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Abstract

In many real-world networks, such as the Internet and social networks, power-law degree sequences
have been observed. This means that, when the graph is large, the proportion of vertices with
degree k is asymptotically proportional to k−τ , for some τ ≥ 1. These networks are often small
worlds, which means that distances in these networks are small. We will study two random graph
models, the configuration model and the preferential attachment model, which will have power-law
degree sequences when the number of vertices tends to infinity. An overview is given of known
results about distances in these graph models. Also some new results will be presented, among
which a log log lower bound on the diameter of preferential attachment graphs with τ > 2.
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1 Introduction

There has been a lot of interest lately, in the topology of real-world networks, such as the Internet,
social networks and biological networks. Empirical studies show that these networks have some
remarkable similarities. The degree sequence of many of these networks obey a power-law. This
means that, when the graph is large, the proportion of vertices with degree k is asymptotically
proportional to k−τ , for some τ ≥ 1. Networks with this property are also called scale-free in the
literature.

Power-laws have for example been observed in the topology of the Internet by Faloutsos,
Faloutsos and Faloutsos in [12]. They show that the out-degree of domains in the Internet obeys
a power-law with exponent τ ≈ 2.2 between the end of 1997 and 1998, although the network grew
45% in that time period.

An other property of these networks is that they seem to be small worlds, which means that
distances in these networks are small compared to the size of the network. A famous result in
this direction was from Milgram ([21]). He sent letters to random people in Nebraska and asked
them to get the letter to a friend in Boston, but they were only allowed to sent it to people they
know on first basis. Milgram discovered that the average number of steps necessary to get the
letter back to his friend was about 6. Hence the famous phrase “six degrees of separation”. Many
question marks can be placed about the interpretation of this experiment, but it created a huge
interest in this phenomenon. For an extensive review of properties of complex networks, see [23]
and the references therein.

Since these networks are often rather complex and large, various random graph models have
been proposed to study them. The classical Erdős-Rényi random graph ([10]), does not suffice,
because there power-law degree sequences can not be obtained. The two models that we study
are the configuration model and the preferential attachment model.

The configuration model was originally proposed by Newman et al. in [24]. In this model,
a fixed number of vertices all have an independent and identically distributed (i.i.d.) number of
half-edges attached to it. Here the distribution will be a power-law distribution. These half-edges
are then connected to each other uniformly at random to form a graph.

The preferential attachment model was introduced by Barabási and Albert in [3]. This model
is based on two principles: the network grows continuously and new vertices are more likely to
connect to a vertex that already has a large number of connections. This last phenomenon is
also called the rich-get-richer effect. This model does not only give rise to a graph with a power-
law degree sequence, but also explains why power-laws arise. See [2] for a popular account of
preferential attachment and its consequences.

This rest of this thesis is structured as follows. We will first formally introduce the configuration
model and the preferential attachment models we will study in Section 2. In Section 3, we will
show that these models indeed give rise to power-law degree sequence, while in Section 4 we will
give an overview of the known results on distances in these models. Sections 5 and further contain
new results, starting with a log log lower bound on the diameter of preferential attachment graphs
with τ ∈ (2, 3). A log log upper bound also exists. In Section 6 we will show that late vertices
have small degrees, a result we need to prove this upper bound. In Section 7 we will generalize the
log / log log upper and lower bound on diameters in preferential attachment models with τ = 3,
to bounds on average distances. Finally, we will show in Section 8, that average distances in the
configuration model with τ = 3 also have a log / log log lower bound. Section 9 will contain some
concluding remarks and some ideas for future research.

2 Random graph models

In the next two sections, we will first introduce the random graph models we will study.

4



2.1 Configuration model

In the configuration model an undirected random graph with n vertices is constructed as follows.
Let {Di}n

i=1 be a sequence of i.i.d. random variables with distribution D. Let vertex i, i = 1, . . . , n,
be a vertex with Di half-edges, also called stubs, attached to it, i.e. vertex i has degree Di. Let
Ln =

∑n
i=1 Di be the total degree, which we will assume to be even in order to be able to construct

a graph. When Ln is odd we will increase the degree of Dn by 1. For n large, this will hardly
change the results and we will therefore ignore this effect.

Now connect one of the half-edges uniformly at random to one of the remaining Ln − 1 half-
edges. Repeat this procedure until all half-edges have been connected. We will denote the resulting
graph by CMn ({Di}n

i=1).
Since we are interested in power-law random graphs, we will usually let D have a power-law

distribution. This construction, however, also works for other distributions of D.
Note that the above construction will not necessarily result in a simple graph. Both self-loops

and multiple edges may occur. Two ways to overcome this are to delete all loops and multiple
edges, this model is also called the erased configuration model, and to perform the configuration
model until it produces a simple graph, which is also called the repeated configuration model.

2.2 Preferential attachment models

In 1999 Barabási and Albert first introduced the preferential attachment model in [3] as follows:

. . . starting with a small number (m0) of vertices, at every time step we add a new vertex
with m(≤ m0) edges that link the new vertex to m different vertices already present in
the system. To incorporate preferential attachment, we assume that the probability Π
that a new vertex will be connected to vertex i depends on the connectivity ki of that
vertex, so that Π(ki) = ki/

∑
j kj . After t time steps, the model leads to a random

network with t + m0 vertices and mt edges.

This definition, however, is rather imprecise. For instance, it is not clear how the process starts,
since at time t = 0, the degrees of the first m0 vertices are 0, so the connecting probabilities are
not properly defined. It also is not clear whether the m vertices should be added independently of
each other, or if the connectivity coefficients should be updated after each edge that was added.
In [5] Bollobás and Riordan gave a rigorous definition, starting with one vertex with m self-loops
and specifying that the degrees should be updated in the process of attaching the m edges. We
will study a generalization of this model, which we will call model (a), and two variants hereof;
models (b) and (c). These three models are defined below, as proposed by Van der Hofstad and
Hooghiemstra in [16]. In all these models a graph process {PAm,δ(t)} is defined for t ≥ 1 or t ≥ 2.
We will label the vertices of PAm,δ(t) as 1, . . . , t. Let [t] = {1, . . . , t}. The integer parameter
m ≥ 1 is the number of connections a new vertex that is added makes. At time t the random
graphs have exactly t vertices and mt edges. The parameter δ ≥ −m allows us to control the
exponent of the power-law, as will be shown in Section 3.2.

(a) Start with PA(a)
m,δ(1) consisting of a single vertex with m self-loops. For 1 ≤ j ≤ m, the end

points of each of the m edges of vertex t + 1 are chosen with the following probabilities:

P
[
jth edge of t + 1 → i

∣∣PA(a)
m,δ(t, j − 1)

]
=


Di(t,j−1)+δ

t(2m+δ)+2(j−1)+1+jδ/m , for i ∈ [t],

Di(t,j−1)+1+jδ/m
t(2m+δ)+2(j−1)+1+jδ/m , for i = t + 1.

(1)
Here, PA(a)

m,δ(t, j) is the graph and Di(t, j) is the degree of vertex i after the j-th edge of
vertex t + 1 has been added. This model with δ = 0 is the same as the model defined in [5].

(b) For m ≥ 2, start with PA(b)
m,δ(1) consisting of a single vertex with m self-loops. For m = 1 let
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PA(b)
m,δ(1) undefined and let PA(b)

m,δ(2) consist of vertices 1 and 2 joined by 2 edges.

P
[
jth edge of t + 1 → i

∣∣PA(b)
m,δ(t, j − 1)

]
=


Di(t,j−1)+δ

t(2m+δ)+2(j−1)+(j−1)δ/m , for i ∈ [t],

Di(t,j−1)+(j−1)δ/m
t(2m+δ)+2(j−1)+(j−1)δ/m , for i = t + 1.

(2)
Again, PA(b)

m,δ(t, j) is the graph and Di(t, j) is the degree of vertex i after the j-th edge of

vertex t + 1 has been added. The advantage of this model is that the graph PA(b)
m,δ(t) is a

connected random graph, while this is not necessarily the case in model (a). This is because
the first edge that is added of a vertex t creates a self-loop with probability 0 in model (b).

