
 Eindhoven University of Technology

MASTER

Low power deformable mirror actuator controller

de Bruijn, W.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/cfe2a12f-4880-418e-bdeb-bb0a9608e40c

Supervisors:

prof. dr. ir. C.H. van Berkel (TU/e)
ir. R.M.L. Ellenbroek (TU Delft)
ir. R.F.M.M. Hamelinck (TU/e)

dr. R.H. Mak (TU/e)

Eindhoven, February 2009

MASTER’S THESIS

Low Power Deformable Mirror
Actuator Controller

by
W. de Bruijn

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

2

Abstract

A deformable mirror may be used to improve the image quality of ground-based optical
telescopes, by counteracting the distortions caused by atmospheric turbulence. Dedicated
controller boards, carrying multiple FPGAs, are used to drive the actuators inside the de-
formable mirror. The power dissipation of the FPGAs causes additional distortions by heating
the air surrounding the mirror. An attempt is made to reduce these distortions by optimizing
the power usage of the FPGAs. The software in the FPGAs is migrated to a development
board and methods for measuring power usage are developed. The power measurements have
led to improved controller designs that use less power than the original designs.

3

4

Contents

Contents 5

List of Figures 9

List of Tables 11

List of Acronyms 13

1 Introduction 15

1.1 Adaptive mirror system . 15

1.2 Actuator controllers . 16

1.3 Pulse-width modulation . 16

1.4 H-bridge . 17

1.5 PWM resolution . 18

1.6 Problem description . 19

2 XUP implementation 21

2.1 Original actuator controllers . 21

2.2 XUP development board . 23

2.3 Custom electronics . 23

2.4 Migrating controller software . 25

2.5 Testing the development board . 26

3 Power usage 29

3.1 Power usage in FPGAs . 29

5

3.2 Original actuator controllers . 30

3.3 XUP development board . 31

3.4 Simulation . 33

3.5 Conclusion . 34

4 Design 35

4.1 Power reduction techniques . 35

4.2 Asynchronous master . 36

4.3 Asynchronous slave . 37

4.4 Recursive PWM . 38

5 Implementation 41

5.1 Asynchronous master . 41

5.2 Asynchronous slave . 42

5.3 Asynchronous actuator controller . 43

5.4 Recursive PWM . 43

6 Results 45

6.1 XUP development board . 45

6.2 Simulation . 46

7 Conclusion 49

7.1 Power reduction . 49

7.2 Future work . 50

Bibliography 51

A Actuator controller requirements 53

A.1 Input . 53

A.2 Output . 53

A.3 Latency . 54

A.4 Electromechanical actuator model . 54

6

B Heat dissipation 55

B.1 Requirements . 55

B.2 Conclusion . 56

C Schematics for custom electronics 57

D Power measurement method 59

E Haste introduction 61

F Code listing 63

F.1 Actuator controller test bench . 63

F.2 Passivator . 65

F.3 Recursive PWM . 66

F.4 Recursive counter . 67

F.5 Minimal configuration . 68

7

8

List of Figures

1.1 Adaptive mirror system . 16

1.2 Pulse-width modulation . 17

1.3 H-bridge circuit in three different states . 18

2.1 Original actuator controller architecture . 22

2.2 Actuator controller master board . 22

2.3 Actuator controller slave board . 23

2.4 The LVDS interface and the H-bridge circuit 24

2.5 Architecture of the code for the development board 25

2.6 Oscilloscope image of the LVDS communication 26

2.7 Oscilloscope image of the generated PWM signals 27

3.1 Power usage of the original actuator controller 30

3.2 Power usage of the XUP development board 31

3.3 Power usage of the XUP H-bridge circuit . 32

3.4 Master power distribution . 33

3.5 Slave 0 and slave 1 power distribution . 34

4.1 Original master architecture . 36

4.2 Optimized master architecture . 36

4.3 Original slave architecture . 37

4.4 Optimized slave architecture . 38

4.5 Counter-comparator PWM . 39

4.6 N-bit recursive PWM . 39

9

4.7 Recursive PWM bit module . 40

5.1 Oscilloscope image of the recursive PWM signals 44

5.2 N-bit recursive counter . 44

6.1 Power usage of controller designs on XUP development board 45

6.2 Power usage of controller designs in simulation 46

6.3 Power usage of different PWM units . 47

A.1 Bode plot for transfer function H(s) . 54

C.1 Schematic for the LVDS interface . 57

