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Abstract

The problem in supervised learning or learning from example is to find a rule which
allows to predict an output from a new input in the situation when a sample of
input-output pairs is given. The problem of learning, as it was shown recently,
can be reduced to a linear inverse problem which can be solved by regulariza-
tion techniques. The aim of the master thesis is to apply some newly developed
regularization technique called dual regularized total least squares (dual RTLS)
in Learning Theory. A motivation to look for a new technique is that in some
situations the prediction based on the classical methods, such as the Tikhonov
regularization, is not so satisfactory. The numerical experiments show that the
use of the dual RTLS technique is very efficient.
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Chapter 1

Introduction

In supervised learning or learning from examples a machine is trained, instead of
programmed, to perform a given task on a number of input-output pairs. So, the
problem is that of finding a deterministic rule allowing to correctly predict the out-
put when a new input is given. In a probabilistic setting, a fundamental problem,
studied by Statistical Learning Theory, is how the chosen function estimates the
output for new inputs .It was recently shown that learning from examples can be
seen as the problem of solving a linear inverse problem from a finite dimensional
discretization. What makes learning peculiar is that the discretization is stochas-
tic and cannot be controlled. In fact in this context we demand the regularization
algorithm to take care of the random discretization. It is known that Tikhonov
regularization can be effectively used in the context of learning and many stan-
dard results in inverse problem can be easily carried over with minor modifications.

The main goal of learning from examples is to infer an estimator, given a finite
sample of data drawn according to a fixed but unknown probabilistic input-output
relation. The desired property of the selected estimator is to perform well on new
data, that is, it should generalize. The fundamental work of Vapnik [2] shows
that the key to obtain a meaningful solution to the above problem is to control
the complexity of the solution space. Interestingly, this is the idea underlying
regularization techniques for ill-posed inverse problems. A careful analysis shows
a rigorous connection between learning and regularization for inverse problems.
In this research we also use this connection.

Our contribution to the analysis of learning problems consists in the applica-
tion of recently proposed regularization technique, that was, never used before
in Learning Theory. In the dissertation we introduce this new technique in the
context of learning and show how it performs in several situations of interest.
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After recalling the connection between learning theory and inverse problems, we
show that regularization techniques other than Tikhonov regularization, namely
Dual Regularized Total Least Squares [5], [8], can be used in learning.

In order to make a prediction, we need only to know the so-called training set which
is nothing but a collection of input-output pairs, denoted by D,, = {(x;, v:)}
and given by the system under study.

In a recent research [7], Tikhonov regularization was employed to perform the
prediction, however, the results was not satisfactory in some situations. More pre-
cisely, the quality of the prediction for inputs being beyond the scope of a training
set is rather poor [see Figure 5.3].

The main thrust of this work is to apply the dual regularized total least squares
(dual RTLS) to construct the approximation in a form of the neural network

n

@) =Y e (@),

1=1

where K is a reproducing kernel generating a network.

In more details, the thesis is organized as follows. In Chapter 2 we discuss the
relation between the Learning theory and regularization techniques. It turns out
that a learning problem can be reduced to an ill-posed linear operator equation in
some small space, namely reproducing kernel Hilbert space (RKHS). Thus, some
properties of the RKHS will be discussed.

As a matter of fact, the problem of approximating a function from sparse data
is ill-posed. Thus, a short introduction about ill-posed problem will be given in
Chapter 3 together with the discussion of the proposed regularization method for
our research, namely the dual RTLS.

In addition, a good choice of the regularization parameters is crucial to assure
a good approximation. Thus, in Chapter 4 we will construct a selection algorithm

which is able to determine the optimal parameters.

The performance of our algorithm will be illustrated in Chapter 5, where we
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use the examples from [3], which appear to be problematic for a treatment with
standard regularization technique, such as Tikhonov regularization [7].



Chapter 2

The problem of learning as an
ill-posed linear operator
equation

This chapter reviews that a learning problem can be reduced to an ill-posed linear
operator equation which can be solved by regularization techniques.

2.1 The problem of learning

In recent years, there has been an increasing interest in learning theory. This was
a logical result of the so-called greatest problem of science today which refers to
the problem of understanding intelligence. In [4] it is written:

The problem of learning represents a gateway to understanding intelligence in
brains and machines, to discovering how the human brain works, and to making
intelligent machines that learn from experience and improve their competence as

children do.

Learning from examples, or supervised leaning refers to systems that are trained
instead of programmed with a set of examples which consists of input-output pairs.
Training means choosing a function which best describes the relation between the
inputs and the outputs.

Many applications of systems that could learn from examples can be found. For
example , a car manufacturer may want to have in its models a system to detect
pedestrians about to cross the road to alert drivers to a possible danger while
driving in downtown traffic. Such a system could be trained with positive and

12



CHAPTER 2. THE PROBLEM OF LEARNING 13

negative examples: images of pedestrians and images without pedestrians. Actu-
ally, software trained in this way has been tested in an excremental car. It runs
on a PC in the trunk and looks at the road in front of the car through a digital
camera [4].

What we assume in the above example is a machine that is trained instead of
programmed to perform a task. The only thing which is available here is the
data of the form (z;,y;)7_;. To be more specific, what we mean by training is
synthesizing a function that represents the relation between the inputs z; and the
corresponding outputs y;. One question that needs to be asked, however, is how
well this function estimate the outputs for previously unseen inputs? In other
words, a challenging problem within machine learning is how to make good infer-
ences from data sets in which pieces of information are missing.

The main goal of machine learning is to develop general algorithms of practi-
cal value. Such algorithms should be efficient. In addition, Learning algorithms
should also be as general purpose as possible. So, we are looking for algorithms
that can be easily applied to a broad class of learning problems. Of primary
importance, we want the result of learning to be a prediction rule that is as ac-
curate as possible in the predictions that it makes. In other words, we want the
computer to find prediction rules that are easily understandable by human experts.

As mentioned , machine learning can be thought of as programming by exam-
ple. The central question which arises here: What is the advantage of machine
learning over direct programming? There are two main reasons

e Firstly, the results of using machine learning are often more accurate than what
can be created through direct programming. This is because machine learning
algorithms are data driven, and are able to examine large amounts of data.

e Secondly, a human expert is likely to be guided by imprecise impressions or per-
haps an examination of only a relatively small number of examples. In Figure2.1
a diagram of a typical learning problem is shown.

In the next section we will see that probability theory plays a key role in learning
theory.

