

 4
.8

.1
-2

)

N
/A

N

/A

M
in

:
5
0
0

(T

ab
le

 7
.4

)
 M

ax
:

1
0
0

0

(T
ab

le
 7

.4
)

2
4
 (

S
ec

ti
o
n

4
.8

.1
)

3
0
0

(T

ab
le

7

.4
)

M
in

:
0

.2
5
·2

4
=

6

(S
ec

t
4

.8
.1

)
M

ax
:

0
.5
·2

4
=

1
2

(S

ec
t

4
.8

.1
)

D
at

a
st

em
s

fr
o
m

 A
S

M
L

.
D

em
an

d
 r

at
es

m

ay
 d

if
fe

r
a

fa
ct

o
r

4
 b

et
w

ee
n

 c
o
m

p
an

ie
s

(S
ec

ti
o
n

 4
.8

.2
).

K
ra

n
en

b
u

rg
 &

v
an

H

o
u

tu
m

(2

0
0

9
)

M
in

:
0
.5

 (
T

ab
le

 1
)

 M
ax

:
5
0

 (
T

ab
le

 1
)

M
in

:
0

.5
/(

3
5
6

/1
4

)=
0

.0
0

2
 (

T
ab

le
 1

)
M

ax
:

5
0

/
(3

5
6

/1
4

)
=

2
 (

T
ab

le
 1

)

M
in

:
2
0
0

0
·0

.2
5

=
5
0

0

(S
ec

ti
o
n

 6
)

M
ax

:
1

0
0

,0
0

0
·0

.2
5

=
2
5

,0
0
0

(S

ec
ti

o
n

 6
)

N
/A

N

/A

1
0
0
0

(S

ec
ti

o
n

 7
)

2
·2

4
=

4
8

(S

ec
ti

o
n

 7
)

5
0
0

(S

ec
ti

o
n

7

)

0
.5
·2

4
=

1
2

(S

ec
ti

o
n

 7
)

D
at

a
o
b

ta
in

ed
 f

ro
m

 A
S

M
L

.
T

h
is

 d
at

a
se

t
co

n
st

it
u

te
s

d
at

a
fo

r
al

l
1
9

 l
o
ca

l
w

ar
eh

o
u

se
s

in
 t

h
e

U
S

A
.

S
E

L
E

C
-

T
E

D

V
A

L
U

E

M
in

:
0
.5

M

ax
:

5
0

M

in
:

0
.0

1

M
ax

:
3

(M

in
 a

n
d

 m
ax

 f
o
r

µ
 o

b
ta

in
ed

 b
y

fi
x
in

g
 λ

=
5

;
a

“s
ta

n
d

ar
d

”
v
al

u
e)

M
in

:
4
0
0

M

ax
:

2
8
0

0
0

cem

er
=

 T
im

e
n

ee
d

ed
 f

o
r

em
er

.
sh

ip
 ·
 (

tr
an

sp
o
rt

 c
o
st

s
+

 d
o
w

n
ti

m
e

co
st

s)
 +

 e
m

er
.

su
p
p

ly
 o

rd
er

in
g
 c

o
st

s.

M
in

im
u

m
 f

o
r

cem
er
:

2
4
 ·

 (
 4

2
 +

 5
0
)

 +
 5

0
0

 ≈
 2

6
0
0

.
M

ax
im

u
m

 f
o
r

cem
er
:

4
8
 ·

 (
 4

2
0

 +
 1

0
0

0
)

 +
 1

0
0
0

 ≈
 7

8
0

0
0

.

ctr
an

s =
 T

im
e

n
ee

d
ed

 f
o
r

la
t.

 t
ra

n
s-

sh
ip

.
·

(t
ra

n
sp

o
rt

 c
o
st

s
+

 d
o
w

n
ti

m
e

co
st

s)
 +

 t
ra

n
ss

h
ip

 o
rd

er
in

g
 c

o
st

s.

M
in

im
u

m
 :

 2
 ·
 (

 4
2

 +
 5

0
)

 +
 1

0
0

 ≈
 3

0
0

.
M

ax
im

u
m

:
1

2
 ·

 (
 4

2
0
 +

 1
0
0

0
)

 +
 6

0
0
 ≈

 1
8
0

0
0

.

 74

Appendix 6: The Erlang loss function is decreasing in
multiplication.

In this appendix we proof that the Erlang loss function is decreasing in multiplication, i.e.

),(),(00 bbxaax ππ ≤ , for ∈ba, �0 0, >≥ xba . This was stated in Lemma 4.2 and had

already been proven (Schmidt & Whitt, 1981), but a different proof methodology can also
be used.

Lemma A6:),(),(00 bbxaax ππ ≤ , for ∈ba, �0 0, >≥ xba .

Proof:

For a=b, the proof is trivial and boils down to an equality.

For b=0, 1),(0 =bbxπ . Furthermore, 1),(0 ≤aaxπ since it is a probability.

Thus, it suffices to show),(),(00 bbxaax ππ ≤ for b≥1 and a>b.

Let a and b be positive integers with a>b. Furthermore, let },...,1,0{ bi ∈ be fixed for the

moment. Then the following equation holds:

() () ibaba ⋅−≥− 1 (T.1)

Add i to both sides, then divide both sides by (a/b) to obtain:

()
i

ba

bai
≥

−+
 (T.2)

As (T.2) holds for all iœ{0,1,…,b}, for all yœ{0,1,…,b-1} it holds that:

∏∏
+=+=

≥
−+ b

yi

b

yi

i
ba

bai

11

)(
 (T.3)

Relabling the left product range and taking (a/b) out of the product shows that (T.3) is
equivalent to:

() ∏
∏

+=
−

−++= ≥
b

yi

yb

a

bayi
i

ba

i

1

1
 (T.4)

Rewriting the products as a division of factorials shows that (T.3) is also equivalent to,
for all y in {0,1,…,b-1}:

() !

!

)!(

!

y

b

bayba

a
yb

≥
−+⋅

−
 (T.5)

Note that for y= b, (T.5) corresponds to 1≥1. Hence (T.5) holds not only for all y in
{0,1,…,b-1}, but moreover for all y in {0,1,…,b}.

 75

Let x>0 and let yœ{0,1,…,b} be fixed for the moment. By multiplying (T.5) with y
x and

by dividing both sides by yb
b

− , it can be seen that it holds that:

!

!

)!(

!

yb

xb

baya

xa
yb

y

yb

y

⋅

⋅
≥

−+⋅

⋅
−−

 (T.6)

As (T.6) holds for all yœ{0,1,…,b}, then it also holds that:

 ∑∑
=

−
=

− ⋅

⋅
≥

−+⋅

⋅ b

y
yb

yb

y
yb

y

yb

xb

baya

xa

00 !

!

)!(

!
 (T.7)

Relabling the left sum range shows that (T.7) is equivalent to:

∑∑
=

−
−=

−

−−

⋅

⋅
≥

⋅

⋅ b

y
yb

ya

bay
ya

bay

yb

xb

ya

xa

0

)(

!

!

!

!
 (T.8)

Adding non-negative terms to the left side gives:

∑∑
=

−
=

−

−−

⋅

⋅
≥

⋅

⋅ b

y
yb

ya

y
ya

bay

yb

xb

ya

xa

00

)(

!

!

!

!
 (T.9)

Rearrange exponents to see that (T.9) is equivalent to:

() ()
∑∑

==
− ⋅

⋅
≥

⋅⋅

⋅ b

y
b

ya

y
baa

y

yb

bxb

yxa

axa

00
)(!

!

!

!
 (T.10)

Move the exponents and factorials that are independent of y outside the summations:

() ()
∑∑

==
−

⋅≥⋅
⋅

b

y

y

b

a

y

y

baa
y

bx

b

b

y

ax

xa

a

00
)(!

!

!

!
 (T.11)

Raise both sides to the power (-1), then multiply both sides by b
x to obtain:

()
()

()
()

∑∑
==

⋅

≤

⋅
b

y

y

b

a

y

y

a

y

bx
b

bx

y

ax
a

ax

00 !
!

!
!

 (T.12)

(T.12) is equivalent to),(),(00 bbxaax ππ ≤ . This completes the proof.

�

 76

Appendix 7: Proof to Lemma 5.4

Lemma 5.4: Let x>0 and let }39,37,...,5,3,1{∈z . Then:

() () ()zxzxzx ,25.05.1,3
2

1
5.05.1,3

2

1
000 πππ ≤+⋅+−⋅ .

Proof:
Let:

)(2)(zyfyj z −⋅=

≤≤+
−

⋅

−≤≤
−

⋅

=

∑

∑
−

+−=

−
=

−

zyz
vyv

zy
vyv

yf z

zyv

vyv

y

v

vyv

35.05.1
)!(

3

!

3

5.05.10
)!(

3

!

3

)()5.05.1(

)5.05.1(

0

() ()

+≥+−⋅
+⋅⋅

⋅
+−−⋅

−⋅⋅

⋅

−=
−⋅⋅

⋅

−<≤

=

+⋅−⋅

−⋅

5.05.1,)5.05.1(
)!5.05.1(2

3!
)5.05.1(

)!5.05.1(2

3!

5.05.1,
)!5.05.1(2

3!

5.05.1,0

)(

)5.05.1()5.05.1(

)5.05.1(

zyzyh
z

z
zyg

z

z

zy
z

z

zyz

yk

zz

z

+≤≤+
−

⋅

+≤≤
−

⋅

≤≤
−

⋅

=

∑

∑

∑

+−=

−
=

−
=

−

5.05.25.05.1
)!(

3

!

2

5.05.1
)!(

3

!

2

0
)!(

3

!

2

)(

)5.05.1(

0

0

zyz
vyv

zyz
vyv

zy
vyv

yg

z

zyv

vyv

z

v

vyv

y

v

vyv

−≤≤−
−

⋅

−≤≤
−

⋅

≤≤
−

⋅

=

∑

∑

∑

−−=

−
=

−
=

−

5.05.25.05.1
)!(

3

!

2

5.05.1
)!(

3

!