C.2 Schematic for the H-bridge circuit . 58

10

List of Tables

2.1 Actuator controller resource usage . 26

5.1 Asynchronous master resource usage . 42

5.2 Asynchronous slave resource usage . 42

5.3 Asynchronous actuator controller resource usage 43

D.1 Baseline current measurements . 59

11

12

List of Acronyms

AO Adaptive optics

DAC Digital-to-analog converter

DCM Digital clock manager

FPGA Field-programmable gate array

LVDS Low-voltage differential signaling

PLL Phase-locked loop

PWM Pulse-width modulation

VCD Value change dump

XUP Xilinx university program

13

14

Chapter 1

Introduction

Ground-based optical telescopes have the disadvantage of atmospheric turbulence, causing a
degradation in quality of the images taken by the telescopes. Since a number of years adaptive
optics (AO) systems have been used to overcome these problems. Adaptive optics systems
may use a deformable mirror to correct a distorted optical wavefront entering a telescope.
The reflective surface of these mirrors is deformed by arrays of actuators with nanometer
accuracy. Further developments of ground-based optical telescopes require increasingly large
deformable mirrors and accompanying control systems. To meet the demands of the latest
generation of large telescopes, a new adaptive mirror system is being designed and tested in
a collaborative project between the Eindhoven University of Technology, the Delft University
of Technology and TNO Science and Industry [1, 2, 3].

1.1 Adaptive mirror system

A general overview of the components of the adaptive mirror system that is being developed,
can be seen in figure 1.1. Light emitted by objects in space, such as stars, reaches the earth as a
parallel wavefront. When this wavefront travels through the earth’s atmosphere, atmospheric
turbulence causes the wavefront to change shape, resulting in undesired distortions of the
images taken by a telescope. A way to solve this problem is to introduce a deformable mirror
in the optical path of the telescope. A deformable mirror has the ability to correct a distorted
wavefront by changing its own shape to the opposite of the wavefront’s shape. The mirror used
in this system [1], consists of one or more hexagonal arrays of 61 electromagnetic actuators
that are attached to a thin reflective membrane. Each array has its own actuator controller
board, carrying the electronics needed to drive the actuators.

The actuator controllers communicate with a control system, that has the task of determining
the shape of the wavefront by reading out a wavefront sensor and calculating the corresponding
shape of the mirror, needed to correct the wavefront. The wavefront sensor receives part of
the light beam, after it has been corrected by the deformable mirror. The other part of the
corrected light beam is led to a detector that is used to make an image out of the received
light.

15

Deformable

mirror

Control

system

Wavefront

sensor

Actuator

controllers

Beamsplitter Detector

Space object

Perfect

wavefront

Distorted

wavefront

Corrected

wavefront

Atmosphere

Figure 1.1: Adaptive mirror system

1.2 Actuator controllers

The electromagnetic actuators of the deformable mirror are controlled by low-voltage signals
in the range of -0.8 V to 0.8 V. The main task of an actuator controller is to generate 61 of
these signals for each of the actuators, with a resolution of 14 bits (see appendix A). To do
so, an actuator controller is equipped with three field-programmable gate arrays (FPGAs).

FPGAs are chips containing large numbers of programmable logic blocks that can be con-
nected together with high-speed interconnects. The functionality contained in an FPGA can
be described in a hardware description language such as Verilog [4] or VHDL [5]. As opposed
to ordinary microprocessors which run software sequentially, FPGA designs are compiled to
real hardware on a chip. This approach allows FPGA designs to make use of parallelism and
high clock speeds. Because of these advantages, FPGAs are ideally suited to generate the
control-signals for the deformable mirror.