2.2 Statistical learning theory

The main goal of statistical learning theory is to provide a framework for study-
ing the problem of inference, that is of gaining knowledge, making predictions,
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making decisions or constructing models from a set of data. This is studied in a
statistical framework in which there are assumptions of statistical nature about
the underlying phenomena (in the way the data is generated).

Assume we have two sets of variables x € X C R? and y € Y C R which are
related by a probabilistic relationship. The relation is called probabilistic because
in general, an element of X does not determine uniquely an element of Y, but
rather a probability distribution on Y. In order to formalize this we introduce
a probability distribution P(x,y) which is defined over the set X x Y. Unfortu-
nately, this probability distribution is unknown and under very general condition
it can be written as P(z,y) = P(x)P(y|z) where P(zx) is the marginal probability
of  and P(y|x) is the conditional probability of y given x.

As just mentioned, the probability distribution P is unknown, however, exam-
ples of the probabilistic relationship are provided. In fact, what we know is a
data set D,, = (x;,y;)_;, called also the training data, which is obtained by sam-
pling n times the set X x Y according to P(z,y). In other words, the data set
D,, = (zi,yi), i = 1,...,n, drawn i.i.d. according to unknown probability distri-
bution P on X x Y.

The problem of learning can be analyzed in two basic steps as follows
1. Given the data set D,, = {(z;,v:)]-; € X x Y}

2. Providing an estimator, that is, a function f : X — Y, that can be used in
the sense that given any value of x € X, a value of y can be predicted.

To solve the learning problem in view of the statistical learning theory, a risk
functional should be defined. The latter measures the average amount of error
associated with an estimator and then to look for the estimator among the allowed
ones with the lowest risk. the average error is given as

1] = /X V(. @) Pa.) do dy,

and is called expected risk, where V (y, f(x)) is the loss function. A natural choice
for the loss function is the squared loss function V (y, f(x)) = (f(x) —)2. So, the
expected risk can be written as

1] = /X (@) = 9P Pla.y) da dy. (2.1)



CHAPTER 2. THE PROBLEM OF LEARNING 15

The expected risk is assumed to be defined on L?*(X, P(x)dx). The function which
minimizes the expected risk in L?(X, P(z)dz) is denoted by fy and is given by

fom) = arg 23 "V
It is important to mention that the function fj is our ideal estimator which is often
called the target function. The key problem here is that this function can not be
found in practice since the probability distribution P(z,y) is unknown. The only
information available is a sample of the target function, that is, the data set D,,.
To overcome this problem we need an induction principle that used to learn from
the limited number of the training data we have.

Vapnik developed statistical learning theory built on the so-called empirical risk
minimization (ERM) induction principle [9] which consists in using the data set
D,, to build a stochastic approximation of the expected risk,usually called the
empirical risk, defined as

ool = 37V (g (01). (22
=1

The central question of the theory is whether the expected risk of the minimizer
of the empirical risk in L?(X, P(z)dz) is close to the expected risk of fo. The
theory finds under what conditions the method of ERM satisfies

Tim T [fuin] = lim I[fu] = I[fo] (2.3)

n—oo

in probability, where fA}Z denotes the minimizer of the empirical risk (2.2) in

L2(X, P(z)dz).

A necessary and sufficient condition for the limits in (2.3) to hold true in proba-
bility is

lim P{ sup (I[f] = Iemplfin]) > €} =0 Ve > 0.

N0 e [2(X,P(x)dz)
This condition is known as one-sided uniform convergence in probability of empir-
ical risk to expected risk in L?(X, P(z)dz). Typically in literature the two-sided
uniform convergence in probability:

lim P{ sup \I[f] = Lemplfin]| > €} =0 Ve >0, (2.4)
O feL2(X,P(x)dx)

is considered. If L?(X, P(z)dx) is very large, we can always find fn € L2(X, P(z)dz)
with zero empirical error. Nevertheless, this does not guarantee that the expected
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risk of f, is also close to zero, or close to I|fo].

There is an unambiguous relationship between empirical risk Iep,p[f;n] and ex-
pected risk I[f] which was first discussed by Vapnik and Chervonenkis with the
help of the VC-dimension [9].

Definition 2.1. The VC-dimension of a set {0(f(z)), f € L*(X, P(x)dx),z €
X}, of indicator functions is the mazimum number h of vectors @i, ...,z € X
that can be separated into two classes in all 2" possible ways using functions of the
set, where 0(.) is the Heaviside function .

The VC-dimension was first defined for the case of indicator functions and was
then extended to real valued functions. If, for any number IV, it is possible to find
N points X1, ..., x that can be separated in all 2V possible ways, we say that the
VC-dimension is infinite.

Definition 2.2. Let A < V(y, f(z)) < B, f € L*(X, P(z)dx), with A and B <
o0. The VC-dimension of the set {V (y, f(z)), f € L*(X, P(z)dz)} is defined as the
VC-dimension of the set of the indicator functions {0(V (y, f(x))—a),«a € (A, B)}.

Vapnik and Chervonenkis studied the relation between the empirical risk and
expected risk in a hypothesis space [9]. Actually, they suggest a method which
does not only minimizes the empirical risk but also minimizes the complexity of
the hypothesis space. This method is called structural risk minimization (SRM).
The idea of SRM is to define a nested sequence of hypothesis spaces Hy C Ho C
<. C Hypy () with m(n) a non-decreasing integer function of n, where each hypoth-
esis space H; has finite VC-dimension and larger than that of all previous sets.
Thus, if A; is the VC-dimension of the space H; , then hq < ho < ... < hm(n). For
each hypothesis space H; the solution of the learning problem is

fi,n = ]{161}_111 Iemp[f§ n]

Then in SRM one is looking for an appropriate choice of m(n), so that as n — oo
and m(n) — oo, the expected risk of the solution of the method approaches in
probability the minimum of the empirical risk. However, in practice one usually
[2] uses as hypothesis space sets of bounded functions such that H; = Ha, = {f :
I|fll < Ai}, i =1,2,...,m, where ||.|| is some appropriate norm. Thus, in order
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to use the standard SRM method we need to know the VC-dimension of such
space under corresponding loss functions. Unfortunately, it can be shown that
when the loss function V is (y — f(x))?, the VC-dimension of V (y, f(x)) with f
in Hy = {f : || f|| < A} does not depend on A, and is infinite if the corresponding
space equipped with the norm |[|.|| is infinite dimensional.