2

0
)!(

3

!

2

)(

)5.05.1(

0

0

zyz
vyv

zyz
vyv

zy
vyv

yh

z

zyv

vyv

z

v

vyv

y

v

vyv

For all }39,37,...,5,3,1{∈z and for all }4,...,1,{ zzzy +∈ , it holds that:)()(yjyk ≤ . This

has been numerically verified and can be easily checked.
Therefore it also holds that:

y
z

zy

z

zy

y
xyjxyk ∑∑

==

≤
44

)()((A.1)

 77

(A.1) is equivalent to:

() ()

() y
z

y

z

z

y

y

zz

y

y

z

xyfx

xyh
z

x
zxyg

z

x
z

∑

∑∑

=

−

=

+⋅+

=

−⋅

⋅≤

⋅

+⋅
⋅⋅+

⋅

−⋅
⋅⋅

)3(

0

5.05.2

0

)5.05.1(5.05.2

0

)5.05.1(

)(2

)(
)!5.05.1(

3
!

2

1
)(

)!5.05.1(

3
!

2

1

 (A.2)

By Lemma A7, the following holds:

() ()

⋅ ∑∑

−⋅

==

)5.05.1(

00 !

3

!

2 z

y

yz

y

y

y

x

y

x
 is equal to: ∑

−

=

5.05.2

0

)(
z

y

y
xyh ,

() ()

⋅∑ ∑

=

+⋅

=

z

y

z

y

yy

y

x

y

x

0

)5.05.1(

0 !

3

!

2
 is equal to: ∑

+

=

5.05.2

0

)(
z

y

y
xyg ,

() () ()z
z

y

z

y

yy

x
y

x

y

x
2

!

3

!

3)5.05.1(

0

)5.05.1(

0

⋅

⋅∑ ∑

−⋅

=

+⋅

=

is equal to: () y
z

y

z
xyfx ∑

=

⋅
)3(

0

)(2 .

Thefore, (A.2) is identical to:

() () ()

() () ()

() () ()z
z

y

z

y

yy

z

y

yz

y

yz

z

y

z

y

yyz

x
y

x

y

x

y

x

y

x

z

x
z

y

x

y

x

z

x
z

2
!

3

!

3

!

3

!

2

)!5.05.1(

3
!

2

1

!

3

!

2

)!5.05.1(

3
!

2

1

)5.05.1(

0

)5.05.1(

0

)5.05.1(

00

)5.05.1(

0

)5.05.1(

0

)5.05.1(

⋅⋅≤

⋅⋅

+⋅
⋅⋅

+

⋅⋅

−⋅
⋅⋅

∑ ∑

∑∑

∑ ∑

−⋅

=

+⋅

=

−⋅

==

+⋅

=

+⋅

=

−⋅

 (A.3)

Divide both sides of (A.3) by
() () ()

∑ ∑∑
−⋅

= =

+⋅

=

⋅⋅⋅
)5.05.1(

0 0

)5.05.1(

0 !

2
!

!

3

!

3z

y

z

y

yz

y

yy

y

x
z

y

x

y

x
 to obtain:

() () () ()

() ()
()

()

⋅

≤

⋅

⋅
+⋅

+⋅
−⋅

⋅

∑∑ ∑

∑ ∑

=

−⋅

=

+⋅

=

+⋅

=

−⋅

=

+⋅−⋅

z

y

y

z

z

y

z

y

yy

z

y

z

y

yzyz

y

x
z

x

y

x

y

x

y

x

z

x

y

x

z

x

0

)5.05.1(

0

)5.05.1(

0

)5.05.1(

0

)5.05.1(

0

)5.05.1()5.05.1(

!

2
!

2

!

3

!

3

!

3

)!5.05.1(

3

!

3

)!5.05.1(

3

2

1
 (A.4)

(A.4) is equivalent to:

()

()

()

()

()

()

≤

+⋅
+

−⋅
⋅

∑∑∑
=

+⋅

=

+⋅

−⋅

=

−⋅

z

y

y

z

z

y

y

z

z

y

y

z

yx

zx

yx

zx

yx

zx

0

)5.05.1(

0

)5.05.1(

)5.05.1(

0

)5.05.1(

!/2

!/2

!/3

)!5.05.1/(3

!/3

)!5.05.1/(3

2

1
 (A.5)

It is now easily seen that (A.5) is equivalent to

() () ()zxzxzx ,25.05.1,3
2

1
5.05.1,3

2

1
000 πππ ≤++− . This completes the proof.

�

 78

Lemma A7: Let x≥0, let A,Bœ�0 with B≥A, let aœ�A, and let bœ�B. Then:

∑∑
==

⋅⋅⋅
B

i

i

i
A

i

i

i
bxax

00

= ∑
+

=

⋅
BA

i

i
ifunctionx

0

)(, where:

+≤≤⋅

≤≤⋅

≤≤⋅

=

∑

∑

∑

−=
−

=
−

=

−

BAiBba

BiAba

Aiba

ifunction

A

Biv

viv

A

v

viv

i

v

viv

0

0

0

)(

Proof:

The product of summations ∑∑
==

⋅⋅⋅
B

i

i

i
A

i

i

i
bxax

00

 can be seen as:

()
()

()

() B

B

A

A

A

A

A

A

A

A

xbxaxaxaa

xbxaxaxaa

xbxaxaxaa

bxaxaxaa

⋅+++++

+⋅++++

+⋅++++

+⋅++++

...

...

...

...

...

2

210

2

2

2

210

1

2

210

0

2

210

Or, equivalently:

() () () ()

() ()

() ()BA

AB

BABAABA

B

BABAABA

B

AAA

A

AAA

A

baxbababax

bababaxbababax

bababaxbababaxbabaxba

⋅+++++⋅

++++⋅+++++⋅

++++⋅+++⋅++⋅+⋅

+
+−−−

+

+−−−+−
+

−

......

.........

...

111

1

01110211

1

01102011022100100

Rewriting the above terms to ∑
+

=

⋅
BA

i

i
ifunctionx

0

)(completes the proof.

�

 79

Appendix 8: Program description
In this appendix a description is given of the computer program (and the algorithms it
implemented) that was used in the numerical experiments of chapter 5 and 6. The
program was written in the Java language and a copy of the code can be obtained from
the author upon request.

First, however, for all simpleΓ∈ϕ we will state a formal definition of S *

M (φ), the unique

optimal base-stock vector for coalition MŒN (used in the computer program as well), and

of)(* ϕtot

MS , the unique optimal base-stock vector sum for coalition MŒN.

Formally, let simpleΓ∈ϕ and consider coalition NM ⊆ . Define:

• ())(),(
;

0

MArgMinMW
S

NS

simple

M

ϕ
ϕ Κ=

∈

: the set of optimal base-stock vectors for M,

• []),(|)(* MWwwMinS
Mi i

tot

M ϕϕ ∈= ∑ ∈
: lowest optimal sum of base-stock levels,

• ()i
Mi

hArgMinMCompMinH
∈

=),(ϕ : set of players with the lowest holding costs rates.

• V),(Mϕ = |),(|/)(* MCompMinHS
tot

M ϕϕ : the base-stock levels that can be evenly

allocated to all companies in CompMinH.

• W),(Mϕ = ()|),(|),()(* MCompMinHMVS tot

M ϕϕϕ ⋅− : the base-stock levels that

remain to be allocated.

•

>

≤
=

),(if0

),(if1
),,(

MWi

MWi
MiX

ϕ

ϕ
ϕ : how the remaining base-stock levels are allocated.

• Then S

∈+

∈
=

),(if),,(),(

),(\ if0
)(*

MCompMinHiMiXMV

MCompMinHNi
M

ϕϕϕ

ϕ
ϕ .

Now, we will first introduce some variables that were used in the program:

• SPIS is a simple spare parts inventory situation, i.e. a tuple

()Ni

emer

NiiNii i
chN ∈∈∈)(,)(,,)(, µλ (see Chapter 3).

• RuleS contains the information on the base-stock levels used in the experiment. It
is a tuple (Type, index, Sindiv, Sall, Shigh, Slow, Smix), where:
o Type=A Boolean that indicates whether the base-stock vector is fixed (type

“FIX”) or whether the base-stock level is to-be-optimized (type “OPT”)
o index=This value is equal to 0 for type “OPT”, and equal to 1 through 5 for

type “FIX”. It is equal to 1 when the base-stock vector should be set to Sindiv; 2
when the base-stock vector should be set to Sall; 3 when the base-stock vector
should be set to Shigh; 4 when the base-stock vector should be set to Slow; and 5
when the base-stock vector should be set to Smix.

o S
indiv, S

all, S
high, S

low, S
mix are base-stock vectors that are defined in section

5.4.2.

A flowchart that describes the main idea of the program is shown in figure A8.1.
Afterwards, an explanation of each part of this flowchart is given.

 80

START

Iterate over

all SPIS

Generate

RuleS

Choose

type

For all M, calculate

c(M)

(Type OPT).

Furthermore,

calculate S
indiv

, S
all

,

S
high

, S
low

, and S
mix

.

OPT

Set S based

on RuleS

FIX

For all M,

calculate c(M)

(Type FIX)

Iterate over all

feasible S until

SM* and c(M)

found

Calculate

costs

Check balancedness

conditions of game (N,c).

Check cost allocations.

Display results.

SPIS

SPIS,

RuleS

SPIS,

RuleS

SPIS,

RuleS

SPIS,

M

c(M),

SM*

SPIS,

M,

S

K
SPIS,S

(M)

SPIS,

RuleS,

S

c(M)

SPIS,

M,

S

SPIS,

RuleS,

c

SPIS,

RuleS,

c

SPIS,

RuleS

All SPIS doneEND

Have all

base-stock

vectors been

checked?

NO YES

Iteration

over

all

RuleS

done

Increase index

SPIS,

RuleS

Calculate

costs

Figure A8.1: Flowchart of the program. Boxes indicate functions or code segments.

The arrows indicate the flow of the program and indicate which function is called

where. The variables on the arrows represent the inputs/outputs from functions.

