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1. Introduction

A metric space is suitable for those interested in analysis, mathematical physics, or
applied sciences. Thus, various extensions of metric spaces have been studied, and several
results related to the existence of fixed points were obtained (see [1–3]).

In 2014, Ma et al. introduced C*-algebra-valued metric spaces [4], and in 2015, they
introduced the concept of C*-algebra-valued b-metric spaces and studied some results in
this space [5]. In addition, Razavi and Masiha investigated some common principles in
C*-algebra-valued b-metric spaces [6].

Recently, Sedghi et al. defined the concept of an S-metric space [7]. Additionally, Ege
and Alaca introduced the concept of C*-algebra-valued S-metric spaces [8].

Inspired by the work of Souayah and Mlaiki in [9], we introduced the C*-algebra-
valued Sb-metric space in [10]. In this paper, we study some common fixed-point principles
in this space. We also investigate the existence and uniqueness of the result for one type of
integral equation.

2. Preliminaries

This section provides a short introduction to some realities about the theory of
C* algebras [11]. First, suppose that A is a unital C* algebra with the unit 1A. Set
Ah = {t ∈ A : t = t∗}. The element t ∈ A is said to be positive, and we write
t � 0A if and only if t = t∗ and σ(t) ⊆ [0, ∞), in which 0A in A is the zero element and the
spectrum of t is σ(t).

On Ah, we can find a natural partial ordering given by u � v if and only if v− u � 0A.
We denote with A+ and A′ the sets of {t ∈ A : t � 0A} and {t ∈ A : tk = kt , ∀k ∈ A},
respectively.

In 2015, Ma et al. [5] introduced the notion of C*-algebra-valued b-metric spaces
as follows:

Definition 1. Let X be a nonempty set and A be a C* algebra. Suppose that k ∈ A′ such that
||k|| ≥ 1. A function δb : X × X → A is called a C*-algebra-valued b metric on X if for all
u, v, t ∈ A, the following apply:
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(1) δb(u, v) � 0A for every u and v in X , and δb(u, v) = 0 if and only if u = v;
(2) δb(u, v) = δb(v, u);
(3) δb(u, v) � k[δb(u, t) + δb(t, v)].

Therefore, (X ,A, δb) is a C*-algebra-valued b-metric space (in short, a C*-AV-BM space) with
a coefficient k.

In 2015, Kalaivani et al. [12] presented the notion of a C*-algebra-valued S-metric space:

Definition 2. Assume that X is a nonempty set and A is a C* algebra. A function σ : X ×X ×
X → A is called a C*-algebra-valued S metric on X if for all u, v, t, a ∈ X , the following apply:

(1) σ(u, v, t) � 0A;
(2) σ(u, v, t) = 0 if and only if u = v = t;
(3) σ(u, v, t) � σ(u, u, a) + σ(v, v, a) + σ(t, t, a).

Then, (X ,A, σ) is a C*-algebra-valued S-metric space (in short, a C*-AV-SM space).

In fact, in 2016, Souayah et al. [9] presented the notion of an Sb-metric space:

Definition 3. Assume that X is a nonempty set and s ≥ 1 is a given number. A function
γb : X ×X ×X → [0, ∞) is an Sb metric on X if for every u, v, t, a ∈ X , the following apply:

(1) γb(u, v, t) = 0 if and only if u = v = t;
(2) γb(u, v, t) � s[γb(u, u, a) + γb(v, v, a) + γb(t, t, a)].

Then, (X , γb) is called an Sb-metric space (in short, an SbM space) with a coefficient s.

Definition 4. An Sb-metric γb is called symmetric if

γb(u, u, v) = γb(v, v, u), ∀u, v ∈ X .