Thus, it is impossible to use the SRM with this kind of hypothesis spaces: in
the case of finite dimensional spaces, the norms of f can not be usually used to
define a structure of spaces with different VC-dimensions. So, in many practical
applications SRM cannot be used directly.

The way out of this situation is related with some other view on the learning
problems, when it is viewed as a linear ill-posed operator equation. This approach
is outlined below.

2.3 Background of regularization theory

2.3.1 Ideal predictor

To derive the algorithm corresponding to learning problem we start with the fol-
lowing important observation.

Proposition 2.1. The expected risk which is given by (2.1) can be rewritten as
If1=1If - f0||2L2(X,p(x)dx) + I[fo],
for any f € L*(X, P(x)dx).
Proof. Since we have
o = //fx Pl y) dy dr
_ / / )+ fo(@) — y)*P(w,y) dy da
= /(f() fol) dx+//fo *P(e.y) dy d
2 [ [ (10) = @) o(o) = 1) Plyle) P(o) dy da

where we use the relation

P(z,y) = P(z)P(y|z).
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Now if we look at the term 2 [y [ (f(z) — fo(z))(fo(z) — v)P(y|z)P(z) dy dz, it
is not difficult to show that it vanishes:

/Y (@) — fol@) fo(x) — 1) Py]z) dy

= (f(2) — fol@))(folx) /Y yP(ylz) dy)
= 0.

1] = /X (F(2) — fol@))*P(x) dz + /X /Y (o) — 1)2P(a.y) dy da
= ||f—f0||%2(X,P(x)dm) + I[fo].

O

Our idea now is to look for the minimizer of (2.1) in a space which is smaller than
L?*(X, P(x)dx). For this, we define a Hilbert subspace H C L?(X, P(z)dz) which
is specified in our research to be a Reproducing Kernel Hilbert Space (RKHS).
Introduce the inclusion operator J : H — L?(X, P(z)dz) and its adjoint J* :
L?*(X, P(z)dx) — H. For any f € H, it is possible to write || f — follr2(x,P(2)dz) @8
[13f = foll2(x,P(2)dx)- Now from the least square form we know that the minimizer
fr of the expected risk I[f] over H solves the equation

IIf =T fo. (2.5)

Equation (2.5) shows the possibility of approximating f from fy by regulariza-
tion techniques. unfortunately, the target function fy is unknown, only its discrete
version is available, namely the data set. To this end, we discretize the above equa-
tion using the data set and then apply regularization techniques to solve it.

To be able to use the data set D,, for the discretization of (2.5) in H, the latter
one should have some special structure. Normally, a function evaluation f(z;)
should be considered as a linear bounded functional in H. The spaces with such
a structure are called Reproducing Kernel Hilbert Spaces (RKHS).
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2.3.2 Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Space (RKHS) H is a Hilbert space of functions de-
fined over some bounded domain X C R with the property that, for each z € X,
the evaluation functionals F, defined as

are linear, bounded functionals. The boundedness means that there exists a U €
R* such that

\FelfIl = 1f @) < U F [l
for all f in the RKHS.

To every RKHS H there corresponds a unique positive definite function K(z,y)
of two variables in X, called the reproducing kernel of H, that has the following
reproducing property:

fl@)=(f(y), K(z,y))n Vf €H, (2.6)
where (-, )3 denotes the scalar product in H [10].

Assume that we have a sequence of positive numbers A, and linearly indepen-
dent functions ¢, (x) such that the function K (z,y) admits the representation

2,9) = > Aabn(@)n(y), (2.7)
n=0

where the series is uniformly convergent.

In view of (2.7), RKHS can be seen as the set of functions of the form

= Z an¢n($)
n=0

for a, € R, and define the scalar product in our space to be

and

<Z AnPn (z Zdnﬁbn YH = h\ =, (2.8)
n=0 n

n=0

In fact we have

) K (=Y 22els) 2%% ~ f(@),

n=0
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hence equation (2.6) is satisfied.

It is easy to show that whenever we have a function K of the form (2.7), it is
possible to construct a RKHS as shown above. Vice versa, for any RKHS there
is a unique function K and corresponding \,, ¢,, that satisfy (2.7). Moreover,
equation(4.9) shows that the norm of the RKHS has the form

o0
2 _ ai
1 = > S
n=0""

In shorter words, the Hilbert space L?(X, P(z)dz) is too “big” for our purposes,
containing too many non-smooth functions. One approach to obtaining restricted,
smooth spaces is the Reproducing Kernel Hilbert Space (RKHS) approach. A
RKHS is “smaller” than a general Hilbert space. It is a Hilbert space of point-wise
defined functions which can be completely characterized by a symmetric positive
definite function K : X x X — R, namely the kernel.

2.3.3 Discretization of a linear operator

Redefine the inclusion operator J = J3,. : H — L%*(X, P(x)dx), where Hx denotes
the RKHS here. Now we want to discretize the equation

j;—[KJHKf = j;—[Kf(]a (29)
Moreover, we define the covariance operator T : H — ‘H such that T' = T3, Ty,
In addition, 7" can be written as [1]

T:/X<.,Km>HKxP(:p) da.

The operator T' can be proved to be positive trace class operator and hence com-
pact. Define the sampling operator Sy : H — R"™ by (Szf)i = f(x:i) = (f, Kz,)#;
it = 1,...,n. Moreover, we define the adjoint operator S} : R" — H, and the
operator T, : H — H such that T, = S}S,. It follows that for y = (y1, ..., Yn)

1 n 1 n
S*y = — Kmiyiy T$ = — .,K$i 'HKmi- 2.10
ey 2 Db ka) (210)
We discretize equation (2.9) using training set, and then apply regularization
techniques to solve it. Actually, S, is nothing else but a discrete analog of the
mapping Jg, that is , if we replace Jy,, by S, , we replace the target function fy
by the discrete data y, that is, we get
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I f=fo=Sef=y.

In a similar way, the continuous operator 1" = j%KjHK can be replaced by the
discrete operator T:

Tf =35 fo= Tof = Sty.

So, with the discretized equation T f = S}y it is not difficult to approach the
target function with the help of regularization methods. In our research the dual
Regularized Total Least Squares method ( dual RTLS) is employed. Tikhonov
regularization method was employed in many researches but results were not so
satisfactory in some situations as we will see later. That is why we look for a
better method in the current research to get better approximations . In the next
chapter we introduce the dual RTLS method in some details.
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Figure 2.1: Diagram of a typical learning problem.