Red text represents a choice on which branch to follow next in the program. The

part within the green box represents the part of the program that generates a game

(and displays results on core and cost allocations) associated with the combination of

one SPIS and one (index of) RuleS.

 81

Iterate over all SPIS
This function (based on Table 5.2) generates one SPIS and uses it to start “Generate
RuleS”. When all games corresponding to this SPIS and all (indices of) RuleS have been
created and checked, this function generates the next SPIS and starts “Generate RuleS”
again, until all SPIS have generated.

Generate RuleS
This generates a RuleS, in which it sets Type=”OPT” and index=0 and leaves the rest of
the information in RuleS empty for now. It then uses SPIS and RuleS to start the part of
the program that generates a game (and displays results on core and cost allocations)
associated with the combination of one SPIS and one RuleS.

For all M, calculate c(M) (Type OPT). Furthermore, calculate S

indiv
, S

all
, S

high
, S

low
, and

S
mix

This function generates a cost vector cœ� }0\{2 /N

 (where }0{\2 /N is the number of non-

empty subsets of N) and iterates over all non-empty coalitions NM ⊆ . For each M, this

function:

• Calls the function “Starting at zero, increase S until SM* and c(M) found”,
with SPIS and M, which eventually returns the optimal costs c(M) and the
optimal base-stock vector SM*.

• If |M|=1 then it sets i to be the element of M and then iMiindiv SS)(*= .

• If M=N then it sets Sall= SM*. Furthermore, it now also calculates Shigh
, S

low
,

and Smix (see section 5.4.2).

Starting at zero, increase S until SM* and c(M) found
The algorithm used in this function requires more in-depth explanation and is broken
down in consecutive steps.

STEP 1:
First of all, the algorithm finds the set of companies with the minimum holding cost rate

in M (called }|{ MjhhMiINhcompaniesM ji ∈∀≤∈=). Obviously, a solution in which

any stock is held by a company that is not in INhcompaniesM can never be optimal,

since allocating that stock to a company in INhcompaniesM instead would lead to lower

holding costs and equal emergency costs. Furthermore, it is important to note that the
costs are indifferent to the allocation of base stock levels over companies in

companiesMINh , i.e. if for some spare parts inventory situation µϕ :,idsimpleΓ∈ and two

base stock vectors S and S’ it holds that ∑∑
∈∈

=
INhcompaniesMi

i

INhcompaniesMi

i SS ' then =Κ)(; MSϕ

)('; MSϕΚ . As such, we can use a simple algorithm that will only adjust the base-stock

level of one company in companiesMINh while the base-stock level of any other
company will stay zero in order to find an optimal solution.

From INhcompaniesM , we select the company with the lowest index (i.e. company 1

rather than company 2) and refer to this company as compMINh.

 82

STEP 2:
The algorithm then generates a base-stock vector S and sets the base-stock level of each
company to zero. Then, the costs c(S) corresponding to this feasible solution when no
parts are held on stock are obtained (in order to do this, it calls the function “Calculate
costs” with SPIS, M, and S) and stored in the variable minCosts. It may be possible to
obtain lower costs by increasing the base-stock level of compMINh. So, ScompMINh is
increased by one and c(S) is obtained (once again via the function “Calculate costs”,
which will be described later in this appendix). If those costs are lower than minCosts,
then minCosts is set to c(S), ScompMINh is increased by one again and the corresponding
costs are calculated again. This process repeats itself until c(S) is not lower than
minCosts. Once that happens, the algorithm can stop as the optimal solution has been
found: minCosts is the optimal costs and an optimal base-stock vector is the one that was
used to obtain minCosts. Proof that this method truly finds the optimal costs is given in
Theorem A8.1 below.
Summarizing this process formally:
Step 2a: Set Si=0 for all i in M. Obtain c(S) and set minCosts=c(S).
Step 2b: Obtain c(S). Increase ScompMINh by 1.
Step 2c: If c(S)<minCosts then set minCosts=c(S) and return to Step 2b. Otherwise,
proceed to step 2d.
Step 2d: minCosts is the optimal costs of coalition M and optimalTotalStock= ScompMINh-1.

Note that during this algorithm, the base-stock level of any company other than
compMINh remains 0 and only ScompMINh is increased. As such, we can use formula (4.3):

() pSShM tottot

S

tot

totsimple ⋅+⋅=Κ ,)(0min

;
ρπ

ϕ
, where:

• Stot=ScompMINh

• hmin=hcompMINh

•
µ

λ
ρ M=

• ∑
∈

⋅=
Mi

emer

ii cp λ

This simpler cost function will be used in Lemma A8.1 and Theorem A8.1. Lemma A8.1

states that on the domain Stotœ�0 ,)(
;

Mtotsimple S

tot

ϕ
Κ will achieve a minimum. Theorem A8.1

states that this minimum is a unique minimum, hence the first minimum we find by using
the algorithm just described is the optimal solution.

Lemma A8.1: Let simpleΓ∈ϕ and let NM ⊆ . On the domain Stotœ�0 ,)(;
MtotS

tot

ϕΚ will

achieve a minimum.
Proof:

Let =S min/ hp . (noting that)(0;
Mtot

ϕΚ =p). Then:

pSppShphpSShM
S

tot >+⋅=⋅+⋅≥⋅+⋅=Κ)),(1(),(/),()(00minmin0min

; ρπρπρπϕ .

Therefore, the function)(;
MtotS

tot

ϕΚ is increasing in at least some part of its domain. Since

it is not always decreasing, it will achieve a minimum.
�

 83

Theorem A8.1: Let simple∈ϕ . On the domain Stotœ�0 ,)(;
MtotS

tot

ϕΚ will achieve one unique

minimum.
Proof:

By Lemma 4.4, ()totS,0 ρπ is convex in Stot.

Therefore, () pSShM tottot

S

tot
tot ⋅+⋅=Κ ,)(0min

; ρπϕ is also convex in Stot.

A convex function will only have at most one minimum and by Lemma A8.1, this convex
function does have a minimum.
�

STEP 3:

If 1|| >INhcompaniesM , there may be multiple optimal base-stock vectors and one with

an as-equal-as-possible distribution is chosen in this step. A formal definition of this was
provided at the beginning of this Appendix. The idea is to iterate over all

iœ INhcompaniesM by first allocating an item to the first company in INhcompaniesM ,

then allocating an item to the second company, and so on. Once all companies have been
given an item, start again with company 1 and repeat this process until optimalTotalStock

has been allocated. A formal algorithmic description:
Step 3a: Set optimalTotalStockRemaining= optimalTotalStock, then set (SM*)i=0 for all
iœM. Set j=1.
Step 3b: If jœcompaniesMINh and optimalTotalStockRemaining>0 then increase (SM*)i
by one and decrease optimalTotalStockRemaining by one.
Step 3c: If j<|M| then increase j by one and return to step 3b. If j=|M|, if
optimalTotalStockRemaining=0 then proceed to step 4, otherwise set j=1 and return to
step 3b.

STEP 4:
Return c(M)=minCosts and SM*

Calculate costs
We use the recursive formula to quickly calculate the Erlang loss probability (according
to Lemma 4.5). A step-by-step breakdown of the calculations is:

Step 1: Set 0π (0)=1. Set s=1. Set
µ

λ

ρ
∑
∈= Mi

i

Step 2a: If ∑
∈

≤
Mi

iSs then set
1)1(

)1(
)(

0

0
0

+⋅−

⋅−
=

ρπ

ρπ
π

s

s
s . If ∑

∈

>
Mi

iSs proceed to step 3.

Step 2b: Increase s by one and return to step 2a.

Step 3: The result to be returned is ∑∑∑
∈∈∈

⋅⋅

+⋅

Mi

emer

ii

Mi

i

Mi

ii cSSh λπ 0 .

Set S based on RuleS
This generates a base-stock vector S, and fills it with values according to index.

 84

If index=1 then S is set to Sindiv; if index=2 then S is set to Sall; if index=3 then S is set to
S

high; if index=4 then S is set to Sall; if index=5 then S is set to Smix. It then uses SPIS,
RuleS, and S to start “For all M, calculate c(M) (Type FIX)”.

For all M, calculate c(M) (Type FIX)

This function generates a cost vector cœ� }0\{2 /N

 (where }0{\2 /N is the number of non-

empty subsets of N) and iterates over all non-empty coalitions NM ⊆ . For each M, this

function calls the function “Calculate costs”, with SPIS, M, and S, which returns the
optimal costs c(M).

Check balancedness conditions of game (N,c). Check cost allocations. Display results.
The balancedness conditions are hard-coded for |N|=3 and |N|=4 and can be found in
Appendix 2. If at least one of the conditions do not hold, then it is displayed on screen
that the core is empty. Otherwise, it is displayed on screen that the core is non-empty.
For each cost allocation (they are given in Chapter 6), the costs are calculated that are
allocated to each player and stored in xœ�N. Subsequently the program checks the

stability conditions ∑
∈

≤
Mi

i Mcx)(for all M ⊆ N. Whether a cost allocation is in the core

or not is displayed on screen.

Important note on rounding errors:
It was discovered during testing of the program that these inequality checks can
sometimes be affected by rounding errors. For example, an inequality was actually 25≤25
(true), but due to rounding errors in computations it was reduced to 24.999999999999≤25
instead (false). An investigation was made in the range of these rounding errors, and
based on this, a check was added that determined whether the difference was less than
0.00000001% or not. If the difference was this small, the two values were regarded as
being equal in the balancedness and stability checks.

Have all base-stock vectors been checked? and Increase index
If type is “OPT” then type is set to “FIX” and the index is set to 1. Then use SPIS and
RuleS to start the part of the program that generates a game again.
If type is “FIX” and the index<5 then increase the index by 1. Then use SPIS and RuleS
to start the part of the program that generates a game again.
If type is “FIX” and the index=5 then all games associated with SPIS have been checked,
so go back to “Iterate over all SPIS”.

