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Abstract

The Unified Modeling Language (UML) is the de facto standard modeling language in soft-
ware development. Currently models are specifically generated during the design phase of
software projects, however they are also useful when a software system enters its mainte-
nance phase. For many software systems availability of accurate documentation is scarce.
To better understand existing legacy systems we need to extract dynamic behavior and
represent this behavior graphically in models.

New challenges in UML diagram extraction arise when additional UML diagrams are
considered. In this report we present ongoing work on extracting state machines from
legacy C code, motivated by the popularity of state machine models in embedded software.
Via reverse engineering we extract state machines from source code. To validate the
approach we consider an approximately ten-years old embedded system provided by the
industrial partner. The system lacks up-to-date documentation and is reported hard to
maintain.

During this project, a prototype that allows extracting state machine diagram from legacy
C source code was successfully built. The created diagrams in XMI-format can be visu-
alized by commercial CASE-tools, like Enterprise Architect, which makes it possible to
remodel the state machines. The tool further generates the state machine diagrams as
pictures.

We observe that state machines can be automatically derived from legacy C source code,
even from a non-object-oriented code. The approach has proven to be very successful in
this case study and is, in general, promising.

Key words:
Cpp2XMI, Reverse Engineering, State Machine Diagrams, State Machine extraction,
UML, Unified Modeling Language, Legacy Code, C, C++, Realtime System, Embedded
System, Columbus/CAN, CppML, Graphviz, CASE-tool.
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1. Introduction

The graduation project in this thesis has been carried out at Vanderlande Industries (VI)
and focuses on reverse engineering state machine diagrams from legacy C-code. In this
chapter we will first give an introduction to VI, where this research was performed during
the last ten months. A brief history of the company will be given. Furthermore, we will
discuss the Express Parcel group of the Research & Development department. Next we
will provide a list of some of the terminology used throughout this thesis. Section 1.3
contains a brief summary of the Flow System Controller (FSC). Gaining more insight
on this software system is desirable, because FSC is the software system for which the
documentation needed to be generated. In Section 1.4 of this introduction a problem
description will be given. We will conclude this introduction with an overview of this
thesis.

1.1. Vanderlande Industries

1.1.1. Company Profile of VI

VI is one of the leading companies in worldwide material handling systems (MHS). In-
tegrated automated material handling systems that the company constructs ranges from
small and medium-sized systems up to the largest currently in use throughout the world.
VI being a company that specializes in Warehousing & Distribution, Baggage Handling
and Express Parceling. VI is able to occupy and maintain one of the leading positions
in the market. VI is a global player with offices in all key regions of the world. The
company’s headquarters is located in the Netherlands, but VI also possesses Customer
Centers in Germany, France, Great Britain, Spain, China, South Africa and the USA.
These Customer Centers maintain direct contact with customers and handle all key busi-
ness functions, like for instance providing support or doing maintenance.
VI offers innovative solutions based on a wide range of products and concepts. A broad
range of standard solutions is available for smaller and medium-sized companies. For
larger companies, VI has proven its ability to provide tailored solutions based on its
broad range of standard products. The use of these products maximizes the availability
of a system during its total lifetime.
VI is a project-driven organization, which indicates that, when one of the customer centers
sells a project, the rest of the organization will start to realize this order. Most of the
preliminary work is done at the main location in Veghel. Also supporting departments
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such as Research and Development (R&D), Engineering and Manufacturing are based in
Veghel.
In the distribution segment, VI provides automated solutions for storage, order picking,
consolidation and warehouse control in the distribution supply chain. For the express
parcel industry the company offers a wide range of sorting systems for both parcels and
letter post. VI builds systems in small local depots up to the worlds largest postal sorting
centers. It also supplies baggage handling systems for airports around the globe. The
systems are able to provide fast and safe storage, transportation and sorting of departing,
transfer and arriving luggage. In this business segment, VI is among the worlds top three
suppliers.

1.1.2. Historical overview of VI

In 1949, Vanderlande Industries was established in Veghel, the Netherlands. Eddy van
der Lande founded Machinefabriek E. van der Lande as a general machinery and construc-
tion company. In the beginning, the company was dedicated to the service and repair of
weaving looms and other machinery for the textile industry. Due to the increasing need
for material handling in the market, the company introduced the ‘LandeLift’ which was
developed to ease the problem of lifting heavy items from loading bays. With the ‘Lan-
deLift’, the company achieved its first introduction into the basic MHS’s and shortly after,
a petrol driven through-belt conveyor was introduced. It was mounted onto a movable
carriage that enabled bulk material to be loaded and unloaded.
In 1962, the company joined forces with the American organization ‘the Rapids Standard
Company’. This partnership ensured acceleration of the growth in the field of material
handling. The name of the company then changed into ‘Rapistan Lande’. In the late
1980’s, a management buy-out led to the separation of Rapistan, and all the shares re-
turned to Dutch ownership. The company’s name changed into Vanderlande Industries,
as which it is currently still known. The final episode leading to the VI company as we
know it today was the integration of the German software company ‘GamBit’ in 1997.
With this integration VI was able to develop in-house Material Flow Controllers (MFC)
and Warehouse Management Systems (WMS).

1.1.3. Research & Development

VI consists of several departments, each with their own task in successfully completing
projects. Research & Development (R&D) is one of these departments. One of their
tasks is to develop new products for all different kinds of market segments. Therefore it
is essential to know the solutions of competitors and create new and innovative solutions
that are requested by the market. You could call R&D a gatekeeper to new developments
in the world. Besides development of new products, improvement and maintenance of
current products is also a task of R&D.
The R&D department consists of several groups. For each market (Express Parcel, Dis-
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tribution and Baggage Handling) exists a group within R&D. Together with Feasibility &
Technology, Product Lifecycle Support, Innovation Centre and Special Design Engineer-
ing group, they form the R&D department. Our research was performed in the FSC-team
of the Express Parcel group. The FSC-team focuses on the development and maintenance
of Flow System Controller (FSC).

1.2. Terminology

In this section the terminology used throughout this thesis is listed. The most commonly
used abbreviations can be found in in Table 1.1

Abbreviation Meaning
API Application Programming Interface
ASG Abstract Syntax Graph
AST Abstract Syntax Tree
CASE Computer-Aided Software Engineering
CppML C++ Markup Language
FSC Flow System Controller
GUI Graphical User Interface
IO Input / Output
LaQuSo Laboratory for Quality Software
OO Object-Oriented
PLC Programmable Logical Controller
QSM Query-driven State Merging (algorithm)
SLoC Source Lines of Code
SM State Machine
STD State Machine Diagram (UML 2.x) / State chart Diagram (UML 1.x)
UML Unified Modeling Language
VI Vanderlande Industries
XMI XML Metadata Interchange
XML Extensible Markup Language

Table 1.1.: Abbreviations
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1.3. FSC

1.3.1. General information about FSC

The FSC is a universal software product developed by Vanderlande Industries. Approx-
imately 500 FSC controllers are sold worldwide. FSC is built on the following pillars:
standardized modules, flexibility, and tracking. Understanding these pillars is necessary
to understand how FSC can be used. Standardized modules implies that FSC is not
based on a specific project. FSC is able to control systems by using standard, reusable
control units. FSC sends signals to severals actuators, like motors, and receives signals
from sensors, like photocells. Flexibility implies that the system can be assembled from
nearly an unlimited number of control components. All of these components are glued
together in a FSC configuration. Tracking is the basis for the control of a sorting system.
In FSC, the term tracking is defined as ‘constantly having an accurate view of all parcel
positions along the FSC controlled conveyor system’. Tracking is required for the correct
execution of parcel position related actions, such as parcel data collection (scanning) and
action points (divert positions). The correct timing and proper execution of the actions
makes FSC a real-time system. Hence, it is not desirable to miss deadlines. By missing
deadlines the correct functioning of the system is not guaranteed.

1.3.2. Communication of FSC with two layers

We can distinguish four layers in a conveyor system (Figure 1.1). The bottom layer is
formed by the mechanical parts, such as conveyors. These parts are passive and driven
by electro-mechanical parts in a higher layer, like motors or switches. These parts, called
devices, form the device layer. These devices are connected to a controller, in this case
FSC. FSC receives information from photocells and position indicators. FSC uses the
received information to control other devices like motors. Sometimes, it is necessary to
translate parcel data, like data from the labels on the parcels, into physical destinations.
This kind of translation is volatile and customer specific. Thus, the translation depends
on the customer. A host is the link between FSC and the customer. This model shows

Figure 1.1.: Layer model of a conveyor system

that FSC communicates with two layers. The top layer provides information from a wider
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context. Because of the flexibility of FSC, FSC needs to be configured to communicate
with the system, i.e. the device layer and the mechanical layer.

1.3.3. FSC versus PLC

FSC is a software solution that runs on standard industrial computer hardware. It is an
application that runs on top of the real-time QNX operating system. This is what dis-
tinguishes it from the other standard control solution in the market, i.e. Programmable
Logic Controllers, PLCs. VI also works with PLCs, especially in the baggage market
segment. However, FSC is the standard way to control the automated material handling
systems in the parcel express market.
Each material handling system requires a different PLC to be tailored to suit the system
and several PLC libraries need to be glued together to implement the system that controls
the material handling system. FSC is more flexible. It is a basic software solution, which
can be configured by commissioning engineers to adjust to the needs of customers. Every
site has its own configuration, but they all use FSC to interpret the configuration and to
control the hardware equipment.
The FSC system consists of the FSC runtime system component and the Graphical User
Interface (GUI) component. The GUI component was added later to the FSC. The total
package is still called FSC. The GUI can connect to multiple FSCs, but only to one FSC
simultaneously. The FSC can be connected to multiple GUIs. The GUI shows diagnostics
of the entire equipment. Furthermore, it contains buttons to start, stop and reset the sys-
tem. Besides these buttons, the GUI contains screens where the FSC can be configured.
In PLC the GUI consists of simple displays. Input/Output (I/O) is basically carried out
via switches and lights.

1.3.4. Interfaces of FSC

The FSC uses a Customer Host to find the destination of the handled parcel and manip-
ulates I/O to deliver the parcel to the requested destination. This all is carried out via
standard interfaces. FSC also interfaces with equipment like weighing scales, telecoding,
etc. An overview of the deployment of FSC can be found in Figure 1.2.

1.3.5. Object-oriented programming

The development of FSC started approximately 15 years ago, and nowadays VI has over
12 years of ‘operational’ experience with FSC. This has led to new insights, and therefore
FSC is still in development. An outcome of these new insights is the development of a
new version, FSC NG. Over 100 man-years were put into the development of the current
FSC versions.
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Figure 1.2.: The deployment environment of the FSC

Though FSC was implemented in C, it is based on an object-oriented model. The con-
figuration of FSC therefore represents the real-world system. The software was initially
written in C and some parts are migrated to C++. Currently, new functionality is com-
pletely written in C++. The C and C++ implementation are comparable. Where in C++
a method is used, in C a procedure is used that starts with the class name and has a refer-
ence to the runtime data as first parameter. An object coded in C can be found in Listing
1. An object written in C++ can be seen in Listing 2. The corresponding class diagram is
displayed in Figure 1.3. There are more similarities between C++ and the object-oriented
flavored C. However, C++ is more suitable for object-oriented programming.

Listing 1 Object-oriented C code for the Motor Object

1 MTR create ( ) ;
2 MTR destroy ( ) ;
3 MTR exit ( ) ;
4 MTR init ( ) ;
5 MTR reset ( ) ;

FSC has a few methods to implement construction and destruction of runtime objects.
These are:

• Creation using Object_create()

• Destruction using Object_remove()

• Initialization using Object_init()

• Closing using Object_exit()

So the Object_create() and Object_remove() functions implement the constructor and
destructor of runtime objects, respectively.
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Listing 2 C++ code for the Motor Object

1 class CMotor : public CFscObject
2 {
3 public :
4 CMotor ( ) ;
5 ˜CMotor ( ) ;
6 bool Exit ( ) ;
7 bool I n i t ( ) ;
8 void Reset ( ) ;
9 private :

10 // Behaviour o f the motor
11 // c l a s s de f ined here
12 }

Figure 1.3.: Class diagram of the Motor Object

1.3.6. FSC Events and Timers

We will now briefly discuss the way FSC communicates with the lower and higher levels.
This is done via events. FSC events are used to notify other system parts that something
has happened. System parts interested in this event attach themselves to this event with
the event_attach(id, *cb_function()) method. When the trigger method is called,
the callback functions of the attached system parts are called later.
We can define roughly 4 kind of event-triggers. The first and most important cause for
triggering events is displacement, i.e. tracking. When packages reach certain predefined
positions in the system, events are triggered to take corresponding actions. Another source
for triggering events is by using timers. Timers are set to cause actions to be triggered at
specific intervals or at specific times. Timers trigger timed events. The set method sets
the delay until the event is triggered. A third way of triggering events is caused by the
setted Input and Output (I/O). I/O-values can raise interrupts. These interrupts need
to be handled by the system, and appropriate actions need to be taken to handle the
interrupt. A last cause that triggers events is when serial data becomes available. In case
serial data is available, a trigger is sent to the subscribers. A subscriber then needs to
take action to retrieve the data.
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1.4. Problem Description

In an iterative development process documentation becomes out-of-date very soon. Mod-
ifications in design, e.g. by enhancements or refactoring, automatically decrease the accu-
racy the current documentation. In particular during maintenance it can be a big problem
to understand the code.
Goal of this MSc project is to create a tool that generates documentation of the dy-
namic behavior from source code of FSC. FSC is a software system that controls material
handling systems produced by Vanderlande (see Section 1.3). Together with the domain
experts it was decided to generate state machine diagrams from source code to gain more
insights into the dynamic behavior of the runtime equipment control code of FSC.
Version 5 and 6 of FSC are still being used by customers all over the world. Thus main-
tenance of these current versions is still a key task of the FSC-team. The outcome of the
project aids in improving these maintenance tasks by generating new documentation.
In juli 2008, the kick-off for FSC Next Generation (FSC NG) took place. FSC NG is
rewritten from scratch using FSC Version 5 & 6 as a starting point. The results of this
project could be used as input for FSC NG.
In conclusion, the reverse engineering of state machine diagrams from existing software
could form a significant advantage for maintenance and development of current and new
versions of FSC. The information should document the current functions and capabilities
of FSC, and can be used during the re-design of next versions of FSC.

1.5. Thesis Outline

In Chapter 2 of this report, we will focus on the related work concerning extraction of state
machines from software systems. Furthermore, we will inspect some parser generators and
fact extractors that are needed for the reverse engineering process. In Chapter 3, more
insight is given on how to detect state machines in source code. In that chapter we will
discuss the possible patterns that could be used to implement state machines. Furthermore
we will describe the state machine patterns that are being used in FSC. Chapter 4 describes
the adjustments that were made to the original Cpp2XMI tool [KPvdBM06] to implement
the state machine diagram extractor. These adjustments consist of an additional CppML-
parser, including the search for state machine patterns, changes to the storage, a new lay-
out generator and some extra changes to the XMI-writer. Chapter 5 discusses the results
of the case study of Cpp2XMI applied to FSC. We will finish this report with conclusions
and future work that could be performed in the field of state machine extraction in legacy
C-code.
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2. Related work and used tools

Reverse engineering dynamic behavior for systems is a hot topic. Several studies exist
on reverse engineering state machines. However, it is worthy to note that a lot of work
exists on static model reverse engineering, in particular class diagrams and that dynamic
model reverse engineering is often left aside in reverse engineering tools. In this chapter,
we will focus on related work concerning state machines extraction for software systems.
Furthermore we will discuss tools that are needed in the process of reverse engineering
state machines.

2.1. Dynamic analysis techniques for extracting State Machines

Walkinshaw et al. [WBHS07] created a technique that uses a Query-driven State Merging
(QSM) algorithm to reverse engineer a state machine from a software system. The re-
verse engineering starts with a dynamic analysis, in which a collection of system traces is
generated. Subsequently these results will be minimized to a level of abstraction that can
be interpreted by analysts, and generates a sequence of abstraction functions. The third
step is to perform trace abstraction. This activity applies the abstraction function to the
set of system traces. The output will be used in the last step, where the QSM algorithm
is applied to this output.
Their approach does not automatically extracts state machines, but requires human in-
tervention. Furthermore their implementation for this technique is carried out with the
Eclipse Test and Performance Tools Platform. This framework only provides a range of
tools for the dynamic analysis of Java programs.

In [GZ05] a method for obtaining state machines for objects from sequence diagrams using
an existing method for state chart synthesis [ZHJ04] is proposed. Their method consists of
building sequence diagrams using dynamic analysis, in contrast to static analysis. Traces
of program executions are analyzed to describe the behavior of each execution path of
a program. The difficulty of this approach is to combine the basic sequence diagrams
correctly in order to reflect the general behavior of the program. Subsequently, they
complement the dynamic approach with the static analyses of the source code of the
program.
Once sequence diagrams have been generated, they produce statecharts automatically.
In [ZHJ04], an algebraic approach to revisit the problem of statecharts synthesis in the
context of UML v2.0 is revisited. This approach is used to generate statecharts. The
approach of Guéhéneuc et al. [GZ05] consists of dynamic analysis, by using logging
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of program traces. However for some realtime systems it is not possible to generate
logging of program traces, since the additional logging could lead to deadline misses and
hence breaking the realtime behavior. Another disadvantage of this approach is that
we can never be certain whether we executed all possible paths through our program.
Furthermore, this approach only works for object-oriented source code. Their prototype
uses Caffeine, a tool for the dynamic analysis of Java programs, to generate traces of
program executions describing the behavior of each thread of a program.

Yuan et al. [YXM06] propose another method for extraction state machines for a system,
called Brastra. Their approach for automatically extracting state machines from unit-
test executions, abstracts the concrete state of an object by using the branch coverage
exercised by methods invoked on the object. Their method involves running JUnit test
classes and using the path trace file after program executions as input for their tool. Their
tool post-processes the collected path trace file to collect branch coverage information.
They constructed an abstraction function to map concrete states to abstract states. This
approach only works if there are unit-tests available for the legacy system. In our situation,
this is not the case. Furthermore, their tool only works for object-oriented languages, as it
depends on tools that generate test-cases that only can generate them for object-oriented
languages. Currently, the tool only supports Java language based systems. Another
drawback is that the set of unit-tests need to be complete in order to generate an accurate
state machine.

We can conclude that all dynamic analysis approaches have drawbacks. Either they are
not suitable for C/C++ source code, or they use logging or execution traces as input for
the state machine. We cannot use log information for the analysis of the software system
of our industrial partner, since it is a realtime system, and we do not wish to break the
realtime properties of the system. Furthermore, we are never sure if we have generated
enough log-information to assure that we can properly extract the complete state machine
from the log files.
Therefore, we prefer to look directly at the source code of our legacy software system. Via
static analysis we want to reverse engineer state machine diagrams from source code. In
the next section we will look further into existing approaches for the reverse engineering
of state machine diagrams from source via static analysis.