Razavi and Masiha [10] introduced the notion of a C*-algebra-valued Sb-metric space
as follows:

Definition 5. Assume that X is a nonempty set and k ∈ A′ such that ||k|| ≥ 1. A function
σb : X ×X ×X → A is called a C*-algebra-valued Sb metric on X if for every u, v, t, a ∈ X , the
following apply:

(1) σb(u, v, t) � 0A;
(2) σb(u, v, t) = 0 if and only if u = v = t;
(3) σb(u, v, t) � k[σb(u, u, a) + σb(v, v, a) + σb(t, t, a)].

Then, (X ,A, σb) is called a C*-algebra-valued Sb-metric space (in short, a C*-AV-SbM space)
with a coefficient k.

Definition 6. A C*-AV-SbM σb is symmetric if

σb(u, u, v) = σb(v, v, u), ∀u, v ∈ X .

Under the above definitions, we give an example in a C*-AV-SbM space:

Example 1. Let X = R and A = M2(R) be all 2× 2 matrices with the usual operations of
addition, scalar multiplication, and matrix multiplication. It is clear that

||A|| = (
2

∑
i,j=1
|aij|2)

1
2
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defines a norm on A, where A = (aij) ∈ A. ∗ : A → A defines an involution on A and where
A∗ = A. Then, A is a C∗ algebra. For A = (aij) and B = (bij) in A, a partial order on A can be
given as follows:

A ≤ B⇔ (aij − bij) ≤ 0 ∀i, j = 1, 2

Let (X , d) be a b-metric space where, ||k|| ≥ 1 and σb : X ×X ×X → M2(R), fulfilling

σb(u, v, t) =
[

d(u, v) + d(v, t) + d(u, t) 0
0 d(u, v) + d(v, t) + d(u, t)

]
Then, this is a C*-AV-SbM space. Now, we check condition (3) of Definition 5:

σb(u, v, t) =
[

d(u, v) + d(v, t) + d(u, t) 0
0 d(u, v) + d(v, t) + d(u, t)

]
� k

[
2d(u, a) 0

0 2d(u, a)

]
+ k
[

2d(v, a) 0
0 2d(v, a)

]
+ k
[

2d(t, a) 0
0 2d(t, a)

]
= k[2

[
d(u, a) 0

0 d(u, a)

]
+ 2
[

d(v, a) 0
0 d(v, a)

]
+ 2
[

d(t, a) 0
0 d(t, a)

]
]

= k[σb(u, u, a) + σb(v, v, a) + σb(t, t, a)]

Thus, for all u, v, t, a ∈ X , (X ,A, σb) is a C*-AV-SbM space.

3. Definitions and Basic Properties

We define some concepts in a C*-AV-SbM space and present some lemmas which will
be needed in the follow-up:

Definition 7. Let (X ,A, σb) be a C*-AV-SbM space and {un} be a sequence in X :

(1) If ||σb(un, un, u)|| → 0, where n → ∞, then {un} converges to u, and we present it with
limn→∞ un = u.

(2) If for all p ∈ N, ||σb(un+p, un+p, un)|| → 0, where n→ ∞, then {un} is a Cauchy sequence
in X .

(3) If every Cauchy sequence is convergent in X , then (X ,A, σb) is a complete C*-AV-SbM space.

Definition 8. Suppose that (X ,A, σb) and (X1,A1, σb1) are C*-AV-SbM spaces, and let
f : (X ,A, σb)→ (X1,A1, σb1) be a function. Then, f is continuous at a point u ∈ X if, for every
sequence, {un} in X , σb(un, un, u) → 0A, (n → ∞) implies σb1( f (un), f (un), f (u)) → 0A,
where n→ ∞. A function f is continuous at X if and only if it is continuous at all u ∈ X .

The next lemmas will be used tacitly in the follow-up:

Lemma 1 ([13]). Suppose that A is a unital C* algebra with a unit 1A:

1) If {un}∞
n=1 ⊆ A and limn→∞ un = 0A, then for any u ∈ A, limn→∞ u∗unu = 0A.

2) If u, v ∈ Ah and t ∈ A′+, then u � v yields tu � tv, in which A′+ = A+ ∩A′.
3) If u ∈ A+ with ||u|| < 1

2 , then 1A − u is invertible, and ||u(1A − u)−1|| < 1.
4) If u, v ∈ A+ such that uv = vu, then uv � 0A.