Like all other chips, FPGAs also use power, which is dissipated in the form of heat. This
power usage can be split up into two categories. Static power is the constant amount of
power consumed by the FPGA at all times. Static power is mainly a result of the way chips
are produced and is not dependent on the calculations performed by the FPGA. The power
consumption resulting from the calculations is called dynamic power and this part of the total
power usage can be changed by loading different designs in the FPGA.

1.3 Pulse-width modulation

The low-voltage signals, needed to drive the actuators of the deformable mirror, are generated
by a scheme called pulse-width modulation (PWM). Digital systems may use PWM to directly
generate analog signals without the need for digital-to-analog converter chips (DACs). As each

16

of the 61 electromagnetic actuators of a mirror segment needs a separate analog signal, using
PWM instead of digital-to-analog converters, greatly reduces the system’s overall complexity.

PWM operates by modulating the on-off times (duty cycle) of a square wave with a fixed
frequency. When such a modulated square wave is passed through a low pass filter, an analog
signal can be retrieved that corresponds to the average value of the square wave. Figure 1.2
shows an example PWM signal with its resulting analog signal.

time

tpwm

PWM signal

Analog signal

hpwm

Figure 1.2: Pulse-width modulation

The frequency fpwm of the PWM signal is defined as 1
tpwm

where tpwm is the period of the
square wave as shown in figure 1.2. The duty cycle of a PWM signal is defined as the time
the signal is high hpwm, divided by the period-time tpwm. It is clearly visible that the value
of the analog signal directly corresponds to the value of the duty cycle of the PWM signal.
As the duty cycle increases, so does the average value of the PWM signal and consequently
the value of the analog signal.

The PWM signals are generated by a digital system, so the duty cycle can only be set with
a certain resolution. If we call this resolution (in bits) npwm, we can calculate the clock
frequency fclk, at which the digital system needs to operate, as follows:

fclk =
2npwm

tpwm
= 2npwmfpwm (1.1)

This formula clearly shows that an increase in resolution or frequency of the PWM signal,
leads to a higher internal clock frequency.

1.4 H-bridge

The actuators of the deformable mirror are designed to be driven by both positive and negative
voltages. To enable the FPGA to output negative voltages, an additional circuit called an
H-bridge is needed. Each actuator has a separate H-bridge circuit, that is controlled by five
different PWM signals from the FPGA. A simplified version of such an H-bridge circuit can
be seen in figure 1.3.

17

3.3 V

A0

Actuator

A1 C1

C0 A0

A1 C1

C0 A0

A1 C1

C0

B B B

3.3 V 3.3 V

Figure 1.3: H-bridge circuit in three different states

The H-bridge consists of four electronic switches (transistors), controlled by the FPGA, that
allow current to flow in either direction through the coil of an actuator. When switches A0

and C1 are closed, current flows from left to right through the coil. When A1 and C0 are
closed, current flows in the opposite direction. The states that have to be avoided at all times
are the states where both A0 and A1 or C0 and C1 are closed at the same time, as these
would lead to a short circuit between the positive power supply and ground. In order to save
electronic components, the task of enforcing this constraint is handled inside the FPGA.

To generate positive and negative voltages with the H-bridge, the FPGA has to output differ-
ent PWM signals with varying duty cycles. These PWM signals switch the transistors of the
H-bridge on and off, letting current flow through the actuator for specific amounts of time.
Because the actuator and surrounding electronics act as an analog filter, the result of this
process is a positive or negative voltage over the actuator, moving it to a certain position.

Besides the four PWM signals, that control the transistors of the H-bridge, a fifth signal B
is present that is connected to one side of the actuator coil with a resistor. PWM signal B
is used to directly generate the 4 least significant bits of the voltage setting (setpoint) of the
actuator, by controlling the amount of time, current is allowed to flow through the resistor
in a certain direction. This approach allows the 4 least significant bits of the setpoint to
be generated in parallel with the other bits, reducing the requirements on the internal clock
frequency of the FPGA.