2.2. Static analysis techniques for extracting State Machines

Walkinshaw et al. [WBAH08] propose a method to reverse engineer state machines by
using symbolic execution and program conditioning of source code. Their technique can
not only reverse engineer state transitions but also annotate each transition with its
respective source code: the state transition function. The technique is based upon the
observation that the start and exit points of a state transition function can usually be
mapped to particular syntax elements of the source code. A state transition function for
a state chart transition A→f() B consists of the source code that is executed between the
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entry and exit points of method f(), when it is called in the execution context represented
by state A.
Program conditioning identifies those statements that are executed, provided that certain
conditions expressed as constraints on program variables at particular program points are
true. Given a transition A →f() B, if A and B can be encoded as conditions on the
program variables at particular points during its execution, a program conditioner will
remove those programming constructs that do not contribute to the process of reaching
B from A. It will identify the transition function f(). A program conditioner determines
which statement to retain or remove by symbolic execution.
Discovering state transitions and their functions can be done by four steps:

• Manually identify state transition points in terms of the source code syntax.

• Construct the symbolic execution tree, marking all symbolic execution states that
correspond to transition points.

• Map marked transitions points to abstract machine states.

• Identify state transitions between the abstract states by detecting consecutive marked
transition points in the symbolic execution tree.

The implementation of this approach is designed to compute the possible state transitions
and transition functions of Java systems. It uses the Java PathFinder explicit state model
checker and its symbolic execution extension to construct and traverse the symbolic ex-
ecution tree. This makes their technique not suitable for our case study. Our approach
differs from theirs that we do not need to manually identify state transition points. Fur-
thermore this method assumes that transitions map to functions. In our approach that
does not need to be the case.

One of the primary goals of the approach by Corbett et al., called Bandera [CDH+00], is
to provide automated support for the model-construction and error trace interpretation
techniques. Bandera uses slicing to automate irrelevant component elimination, abstract
interpretation to support data abstraction, and a model-generator that allows significant
bounds for various system components. Bandera takes as input Java source code and
generates a program model in the input language of one of several existing verification
tools. Bandera also maps verifier outputs back to the original source code.
The approach of Corbett et al. works on Java only. Furthermore it requires manual inter-
action to produce the state machine models, since it requires human input to determine
which parts of the source code can be eliminated, i.e. slicing. In contrast to the Bandera
approach, we do not need human intervention in the process of extracting state machine
diagrams from source code. Furthermore, our approach works on C/C++ source code
instead of Java. Our approach requires more restrictions on the source code that needs
to be analysed, as opposed to the Bandera approach.

Another proposed method for extracting state machines is described in [Mos07] and
[MH02]. Here, they try to extract state machines from PLEX (Programming Language
for EXchanges) source code for telecommunications systems. The approach is to look
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for certain patterns inside the source code, and resembles our approach. They defined a
heuristic that allows to determine whether a program contains a state machine or not.
If a program contains a state machine, an algorithm is run that allows to extract and
re-assemble the original state machine on ‘architecture level’.
Moslers system, however, only works with PLEX source code, which has a different struc-
ture than regular programming languages. Hence, this static analysis technique is not
suitable for the reverse engineering of state machines from our the legacy software system
of our industrial partner.

Knor et al. proposed a technique to reverse engineer state machine from C/C++ source
via pattern searching, and then forward engineer these state machines into state machines
with C++ generic components [KTW98]. Their approach consists of manually searching
for state machines in the source code. With the help of the Enhanced String Pattern
Recognition Tool (ESPaRT) they search for state machines in the source code. The tool
needs manually defined patterns that ESPaRT uses. These patterns need to hand-fed to
ESPaRT. ESPaRT’s pattern language is based on strings, but it is enhanced by commands,
that overcome the restrictions of regular expressions by adding features of syntactic tools.
ESPaRT is invoked by specifying a pattern file and the source code files. When a pattern
is found, the line numbers and names of the files containing the match will be printed.
The drawback of their approach is that it does not automatically look for these state
machine patterns. It requires that source code patterns are provided to the tool. Our ap-
proach differs from theirs in that we automatically search for these state machine patterns.
We do this by having a fixed set of patterns to look for, which could be automatically
recognized in the source code. The ESPaRT-tool does not allow us to encode the specific
state machine pattern that is used in FSC, because it is not possible to dynamically ad-
just the search-patterns. This adjustment is needed for checking whether conditions of
the switch are used as assignments in the inner-case blocks.

All the above approaches use static analysis of the source code to extract state machines
from source code. However, all the approaches have drawbacks or other issues that make
them unsuitable for the reverse engineering of state machines from our legacy software
system. Therefore we have chosen to develop our own tool that reverse engineers state
machine diagrams from this legacy C/C++ source code.

2.3. Parsers Generators

We have chosen to build our own tool that reverse engineers state machine diagrams form
legacy C/C++ source code. In order to do this we first need to process the source code
and find state machine patterns. One way of doing this is to use a parser.
A parser generator is a program that produces a parser for a certain language. The
language is defined by its grammar, which is given as input to the parser generator. The
main advantage is that you can define your own parser, and that it can be determined
which information is going to be extracted. We will discuss some parser generator. More
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parser generators are discussed in Section 3.3.1 of [KPvdBM06].

The ASF+SDF Meta-Environment [vdBHdJ+01] can be used for writing formal spec-
ifications for some problem, developing your own language, transforming programs in
some existing programming language into other languages. In the interactive develop-
ment environment you can enter these specifications, which can then be used to analyze
for instance source code. The ASF+SDF Meta-Environment includes a parser generator
and has a formalism to specify transformation rules to produce UML diagrams in XMI
format. Unfortunately, there was no sufficiently complete grammar for C or C++ at the
time we started the project. Hence it was not possible to use the parser generator from the
ASF+SDF Meta-Environment to generate a parser that could process our source code,
and helps us in the reverse engineering process.

One of the most popular lexical analyzer and parser generators is JavaCC (Java Com-
piler Compiler) /citeKODA04. JavaCC can create parsers for any programming language.
JavaCC needs a grammar specification to provide Java classes that can parse any source
that matches to that grammar. We do not use JavaCC because of its minimal documen-
tation on how to write grammars.

So there are still few complete grammars available for C and C++, and developing our
own grammars would take up too much time. Hence, we have chosen to use complete and
ready tools, that somehow can generate data that we can use as a basis for finding state
machine patterns. Fact extractors could fulfill these requirements. These fact extractors
will be discussed in the next section.

2.4. Fact Extractors

Building our own parser would take up too much time. Therefore we decided to use tools
that are available, for instance by using existing parsers or fact extractor. Fact extractors
extract certain facts from source code and put them into an intermediate format that
could function as input for our tool. The disadvantage is that these tools only work for a
particular language. However, it saves us the time of defining our own language. In this
section we will discuss some well known C/C++ fact extractors. More fact extractors are
discussed in Section 3.3.2 in [KPvdBM06] and Section 2.2 of [BJ06].

ELSA is a C and C++ parser [McP]. It is based on the Elkhound parser generator. It
lexes and parses input C/C++ code into an Abstract Syntax Tree (AST). Furthermore
it can do some type checking. ELSA parses C/C++ source code by using a Generalize
Left-Reduce parser (GLR). It cleanly separates source code parsing from type-checking
and disambiguation.
We choose not to integrate the ELSA-parser into our tool, because ELSA cannot handle
parse errors. Thus, potential incorrect code stops the parsing process, and hence the
reverse engineering of models from source code fails.
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SolidFX [TV08] is a C++ fact extractor for C/C++, and is built on top of the ELSA
parser. SolidFX extends the ELSA parser to handle parse errors by skipping from pars-
ing the deepest scope where these errors occur. SolidFX outputs full Annotated Syntax
Graphs (ASGs), complete with preprocessor data and line numbers. It is even possi-
ble to reconstruct the original source code from these ASGs. SolidFX provides an open
query system that answers queries questions about the source code. The questions are
constructed into a query tree that is applied to the fact-database, yielding a selection of
the matches ASG nodes. SolidFX provides an ASG and an open query API to their fact
database. This means that we could integrate solidFX into our tool.
However we choose not to do this, because of the licensing costs on the one hand, and
because the output format of SolidFX does not suit our needs. Furthermore, we have a
better alternative, to which we will come back later in this section.

EFES [BJ06], standing for ELSA Fact Extractor System, is a fact extractor constructed
on the ELSA parser. However, the EFES improves the weaknesses of the ELSA parser,
as can be read in Chapter 3 of [BJ06]. The EFES Fact Extractor works in four phases. In
the first phase, the preprocessor reads and processes the input files and outputs a token
stream. The parser reads this stream and builds up the Abstract Syntax Graph (ASG).
In the second phase, all disambiguities are removed from the ASG. Furthermore the ASG
is type checked. In the third phase the ASG is filtered. All information that is not of
interest is removed, and a smaller ASG remains that contains all the needed information.
In the last phase output is generated and written to a file.
Drawback of EFES is that it only supports a subset of the C grammar. Therefore we
cannot use EFES in our tool.

Rigi is a system for understanding large information spaces such as code bases. The
Rigi reverse engineering system [SWM97] is an interactive visualization tool of software
structures. It analyzes the dependencies between software artifacts from the source code
and extracts facts from a system and organizes these facts into higher level abstractions.
The relations of procedures, procedure calls, data accesses, variables and among others
data and control-flows are discovered and stored in Rigi graph model (Rigi Standard
Format - RSF), and subsequently visualized in scalable hierarchical graph diagrams. RSF
is an intermediate data format and processed by many reverse engineering tools. The Rigi
reverse engineering system has the option to choose from different parsers.
However no parser that is capable to parse a mixture of C and C++ is available, hence we
cannot use Rigi for our tool. We do need a parser that can handle the mixture of C and
C++ source code, since FSC consist of mixture of C and C++ source code. Furthermore
the RSF-format looses to much information about the source code. Therefore we cannot
extract state machine diagrams from the RSF-format.

Columbus/CAN [RFMT02] is a fact extractor for C/C++, developed by the University
of Szeged, Hungary. Currently, it is owned by the company FrontEndART. Columbus is a
reverse engineering framework application that parses, analyzes, filters and exports infor-
mation extracted from C/C++ source files into various formats, including the Abstract
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Syntax Tree into an XML-like format called C++ Markup Language (CppML). Colum-
bus/CAN comes with a C++ preprocessor (CANPP), a C++ Analyzer (CAN), the linker
(CANLINK), and the exporter (ExportCPP). Columbus parses most C and C++ source
code as valid constructs, including particular compiler dialects and slight deviations from
the standard. It has an error recovery mechanism, which implies that incomplete source
code, or syntax errors do not stop the parsing process. Columbus outputs various for-
mats, such as CppML, XMI, GXL, HTML, RSF. The information about the source code
structure is preserved in CppML. Columbus comes with good documentation, making it
easy to understand and use. For an overview of the main advantages and drawbacks we
refer to Section 4.3.2.1 of [KPvdBM06]. The major drawback is the amount of time and
memory needed to parse source code. One of the major advantages is that it can extract
the AST into an XML-like format, called CppML. This CppML could function as input
into our tool.

We concluded that the Columbus parser could fulfill the requirements we have for a fact
extractor, i.e. it deals with incomplete and/or incorrect source code. Hence it is fault-
tolerant. It resolves cross-references in the source code correctly and completely. Colum-
bus is able to preprocess source code of arbitrary complexity. Furthermore, Columbus
generates enough information into the CppML format, like construct source code loca-
tions and types.
We decided to use the Columbus parser as a basis for our model extractor, which we will
be discussing in the next section.

2.5. Columbus as a basis for a Model Extractor

In the previous section we have specified our choice for the Columbus parser. Especially
the CppML output format, and the fault-tolerance of the Columbus parser are interesting
features.
The next step in our reverse engineering process is to extract models from this interme-
diate format, called CppML. There are several type of models that are of interest, but
as stated in Section 1.4, we are specifically interested in extracting state machines from
source code. Our approach is to extract these models by finding state machine patterns
in source code. What these patterns look like, and how we can detect them, is described
in Chapter 3.
During our research we came across a tool called Cpp2XMI [KPvdBM06]. Cpp2XMI is
a reverse engineering tool that is capable of extracting some UML diagrams from C++
source code. Cpp2XMI can extract Class, Sequence and Activity diagrams from C++
source code. It is also based upon the Columbus/Can framework. Cpp2XMI already
integrates the preprocessing and parsing of source code and generating and exporting of
models to XMI.
Cpp2XMI was developed by Elena Korshunova during her final project at the ‘Ontwer-
pers Opleiding Technische Informatica’ (OOTI) for the Laboratory for Quality Software
(LaQuSo), Technical University of Eindhoven. Cpp2XMI was integrated into the analy-
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sis, verification and validation toolset called Software Quality Analysis & Design Toolset
(SQuADT). LaQuSo uses this toolset to analyze source codes provided by clients.
These above mentioned facts render Cpp2XMI to be an ideal candidate that serves as a
basis for our state machine extractor. With this reverse engineering we want to capture the
system behavior that emerges from the interactions occurring between the objects in the
system. Furthermore, we could use the extracted diagrams for correspondence checking,
which implies that the extracted models could be used to compare the implementation
with the original design. Since Cpp2XMI already extracts multiple kinds of documen-
tation, we could also check this generated documentation for similarities and differences
with the original documentation.
Thus, with Cpp2XMI it is possible to derive the static structure and extract dynamic
behavior of a system from potentially incomplete source code and represent them in XML
Metadata Interchange (XMI) format. The tool is able to transform source code to UML
diagrams in the XMI format automatically. Cpp2XMI is capable of extracting UML class,
sequence and activity diagrams from C++ source code. We will be extending Cpp2XMI
with the option to extract state machine diagrams from source code. In Chapter 4 we will
further examine this extension of Cpp2XMI with state machine diagrams.

2.6. Summary

In this chapter we focused on related work concerning state machines extraction for soft-
ware systems. We first looked at dynamic analysis techniques for extracting state machine
diagrams. However, we concluded that dynamic analysis is not possible due to the fact
that we are dealing with a realtime system. Hence we cannot merely add extra code to
extract log-information. Furthermore, it can never be checked if we covered all possible
states and transitions.
Furthermore, we discussed the static analysis techniques. All of these approaches are not
suitable for the software system of our industrial partner. They either work on totally
different programming languages, or they cannot deal with legacy C code and are only
capable of extracting information from object-oriented languages (C++ / Java / C# /
etc.). Therefore we decided to develop our own tool.
For the development of our tool we basically need to transform source code into models.
For the first step in this process we need some type of parser. Due to various reasons we
choose not to generate our own parser. We therefore opted to look at standard parsers
and fact extractor. We concluded that the Columbus framework fits our needs.
We ended this chapter with information about Cpp2XMI. Cpp2XMI is a tool that also
uses the Columbus framework. Hence we have chosen it as a basis for our state machine
reverse engineering tool.
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3. Detecting State Machines via Pattern
Matching

In many realtime control systems we can identify state machines [Sim94]. The same is
true for the FSC-software developed by Vanderlande Industries (VI). State machines can
be identified at several levels of the automated material handling systems that FSC can
control.
In this chapter we will discuss several aspects of the approach that was taken to extract
state machine diagrams from source code. We will start with a general overview of the
reverse engineering process. In Sections 3.2, 3.3 and 3.4 we will focus on the patterns
that can be used to implement state machines. Section 3.3 focuses on the most often
used pattern in FSC, i.e. the nested-choice patterns. In Section 3.5 we will describe step-
by-step how the ‘switch-within-switch’-pattern is constructed, and how we can extract
the corresponding state machine from the source code. In Section 3.6 we will discuss the
possibilities of adding more information to the state machine diagram. We will end this
chapter with a summary.

3.1. General overview of methodology

As mentioned before, FSC contains several state machines. There are multiple abstraction
levels at which we can identify these state machines. At the lowest level we can identify
state machines of the devices of automated material handling systems, for instance the
state of motors and electrical actuators. By combining these devices we create compo-
nents like sorting machines, merging machines and conveyor belts. These components of
material handling systems are state machine based. The highest level describes the overall
state of a system and is basically the combination of state machines from the lower levels.
Note that this leads to a state space explosion that is not preferred.
Together with the help of domain experts we identified state machines at the component-
level. The experts indicated which source files belong to which component. Furthermore,
they identified the components that are state machine based. In these instances we took
a closer look into the source code belonging to that component. Via code inspection we
identified a part of the source code that implements this state machine. This way we
identified several nested-choice patterns in the source code of FSC that are used for im-
plementing state machines.
The mentioned observations guided the reverse engineering of state machine diagrams.
At first we try to extract states from source code. We do this by basically looking for
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‘switch-within-switch’-constructs in the source code, and by testing whether the case la-
bels of the outer switch correspond to the elements of an declared enumerate, i.e. the
state-enum. Then we try to reverse engineer the transitions between these states. This is
done by looking at all assignments within the nested switches. Only the assignments to
the state-variable are of interest (slicing). If we put these transitions between the correct
states we get our basic state machine diagram.
However, we identified more source code constructs in FSC that indicate that a state
machine could be implemented in the source code, i.e. state transitions inside functions,
and multiple events that are handled the same way. Thus the next step was to capture
the state machine of these special constructs. If we extend the basic state machine ex-
traction with these special source code constructs, we get all the ‘switch-within-switch’
nested-choice pattern state machines from the FSC source code.
These extracted state machines look quite promising. On top of that we saw an opportu-
nity to put more information into the state machine diagrams, like conditional transitions.
To extract information about conditional transitions we detect the conditions that need
to hold for a transitions to be able to perform. We do that by looking at the conditions
of if-statements.

3.2. Patterns

We start by observing that, in their simplest form, UML state machines contain nothing
but states and transitions connecting states. The transitions in these state machines
are associated with events. At each moment in time the system can be in exactly one
state. This implies that transitions are instantaneous. When an event occurs, the system
should move to a new state. Note, that implementing a state machine behavior involves,
therefore, a two-phase decision making:

• What is the current state of the system?

• What is the event to be handled?

Based on this simple observation, our approach consists of looking for nested-choice pat-
terns, specifically the ”switch-within-switch”-pattern. We will focus on this pattern be-
cause the domain experts indicated that this is the pattern that is most frequently used
in the source code of FSC.