(c) Let PA(c)
m,δ(1) undefined and start with PA(c)

m,δ(2), with the vertices 1 and 2 joined together by
2m edges. For 1 ≤ j ≤ m, the end points of each of the m edges of vertex t + 1 are chosen,
conditionally on PA(c)

m,δ(t), independently, with

P
[
jth edge of t + 1 → i

∣∣PA(c)
m,δ(t)

]
=

Di(t) + δ

t(2m + δ)
, for i ∈ [t]. (3)

Here, Di(t) is the degree of vertex i after vertex t and all its m edges have been added. This
model will also result in a connected random graph PA(c)

m,δ(t) and the resulting graph will
not have any self-loops.

Often, models (a) and (b) are defined for m = 1 as above and the model for m > 1 is then
derived by identifying, for i ∈ [t], vertices (i − 1)m + 1, . . . , im of PA1,δ′(mt) to be vertex i in
PAm,δ(t), where δ′ = δ/m. This will result in the same models as above. For model (c) this
method is also possible, but then (3) has to be replaced with

P
[
t + 1 → i

∣∣PA(c)
1,δ′(t)

]
=

Di(mbt/mc) + δ′

mbt/mc(2 + δ′)
, for i ∈ [mbt/mc], (4)

because the degrees are only updated after each m-th vertex that was added. We often use the
explicit formulas (1-3), because it is easier to give bounds on the connecting probabilities.

In the literature many other preferential attachment models have been studied. For example,
other functions of the degree can be taken to replace the numerators of (1-3). For an overview,
see for example [4] and the references therein.

3 Power-laws

Before we investigate distances in the random graph models described in Sections 2.1 and 2.2, we
will first show that these models result in power-law random graphs.

3.1 Configuration model

Define pn
k , for k = 1, 2, . . ., by

pn
k =

1
n

n∑
i=1

I{Di = k}. (5)

By the strong law of large numbers, we have that

pn
k

a.s.−→ P[D = k], (6)

so that the degree distribution of CMn ({Di}n
i=1) converges almost surely to the distribution of

D. Thus, when D satisfies a power-law, so will the degree distribution.
In [7], Britton et al. study the degree distribution of the erased and the repeated configuration

model. They show that, in the erased configuration model, the degree distribution converges to
the distribution of D when D has finite mean. When D has a finite second moment, they show
that this also holds for the repeated configuration model.
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3.2 Preferential attachment models

Most papers about preferential attachment models study the degree sequence, and show that
power-laws arise. Denote the number of vertices with degree k at time t as

Nk(t) =
t∑

i=1

I{Di(t) = k}, (7)

and define pk(t) = Nk(t)/t.
Most of these papers prove that Nk(t) is concentrated around its mean by a martingale ar-

gument from Bollobás et al. ([6]). Then it is shown that the expected degree sequence obeys a
power-law. We will give a heuristic here that can be found in [9] for a more general version of
model (c).

Note that the expected number of vertices with degree k at time t satisfies

E[Nk(t)|PAm,δ(t− 1)] = Nk(t− 1) + E[Nk(t)−Nk(t− 1)|PAm,δ(t− 1)]. (8)

When t gets large, it becomes unlikely that two or more edges from vertex t will attach to the
same vertex, so let us assume that this does not happen. Then Nk(t) − Nk(t − 1) can only be
unequal to zero if one of the following events happens:

• When one of the m edges of vertex t attaches to a vertex with degree k − 1, the number
of vertices with degree k increases by one. The probability that a fixed egde attaches to a
vertex with degree k − 1 can be derived from (3). Thus, the expected number of times this
happens is, conditionally on PAm,δ(t− 1),

m
(k − 1 + δ)Nk−1(t− 1)

t(2m + δ)
; (9)

• When one of the m edges of vertex t attaches to a vertex with degree k, the number of
vertices with degree k decreases by one. The expected number of times this happens is,
conditionally on PAm,δ(t− 1),

m
(k + δ)Nk(t− 1)

t(2m + δ)
; (10)

• When k = m the number of vertices with degree k increases by one.

We thus have that

E[Nk(t)|PAm,δ(t− 1)]

≈ Nk(t− 1) + m
(k − 1 + δ)Nk−1(t− 1)

t(2m + δ)
−m

(k + δ)Nk(t− 1)
t(2m + δ)

+ I{k = m}, (11)

where there is an approximation sign because we ignore the possibility that two or more edges
from vertex t attach to the same vertex. Taking expectations on both sides gives

E[Nk(t)] ≈ E[Nk(t− 1)] +
(k − 1 + δ)

tθ
E[Nk−1(t− 1)]− (k + δ)

tθ
E[Nk(t− 1)] + I{k = m}, (12)

with θ = 2 + δ
m .

When we assume that pk(t) converges to some limit pk as t → ∞, we have that E[Nk(t)] −
E[Nk(t− 1)] → pk, so also that 1

t E[Nk(t)] → pk. We thus have the following recursion

pk =
(k − 1 + δ)

θ
pk−1 −

(k + δ)
θ

pk + I{k = m}, k ≥ m. (13)
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By iteration we get that, for k ≥ m,

pk =
θ

k + δ + θ

k−m∏
j=1

k − j + δ

k − j + δ + θ
= θ

Γ(k + δ)
Γ(m + δ)

Γ(m + δ + θ)
Γ(k + 1 + δ + θ)

. (14)

By Stirling’s formula, Γ(k + a)/Γ(k) ∼ ka, so

pk ∼ ck−(θ+1) = ck−(3+ δ
m ), (15)

for some c > 0. Thus, pk obeys a power law with exponent τ = 3 + δ
m

. By choosing δ > −m,
we can get any power law with exponent τ > 2.

4 Distances and diameters

In the sequel, we will denote the event that a vertex i is an element of the vertex set of a graph
G by i ∈ G. The distance between vertices i and j in the graph G will be denoted by distG(i, j).
We will define the diameter of a graph G as

diam(G) = max
i,j∈G

{distG(i, j)|distG(i, j) < ∞} , (16)

i.e., the largest distance between two connected vertices. A sequence of events {At} is said to hold
with high probability (whp), when P[At] → 1 as t →∞.

4.1 Configuration model

Distances in the configuration model have been studied by Van der Hofstad et al. in a series
of papers [17], [18] and [11]. In these papers they study the distance or hopcount Hn between
vertices 1 and 2 in CMn ({Di}n

i=1), where D satisfies

P[D > x] = x1−τL(x), x = 1, 2, . . . , (17)

for τ > 3, τ ∈ (2, 3) and τ ∈ [1, 2] respectively and where L(x) is a slowly varying function, i.e.,
limx→∞

L(cx)
L(x) = 1 for all c > 0. Note that the distance between two vertices chosen uniformly at

random, has the same distribution as Hn, because all vertices are exchangeable. If two vertices
are not connected, then the distance between them is defined as ∞.

In [17] the configuration model is studied with a degree distribution satisfying

P[D ≥ x] ≤ cx1−τ , x = 1, 2, . . . , (18)

where c is a positive constant and τ > 3. This covers all cases where P[D > x] = x1−γL(x), for
γ > 3 and L(x) a slowly varying function, because of Potter’s theorem ([13], Lemma 2, p. 277)
which states that, for x → ∞, x−ε < L(x) < xε for all ε > 0. The main result of [17] is the
following.

Theorem 1. Let D be a random variable satisfying (18). Let ν = E[D(D−1)]
E[D] and suppose ν > 1.