1.5 PWM resolution

Each of the four switches of the H-bridge circuit, shown in figure 1.3, is controlled by a
PWM signal with a period of 16.384 µs (≈ 61 kHz) and a resolution of 11 bits. According to
equation 1.1, the minimum internal clock frequency at which these signals should be generated
is equal to: 211

16.384 µs = 125 MHz.

The A1 and C1 switches of the H-bridge are driven by the inverted versions of the PWM
signals, controlling switches A0 and C0. The resulting unfiltered output signal, generated by
the H-bridge, is therefore proportional to the difference between the signals driving A0 and

18

C0. This differential output signal can only assume three different voltage levels (-3.3 V, 0 V
or 3.3 V), so this type of PWM is called three-level or class-BD PWM [6]. The three-level
signal, created out of the two 11 bits PWM signals, driving A0 and C0, has a resolution of 12
bits.

PWM signal B has the same period as the other four PWM signals (16.384 µs), but a lower
resolution of only 4 bits. The 12 bits differential signal and the 4 bits B signal, determine the
voltage setting over the full voltage range (-3.3 V to 3.3 V) with a resolution of 16 bits. This
corresponds to a 14 bits resolution over the voltage range of -0.8 V to 0.8 V (see appendix A).

1.6 Problem description

The power dissipated by the FPGAs of the actuator controller, causes a rise in temperature
and therefore an increase in air-turbulence of the air surrounding the mirror. This turbulence
is unwanted, as it causes additional distortions that have to be compensated by the deformable
mirror. High power dissipation creates the need for more expensive cooling measures, adding
to the cost and complexity of the entire system. The problem with the current implementation
of the actuator controllers is that the power dissipated by the FPGAs is too high with respect
to the power dissipated by the actuators. Without active cooling, the actuator controllers
would violate the heat dissipation requirements, listed in appendix B.

The goal of this project is to reduce the power dissipation of the FPGAs to a minimum,
while meeting the actuator controller requirements, described in appendix A. On one hand
this can be done by carefully selecting the right type of FPGA, reducing the static power
dissipated. On the other hand this can be done by implementing the algorithms in the FPGA
in a power-efficient manner, reducing the dissipated dynamic power.

Because only a limited number of FPGAs with the right amount of logic elements and I/O
pins exist, choosing the right type of FPGA isn’t very difficult. The main focus of this
research will therefore be on reducing the dynamic power dissipation. To this end we will be
developing and comparing different synchronous and asynchronous implementations of the
control algorithms by means of simulation and measurements on real hardware.

To aid the development process and the measurements on real hardware, the existing actuator
controller will be re-implemented on an FPGA development board together with some custom-
made electronics to recreate the communications interface and the actuator circuits. After
this has been done, power usage data of the actuator controller software will be obtained from
three different sources:

• From measurements on the original actuator controller.

• From measurements on the FPGA development board.

• From simulations of the controller software.

This data can then be used to see what effect certain code-optimizations have on power
usage. After evaluating a number of possible optimizations, the most effective ones will be
incorporated into the final system.

19

20

Chapter 2

XUP implementation

Developing new software for the actuator controller requires a flexible development platform,
that allows the FPGAs involved, to be easily reconfigured. Furthermore, the system needs
to have provisions for measuring the power usage of its individual components. The original
actuator controllers are specifically designed for the task of driving the deformable mirror’s
actuators, so they lack some of the features that are present in a development board. Because
of this reason, the decision was made to create a new implementation of an actuator controller
with the help of a commercial FPGA development board and some custom electronics.

The development board allows for easy reprogramming and testing of code on a large FPGA,
and the custom electronics are used to emulate the communications interface and the actuator
electronics on the existing controller hardware. The rest of this chapter describes the various
parts of the development system and the process of re-implementing the existing software on
the development board.