3.3. Nested choice patterns

For these simple state machines we can identify several nested-choice patterns. These
nested-choice patterns have some common characteristics. In the next section we will
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discuss them thoroughly.
One of these characteristics is that the states of the state machine are explicitly defined.
This is being done in an enumerate structure in source code. The same holds for all
possible events that could occur in the source code. Events are also explicitly defined
and enumerated in the source code. We will call these enumerates the state- and event-
enumerate respectively. The state machines defined by the nested-choice pattern can only
consist of states and transitions from these enumerates.
Another characteristic of the nested choice patterns is that the system continuously han-
dles incoming events. The events are coded by a separate variable, which could be passed
into functions as a parameter.
Another trademark of this pattern is that the current state of the state machine is stored
into a variable. This variable could be a member of some sort of structure/class. Assign-
ing a new state to this variable is done by explicitly coding the new state to this variable.
This is done by assigning an element of the state-enumerate to this variable, and not using
other constructs, like ++ or -- operations.
Last characteristic of this patterns is that the code that needs to execute in which state
and on what event, is determined by the choice-statements. These could either be if-else
or switch-case statements.
Earlier we mentioned the ‘switch-within-switch’-pattern, which can be used in all situa-
tions, but it will mainly be used with state machines containing a large variety of states
and a large number of different events that could occur within these states. Next to
this pattern we can identify the related ‘if-within-switch’-pattern. This pattern is mainly
used for state machines that consist of a large diversity of states, and a small number of
different events that could occur in these states. A third type of pattern is the ‘switch-
within-if’-pattern, that is used in state machines with a small number of states and a large
number of events that could occur in these states. The last nested-choice pattern is that
of the ‘if-within-if’-pattern. This pattern can be used in situations with limited number
of states and a limited number of events.
Note that it is possible to have a mixture of these nested-choice patterns. Furthermore
we emphasize that it is possible to rewrite each of these patterns to another nested-choice
pattern. The last remark we have to make is that the ‘if-within-if’-construction is a gen-
eral pattern in source code. Hence, we can find this pattern within source code frequently,
but this does not imply that each occurrence of this pattern implements a state machine.

3.4. Other state machine patterns

There are more ways to implement state machines into source code. We have identified
the following patterns and methods for implementing state machines.

• Jump tables: a pointer to a function pointer array can be used as the state variable.
The function pointer array is called jump table and contains references to the event
handler functions. When an input event occurs, the system indexes into the jump
table, and invokes one of the table’s functions. The index into the jump table is
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derived from the system state (and often is the state variable itself). This technique
works, but is not without problems. Furthermore it is advised to not use pointers
in realtime critical systems [MRR04].

• Object-oriented approach: Each system state can be encoded into a separate object,
but only one state object needs to exist at any given time. The current state of a
system will be indicated by the object, which is called the current state object.
The role of the system in response to an input event will be to direct the event to
the current state object. The state object is responsible for handling all the input
events, so the system can unconditionally give all the events to the object. This
object will process the event, and then return control back to the system. When
an event causes a state transition, the current state object transforms itself into
a new state object, but without knowledge or intervention from the system. The
system need not know what class the current state object represents, only that the
object will handle all input events passed to it. In the course of handling events,
the current state object’s type will determine the state of the system. This type will
change dynamically, but not for all events. Many events in a system will cause no
state transitions, in which case no type mutation will occur.

• GOTO-statements: We can use GOTO statements to implement state machines.
Every GOTO statement represents a transition from one state to another state. An
identifier is used as the statement label representing each state. For each state, a su-
perfluous pair of begin- and end-statements or brackets is used to group statements
of that state into single statement. A superfluous GOTO statement jumping to
the initial state is added because the program needs to explicitly specify the initial
state. Also GOTO-statements are not an ideal way of implementing state machines
[Dij68].

• Long jumps: The standard C library implements the setjmp() and longjmp()
functions. The setjmp() function saves the current execution state of a program
into a structure. The longjmp() function transfers the state of the program to
the point of the called setjmp()-state. With this technique we can jump from one
state to another state in the program. Hence, making it possible to implement state
machines with these library functions.

Note that this list is not complete, there exists other ways to implement state machines.

3.5. Basic state machine pattern

In the previous sections we have seen what type of patterns can be used in source code to
implement state machines in programs. The ‘switch-within-switch’ nested-choice pattern
can easily be identified within the source code of FSC. In the FSC source code there are
several files that handle the actions of a component of an automated material handling
system. In general, we will assume that all the actions that a component can perform are
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being implemented in one file. Therefore it suffices to look for patterns on a file-base level,
specifically ‘switch-within-switch’-patterns. In this section we will take an in-depth look
at the identification of this nested-choice pattern by showing how the pattern looks like in
source code and how the corresponding diagram looks like. We will do this step-by-step.
Throughout these subsections we will use and extend an example to specify the basic state
machine pattern.

3.5.1. States

In Listing 3 we see an example of the basic pattern for states. On lines 2-6 in the source
code we see an enumerate which indicates all possible states an object can have. The
declaration of the enumerate-type could be in the same file as where the switch is in, but
it could also be in a separate header file.
Furthermore, we see that the switch-statement is very specific for this pattern (lines 8-
17). The switch will check the current state a system has. Thus, the variable inside the
condition of the switch (line 8) maps to the current state of the system. Characteristic for
this pattern is that the case labels of the switch (lines 9, 11, 13) will be the elements of
the state-enumerate (lines 2-6). These different case labels represent the possible states of
the system. The union of the case labels of the state-switch equals the set of the elements
of the state-enumerate. The default case block generally implements some sort of error-
handling code. We cannot determine in what state the system is. Hence, it does not map
to a source state. Therefore we neglect the default case in the outer switch.
In the state diagram these states simply map to rounded boxes, as we can see in the
example of Figure 3.1.

Listing 3 States defined in source code

1 /∗ Sta te o f the o b j e c t ∗/
2 enum OBJ STATE {
3 STATE A,
4 STATE B,
5 STATE C
6 } ;
7 . . .
8 switch ( . . . ) {
9 case STATE A:

10 . . .
11 case STATE B:
12 . . .
13 case STATE C:
14 . . .
15 default :
16 . . .
17 }
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Figure 3.1.: States drawn in a diagram

3.5.2. Transitions

Note that with the previous pattern we are able to represent states. However, we also
need to model transitions. The source code contains an enumerate that lists all events
that are possible in the state machine diagram. We can see an example of this in Listing
4. The events-enumerate is declared on lines 2-6.
Inside each case block of the state-switch (line 8) we find another switch statement (line
10 and 18). This is the event-switch and checks which block of source code needs to be
executed by comparing the event variable with the case-labels (lines 11, 13, 19 and 21)
of the event-switch. The block of source code that will be executed takes care of the
handling of events. The case labels are elements of the event-enumerate. Note that it is
not necessary that all elements of the event-enumerate are handled inside the case-blocks
of the state-switch. Hence, there can be events that are not handled in a certain state,
and therefore these events will not be coded as cases inside the event-switch. Furthermore
each event-switch can catch all events by a default event-handler (line 23). This way the
unspecified events in the event-switch are handled by the default event-handler.
In the diagram shown in Figure 3.2 we see that the states are connected by arrows. Each
arrow represents a transitions. Note that from the source in the example we cannot
determine the state in which the system will end, therefore we added a state unknown
in which all events end. Furthermore we do not know if there are any transitions from
STATE C. That’s why we have drawn a dotted arrow from STATE C.

Figure 3.2.: Transitions drawn in a diagram
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Listing 4 Transitions defined in source code

1 /∗ event s to reac t on ∗/
2 enum OBJ EVENT {
3 EVENT1,
4 EVENT2,
5 EVENT3
6 } ;
7 . . .
8 switch ( . . . ) {
9 case STATE A:

10 switch ( event ) {
11 case EVENT1:
12 . . .
13 case EVENT2:
14 . . .
15 }
16 break ;
17 case STATE B:
18 switch ( event ) {
19 case EVENT1:
20 . . .
21 case EVENT2:
22 . . .
23 default :
24 . . .
25 }
26 break ;
27 . . .
28 }

3.5.3. Object

Combining the detection of state and transition patterns forms the basis for the pattern
recognition of state machines. However in FSC we further identified that the current state
almost always belongs to an object. Hence in the source code we see objects containing
a member variable to store the state. Note that this member variable stores a state of
the state-enumerate type. In the legacy C code these objects are defined by means of
structures (structs). In the newer object-oriented parts of the code of V5/V6 of FSC this
is performed by means of a member variable which is stored in the class representing this
object. We can basically map these structs to objects and vice versa for the FSC source
code. An example of the legacy C code way is shown in Listing 5. Here we see that there
is an OBJ-struct defined on line 6, which contains a member variable state on line 3 that
stores the current state. In the source code we see that the condition of the state-switch
on line 8 is the member variable of the struct or class. Furthermore we see that inside
the case-blocks of the event-switch (lines 10-17 and 20-27) there are assignments to the
state variable, of which we can see examples on lines 12, 15, 15 and 22. Hence this is
the actual state transition. Note that this assignment can be surrounded by other code.
Since the state variable is a value of type enumerate, we could think of other constructs to
change the state, e.g. by using the ++ or -- operator to switch between states. However
in FSC this does not occur, and all state transitions are implemented in the source code
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by explicitly writing an element from the enumerate type.
In the corresponding diagram that is shown in Figure 3.3, we see that the arrows now end
in the corresponding states. Thus, if the systems current state is STATE A and EVENT2
arrives, the systems is expected to enter STATE C. In the diagram this transition between
STATE A and STATE C is indicated by an arrow with label EVENT2. This is the
mapping of the assignment on line 15.

Listing 5 Object structure in source code

1 typedef struct {
2 bool i n i t i a l i s e d ;
3 OBJ STATE s t a t e ;
4 } OBJ;
5 . . .
6 OBJ obj ;
7 . . .
8 switch ( obj−>s t a t e ) {
9 case STATE A:

10 switch ( event ) {
11 case EVENT1:
12 obj−>s t a t e = STATE B;
13 break ;
14 case EVENT2:
15 obj−>s t a t e = STATE C;
16 break ;
17 }
18 break ;
19 case STATE B:
20 switch ( event ) {
21 case EVENT1:
22 obj−>s t a t e = STATE B;
23 break ;
24 case EVENT2:
25 obj−>s t a t e = STATE C;
26 break ;
27 }
28 break ;
29 . . .
30 }

3.5.4. Control Function

In FSC the state machine is normally handled by a control function. We refer to Listing
6 for an example. The control function, defined in the lines 1-25, must at least have one
parameter, namely the event that needs to be handled, such as on line 2 in the example.
However, in most cases in FSC there are at least two parameters. The event-handler
parameter passes the event that has occurred to the control function. Inside the control
function this parameter is checked by the event-switch that can be seen on lines 10 and
20 in the example. Thus this parameter determines which transition is performed in the
state machine and is the same variable as the variable that is used in the condition of the
event-switches.
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Figure 3.3.: Corresponding diagram of object structure in source code

Besides the event-handler parameter, there is also a parameter containing a reference to
the object or a reference to some kind of variable that stores the current state of the
system. An example of this is the first parameter of the control function. If it refers to an
object, then this object has a state machine variable as a member. This object could be
an object as is described in the section 3.5.3. Thus, it could be an instance of a struct-type
like in the example in Listing 5 on line 6.
As mentioned in the introduction of this section, we focus on a file-based level and start
to look for these kind of control functions. This implies that we are looking for local
state machines as was discussed in Section 3.1. Due to these local patterns we cannot
extract state machines from the overall system, or combined state machines. By using
logging information, we could perhaps overcome this issue. For more information we refer
to Section 6.3.
Note that this control function does not really influence our extracted diagrams. Hence
the diagram remains the same as in Figure 3.3.

3.5.5. Multiple events are handled the same way

In all the previous examples, we assumed that several events have no overlapping code to
get into a specific state. However we can think of two ways to introduce overlapping code
to end up in the same state. The first method is to let the control function execute the
same code for two or more events by leaving out the break statements inside the event-
switch. An example of this method is shown in Listing 7 and the corresponding diagram
in Figure 3.4. In this case when the system is in STATE A, EVENT1 and EVENT2 are
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Listing 6 Example: Control function

1 void OBJ control (OBJ ∗obj ,
2 OBJ EVENT event ) {
3 switch ( obj−>s t a t e ) {
4 case STATE A:
5 switch ( event ) {
6 case EVENT1:
7 obj−>s t a t e = STATE B;
8 break ;
9 case EVENT2:

10 obj−>s t a t e = STATE C;
11 break ;
12 }
13 break ;
14 case STATE B:
15 switch ( event ) {
16 case EVENT1:
17 obj−>s t a t e = STATE B;
18 break ;
19 case EVENT2:
20 obj−>s t a t e = STATE C;
21 break ;
22 }
23 break ;
24 . . .
25 }
26 }

handled the same way, because of the missing break or return statement between the
cases of line 6 and 14. However, in STATE B they execute different code. Hence we
cannot merge EVENT1 and EVENT2, because EVENT1 exits due to a break statement
on line 16. The break statement causes an immediate exit from the switch. Because cases
just serve as labels, after the code for one case is done, execution falls through to the
next unless explicit action to escape is taken. Break and return statements are the most
common ways to leave a switch. Falling through allows several cases to be attached to a
single action, like in the case of EVENT1 and EVENT2 in STATE A on lines 4-10.

3.5.6. State transitions inside functions

Another way to introduce overlapping code to end in a specific state is by using functions.
An example of this kind of overlapping code can be seen in Listing 8 and the corresponding
diagram in Figure 3.5. Inside a case-block of the event-switch there is a call to a function,
like on line 13. Somewhere in this function there is an assignment to the state-variable
(line 3). Note that the function has a parameter to the object as we can see on line 1 of
Listing 8. This need not always be the case. The key aspect is that the called function
also has an assignment to the state variable.
One could think of situations where we get nesting of functions, or recursion of functions.
This could lead to infinite loops. However, it need not always be the case that infinite
loops do occur. But to make sure we do not get into infinite loops, we need to do some
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Listing 7 Source code of multiple events that are being handled the same way

1 void OBJ control (OBJ ∗obj ,
2 OBJ EVENT event ) {
3 switch ( obj−>s t a t e ) {
4 case STATE A:
5 switch ( event ) {
6 case EVENT1:
7 case EVENT2:
8 obj−>s t a t e = STATE C;
9 break ;

10 }
11 break ;
12 case STATE B:
13 switch ( event ) {
14 case EVENT1:
15 obj−>s t a t e = STATE B;
16 break ;
17 case EVENT2:
18 obj−>s t a t e = STATE C;
19 break ;
20 }
21 break ;
22 . . .
23 }
24 }

bookkeeping, and keep information about the already inspected functions. Thus, we do
not get stuck into infinite loops. At the moment, our tool only looks at the first level
function calls. So, only the directly called functions from within the case-block of the
event-switch are being checked for an assignment to the state variable. This way we are
sure that we cannot get into infinite loops when checking for assignments to the state
variable.

3.6. Extracting additional information from source code

Thus far we have seen all sorts of constructs that can be used to implement a basic state
machine. These constructs are reported by the experts to be the most common ones that
are being used in FSC. Hence it made sense to first focus our attention on these common
constructs. So we basically looked for ‘switch-within-switch’ patterns, and somewhere in
the case blocks of the even-switch there needs to be an assignment to a state variable,
which could be a member of an object.
However, we saw an opportunity to add more information into the models and identified
some possible extensions. These possible extensions are:

• Conditional transitions

• OnEntry / OnExit / DoAction values

• Line / file mapping
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Figure 3.4.: Diagram of multiple events that are being handled the same way

• Overlap between state machines

From these we only implemented the conditional transitions into our tool.

Not all transitions that are coded in the source code do always have to take place. Some
transitions will only take place if certain conditions are valid. Therefore our tool checks
for the conditions which are needed for a transition to take place. See Listing 9 for an
example of a conditional transition.
In the source code of that example we see an extra variable y on line 1. Inside the event-
switch of EVENT1 of the event handler of STATE A we see a conditional transition (lines
6-11). When EVENT1 occurs and the current state is STATE A, it is unclear whether we
end in STATE B or STATE C. This depends on the value of boolean y as is tested on line
6. Therefore we call the state transitions inside the case block of lines 5-12 conditional
transitions: whether they occur depends on some factor, hence we cannot guarantee that
this transition always occurs. It could be that, due to the value of the condition, the
system does not execute a transition.
In the example we have a simple condition (line 6), namely a boolean y. However these
conditions can consist of any condition that is allowed in C-code, so propositional equa-
tions consisting of a combination of booleans, comparisons with strings/integers, and
function calls are allowed.
Currently, we only have implemented these conditional transitions in the picture export
of the diagram. Due to the lack of time, these conditional transitions are not exported to
the XMI-output yet. Hence, they cannot be visualized by CASE-tools. We can see the
diagram corresponding to Listing 9 in Figure 3.6

More interesting additional information can be found in the use of OnEntry and OnExit
values. This way we could add code preceding the assignment of the new state to the state
variable to the OnExit value of the old state, and code that comes after this assignment
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Listing 8 Source code of state transition inside a function

1 do Function (OBJ ∗ obj ) {
2 . . .
3 obj−>s t a t e = STATE B;
4 . . .
5 }
6 . . .
7 stat ic void OBJ control (OBJ ∗obj ,
8 OBJ EVENT event ) {
9 switch ( obj−>s t a t e ) {

10 case STATE A:
11 switch ( event ) {
12 case EVENT1:
13 do Function ( obj ) ;
14 break ;
15 case EVENT2:
16 obj−>s t a t e = STATE C;
17 break ;
18 }
19 break ;
20 . . .
21 }
22 }

Listing 9 Source code of conditional transitions

1 bool y = true ;
2 switch ( obj−>s t a t e ) {
3 case STATE A:
4 switch ( event ) {
5 case EVENT1:
6 i f ( y ) {
7 obj−>s t a t e = STATE B;
8 }
9 else {

10 obj−>s t a t e = STATE C;
11 }
12 break ;
13 case EVENT2:
14 obj−>s t a t e = STATE C;
15 break ;
16 }
17 break ;
18 case STATE B:
19 switch ( event ) {
20 case EVENT1:
21 obj−>s t a t e = STATE B;
22 break ;
23 case EVENT2:
24 obj−>s t a t e = STATE C;
25 break ;
26 }
27 break ;
28 . . .
29 }
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Figure 3.5.: Diagram of state transition inside a function

should be assigned to the OnEntry value of the new state. Furthermore, we could add
the DoAction value to the transition. Again we could use the surrounding code of the
assignment to the state variable as input for this DoAction value.

Other types of information we could add are references to files and line numbers. A final
type of information that could be added to the diagram is a visual way to indicate overlap
between state machine diagrams. This could be performed by looking for states with
equal names, and common names of transitions. A remark should be made that if either
state names or transition names do not differ a lot, this would result in large amount of
overlaps.