Lemma 2. Let (X ,A, σb) be a symmetric C*-AV-SbM space and {un} be a sequence in X . If
{un} converges to u and v, then u = v.
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Proof. Let limn→∞ un = u and limn→∞ un = v. Under condition (3) of Definitions 5 and 6,
we have

σb(u, u, v) � k[σb(u, u, un) + σb(u, u, un), σb(v, v, un)]

= k[σb(un, un, u) + σb(un, un, u) + σb(un, un, v)]

= 2kσb(un, un, u) + kσb(un, un, v)

→ 0A, (n→ ∞).

as ||σb(u, u, v)|| = 0 if and only if u = v.

Due to the following definition, we extend the concept of compatible mappings of
Jungck [14] to C*-algebra-valued metric spaces:

Definition 9. Let (X ,A, σb) be a C*-AV-SbM space. A pair {ψ, ϕ} is called compatible if and only
if σb(ψϕun, ψϕun, ϕψun) → 0A whenever {un} is a sequence in X such that limn→∞ ψun =
limn→∞ ϕun = u for some u ∈ X .

Definition 10. A point u ∈ X is a coincidence point of ψ and ϕ if and only if ψu = ϕu. Herein,
t = ψu = ϕu is a point of coincidence of ψ and ϕ. If ψ and ϕ commute at all of their coincidence
points, then they are weakly compatible, but the converse is not true.

If mappings T and S are compatible, then they are weakly compatible in metric spaces.
Provided that the converse is not true [15], the same holds for the C*-algebra-valued
Sb-metric spaces:

Theorem 1. If mappings ψ and ϕ on the C*-AV-SbM space (X ,A, σb) are compatible, then they
are weakly compatible.

Proof. Let ψu = ϕu for some u ∈ X . It suffices to present that ψϕu = ϕψu. By setting
un ≡ u for all n ∈ N, then limn→∞ ψun = limn→∞ ϕun. Since ψ and ϕ are compatible, we
achieve limn→∞ σb(ψϕun, ψϕun, ϕψun)→ 0A as n→ ∞; that is, ||σb(ψϕun, ψϕun, ϕψun)||
→ 0, where n→ ∞. Hence, σb(ψϕun, ψϕun, ϕψun) = 0A, which means ψϕu = ϕψu.

The subsequent lemma can be seen in [15]:

Lemma 3 ([15]). Let ψ and ϕ be weakly compatible mappings of a set X . If ψ and ϕ have a unique
point of coincidence, then it is the unique common fixed point (FP) of ψ and ϕ.

4. Main Results

Here, we present an extension of the common principles for the mappings which
applies to variant contractive conditions in complete symmetric C*-valued Sb-metric spaces:

Theorem 2. Suppose that (X ,A, σb) is a a complete symmetric C*-AV-SbM space and
ψ, ϕ : X → X satisfies

σb(ψu, ψu, ϕv) � a∗σb(u, u, v)a, (1)

for all u, v ∈ X , where a ∈ A in which ||a|| < 1. Hence, ψ and ϕ have a unique common FP in X .
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Proof. Suppose that u0 ∈ X and {un} is a sequence in X such that u2n+1 = ψu2n, u2n+2 =
ϕu2n+1. From Equation (1), we have

σb(u2n+2, u2n+2, u2n+1) = σb(ϕu2n+1, ϕu2n+1, ψu2n)

� a∗σb(u2n+1, u2n+1, u2n)a

� (a∗)2σb(u2n, u2n, u2n−1)(a)2

...

� (a∗)2n+1σb(u1, u1, u0)(a)2n+1,

By remembering the property where if t, k ∈ Ah, then t � k yields u∗tu � u∗ku, we
see the following for each n ∈ N:

σb(u2n+1, u2n+1, u2n) � (a∗)2nσb(u1, u1, u0)(a)2n.