22



Chapter 3

Regularization techniques

As mentioned before, regularization techniques can be used to solve learning prob-
lems. Several studies investigating regularization have been carried out on RKHS.
In this chapter we study the possibility of solving ill-posed problems with noisy
right-hand side and a noisy operator. We will discuss the proposed regulariza-
tion method for our research, namely the dual Regularized Total Least Squares (
dual RTLS).

Since as mentioned in the previous chapter, the problem of approximating a func-
tion from sparse data is ill-posed, we discuss in the first section the ill-posed
problems.

3.1 Ill-posed problems

Ill-posed problems arise in many context and have important applications in sci-
ence and engineering. We consider ill-posed problems having the form of a linear
operator equation

Az =y, (3.1)

where A is a compact linear operator between Hilbert spaces X and ).

Ill-posed problems are mathematical problems which do not satisfy Hadamard’s
definition of well-posedness:

e R(A) =Y For all admissible data, a solution exsits.
e N(A)=0 For all admissible data, the solution is unique.
e A7l € L(Y,X) The solution depends continuously on the data.

23
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If one wants to approximate a problem whose solution does not depend con-
tinuously on the data by a traditional numerical method as one would use for
well-posed problems, it is expected that the numerical method becomes unstable.
A (partial) remedy for this is the use of “regularization methods”. In general
terms, regularization is the approximation of an ill-posed problem by a family of
neighboring well-posed problems.

Remark 3.1. For a compact linear operator with non-closed range (e.g., for an
integral operator with a non-degenerate L? kernel), the solution of Ar =y does
not depend continuously on the right-hand side; the equation is ill-posed.

Definition 3.1. Let A: X — Y be a bounded linear operator.

1. x € X is called least-squares solution of Ax =y if

|Az —y|| = inf{|[Az —y|| | z in X}.

2. © € X is called best approrimate solution of Ax = y if x is a least squares
solution of Ax =y and

l|z|]| = inf{||z|| | z is least-squares solution of Ax =y}

holds.

Definition 3.2. The Moore-Penrose generalized inverse Al of A € L(X,Y) is
defined as the unique linear extension of A~ to

D(AY) := R(A) + R(A)*,

with
N(AT) = R(A),
where }
A= A’N(A)i : N(A)J' — R(A)
We want to approximate the best-approximate solution z! := Afy of equation

(3.1) for a specific right-hand side y in the situation that:

e The exact data y is not known precisely, but that only an approximation y° with

Iy’ —yl| <6 (3.2)



CHAPTER 3. REGULARIZATION TECHNIQUES 25

is available, where y° is called the noisy data and & the noise level.
e The exact operator A is not known, but we have some noisy operator A; with

|A— Apl] < h. (3.3)

In other words, we are looking for some approximation, say z°, of the solution of
(3.1) which depends continuously on the noisy data y°, so that it can be computed
in a stable way. As a result, 2° tends to the solution of (3.1), when & tends to zero.

The range of the operator A, R(A), is assumed to be non-closed. Thus, the solution
x' of equation (3.1) does not depend continuously on the data. So, problem (3.1),
(3.2), (3.3) requires the application of special regularization techniques for its
numerical treatment. Below, we will discuss these regularization techniques in
some details.

3.2 Least Squares

Least squares (LS) technique, also known as Ordinary Least Squares (OLS), is
the simplified method used to solve systems of the form Apz = 3, under the
constraints (3.2) and (3.3). Least squares is often applied in statistical contexts,
particularly regression analysis. This technique can be interpreted as a data fit-
ting technique . The best fit in the least-squares sense is that instance of the
model for which the sum of squared residuals has its least value, where a residual
is the difference between an observed value and the value given by the model.

In other words, it is a mathematical procedure for finding the best-fitting curve
to a given set of points by minimizing the sum of the squares of the offsets “the
residuals” of the points from the curve. The sum of the squares of the offsets is

used instead of the offset absolute values because this allows the residuals to be
treated as a continuous differentiable quantity.

The least-squares approximate solution of Az = y is given by
z1s = (AT A)7LATY,
This is the unique z € R™ that minimizes ||Az — y||.

The LS problem can also be seen as follows: We look for z,y such that y = Apa:

min ||y — y°||2 subject to y = Apz.
x?y
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Since squares of the offsets are used, outlying points can have a disproportionate
effect on the fit, a property which may or may not be desirable depending on the
problem at hand.

3.3 Tikhonov regularization

Tikhonov regularization is one of the most widely applied methods for solving
ill-posed problems. In this method a regularized approximation asgjh is obtained
by solving the minimization problem

T () = A — o112 2
min Jo(z) = [[Anz — y°|° + all2]%,

where o > 0 is the regularization parameter to be chosen properly. Hence, in
Tikhonov’s method the regularized approximation is given by

23" = (AjAn +ol) " Ay

where I is the identity operator.

3.4 Total Least Squares

Total Least Squares (TLS) is another method for treating a problem of the form
of linear equations Ax = y, where both the operator A and the right-hand side
y are contaminated by noise. In practical situations, the linear system is often
ill-conditioned. For example, this happens when the system is obtained by dis-
cretization of ill-posed problems such as integral equations of the first kind.

The basic i(}ea of the classical total least squares problem is to find some esti-
mate (&,7, A) for (zf,y, A) using given data (y°, Ay,). This is done by solving the
constrained minimization problem [11], [12], [5].

[|A—Aul® +|ly —°||> = min  subject to Az =y. (3.4)

As mentioned, in many practical applications, all data are contaminated by noise,
which motivates the use of TLS. Efficient and reliable numerical methods to com-
pute the TLS solution are based on the singular value decomposition (SVD).
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Difficulties arise, however, because of the ill-posedness of equation(3.1) as it may
happen that there does not exists any solution & of TLS problem(3.4) in the space
X. Moreover, if a solution exists, it may be far from the desired solution z'.

3.5 Regularized total least squares

For the reasons just mentioned, we restrict the set of admissible solutions by look-
ing for approximations & that belong to some prescribed set K, which is the basic
idea of regularized toltal least squares (RTLS).

The set K can be defined in several ways. In the simplest case it is a ball
K ={z € X | ||Bz|| < R} with prescribed radius R. This leads us to the RTLS

problem in which, as we mentioned above, some estimate (&, 7, A) for (zf,y, A) is
determined by solving the constrained minimization problem

A= Ap|? + |ly — ¥°||> — min  subject to Az =y, |[Bz|[<R. (3.5)

Special Case: When the operator Ay is exactly given, that is, A, = A, the idea
of this technique leads us to the method of quasi-solution of Ivanov (see [16]),
where Z is determined by solving the constrained minimization problem

|Az —3°||> — min subject to 2 € K.