3.7. Summary

In this chapter we have taken a closer look to the patterns that can be used to implement
state machines. Furthermore, a closer look was taken to the pattern that is mainly used
in the FSC source code. We discussed how the ‘switch-within-switch’-patterns could be
mapped onto state machine diagrams. We concluded with additional information that
could be added to the extracted diagrams.
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Figure 3.6.: Diagram showing conditional transitions
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4. Architecture

The original tool created by Elena Korshunova [KPvdBM06] was capable to reverse engi-
neer class, sequence and activity diagrams from C++ source code, and export these into
the XMI-format. We added the option to reverse engineer state machine diagrams from
C/C++ source code, using pattern matching. For a detailed description of these patterns
we refer to Chapter 3.
In this chapter we discuss the architecture of Cpp2XMI. We will focus on the conceptual
design that defines the structure and/or behavior of Cpp2XMI. We will discuss all the
modules that are needed to reverse engineer state machine diagrams. However, our main
focus in this chapter will be on the additional and extended modules of Cpp2XMI. For an
overview of the rest of the unmodified modules we refer to Chapter 4 of [KPvdBM06].

4.1. General Design

In this section we will present a general design of the reverse engineering tool. The new
version of Cpp2XMI uses the same basis of the general design as the original tool. This
basis is described in Section 4.1 of [KPvdBM06]. In this design, we see several different
modules, each having different functionalities. Thus, we achieve a decomposition of the
main task into manageable, well-defined subtasks. The original version of the tool uses the
Pipes and Filters architectural pattern. An advantage is that it allows us to easily extend
the tool. The Pipes and Filters architectural pattern divides the task of a system into
several sequential processing steps. In those kinds of systems, the flow of data through
a system connects all these steps. Filter components implement processing steps. Every
filter enriches, refines or transforms its input data.
The processing steps performed by the main modules composing a reverse engineering
tool are shown in Figure 4.1. We will now take an in-depth look into these main modules.

4.1.1. Pre-processor

The pre-processor is a helper module that takes the C/C++ source code as an input
and transforms it. For instance, it removes macros and transforms single backslashes
in the #include statements into slashes. The standard Columbus/CAN pre-processsor
(CANPP) cannot handle certain C/C++ constructs correctly. Therefore, we modify the
source code in such a way that the pre-processor of the Columbus framework does accept
it. We must remark that Columbus allows us to use different pre-processors. This module
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Figure 4.1.: Elaborated Design of the new version of Cpp2XMI

is implemented in the Preprocessor -package.
In conclusion we can note that the pre-processor transforms the source code into a form
that can be processed by the Columbus framework.

4.1.2. Columbus parser and exporter

The Columbus parser and exporter parses the C/C++ source code. CAN is the analyzer
of the Columbus framework. It analyses the preprocessed C/C++ source files and creates
the internal representation file (object file). It builds up the Abstract Syntax Tree (AST)
corresponding to this parsed source code. This all is stored in .cst files that contains all of
the extracted information. This file is the equivalent of the object file used by compilers.
The purpose of CANLink is to merge the separate internal representation files created
by CAN into an .mst file. The purpose of the ExportCPP is to load the linker internal
representation file created by CANLink and to export it into various formats. One of these
formats is the C++ Markup Language, called CppML. The exporter outputs the AST
into this CppML-format which basically is a XML-like format. Furthermore the exporter
also produces class diagrams in the XML Metadata Interchange (XMI) format.
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4.1.3. Library filter

The library filter removes all information concerning the standard libraries from the
CppML and XMI outputs produced by the Columbus exporter. This way we can re-
duce the Columbus CppML output. This output has exploded due to the information
obtained from standard C/C++ libraries. The information about the libraries is not rele-
vant for the creation of the UML diagrams. Removing the information about the libraries
reduces the CppML output significantly. This, in turn, improves the performance of the
rest of our tool and improves the readability and understandability of the generated UML
diagrams.
The Columbus framework does not have a filter option to remove this extra information.
Therefore a standard filter mechanism was developed. This mechanism implements the
Library Filter module and is coded in the Filter -package.

4.1.4. Diagram extractor

The main purpose of the diagram extractor module is to transform the filtered CppML
output of the parser into a suitable format to represent UML diagrams, in this case a
XMI document. It expands the XMI-document produced by the Columbus exporter with
additional information about sequence and activity diagrams.
It first extracts the complete AST from the CppML file, and stores it into an internal
structure. For instance information about objects allocated in the program and function
calls are extracted from the Columbus CppML output. This information is needed for the
generation of XMI tags for the sequence diagram.
Additionally, information about conditional and iterative statements is extracted from
the internal structure that represents the AST. This information is needed to create XMI
elements for the activity diagrams.
Note that this module also corrects the Columbus XMI output, because it has certain
defects. These are further described in Appendix A of [KPvdBM06].
During this research we extended this module. Now this module is also capable of ex-
tracting state machine diagrams from source code via pattern matching. More information
about these patterns can be found in Chapter 3. More information about the extension
can be found in Sections 4.3 and 4.4 of this chapter.
Lastly, this module creates XMI tags for sequence, activity and state machine diagrams.
In order to comprehend the transformation between source code and the UML class, se-
quence and activity diagrams, it is necessary to understand the correspondence between
UML diagrams and object-oriented programming language concepts. In Section 4.2.5.1
till 4.2.5.3 of [KPvdBM06] the mapping between these are described.

4.1.5. Layout creator

The last modules in our reverse engineering process are the layout creators. After XMI
with UML class and sequence diagrams is created, it is necessary to generate the layout
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for these diagrams. This way we can visualize them in various CASE tools. The main
goal of the layout creator module is to automatically generate layout for UML diagrams
and store this position information in the Diagram element of XMI. The layout creators
apply several layout algorithms to the UML diagrams in the XMI format.

If we compare the elaborated design of the extended version of Cpp2XMI with the elab-
orated design of the original version of Cpp2XMI (Figure 3 in [KPvdBM06]), we see that
the diagram extractor has one more outgoing component, and that the new Cpp2XMI
produces more output. In general, we added extra logic to the diagram extractor. This
extra logic extracts state machine diagrams from the source code, and generates it as
XMI state machine diagrams (without layout). Subsequently, the tool calls some other
functions that add position information to the diagram, and output this all as XMI with
layout.

In the next section, the logical view of our reverse engineering tool is presented. Further-
more we will go deeper into the extended and additional modules.

4.2. Logical View

In this section, the static structure of the system (classes, packages, operations, and their
responsibilities) is explained. For the logical view of the original version of Cpp2XMI we
refer to Section 4.2.1 of [KPvdBM06].
The reverse engineering system consisted of nine packages. We extended it with another
package, i.e. the StateOrganizer. These packages were created based on the functionality
of the classes. Thus, modification and further additions can be done easily. A brief
description of these packages is given in Table 4.1.

Main classes and their relations are shown in Figures 5 and 6 in [KPvdBM06] and Figure
4.2. Only the most important entities are shown (for space reasons), with no indication
of their properties and merely with methods for those entities that are of interest for
state machine extraction. The Store class is an interface that allows storing or retrieving
data from the internal structure. The main requirement on the internal structure is that it
should contain all the information necessary for the reverse engineering algorithms to work.
Thus, it plays a central role in the design of the reverse engineering tool. Furthermore
the App class plays an important role too. The App class basically controls the reverse
engineering process. It acts as the controller that sends the data through the filters of the
reverse engineering process, as was discussed in Section 4.1.

4.3. The diagram extractor module

As stated before, we adapted several modules of the original Cpp2XMI tool. The biggest
and most important changes were made to the diagram extractor module. A detailed
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Package Description
Main • Contains the root class to initialize and run the system (Main class).

• Depending on the parameters given by the user, the Main package
initializes Preprocessor, ExecColumbus, SAXFilter, Parser, Writer, Col-
laborationOrganizer, StateOrganizer, Store, ClassLayout, DOTLayout,
and SequenceLayout. If the user wants to generate only class diagrams,
no other organizers not need to be created. And if users wants to gen-
erate only state machine diagrams, no other organizers are needed as
well.

Columbus • Contains the ExecColumbus class, which is responsible for the execu-
tion of Columbus command-line tools.

Pre-
processor

• Changes C++ source code for the needs of Columbus. Also makes
changes to anonymous structs.

Filter • Filters irrelevant information from CppML (CppMLFilter) and XMI
(XMLFilter) outputs of Columbus.

Parser • Extracts necessary information from Columbus XMI/CppML files.
• Encapsulates the extracted information into the Data class instance
and passes it to the Store module.
• Searches for state machine patterns and passes the states and events
to the Store module.

Store • Stores all data in the internal object structure.
Collaboration
Organizer

• Gets data about attributes and function calls from the Store module.
• Implements algorithms for the creation of objects and their messages.
• Stores created objects and messages in the Store module.

Activity Or-
ganizer

• Gets data about various types of expressions (e.g. function calls, con-
trol statements, binary operations and variables) from the Store module.
• Implements algorithms for the creation of activity nodes (actions and
decisions) and transitions between them.
• Stores created activity nodes and transitions in the Store module.

State Orga-
nizer

• Gets data about states and events from the Store module.
• Implements algorithms for the creation of states and transitions.
• Stores created state nodes and event transitions.

Writer • Writes data from the Store module into the XMI file.
Layout • Applies the ranking layout algorithm (ClassLayout) to create a layout

for class diagrams.
• Applies the DOT layout algorithm (DOTLayout) to create a more
optimal layout for class diagrams.
• Applies SequenceLayout algorithm to create a layout for sequence
diagrams.
• Applies the StateDot layout algorithm (StateDotLayout) to create a
more optimal layout for state machine diagrams.

Table 4.1.: Package Responsibilities Description
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Figure 4.2.: Class Diagram
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overview of the design of the diagram extractor is shown in Figure 4.3. We will focus on
the adaptions and extensions in this reverse engineering process. In Figure 4.3 these are
displayed by gray (rounded) boxes.

Figure 4.3.: Detailed view of the diagram extractor and layout generator

4.3.1. CppML Parser

The most important change to the design of Cpp2XMI is the addition of an extra parser.
The original tool already had a CppML parser. However, this parser does not completely
extract the information that we need to extract state machine diagrams. Therefore, we
implemented our own parser for CppML. We could have chosen to adjust the CppML
parser, but this would potentially break the reverse engineering of class, sequence and
activity diagrams. This second CppML parser further abstracts itself from the C++
structure. Thus, this new parser does not look for object-oriented characteristics of C++,
but it mainly focuses on finding state machine patterns in the AST. This parser traverses
the AST and checks whether the branches of the AST can be mapped to the state machine
patterns. If this is the case, state names are extracted from the AST. Furthermore we
extract which transitions go from one state to another state and what event causes this
transition to take place. All this information is stored in an internal data structure. First,
we will take a closer look to the CppML format. Subsequently we will discuss the new
CppML-parser more thoroughly.
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CppML

Input for the diagram extractor module is a CppML file, which contains the AST of the
C/C++ source code that is being reverse engineered. CppML is an XML format that
contains all the information from this AST. CppML is produced by the ExportCpp tool,
which is part of the Columbus/Can toolset. It has a structure according to the Columbus
Schema. The original version of Cpp2XMI uses this as a basis to generate sequence and
activity diagrams. The new version of Cpp2XMI also generates state machine diagrams
using CppML as a basis. So with CppML we can represent the abstract syntax tree of
C/C++ source code in a XML-like way. This representation was developed with the
following goals in mind:

• Human readable: The representation must be easy to understand just by quickly
glancing over the file.

• Easy to parse and process without the need for proprietary software

• Maybe a first step towards a C++ inter exchange format. Using CppML as a
common format for C/C++ source code will enable independent analysis tools to
be integrated and to exchange analysis information. A lot of discussion among
researchers across numerous universities has made it clear that there is a need for a
common format.

A smaller piece of C-code together with its CppML representation are shown in Listings
10 and 11. For a C++-example we refer to Figure 7 in [KPvdBM06].

Listing 10 Example C-program

1 typedef struct
2 {
3 char name [ 2 0 ] ;
4 int i d e n t i f i e r ;
5 } ob j e c t ;
6

7 void main ( int argc , int ∗argv )
8 {
9 ob j e c t o1 ;

10

11 s t r cpy ( o1 . name , ”Object 1” ) ;
12 o1 . id = 1 ;
13

14 p r i n t f ( ” Id o f \%s i s \%d” ,
15 o1 . name , o1 . id ) ;
16 }

Additional Parser

The Parser3 class is a new CppML parser, that is build to look for the state machine
patterns. It traverses the AST and inspects it for possible state machines by examining
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Listing 11 The CppML code that maps to the C-program

1 <s t r u c :C l a s s id=” id101 ” name=”#AnonStruct#”>
2 <s t ru c :Ob j e c t id=” id109 ” name=” i d e n t i f i e r ” />
3 <s t r u c :C l a s s>
4 <s t ruc :Func t i on id=” id110 ” name=”main”>
5 <s t ruc :Parameter id=” id111 ” name=” argc ” />
6 <s t ruc :Parameter id=” id112 ” name=”argv” />
7 <struc :hasBody>
8 <statm:Block id=” id116 ”>
9 <expr:Assignment id=” id128 ”>

10 <expr :MemberSelect ion id=” id129 ”>
11 <expr : Id name=”o1” id=” id130 ” />
12 <expr : Id name=” id ” id=” id131 ” />
13 </ expr :MemberSelect ion>
14 <e x p r : I n t e g e r L i t e r a l id=” id132 ” value=”1”/>
15 </ expr:Ass ignment>
16 <expr :Funct ionCa l l id=” id133 ”>
17 <expr : Id name=” p r i n t f ” id=” id134 ” />
18 <expr:hasArguments>
19 <exp r :Exp r e s s i onL i s t id=” id135 ”>
20 <e x p r : S t r i n gL i t e r a l id=” id136 ”
21 value=”&quot ; Id i s \%d&quot ; ” />
22 <expr :MemberSelect ion id=” id140 ”>
23 <expr : Id name=”o1” id=” id141 ” />
24 <expr : Id name=” id ” id=” id142 ” />
25 </ expr :MemberSelect ion>
26 </ exp r :Exp r e s s i onL i s t>
27 </ expr:hasArguments>
28 </ expr :Funct ionCa l l>
29 </ statm:Block>
30 </ struc :hasBody>
31 </ s t ruc :Func t i on>
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the branches of the tree for similarities to the state machine patterns as defined in Chapter
3.
For a global overview of the pattern finding process we refer to the pseudo code listed in
Listing 12. This pseudo code describes the general algorithm that is used to traverse the
AST and extract the state machine from source code.

Listing 12 Pseudo code of state machine finding process

1 Traverse AST and s t o r e a l l enumerates and s t r u c t s
2 Traverse AST and s t o r e a l l funct ion−branches
3 FOR a l l Control Funct ions with event parameter
4 IF the re are Switch−statements i n s i d e these branches
5 FOR EACH Switch−statement { s ta te−switch }
6 IF cond i t i on o f the switch == va r i ab l e o f type enumerate ( s t a t e v a r i a b l e )
7 FOR EACH case−block
8 IF the re are Switch−statements i n s i d e these case−block
9 FOR EACH Switch−statement { event−switch }

10 IF cond i t i on o f the switch == va r i ab l e o f type enumerate ( event )
11 FOR EACH case−block
12 get a l l ass ignments ( i n c l ud ing in f i r s t l e v e l f un c t i on s )
13 FOR EACH assignment
14 IF l e f t −hand−s i d e o f the ass ignment == s t a t e v a r i ab l e
15 IF r ight−hand−s i d e == element o f an enumerate ( s t a t e )
16 s t o r e s t a t e and t r a n s i t i o n

4.3.2. State Organizer

The state machine organizer has functionality to store, and retrieve states. Furthermore,
it checks for duplicate states, duplicate events between states, and basically performs all
the logic that is needed for storing, building and checking of state machines. The state
organizer class also implements a function that can check if states are end- or start-states.
Thus, it can check for a certain state if it has incoming/outgoing transitions. If a state
does not have outgoing transitions, we call it an end-state. If a state has no incoming
transitions, we call it a start-state.
Additionally, this organizer transforms this internal state machine representation into a
UML diagram by creating XMI tags without layout information. All this information is
placed in the adjusted internal data structure store.

4.3.3. Storage

As stated before, we have adjusted several pieces of the original reverse engineering tool
to extend Cpp2XMI with the option of reverse engineering state machine diagrams from
legacy source code. We also modified the internal storage structure. In this section we
will go deeper into these changes.
The new feature of Cpp2XMI is to extract state machine from source code by looking for
state machine patterns. When we find such a pattern, we need to store it in this internal
structure. Therefore we expanded the structure with functions for storing, retrieving and
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searching of state machines, states and transitions.
We implemented two extra objects. One represents States, the other represents transi-
tions. Furthermore we made an extra class StateMachine that holds these states and
transitions and has methods for retrieval of these state machines. The instances of this
StateMachine object represent the state machines that are found in the source code. With
each state machine we store a name, which refers to the control function and file name in
which the state machine is implemented.

4.4. The layout creator module

The new feature of Cpp2XMI is to extract state machines from source code. Like de-
scribed in previous sections, we added logic to our tool that searches for state machine
patterns. Furthermore we added extra storage options, to store states and transitions per
state machine. The state machines are stored in the internal structure without layout
information. Because there is no layout information available, all diagrams look messy
when importing them into CASE tools. Therefore we extended the layout creator module
with the option to add layout to the exported state machine diagrams.
First we need to export all state machines into an intermediate format, i.e. the DOT-
format. Then we call the DOT-tool, which calculates position information. Next, we
extract this position information, and store this in the internal storage. The last step of
the layout creator module is to export all the information from the internal storage to a
format suitable for importing into CASE tools.

The implemented layout-algorithms were inspired by the Class layout generator. Hence,
we adopted the same approach for calculating position information as was done for calcu-
lating position information for the class diagrams via the DOT algorithm. Therefore we
implemented a State-DOT-layout algorithm that is implemented in the StateDOTLayout
class.
First, we output all state and transition data into a file in DOT format. To export these
state machine diagrams we need to modify our writer class. At first we needed an extra
method that outputs the data from the internal storage to a file in the DOT-layout for-
mat. For this step we iteratively get all state machines from a internal list and create
separate DOT-files for each state machine. Each DOT-file contains the states and transi-
tions between these states. We map each state to a node in the DOT-format, and we map
each transition to an edge. For these steps we created createPicture method inside the
StateDOTLayout class.
DOT is a diagram specification in a simple text format as can be seen in the example of
Listing 13. With this format we can describe diagrams. DOT-files act as input for the
DOT-tool, which generates diagrams in various output formats. The DOT-tool is part of
the Grahpviz framework [EGK+03].
Subsequently Cpp2XMI feeds these output files to the DOT-tool to produce layout infor-
mation in the PLAIN format. An example of the PLAIN output can be seen in Listing 14.
From this PLAIN output we can extract the coordinates for the corresponding elements
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of the diagram. The coordinates of nodes represent the coordinates of states, and edges
are transitions between those states. The coordinates are extracted for all state elements
of all state machine diagrams and are stored into the internal data structure. These coor-
dinates can then be used to create the layout in the XMI format. We have to remark that
this layout is CASE tool dependent and hence whether or not it is correctly interpreted
depends on if the CASE tool understands the XMI-extension.
Furthermore we use the DOT-tool to generate pictures of the extracted state machines.
Figure 4.4 shows the diagram that corresponds to the DOT file of Listing 13. When
extracting state machine diagrams from source code the nodes in the diagram represent
states, and the edges in the diagram represent transitions between these states.