Similarly, we have

σb(un+1, un+1, un) � (a∗)nσb(u1, u1, u0)(a)n.

Let σb(u1, u1, u0) = B0 for some B0 ∈ A+. For any p ∈ N, we achieve

σb(un+p, un+p, un) � b[σb(un+p, un+p, un+p−1) + σb(un+p, un+p, un+p−1)

+ σb(un, un, un+p−1)]

= 2bσb(un+p, un+p, un+p−1) + bσb(un, un, un+p−1)

= 2bσb(un+p, un+p, un+p−1) + bσb(un+p−1, un+p−1, un)

� 2bσb(un+p, un+p, un+p−1)

+ 2b2σb(un+p−1, un+p−1, un+p−2)

+ b2σb(un+p−2, un+p−2, un)

...

� 2bσb(un+p, un+p, un+p−1)

+ 2b2σb(un+p−1, un+p−1, un+p−2)

+ 2b3σb(un+p−2, un+p−2, un+p−3)

+ · · ·+ 2bpσb(un+1, un+1, un)

� 2b(a∗)n+p−1σb(u1, u1, u0)(a)n+p−1

+ 2b2(a∗)n+p−2σb(u1, u1, u0)(a)n+p−2

+ 2b3(a∗)n+p−3σb(u1, u1, u0)(a)n+p−3

+ · · ·+ 2bp(a∗)nσb(u1, u1, u0)(a)n

� 2
p−1

∑
k=1

bk(a∗)n+p−kσb(u1, u1, u0)(a)n+p−k

= 2
p−1

∑
k=1

bk(a∗)n+p−kB0(a)n+p−k

= 2
p−1

∑
k=1

((a∗)n+p−kb
k
2 B

1
2
0 )(B

1
2
0 b

k
2 an+p−k)
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� 2
p−1

∑
k=1

(B
1
2
0 b

k
2 an+p−k)∗(B

1
2
0 b

k
2 an+p−k)

� 2
p−1

∑
k=1
||B

1
2
0 b

k
2 an+p−k||21A

≤ 2||B
1
2
0 ||

2
p−1

∑
k=1
||a||2(n+p−k)||b||k1A

≤ 2||B0||
||b||p||a||2(n+1)

||b|| − ||a||2 1A

−→ 0 (n→ ∞),

in which 1A is the unit element in A.
As {un}∞

n=1 is a Cauchy sequence in X , and X is complete, there exists u ∈ X such
that limn→∞ un = u.

By using condition (3) of Definitions 5 and 6 as well as Equation (1), we have

σb(u, u, ϕu) � b[σb(u, u, u2n+1) + σb(u, u, u2n+1) + σb(u2n+1, u2n+1, ϕu)]

= 2bσb(u, u, u2n+1) + bσb(u2n+1, u2n+1, ϕu)

= 2bσb(u2n+1, u2n+1, u) + bσb(ψu2n, ψu2n, ϕu)

� 2bσb(u2n+1, u2n+1, u) + ba∗σb(un, un, u)a

−→ 0A (n→ ∞).

Hence, ϕu = u. Again, we note that

0A � σb(ψu, ψu, u) = σb(ψu, ψu, ϕu) � a∗σb(u, u, u)a = 0A,

In other words, σb(ψu, ψu, u) = 0A, and hence ψu = u.

For the uniqueness of the common FP in X , let there be another point v ∈ X such that
ψv = ϕv = v. From Equation (1), we achieve

0A � σb(u, u, v) = σb(ψu, ψu, ψv) � a∗σb(u, u, v)a

which, together with ||a|| < 1, yields that

0 � ||σb(u, u, v)|| � ||a∗σb(u, u, v)a||
� ||a∗||||σb(u, u, v)||||a||
� ||a||2||σb(u, u, v)||
� ||σb(u, u, v)||

Thus, ||σb(u, u, v)|| = 0 and σb(u, u, v) = 0A, which gives u = v. Hence, ψ and ϕ have
a unique common FP in X .