This approximation Z is sometimes called K-constrained least squares solution.

Theorem 3.1. [11], [153], [14], [5] If the constraint ||Bz||2 < R of the RTLS
problem (8.5) is active, then the RTLS solution x = & satisfies the equations

(A} Ay +aBT + D)z = Aly° and ||Bz||> = R, (3.6)

where the parameters o and (8 satisfy

|| 4nz — v°[13
a=p(l+||zl[3) and f= -2, (3.7)
? 1+ [z
where > 0 is the Lagrange multiplier. Moreover,
T
B=aR? -y (y — Apz) = —||A = AnllF — |ly — wsl[3, (3.8)

where ||.||F denotes Frobenius norm.
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3.6 Dual regularized total least squares

A serious weakness of the RTLS is that it requires a reliable bound R for the
norm ||Bzf||. Unfortunately, such a bound is unknown in many practical ap-
plications. In different applications, however, reliable bounds for § and h which
appear in (3.2) and (3.3) are known. Thus, it makes sense to look for approxima-

tion (2,9, A) which satisfy side conditions Az =y, ||y’ —y|| < § and ||[A—Ay]| < h.

Choosing from the set of solutions the element which minimizes ||Bz|| leads us to
a problem in which some estimate (&, 7, A) for (zf,y, A) is determined by solving
the constrained minimization problem

||Bz|| — min subject to Az =y, ||y° —y|| < 6,]|A - Ap|| < h. (3.9)

The method (3.9) can be seen as the dual of (3.5). Therefore, we call the later
method as the dual regularized total least squares problem ( dual RTLS problem).
The dual regularized total least squares (dual RTLS) can be characterized as a
special multi-parameter regularization method where one of the two regularization
parameters is negative.

Theorem 3.2. [5] If the two constraints ||y° — yll2 < 6 and ||A — Aul|lr < h of
the dual RTLS problem (3.9) are active, then the dual RTLS solution x = & of the
problem (3.9) is a solution of the equation

(AL Ay +aB B+ B0z = Aly°, (3.10)
with parameters o and (B solving the system

h(0 + hllz*" (e, B)|])
|2 (cv, B)|

| Apa®" (e, B) = y°l| = 6 + hl[a®"(a, B)|], B =— , (3.11)

where x5 (v, B) is the solution of (3.10) for fized o, 3.

As we already have noticed, both of the RTLS problem and its dual need one
more regularization parameter than in Tikhonov. In our research we will restrict
ourselves to the dual RTLS problem (3.9). In the next chapter we will discuss the
computational aspects of the dual RTLS.



Chapter 4

Selection of the regularization
parameters

The purpose of this chapter is to discuss the dual RTLS from a computational
point of view. So, we present a strategy for selecting the two regularization pa-
rameters o and § which were introduced in the previous chapter. More precisely,
we describe a model function of two variables for the dual RTLS as it is discussed
in [6].

It can be understood from Theorem 3.2 that a realization of the dual RTLS
involves with solving a highly nonlinear system of equations (3.11) [6]. It is
observed that the first equation of (3.11) is similar to one appearing in the dis-
crepancy principle for determining a regularization parameter in one parameter
regularization methods applied to equations with noisy operator, where a model
function approach has been proposed [17]. In the next section we will derive an
appropriate form of a model function of two variables and see how can we use it
for solving the system (3.11).

4.1 A model function method

Assume that a domain . C R? is given such that (3.10) has a unique solution
x = x%"(a, B) for any (a,8) € 3. This solution is continuously differentiable
with respect to both a and 8. We know already from Theorem 3.2 that if the
constraints are active, the dual RTLS solution & = 2%"(a, 3) of problem(3.9) can
be obtained by solving the minimization problem

min Jo5(x),  Jos(@) = | Ane = o |I* + al| Bal  + Blle],

29
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with regularization parameters («, (3) chosen by the following a posteriori rule:
Dual RTLS rule: Choose (¢, 3) by solving the system (3.11).

It is clear that the Dual RTLS rule is a special multi-parameter choice rule of a
posteriori type for choosing both regularization parameters o and § in Tikhonov’s
functional J, 5. For fixed a, 3 € Y the solution 2%"(a, 3) of the minimization
problem J, g(x) — min is equivalent to the solution of the regularized equation
(3.10), or equivalent to the solution of the variational equation

(A, Ang) + o(Bx, Bg) + B(x,9) = (y°, Ang) Vg € X. (4.1)
Substituting #>"(a, 8) into J, s(x) implies the following cost function

F(a, B) = [|Ap2®" (e, B) — y°||> + o[ Ba®"(ax, B)|* + B2 (ex, B)|[>-

Lemma 4.1. [6] For o, 3 € ), the partial derivatives of F(«, ) with respect to
a and B are given by

Fo(a, ) = [|Bz""(a, B)I*,  Fjla, B) = [|2*"(a, B)I*.

Proof. Tt is well known from the calculus that if some u(«) € X is a differentiable
function with respect to @ and v/(«) € X then

i||U(a)||2 _ oy (et ) —ula), u(@) + (ula +1) — u(a), u(a +1))
t—0 n

= }gﬂ%(t (u(e +1) — u(@)), u(@)) + }i_rf(l)é(U(Oé +1) —u(a)),u(a+1))

= (W(a),u(@)) + (/(a), u(e))
= 2(u(e),u'(a)).

(by symmetry of the scalar product). So, for x := z%"(a, §) we have
Fl (e, 8) = 2(Apz, —9°, Apl) + 20 Bz, Bxl) + || Bz||? + 28(x, x.,).
Using (4.1) with g = 2/, we have
(Apz, —y°, Apz) + a(Bx, Bzl) + B(z, z) = 0.

Thus, we end up with F/(a, 8) = ||Bz||?. O
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In a similar way we can prove the lemma for F é

Now with the help of Lemma 4.1, for 2%"(a, 3) we have
HAhx - 3/5H2 = F(O[,ﬂ) - aF(;(a,ﬁ) - ﬂF,é(O[7ﬁ)

Therefore, the first equation in (3.11) can be rewritten as

F(a,8) — aFy(a, ) — BFj(a, B) = (5 + hy/Fj(a, §))*. (4.2)

Once we approximate F'(«, ) by a simple model function m(c, 3), one can solve
the corresponding approximate equation

m(a, ) — amy(a, B) = fmijz(a, B) = (& + hy/m(a, §))?, (4.3)

for a or .