2.1 Original actuator controllers

The original actuator controllers are built around three FPGAs manufactured by Altera [7].
One of these FPGAs, called the master, has the task of handling the controller’s incoming
and outgoing communications. Communication with the controller is performed through low-
voltage differential signaling (LVDS), which is a technique used to transmit data reliably at
high speeds with low power usage. The controller has two dedicated LVDS converter chips,
that have the task of converting the LVDS signals to signals the master FPGA can handle
and vice versa. The LVDS communication is serial and runs at a speed of 40 Mbps. To enable
easy communication between a PC and the actuator controllers, an ethernet-LVDS bridge is
available that is designed to convert ethernet packets to LVDS packets.

The other two FPGAs, called the slaves, are identical and are used to generate the PWM
signals for the actuators. Each of the actuator controller’s 61 actuators has an H-bridge
circuit, that is used to generate precise voltages over the actuator coils, moving the actuators
to a certain position. The slave FPGAs have the task of controlling the position of the
actuators by sending the correct signals to the H-bridge circuits, based on the information

21

Master

Slave 0

LVDS

converters
H-bridges

Actuator controller

.

.

.

Actuators

.

.

.

LVDS

.

.

.

.

.

.
Slave 1

Figure 2.1: Original actuator controller architecture

received from the master FPGA. Besides controlling the position of the actuators, the slaves
can also be used to check the integrity of the coils in the actuators. The global architecture
of one of the actuator controllers is shown in figure 2.1.

Figure 2.2 shows the master FPGA, situated on a separate board together with the LVDS in-
terface and the power supplies. The two slave FPGAs are mounted on another board, depicted
in figure 2.3, together with the H-bridge circuits and accompanying analog electronics.

Figure 2.2: Actuator controller master board

The master communicates with the slaves through a 16 bit wide data bus and a 6 bit wide
address bus. These busses, along with some control- and power-lines, are routed through a
connector, that connects the master and slave boards together.

In order to implement the actuator controller on a development board, custom electronics
were designed to match the functionality of the LVDS interface and the H-bridge circuits of
the original actuator controller boards.

22

Figure 2.3: Actuator controller slave board

2.2 XUP development board

The FPGA development board that is used as a basis for the implementation of the actuator
controller is the XUP Virtex-II Pro [8] made by Xilinx. This development board contains a
large Virtex-II Pro FPGA [9] and a number of peripheral hardware units, such as an ethernet-
and video-interface, which can be connected to the FPGA. The only peripheral hardware units
that are used however, are the I/O expansion connectors, mounted at the front side of the
board. These connectors are used to connect to two circuit boards, containing the custom
electronics.

To power the FPGA and the peripheral hardware, the development board houses three in-
dependent power supplies (2.5 V, 3.3 V and 1.5 V), with connectors for measuring the total
current. Because these power supplies power the complete development board and no con-
nectors are present for measuring the current through the FPGA, determining power usage
of the FPGA is only possible by measuring the differences in total current.

The main reason for choosing the XUP development board was the fact that they were
already available for use and there was previous experience with development on these boards.
It should be noted however that this board contains only one Xilinx Virtex-II Pro FPGA,
whereas the original actuator controllers contain three Altera Cyclone II FPGAs [7]. Re-
implementing the actuator controller on the development board, requires the code from the
three smaller FPGAs of the original controller to be mapped onto the single large FPGA of
the development board.

2.3 Custom electronics

Figure 2.4 shows the two small circuit boards, designed specifically for the XUP development
board. These circuits were manufactured by the university’s technical department, based on
the self-designed schematics, shown in appendix C. The board on the left is the LVDS interface

23

and contains, besides components used to protect both the XUP board and the ethernet-LVDS
bridge, two LVDS converter chips [10]. Because a single converter chip only supports half-
duplex communication, two chips are used to provide a full duplex communication channel.
Although both chips are able to send and receive data, one of the chips is permanently
configured to only transmit and the other to receive.