Listing 13 Example of a DOT file

1 digraph G {
2 edge [ fontname=”He lve t i ca ” , f o n t s i z e =10] ;
3 node [ fontname=”He lve t i ca ” , f o n t s i z e =10, shape=Mrecord ] ;
4 STATE A [ l a b e l=”{STATE A}” , fontname=”He lve t i ca ” , f o n t s i z e =10 . 0 ] ;
5 STATE B [ l a b e l=”{STATE B}” , fontname=”He lve t i ca ” , f o n t s i z e =10 . 0 ] ;
6 STATE C [ l a b e l=”{STATE C}” , fontname=”He lve t i ca ” , f o n t s i z e =10 . 0 ] ;
7 STATE A −> STATE B [ l a b e l=”EVENT1” , d i r=back , a r r owta i l=none ] ;
8 STATE A −> STATE C [ l a b e l=”EVENT2” , d i r=back , a r r owta i l=none ] ;
9 STATE B −> STATE B [ l a b e l=”EVENT1” , d i r=back , a r r owta i l=none ] ;

10 STATE B −> STATE C [ l a b e l=”EVENT2” , d i r=back , a r r owta i l=none ] ;
11 }

Listing 14 Example of a PLAIN file

1 graph 1 .00 3 .09 4 .44
2 node STATE A 2.69 4 .19 0 .81 0 .50 ”{STATE A}” s o l i d Mrecord
3 node STATE B 0.40 2 .38 0 .81 0 .50 ”{STATE B}” s o l i d Mrecord
4 node STATE C 2.44 0 .58 0 .81 0 .50 ”{STATE C}” s o l i d Mrecord
5 edge STATE A STATE B 4 2.37 . . . 2 .72 ”{TRUE} EVENT1” 1 .98 3 .29 s o l i d
6 edge STATE A STATE C 4 2.68 . . . 0 .97 ”{TRUE} EVENT2” 2 .75 2 .38 s o l i d
7 edge STATE B STATE B 7 0.81 . . . 2 .23 ”{TRUE} EVENT1” 2 .01 2 .38 s o l i d
8 edge STATE B STATE C 4 0.68 . . . 0 .93 ”{TRUE} EVENT2” 1 .77 1 .48 s o l i d

4.4.1. XMI writer

Besides exporting the state and transition data into DOT-files, we also export the state
machine, states, transition data and the corresponding layout information into the XMI-
export file and into a picture. This is the last step of the reverse engineering process.
XMI-tags with position information are written into a file, which could then be viewed
and edited by a CASE tool that is capable of viewing/importing XMI-files. This way
the state machine diagrams can be imported by CASE tools. We have to remark that
layout is CASE tool dependent and hence whether it is correctly interpreted depends on
if the CASE tool understands the XMI-extension. To overcome this layout issues, we
also implemented a jpg-exporter, which exports the state machine diagrams into a picture
format that can be viewed with any ordinary image-viewer.
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Figure 4.4.: Diagram after conversion of DOT file to a picture

To make this export possible we added the createStateXMI and createPicture methods
and adjusted the writeLayout method. The createStateXMI method generates the
internal structure into the XMI-format. The createPicture method generates the state
machine diagram as a jpg-file. Now we will discuss the XMI-format.

XMI

XML Metadata Interchange (XMI) is a standard in which we can exchange metadata
about models. It is a commonly used exchange format between several CASE tools. It
is based upon eXtensible Markup Language (XML). If we dive into the XMI-code that
Cpp2XMI produces, we can identify the state machine which is available in the source
code. However, from this XMI-format we cannot determine what nested-choice pattern
was used, and it is impossible to reconstruct the source code. In Listing 15 we see an
example of the XMI which is produced by Cpp2XMI. It defines all the possible states of
the state machine in the <UML:SimpleState> nodes. In the <UML:Transition> nodes
the transitions between all states are defined.

A remark that we have to make is that the XMI specification does not implement position
information of the elements of diagrams. This implies that we would need to manually
position the states in a diagram. The transitions between states are then automatically
placed by the CASE tool.
However the XMI-specification allows us to add extensions to XMI. These extensions can
be CASE tool specific. Therefore we added the layout information of XMI which can be
interpreted by Borland Together, of which we can see an example in Listing 16. Basically
for every element that is part of a state machine diagram we store its position information
in the geometry attribute. The position information is calculated by the layout algorithms
of Cpp2XMI, as is described in the beginning of Section 4.4.
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Listing 15 XMI-code, State Machine definition

1 <UML:Model name=”StateMachineModel ” xmi . id=”myid”>
2 <UML:Namespace . ownedElement>
3 <UML:StateMachine name=”OBJ control ( example . i ) ” xmi . id=”SM OBJ control”

context=”myid”>
4 <UML:StateMachine . top>
5 <UML:CompositeState xmi . id=”UMLCompositeState . 0 ” name=”TOP”

stateMachine=”SM OBJ control”>
6 <UML:CompositeState . subvertex>
7 <UML:SimpleState name=”STATE A” xmi . id=”STATE A”

conta ine r=”UMLCompositeState . 0 ” />
8 <UML:SimpleState name=”STATE B” xmi . id=”STATE B”

conta ine r=”UMLCompositeState . 0 ” />
9 <UML:SimpleState name=”STATE C” xmi . id=”STATE C”

conta ine r=”UMLCompositeState . 0 ” />
10 </UML:CompositeState . subvertex>
11 </UML:CompositeState>
12 </UML:StateMachine . top>
13 <UML:StateMachine . t r a n s i t i o n s>
14 <UML:Transition xmi . id=”STATE A−>STATE B”

stateMachine=”SM OBJ control” source=”STATE A” ta rg e t=”STATE B”
/>

15 <UML:Transition xmi . id=”STATE A−>STATE C”
stateMachine=”SM OBJ control” source=”STATE A” ta rg e t=”STATE C”
/>

16 <UML:Transition xmi . id=”STATE B−>STATE B”
stateMachine=”SM OBJ control” source=”STATE B” ta rg e t=”STATE B”
/>

17 <UML:Transition xmi . id=”STATE B−>STATE C”
stateMachine=”SM OBJ control” source=”STATE B” ta rg e t=”STATE C”
/>

18 </UML:StateMachine . t r a n s i t i o n s>
19 </UML:StateMachine>
20 </UML:Namespace . ownedElement>
21 </UML:Model>

47



Listing 16 XMI-code: State Machine layout information

1 <UML:Diagram xmlns:UML=”// org . omg/UML/1 .3 ” xmi . id=” idOBJ control ”
name=”OBJ control ” diagramType=”StateDiagram” s t y l e=””>

2 <UML:Diagram . element>
3 <UML:DiagramElement xmi . id=”OBJ contro lState0 ”

geometry=” Le f t =1347;Top=−2097;Right=409;Bottom=100;”
sub j e c t=”STATE A”>

4 <UML:PresentationElement . sub j e c t>
5 <Foundation . Core . ModelElement xmi . i d r e f=”STATE A” />
6 </UML:PresentationElement . sub j e c t>
7 </UML:DiagramElement>
8 <UML:DiagramElement xmi . id=”OBJ contro lState1 ”

geometry=” Le f t =201;Top=−1194;Right=409;Bottom=100;” sub j e c t=”STATE B”>
9 <UML:PresentationElement . sub j e c t>

10 <Foundation . Core . ModelElement xmi . i d r e f=”STATE B” />
11 </UML:PresentationElement . sub j e c t>
12 </UML:DiagramElement>
13 . . .
14 <UML:DiagramElement xmi . id=” OBJ contro lTrans i t ion0 ”

geometry=” Le f t =0;Top=0;Right=0;Bottom=0;” sub j e c t=”STATE A−>STATE B”>
15 <UML:PresentationElement . sub j e c t>
16 <Foundation . Core . ModelElement xmi . i d r e f=”STATE A−>STATE B” />
17 </UML:PresentationElement . sub j e c t>
18 </UML:DiagramElement>
19 . . .
20 </UML:Diagram . element>
21 </UML:Diagram>

4.4.2. JPG writer

When we apply our tool to the source code, we eventually end up with two export-formats
when reverse engineering state machine diagrams. One of them is XMI, which we dis-
cussed in Section 4.4.1. The other export format is a visual representation of the state
machine diagram in jpg-format.
The XMI output can be used in several CASE tools, however it does not give us a picture
of how the state machine diagram looks like. Therefore an jpg-export function was im-
plement into Cpp2XMI. This function automatically exports the state machine diagrams
into figures which can be viewed with an image-viewer. An example of a figure generated
by Cpp2XMI can be seen in Figure 4.5. In this diagram-export, states are automatically
positioned, which makes it an easy format to quickly view the results of the state machine
extraction.

4.5. Improvements to Cpp2XMI

Although we have extended Cpp2XMI with the option to extract state machines from
source code, we still find things that need improvement to make the Cpp2XMI tool work
better.
One of the things that could be improved to Cpp2XMI is the use of a different CppML
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Figure 4.5.: Example: JPG Figure, State Machine figure with layout

parser for state machine extracting. The current CppML parser for state machine ex-
tracting is based on the SAX Parser. Our algorithms to detect state machine patterns
traverse the AST multiple times. Due to the size and structure of the AST and due to the
functioning of the SAX parser, this results in high memory consumption, and therefore
this leads to performance issues. Multiple ways exist to overcome these issues. First of
all we could use a different XML parser, which would traverse the AST more efficiently.
Another option would be to modify our algorithms to traverse the AST less frequently.
Third, transformation of the CppML into internal data structures, for instance by using
the original CppML parser developed by Elena Korshunova, followed by the application
of our algorithm to the internal data structure. We have chosen not to pursue this latter
approach because not all source code is mapped to the internal data structure.
Another bug we have discovered during the case study is the inability of the SAX parser
to cope with escape characters in the source code (hex 1B). This leads to a null-pointer
exception raised in the SAX-parser class. The ideal solution would be to adjust the SAX
parser so it can read strings with escape characters correctly. A workaround would be
to transform all escape characters into other characters, or remove the escape characters
completely from source code. We can safely apply this workaround solution for our state
machine extraction method, as we do not expect escape characters to be used in the def-
initions of state machines.
Another improvement to Cpp2XMI is to correct the depth of the function call. As stated
in Section 3.5.6 we currently only look for state transitions in functions called directly
from within the switches. We do this to overcome the risk of potentially ending up in
an infinite loop. We could implement some bookkeeping function to keep track of which
functions were already checked. Hence reducing this risk to infinite loops to zero.
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4.6. Summary

In this chapter we discussed the new architecture of Cpp2XMI. We focused on the con-
ceptual designs of Cpp2XMI. We particularly went deeper into the changed and added
modules of Cpp2XMI that implement the extraction of state machines from source code.
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5. Case Study

In this chapter we describe the case studies that were used to test our reverse engineering
tool. First we will briefly introduce the FSC-system that forms the basis for the two case
studies.
For the first case study we applied our reverse engineering tool to the runtime system
of FSC, a product that was provided by Vanderlande Industries. The runtime system
consist of approximately 200K Source Lines of Code (SLoCs). From this system we try to
extract state machines via pattern matching. Furthermore, we extract some metrics which
indicate how many state machines could be implemented in the system. Subsequently, we
will interpret these metrics.
For the second case study we applied our reverse engineering tool to the Gappex compo-
nent of the runtime system of Version 5 of FSC. With this case study we show that our
tool can generate up-to-date documentation that can replace the old out-of-date docu-
mentation.
We will end this chapter with conclusions that were drawn based upon this case study.

5.1. FSC

The FSC is a universal software product developed by Vanderlande Industries. Its main
task is to control the automated material handling systems. The development of FSC
started approximately 15 years ago. Over 100 man-years were put into the development
of the current FSC versions. Though FSC was implemented in C, it is based on an object-
oriented model. The software was initially written in C and some parts were rewritten to
C++. More about the FSC software system can be found in Section 1.3.
Version 5 and 6 of FSC are currently used by customers all over the world. Therefore
maintenance of the current versions is still a key task of the FSC-team. However, the doc-
umentation of these versions of FSC are out-of-date as several modifications in the design
were made, e.g. by enhancements or refactorings. The modifications automatically have
devaluated existing documentation. Since up-to-date documentation is missing, mainte-
nance is hard because understanding the code is problematic.
As mentioned before, FSC contains several state machines. There are multiple abstrac-
tion levels at which we can identify these state machines, as was explained in Section 3.1.
However, we will focus on the state machines of the components of material handling sys-
tems. These state machines are implemented in the runtime system of FSC, which is the
core of the system. It communicates with all hardware. The runtime system handles all
events, and stores and updates tracking information of packages. The runtime system is
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the set of modules that can be used to control a material handling system. For instance,
the Graphical User Interface does not belong to the runtime system. The size of this
runtime system for version 6 of FSC is approximately 200K SLoC. The above mentioned
reasons therefore make it an ideal candidate for our case study.

5.2. Application of Cpp2XMI to FSC V6

For a first case study, we have applied our reverse engineering tool to the runtime system of
FSC Version 6. The source code for the runtime system consists of approximately 200K
SLoC. The total size of the source code is approximately 11MB. The Abstract Syntax
Tree (AST) of the source code of the runtime system in CppML format is approximately
170MB large.
At the moment 27 state machines have been extracted from the code of Version 6 of FSC.
All these state machines are implemented by means of the ‘switch-within-switch’-pattern,
see Section 3.5. We have extracted some metrics from the source by applying the metrics-
tool presented in Appendix B to the AST of this runtime system. These metrics can be
found in Table 5.1. We discovered that this runtime systems has 36 ‘switch-within-switch’-
constructs. From this we can conclude that ˜75% of the ‘switch-within-switch’-constructs
are used for state machines. Approximately 11K SLoC are needed for implementing these
‘switch-within-switch’-constructs. It is of course interesting to see why we missed these 9
‘switch-within-switch’-occurrences.

Metric # Extra information
‘Switch-switch’ occurrences 36 11901 SLoCs
‘Switch-if’ occurrences 268 31423 SLoCs
‘If-switch’ occurrences 160 10075 SLoCs
Functions 4718 178142 SLoCs
Functions with ‘control’ in its name 95 13740 SLoCs
Enumerates 356 1748 elements
Enumerates with ‘state’ in its name 78 387 elements
Enumerates with ‘event’ in its name 34 275 elements
Case labels of switches originating from enumerate-type 3346 -
Case labels of switches not from enumerate-type 0 -

Table 5.1.: Metrics extracted for the runtime system of FSC V6

Further investigation has shown that only one of these 9 ‘switch-within-switch’-occurrences
implements a state machine, i.e. the ‘switch-within-switch’-occurrence in the HostCioChan-
nelManager.cpp file. We missed this state machine implementation because this file is
implemented in true C++ code. This state machine is therefore implemented in the
object-oriented style. In the condition of the state-switch (outer-switch) there is a call to
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a method of the object. This method returns the current state of the system. Instead
of an assignment to the state-variable in the event-switch (inner-switch), there are calls
to methods of the object, with the new state as a parameter of this method. Hence,
this pattern implements a state machine, but it does not match with our state machine
pattern. Therefore we cannot discover this state machine.
The other 8 detected ‘switch-within-switch’-occurrences can be divided into two categories.
Five of these detected ‘switch-within-switch’-occurrences are in fact ‘switch-within-switch-
within-switch’-occurrences. Due to way our metrics are calculated these are counted as
a ‘switch-within-switch’-occurrence. In Listing 17 we see a small example of source code
from this category. In that example we see a three levels deep nested switch. The outer-
switch is still used for determining in which state the system currently is. The middle-
switch is used for determining which event needs to be handled. And the third and most
inner switch is used for determining some extra conditions. Hence, the third switch is
used to make conditional transitions. Note that the assignment to the state variable is
always performed in the most inner switch, but that this could be a second level or third
level switch. This is another property of the ‘switch-within-switch’-pattern.
However, our metrics-tool discovers the following switch-within-switch pairs:

• state-switch (line 4) / event-switch (line 7)

• state-switch (line 4) / condition-switch (line 12)

• event-switch (line 7) / condition-switch (line 12)

So our metrics-tool does let us believe that there would be three state machines imple-
mented in the source code. However these three switch-switch-pairs in the example are
implemented in one state machine. Our tool does extract the state machine for this ex-
ample correctly. The number of switch-switch-pairs does not directly correspond to the
number of implemented state machines. The number of state machines is less than or
equal to the number of switch-switch-pairs.

The second category of missed ‘switch-within-switch’-occurrences are those ‘switch-
within-switch’-occurrences that are used for additional debugging and logging information.
These 3 ‘switch-within-switch’-occurrences have the same structure as the ‘switch-within-
switch’-nested-choice pattern. However, they lack an assignment to the state variable
inside the inner-switches. Only debugging and logging information is produced in these
inner-switches. Hence, these inner-switches do not implement state-machines. They are
only used to check in which state the system is.
The size of the extracted state machines varied from 3 states up to 10 states. The num-
ber of transitions in the state machines varied from 3 up to 73 transitions. The average
number of transitions in the extracted state machine diagrams is approximately 20. In
the source code there are 356 enumerates implemented, of which 78 contains the word
‘state’, and 34 contains the word ‘event’ in their declaration. These latter two are likely
to be used for defining the type of state-variables and defining the events that could occur.
The complete source code of the runtime component of FSC contains ˜ 7400 functions.
These functions cover ˜ 178K SLoC. However, only ˜ 14K SLoC are needed for imple-
menting approximately 100 functions with the string ‘control’ in the function-name. We
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Listing 17 Switch-within-switch-within-switch occurrence

1 i n t CCodingScanner : :Control ( CModuleParcelData ∗pdata , TEvent event )
2 {
3 . . .
4 switch ( m state )
5 {
6 case EState NoParce l :
7 switch ( event )
8 {
9 case EEvent ParcelAtReadPos:

10 . . .
11 r e s u l t = Schedu l eParce lLe f t ( pdata ) ;
12 switch ( r e s u l t )
13 {
14 . . .
15 case 1 :
16 m state = EState WaitForLengthKnown ;
17 break ;
18 case 0 :
19 case 2 :
20 m state = EState WaitForParce lLeft ;
21 break ;
22 d e f a u l t :
23 break ;
24 }
25 break ;
26 . . .
27 case EEvent Parce lLe f t :
28 m state = EState NoParcel ;
29 . . .
30 }
31 break ;
32 . . . .
33 }
34 }
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assume that not all of these ˜ 100 functions implement the actual control-functions, but
this number gives a reasonable estimation of the number of control-functions. One of
the extracted state machines is shown in Figure 5.1, all transitions are decorated with
conditional events. However, there are two transitions with true-labels, indicating that
there are no condition for these transitions.
All the machines extracted were presented to the (software) engineers of the company and
their correctness as well as importance were confirmed by them.