With the proof of Theorem 2, the relevant results are as follows:

Corollary 1. Assume that (X ,A, σb) is a complete symmetric C*-AV-SbM space, and suppose
that ψ, ϕ : X → X represent two mappings such that

||σb(ψu, ψu, ϕv) � ||a||||σb(u, u, v)||,

for all u, v ∈ X , where a ∈ A and ||a|| < 1. Then, ψ and ϕ have a unique common FP in X .
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Corollary 2. Assume that (X ,A, σb) is a complete symmetric C*-AV-SbM space and the mapping
ψ : X → X satisfies

σb(ψ
mu, ψmu, ψnv) � a∗σb(u, u, v)a,

for all u, v ∈ X , in which a ∈ A and ||a|| < 1, and m and n are fixed positive integers. Thus, ψ
has a unique FP in X .

Proof. Set ψ = ψm and ϕ = ψn in Equation (1). The result is obtained using Theorem 2.

Remark 1. By substituting ψ = ϕ into Equation (1), we have

σb(ψu, ψu, ψv) � a∗σb(u, u, v)a,

for all u, v ∈ X , where a ∈ A and ||a|| < 1. Thus, we conclude the next corollary.

Corollary 3. Suppose that (X ,A, σb) is a complete symmetric C*-AV-SbM space and the mapping
ψ : X → X satisfies

σb(ψu, ψu, ψv) � a∗σb(u, u, v)a,

for all u, v ∈ X , where a ∈ A and ||a|| < 1. Then, ψ has a unique FP in X .

Theorem 3. Suppose that (X ,A, σb) is a complete symmetric C*-AV-SbM space and ψ,
ϕ : X → X satisfies

σb(ψu, ψu, ψv) � a∗σb(u, u, v)a, (2)

for all u, v ∈ X , where a ∈ A and ||a|| < 1. If R(ψ), contained in R(ϕ) and R(ϕ), is complete
in X , then ψ and ϕ have a unique point of coincidence in X . Additionally, if ψ and ϕ are weakly
compatible, then ψ and ϕ have a unique common FP in X .

Proof. Suppose that u0 ∈ X is arbitrary. Choose u1 ∈ X such that ϕu1 = ψu0. This is
correct because R(ψ) ⊆ R(ϕ). Let u2 ∈ X such that ϕu2 = ψu1. In the same way, we obtain
a sequence {un}∞

n=1 in X satisfying ϕun = ψun−1. Therefore, with Equation (2), we have

σb(ϕun+1, ϕun+1, ϕun) = σb(ψun, ψun, ψun−1)

� a∗σb(ϕun, ϕun, ϕun−1)a
...

� (a∗)nσb(ϕu1, ϕu1, ϕu0)(a)n,

which shows that {ϕun}∞
n=1 is a Cauchy sequence in R(ϕ). Since R(ϕ) is complete in X ,

there exists q ∈ X such that limn→∞ ϕun = ϕq, and thus

σb(ϕun, ϕun, ψq) = σb(ψun−1, ψun−1, ψq)

� a∗σb(ϕun−1, ϕun−1, ϕq)a,

From limn→∞ ϕun = ϕq and Lemma 1, we obtain a∗σb(ϕun−1, ϕun−1, ϕq)a → 0A as
n→ ∞, and then limn→∞ ϕun = ψq. Lemma 2 yields that ϕq = ψq. If there is an element w
in X such that ψw = ϕw, then Equation (2) yields

σb(ϕq, ϕq, ϕw) = σb(ψq, ψq, ψw) � a∗σb(ϕq, ϕq, ϕw)a,

In the same way as in Theorem 2, we obtain ϕq = ϕw because

0 ≤ ||σb(ϕq, ϕq, ϕw)|| ≤ ||a||2||σb(ϕq, ϕq, ϕw)||
⇒ ||σb(ϕq, ϕq, ϕw)|| = 0⇒ σb(ϕq, ϕq, ϕw) = 0A ⇒ ϕq = ϕw.
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Hence, ψ and ϕ have a unique point of coincidence in X . Through Lemma 3, we
conclude that ψ and ϕ have a unique common FP in X .