Then, conditionally on Hn < ∞, whp,

(1− ε)
log n

log ν
≤ Hn ≤ (1 + ε)

log n

log ν
, (19)

for all ε > 0.
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Also the fluctuations of Hn around log n
log ν are determined. To prove this theorem, the neighbor-

hood of vertices 1 and 2 is investigated. We start from vertex 1 which has D1 stubs. Next, look
at the vertices that connect to these stubs, which will be the vertices at distance 1. Free stubs
are those stubs that do not connect to previously studied vertices. Continue in the same fashion.
Let Z

(1)
k be the number of free stubs of vertices at distance k from vertex 1. Do the same with

vertex 2. As long as Z
(i)
k is small compared to n, the probability that a new vertex with degree

j + 1 connects to such a free stub is approximately equal to the fraction of stubs that belong to a
vertex with degree j + 1. This equals:

1
Ln

n∑
l=1

(j + 1)I{D = j + 1}. (20)

Let µ = E[D]. Then, by the strong law of large numbers,

Ln

n

a.s.−→ µ and
∑n

l=1 I{D = j + 1}
n

a.s.−→ P[D = j + 1], (21)

so that (20) converges almost surely to

(j + 1)
P[D1 = j + 1]

µ
≡ gj , (22)

say. Z
(i)
k , i = 1, 2, thus behave like branching processes with offspring distribution D in the

first generation and {gj}∞j=0, in all further generations. The condition ν > 1 makes sure that

this branching process is supercritical. The process {Z(i)
k /µνk−1} is a martingale with uniformly

bounded expectation, and thus the martingale convergence theorem tells us that there exist random
variables W (1) and W (2), such that

Z
(i)
k

µνk−1

a.s.−→ W (i), i = 1, 2. (23)

It can be shown that the free stubs of vertices at distance k − 1 from vertex 1 are likely to
connect to the free stubs of vertices at distance l− 1 from vertex 2 if Z

(1)
k Z

(2)
l is of order n. Since

Z
(1)
k and Z

(2)
l both grow at the same rate, both should be of order

√
n, so take k = l = 1

2 logν n.
Thus, the distance between vertices 1 and 2 is approximately k+ l = logν n. The random variables
W (1) and W (2) can be used to describe the fluctuations of Hn around logν n.

In [18] it is shown that the above methodology can also be applied for τ ∈ (2, 3). The only
difficulty is, that the corresponding branching process has an infinite mean offspring distribution.
Under some extra conditions, Davies shows in [8] that there exist random variables Y (1) and Y (2)

such that
(τ − 2)k log

(
Z

(i)
k + 1

)
a.s.−→ Y (i), i = 1, 2. (24)

These conditions hold, if there exist γ ∈ [0, 1) and C > 0 such that

x−τ+1−C(log x)γ−1
≤ P[D > x] ≤ x−τ+1+C(log x)γ−1

, for large x. (25)

Because of this double exponential behavior, the following theorem can be proven.

Theorem 2. Let D be a random variable satisfying (25) for τ ∈ (2, 3). Then, conditionally on
Hn < ∞, whp,

(1− ε)
2 log log n

| log(τ − 2)|
≤ Hn ≤ (1 + ε)

2 log log n

| log(τ − 2)|
, (26)

for all ε > 0.
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Interestingly, for τ > 2 the diameter of CMn ({Di}n
i=1) is of order log n, when P[D = 1]+P[D1 =

2] > 0 and P[D = 1] < 1, as is shown in [19]. This is because, whp, there are long chains of
vertices with degree 2 in this case. When P[D = 1] +P[D1 = 2] = 0, these long chains do not exist
and the diameter will be of order log log n for τ ∈ (2, 3).

For τ ∈ (1, 2) the corresponding branching process does not exist, because the degrees have
an infinite mean. In this case, there is a finite number of vertices which have a giant degree, which
together form a complete graph. All other vertices connect whp to at least one of these vertices
with giant degree. So, the average hopcount Hn is 2 if the two vertices are connected to the
same vertex with a giant degree and 3 otherwise. Based on this heuristic, the following theorem
is proven in [11].

Theorem 3. Let D be a random variable satisfying P[D > x] = x1−τL(x) for τ ∈ (1, 2). Then,

lim
n→∞

P[Hn = 2] = 1− lim
n→∞

P[Hn = 2] = pD ∈ (0, 1), (27)

where pD only depends on the distribution of D.

In [11], also the boundary cases τ = 1 and τ = 2 have been studied. For τ = 1 the hopcount
Hn turns out to be 2 whp. For τ = 2 the distribution of Hn depends on the slowly varying
function L(x). An example has been given where Hn behaves the same as in Theorem 1 and an
example is given where the average distance behaves as in Theorem 2.

For the boundary case τ = 3 results are, to the best of our knowledge, not known. In Section 8,
we will show that Hn is whp bounded from below by (1 − ε) log n/ log log n, for all ε > 0. This
behavior is as expected, because of the known result on the preferential attachment model with
τ = 3 as is formulated in Theorem 5 below.

4.2 Preferential attachment models

For m = 1, where the graphs are trees, distances have been studied in various papers. See for
example [25], where Pittel studies models (b) and (c), which are equivalent for m = 1, for δ = 0
and δ = ∞. He shows that in these models the height of the tree, ht say, satisfies:

ht

log t

P−→ cM , t →∞, (28)

where cM is a constant depending on the model and its parameters. This holds for a wide variety
of preferential attachment models. For an overview, see [4] and the references therein.

This result can also be shown to hold for all δ > −1. Moreover, this immediately gives a log t
upper bound on the diameter for m ≥ 2, since this model can be constructed from the case m = 1
by grouping certain vertices, which can only decrease the distances between them.

For m ≥ 2 and δ > 0, so for τ > 3, there also exists a log t lower bound on the diameter as
was shown by Van der Hofstad and Hooghiemstra in [16]. We thus have the following theorem.

Theorem 4. Fix m ≥ 1 and δ > 0. Then there exist constants c1, c2 > 0 such that, whp,

c1 log t ≤ diam(PAm,δ(t)) ≤ c2 log t. (29)

Their proof is an extension of an earlier proof by Bollobás and Riordan given in [5], where they
prove the following for the case where τ = 3.

Theorem 5. Fix m ≥ 2 and δ = 0. Then, whp,

(1− ε)
log t

log log t
≤ diam(PAm,0(t)) ≤ (1 + ε)

log t

log log t
, (30)

for some constant C > 0 and any constant ε > 0.
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These proofs investigate the distance between vertices t− 1 and t and prove that this is, whp,
at least equal to the lower bounds given. See also Section 7, where we will extend the result of
Theorem 5 to average distances. Van der Hofstad and Hooghiemstra also did this with Theorem 4
for δ > 0 in [16].

In [16] also the diameter is studied when m ≥ 2 and −m < δ < 0, so for τ ∈ (2, 3). The
diameter in this case is shown to be at most of order log log t as is stated in the following theorem.

Theorem 6. Fix m ≥ 2 and δ ∈ (−m, 0). Then, for every σ > 1
3−τ ,

diam(PAm,δ(t)) ≤ C +
4 log log t

| log(τ − 2)|
+

4σ log log t

log m
, (31)

for some constant C.

Note that σ > 1. This theorem is proven for time 2t rather than time t, which will not make
any difference for the result. The proof consists of several parts. First, it is shown that distances
in PAm,δ(2t) between vertices with a large degree at time t is small, and then it is shown that all
other vertices are within a small distance of one of these vertices. The set of vertices with large
degree is called the core and is defined as follows. Let σ > 1

3−τ , then

Coret = {i ∈ [t]|Di(t) ≥ (log t)σ}. (32)

The vertices in Coret are split up into sets N (1), . . . ,N (k), for some k, such that the degrees
of the vertices in set N (i) are larger than the degrees of the vertices in set N (j) whenever i < j.
When

k =
⌊

log log t

| log(τ − 2)|

⌋
, (33)

this can be done in such a way that the maximum distance between any two vertices in N (1) is
at most C. Further, for every vertex v ∈ N (j) there exists a vertex in [2t]/[t] that is connected
to both the vertex v and some vertex in N (j−1). This shows that the distance between any two
vertices in Coret is at most

C + 4k ≤ C +
4 log log t

| log(τ − 2)|
. (34)

Next, the neighborhood of vertices i ∈ [t] is studied. That is, starting from vertex i, connect
its m ≥ 2 edges. Then, successively, connect the m edges from each of the at most m vertices that
i has connected to and have not yet been explored. Continue in the same fashion. The arising
process, where all vertices up to distance k from vertex i have been explored, will be called the
k-exploration tree, T (k)

i , of vertex i. We will call the event where an edge connects to a vertex
that already was in the tree a collision.