Figure 5.1.: Extracted state machine diagram for the FlapFilter component of FSC V6

From internal documentation [Ind], we believe that there should be at least 49 state
machine diagrams in this runtime system of FSC Version 6. Hence, we believe that
the other state machines are implemented via other state machine patterns. Therefore
we extracted other metrics from this CppML file to expose whether these other state
machines are indeed implement with other patterns. In the source code we identified 268
‘if-within-switch’-constructs (covering ˜ 30k SLoC) and 160 ‘switch-within-if’-constructs
(covering ˜10k SLoC). These numbers indicate the maximum number of events that are
handled. The estimated number of state machines is expected to be much less.
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5.3. Application of Cpp2XMI to Gappex V5

We will now focus on a certain component of the runtime system of FSC version 5. We
shall take a closer look at the Gappex component. The Gappex is a piece of hardware
that can control the gaps between bags/packages/boxes/etc. It is controlled by a sepa-
rate module of the FSC software, which is being implemented by the gappex run.cpp and
gappex run.h files (sources can be found in Appendix A). Figures 5.2 and 5.3 show the
state machine diagrams of the Gappex component of the runtime system of FSC version
5. Figure 5.2 is the original state machine diagrams created by the FSC designers. This
model is still being used in the current documentation. Figure 5.3 is the state machine
diagram that was extracted by our reverse engineering tool. We can see that these dia-
grams more or less resemble each other. Together with the domain experts we tried to
determine the origin of the differences.
In the new state machine diagram we see a new state, called EState_InPowerSaving. In

2007-2008 FSC was expanded with Power Savings options. This means that the automated
material handling system puts itself into a standby-mode when no bags/packages/box-
es/etc. have passed the system for a configured time. This way the system consumes less
power. For this feature a new state was implemented, with corresponding transitions to
other states.
Another big change in this Gappex component is the change in implementation of the
automatic and manual mode of the Gappex. In the original design these states were split.
However, in the actual implementation these states are merged into one state, called
EState_stopping. This change automatically leads to changes in transitions to and from
these automatic and manual states.
We can state that the original state machine diagram and the extracted state machine
diagram are for ˜ 70% the same. The differences are made by the previous observa-
tions. From these two state diagram we can conclude that the extracted diagram contains
more specific information. Hence this actually represents the state machine diagram that
is implemented in the code, while the original diagram specifies how the state machine
originally should have been implemented. Furthermore, we can conclude that this compo-
nent of the runtime system of FSC has changed compared to its original implementation.
Thus, by using our reverse engineering tool we can generate up-to-date documentation,
and identify flaws in the current documentation.
We have to remark that in the original state machine diagram the transitions are not
labeled by their events. Hence it is impossible to make a complete comparison.

5.4. Conclusions

The case study showed that the recovered state machine diagrams are meaningful, but
there are some differences due to a more abstract system representation of the diagrams
made by the designer. While performing this case study, we found serious deficiencies of
the reverse engineering tool. For example, there is a serious drawback to the CppML for-
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Figure 5.2.: Original design of the state machine diagram for the Gappex component of
FSC V5
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Figure 5.3.: Extracted state machine diagram for the Gappex component of FSC V5
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mat. The size of the CppML-file explodes. For small amounts of source code, the CppML
becomes rapidly large. Another example is that the SAX-parser, on which our CppML-
parser is based, breaks when parsing escape characters (hex 0x1B). We implemented a
workaround for this by replacing all escape characters by spaces. Furthermore we detected
a drawback of our reverse engineering tool. Due to the size of the CppML-files, our tool
uses a lot of resources (up to 1.8GB of RAM). However the normal 32-bit version of Java
cannot reserve more than 1GB of RAM memory. Therefore to apply our tool to the com-
plete FSC source it has to run on 64-bit versions of Java. Also the reverse engineering
process consumes a lot of time when processing the complete runtime system in one go.
We therefore recommend to apply the reverse engineering tool to smaller subsets of the
source code of the runtime system.

5.5. Summary

In this chapter we discussed the case study. We applied our reverse engineering tool to
Version 6 of FSC. With this case study we showed that our tool is capable of extracting
state machine diagrams from source code. From the results of reverse engineering state
machines from the source code of FSC version 6 we can conclude that our tool extracts all
state machines that are implemented by the ‘switch-within-switch’-pattern in the source
code.
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6. Conclusions

This chapter discusses the results of the project. First, we will briefly mention what the
problem was and how it was solved. Subsequently, we will analyze the achieved goals.
After that, suggestions for possible directions of future work are given.

6.1. Problem and solution

Like in most iterative software development processes evolution of the documentation
does not keep up with the evolution of the software product itself. Design changes are
forgotten to be reflected in the documentation. This makes the existing documentation
less valuable. Especially during maintenance this can pose a problem. Maintainers of the
software can experience difficulties when trying to understand how the software actually
works. This problem also occurred with the FSC-software developed by Vanderlande In-
dustries.
During this project we build a prototype tool that was capable of extracting this docu-
mentation for a software system. There are several types of documentation that can be
reverse engineered for a software system. During this study we limited ourselves to the
extraction of state machines from legacy source code. With this kind of documentation
we tried to capture the dynamic behavior of the software system.
There are numerous way of extracting state machines for a software system. Our approach
uses programming patterns that are generally used to implement state machines. We look
for specific programming patterns in the source code, and automatically extract state
machines from these patterns. By reverse engineering state machines from source code,
we can extract up-to-date documentation that can be advantageous during maintenance.

6.2. Main Results

By means of this project we have shown that it is possible to extract state machine diagram
from source code. We developed a prototype tool that allows extracting state machine
diagrams from legacy C/C++ source code. The derived diagrams can be visualized by
current CASE tools.
Our approach uses pattern finding to search for state machines implementation in the
source code. There are several way of implementing state machines in source code. To-
gether with domain experts we identified which pattern was mostly used by their software
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system, and extended the Cpp2XMI tool to look for these patterns and extract state ma-
chines for this software system. We limited ourselves to the ‘switch-within-switch’-pattern
of the nested choice patterns family. For these patterns we can generate XMI-output and
produce figures that correspond to the state machines implemented by the software sys-
tem.
We extended Cpp2XMI with the option to extract state machines from source code.
Cpp2XMI can now reverse engineer the following UML diagrams: class, sequence, activ-
ity and state machine diagrams. The latter only works for the state machines that were
implemented by the ‘switch-within-switch’-pattern. However, our theory could easily be
applied to the other patterns as well.
We applied our reverse engineering tool to two case studies to validate our tool. The
first case study was the runtime environment of Version 6 of the FSC software developed
by Vanderlande Industries. We generated state machine diagrams for this system and
hand-checked them to see if they matched the state machines that were implemented by
the software. Metrics that were extracted from the source code of this runtime system
indicate that there are 36 ‘switch-within-switch’-occurrences. But only 27 of them map
to state machines.
Of these 9 missed ‘switch-within-switch’-occurrences one implements a state machine, but
it is implemented in C++. The other missed ‘switch-within-switch’-occurrences are due to
the fact that these switches are used for making conditional transitions, and due to the fact
that these switches do not implement a state machine, but are merely used for producing
debugging and logging information. From these extracted metrics we can further conclude
that more state machines are implemented in this runtime system. However, these state
machines are most likely implemented with other state machine patterns. Concluding, we
extracted all state machines implemented by the ‘switch-within-switch’-pattern.
The second case study was performed on the Gappex component of Version 5 of the
runtime system of the FSC software. We compared the diagram made by the designers
of the system with the extracted diagram. We saw that the system evolved, but the
documentation did not. More details on these case studies can be found in Chapter 5.

6.3. Future work

Reverse engineering is an extensive topic that involves various directions. During the
development of our tool we saw several opportunities to further expand our prototype
tool.

The main thing that can be further investigated is the implementation of other patterns.
In this prototype we only implemented the ‘switch-within-switch’ pattern of the nested
choice patterns family. With relatively little work we think it may be possible to adapt
the tool to also generate state machines that are implemented by other nested choice
patterns, or even a mixture of these nested choice patterns.
Furthermore, we indicated other patterns that are commonly used to implement state
machines in software systems. Future work could be to adapt the tool so it can also
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extract state machines for these patterns.

Another interesting topic is the investigation of the possibilities to use the results of
our state machine reverse engineering tool as input for model checkers. This requires
expansion of the tool with an export format that can be used as input for one or more
model checkers. Software developers can then check their (improved) design by properties
they described in the language of the model checker. The properties are fed as input to
the model checker. If certain properties do not hold, model checkers will display which
paths you should execute to violate that property. Ideally, you would like to have the
feedback of the model checkers exported back to the tool again, thus making visible which
part of the source code is responsible for violating a certain property.

Further brainstorming on this topic results in thoughts about forward engineering models.
Ideally it would be great to first reverse engineer the current software system, followed by
adjusting these models to the new needs and finally regenerating new source code from
these adjusted models via forward engineering.

More work can be carried out regarding the level of abstraction of the state machines.
Our tool currently only extracts very local state machines. The reverse engineered state
machines map to components of systems. However, during the project we saw opportuni-
ties to extract higher level state machines. This could be done by either combining state
machines, i.e. by looking for states with common names, or transitions that have common
names.
Another option to extract higher level state machines is by using logging information, and
combining the logging information with the output of our tool. We have to remark that in
some systems it is not always possible to generate extra logging, for instance in realtime
systems (due to the fact that extra logging could lead to deadline misses).

Another feature that could be added to our tool is the option to extract OnEntry and
OnExit values. The specification of UML state machines declares the option to store
OnEntry and OnExit codes. We think that our tool could map the source code surrounding
the actual assignment to the state variable to these OnEntry and OnExit values. This
feature could lead higher storage of information inside the diagram. We have to remark
that it is probably not wise to directly display this information in the diagram, since this
would result in unreadable diagrams. However, storing this information in XMI-output
would not pose a problem. Hence, this extra information could be useful in the earlier
mentioned forward engineering option.

Further investigations can be performed in the fields of zooming and filtering. We can
imagine that our tool could produce huge state machine diagrams. This problem can be
overcome by either implementing some sort of filtering mechanism, or by implementing a
‘zoom’ function that makes it possible for state machines to consist of sub-state machines.

Finally, we would like to mention that future work may include the use of different parsers.
Currently Cpp2XMI uses the Columbus/Can framework as a C/C++ parser. This has
some serious drawbacks, which are addressed in [KPvdBM06]. Furthermore Columbus/-
Can limits our tool to the C and C++ programming languages.
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Not only the C/C++ parsers are not optimal. Also the internal CppML parser that looks
for the patterns inside the CppML file is not optimal. We propose that changing this
parser could lead to enormous performance gains.

6.4. Recommendations

Finally, we recommend to use one of the previous nested choice patterns to implement state
machines in following version of the software system. Thus, it is always possible to reverse
engineer the state machines from source code and extract up-to-date documentation form
source code. Furthermore, we recommend to look at other state machine patterns when
implementing state machines. The current implementation has deficiencies. In general,
there is no separation of the state machine engine, the state transition information and
the action code. This can limit a programmer in understanding the dynamic behavior
modeled with the state machine. If the state-event space becomes large, this effect is
strengthened. Readability and understandability are key aspects when modifying and
enhancing the state machines.
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A. Source code of Gappex Component

A.1. Gappex run.h

1 . . .
2 typedef void ∗GAPPEX ID;
3 . . .
4 /∗=========================== func t ion pro to t ype s ========================∗/
5

6 extern GAPPEX ID GAPPEX init ( SHM HANDLE shm handle , GAPPEX DATA ∗ gappex data ) ;
7 extern int GAPPEX init objects ( GAPPEX ID GAPPEX id ) ;
8 extern int GAPPEX exit objects ( GAPPEX ID gappex id ) ;
9 extern int GAPPEX exit ( GAPPEX ID gappex id ) ;

10

11 extern int GAPPEX start ( GAPPEX ID gappex id ) ;
12 extern int GAPPEX stop( GAPPEX ID gappex id , unsigned c t r l pa r amet e r ) ;
13 extern int GAPPEX reset ( GAPPEX ID gappex id ) ;
14 extern int GAPPEX set nom speed ( GAPPEX ID gappex id , unsigned

perc nom speed ) ;
15

16 extern int GAPPEX clear tracking ( GAPPEX ID gappex id ) ;
17 extern int GAPPEX diag init al l ( GAPPEX ID gappex id ,
18 FSC DETAILED OBJECT CMD

de ta i l e d ob j e c t d i a g cmd ) ;
19 extern int GAPPEX diag object ( GAPPEX ID gappex id ,
20 const FSC NAME object name ,
21 FSC DETAILED OBJECT CMD

deta i l ed ob j e c t d i ag cmd ,
22 unsigned diag parameter ) ;
23

24 extern int GAPPEX set belt speed ( GAPPEX ID gappex id ,
25 unsigned beltno ,
26 unsigned be l t speed ) ;
27

28 extern int GAPPEX get max nr parcels ( SHM HANDLE shm handle , GAPPEX DATA
∗data ) ;

29 . . .

A.2. Gappex run.cpp

1 . . .
2 enum TControlEvent
3 {
4 EControlEvent Start ,
5 EControlEvent Stop ,
6 EControlEvent BeltNoError ,
7 EControlEvent BeltStarted ,
8 EControlEvent BeltStopped ,
9 EControlEvent StartupTimerExpired ,

10 EControlEvent PowerSavingActive ,
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11 EControlEvent PowerSavingInact ive
12 } ;
13

14 enum TState
15 {
16 EState Stopped ,
17 EState Stopping ,
18 EState Star t ing ,
19 EState Started ,
20 EState InPowerSaving ,
21 EState InError
22 } ;
23

24 . . .
25 struct GAPPEX RTD
26 {
27 GAPPEX DATA ∗ gappex data ;
28

29 int nr motors ;
30 MTR ID motor tab le [MAX GAPPEX MOTORS] ;
31

32 int nr pp i s ;
33 PPI ID pp i t ab l e [MAX GAPPEX PPIS ] ;
34

35 int n r s e c t i o n s ;
36 SEC ID sec owne r t ab l e [MAX GAPPEX SECTIONS ] ;
37 TSect ionIn fo s e c u s e r i n f o t a b l e [MAX GAPPEX SECTIONS ] ;
38 TSectionContext s e c c on t ex t [MAX GAPPEX SECTIONS ] ;
39

40 int n r s i n s ;
41 SIN ID s i n t a b l e [MAX GAPPEX SINS ] ;
42

43 int nr s ou t s ;
44 SOUT ID sou t t ab l e [MAX GAPPEX SOUTS ] ;
45 SOUT USER ID s ou t u s e r i d ;
46

47 int nr updates ;
48 CUpdate ∗ update tab l e [MAX GAPPEX UPDATES] ;
49

50 int nr s canne r s ;
51 SCAN ID scanne r t ab l e [MAX GAPPEX SCANNERS] ;
52

53 int nr pdexp ac t i ons ;
54 CParcelDataExport ∗ pdexp tab le [MAX GAPPEX PDEXP ACTIONS ] ;
55

56 int nr pdchk ac t i ons ;
57 PDCHK ID pdchk tab le [MAX GAPPEX PDCHK ACTIONS ] ;
58

59 int n r p s t a t e chk a c t i on s ;
60 PSTATECHK ID ps t a t e chk tab l e [MAX GAPPEX PSTATECHK ACTIONS ] ;
61

62 int nr hmps ;
63 HMP ID hmp table [MAX GAPPEX HMPS] ;
64

65 int nr bds ;
66 BD ID bd tab l e [MAX GAPPEX BDS ] ;
67

68 bool s ta r tup ;
69 bool b e l tE r ro r ;
70 FSC NAME main sec name ;
71 SEC USER ID ma in s e c u s e r i d ;
72 int n r b e l t s ;
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73 SEC USER ID be l t s [MAX GAPPEX SECTIONS−1] ;
74 CUpdate ∗ so r t ed update s [MAX GAPPEX UPDATES] ;
75

76 PIO NAME gappex a c c e l e r a t i on s e l e c t i o n p i o name ;
77 PIO ∗ g app e x a c c e l e r a t i o n s e l e c t i o n ;
78 int gappex a c c e l e r a t i on va l u e ;
79

80 PIO NAME conveyor mode se l ec t ion p io name ;
81 PIO ∗ conveyor mode se l e c t i on ;
82 EVENT conveyo r mode s e l e c t i on p i o even t ;
83 bool conveyor mode se l ec ted ;
84 int conveyor mode value ;
85

86 TIMER sta r tup t ime r ;
87 EVENT sta r tup t ime r ev en t ;
88

89 GAPCTRL ID gap c t r l i d ;
90

91 OVERALL STATE ID o v e r a l l s t a t e i d ;
92 OVERALL STATE VAL ∗ o v e r a l l s t a t e p t r ;
93

94 int perc nom speed ;
95

96 TState s t a t e ;
97 } ;
98

99 /∗==================== Struc tures , unions and enumerations =======∗/
100

101 /∗==================== Globa l func t i on pro to t ype s ================∗/
102

103 /∗==================== S ta t i c func t i on pro to t ype s ================∗/
104

105 stat ic int GAPPEX StartBeltSections (GAPPEX RTD ∗gappex ) ;
106 stat ic int GAPPEX StopBeltSections (GAPPEX RTD ∗gappex ) ;
107 stat ic int GAPPEX StopAllSections (GAPPEX RTD ∗gappex ) ;
108 stat ic bool GAPPEX get started (GAPPEX RTD ∗gappex ) ;
109 stat ic bool GAPPEX get stopped (GAPPEX RTD ∗gappex ) ;
110 stat ic bool GAPPEX get not in error (GAPPEX RTD ∗gappex ) ;
111 stat ic void GAPPEX set gappex acceleration (GAPPEX RTD ∗gappex ) ;
112 stat ic void GAPPEX reset gappex accelerat ion (GAPPEX RTD ∗gappex ) ;
113 stat ic void GAPPEX HandleMainSectionCommands (void ∗ context , SEC CMD cmd) ;
114 stat ic void GAPPEX HandleBeltSectionCommands (void ∗ context , SEC CMD cmd) ;
115 stat ic int GAPPEX attach sout state handler (GAPPEX RTD ∗gappex ) ;
116 stat ic int GAPPEX detach sout state handler (GAPPEX RTD ∗gappex ) ;
117 stat ic void GAPPEX sout state handler (void ∗ context , bool a v a i l a b l e ) ;
118 stat ic void GAPPEX handle conveyor mode select ion pio event (void ∗ context ,