Theorem 4. Assume that (X ,A, σb) is a complete symmetric C*-AV-SbM space and ψ,
ϕ : X → X satisfies

σb(ψu, ψu, ψv) � aσb(ψu, ψu, ϕu) + aσb(ψv, ψv, ϕv), (3)

for all u, v ∈ X , where a ∈ A′+ and ||a|| < 1
2 . If R(ψ), contained in R(ϕ) and R(ϕ), is complete

in X , then ψ and ϕ have a unique point of coincidence in X . In addition, if ψ and ϕ are weakly
compatible, then ψ and ϕ have a unique common FP in X .

Proof. As in Theorem 3, we select {un}∞
n=1 in X and set ϕun = ψun−1. Therefore, through

Equation (3), we have

σb(ϕun+1, ϕun+1, ϕun) = σb(ψun, ψun, ψun−1)

� aσb(ψun, ψun, ϕun) + aσb(ψun−1, ψun−1, ϕun−1)

= aσb(ϕun+1, ϕun+1, ϕun) + aσb(ϕun, ϕun, ϕun−1)

Thus, we obtain

(1− a)σb(ϕun+1, ϕun+1, ϕun) � aσb(ϕun, ϕun, ϕun−1)

Since ||a|| < 1
2 , then 1− a is invertible, and (1− a)−1 = ∑∞

n=0 an which, together with
a ∈ A′+, yields (1− a)−1a ∈ A′+. Lemma 1’s condition (2) leads to

σb(ϕun+1, ϕun+1, ϕun) � tσb(ϕun, ϕun, ϕun−1), (4)

where t = (1− a)−1a ∈ A′+ and ||t|| < 1. Now, by induction and the use of Lemma 1’s
condition (2), we obtain

σb(ϕun+1, ϕun+1, ϕun) � tnσb(ϕu1, ϕu1, ϕu0).

For each m ≥ 1, p ≥ 1, and b ∈ A′ where ||b|| > 1, we have

σb(ϕum+p, ϕum+p, ϕum) � b[σb(ϕum+p, ϕum+p, ϕum+p−1)

+ σb(ϕum+p, ϕum+p, ϕum+p−1)

+ σb(ϕum+p−1, ϕum+p−1, ϕum)]

= 2bσb(ϕum+p, ϕum+p, ϕum+p−1)

+ σb(ϕum+p−1, ϕum+p−1, ϕum)

� 2bσb(ϕum+p, ϕum+p, ϕum+p−1)

+ 2b2σb(ϕum+p−1, ϕum+p−1, ϕum+p−2)

+ b2σb(ϕum+p−2, ϕum+p−2, ϕum)

...

� 2bσb(ϕum+p, ϕum+p, ϕum+p−1)

+ 2b2σb(ϕum+p−1, ϕum+p−1, ϕum+p−2)

+ 2b3σb(ϕum+p−2, ϕum+p−2, ϕum+p−3)

+ · · ·+ 2bpσb(ϕum+1, ϕum+1, ϕum)
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� 2btm+p−1σb(ϕu1, ϕu1, ϕu0)

+ 2b2tm+p−2σb(ϕu1, ϕu1, ϕu0)

+ 2b3tm+p−3σb(ϕu1, ϕu1, ϕu0)

+ · · ·+ 2bptmσb(ϕu1, ϕu1, ϕu0)

= 2btm+p−1B0 + 2b2tm+p−2B0

+ 2b3tm+p−3B0 + · · ·+ 2bptmB0

= 2
p

∑
k=1

bktm+p−kB0

= 2
p

∑
k=1
|B

1
2
0 t

m+p−k
2 b

k
2 |2

� 2||B0||
p

∑
k=1
||b||k||t||m+p−k1A

� 2||B0||
||b||p||t||m+1

||t|| − ||b|| 1A

→ 0, (m→ ∞),

where B0 = σb(ϕu1, ϕu1, ϕu0). Hence, {ϕun}∞
n=0 is a Cauchy sequence in R(ϕ). Since