Let C ′ = σ/ log m and k = C ′ log log t−2. Then, the probability that there are many collisions
before the k-exploration tree hits Coret ∪ [btbc], for some b > 0, is small. When the k-exploration
tree hits the core we are done. When it does not, it can be shown that with probability 1−o(t−1),
there exists a vertex v ∈ [2t]/[t] which connects to both some vertex in T (k)

i and a vertex in
Coret ∪ [btbc]. The constant b can be chosen such that [btbc] ⊆ Coret. So the distance between
any vertex i ∈ [t] and Coret is, whp, at most

k + 2 =
σ log log t

log m
. (35)

A similar approach can be used for vertices i ∈ [2t]/[t]. It can be shown that in this case, with
probability 1−o(t−1), the (k+1)-exploration tree hits Core2t∪ [t], or at least one of the vertices at
distance k + 1 attaches to some vertex in Core2t ∪ [t]. In Section 6 we will show that Core2t ⊆ [t],
so, whp, the distance between any vertex i ∈ [2t]/[t] and [t] is at most

k + 2 =
σ log log t

log m
. (36)
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These three bounds together give Theorem 6. In Section 5 we will prove that there is also a log log
lower bound on the diameter for τ ∈ (2, 3).

It is not possible for the preferential attachment models (a-c) to have a power law with
τ ∈ [1, 2]. Deijfen et al. ([9]) proposed a model where a new vertex starts not with m edges, but
with a random number of edges W . In this case, they conjecture that the degree sequence of the
resulting graph obeys a power-law with exponent τ ∈ [1, 2], by letting W have a power law with
this exponent τ . Results on distances, however, are not know for this model.

5 A log log lower bound on the diameter in PA models

In this section we will give a log log lower bound on the diameter of preferential attachment graphs
with m ≥ 2 and δ > −m. All results apply to models (a), (b) and (c) simultaneously. The main
result is stated in the following theorem:

Theorem 7. Fix m ≥ 2 and δ > −m. Let k = ε
log m log log t, with 0 < ε < 1. Then, whp,

diam(PAm,δ(t)) ≥ k. (37)

We will again prove this theorem for time 2t rather than time t. To show that the diameter
of the graph is, whp, at least k, we will study, at time 2t, the k-exploration trees of vertices
i ∈ [2t]\[t], T (k)

i , as defined above. We again will call the event where an edge connects to a vertex
that already was in the tree a collision. We call such a tree proper if the following conditions hold:

• The k-exploration tree has no collisions;

• All vertices of T (k)
i are in [2t]\[t];

• No other vertex connects to a vertex in T (k)
i .

When such a tree exists in PAm,δ(2t) for a certain vertex i then we know that the diameter is
at least k, since the distance between the root of the tree i and the vertices at depth k is exactly
k; there cannot be a shorter route.

To prove that a proper k-exploration tree exists in PAm,δ(2t), we will use the second moment
method. Let Tk

m(2t) be the set of all possible k-exploration trees that can exist in PAm,δ(2t) and
satisfy the first two conditions. Note that the order in which the edges are added matters: if two
edges are added in a different order, then the arising exploration tree will be considered a different
tree. Let Zk

m,δ(2t) be the number of proper k-exploration trees in PAm,δ(2t), i.e.,

Zk
m,δ(2t) =

∑
T ∈Tk

m(2t)

I{T ⊆ PAm,δ(2t) and T is proper}, (38)

where I{A} is the indicator function of the event A. T ⊆ PAm,δ(2t) denotes the event that all
edges of T have been formed in PAm,δ(2t).

In Section 5.1 we will investigate the first moment of Zk
m,δ(2t) and prove the following:

Proposition 8. Fix m ≥ 2 and δ > −m. Let k = ε
log m log log t, with 0 < ε < 1. Then

lim
t→∞

E
[
Zk

m,δ(2t)
]

= ∞. (39)

The variance of Zk
m,δ(2t) will be the subject of Section 5.2, where we will prove the following:

Proposition 9. Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t
log m . Then there exists a constant cm,δ > 0,

such that, for t sufficiently large,

Var
[
Zk

m,δ(2t)
]
≤ cm,δ

(log t)2

t
E
[
Zk

m,δ(2t)
]2

+ E
[
Zk

m,δ(2t)
]
. (40)
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We use these two propositions to prove the main result of this section:

Proof of Theorem 7. We first use the Chebychev inequality to obtain that

P [diam(PAm,δ(2t)) < k] ≤ P
[
Zk

m,δ(2t) = 0
]
≤

Var
[
Zk

m,δ(2t)
]

E
[
Zk

m,δ(2t)
]2 . (41)

By Proposition 9, this is, for some constant cm,δ > 0, at most

cm,δ
(log t)2

t E
[
Zk

m,δ(2t)
]2

+ E
[
Zk

m,δ(2t)
]

E
[
Zk

m,δ(2t)
]2 = cm,δ

(log t)2

t
+

1

E
[
Zk

m,δ(2t)
] = o(1), (42)

by Proposition 8.

5.1 The first moment

Let BT denote the event that no vertex outside a tree T connects to a vertex in this tree. We can
then write that the expected number of proper k-exploration trees in PAm,δ(2t) equals

E
[
Zk

m,δ(2t)
]

= E

 ∑
T ∈Tk

m(2t)

I{T ⊆ PAm,δ(2t) and T is proper}


=

∑
T ∈Tk

m(2t)

E [I{T ⊆ PAm,δ(2t) and T is proper}]

=
∑

T ∈Tk
m(2t)

P [T ⊆ PAm,δ(2t) and T is proper]

=
∑

T ∈Tk
m(2t)

P [T is proper|T ⊆ PAm,δ(2t)] P [T ⊆ PAm,δ(2t)]

=
∑

T ∈Tk
m(2t)

P [BT |T ⊆ PAm,δ(2t)] · P [T ⊆ PAm,δ(2t)] . (43)

We will first give a lower bound on the probability that a given k-exploration tree exists in the
graph at time 2t. For convenience we will write am,δ = m+δ

3(2m+δ) .

Lemma 10. Fix m ≥ 2, δ > −m and k ≥ 0. Given a possible proper k-exploration tree T ∈
Tk

m(2t), then, for t sufficiently large,

P [T ⊆ PAm,δ(2t)] ≥
(am,δ

t

)mk+1−1
m−1 −1

. (44)

Proof. Since every vertex is added before time 2t, the denominator in (1), (2) and (3) is at most
3t(2m + δ). The degree of all vertices already in the graph is at least m, so the probability that a
certain given edge is formed is at least

m + δ

3t(2m + δ)
=

am,δ

t
. (45)

Since exactly mk+1−1
m−1 − 1 edges have to be formed to form the given tree T , we have that

P [T ⊆ PAm,δ(2t)] ≥
(am,δ

t

)mk+1−1
m−1 −1

. (46)
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We will now give a lower bound on the probability that no other vertex connects to a given
tree. We will write mδ = m + 1 + δ.