Remark 4.1. For g = x = 25" (a, §) the variational form (4.1) gives
| Apa|* + of | Ba||* + Bl|2|]* = (Anz,y").
So, for z = z%"(a, B),

F(a,8) = (Apz—1°, Apz — ¢°) + || Bz + 3|=|
= ||Anz|]* + |9°]1* - 2(Anz,°) + a||Bz|]* + B||z|?
1Y |? = || Anz|[* — af|Bz||* — B||z]|*.

The term ||Apz||? is approximated by T'||z||?, where T is a positive constant to be
determined. Using this approximation together with Lemma 4.1 we end up with

F(a,B) + aFy(a, 8) + (8 + T)Fj(a, 8) = ||y’||*.

A model function m(a, 3) approximating F'(a, 3) can be found from differential
equation
m(a, B) + ami(a, B) + (6 + T)mjz(a, 5) = ||y°| .
It can be checked that a simple parametric family of the solutions of this equation
is given by c 5
4112

m(a, B) = [[y°]| t T T (4.4)
where C, D and T are constants to be determined. In the next section we will
present an algorithm for the computation of the two regularization parameters «

and [ according to the dual RTLS rule
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4.2 An algorithm for the approximate solution

So far we approximated the function F(«, ) by a model function m(c, 3) to be
able to solve (4.3). Now we present an algorithm for the approximate solution of
the equations(3.11) by a special two-parameter model function approach.

Given ag, B9,v°, Ap, 8 and h. Set k := 0.

1. Solve (3.10) with ag, % to get %" (ay., Bx). Compute Fy = F(ay, B), Fa =
F), = [|Bz®" (o, B)||* and Fy = Fj = |2 (ci, Br)[|*. In (4.4) set C = C,
D = Dy, T =T}, such that

mlow, B) = 1|12 + & + 725 = Fy,
mi (o, B) = =55 = I,

mlg(akvﬁk) = ﬁ = F3.
Then,
Ck = —anz,
Dy, = _ W P=F1—Faou)?
= 2 ,
T, = WIP=Fi—Fow 5

I3

Update 8 = Bk+1 using the second equation in (3.11) as

By — 1O T Rl (e, 51
FH 125 (s, Bl

and update o = a1 as the solution of the linear algebraic equation

m(a, Br+1) — amg(a, Bir1) = Brrim(e, Brr1) = (6 + hy/mi(e, Brtr)-

This equation is an approximate version of (3.11), (4.2), where F(a,3) is
approximated by a model function m(a, ().

2. STOP if the stopping criteria max (lakﬁgak‘, w’“Tﬁllj‘ﬁ’“') < e is satisfied;
otherwise set k:= k+ 1, GO TO 1.

Though the convergence results for this algorithm are not known, it works well in
experiments. Actually, It is not known under which conditions the algorithm is
well defined. The only available result is: If the iteration converges, then the limit
(a*, 0%) = limg o (g, Bx) is a solution of the nonlinear system (3.11).
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4.3 Dual Regularized Total Least Squares for Learning
problem

In this section we discuss the dual RTLS for learning problem. In general we
consider the linear operator equation

Az =y, (4.5)
together with the inequalities
lly —°ll <6,
and
[|A — Apl| < h.
Now we set A =T and Ay, = T,.
That is,
|[A = Apl| = ||T = To|. (4.6)

Then, in accordance to the discrete version T, f = Sy we set y = Ty, fo and
y’ =Sy,

ly =¥l = 1|33, fo — Sayll. (4.7)
So, the dual RTLS problem (3.10) can be rewritten in the following form

(T;T,+aB*B+0)f =T,Sy. (4.8)
Now it is a time to define B*B. From our numerical experience we set

B*B =Y Ku(Ku, )1 (4.9)
=1

Remark 4.2. The operator T, is self adjoint. That is, Ty, =T .

An important question which arises here is how do we choose h and §?7 To answer
this question we give the following lemma where the two quantity show up.

Lemma 4.2. [1] Assume that the condition

/Y(e%-L _ly=Fd 1) dP(ylz) < i

M — 2M?

holds true, where fy is the best approzimation of fo from H with respect to
L*(X, P(z)dx)-norm, and ¥, M € R. Moreover, assume that

sup V K(z,z) <k < 00
zeX
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also holds true. For 0 <n <1 andn € N let

Gy ={z€ 2" ||Tafr — Spylln < 6,||T — Tof| < R}

with . A
0 :=6(n,n) = 2{7 + f}ZOQ
1
h:=h(n,n) = —2\/§k2log—.
() vn "
Then
P[Gn] >1—n

To complete the answer of the above question, we give the following observation

Proposition 4.1. From Lemma 4.2 and (4.6), (4.7) with probability 1 —n, 0 <
n < 1, we have
5 C1 &
— < — T-T,| < —,
Iy yl!_\/ﬁ, | x”—\/ﬁ
where ¢1 and ¢ are two positive constants depending on n, and n is the size of the
training set.

Proof. We will show the first inequality; the second one can be obtained from
Lemma 4.2 directly.
Since we have

T fr = T3, fo,

then,

1T iy

T~ Tuf + Tufi — S2|

T fre = T fl| + (1T fre — Sy
I~ Tl el + 5

[ frll + 6

1 4 kM

—2V2k2log—|| fu|| + 2 7+ lgf

= Il + 2(55 + 2o

1 4 4
—[2v2k2log—|| fx|| + 21{:Mn7+2kn2 log—
vl ] + Jog |

C1
V'

where ¢1 := 2\/§k2log%HfHH + (Qan_T1 + anZ)log%.

)
lly —v°||

IN N CIN
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In our numerical experiments we took c,c; =~ 0.1,0.01 .

Proposition 4.2. The neural network form

n

fl@) = cK(z ), (4.10)
i=1
is the minimizer of the problem (3.9) with B, An,y° given by (4.6), (4.7), (4.9) if
and only if the coefficients ¢;, 1 = 1,...,n, satisfy the linear system
(n*(aK + BI) + K*)C = Ky.