EVENT event ) ;
119 stat ic int GAPPEX control start stop (GAPPEX RTD ∗gappex , TControlEvent event ) ;
120 stat ic void GAPPEX init structure (GAPPEX RTD ∗gappex ) ;
121 stat ic int GAPPEX in i t gappex acce l e ra t i on se l e c t i on (GAPPEX RTD ∗gappex ) ;
122 stat ic int GAPPEX exi t gappex acce l e rat ion se l ec t ion (GAPPEX RTD ∗gappex ) ;
123 stat ic int GAPPEX init conveyor mode select ion (GAPPEX RTD ∗gappex ) ;
124 stat ic int GAPPEX exit conveyor mode selection (GAPPEX RTD ∗gappex ) ;
125 stat ic int GAPPEX attach startup timer (GAPPEX RTD ∗gappex ) ;
126 stat ic int GAPPEX detach startup timer (GAPPEX RTD ∗gappex ) ;
127 stat ic int GAPPEX set startup timer (GAPPEX RTD ∗gappex ) ;
128 stat ic void GAPPEX reset startup timer (GAPPEX RTD ∗gappex ) ;
129 stat ic void GAPPEX handle startup timer events (void ∗ context , EVENT event ) ;
130 stat ic int GAPPEX compare sections ( const void ∗op1 , const void ∗op2 ) ;
131 stat ic int GAPPEX compare updates ( const void ∗op1 , const void ∗op2 ) ;
132 stat ic int GAPPEX init belts (GAPPEX RTD ∗gappex ) ;
133 stat ic int GAPPEX exit belts (GAPPEX RTD ∗gappex ) ;
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134 stat ic int GAPPEX init sorted updates (GAPPEX RTD ∗gappex ) ;
135 stat ic int GAPPEX exit sorted updates (GAPPEX RTD ∗gappex ) ;
136 stat ic int GAPPEX create motor (GAPPEX RTD ∗gappex , MTRDATA ∗mtr data ) ;
137 stat ic int GAPPEX create ppi (GAPPEX RTD ∗gappex , PPI DATA ∗ ppi data ) ;
138 stat ic int GAPPEX create section (GAPPEX RTD ∗gappex , SEC DATA ∗ s e c t i on da t a ) ;
139 stat ic int GAPPEX create sin (GAPPEX RTD ∗gappex , SIN DATA ∗ s i n da ta ) ;
140 stat ic int GAPPEX create sout (GAPPEX RTD ∗gappex , SOUT DATA ∗ sout data ) ;
141 stat ic int GAPPEX create update (GAPPEX RTD ∗gappex , UPD DATA ∗update data ) ;
142 stat ic int GAPPEX create scanner (GAPPEX RTD ∗gappex , SCAN DATA ∗ scanner data ) ;
143 stat ic int GAPPEX create pdexp action (GAPPEX RTD ∗gappex , PDEXP DATA

∗pdexp data ) ;
144 stat ic int GAPPEX create pdchk action (GAPPEX RTD ∗gappex , PDCHK DATA

∗pdchk data ) ;
145 stat ic int GAPPEX create pstatechk action (GAPPEX RTD ∗gappex , PSTATECHK DATA

∗ pstatechk data ) ;
146 stat ic int GAPPEX create hmp(GAPPEX RTD ∗gappex , HMPDATA ∗hmp data ) ;
147 stat ic int GAPPEX create bd (GAPPEX RTD ∗gappex , BD DATA ∗bd data ) ;
148 stat ic int GAPPEX create gapctrl (GAPPEX RTD ∗gappex , GAPCTRL DATA

∗ gapc t r l da t a ) ;
149 stat ic GAPPEX ID GAPPEX create (SHM HANDLE shm handle , GAPPEX DATA ∗ gappex data ) ;
150 stat ic int GAPPEX remove(GAPPEX ID gappex id ) ;
151

152 . . .
153

154 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
155 ∗
156 ∗ Function name : GAPPEX start stop control
157 ∗
158 ∗ Descr ip t ion : Based on GAPPEX module STD in f i g u r e 3 o f the ADD.
159 ∗ NOTE: Sta te s p e c i f i c event s are processed , o ther s are ignored
160 ∗
161 ∗ Parameters : gappex po in t e r to gappex runtime var
162 ∗ event type o f event to handle
163 ∗
164 ∗ Returns : 0 on succes , −1 on error .
165 ∗
166 ∗ On error : When an error has occurred , errno conta ins a va lue
167 ∗ i n d i c a t i n g the type o f error t ha t has been de t e c t ed .
168 ∗ ENOSYS − unknown event .
169 ∗
170 ∗ History :
171 ∗
172 ∗ When: Who: What :
173 ∗ 17−07−2000 J . Smeenk Creation
174 ∗ 26−04−2001 M. van Hoorn Changed operat ion f u n c t i o n a l i t y / d e f i n e s
175 ∗ 08−05−2001 M. van Hoorn Corrected s t a t e f a u l t s
176 ∗ 16−05−2001 M. van Hoorn Changed OVERALL STATE use
177 ∗ 21−05−2001 M. van Hoorn Implemented the POWER SAVING f un c t i o n a l i t y
178 ∗ 31−05−2001 M. van Hoorn Speedup the func t i on by removing unnecessary

code
179 ∗ 01−08−2001 M. van Hoorn Reset t imer a l s o when a s top command i s g iven

during s t a r t i n g
180 ∗ 29−01−2002 M. van Hoorn Adapted s t a r t sequence
181 ∗ 26−06−2003 M. van Hoorn Only s t a r t the t ra ck ing s e c t i on
182 ∗
183 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
184 stat ic int GAPPEX control start stop (GAPPEX RTD ∗gappex , TControlEvent event )
185 {
186 int r e t v a l ;
187

188 C LogEnter ( ”GAPPEX control start stop ” ) ;
189 C LogParamPointer ( ”gappex” , gappex ) ;
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190 C LogParamInt ( ” event ” , event ) ;
191 r e t v a l= 0 ;
192

193 switch ( gappex−>s t a t e )
194 {
195 case EState Stopped :
196 switch ( event )
197 {
198 case EControlEvent Start :
199 gappex−>s ta r tup = true ;
200

201 /∗ S tar t main ( t ra ck ing ) s e c t i on only ∗/
202 i f ( SEC start ( gappex−>ma in s e c u s e r i d ) < 0)
203 {
204 f s c p e r r o r ( ”%s %d” , FILE , LINE ) ;
205 r e t v a l = −1;
206 }
207 break ;
208

209 case EContro lEvent BeltStarted :
210 i f ( GAPPEX get started ( gappex ) )
211 {
212 gappex−>s t a t e = EState Sta r t ing ;
213 i f ( GAPPEX set startup timer ( gappex ) < 0)
214 {
215 f s c p e r r o r ( ”%s %d” , FILE , LINE ) ;
216 r e t v a l = −1;
217 }
218 }
219 break ;
220

221 case EControlEvent PowerSavingActive :
222 i f ( gappex−>s ta r tup )
223 {
224 gappex−>s t a t e = EState InPowerSaving ;
225 }
226 break ;
227

228 default :
229 break ;
230 }
231 break ;
232

233 case ESta te Sta r t ing :
234 switch ( event )
235 {
236 case EControlEvent Stop :
237 case EControlEvent BeltStopped :
238 i f (GAPPEX get stopped ( gappex ) )
239 {
240 gappex−>s t a t e = EState Stopped ;
241 }
242 else
243 {
244 gappex−>s t a t e = EState Stopping ;
245 }
246 GAPPEX reset startup timer ( gappex ) ;
247 break ;
248

249 case EControlEvent StartupTimerExpired :
250 gappex−>s ta r tup = f a l s e ;
251 gappex−>s t a t e = EState Star ted ;
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252 i f ( ! gappex−>conveyor mode se l ec ted )
253 {
254 GAPPEX set gappex acceleration ( gappex ) ;
255 i f ( GAPCTRL enable controller ( gappex−>g a p c t r l i d ) < 0)
256 {
257 f s c p e r r o r ( ”%s %d” , FILE , LINE ) ;
258 r e t v a l = −1;
259 }
260 }
261 break ;
262

263 case EControlEvent PowerSavingActive :
264 gappex−>s t a t e = EState InPowerSaving ;
265 GAPPEX reset startup timer ( gappex ) ;
266 break ;
267

268 default :
269 break ;
270 }
271 break ;
272

273 case EState Stopping :
274 switch ( event )
275 {
276 case EControlEvent Start :
277 gappex−>s t a t e = EState Stopped ;
278 gappex−>s ta r tup = true ;
279

280 /∗ S tar t main ( t ra ck ing ) s e c t i on only ∗/
281 i f ( SEC start ( gappex−>ma in s e c u s e r i d ) < 0)
282 {
283 f s c p e r r o r ( ”%s %d” , FILE , LINE ) ;
284 r e t v a l = −1;
285 }
286 break ;
287

288 case EControlEvent BeltStopped :
289 i f (GAPPEX get stopped ( gappex ) )
290 {
291 gappex−>s t a t e = EState Stopped ;
292 }
293 break ;
294

295 default :
296 break ;
297 }
298 break ;
299

300 case EState Star ted :
301 switch ( event )
302 {
303 case EControlEvent Stop :
304 case EControlEvent BeltStopped :
305 i f (GAPPEX get stopped ( gappex ) )
306 {
307 gappex−>s t a t e = EState Stopped ;
308 }
309 else
310 {
311 gappex−>s t a t e = EState Stopping ;
312 }
313
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314 i f ( ! gappex−>conveyor mode se l ec ted )
315 {
316 GAPPEX reset gappex accelerat ion ( gappex ) ;
317 i f ( GAPCTRL disable control ler ( gappex−>g a p c t r l i d ) < 0)
318 {
319 f s c p e r r o r ( ”%s %d” , FILE , LINE ) ;
320 r e t v a l = −1;
321 }
322 }
323 break ;
324

325 case EControlEvent PowerSavingActive :
326 gappex−>s t a t e = EState InPowerSaving ;
327

328 i f ( ! gappex−>conveyor mode se l ec ted )
329 {
330 GAPPEX reset gappex accelerat ion ( gappex ) ;
331 i f ( GAPCTRL disable control ler ( gappex−>g a p c t r l i d ) < 0)
332 {
333 f s c p e r r o r ( ”%s %d” , FILE , LINE ) ;
334 r e t v a l = −1;
335 }
336 }
337 break ;
338

339 default :
340 break ;
341 }
342 break ;
343

344 case EState InPowerSaving :
345 switch ( event )
346 {
347 case EControlEvent Stop :
348 i f (GAPPEX get stopped ( gappex ) )
349 {
350 gappex−>s t a t e = EState Stopped ;
351 }
352 else
353 {
354 gappex−>s t a t e = EState Stopping ;
355 }
356 break ;
357

358 case EControlEvent PowerSavingInact ive :
359 gappex−>s t a t e = EState Sta r t ing ;
360

361 i f ( GAPPEX set startup timer ( gappex ) < 0)
362 {
363 f s c p e r r o r ( ”%s %d” , FILE , LINE ) ;
364 r e t v a l = −1;
365 }
366 break ;
367

368 default :
369 break ;
370 }
371 break ;
372

373 case EState InError :
374 switch ( event )
375 {
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376 case EControlEvent BeltNoError :
377 i f ( GAPPEX get not in error ( gappex ) )
378 {
379 i f (GAPPEX get stopped ( gappex ) )
380 {
381 gappex−>s t a t e = EState Stopped ;
382 }
383 else
384 {
385 gappex−>s t a t e = EState Stopping ;
386 }
387

388 i f (OVERALL STATE reset error ( gappex−>o v e r a l l s t a t e i d ,
gappex−>o v e r a l l s t a t e p t r ) < 0)

389 {
390 f s c p e r r o r ( ”%s %d” , FILE , LINE ) ;
391 r e t v a l = −1;
392 }
393 }
394 break ;
395

396 default :
397 break ;
398 }
399 break ;
400

401 default :
402 break ;
403 }
404

405 C LogLeaveInt ( ”GAPPEX control start stop ” , ( r e t v a l ) ) ;
406 return ( r e t v a l ) ;
407 }
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B. Verification tool

B.1. Files containing ‘switch-within-switch’-occurrences
extracted from the CppML-file

\ f s c run \ e x t l i n k \ESI run . cpp ( l i n e : 416)
\ f s c run \ e x t l i n k \ESO run . cpp ( l i n e : 369)
\ f s c run \ fws\COTR run . cpp ( l i n e : 686)
\ f s c run \hostman\HostCioChannelManager . cpp ( l i n e : 110)
\ f s c run \ i n f e ed \LFA run . cpp ( l i n e : 196)
\ f s c run \ i n f e ed \LFA run . cpp ( l i n e : 588)
\ f s c run \ i n f e ed \FAINFEED run . cpp ( l i n e : 1431)
\ f s c run \merge\FMP run . cpp ( l i n e : 514)
\ f s c run \merge\MERGE run . cpp ( l i n e : 408)
\ f s c run \merge\MGEAREA run. cpp ( l i n e : 515)
\ f s c run \misc\PHOTO. cpp ( l i n e : 53)
\ f s c run \misc\Balance . cpp ( l i n e : 1058)
\ f s c run \misc\Balance . cpp ( l i n e : 4520)
\ f s c run \misc\CodingKeyBoard . cpp ( l i n e : 1459)
\ f s c run \misc\CodingKeyBoard . cpp ( l i n e : 1735)
\ f s c run \misc\CodingKeyBoard . cpp ( l i n e : 1875)
\ f s c run \misc\CodingKeyBoard . cpp ( l i n e : 2095)
\ f s c run \misc\CodingScanner . cpp ( l i n e : 1085)
\ f s c run \misc\CodingScanner . cpp ( l i n e : 1088)
\ f s c run \misc\CodingScanner . cpp ( l i n e : 1213)
\ f s c run \misc\HMP run . cpp ( l i n e : 376)
\ f s c run \misc\HSIND run . cpp ( l i n e : 2575)
\ f s c run \misc\Parce lSensor . cpp ( l i n e : 294)
\ f s c run \misc\SSIND run . cpp ( l i n e : 3064)
\ f s c run \ s e c t i o n \ENVCTRL lib . cpp ( l i n e : 536)
\ f s c run \ s o r t \TRIPLEFUN run . cpp ( l i n e : 2351)
\ f s c run \ s o r t \TRIPLESORT run . cpp ( l i n e : 834)
\ f s c run \ s o r t \TRIPLESORT run . cpp ( l i n e : 1338)
\ f s c run \ s o r t \TRIPLESWITCH run . cpp ( l i n e : 1401)
\ f s c run \ s o r t \VERTIFUN run . cpp ( l i n e : 2031)
\ f s c run \ s o r t \VERTISORT run . cpp ( l i n e : 481)
\ f s c run \ s o r t \VERTISWITCH run . cpp ( l i n e : 816)
\ f s c run \ spur \SPURFULL run . cpp ( l i n e : 232)
\ f s c run \ spur \SPURINPUT run . cpp ( l i n e : 470)
\ f s c run \ t rans \GAPCTRL run . cpp ( l i n e : 3747)
\ f s c run \ t rans \GAPPEX run . cpp ( l i n e : 1081)

B.2. ParserMetrics.java

1 package par s e r ;
2 // import java . u t i l . ArrayList ;
3 import java . u t i l . I t e r a t o r ;
4 // import java . u t i l . L i s t ;
5
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6 // import org . jdom . A t t r i b u t e ;
7 import org . jdom . Element ;
8 import org . jdom . Namespace ;
9 import org . jdom . f i l t e r . E lementFi l t e r ;

10 import org . jdom . input . SAXBuilder ;
11

12 import JDomFilter . AndFi lter ;
13 import JDomFilter . A t t r i b u t eF i l t e r ;
14 import java . u t i l . HashMap ;
15

16 /∗∗
17 ∗ @author Dennie van Zeeland
18 ∗
19 ∗This c l a s s i s r e s p on s i b l e f o r pars ing o f the Columbus output f i l e s : CPPML and

XMI
20 ∗/
21

22 public class Parse rMetr i c s {
23

24 stat ic boolean showSel fLoops = fa l se ;
25 stat ic private Element rootElement ;
26

27 stat ic private Namespace ns =
Namespace . getNamespace ( ” s t ru c ” , ” columbus cpp schema/ s t ruc ” ) ;

28 stat ic private Namespace nsStatm =
Namespace . getNamespace ( ” statm” , ” columbus cpp schema/statm” ) ;

29 stat ic private Namespace nsType =
Namespace . getNamespace ( ” type” , ” columbus cpp schema/ type” ) ;

30 stat ic private Namespace nsExpr =
Namespace . getNamespace ( ” expr ” , ” columbus cpp schema/expr ” ) ;

31 stat ic private Namespace nsUML = Namespace . getNamespace ( ”UML” ,
”// org . omg/UML/1 .3 ” ) ;

32 stat ic private SAXBuilder bu i l d e r ;
33

34

35 public stat ic void main ( St r ing [ ] a rgs ) throws Exception {
36 bu i l d e r = new SAXBuilder ( ) ;
37 bu i l d e r . s e tVa l i da t i on ( fa l se ) ;
38 bu i l d e r . setIgnoringElementContentWhitespace ( fa l se ) ;
39

40 org . jdom . Document document ;
41 document = bu i l d e r . bu i ld ( ”D:\\FSC6\\ f i l teredFSCRun . cppml” ) ;
42 rootElement = document . getRootElement ( ) ;
43 enumMetrics ( ) ;
44 enumSwitchMetrics ( ) ;
45 sw i t ch I fMe t r i c s ( ) ;
46 i f Sw i t chMet r i c s ( ) ;
47 f unc t i onMet r i c s ( ) ;
48 swi tchMetr i c s2 ( ) ;
49 }
50

51

52 /∗
53 ∗ Determine Metrics about the sw i t che s
54 ∗/
55 private stat ic void swi tchMetr i c s ( ) throws NumberFormatException {
56 int i = 0 ;
57 int j = 0 ;
58 int t o t a l s i z e = 0 ;
59

60 // ge t a l l sw i t che s
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61 I t e r a t o r <Element> i t 2 = rootElement . getDescendants (new
ElementFi l t e r ( ”Switch” , nsStatm ) ) ;

62 while ( i t 2 . hasNext ( ) ) {
63 Element sSwitchElement = i t 2 . next ( ) ;
64 I t e r a t o r <Element> i t 3 = sSwitchElement . getDescendants (new