Lemma 11. Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t
log m . Given a possible proper k-exploration tree

T ∈ Tk
m(2t), then, for t sufficiently large,

P [BT |T ⊆ PAm,δ(2t)] ≥
(

1− mδm
k+1

t

)mt

. (47)

Proof. First note that for k ≤ log log t
log m and t sufficiently large, mδm

k+1 ≤ mδm log t ≤ t. So

0 ≤ 1 − mδmk+1

t ≤ 1. Further note that vertices [t] cannot connect to a vertex in T , since
T ⊆ [2t]\[t]. In the remainder of the proof we will refer to outside edges as those edges that do
not belong to T , of which there are exactly mt −

(
mk+1−1

m−1 − 1
)

added after time t. Let En(A)
denote the event that the n-th outside edge added after time t connects to a vertex in A and let
En(A) be the negation of En(A). We use induction on the number of outside edges that did not
connect to the tree T , i.e., we show that:

P

[
n⋂

i=1

E i(T )
∣∣∣T ⊆ PAm,δ(2t)

]
≥
(

1− mδm
k+1

t

)n

, (48)

by induction on n = 0, . . . ,mt −
(

mk+1−1
m−1 − 1

)
. For n = 0 the above clearly holds. Now assume

that the above holds for 0 ≤ n < mt−
(

mk+1−1
m−1 − 1

)
, then

P

[
n+1⋂
i=1

E i(T )
∣∣∣T ⊆ PAm,δ(2t)

]

= P

[
En+1(T )

∣∣∣ n⋂
i=1

E i(T ) ∩ {T ⊆ PAm,δ(2t)}

]
P

[
n⋂

i=1

E i(T )
∣∣∣T ⊆ PAm,δ(2t)

]

≥

(
1− P

[
En+1(T )

∣∣∣ n⋂
i=1

E i(T ) ∩ {T ⊆ PAm,δ(2t)}

])
·
(

1− mδm
k+1

t

)n

. (49)

Since it is known that at the time that the (n + 1)-th outside edge after time t is added, no other
outside edge has connected to a vertex in the tree, we know that the degree of all vertices in
the tree at that moment is at most m + 1. Further, since this edge is added after time t, the
denominator of (1), (2) and (3) will be at least t. Thus, the right hand side of (49) is at least(

1−
∑
i∈T

m + 1 + δ

t

)
·
(

1− mδm
k+1

t

)n

≥
(

1− mδm
k+1

t

)
·
(

1− mδm
k+1

t

)n

=
(

1− mδm
k+1

t

)n+1

, (50)

where the inequality holds because there are less than mk+1 vertices in the tree. Applying the
above to n = mt−

(
mk+1−1

m−1 − 1
)

, we obtain that

P [BT |T ⊆ PAm,δ(2t)] ≥
(

1− mδm
k+1

t

)mt−
�

mk+1−1
m−1 −1

�
≥
(

1− mδm
k+1

t

)mt

. (51)
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We finally give a lower bound on the number of possible proper k-exploration trees that can be
formed. It should be noted that when a vertex i connects to a vertex j, we will always have that
i > j. So when exploring a vertex i in the exploration tree, all m vertices this vertex connects to
have a smaller label than i.

Lemma 12. Fix m ≥ 2 and 0 ≤ k ≤ log log t
log m . Then, for t sufficiently large, the number of possible

proper k-exploration trees at time 2t is at least(
t

mk+1

)mk+1−1
m−1

. (52)

Proof. For t sufficiently large and k ≤ log log t
log m , mk+1 ≤ m log t ≤ t. Since the k-exploration tree of

a vertex i has to be proper, there are no collisions, so the number of vertices in the tree equals

|T (k)
i | =

mk+1 − 1
m− 1

. (53)

For any subset X ⊆ [2t]\[t] with |X| = mk+1−1
m−1 there exists at least one possible proper k-

exploration tree. To see this, first order the vertex labels in descending order. Let the first vertex,
i.e. the vertex with the largest label, be the root of the tree. Then let the next m vertices be
the vertices at distance 1 from the root, the next m2 vertices be the vertices at distance 2 from
the root, etcetera, until the last mk vertices which will be at distance k from the root. This way,
all vertices will connect to m vertices with a smaller label, i.e., vertices that were already in the
graph when the vertex was added, so this is a possible proper k-exploration tree with all vertices
in X.

The number of subsets of [2t]\[t] of size mk+1−1
m−1 is

( t
mk+1−1

m−1

)
which is at least

(
t

mk+1−1
m−1

)mk+1−1
m−1

≥
(

t

mk+1

)mk+1−1
m−1

. (54)

Here we used that for 1 ≤ b ≤ a we have that (a− i)b ≥ (b− i)a for all 0 ≤ i < b, so that(
a

b

)
=

b−1∏
i=0

a− i

b− i
≥
(a

b

)b

. (55)

Note that the number of possible proper k-exploration trees with vertices X is in fact much
larger. For instance, all vertices at the same distance from the root can be permuted in any order.
This gives an extra factor

∏k
i=1(mi)!. This, however, is of a much smaller order than the above,

and thus is not necessary for our proof. We will include the exact computation of the number of
possible proper k-exploration trees for completeness.

For given m and k let A(m, k) be the number of possible proper trees given a set X ⊆ [2t]\[t]
of size mk+1−1

m−1 . Note that this number does not depend on the set X, since only the order in
which the vertices in the tree are added matters. Thus

|Tk
m(2t)| =

(
t

mk+1−1
m−1

)
A(m, k). (56)

As noted above, the vertex with the largest label has to be the root of the tree. We can then
divide the remaining vertices in m groups, all of size mk−1

m−1 . Each such a group will form the tree
of depth k − 1 at one of the edges of the root of the tree. This can be done in A(m, k − 1) ways.
We thus get the following recursive formula:

A(m, k) =

(
mk+1−1

m−1 − 1
)

!((
mk−1
m−1

)
!
)m · (A(m, k − 1))m

, (57)
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where the first fraction is the number of ways the remaining vertices can be split in m groups of
equal size. So:

A(m, k) =

(
mk+1−1

m−1 − 1
)

!((
mk−1
m−1

)
!
)m · (A(m, k − 1))m

=

(
mk+1−1

m−1 − 1
)

!((
mk−1
m−1

)
!
)m

((
mk−1
m−1 − 1

)
!
)m

((
mk−1−1

m−1

)
!
)m2 · · ·

((
m2−1
m−1 − 1

)
!
)mk−1

((
m1−1
m−1

)
!
)mk

((
m1−1
m−1 − 1

)
!
)mk

((
m0−1
m−1

)
!
)mk+1

=

(
mk+1−1

m−1 − 1
)

!(
mk−1
m−1

)m (
mk−1−1

m−1

)m2

· · ·
(

m1−1
m−1

)mk ((
m0−1
m−1

)
!
)mk+1 . (58)

We can now combine the three bounds above to get a lower bound on the expected number of
proper k-exploration trees.

Corollary 13. Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t
log m . Then, for t sufficiently large,

E
[
Zk

m,δ(2t)
]
≥ t

am,δ

( am,δ

mk+1

)mk+1 (
1− mδm

k+1

t

)mt

. (59)

Proof. Using the bounds from Lemmas 10, 11 and 12 we get that

E
[
Zk

m,δ(2t)
]

=
∑

T ∈Tk
m(2t)

P [BT |T ⊆ PAm,δ(2t)] · P [T ⊆ PAm,δ(2t)]

≥
∑

T ∈Tk
m(2t)

(
1− mδm

k+1

t

)mt (am,δ

t

)mk+1−1
m−1 −1

= |Tk
m(2t)|

(
1− mδm

k+1

t

)mt (am,δ

t

)mk+1−1
m−1 −1

≥
(

t

mk+1

)mk+1−1
m−1

(
1− mδm

k+1

t

)mt (am,δ

t

)mk+1−1
m−1 −1

=
t

am,δ

( am,δ

mk+1

)mk+1−1
m−1

(
1− mδm

k+1

t

)mt

≥ t

am,δ

( am,δ

mk+1

)mk+1 (
1− mδm

k+1

t

)mt

. (60)

The factor t in the corollary above turns out to be crucial for the remainder of the proof. This
factor arises from the fact that there is exactly one edge less in a proper k-exploration tree than
there are vertices.

We can now show that the expected number of k-exploration trees tends to infinity, for k =
ε

log m log log t, with 0 < ε < 1.