(4.11)
where n is the size of the training set, o and 3 are the reqularization parameters, I

is the identity matriz, C= {c;}1'_ ¢, y={y;}I, and K is the kernel matriz, namely
K(z1,71) K(z1,22)

K(z1,2p)
K(xo,21) K(x2,29) K(xzo,xy)
K(zn,71) K(zn,72) K(2n,zn)

Proof. Substituting from (2.10), (4.9) and (4.10) into (4.8) we get
n n n n n
% Z Kivi <K$i7 >HK Z Kﬂfj <K£Uj7 Z CZKZ'I>HK + Z Kl'j <Kﬂﬁj7 2 clK$z>7‘lK +
i=1 j=1 =1 j=1 =1

I6] Zlchg;]- # 21le <Kmi’ Zl yijj>HK'
j= 1= J=

Multiplying both sides by n? and equating the coefficients of K we get

n n n n n n
> Ky Koy K (x5, 1)1, + n?a ). aK(zj,x) + 0?8 ¢; = > 2 yK (i, z5)
j=1il=1 =1 j=1 i=1j=1
<
K(x1,21) K(x1,2,) K(xy,21) K(x1, ) 1
: : : : : +
K(zp,x1) K(xp,xy) K(zp,xz1) ... K(zp,zp) Cn
K(z1,21) K(z1,xn) c1 c1
K(zp,x1) K(zp,xy) Cn Cn
K(z1,21) K(z1,2p) Y1
K(an,:lil) K(wnvxn) Yn
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Thus,
K?C + n?aKC + n?6C = Ky.

or as written in (4.11)

(n*(aK + A1) + K*)C = Ky.
O

The conclusion that can be drawn from the present section is that using a regular-
ization network of the form (4.10), for a certain class of kernels K, is equivalent to
minimizing functionals of the form (3.9). It should be mentioned that the choice
of K is equivalent to the choice of a corresponding RKHS. In Figure 4.1 a variety
of kernels widely used is listed.

Despite the importance of determining the coefficients ¢; , i = 1,. .., n, for the neu-
ral network form of the minimizer, the choice of the two regularization parameters
« and [ is more important and, actually, crucial.
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Kernel function Regularization Network

x —v|) Gaussian RBF
242 Inverse multiquadric
24 A2 Multiquadric

K(x —y) = exp(—|
Kx—-y) =(x~-y
Kx—y)=(x—y

Kx-y =|x—y|"" Thin plate splines

K(x—y) = [lx — y[I*" In(||x — y[|)

K(x,y) =tanh(x -y — ) (only for some values of )
Multi-Layer Perceptron

Kxy=0+x-y) Polynomial of degree d

K(x,y) = Bayn+1(x — 1) B-splines

sin(d + 1/2)(x — y)

K(x,y) = sin((z — y)/2)

Trigonometric polynomial of degree d

Figure 4.1: Some possible kernel functions

4.4 Prediction scheme

In Figure 4.2 we present the algorithm discussed above.
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Input (£, yi)iy.

s B, 0. h

such that |og| > |Gk];
G <0

—= K={K(t;.t;)"_

0 | Select the kernel

y = (4i)is,

!

fﬂ'};_-.fj}; = Z?:l (fjf&v(.. tj )
ci = ejlag, Br), where
C' = (n*(aK + fI) + K*)~'Ky

l

Compute Fy, Fy, F3

l

Compute C, Dy, T}

Update 3= 41
||f‘-‘};‘-‘3k H

""ifc—i-l = —

|

Update oo = ooy

is our predictor

m(a, Br1) — amg(a. fre1) — Freaamala, Brer) = (0 + hy fml(o, frar)
C-'-ll('t'.k if
=k 1) ol Padl) o
\L yes
f = faB

Figure 4.2: An algorithm process to choose o and § to get our predictor.




Chapter 5

Numerical Examples

The purpose of this chapter is to demonstrate several results from the implemen-
tations of the theoretical framework applied to some problems. First of all, we
should distinguish here two different types of prediction. The first type happens
when inputs from the training set can be seen as boundary points of some area
and all further inputs are expected to appear in this area, this is the so-called
“interpolation ” type. However, in many application a new input will appear out-
side of the area, then we will talk about “extrapolation”. Actually, interpolation
is an important feature of Learning Theory; it is the procedure to estimate values
at unknown locations within the area covered by existing observations. On the
other hand, many areas of mathematics, statistics, and computer science deal with
extrapolation of functions from partial information or examples.

In the current chapter we will discuss both the interpolation and extrapolation
types within two test examples which have been introduced in [3]. In both exam-
ples we try to learn a target function f : [0,27] — R from a set of its samples.
As mentioned, the target functions are always unknown, but a discrete training
data can be measured in a certain frequency in a time periode 7. When given a
training data, our algorithm is expected to give a reasonable estimator/ predictor.

e Example 1. The best predictor, or the target function is f(t) = %(t +
2(e 805 =07 _e=8(5 0% _=8(5=0%)) " ¢ € [0,27]. This function belongs to RKHS
generated by the kernel K (z,t) = zt + e 80=®” which will be used in the frame-
work of learning algorithm based on dual RTLS . First of all, we generate the
training set by sampling the target function. The following training set 7, con-
sists of m + 1 points and is obtained by taking sample frequency as 27/n, and
adding to each discrete value the random noise in a range of [—0.02,0.02].

39
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t; 0 0.3142 | 0.6283 | 0.9425 | 1.2566 | 1.5708 | 1.8850
f(t;) | 0.0126 | 0.0476 | 0.0477 | 0.1023 | 0.0401 | -0.0590 | 0.0888

t; 2.1991 | 2.5133 | 2.8274 | 3.1416 | 3.4558 | 3.7699 | 4.0841
f(t;) ] 0.2133 | 0.2695 | 0.3013 | 0.3005 | 0.3671 | 0.4443 | 0.5825

i 14 15 16 17 18 19 20
t; 4.3982 | 4.7124 | 5.0265 | 5.3407 | 5.6549 | 5.9690 | 6.2832
f(t;) | 0.5018 | 0.2792 | 0.4094 | 0.5422 | 0.5770 | 0.6153 | 0.6345

Table 5.1: Training set 7'228 for f from Example 1.

5.1 Interplation type prediction for Example 1

In this section we discuss the interpolation type prediction for the target function

introduced in Example 1 using both Tikhonov technique and our new approach
based on the dual RTLS.

One can successfully predict the value of the tested function f(¢) at any point of
the interval [0, 27| containing all inputs from the training set 7'228 using Tikhonov
regularization technique. This can be seen clearly in Figure 5.1 [taken from [7]].

Meanwhile, using the dual RTLS approch, one can also successfully predict the
value of the same tested function at any point of the same interval containing all
inputs from the training set based, again, on 7228 , as it is shown in Figure 5.2.