Figure 2.4: The LVDS interface and the H-bridge circuit

The board on the right is a reconstruction of the circuit associated with 1 actuator of the
deformable mirror. It can be used to estimate the power usage of the actuators and to
verify the output voltages, generated by different controller designs. The choice to implement
only 1 channel instead of 61 was based on the limited number of control signals present on
the I/O connectors of the development board and the practical difficulties associated with
implementing a board with 61 of these circuits. The disadvantage of this arrangement is that
it’s not possible to measure the power usage of all 61 circuits at the same time, as can be done
with the original actuator controllers. The total power usage however, can be approximated
by multiplying the power usage of the single H-bridge circuit by 61, as all circuits are identical.
This and the fact that the main focus of this research is on the power usage of the FPGA,
makes this board a valid replacement for the actuator electronics in the original controller.

Appendix C shows the two schematics associated with the circuit boards. These schematics
are partially based on the schematics of the original controller. The schematic for the LVDS
interface shows the two converter chips connected to the development board’s expansion
connector on one side and to the LVDS connector on the other side. The other schematic
shows 4 transistors arranged in an H-bridge configuration with the actuator coil and some
analog components in the middle. The 4 transistors can be switched on and off directly by
the FPGA to allow current to flow in either direction through the actuator coil. During tests,
the actuator coil is replaced by a 41 Ω resistor, because the inductive properties of the coil
are not of much importance when measuring power usage.

Both circuits incorporate resistors in their power supply lines that can be used to measure
the total current drawn. Additionally, the H-bridge circuit has provisions for measuring the
current through and voltage over the actuator coil. These measurements can be used to
exactly calculate the amount of power used by the actuator itself. The fuses and resistors in
the control lines from the FPGA are meant as a protection against short-circuits, but have

24

the disadvantage of consuming a small amount of power themselves.

The circuit boards are designed in such a way that they can be fitted directly next to each
other onto the expansion connectors of the XUP development board. This allows them to be
easily removed and attached, whenever this is needed. The two boards receive their power
from the power supplies on the development board and operate on 3.3 V.

2.4 Migrating controller software

The FPGAs on the original controller are made by Altera and the FPGA on the development
board by Xilinx, so migrating the software from the original controller to the development
board can’t be done without some modifications to the code. Altera specific hardware units
have to be replaced by equivalent Xilinx units and the code sets from the master and slave
FPGAs have to be joined together to fit into one FPGA.

Both the master and slave FPGAs make use of phase-locked loop (PLL) units to create
internal clock signals with higher clock frequencies out of a slower external clock. As these
units are Altera specific, they were replaced by Xilinx digital clock managers (DCMs). These
DCMs are able to convert the incoming 100 MHz clock signal to 200 and 125 MHz clocks
for the master and slaves modules. Another hardware module that had to be replaced was a
dual port RAM unit that is used by the master to store data from received communication
packets. This module was replaced by a Xilinx specific, 64 word long, RAM unit.

Master

Slave 0

Slave 1

Top level module

LVDS

Clock

Reset

LEDs

DCM

200

PWM

125 MHz clock

data-bus

address-bus

control lines

DCM

125

Figure 2.5: Architecture of the code for the development board

Figure 2.5 shows the global architecture of the new code created for the development board.
The new top level module, written in Verilog, contains one instance of the original master
module and two identical instances of the original slave modules. Both the master and slave
modules are written in VHDL.

The modules in the top level design are connected together in roughly the same way as they
are on the board of the actuator controller. This time however, the wires and busses are
inside the FPGA instead of on the circuit board. Besides the master and slave modules, the
two DCM units are instantiated in the top level module, providing 200 and 125 MHz clock

25

signals to the rest of the design. The reason to put the DCMs in this module and not in any
of the submodules, as was originally the case with the PLL units, is to reduce the skew on the
100 MHz input clock, which could prevent the DCM units from operating correctly. Table 2.1
shows how much FPGA resources are used by the new controller design, implemented using
the Xilinx ISE software [11].