Proof of Proposition 8. First note that for k = ε
log m log log t, with 0 < ε < 1, mk = (log t)ε. We
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can then use Corollary 13 to get that

lim
t→∞

E
[
Zk

m,δ(2t)
]
≥ lim

t→∞

t

am,δ

( am,δ

mk+1

)mk+1 (
1− mmδm

k+1

mt

)mt

= lim
t→∞

t

am,δ

(
am,δ

m(log t)ε

)m(log t)ε (
1− m2mδ(log t)ε

mt

)mt

= lim
t→∞

t

am,δ

(
am,δ

m(log t)ε

)m(log t)ε

e
mt log

�
1−m2mδ(log t)ε

mt

�

= lim
t→∞

t

am,δ

(
am,δ

m(log t)ε

)m(log t)ε

e
−m2mδ(log t)ε+O

�
(log t)2ε

t

�
= ∞. (61)

It is easy to see that the same argument can be applied to k = log log t
log m − log log log t

log m − 1.

5.2 The second moment

In this section we will investigate the variance of Zk
m,δ(2t). To shorten the notation, for a k-

exploration tree T ∈ Tk
m(2t), let FT denote the event that T ⊆ PAm,δ(2t) and T is proper. Then,

the variance of the number of proper k-exploration trees in PAm,δ(2t)

Var
[
Zk

m,δ(2t)
]

= Var

 ∑
T ∈Tk

m(2t)

I{T ⊆ PAm,δ(2t) and T is proper}


= Var

 ∑
T ∈Tk

m(2t)

I{FT }


=

∑
T ,T ′∈Tk

m(2t)

Cov [I{FT }, I{FT ′}]

=
∑

T ,T ′∈Tk
m(2t)

T 6=T ′

(P [FT ∩ FT ′ ]− P [FT ] P [FT ′ ])

+
∑

T ∈Tk
m(2t)

P [FT ] (1− P [FT ]) . (62)

We will first study the terms of the first sum in the following lemma.

Lemma 14. Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t
log m . Let T , T ′ ∈ Tk

m(2t) with T 6= T ′. Then,
for t sufficiently large,

P [FT ∩ FT ′ ]− P [FT ] P [FT ′ ] ≤

((
1 +

2mδm log t

t

)2m log t

− 1

)
P [FT ] P [FT ′ ] . (63)

Proof. When T ∩T ′ 6= ∅, at least one edge of one of the trees will connect to a vertex in the other
tree, so the trees T and T ′ cannot both be proper. Thus, for T ∩ T ′ 6= ∅, trivially (63) holds.

For T ∩T ′ = ∅, we have to take a closer look at the probabilities involved. All three probabilities
in the lemma are a product over all edges of the probability that either the edge does not connect
to any of the vertices in the tree(s) or the probability that the edge makes a prescribed connection
in (one of) the tree(s). Let Ej,s(A) denote the event that the j-th edge of vertex s connects to a
vertex in A, with Ej,s(i) = Ej,s({i}). Let Ej,s(A) be the complement of Ej,s(A). We have that

P[Ej,s(A)] =
∑
i∈A

P[Ej,s(i)], (64)
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because the events on the righthand side are disjunct. These probabilities are given by the growth
rules (1-3).

Suppose that the j-th edge, 1 ≤ j ≤ m, of a vertex t0 should not connect to a vertex in T ∪T ′.
Then in P [FT ∩ FT ′ ], there will be a factor

P
[
Ej,t0(T ∪ T ′)

]
= 1− P [Ej,t0(T ∪ T ′)] = 1−

∑
i∈T ∪T ′

P [Ej,t0(i)] . (65)

In P [FT ] P [FT ′ ], there will be a factor(
1−

∑
i∈T

P [Ej,t0(i)]

)(
1−

∑
i∈T ′

P [Ej,t0(i)]

)
. (66)

It is easy to see that 1− x− y ≤ (1− x)(1− y) for x, y ≥ 0, so (66) is at least as big as (65).
When the j-th edge, 1 ≤ j ≤ m, of a vertex t0, t + 1 ≤ t0 ≤ 2t, should connect to a vertex

h ∈ T , then in P [FT ∩ FT ′ ] there will only be a factor

P [Ej,t0(h)] , (67)

since it will then automatically not connect to a vertex in T ′. In P [FT ] P [FT ′ ], however, there
will be a factor

P [Ej,t0(h)]

(
1−

∑
i∈T ′

P [Ej,t0(i)]

)
. (68)

When we multiply this by
(
1−

∑
i∈T ′ P [Ej,t0(i)]

)−1 it will be at least (67) again. By symmetry,
the same holds when an edge should connect to a vertex in T ′. Since the degree of the vertices
in the trees is at most m + 1, the edges of interest are added after time t and there are less than
mk+1 vertices in the tree, we have that(

1−
∑
i∈T ′

P [Ej,t0(i)]

)−1

≤
(

1− mδm
k+1

t

)−1

. (69)

Since there are less than mk+1 edges in both T and T ′, for T ∩ T ′ = ∅,

P [FT ∩ FT ′ ]− P [FT ] P [FT ′ ] ≤

(1− mδm
k+1

t

)−2mk+1

− 1

P [FT ] P [FT ′ ]

=

(1 +
mδm

k+1

t−mδmk+1

)2mk+1

− 1

P [FT ] P [FT ′ ]

≤

((
1 +

mδm log t

t−mδm log t

)2m log t

− 1

)
P [FT ] P [FT ′ ]

≤

((
1 +

2mδm log t

t

)2m log t

− 1

)
P [FT ] P [FT ′ ] . (70)

We will now give an upper bound on the factor in front of the probabilities.

Lemma 15. Fix m ≥ 2 and δ > −m. Then, for t sufficiently large,(
1 +

2mδm log t

t

)2m log t

− 1 ≤ cm,δ
(log t)2

t
, (71)

where cm,δ = 8mδm
2.
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Proof. In [22], it is shown that
(1 + x)n ≤ 1 + 2nx, (72)

whenever 0 ≤ (n− 1)x < 1
2 and n ≥ 2. Since

lim
t→∞

(2m log t− 1)
2mδm log t

t
≤ lim

t→∞

cm,δ

2
(log t)2

t
= 0, (73)

we indeed have that, for t sufficiently large, (2m log t− 1) 2mδm log t
t < 1

2 . We thus have that,(
1 +

2mδm log t

t

)2m log t

− 1 ≤ cm,δ
(log t)2

t
. (74)

We can now use the two lemmas above to give an upper bound on the variance of Zk
m,δ(2t) in

terms of the expectation of Zk
m,δ(2t).

Proof of Proposition 9. Let cm,δ = 8mδm
2. Then, using Lemmas 14 and 15, we have that

Var
[
Zk

m,δ(2t)
]

=
∑

T ,T ′∈Tk
m(2t)

T 6=T ′

(P [FT ∩ FT ′ ]− P [FT ] P [FT ′ ]) +
∑

T ∈Tk
m(2t)

P [FT ] (1− P [FT ])

≤
∑

T ,T ′∈Tk
m(2t)

T 6=T ′

((
1 +

2mδm log t

t

)2m log t

− 1

)
P [FT ] P [FT ′ ] +

∑
T ∈Tk

m(2t)

P [FT ]

≤ cm,δ
(log t)2

t

∑
T ,T ′∈Tk

m(2t)

T 6=T ′

P [FT ] P [FT ′ ] + E
[
Zk

m,δ(2t)
]

≤ cm,δ
(log t)2

t

∑
T ,T ′∈Tk

m(2t)

P [FT ] P [FT ′ ] + E
[
Zk

m,δ(2t)
]

= cm,δ
(log t)2

t
E
[
Zk

m,δ(2t)
]2

+ E
[
Zk

m,δ(2t)
]
. (75)

6 Late vertices have small degrees in PA models

Define the set of vertices with large degree at time t as

Coret = {i ∈ [t]|Di(t) ≥ (log t)σ}, (76)

for σ > 1. In the following theorem we will prove that, for models (a-c), all vertices with large
degree will be early vertices. We need this result to prove Theorem 6.