Program validation & verification

The program has been verified to work correctly by:

• Building up the program part by part. After a code segment or function was done,
it was fed sample input and output was checked in order to see whether it did
what it was supposed to do.

• After the program was fully done, the logic of the code syntax was double-
checked.

 85

• The results shown in chapter 5 and 6 (which were obtained by using this program)
have been checked in order to determine whether they make sense. So far, no
remarkably strange / clearly wrong results (for example, cases where the core is
empty but a cost allocation was in the core) were obtained.

• The algorithm should give the same output as the algorithm described in
Appendix 11 (for cases with non-negligible transshipment costs) if we set
transshipment costs to be zero in both programs. For a couple test cases (values
found in Chapter 7), this turned out to be the case.

• Furthermore, after the program was fully done, a couple test cases were used in
order to check whether the entire program correctly calculated the game
associated with a SPIS and SRule and correctly checked the balancedness
conditions and cost allocations (using a testMode part of the program that did not
iterate over all thousands of instances and that gave more output that could be
used to verify the numbers). The output of the program was verified by doing all
required calculations in parallel by hand or via an Excel sheet and comparing the
results. The program gave the correct output for all test cases. They are included
here for reference:

Test case 1 - the standard identical case - Input:
Spare parts inventory situation: N={1,2,3}; λ1= λ2=λ3=5, µ=25, h1=h2=h3=4000,

13000321 === emeremeremer
ccc .

SRule: Type=”OPT”; index=0.
Program output:
Costs of coalition {3} = 9065.57 with optimal base-stock levels: Sopt[3]=2
Costs of coalition {2} = 9065.57 with optimal base-stock levels: Sopt[2]=2
Costs of coalition {2,3} = 12930.23 with optimal base-stock levels: Sopt[2]=2 Sopt[3]=1
Costs of coalition {1} = 9065.57 with optimal base-stock levels: Sopt[1]=2
Costs of coalition {1,3} = 12930.23 with optimal base-stock levels: Sopt[1]=2 Sopt[3]=1
Costs of coalition {1,2} = 12930.23 with optimal base-stock levels: Sopt[1]=2 Sopt[2]=1
Costs of coalition {1,2,3}= 15865.64 with optimal base-stock levels: Sopt[1]=1 Sopt[2]=1 Sopt[3]=1
The core is non-empty.
All allocations of chapter 6 are implemented in this program and each of them gives a symmetric allocation
that is in the core: x(1)=5288.55 x(2)=5288.55 x(3)=5288.55
Sindiv={2,2,2}, Sall={1,1,1}, Shigh={3,3,3}, Slow={0,0,0}, Smix={2,3,0}.

Test case 2 - the standard identical case with fixed base-stock levels - Input:
The same spare parts inventory situation as test case 1.
SRule: Type=”FIX”; index=2, Sall={1,1,1}.
Program output:
Costs of coalition {3} = 14833.33 with optimal base-stock levels: Sopt[3]=1
Costs of coalition {2} = 14833.33 with optimal base-stock levels: Sopt[2]=1
Costs of coalition {2,3} = 15027.03 with optimal base-stock levels: Sopt[2]=1 Sopt[3]=1
Costs of coalition {1} = 14833.33 with optimal base-stock levels: Sopt[1]=1
Costs of coalition {1,3} = 15027.03 with optimal base-stock levels: Sopt[1]=1 Sopt[3]=1
Costs of coalition {1,2} = 15027.03 with optimal base-stock levels: Sopt[1]=1 Sopt[2]=1
Costs of coalition {1,2,3} = 15865.64 with optimal base-stock levels: Sopt[1]=1 Sopt[2]=1 Sopt[3]=1
The core is non-empty.
All allocations of chapter 6 are implemented in this program and each of them gives a symmetric allocation
that is in the core: x(1)=5288.55 x(2)=5288.55 x(3)=5288.55.

 86

Test case 3 - the standard identical case with inequal base-stock levels - Input:
The same spare parts inventory situation as test case 1.
SRule: Type=”FIX”; index=5, Smix={2,3,1}.
Program output:
Costs of coalition {3} = 65000.0 with optimal base-stock levels: Sopt[3]=0
Costs of coalition {2} = 12070.96 with optimal base-stock levels: Sopt[2]=3
Costs of coalition {2,3} = 12930.23 with optimal base-stock levels: Sopt[2]=3 Sopt[3]=0
Costs of coalition {1} = 9065.57 with optimal base-stock levels: Sopt[1]=2
Costs of coalition {1,3} = 15027.03 with optimal base-stock levels: Sopt[1]=2 Sopt[3]=0
Costs of coalition {1,2} = 20007.44 with optimal base-stock levels: Sopt[1]=2 Sopt[2]=3
Costs of coalition {1,2,3} = 20069.35 with optimal base-stock levels: Sopt[1]=2 Sopt[2]=3 Sopt[3]=0
The core is non-empty.
All allocations of chapter 6 are implemented in this program. Not all give the same allocation, but none of
them is in the core.
An allocation of total costs based on the demand rate of each company:
x(1)=6689.783511008859 x(2)=6689.783511008859 x(3)=6689.783511008859
An allocation of total costs based on the holding costs of each company:
x(1)=6689.783511008859 x(2)=6689.783511008859 x(3)=6689.783511008859
An allocation of total costs based on the cEMER of each company:
x(1)=6689.783511008859 x(2)=6689.783511008859 x(3)=6689.783511008859
An allocation where each company pays its own local holding and downtime/emergency costs:
x(1)=8023.116844342192 x(2)=12023.116844342192 x(3)=23.116844342192053
The Shapley value allocation rule:
x(1)=-1604.5190111887823 x(2)=-1150.2227815334531 x(3)=22824.09232574881
An allocation of total costs based on the half the lambda and half lambda*cEMER of each company:
x(1)=6689.783511008858 x(2)=6689.783511008858 x(3)=6689.783511008858
An allocation of total costs based on lambda*cEMER of each company:
x(1)=6689.783511008858 x(2)=6689.783511008858 x(3)=6689.783511008858
An allocation where holding costs are allocated based on h and downtime/emergency costs based on
lambda*cEMER:
x(1)=6689.783511008858 x(2)=6689.783511008858 x(3)=6689.783511008858
An allocation where holding costs are allocated based on h and downtime/emergency costs based on
lambda:
x(1)=6689.783511008858 x(2)=6689.783511008858 x(3)=6689.783511008858
An allocation where holding costs are allocated based on h and downtime/emergency costs based on half
lambda and half lambda*cEMER:
x(1)=6689.783511008858 x(2)=6689.783511008858 x(3)=6689.783511008858
An allocation where holding costs are allocated based on lambda and downtime/emergency costs based on
lambda*cEMER:
x(1)=6689.783511008858 x(2)=6689.783511008858 x(3)=6689.783511008858
An allocation where holding costs are allocated based on lambda and downtime/emergency costs based on
half lambda and half lambda*cEMER:
x(1)=6689.783511008858 x(2)=6689.783511008858 x(3)=6689.783511008858
An allocation of total BENEFITS based on the demand rate of each company:
x(1)=-12956.820874893256 x(2)=-9951.433946695102 x(3)=42977.60535461494
An allocation of total BENEFITS equally amongst companies:
x(1)=-12956.82087489326 x(2)=-9951.433946695106 x(3)=42977.605354614934
An allocation of total BENEFITS according to the Shapley value:
x(1)=-1604.5190111887805 x(2)=-1150.2227815334518 x(3)=22824.092325748818
An allocation based on relative distance from individually optimal S:
x(1)=0.0 x(2)=6689.783511008859 x(3)=13379.567022017718
An allocation based on relative distance from global optimal S:
x(1)=5017.337633256644 x(2)=10034.675266513288 x(3)=5017.337633256644

 87

Test case 4 - inequal holding cost rates - Input:
Spare parts inventory situation: N={1,2,3}; λ1= λ2=λ3=5, µ=25, h1=400, h2=4000,

h3=28000, 13000321 === emeremeremer
ccc .

SRule: Type=”OPT”; index=0.
Program output:
Costs of coalition {3} = 38833.33 with optimal base-stock levels: Sopt[3]=1
Costs of coalition {2} = 9065.57 with optimal base-stock levels: Sopt[2]=2
Costs of coalition {2,3} = 12930.23 with optimal base-stock levels: Sopt[2]=3 Sopt[3]=0
Costs of coalition {1} = 1270.96 with optimal base-stock levels: Sopt[1]=3
Costs of coalition {1,3} = 1692.96 with optimal base-stock levels: Sopt[1]=4 Sopt[3]=0
Costs of coalition {1,2} = 1692.96 with optimal base-stock levels: Sopt[1]=4 Sopt[2]=0
Costs of coalition {1,2,3} = 2069.35 with optimal base-stock levels: Sopt[1]=5 Sopt[2]=0 Sopt[3]=0
The core is non-empty.
All cost allocations were calculated correctly (they are not shown here in order to bring this appendix down
to a manageable size).
Sindiv={3,2,1}, Sall={5,0,0}, Shigh={3,3,3}, Slow={0,0,0}, Smix={3,3,0}.

Test case 5 - inequal demand rates - Input:
Spare parts inventory situation: N={1,2,3}; λ1=0.5, λ2=5, λ3=50, µ=25, h1=h2=h3=4000,

13000321 === emeremeremer
ccc .

SRule: Type=”FIX”; index=1, Sindiv={1,2,7}.
Program output:
Costs of coalition {3} = 30236.56 with optimal base-stock levels: Sopt[3]=7
Costs of coalition {2} = 9065.57 with optimal base-stock levels: Sopt[2]=2
Costs of coalition {2,3} = 36263.60 with optimal base-stock levels: Sopt[2]=2 Sopt[3]=7
Costs of coalition {1} = 4127.45 with optimal base-stock levels: Sopt[1]=1
Costs of coalition {1,3} = 32598.91 with optimal base-stock levels: Sopt[1]=1 Sopt[3]=7
Costs of coalition {1,2} = 12101.84 with optimal base-stock levels: Sopt[1]=1 Sopt[2]=2
Costs of coalition {1,2,3} = 40062.79 with optimal base-stock levels: Sopt[1]=1 Sopt[2]=2 Sopt[3]=7
The core is non-empty.
All cost allocations were calculated correctly (they are not shown here in order to bring this appendix down
to a manageable size).