So, we conclude that both regularization techniques, Tikhonov and the dual RTLS,
are very good in the context of interpolation type of the prediction.

5.2 Extrapolation type prediction for Example 1

As we mentioned, Tikhonov regularization technique does not give satisfactory
results when predicting the value of the tested function in some situation. What
we exactly meant by “some situations” is the extrapolation type of the prediction.
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Figure 5.1: Prediction for inputs within the scope of training set of 21 points: ideal
predictor (green line) and its approximation given by Tikhonov learning algorithm
based on the kernel K (x,t) = ot + e 8¢9 (red line).

That is, we show that using a one parameter regularization method, namely
Tikhonov, does not give a good prediction using a part of the data. This was
shown in a recent research [7]. Figure 5.3 [taken from [7]] shows that the quality
of the prediction at the points of the interval [0, 27| being beyond the scope of the
training set 795 = {t; = mi/10,i = 0,1,...,15} is rather poor.

On the other hand, when a prediction beyond the scope of the training set based
on 7'21(? using the dual RTLS technique, we can successfully predict the value of
the tested function as it is seen in Figure 5.4.

In Figure 5.5 we present the prediction using the dual RTLS made for the training

set based on 743 which looks promising.

e Example 2. The best predictor, or the target function is f(t) = sin(t) +
%Sint(Bt), t € [0,2x], This function belongs to RKHS generated by the kernel
K(z,t) = 2sin(z)sin(t) + 5sin(3z)sin(3t),t € [0,27]. As we mentioned before,
we generate the training set by sampling the target function by taking sample
frequency 27/20 and adding to each discrete value the random noise in range of
[—0.2,0.2], which is different from the range used in Example 1. we obtained the

training set shown in Table 5.2.
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alphak=1.037163e-005; betak=-6.037090e-008

0.7

Figure 5.2: (Example 1) Prediction within the scope of training set of 21 points:
Blue dots present the ideal predictor, magenta line presents its approximation
given by dual RTLS learning algorithm and the black line presents the noisy data.

5.3 Interpolation type prediction for Example 2

Exactly as in Example 1, one can successfully predict the value of the tested func-
tion f(t) using the dual RTLS technique at any point in the interval [0, 27] which
contains all input within the scope of 7'228. The quality of the prediction is shown
in Figure 5.6.

One can also predict successfully the value of the tested function f(¢) using
Tikhonov regularization at any point in the interval [0,27] which contains all
input within the scope of 729 [see Experiment 2 in [3]].

5.4 Extrapolation type prediction for Example 2

It can be seen clearly in Figure 5.7 that the quality of the prediction of the tested
function is very good using the same training data 72dand the dual RTLS for the
construction of the prediction. The prediction here is made beyond the scope of
the training set.
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Figure 5.3: Prediction for inputs beyond the scope of training set of 16 points:
ideal predictor (green line) and its approximation given by Tikhonov learning
algorithm based on the kernel K (,t) = ot 4+ ¢ 8¢9 (red line).

In Figure 5.8 one can see the prediction given by the dual RTLS beyond the scope
of the set 7'5105 .
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alphak=5.226325e-005; betak=-2.518083e-005

0.7

01 | | | | | | |
i]

Figure 5.4: (Example 1) Prediction beyond the scope of training set of 16 points:
Blue dots present the ideal predictor, magenta line presents its approximation
given by dual RTLS learning algorithm and the black line presents the noisy data.

alphak=1.058816e-005; betak=-2.813028e-008

0.7

0.1 1 1 1 1 1 1 1
i]

Figure 5.5: (Example 1) Prediction beyond the scope of training set of 46 points:
Blue dots present the ideal predictor, magenta line presents its approximation
given by dual RTLS learning algorithm and the black line presents the noisy data.
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t; 0 0.3142 | 0.6283 | 0.9425 | 1.2566 | 1.5708 | 1.8850
f(t;) | -0.1857 | 0.8532 | 1.2369 | 1.0350 | 0.7603 | 0.5973 | 0.6141

t; 2.1991 | 2.5133 | 2.8274 | 3.1416 | 3.4558 | 3.7699 | 4.0841
f(t;) | 1.0257 | 0.9318 | 0.7959 | -0.1873 | -0.8028 | -1.2448 | -1.1247

i 14 15 16 17 18 19 20
t; 4.3982 | 4.7124 | 5.0265 | 5.3407 | 5.6549 | 5.9690 | 6.2832
f(ti) | -0.5278 | -0.4221 | -0.7303 | -0.7834 | -1.2495 | -0.7380 | -0.0474

Table 5.2: Training set 7'228 for f from Example 2.

alphak=1.100801e-005; betak=-5.085174e-008

Figure 5.6: (Example 2) Prediction within the scope of training set of 21 points:
Blue dots present the ideal predictor, magenta line presents its approximation
given by dual RTLS learning algorithm and the black line presents the noisy data.
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alphak=2.688298e-005; betak=-1.040954e-005

Figure 5.7: (Example 2) Prediction beyond the scope of training set of 16 points:
Blue dots present the ideal predictor, magenta line presents its approximation
given by dual RTLS learning algorithm and the black line presents the noisy data.

alphak=1.018593e-005; betak=-2.373459e-008

Figure 5.8: (Example 2) Prediction beyond the scope of training set of 46 points:
Blue dots present the ideal predictor, magenta line presents its approximation
given by dual RTLS learning algorithm and the black line presents the noisy data.



Chapter 6

Conclusions

There is a strong connection between Learning Theory and inverse problems. The
problem of learning can be reduced to an ill-posed linear operator equation in
the reproducing kernel Hilbert space (RKHS). For solving this ill-posed opera-
tor equation, we considered the calssical Tikhonov regularization and the newly
introduced dual regularized toltal least squares (dual RTLS). It was known that
Tikhonov regularization applied to the equations coming from prediction prob-
lems is not satisfactory. We showed that the application of the dual RTLS to such
equations leads to much better results.

In the dual RTLS it is crucial to choose the two regularization parameters which
show up in the method. For this reason we have constructed a selection algorithm
which is able to determine the optimal parameters.

The performance of the constructed algorithm was tested on test examples taken
from the literature. From the presented numerical results it can be seen that

1. The interpolation type prediction of the tested function can be done in a

very good way using both Tikhonov regularization and the dual RTLS.

2. The extrapolation type prediction of the tested function is rather poor if
Tikhonov regularization is employed. However, using the dual RTLS to
perform this type of prediction is very good and looks promising.
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