Theorem 16. Fix m ≥ 2, δ > −m and σ > 1. Then, whp,

Core2t ⊆ [t]. (77)

Proof. Note that

P[Core2t ⊆ [t]] ≥ 1−
2t∑

i=t+1

P[Di(2t) ≥ (log 2t)σ]

≥ 1−
2t∑

i=t+1

P[Dt(2t) ≥ (log 2t)σ], (78)
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because vertex t is more likely to have a large degree than vertices added after time t. In Lemma 17
we will show that P[Dt(2t) ≥ (log 2t)σ] = o

(
1
t

)
, so that

P[Core2t ⊆ [t]] ≥ 1− o(1). (79)

Lemma 17. Fix m ≥ 2, δ > −m and σ > 1. Then,

P[Dt(2t) ≥ (log 2t)σ] = o

(
1
t

)
. (80)

Proof. As noted in Section 2.2, PAm,δ(2t) can be constructed from PA1,δ′(2mt), with δ′ = δ/m.
Let us label the vertices of PA1,δ′(2mt) by v1, . . . , v2mt to avoid confusion. Thus identify, for
i ∈ [2t], vertices v(i−1)m+1, . . . , vim with vertex i. So (80) is equivalent to

P[Dv(t−1)m+1(2mt) + . . . + Dvtm
(2mt) ≥ (log 2t)σ] = o

(
1
t

)
. (81)

We will now color the vertices and edges in the following way. Color the vertices v1, . . . , v(t−1)m

and all edges between these vertices blue and color the vertices v(t−1)m+1, . . . , vtm and the m edges
that are attached to them at time mt red. When a vertex, that was added after time mt, connects
to a blue (red) vertex, also color that vertex and its edge blue (red). Color vertices with a self-loop
and its edge blue. Then, at time 2mt the total degree of vertices v(t−1)m+1, . . . , vtm is at most
equal to the number of red edges plus m, because no blue edges are connected to these red vertices,
and all red edges are connected with at most one endpoint to these vertices. The only exception
are the first m red edges, which might connect with both endpoints to these vertices, hence we
have to add m to the number of red edges. Thus

P[Dv(t−1)m+1(2mt) + . . . + Dvtm
(2mt) ≥ (log 2t)σ] ≤ P[#{red edges} + m ≥ (log 2t)σ]. (82)

Since we will bound the righthand side of the formula above, it is allowed to increase the probability
of attaching to a red vertex, or, equivalently, to decrease the probability of attaching to a blue
vertex. It is also allowed to increase the total degree of the red vertices, or to decrease the total
degree of the blue vertices. All this will only increase the probability of the number of red edges
being large.

Therefore, we are allowed to assume that the first m red edges are all self-loops. Further, we
will not allow for self-loops after time t, which will increase the probability of attaching to a red
vertex in models (a) and (b), in model (c) nothing changes. When we look at model (c), we see
that the degrees should only be updated after each m-th vertex has been added. For j ≥ mt, no
more than m edges and vertices can be added before updating the degrees, so

P
[
vj+1 connects to a red vertex

∣∣PA(c)
1,δ′(j)

]
=
∑

v red (Dv(mbj/mc) + δ′)
mbj/mc(2 + δ′)

≤
∑

v red (Dv(j) + δ′)
j(2 + δ′)−m(2 + δ′)

. (83)

Thus, we are allowed to update the degrees after adding each vertex, but then we have to lower the
total weight that blue vertices and edges contribute to the connecting probabilities by m(2 + δ′).
The above bound on the connecting probabilities also holds for models (a) and (b).

Since we are only interested in the number of red and blue vertices and edges, the problem
reduces to the following Pólya urn scheme. Let there be an urn with, at time s, S1(s) red
balls, corresponding to the total weight that red vertices and edges contribute to the connecting
probabilities, and S2(s) blue balls, corresponding to the lowered total weight that blue vertices and
edges contribute to the connecting probabilities. At time s = 0 we will start with S1(0) = m(2+δ′)
and S2(0) = m(t− 1)(2 + δ′)−m(2 + δ′). We then successively take one ball proportional to the
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number of balls of a certain color, and replace it together with another 2 + δ′ balls of the same
color. This corresponds to attaching a new vertex to a vertex of that color.

So S1(mt)
2+δ′ has the same distribution as the number of red edges at time 2mt. So

P[Dt(2t) ≥ (log 2t)σ] ≤ P
[
S1(mt)
2 + δ′

+ m ≥ (log 2t)σ

]
. (84)

To analyse the probability on the righthand side, we need De Finetti’s Theorem. This theorem
states that for an infinite sequence of exchangeable random variables {Xi}∞i=1, Xi ∈ {0, 1}, there
exists a random variable U with P[U ∈ [0, 1]] = 1, such that for all 1 ≤ k ≤ n,

P[X1 = . . . = Xk = 1, Xk+1 = . . . = Xn] = E[Uk(1− U)n−k]. (85)

The random variable U can be computed explicitly. Note that this implies that

P

[
n∑

i=1

Xi = k

]
= E [P[BIN(n, U) = k]] . (86)

Let Xi denote the indicator that the i-th ball drawn in the Pólya urn scheme described above
is red. As shown in Section 11.1 of [15], {Xi}∞i=1 is an infinite exchangeable sequence. Note that

S1(s) = (2 + δ′)m + (2 + δ′)
s∑

i=1

Xi. (87)

So,

P
[
S1(mt)
2 + δ′

+ m ≥ (log 2t)σ

]
= E

[
P[BIN(mt, U) ≥ (log 2t)σ − 2m]

]
, (88)

where U turns out to have a Beta-distribution with parameters α = m and β = m(t− 2).
We can rewrite (88) as

E
[
P[BIN(mt, U) ≥ (log 2t)σ − 2m]

∣∣∣U ≤ g(t)
]
P[U ≤ g(t)]

+ E
[
P[BIN(mt, U) ≥ (log 2t)σ − 2m]

∣∣∣U > g(t)
]
P[U > g(t)]

≤ E
[
P[BIN(mt, U) ≥ (log 2t)σ − 2m]

∣∣∣U = g(t)
]

+ P[U > g(t)], (89)

where g(t) = (log 2t)σ−2m
7(mt) . We then have that

(log 2t)σ − 2m ≥ 7E[BIN(mt, g(t))], (90)

so that we may apply Corollary 2.4 of [20], which states that

P[X ≥ x] ≤ e−x, x ≥ 7E[X], (91)

where X ∼ BIN(n, p). So (89) is at most

e−(log 2t)σ+2m + P[U > g(t)] = o

(
1
t

)
+ P[U > g(t)]. (92)

It remains to show that also P[U > g(t)] = o
(

1
t

)
. Since α, β > 1, we have that the probability

density function of U is unimodular, with its turning point at t = α−1
α+β−2 ([26]). It is easy to verify

that g(t) ≥ α−1
α+β−2 , for t sufficiently large, so that

P[U > g(t)] ≤ (1− g(t))
Γ(α + β)
Γ(α)Γ(β)

(g(t))α−1 (1− g(t))β−1

≤ Γ(α + β)
Γ(α)Γ(β)

(1− g(t))β
. (93)
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Using Stirling’s formula, one can show that (see e.g. [1]) there exists a constant C > 0, such that
(93) is at most

C
βα

Γ(α)
(1− g(t))β ≤ C(mt)m

(
1− (log 2t)σ

8m(t− 2)

)m(t−2)

= C(mt)me
m(t−2) log

�
1− (log 2t)σ

8m(t−2)

�

= C(mt)me
− 1

8 (log 2t)σ+O
�

(log 2t)2σ

t

�
= o

(
1
t

)
, (94)

because σ > 1.
Note that we in fact proved that P[Dt(2t) ≥ (log 2t)σ] = o (tγ), for any constant γ.

7 Average distances for δ = 0 in PA models

In [5] Bollobás and Riordan study model (a) for δ = 0 and m ≥ 2. They show that in this case,
whp, PAm,0(t) has a diameter satisfying

log t

log(3Cm2 log t)
≤ diam(PAm,0(t)) ≤ (1 + ε)

log t

log log t
, (95)

for some constant C > 0 and any constant ε > 0.
We will show in this section that also the average distance between vertices grows like log t/ log log t,

by extending the proof of the above lower bound in a similar way as was done in [16] for δ > 0.
The upper bound on average distances follows trivially from (95).