Test case 6 - inequal emergency costs - Input:
Spare parts inventory situation: N={1,2,3}; λ1=λ2=λ3=5, µ=25, h1=h2=h3=4000,

78000,13000,2600 321 === emeremeremer
ccc .

SRule: Type=”FIX”; index=1, Shigh={3,3,3}.
Program output:
Costs of coalition {3} = 12425.76 with optimal base-stock levels: Sopt[3]=3
Costs of coalition {2} = 12070.96 with optimal base-stock levels: Sopt[2]=3
Costs of coalition {2,3} = 24001.74 with optimal base-stock levels: Sopt[2]=3 Sopt[3]=3
Costs of coalition {1} = 12014.19 with optimal base-stock levels: Sopt[1]=3
Costs of coalition {1,3} = 24001.54 with optimal base-stock levels: Sopt[1]=3 Sopt[3]=3
Costs of coalition {1,2} = 24000.30 with optimal base-stock levels: Sopt[1]=3 Sopt[2]=3
Costs of coalition {1,2,3} = 36000.01 with optimal base-stock levels: Sopt[1]=3 Sopt[2]=3 Sopt[3]=3
The core is non-empty.
All cost allocations were calculated correctly.

 88

Test case 7 - four companies - Input:
Spare parts inventory situation: N={1,2,3,4}; λ1=λ2=λ3=λ4=5, µ=25, h1=h2=h3=h4=4000,

13000,78000,13000,2600 4321 ==== emeremeremeremer
cccc .

SRule: Type=”OPT”; index=0.
Program output:
Costs of coalition {4} = 9065.57 with optimal base-stock levels: Sopt[4]=2
Costs of coalition {3} = 12425.76 with optimal base-stock levels: Sopt[3]=3
Costs of coalition {3,4} = 15255.81 with optimal base-stock levels: Sopt[3]=2 Sopt[4]=1
Costs of coalition {2} = 9065.57 with optimal base-stock levels: Sopt[2]=2
Costs of coalition {2,4} = 12930.23 with optimal base-stock levels: Sopt[2]=2 Sopt[4]=1
Costs of coalition {2,3} = 15255.81 with optimal base-stock levels: Sopt[2]=2 Sopt[3]=1
Costs of coalition {2,3,4} = 17541.67 with optimal base-stock levels: Sopt[2]=2 Sopt[3]=1 Sopt[4]=1
Costs of coalition {1} = 6166.67 with optimal base-stock levels: Sopt[1]=1
Costs of coalition {1,4} = 12216.22 with optimal base-stock levels: Sopt[1]=1 Sopt[4]=1
Costs of coalition {1,3} = 14883.72 with optimal base-stock levels: Sopt[1]=2 Sopt[3]=1
Costs of coalition {1,3,4} = 17387.50 with optimal base-stock levels: Sopt[1]=2 Sopt[3]=1 Sopt[4]=1
Costs of coalition {1,2} = 12216.22 with optimal base-stock levels: Sopt[1]=1 Sopt[2]=1
Costs of coalition {1,2,4} = 14834.80 with optimal base-stock levels: Sopt[1]=1 Sopt[2]=1 Sopt[4]=1
Costs of coalition {1,2,3} = 17387.50 with optimal base-stock levels: Sopt[1]=2 Sopt[2]=1 Sopt[3]=1
Costs of coalition {1,2,3,4} = 20093.11 with optimal base-stock levels: Sopt[1]=1 Sopt[2]=1 Sopt[3]=1
Sopt[4]=1
The core is non-empty.
All cost allocations were calculated correctly.
Sindiv={1,2,3,2}, Sall={1,1,1,1}, Shigh={3,3,3,3}, Slow={0,0,0,0}, Smix={1,3,0,2}.

 89

Appendix 9: Example games for section 5.4

In the Appendix, we provide example games that illustrate concepts discussed in Section
5.4.4 (as an illustration why low repair rates and/or low holding costs relatively often lead
to games with empty cores) and in Section 5.4.5 (2-player subgames).

An illustration why low repair rates and/or low holding costs relatively often lead to

games with empty cores

We present example games 9.1, 9.2, and 9.3 below. Example 9.1 will be a game with an
empty core associated with a spare parts inventory situations for which companies have
identical, but very low repair rates and identical, but very high holding cost rates. For
example 9.2, we change the spare part pooling game by setting the repair rate to be very
high instead and thanks to this change, the core of the associated game is non-empty. And
for example 9.3, we change the original spare part pooling game by setting the holding
cost rate to be very low instead and thanks to this change, the core of the associated game
is non-empty. We keep track of how big of a factor the holding costs play in the cost
function. We can observe that in examples 9.1, emergency costs are dominant (and since
they differ quite a bit between companies, this leads to an empty core), while in examples
9.2 and 9.3 the holding costs are dominant (and therefore the annoying effect of different
c

emer between companies is lessened).

Example 9.1

Consider the 3-player simple spare parts inventory situation hidsimple ,:,7 λϕ Γ∈ with

N={1,2,3}, λ has value All-Standard (hence λ=5), µ has value All-Min (hence µ=1.67), h

has value All-Max (hence h=28000), and cemer has value DIFF3 (hence emerc1 =6500,
emerc2 =78000, emer

c3 =6500). Suppose that we have situation OPT. The associated spare

parts pooling game is described by c(M), given in table 9.1.

Table 9.1: Cost function (column 2), optimal total base-stock level sum (column 3),

and the percentage of the cost function that is defined by the holding cost (column 4)

for example 9.1.
Coalition M c(M) *tot

MS Holding cost percentage, i.e.

() %100*)(/* McSh tot

M⋅

{1} 32,500.0 0 0%

{2} 182,721.67 5 77%

{3} 32,500.0 0 0%

{1,2} 273,856.26 7 72%

{1,3} 65,000.0 0 0%

{2,3} 273,856.26 7 72%

{1,2,3} 353,645.09 9 71%

The core (and the imputation set) is empty, since c({1,2,3}) = 353645.09 >
c({1})+c({2})+c({3}) = 247721.67.

 90

Example 9.2

Consider the 3-player simple spare parts inventory situation hidsimple ,:,8 λϕ Γ∈ , which is the

same as 7ϕ (used in the previous example), with one exception: µ has value All-Max

(hence µ=500) instead. Suppose that we have situation OPT. The associated spare parts
pooling game is described by c(M), given in table 9.2.

Table 9.2: Cost function (column 2), optimal total base-stock level sum (column 3),

and the percentage of the cost function that is defined by the holding cost (column 4)

for example 9.2.
Coalition M c(M) *tot

MS Holding cost percentage, i.e.

() %100*)(/* McSh tot

M⋅

{1} 28,321.78 1 99%

{2} 31,861.39 1 88%

{3} 28,321.78 1 99%

{1,2} 36,284.31 1 77%

{1,3} 29,274.51 1 96%

{2,3} 36,284.31 1 77%

{1,2,3} 41,252.43 1 68%

The core is non-empty. For example, x1=10,000, x2=21,252.43, x3=10,000 is a core
element.

Example 9.3

Consider the 3-player simple spare parts inventory situation hidsimple ,:,9 λϕ Γ∈ , which is the

same as 7ϕ (used in example 9.1), with one exception: h has value All-Min (hence

h=400) instead. Suppose that we have situation OPT. The associated spare parts pooling
game is described by c(M), given in table 9.3.

Table 9.3: Cost function (column 2), optimal total base-stock level sum (column 3),

and the percentage of the cost function that is defined by the holding cost (column 4)

for example 9.3.
Coalition M c(M) *tot

MS Holding cost percentage, i.e.

() %100*)(/* McSh tot

M⋅

{1} 3461.66 8 92%

{2} 4311.66 10 93%

{3} 3461.66 8 92%

{1,2} 6370.02 15 94%

{1,3} 5529.8 12 87%

{2,3} 6370.02 15 94%

{1,2,3} 8211.84 19 93%

The core is non-empty. For example, x1=2,500, x2=3211.84, x3=2,500 is a core element.

 91

Two-player sub-games

In example 9.4, the core of the 3-player game is empty, but this is not due to a problem
that already exists in a 2-player sub-game, i.e. none of the sub-games had empty cores
(this is unlikely to happen, according to Table 5.6). In example 9.5, the core of the 3-
player game is non-empty, but this is despite problems with 2-player sub-games, i.e. two
sub-games do have empty cores (this is unlikely to happen, according to Table 5.7).
Lastly, in example 9.6, the core of the 3-player game is empty and two sub-games also
have empty cores (this is likely to happen, according to Table 5.6).

Example 9.4

Consider the 3-player simple spare parts inventory situation hidsimple ,:,4 λϕ Γ∈ with

N={1,2,3}, µ=1.67, h=8000; emerc1 =26000, emerc2 =6500; emer
c3 =13000; λ=0.5.

Suppose that we have situation OPT, so base-stock levels are to-be-optimized. The
associated spare parts pooling game is described by (values are rounded to two decimals):

c({1}) = 10,995.39 (with *tot

MS =1); c({2}) = 3,250.0 (with *tot

MS =0)

c({3}) = 6,500.0 (with *tot

MS =0); c({1,2}) = 14,086.14 (with *tot

MS =1)

c({1,3}) = 15,303.37 (with *tot

MS =1); c({2,3}) = 9,750.0 (with *tot

MS =0)

c({1,2,3}) = 18,764.98 (with *tot

MS =1).

Note that the core of this game is empty, since: c({1,2,3}) = 18,764.98 > c({2})+c({1,3})
= 18553.37. Note that the imputation set is non-empty, since; c({1,2,3}) = 18764.98 <
c({1})+c({2})+c({3}) = 20745.39. If we limit ourselves to a subgame with player set
{1,2}, since c({1,2}) = 14,086.14 < c({1})+c({2}) = 14,245.39, the core is non-empty.
Similarly, the core of the subgame with player set {1,3} and the core of the subgame with
player set {2,3} is non-empty.