R(ϕ) is complete, there exists q ∈ X such that limn→∞ ϕun = ϕq. Again, according to
Equation (4), we have

σb(ϕun, ϕun, ψq) = σb(ψun−1, ψun−1, ψq) � tσb(ϕun−1, ϕun−1, ϕq)

This implies that limn→∞ ϕun = ψq. Under Lemma 2, ψq = ϕq. Therefore, ψ and ϕ
have a point of coincidence in X . Here, we prove the uniqueness of points of coincidence.
For this, let there be p ∈ X such that ψp = ϕp. By applying Equation (3), we have

σb(ϕp, ϕp, ϕq) = σb(ψp, ψp, ψq) � aσb(ψp, ψp, ϕp) + aσb(ψq, ψq, ϕq),

This implies that ||σb(ϕp, ϕp, ϕq)|| = 0, and thus ϕp = ϕq. Therefore, under Lemma 3,
ψ and ϕ have a unique common FP in X .

Theorem 5. Assume that (X ,A, σb) is a complete symmetric C*-AV-SbM space and ψ,
ϕ : X → X satisfies

σb(ψu, ψu, ψv) � aσb(ψu, ψu, ϕv) + aσb(ϕu, ϕu, ψv), (5)

for every u, v ∈ X , in which a ∈ A′+ and ||ab|| < 1
3 . If R(ψ), contained in R(ϕ) and R(ϕ), is

complete in X , then ψ and ϕ have a unique point of coincidence in X . Additionally, if ψ and ϕ are
weakly compatible, then ψ and ϕ have a unique common FP in X .

Proof. As in Theorem 3, we select {un}∞
n=1 in X and set ϕun = ψun−1. Therefore, under

Equation (5), we have

σb(ϕun+1, ϕun+1, ϕun) = σb(ψun, ψun, ψun−1)

� aσb(ψun, ψun, ϕun−1) + aσb(ϕun, ϕun, ψun−1)

= aσb(ϕun+1, ϕun+1, ϕun−1) + aσb(ϕun, ϕun, ϕun)

� ab[2σb(ϕun+1, ϕun+1, ϕun) + σb(ϕun, ϕun, ϕun−1)]

= 2abσb(ϕun+1, ϕun+1, ϕun) + abσb(ϕun, ϕun, ϕun−1)
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Thus, we obtain

(1− 2ab)σb(ϕun+1, ϕun+1, ϕun) � abσb(ϕun, ϕun, ϕun−1),

Therefore, we have

σb(ϕun+1, ϕun+1, ϕun) � (1− 2ab)−1abσb(ϕun, ϕun, ϕun−1),

and consequently

σb(ϕun+1, ϕun+1, ϕun) � tσb(ϕun, ϕun, ϕun−1),

where t = (1− 2ab)−1ab ∈ A′+ and ||t|| < 1.
Similar to the process in Theorem 4, we find that ψ and ϕ have a point of coincidence

ψq in X . Here, we prove the uniqueness of the points of coincidence. For this, let there be
p ∈ X such that ψp = ϕp. By applying Equation (5), we obtain

σb(ϕp, ϕp, ϕq) = σb(ψp, ψp, ψq)

� aσb(ψp, ψp, ϕq) + aσb(ϕp, ϕp, ψq)

= aσb(ϕp, ϕp, ϕq) + aσb(ϕp, ϕp, ϕq),

In other words, we have

σb(ϕp, ϕp, ϕq) � (1− a)−1aσb(ϕp, ϕp, ϕq).

Since ||(1− a)−1a|| < 1, this implies that ||σb(ϕp, ϕp, ϕq)|| = 0, and thus ϕp = ϕq.
Therefore, Lemma 3 implies that ψ and ϕ have a unique common FP in X .