Lemma 18. Fix m ≥ 1 and δ = 0. Let Ht = distPAm,δ(t)(A1, A2) be the distance between two
vertices A1 and A2, chosen uniformly at random, at time t. Then, for some constant C > 0, whp,

Ht ≥
log t

log(2Cm2 log t)
. (96)

Proof. Let L = log t
log(2Cm2 log t) and define

Bt ≡ #
{
i, j ∈ [t], i < j : distPAm,δ(t)(i, j) ≤ L

}
. (97)

In [5] it was shown that, for model (a), the expected number of paths of length l between vertices
i and j in PAm,δ(t) is bounded from above by (Cm2)l

√
ij

(2 log t)l−1, for some constant C > 0. This
can be extended to models (b) and (c) as was done in [16]. So

P[distPAm,δ(t)(i, j) ≤ L] ≤
L∑

l=1

(Cm2)l

√
ij

(2 log t)l−1 =
Cm2

√
ij

(2Cm2 log t)L − 1
2Cm2 log t− 1

≤ 1√
ij

t

log t
. (98)

Since
∑j−1

i=1
1√
i
≤ 2

√
j, we have that

E[Bt] ≤
∑

1≤i<j≤t

1√
ij

t

log t
≤ 2

t2

log t
. (99)

Thus,

P[Ht ≤ L] = E[I[distPAm,δ(t)(A1, A2) ≤ L]] ≤ 2E[Bt] + t

t2
= o(1). (100)
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8 Distances for τ = 3 in the configuration model

In Section 7 we saw that in preferential attachment models with τ = 3 the average distance grows
like log n/ log log n. A similar result is not known for the configuration model, but we will prove
that in this case, whp, the average distance is larger than log n/ log log n. More precisely:

Theorem 19. Let {Di}n
i=1 be a sequence of i.i.d. random variables, with P[D1 > x] = cx−2(1 +

o(1)) for x = 1, 2, . . .. Then, for any ε > 0,

P[Hn ≤ (1− ε)
log n

log log n
] = o(1). (101)

Proof. When Hn = l then there should at least be a path of length l between vertices 1 and 2.
Let i → j denote the event that vertex i is adjacent to vertex j in CMn({Di}n

i=1) and recall that
Ln =

∑n
i=1 Di. Then, for l ≤ (1− ε) log n

log log n ,

P[Hn = l] ≤
∑

1≤i1,...,il−1≤n

P[1 → i1 → . . . → il−1 → 2]

≤ E

 ∑
1≤i1,...,il−1≤n

D1Di1

Ln − 1
Di1Di2

Ln − 3
· · ·

Dil−2Dil−1

Ln − (2l − 3)
Dil−1D2

Ln − (2l − 1)

 (102)

Note that whp, D1D2 ≤ log n, since the degrees do not depend on n, and Ln ≥ n, because Di ≥ 1
for all i with probability 1. In Lemma 20 we will show that νn/ log n converges in probability to
c/µ, so whp νn ≤ (1 + ε)c/µ log n. Denote the event that these three bounds hold by An. Since
An holds whp, (102) is whp equal to

E

[ ∑
1≤i1,...,il−1≤n

D1Di1

Ln − 1
Di1Di2

Ln − 3
· · ·

Dil−2Dil−1

Ln − (2l − 3)
Dil−1D2

Ln − (2l − 1)
I{At}

]

≤ E

 D1D2

( 1
2Ln)l

(
n∑

i=1

D2
i

)l−1

I{At}

 = E
[

2lD1D2

Ln
νl−1

n I{At}
]

≤ 2l log n

n

(
(1 + ε)

c

µ
log n

)l−1

≤ 2
(

(1 + ε)
2c

µ

)l−1

n−ε = o

(
1
k

)
. (103)

Lemma 20. Let {Di}n
i=1 be a sequence of i.i.d. random variables, with P[D1 > x] = cx−2(1+o(1))

for x = 1, 2, . . .. Let µ = E[D1]. Define

νn =
∑n

i=1 D2
i∑n

i=1 Di
. (104)

Then
νn

log n

P−→ c

µ
, for n →∞. (105)

Proof. First, note that, by the strong law of large numbers,

1
n

n∑
i=1

Di
P−→ µ, (106)

where µ > 0. It remains to show that

1
n

∑n
i=1 D2

i

log n

P−→ c, (107)
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because then (105) holds by Slutzky’s theorem ([14], p. 318).
Let an =

√
n log n. Then

P
[

n
max
i=1

Di > an

]
≤ nP[D1 > an] =

nc

a2
n

(1 + o(1)) = o(1), (108)

so, whp, maxn
i=1 Di ≤ an. Thus, also whp,

1
n

∑n
i=1 D2

i

log n
=

1
n

∑n
i=1 D2

i I{Di ≤ an}
log n

≡ X, (109)

say.
Note that for a positive and integer valued random variable M ,

E[M2] =
∞∑

m=1

m2P[M = m] =
∞∑

m=1

m∑
x=1

(2x− 1)P[M = m]

=
∞∑

x=1

(2x− 1)
∞∑

m=x

P[M = m] =
∞∑

x=1

(2x− 1)P[M ≥ m], (110)

and similarly,

E[M4] =
∞∑

m=1

m4P[M = m] =
∞∑

m=1

m∑
x=1

(4x3 − 6x2 + 4x− 1)P[M = m]

=
∞∑

x=1

(4x3 − 6x2 + 4x− 1)
∞∑

m=x

P[M = m] =
∞∑

x=1

(4x3 − 6x2 + 4x− 1)P[M ≥ m]. (111)

So, when we study the variance of X,

Var [X] =
1

n(log n)2
Var

[
D2

1I{D1 ≤ an}
]
≤ 1

n(log n)2
E
[
D4

1I{D1 ≤ an}
]

=
1

n(log n)2

an∑
x=1

(4x3 − 6x2 + 4x− 1)P[D1I{D1 ≤ an} ≥ x]

≤ 1
n(log n)2

an∑
x=1

4x3P[D1 ≥ x] =
1

n(log n)2

an∑
x=1

4cx(1 + o(1))

=
2ca2

n

n(log n)2
(1 + o(1)) =

2c

log n
(1 + o(1)). (112)

Let ε > 1
(log n)1/4 . Then, by the Chebychev inequality,

P[|X − E[X]| > ε] ≤ Var [X]
ε2

= o(1). (113)

So, X converges in probability to E[X], which converges to c:

E [X] =
1

log n

an∑
x=1

(2x− 1)P[D1I{D1 ≤ an} ≥ x] =
1

log n

an∑
x=1

(2x− 1) (P[D1 ≥ x]− P[D1 > an])

=
1

log n

an∑
x=1

(
2c

x
(1 + o(1))

)
− an

log n
ca−2

n (1 + o(1)) = 2c
log an

log n
(1 + o(1)) = c(1 + o(1)).

(114)
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9 Conclusion

In this thesis we studied two random graph models which have a power law degree sequence,
namely the configuration model and the preferential attachment model. An overview is given of
results on distances in these graphs and some new results have been presented. These results
indeed show the small world property observed in many real-world networks. They also show that
distances in these two models behave similarly, i.e., for equal power-law exponent τ , the distances
seem to be of the same order.

This overview, however, is not complete. For example, a log log lower bound on average
distances in the preferential model for τ ∈ (2, 3) is missing. Also a log / log log upper bound on
distances in the configuration model for τ = 3 is not known, although this behavior is expected
from the preferential attachment model.

We would also like to see how distances in the various other preferential attachment models
studied in the literature behave. Ideally, we would like to find a general approach which can be
applied for many of these models as Bhamidi has found for m = 1 ([4]).

It would also be interesting to study random processes on these random graph models. This
can model, for example, the spread of diseases in a social network or the spread of viruses in a
computer network.
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