Example 9.5

Consider the 3-player simple spare parts inventory situation hidsimple :,5 Γ∈ϕ with

N={1,2,3}, µ=25, h=8000; emerc1 =2600, emerc2 =13000; emer
c3 =78000; λ1=2.5, λ2=50, λ3=2.5.

Suppose that we have situation FIX with base-stock vector S given by S1=0, S2=4, S3=1.
The associated spare parts pooling game is described by (values are rounded):
c({1}) = 6,500.0; c({2})= 93,904.76; c({3}) = 25,727.27;
c({1,2}) = 101,460.49; c({1,3}) = 41,583.33; c({2,3}) = 75,952.29;
c({1,2,3}) = 81,555.08
The core is non-empty. For example, x1=6,055.08, x2=55,500, x3=20,000 is a core
element. If we limit ourselves to a subgame with player set {1,2}, since c({1,2}) =
101,460.49 > c({1})+c({2}) = 100,404.76, the core is empty. Similarly, the core of the
subgame with player set {1,3} is empty. The core of the subgame with player set {2,3},
however, is non-empty.

 92

Example 9.6

Consider the 3-player simple spare parts inventory situation hidsimple ,:,6 λϕ Γ∈ with

N={1,2,3}, µ=1.67, h=4000; emerc1 =2600, emerc2 =13000; emer
c3 =78000; λ=5. Suppose that

we have situation OPT. The associated spare parts pooling game is described by (values
are rounded to two decimals):

c({1}) = 13,000.0 (with *tot

MS =0); c({2}) = 27,120.28 (with *tot

MS =5)

c({3}) = 35,139.95 (with *tot

MS =8); c({1,2}) = 41,454.51 (with *tot

MS =8)

c({1,3}) = 52,524.77 (with *tot

MS =12); c({2,3}) = 53,108.61 (with *tot

MS =12)

c({1,2,3}) = 69,099.63 (with *tot

MS =16).

The core is empty, since: c({1,2,3}) = 69,099.63 > c({1})+c({2,3}) = 66,108.61. Note
that the imputation set is non-empty as c({1,2,3}) = 69,099.63 < c({1})+c({2})+c({3}) =
75,260.23. If we limit ourselves to a subgame with player set {1,2}, since c({1,2}) =
41454.51 > c({1})+c({2}) = 40120.28, the core is empty. Similarly, the core of the
subgame with player set {1,3} is empty. The core of the subgame with player set {2,3},
however, is non-empty.

 93

Appendix 10: All cost allocations

We now provide a list of cost allocation rules that intuitively may seem reasonable. The
ones that are defined already in Chapter 6 are not included here. For each cost allocation
rule, we show the percentage of games for which it gave a core element in the numerical

experiment of Chapter 6 over 46080 games. For all these formulas, let simpleΓ∈ϕ , let

(N,c) be the associated game and let iœN. We will only provide the formula for a game
with to-be-optimized base-stock levels and formulas for games with fixed base-stock
levels should follow naturally from the description given, unless noted otherwise.

Allocation AH (51%): An allocation of total costs based on the holding costs rate of

each company: AH
OPT

i
(φ) =

∑
∈

⋅

Nj

j

i

h

h
Nc)(

Allocation AC (45%): An allocation of total costs based on the emergency (shipment

and downtime) costs of each company: AC
OPT

i
(φ) =

∑
∈

⋅

Nj

emer

j

emer

i

c

c
Nc)(

Allocation A-local (55%): An allocation where each company pays its own local

holding and emergency costs: A-local OPT

i
(φ) () () emer

ii

Nj
j

Nj

jii cSSh
NN

⋅⋅+⋅= ∑∑
∈∈

λµλπ),/(*

0

* .

Allocation HALF (57%): An allocation of total costs based on the half the demand rate
and half the demand rate times emergency costs of each company:

HALF
OPT

i
(φ) =

⋅

⋅
+⋅
∑∑
∈∈ Nj

emer

jj

emer

ii

Nj

j

i

c

c
Nc

λ

λ

λ

λ

22
)(

Allocation ALC (57%): An allocation of total costs based on the demand rate times

emergency costs of each company: ALC
OPT

i
(φ) =

∑
∈

⋅

⋅
⋅

Nj

emer

jj

emer

ii

c

c
Nc

λ

λ
)(

Allocation SPLITH1 (63%): An allocation where holding costs are allocated based on
holding cost rates and emergency costs based on the demand rate times emergency costs:

SPLITH1
OPT

i
(φ) = () ()

∑
∑∑∑

∑
∈

∈∈∈

∈

⋅

⋅
⋅+

⋅⋅

Nj

emer

jj

emer

ii

Nj
j

Nj

j

Nj
jj

Nj

j

i

c

c
SSh

h

h
NN λ

λ
µλπ),/(*

0

*

Allocation SPLITH2 (57%): An allocation where holding costs are allocated based on
holding cost rates and emergency costs based on the demand rate:

SPLITH2
OPT

i
(φ) = () ()

∑
∑∑∑

∑
∈

∈∈∈

∈

⋅+

⋅⋅

Nj

j

i

Nj
j

Nj

j

Nj
jj

Nj

j

i

NN
SSh

h

h

λ

λ
µλπ),/(*

0

*

 94

Allocation SPLITH3 (57%): An allocation where holding costs are allocated based on
holding cost rates and emergency costs based on half the demand rate and half the
demand rate times emergency costs:

SPLITH3
OPT

i
(φ)= () ()

⋅

⋅
+⋅+

⋅⋅

∑∑
∑∑∑

∑
∈∈

∈∈∈

∈ Nj

emer

jj

emer

ii

Nj

j

i

Nj
j

Nj

j

Nj
jj

Nj

j

i

c

c
SSh

h

h
NN λ

λ

λ

λ
µλπ

22
),/(*

0

*

Allocation SPLITL (60%): An allocation where holding costs are allocated based on
demand rates and emergency costs based on half the demand rate and half the demand
rate times emergency costs:

SPLITL
OPT

i
(φ)= () ()

⋅

⋅
+⋅+

⋅⋅

∑∑
∑∑∑

∑
∈∈

∈∈∈

∈ Nj

emer

jj

emer

ii

Nj

j

i

Nj
j

Nj

j

Nj
jj

Nj

j

i

c

c
SSh

NN λ

λ

λ

λ
µλπ

λ

λ

22
),/(*

0

*

Allocation MARGINAL (52%): An allocation of total costs based on the square root of

the demand rate of each company: MARGINAL
OPT

i
(φ)=

∑
∈

⋅

Nj

j

i
Nc

λ

λ
)(

Allocation BE (63%): An allocation of total benefits equally amongst companies:

BE OPT

i
(φ)=

−⋅− ∑

∈

)(})({
||

1
})({ Ncjc

N
ic

Nj

Allocation DISTANCE1 (37%) An allocation based on relative distance of fixed base-
stock vector S from individually optimal base-stock vector Sindiv (only for situation FIX):

DISTANCE1 FIX

i
(φ,S)

>−⋅

−

−

=
∑

∑ ∈

∈

otherwiseNNc

SSNc
SS

SS

Nj

indiv

jj

Nj

indiv

jj

indiv

ii

||/)(

0|| if)(
||

||

.

Allocation DISTANCE2 (26%) An allocation based on relative distance of fixed base-

stock vector S from globally optimal base-stock vector S *

N (only for situation FIX):

DISTANCE2 FIX

i
(φ,S)

()
() ()

>−⋅

−

−

=
∑

∑ ∈

∈

otherwiseNNc

SSNc
SS

SS

Nj
jNj

Nj
jNj

iNi

||/)(

0|| if)(
||

|| *

*

*

.

 95

Appendix 11: Proof to Lemma 6.3

Lemma 6.3: Allocation rules ALFIX, SPLITFIX, BLFIX, Φ FIX, ALOPT, SPLITOPT, BLOPT,
and Φ OPT are symmetric.
Proof:

Let simpleΓ∈ϕ such that λi=λj, hi=hj, and emer

j

emer

i cc = for some i,jœN . Let S∈�0
N and let

S
identical∈�0

N such that Si=Sj. Let the game associated with ϕ be (N,cOPT) and the game

associated with ϕ and S be (N,cFIX).

Step 1 (ALFIX and ALOPT):

FIX

iAL (ϕ ,S) =
∑∑
∈∈

⋅=⋅

Nk

k

jS

Nk

k

iS
NKNK

λ

λ

λ

λ ϕϕ)()(,, = FIX

jAL (ϕ ,S).

By the above, we have FIX

iAL (ϕ , Sidentical) = FIX

jAL (ϕ ,Sidentical) and hence ALFIX is

symmetric. By the above, we also have OPT

iAL (ϕ) = FIX

iAL (ϕ , S *

N (φ)) =
FIX

jAL (ϕ ,S *

N (φ)) = OPT

jAL (ϕ) and hence ALOPT is symmetric.

Step 2 (SPLITFIX and SPLITOPT):

FIX

iSPLIT (ϕ ,S) = =⋅⋅+

⋅⋅ ∑

∑
∑

∑ ∈

∈

∈

∈

emer

ii

Nk

k
Nk

k

Nk

kk

Nk

k

i cSSh λ
µ

λ

π
λ

λ
),(0

FIX

jSPLIT (ϕ ,S) = emer

jj

Nk

k
Nk

k

Nk

kk

Nk

k

j
cSSh ⋅⋅+

⋅⋅ ∑

∑
∑

∑ ∈

∈

∈

∈

λ
µ

λ

π
λ

λ
),(0

By the above, we have FIX

iSPLIT (ϕ , Sidentical) = FIX

jSPLIT (ϕ ,Sidentical) and hence

SPLITFIX is symmetric. By the above, we also have OPT

iSPLIT (ϕ)= FIX

iSPLIT (ϕ , S *

N (φ))

= OPT

jSPLIT (ϕ)= FIX

jSPLIT (ϕ , S *

N (φ)) and hence SPLITOPT is symmetric.