ElementFi l t e r ( ”Switch” , nsStatm ) ) ;
65 i f ( i t 3 . hasNext ( ) ) { // only i s t h i s i s a non inner−swi t ch
66 St r ing path = sSwitchElement . getAttr ibuteValue ( ”path” ) ;
67 St r ing f i leName = path . sub s t r i ng ( path . l a s t IndexOf ( ”\\” ) + 1 ,

path . l a s t IndexOf ( ” . ” ) ) ;
68 i++;
69 int s t a r t =

In t eg e r . pa r s e In t ( sSwitchElement . getAttr ibuteValue ( ” l i n e ” ) ) ;
70 int end =

In t eg e r . pa r s e In t ( sSwitchElement . getAttr ibuteValue ( ” endLine” ) ) ;
71 int s i z e = end − s t a r t ; // determine s i z e o f sw i t ch
72 System . out . p r i n t l n ( ” S i z e o f s ta te−Switch in ” + fi leName + ” : ”

+ s i z e + ” l i n e s ” ) ;
73 t o t a l s i z e = t o t a l s i z e + s i z e ;
74 }
75 while ( i t 3 . hasNext ( ) ) { // fo r a l l non−outer sw i t che s
76 j++;
77 Element sSwitchEl = i t 3 . next ( ) ;
78 int s t a r t =

In t eg e r . pa r s e In t ( sSwitchEl . getAttr ibuteValue ( ” l i n e ” ) ) ;
79 int end =

In t eg e r . pa r s e In t ( sSwitchEl . getAttr ibuteValue ( ” endLine” ) ) ;
80 int s i z e = end − s t a r t ;
81 St r ing caseVal = ”” ;
82 System . out . p r i n t l n ( ” S i z e o f case ” + caseVal + ” : ” + s i z e + ”

l i n e s ” ) ;
83 }
84 }
85 System . out . p r i n t l n ( ”The number o f ’ Switch−Switch ’ occurences found : ” +

i ) ;
86 System . out . p r i n t l n ( ”The number o f ca s e s in the s tate−switch found (=the

number o f s t a t e s ) : ” + j ) ;
87 System . out . p r i n t l n ( ”Total S i z e : ” + t o t a l s i z e ) ;
88 }
89

90 private stat ic void enumMetrics ( ) {
91 int nrEnum = 0 ;
92 int nrStateEnum = 0 ;
93 int nrEventEnum = 0 ;
94 int totalEnumSize = 0 ;
95 int tota lStateEnumSize = 0 ;
96 int totalEventEnumSize = 0 ;
97 // ge t a l l enumerations
98 I t e r a t o r <Element> itEnum = rootElement . getDescendants (new

ElementFi l t e r ( ”Enumeration” , ns ) ) ;
99 while ( itEnum . hasNext ( ) ) {

100 Element sEnum = itEnum . next ( ) ;
101 // ge t a l l e lements o f the enumeration
102 I t e r a t o r <Element> i t 3 = sEnum . getDescendants (new

ElementFi l t e r ( ”hasEnumerator” , ns ) ) ;
103 int enumSize = 0 ;
104 St r ing name = sEnum . getAttr ibuteValue ( ”name” ) ;
105 while ( i t 3 . hasNext ( ) ) { // count the e lements o f the Enumeration
106 enumSize++;
107 i t 3 . next ( ) ;
108 }
109 totalEnumSize = totalEnumSize + enumSize ;
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110 //System . out . p r i n t l n (”The s i z e o f Enum ’” + name + ” ’ : ” +
enumSize ) ;

111 nrEnum++;
112 i f (name . toLowerCase ( ) . indexOf ( ” s t a t e ” ) > −1) { //enums with

’ s t a t e ’ in i t s name
113 nrStateEnum++;
114 tota lStateEnumSize = totalStateEnumSize + enumSize ;
115 //System . out . p r i n t l n (”STATE−ENUM: ” + name) ;
116 }
117 i f (name . toLowerCase ( ) . indexOf ( ” event ” ) > −1) { //enums with

’ event ’ in i t s name
118 nrEventEnum++;
119 totalEventEnumSize = totalEventEnumSize + enumSize ;
120 //System . out . p r i n t l n (”EVENT−ENUM: ” + name) ;
121 }
122 }
123 System . out . p r i n t l n ( ”The number o f enum found : ” + nrEnum) ;
124 System . out . p r i n t l n ( ”The s i z e o f a l l enum found : ” + totalEnumSize ) ;
125 System . out . p r i n t l n ( ”The number o f ’ s t a t e ’ enums found : ” + nrStateEnum ) ;
126 System . out . p r i n t l n ( ”The s i z e o f a l l ’ s t a t e ’ enums found : ” +

totalStateEnumSize ) ;
127 System . out . p r i n t l n ( ”The number o f ’ event ’ enums found : ” + nrEventEnum) ;
128 System . out . p r i n t l n ( ”The s i z e o f a l l ’ event ’ enums found : ” +

totalEventEnumSize ) ;
129 }
130

131

132

133 private stat ic void enumSwitchMetrics ( ) {
134 java . u t i l . HashMap<Str ing , Str ing> enumeratorMap = new

java . u t i l . HashMap<Str ing , Str ing >() ;
135 java . u t i l . TreeMap<Str ing , Str ing> enumMap = new

java . u t i l . TreeMap<Str ing , Str ing >() ;
136 int i = 0 ;
137 int j = 0 ;
138 int t o t a l s i z e = 0 ;
139

140

141 // ge t a l l Enumerators and s t o r e them
142 I t e r a t o r <Element> myEnumerator = rootElement . getDescendants (new

ElementFi l t e r ( ”Enumerator” , ns ) ) ;
143 while (myEnumerator . hasNext ( ) ) {
144 Element enumerator = myEnumerator . next ( ) ;
145 St r ing key = enumerator . getAttr ibuteValue ( ” id ” ) ;
146 St r ing name = enumerator . getAttr ibuteValue ( ”name” ) ;
147 enumeratorMap . put ( key , name) ;
148 }
149

150

151 // s t o r e a l l the e lements o f the enumerator with the enumeration
152 I t e r a t o r <Element> itEnum = rootElement . getDescendants (new

ElementFi l t e r ( ”Enumeration” , ns ) ) ;
153 while ( itEnum . hasNext ( ) ) {
154 Element enumeration = itEnum . next ( ) ;
155 I t e r a t o r <Element> enumerator = enumeration . getDescendants (new

ElementFi l t e r ( ”hasEnumerator” , ns ) ) ;
156 St r ing enumerationName = enumeration . getAttr ibuteValue ( ”name” ) ;
157 while ( enumerator . hasNext ( ) ) {
158 Element myEnum = enumerator . next ( ) ;
159 St r ing r e f = myEnum. getAttr ibuteValue ( ” r e f ” ) ;
160 St r ing enumeratorName = enumeratorMap . get ( r e f ) ;
161 enumMap . put ( enumeratorName , enumerationName ) ;
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162 }
163 }
164

165 int caseValNotFound=0;
166 int caseValFound=0;
167 // ge t a l l the sw i t che s
168 I t e r a t o r <Element> i t 2 = rootElement . getDescendants (new

ElementFi l t e r ( ”Switch” , nsStatm ) ) ;
169 while ( i t 2 . hasNext ( ) ) {
170 Element sSwitchElement = i t 2 . next ( ) ;
171 // ge t a l l the c a s e l a b e l s o f the sw i t che s
172 I t e r a t o r <Element> i tHasCaseLabel =

sSwitchElement . getDescendants (new ElementFi l t e r ( ”hasCaseLabel ” ,
nsStatm ) ) ;

173 while ( i tHasCaseLabel . hasNext ( ) ) {
174 Element hasCaseLabel = itHasCaseLabel . next ( ) ;
175 // ge t the i d e n t i f i e r o f the case l a b e l
176 I t e r a t o r <Element> i t I d = hasCaseLabel . getDescendants (new

ElementFi l t e r ( ” Id” , nsExpr ) ) ;
177 while ( i t I d . hasNext ( ) ) {
178 // ge t the name of the i d e n t i f i e r o f the case l a b e l
179 St r ing idName = i t I d . next ( ) . getAttr ibuteValue ( ”name” ) ;
180 i f (enumMap . containsKey ( idName) ) { // check i f the name i s

from a enumerate−type
181 // System . out . p r i n t l n (” Switch ” +

sSwitchElement . g e tAt t r i bu t eVa lue (” id ”) + ” , ” + idName + ” was l o ca t ed in ”
+ enumMap. ge t ( idName) ) ;

182 caseValFound++;
183 }
184 else {
185 caseValNotFound++;
186 }
187 }
188 }
189

190 // ge t a l l inner sw i t che s
191 I t e r a t o r <Element> i t 3 = sSwitchElement . getDescendants (new

ElementFi l t e r ( ”Switch” , nsStatm ) ) ;
192 i f ( i t 3 . hasNext ( ) ) { // t h i s outer−swi t ch has a inner−swi t ch
193 St r ing path = sSwitchElement . getAttr ibuteValue ( ”path” ) ;
194 St r ing f i leName = path . sub s t r i ng ( path . l a s t IndexOf ( ”\\” ) + 1 ,

path . l a s t IndexOf ( ” . ” ) ) ;
195 i++;
196 int s t a r t =

In t eg e r . pa r s e In t ( sSwitchElement . getAttr ibuteValue ( ” l i n e ” ) ) ;
197 int end =

In t eg e r . pa r s e In t ( sSwitchElement . getAttr ibuteValue ( ” endLine” ) ) ;
198 int s i z e = end − s t a r t ; // determine s i z e o f the outer−swi t ch
199 //System . out . p r i n t l n (” S i ze o f s t a t e−Switch in ” + fi leName + ”:

” + s i z e + ” l i n e s ”) ;
200 t o t a l s i z e = t o t a l s i z e + s i z e ;
201 }
202 while ( i t 3 . hasNext ( ) ) { // fo r a l l non−outer sw i t che s
203 j++;
204 Element sSwitchEl = i t 3 . next ( ) ;
205 int s t a r t =

In t eg e r . pa r s e In t ( sSwitchEl . getAttr ibuteValue ( ” l i n e ” ) ) ;
206 int end =

In t eg e r . pa r s e In t ( sSwitchEl . getAttr ibuteValue ( ” endLine” ) ) ;
207 int s i z e = end − s t a r t ; // determine the s i z e o f the non−outer

sw i t che s
208 //System . out . p r i n t l n (” S i ze o f case : ” + s i z e + ” l i n e s ”) ;
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209 }
210 }
211 System . out . p r i n t l n ( ”En : Nr o f Casevalues in enums de f ined : ” +

caseValFound ) ;
212 System . out . p r i n t l n ( ”En : Nr o f Casevalues not in enums de f ined : ” +

caseValNotFound ) ;
213 System . out . p r i n t l n ( ”SS : The number o f ca s e s in the s tate−switch found

(=the number o f s t a t e s ) : ” + j ) ;
214 System . out . p r i n t l n ( ”SS : The number o f ’ Switch−Switch ’ occurences found :

” + i ) ;
215 System . out . p r i n t l n ( ”SS : Total LOC of these Switch−Switches : ” +

t o t a l s i z e ) ;
216 }
217

218

219

220 private stat ic void sw i t ch I fMe t r i c s ( ) throws NumberFormatException {
221 int i = 0 ;
222 int j = 0 ;
223 int t o t a l s i z e = 0 ;
224

225 // ge t a l l sw i t che s
226 I t e r a t o r <Element> i t 2 = rootElement . getDescendants (new

ElementFi l t e r ( ”Switch” , nsStatm ) ) ;
227 while ( i t 2 . hasNext ( ) ) {
228 Element sSwitchElement = i t 2 . next ( ) ;
229 // ge t a l l i f−staments i n s i d e t h i s swi t ch
230 I t e r a t o r <Element> i t 3 = sSwitchElement . getDescendants (new

ElementFi l t e r ( ” I f ” , nsStatm ) ) ;
231 i f ( i t 3 . hasNext ( ) ) { // t h i s swi t ch has a i f−s tatement i n s i d e
232 St r ing path = sSwitchElement . getAttr ibuteValue ( ”path” ) ;
233 St r ing f i leName = path . sub s t r i ng ( path . l a s t IndexOf ( ”\\” ) + 1 ,

path . l a s t IndexOf ( ” . ” ) ) ;
234 i++;
235 int s t a r t =

In t eg e r . pa r s e In t ( sSwitchElement . getAttr ibuteValue ( ” l i n e ” ) ) ;
236 int end =

In t eg e r . pa r s e In t ( sSwitchElement . getAttr ibuteValue ( ” endLine” ) ) ;
237 int s i z e = end − s t a r t ; // determine the s i z e
238 //System . out . p r i n t l n (” SI : S i ze o f s t a t e−Switch in ” + fi leName

+ ”: ” + s i z e + ” l i n e s ”) ;
239 t o t a l s i z e = t o t a l s i z e + s i z e ;
240 }
241

242 }
243 System . out . p r i n t l n ( ”SI : The number o f ’ Switch−I f ’ occurences found : ” +

i ) ;
244 System . out . p r i n t l n ( ”SI : Total LOC of these Switch−I f ’ s : ” + t o t a l s i z e ) ;
245 }
246

247

248 private stat ic void i f Sw i t chMet r i c s ( ) throws NumberFormatException {
249 int i = 0 ;
250 int j = 0 ;
251 int t o t a l s i z e = 0 ;
252

253 // ge t a l l the i f−s ta tements
254 I t e r a t o r <Element> i t 2 = rootElement . getDescendants (new

ElementFi l t e r ( ” I f ” , nsStatm ) ) ;
255 while ( i t 2 . hasNext ( ) ) {
256 Element s I f = i t 2 . next ( ) ;
257 // ge t a l l the sw i t che s i n s i d e t h i s i f

77



258 I t e r a t o r <Element> i t 3 = s I f . getDescendants (new
ElementFi l t e r ( ”Switch” , nsStatm ) ) ;

259 i f ( i t 3 . hasNext ( ) ) { // t h i s i f has a swi tch i n s i d e
260 St r ing path = s I f . getAttr ibuteValue ( ”path” ) ;
261 St r ing f i leName = path . sub s t r i ng ( path . l a s t IndexOf ( ”\\” ) + 1 ,

path . l a s t IndexOf ( ” . ” ) ) ;
262 i++;
263 int s t a r t = In t eg e r . pa r s e In t ( s I f . getAttr ibuteValue ( ” l i n e ” ) ) ;
264 int end = In t eg e r . pa r s e In t ( s I f . ge tAttr ibuteValue ( ” endLine” ) ) ;
265 int s i z e = end − s t a r t ; // determine s i z e
266 //System . out . p r i n t l n (” IS : S i ze o f s t a t e−Switch in ” + fi leName

+ ”: ” + s i z e + ” l i n e s ”) ;
267 t o t a l s i z e = t o t a l s i z e + s i z e ;
268 }
269

270 }
271 System . out . p r i n t l n ( ” IS : The number o f ’ I f−Switch ’ occurences found : ” +

i ) ;
272 System . out . p r i n t l n ( ” IS : Total LOC of these I f−Switches : ” + t o t a l s i z e ) ;
273 }
274

275

276

277

278 private stat ic void f unc t i onMet r i c s ( ) {
279 int nrFunct ions = 0 ;
280 int nrControlFunct ion = 0 ;
281 int t o t a lFunc t i onS i z e = 0 ;
282 int t o ta lCont ro lFunc t i onS i z e = 0 ;
283 // ge t a l l Functions
284 I t e r a t o r <Element> i tFunct ion = rootElement . getDescendants (new

ElementFi l t e r ( ”Function” , ns ) ) ;
285 while ( i tFunct ion . hasNext ( ) ) {
286 Element sFunct ion = i tFunct ion . next ( ) ;
287 // ignore header f i l e s , or e l s e we would count func t i ons twice
288 i f ( ! sFunction . getAttr ibuteValue ( ”path” ) . endsWith ( ” . h” ) ) {
289 nrFunct ions++;
290 int s t a r t =

In t eg e r . pa r s e In t ( sFunction . getAttr ibuteValue ( ” l i n e ” ) ) ;
291 int end =

In t eg e r . pa r s e In t ( sFunction . getAttr ibuteValue ( ” endLine” ) ) ;
292 int s i z e = end − s t a r t ;
293 //System . out . p r i n t l n (” IS : S i ze o f s t a t e−Switch in ” + fi leName

+ ”: ” + s i z e + ” l i n e s ”) ;
294 t o t a lFunc t i onS i z e = to ta lFunc t i onS i z e + s i z e ;
295 // ge t a l l f unc t i ons t ha t have ’ con t ro l ’ in i t s name
296 i f

( sFunction . getAttr ibuteValue ( ”name” ) . toLowerCase ( ) . conta in s ( ” c on t r o l ” ) ) {
297 nrControlFunct ion++;
298 t o ta lCont ro lFunc t i onS i z e = to ta lCont ro lFunc t i onS i z e + s i z e ;
299 }
300 }
301 }
302 System . out . p r i n t l n ( ”FM: The number o f Functions found : ” + nrFunct ions ) ;
303 System . out . p r i n t l n ( ”FM: The SLoC o f a l l the se Function : ” +

to ta lFunc t i onS i z e ) ;
304 System . out . p r i n t l n ( ”FM: The number o f Contro lFunct ions found : ” +

nrControlFunct ion ) ;
305 System . out . p r i n t l n ( ”FM: The SLoC o f a l l the se ControlFunct ion : ” +

to ta lCont ro lFunc t i onS i z e ) ;
306 }
307
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308

309

310

311

312

313

314

315

316

317 /∗
318 ∗ Determine Metrics about the sw i t che s
319 ∗/
320 private stat ic void swi tchMetr i c s2 ( ) throws NumberFormatException {
321 int i = 0 ;
322 int j = 0 ;
323

324 // ge t a l l sw i t che s
325 I t e r a t o r <Element> i t 2 = rootElement . getDescendants (new

ElementFi l t e r ( ”Switch” , nsStatm ) ) ;
326 while ( i t 2 . hasNext ( ) ) {
327 Element sSwitchElement = i t 2 . next ( ) ;
328 I t e r a t o r <Element> i t 3 = sSwitchElement . getDescendants (new

ElementFi l t e r ( ”Switch” , nsStatm ) ) ;
329 i f ( i t 3 . hasNext ( ) ) { // only i s t h i s i s a non inner−swi t ch
330 St r ing path = sSwitchElement . getAttr ibuteValue ( ”path” ) ;
331 St r ing l i n e = sSwitchElement . getAttr ibuteValue ( ” l i n e ” ) ;
332 // S t r ing fi leName = path . s u b s t r i n g ( path . l a s t IndexOf (”\\”) + 1 ,

path . l a s t IndexOf (” . ” ) ) ;
333 System . out . p r i n t l n ( path + ” ( l i n e : ” + l i n e + ” ) ” ) ;
334 }
335 }
336 }
337

338

339 }
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