If we choose ϕ = idX in Theorem 5, then we obtain R(ϕ) = X , and ψ is weakly
compatible with ϕ. We also have the following result:

Corollary 4. Suppose that (X ,A, σb) is a complete symmetric C*-AV-SbM space and
ψ : X → X satisfies

σb(ψu, ψu, ψv) � aσb(ψu, ψu, v) + aσb(ψv, ψv, u),

for all u, v ∈ X , where a ∈ A′+ and ||ab|| < 1
3 . Hence, ψ has a unique FP in X .

5. Application in Integral Equations

Let us use the following equations:

llx(m) =
∫
E
(T1(m, n, x(n))dn + J(m), m ∈ E

x(m) =
∫
E
(T2(m, n, x(n))dn + J(m), m ∈ E

(6)

in which E is a Lebesgue measurable set where m(E) < ∞.
In fact, we suppose that X = L∞(E) presents the class of essentially bounded measur-

able functions on E , where E is a Lebesgue measurable set such that m(E) < ∞.
One may consider the functions T1, T2, α, β to fulfill the following assumptions:

(i) T1, T2 : E × E ×R → R are integrable. In addition, an integrable function α is from
E × E to R≥0, and J ∈ L∞(E).

(ii) There exists ` ∈ (0, 1) such that

|T1(m, n, x)− T2(m, n, y)| ≤ `|α(m, n)||x− y|,

for m, n ∈ E and x, y ∈ R.



Axioms 2023, 12, 413 11 of 12

(iii) supm∈E
∫
E |α(m, n)|dn ≤ 1.

Theorem 6. Let assumptions (i–iii) hold. Hence, the integral in Equation (6) has a unique common
solution in L∞(E).

Proof. Suppose that X = L∞(E) and B(L2(E)) is a set of bounded linear operators on a
Hilbert space L2(E). We equip X with the Sb metric σb : X ×X ×X → B(L2(E)), which is
ascertained by

σb(α, β, γ) = M(|α−γ|+|β−γ|)p ,

where M(|α−γ|+|β−γ|)p is the multiplication operator on L2(E) ascertained by

Mh(α) = h.α ; α ∈ L2(E).

Therefore, (X , B(L2(E)), σb) is a complete C*-AV-SbM space. We can describe the
self-mappings Ψ, Φ : X → X as follows:

Ψx(m) =
∫
E

T1(m, n, x(n))dn + J(m),

Φx(m) =
∫
E

T2(m, n, x(n))dn + J(m),

for each m ∈ E . Therefore, we have

σb(Ψx, Ψx, Φy) = M(|Ψx−Φy|+|Ψx−Φy|)p .

We can obtain

||σb(Ψx, Ψx, Φy)|| = sup
||h||=1

〈M(|Ψx−Φy|+|Ψx−Φy|)p h, h〉

= sup
||h||=1

〈M(2|Ψx−Φy|)p h, h〉

= sup
||h||=1

〈2p M|Ψx−Φy|p h, h〉

= sup
||h||=1

∫
E
(2p|Ψx−Φy|p)h(t)h(t)dt

� 2p sup
||h||=1

∫
E
[
∫
E
|T1(m, n, x(n))− T2(m, n, y(n))|]p|h(t)|2dt

� 2p sup
||h||=1

∫
E
[
∫
E
`|α(m, n)(x(n)− y(n))|dn]p|h(t)|2dt

� 2p`p sup
||h||=1

∫
E
[
∫
E
|α(m, n)|dn]p|h(t)|2dt.||x− y||p∞

� ` sup
m∈E

∫
E
|α(m, n)|dn. sup

||h||=1

∫
E
|h(t)|2dt2p||x− y||p∞

� 2p`||x− y||p∞
= `||2(x− y)||p∞
= `||M(|x−y|+|x−y|)p ||
= ||a||||σb(x, x, y)||

By setting a = `1B(L2(E)), then a ∈ B(L2(E)) and ||a|| = ` < 1. Therefore, Corollary 1
implies the result.
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