Step 3 (BLFIX and BLOPT):

,(ϕFIX

i
BL S

identical

Κ−Κ⋅−Κ= ∑

∑ ∈

∈

)(})({})({) ;;;
Nki

identicalidenticalidentical S

Nk

S

Nk

k

iS ϕϕϕ

λ

λ
=

,(ϕFIX

j
BL S

identical

Κ−Κ⋅−Κ= ∑

∑ ∈

∈

)(})({})({) ;;;
Nkj

identicalidenticalidentical S

Nk

S

Nk

k

jS ϕϕϕ

λ

λ

Hence BLFIX is symmetric. To show BLOPT is symmetric, we use)()(*

}{

*

}{ ϕϕ ji SS = :

 96

=

Κ−Κ⋅−Κ=

=

Κ−Κ⋅−Κ=

∑
∑

∑
∑

∈

∈

∈

∈

)(})({})({)(

)(})({})({)(

)(;)(;)(;

)(;)(;)(;

**
}{

*
}{

**
}{

*
}{

NkjBL

NkiBL

Nkj

j

Nki

i

S

Nk

S

Nk

k

jSOPT

S

Nk

S

Nk

k

iSOPT

ϕϕϕϕϕϕ

ϕϕϕϕϕϕ

λ

λ
ϕ

λ

λ
ϕ

Step 4 (FFIX and FOPT):

In similar fashion as Lemma 6.1, we use for iœN :)(),(ϕOPTOPTgame

ii
cN Φ=Φ and

,(),(ϕFIXFIXgame

ii
cN Φ=Φ S). Since game

iΦ satisfies symmetry in terms of a game (see

Appendix 2), and since }){(}){(,, jMKiMK SS ∪=∪ ϕϕ for all },{\ jiNM ⊆ , it follows

that allocation rules Φ FIX and Φ OPT are symmetric.
�

 97

Appendix 12: Algorithms needed to calculate cost
functions of a general spare parts pooling game

Calculation of the cost functions for general spare parts pooling game (which are covered
in Chapter 7) involves creating a Markov chain and calculating steady-state probabilities.
Furthermore, calculating optimal costs when base-stock levels are to-be-optimized
involves finding an optimal solution in an infinite space (which can be bounded and
enumerated efficiently). The algorithms that do this are described in this Appendix and
are implemented in a Java application. Particularly Algorithm A1, A2, and A3 are
important, while the other algorithms describe program implementations.

Algorithm A8: Calculating the minimum costs of a coalition M when S is to-be-

optimized.

Necessary input: MjMi

trans

Mi

emer

MiiMiiMii iji
cchM ∈∈∈∈∈∈ ,)(,)(,)(,)(,)(, µλ .

Step 1 (sorting): Sort all the companies in decreasing order of hi, such that h1≥h2≥h|M|
(this will increase computation speed due to the way Algorithm A2 operates).
Step 2a (initializing): Create Sœ�0

M such that Si=0 for all i in M.

Step 2b (initializing): Set costWhenNothingOnStock=∑
∈

⋅
Mi

i

emer

ic λ .

Step 2c (initializing): Set minCosts=costWhenNothingOnStock and set Sopt=S.
Step 3a (find next feasible base-stock vector S): Use algorithm A2 to set S to the next
vector. If this algorithm returns “no feasible base-stock vectors that have not been already
checked remain” then proceed to step 4.
Step 3b (calculate costs of S): Use algorithm A3 to set currentCosts.
Step 3c (check whether this is an improvement): If currentCosts<minCosts then set
minCosts=currentCosts and set Sopt=S. Either way, subsequently return to step 3a.
Step 4 (end): The optimal base-stock vector is Sopt and the associated minimum costs are
minCosts.

Algorithm A2: Find the next feasible base-stock vector S.

Necessary input: S,minCosts, MiihM ∈)(, .

Explanation: The cost function consists of a part holding costs that are increasing in S
and of a part emergency/lateral costs that are positive. Consider a base-stock vector S for
which the holding costs are already higher than the current minCosts of a coalition M.
Then we know that S can never yield the optimal solution (in this case it is also not
necessary to go through the computational effort of constructing the Markov chain and
calculating emergency/lateral shipment and downtime costs). Furthermore, for this S, we

will know that any S worse , for which S ≥worse

i Si for all i in M, can never yield the optimal

solution either and is hence not feasible. We will use an approach that provides
subsequent feasible base-stock vectors in lexicographic order. How this works may best
be illustrated by an example. Let M={1,2,3} and h={600,300,200}. Algorithm A1 starts
with S={0,0,0} and minCosts=1000 (i.e. emergency shipment costs when nothing is on
stock). Assume for this example that S={0,0,0} and minCosts=1000 is the optimal
solution (usually, this is not the case and minCosts will decrease as we iterate).

 98

Now, algorithm A2 returns subsequently {1,0,0}, {0,1,0}, {1,1,0}, {0,2,0}, (0,3,0},
{0,0,1}, {1,0,1}, {0,1,1}, {0,2,1}, {0,0,2}, {0,1,2}, {0,0,3}, {0,0,4}, and “no feasible
base-stock vectors that have not been already checked remain”.

Step 1 (initializing): Set i=1.
Step 2a (increase base-stock level): Set Si=Si+1.

Step 2b (calculate holding costs): Set holdingCosts=∑
∈

⋅
Mi

ii Sh .

Step 3 (check whether this is a feasible base-stock vector): If holdingCosts<minCosts
then proceed to Step 5. Else, set Sj=0 for all },...,2,1{ ij ∈ and continue to Step 4.

Step 4 (continue the iteration): Set i=i+1. If i≤M return to Step 2a, else proceed to Step 5.
Step 5 (end): If Si=0 for all i in M then return “no feasible base-stock vectors that have
not been already checked remain”. Else, return S.

Algorithm A3: Calculating the costs of a coalition M for a given S.

Necessary input: S, MjMi

trans

Mi

emer

MiiMiiMii iji
cchM ∈∈∈∈∈∈ ,)(,)(,)(,)(,)(, µλ .

Explanation: Note that a Markov state is defined by x, where xi is the on-hand inventory
at company i. The variable index pinpoints a Markov state by an integer number; this is
explained in more detail in algorithm A6. index ranges from 1 to maxIndex.
Transshipments to company i are selected as follows. Source from the company j with the

lowest transshipments costs to company i, trans

ji
c . Break ties by sourcing from the

company with the highest current on-hand inventory, xj. Break remaining ties by sourcing
from the company with the lowest index, j.

Step 1 (initializing): Set maxIndex=∏
∈

+
Mi

iS)1(.

Step 2 (calculating the steady-state probabilities): Use Algorithm A4 to populate the
Markov chain. Then use algorithm A5 to calculate the steady-state probabilities π.

Step 3 (holding costs): Set costs= i

Mi

i Sh ⋅∑
∈

.

Step 4 (emergency shipment costs): Set costs=costs emer

ii

Mi

c⋅⋅+∑
∈

λπ1 .23

Step 5a (transshipments; initializingA): Set index=2.
Step 5b (transshipments; find state): Use algorithm A6 to obtain the state x corresponding
to index.
Step 5c (transshipments; initializingB): Set i=1.
Step 5d (transshipments; select companies that need transshipments in this state): If xi=0,
perform steps 5e and 5f. Else, proceed to step 5g.

23 Notation clarification: 1π is the steady-state probability of being in a state where xi=0 for all i in M. We

have used 0π for this in Chapter 4 and
M0π in Chapter 7. In these algorithms we will pinpoint a Markov

state with an integer number and due to the method chosen for this, the state where xi=0 for all i in M
corresponds to the integer number 1.

 99

Step 5e (transshipments; find company j that will source transshipment): Set

)}(min)\(|{
)\(

trans

ji
iMj

trans

ji cciMjjJJ
∈

=∧∈= . Set)}(max|{ j
JJj

j xxJJjjJ
∈

=∧∈= . Set

)min(Jj = .

Step 5f (transshipments; add costs): Set costs=costs+ trans

jiiindex c⋅⋅ λπ .

Step 5g (transshipments; iterationB): Set i=i+1. If i≤M return to Step 5d, else proceed to
step 5h.
Step 5h (transshipments; iterationA): Set index=index+1. If index≤MaxIndex return to
Step 5b, else proceed to step 6.
Step 6 (end): Return costs.

Algorithm A4: Populating the Markov chain.

Necessary input: S, MjMi

trans

MiiMii ij
cM ∈∈∈∈ ,)(,)(,)(, µλ .

Explanation: This algorithm sets the steady-state state occupancy equations of the
Markov chain in the variable Matrix. They will be used to calculate the steady-state
probabilities π in algorithm A5. The variable index pinpoints a Markov state by an integer
number; this is explained in more detail in algorithm A6. index ranges from 1 to
maxIndex. The transition rate from state X to state Y is MatrixY,X. The sum of all transition
rates out of state X is –MatrixX,X. MatrixX,MaxIndex+1=0 for all }1,...,2,1{ −∈ MaxIndexX .

MatrixMaxIndex,X=1 for all }1,...,2,1{ +∈ MaxIndexX (this is the property that the sum of all

steady-state occupancies is 1 and “overwrites” the superfluous equations for state
MaxIndex). Hence, a “row” },...,2,1{ MaxIndexZ ∈ of Matrix corresponds to the steady-

state occupancy equation 1,

1

, +

=

=⋅∑ MaxIndexZ

MaxIndex

index

indexZindex MatrixMatrixπ .

Step 1 (initializing): Set maxIndex=∏
∈

+
Mi

iS)1(. Set 0, =YXMatrix for all

},...,2,1{ MaxIndexX ∈ and for all }1,...,2,1{ +∈ MaxIndexY . Set index=1.

Step 2 (find state): Use algorithm A6 to obtain the state x corresponding to index.
Step 3a (regular demands; initializing): Set i=1.
Step 3b (regular demands; select companies that face regular demands in this state): If
xi>0, perform steps 3c, 3d and 3e. Else, proceed to step 3f.

Step 3c (regular demands; add transition out): Set iindexindexindexindex MatrixMatrix λ−= ,, .

Step 3d (regular demands; find the index of the state with one less on-hand inventory for

company i): Set j

temp

j xx = for all j in M. Subsequently set 1−= temp

i

temp

i xx . Then use

algorithm A7 to obtain the temp
index corresponding to state xtemp.

Step 3e (regular demands; add transition in): Set iindexindexindexindex
temptemp MatrixMatrix λ+=

,,
.

Step 3f (regular demands; iteration): Set i=i+1. If i≤M return to Step 3b, else proceed to
step 4a.
Step 4a (transshipments; initializing): Set i=1.
Step 4b (transshipments; select companies that need transshipments in this state): If
index≠1 (i.e. the state where no company has any on-hand inventory) and xi=0, perform
steps 4c, 4d, 4e and 4f. Else, proceed to step 4g.

 100

Step 4c (transshipments; find company j that will source transshipment): Set

)}(min)\(|{
)\(

trans

ji
iMj

trans

ji cciMjjJJ
∈

=∧∈= . Set)}(max|{ j
JJj

j xxJJjjJ
∈

=∧∈= . Set

)max(Jj = .

Step 4d (transshipments; add transition out): Set iindexindexindexindex MatrixMatrix λ−= ,, .

Step 4e (transshipments; find the index of the state with one less on-hand inventory for

company j): Set k

temp

k xx = for all k in M. Subsequently set 1−= temp

j

temp

j xx . Then use

algorithm A7 to obtain the temp
index corresponding to state xtemp.

Step 4f (transshipments; add transition in): Set iindexindexindexindex
temptemp MatrixMatrix λ+=

,,
.

Step 4g (transshipments; iteration): Set i=i+1. If i≤M return to Step 4b, else proceed to
step 5.
Step 5a (repairs; initializing): Set i=1.
Step 5b (repairs; select companies that get repairs in this state): If xi<Si, perform steps 5c,
5d and 5e. Else, proceed to step 5f.

Step 5c (repairs; add transition out): Set ()iiiindexindexindexindex xSMatrixMatrix −⋅−= µ,, .

Step 5d (repairs; find the index of the state with one more on-hand inventory for company

i): Set j

temp

j xx = for all j in M. Subsequently set 1+= temp

i

temp

i xx . Then use algorithm A7

to obtain the temp
index corresponding to state xtemp.

Step 5e (repairs; add transition in): Set ()iiiindexindexindexindex
xSMatrixMatrix temptemp −⋅+= µ

,,
.

Step 5f (repairs; iteration): Set i=i+1. If i≤M return to Step 5b, else proceed to step 6.
Step 6 (normalizing equation): Set MatrixMaxIndex,X=1 for all }1,...,2,1{ +∈ MaxIndexX .

Step 7 (end): Return Matrix.

Algorithm A5: Gaussian Elimination to calculate the steady-state probabilities
Necessary input: Matrix, m.
Explanation: Recall from algorithm A4 that a “row” },...,2,1{ MaxIndexZ ∈ of Matrix is

the steady-state occupancy equation 1,

1

, +

=

=⋅∑ MaxIndexZ

MaxIndex

index

indexZindex MatrixMatrixπ . For

notational ease, let m=MaxIndex. This Gaussian elimination algorithm takes a set of m
equations with m unknowns: π1 through πm. It first eliminates π1 from all equations below
the first, then eliminates π2 from all equations below the second, etc. This forward-
elimination puts the system into triangular form. The second part of the algorithm, back-
substitution, consists of solving for the unknowns in reverse order. Since Gaussian
Elimination is a well-known algorithm, only a brief description will be given here.
Step 1a (forward elimination; initializing): Set i=1 and set j=1.

Step 1b (forward elimination; find pivot): Set ())(maxarg ,
},...,2,1{

jk
miik

MatrixabsMaxi
++∈

= .

Step 1c (forward elimination; row operations): If 0, ≠jiMatrix then swap rows i and

Maxi, subsequently divide each entry in row i by jiMatrix , , subsequently for all

},...,2,1{ miir ++∈ subtract ⋅jrMatrix , (row i of Matrix) from (row r of Matrix), and

finally set i=i+1.

 101

Step 1d (iteration): Set j=j+1. If mi ≤ and 1+≤ mj then return to step 1b, else proceed

to step 2a.
Step 2a (backwards elimination; initializing): Set r=m.
Step 2b (backwards elimination; start calculation): Set πr=Matrixr,m+1. Set k=m.

Step 2c (backw. el.; iterative calculation): If rk +≥ 1 then set krkrr Matrix ,⋅−= πππ ,

subsequently set k=k-1 and finally do step 2c again; else proceed to step 2d.
Step 2d (backw. el.; iteration): Set r=r-1. If 1≥r return to step 2b, else proceed to step 3.
Step 3 (end): Return π.

Algorithm A6: Obtaining the Markov state corresponding to its index number.
Necessary input: index, M, S.

Explanation: We can pinpoint an array x of integers, 0≤xi≤Si, Mi ∈ , with a unique

index by the following formula: ()∑ ∏
= +=

+⋅+=

M

i

M

ij

ji Sxindex
1 1

11 (where the empty

product is 1), i.e. index iterates over all states in a semi-lexicographic way. We will
illustrate how this formula works via an example. Let M=3 and let S={2,4,9}. The
minimum index is 1 and corresponds to x={0,0,0}. Index 2 corresponds to x={0,0,1},
index 10 corresponds to x={0,0,9} and index 11 corresponds to x={0,1,0}. State
x={0,3,6} corresponds to index 1+(3·10)+(6)=37. State x={2,4,9} corresponds to the
maximum index: 1+(2·5·10) +(4·10)+(9)=150. For this S, 150 is used in other algorithms
as the variable MaxIndex; it is the number of states in the Markov chain. Finding the state
corresponding to an index number (i.e. the goal of this algorithm) is slightly more
difficult and uses the notion of a vector indexEquivalent. indexEquivalenti basically says
that in order to reach a state with xi=1 and xj=0 for all j≠i, we would have had to go over
indexEquivalenti indices previously. For example, if S={2,4,9} then in order to reach
x={0,1,0} we previously had {0,0,0}, {0,0,1}, …, {0,0,9}, which is 10 states and in order
to reach x={1,0,0} we previously had (4+1) ·(9+1) states, so indexEquivalent3=50.

Step 1 (initializing): For all i in M, set xi=0 and set ∏
+=

+=
M

ij

ji SalentindexEquiv
1

1 (where

the empty product is 1). Set i=1.
Step 2a (check whether the array associated with this remaining index reached an
increase of arrayi): If index>indexEquivalenti then proceed to step 2b. Else proceed to
step 2c.
Step 2b (decrease remaining index and increase array): Set index=index-indexEquivalenti,
and subsequently set xi=xi+1. Finally, return to step 2a.
Step 2c (iteration): Set i=i+1. If i≤M, return to step 2a. Else proceed to step 3.
Step 3 (end): return x.

Algorithm A7: Obtaining the index number corresponding to its Markov state.
Necessary input: x, M, S.

Step 1 (calculation): Return ()∑ ∏
= +=

+⋅+

M

i

M

ij

ji Sx
1 1

11 (where the empty product is 1).

 102

Appendix 13: Algorithms needed to calculate cost
functions of a simple partial pooling game

Calculation of the cost functions for simple partial parts pooling game (which are covered
in Chapter 7) involves creating a Markov chain and calculating steady-state probabilities.
Furthermore, calculating optimal costs when base-stock levels are to-be-optimized
involves finding an optimal solution in an infinite space (which can be bounded and
enumerated efficiently). The algorithms that do this are quite briefly described in this
Appendix and are implemented in a Java application. The description will be brief and
informal, as most can already be inferred from slightly adjusting the algorithms that were
presented in Appendices 8 and 12.

Algorithm A8: Calculating the minimum costs of a coalition M when S is to-be-

optimized.

Necessary input: Mi

emer

MiiMii i
chM ∈∈∈)(,)(,,)(, µλ .

This part is extremely similar to the part “Starting at zero, increase S until SM* and c(M)

found“ described in Appendix 8. However, it obtains minCosts via a call to Algorithm A9
instead.

Algorithm A9: Calculating the costs of a coalition M for a given S.

Necessary input: S, Mi

emer

MiiMii i
chM ∈∈∈)(,)(,,)(, µλ .

This algorithm starts by creating a vector Tœ�0
M such that Ti=0 for all i in M and

calculating ∑
∈

=
Mi

iSStot . It then obtains a Markov chain via Algorithm A10 and finds

steady-state probabilities π using Gaussian elimination. It then calculates corresponding

costs using equation (7.3). Then it obtains the next T for which Mi ST ≤≤0 for all

Mi ∈ , finds π and calculates costs again via (7.3). This continues until all T for which

Mi ST ≤≤0 have been checked and the minimum costs found for all those is returned.

Algorithm A10: Populating the Markov chain.

Necessary input: Stot, MiiMii TM ∈∈)(,,)(, µλ .

This function iterates over all states 0≤x≤Stot. For each state, it adds the transition types
described in Section 7.4 to a Matrix containing the steady-state state occupancy equations
of the Markov chain. So, this algorithm is very similar to Algorithm A4 (see Appendix
12), albeit with less complex transition types and with a simpler state space.

	Abstract
	Preface
	Summary
	Table of contents
	Chapter 1: Introduction
	Chapter 2: Research proposal
	Chapter 3: Spare parts inventory situations
	Chapter 4: Simple spare parts pooling games
	Chapter 5: The core of simple spare parts pooling games
	Chapter 6: Cost allocation in simple spare parts poolinggames
	Chapter 7: More complex settings
	Chapter 8: Conclusions
	References
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Appendix 8
	Appendix 9
	Appendix 10
	Appendix 11
	Appendix 12
	Appendix 13