Resource Used Available Utilization

Slice flip-flops 6,013 27,392 21%
4-input LUTs 9,817 27,392 35%
Digital clock managers 2 8 25%
Logic slices 7,376 13,696 53%

Table 2.1: Actuator controller resource usage

2.5 Testing the development board

Before using the development board to do power measurements, it had to be tested for
functional correctness. The communication over the LVDS interface with the master module
in the FPGA was tested with a small Java program that was used to send control-packets
to the ethernet-LVDS bridge, which would forward them to the development board. Besides
the Java program, a Matlab toolbox was also available to send LVDS packets to the actuator
controller.

Figure 2.6: Oscilloscope image of the LVDS communication

Figure 2.6 shows a sample of 18 bits of LVDS communication, measured after the LVDS
converter chips. The 18 bits take 450 ns to transmit, so one bit of the LVDS signal is 25 ns
long, corresponding to a bit-rate of 40 Mbps. The LVDS packets consist of a variable number

26

of 18 bit words, depending on the type of packet. Each 18 bit word includes a start-bit with
value 0 and a stop-bit with value 1, so the actual data transmitted consists of 16 bit words.

To test the H-bridge circuit, commands were sent to the development board to enable the
generation of PWM signals. Figure 2.7 shows two PWM signals, measured with the H-bridge
circuit detached from its I/O connector.

Figure 2.7: Oscilloscope image of the generated PWM signals

The two signals seen here, are used to control the A0 and C0 switches of the H-bridge, as
defined in figure 1.3. The period of these signals is 16.384 µs, corresponding to a frequency
of approximately 61 kHz. Attaching the H-bridge circuit to the development board, results
in a positive or negative voltage being generated over the actuator resistor.

27

28

Chapter 3

Power usage

Optimizing the power usage of the actuator controller requires a reliable and accurate way of
determining the power that is used by the software in the FPGAs. More specifically, we are
interested in the dynamic power usage of the FPGAs, as this part of the total power usage
can be reduced by modifying the code. In order to measure the effects of optimizations, power
usage of the original controller software has to be determined first.

Power usage was measured on the two different implementations of the actuator controller
(the original one and the one on the XUP development board). A third way of determining
power usage is offered by the Xilinx XPower tool [11], which has the ability to estimate the
power usage of designs with the help of simulation data. This chapter describes how each of
these three types of measurements was carried out and which results were obtained.

3.1 Power usage in FPGAs

FPGAs are manufactured using the same processes as most other integrated circuits, so
standard formulas can be used to calculate how much power is used by an FPGA. As stated
before, the total power usage of a chip can be split up into two parts. Static power is a result
of standby and leakage currents through a device, and is mainly a result of the way the chips
are manufactured. Dynamic power is a combination of short-circuit and capacitive power
dissipations, and can be described by the following formula [12]:

Pdyn = Psc + αCV 2fclk (3.1)

In this formula, Pdyn and Psc represent the dynamic and short-circuit power dissipations. The
last term in the formula, describes the capacitive power dissipation, with α representing the
average number of 0 to 1 output transitions (switching activity), C the load capacitance, V 2

the square of the input voltage and fclk the clock speed at which the chip runs.

Roughly speaking, the load capacitance C is a measure of how much hardware in a chip is
used. The total capacitance of a device increases when more transistors and interconnecting

29

wires are used. The clock speed fclk and α together, give an indication of how much switch-
ing activity takes place on a chip. The formula shows that dynamic power usage is linearly
dependent on the switching activity, the capacitance and the clock frequency, and quadrati-
cally dependent on the input voltage. Because the short-circuit power dissipation Psc is also
linearly dependent on the clock frequency [12] and the input voltage is constant, reducing the
power dissipation of the FPGAs in the actuator controller will be mainly based on reducing
the switching activity and the amount of hardware resources used.

3.2 Original actuator controllers

The power usage of the original actuator controllers, configured with the original code, was
measured by Rogier Ellenbroek and Roger Hamelinck. This was done by measuring the
current drawn from their single 12 V power supply, located in the ethernet-LVDS bridge. Each
actuator controller also has its own power supply, that generates several different voltages out
of the incoming 12 V, for the chips on the controller. The regulators in the power supply
have a limited efficiency, so to make comparisons possible, the power they dissipate had to
be subtracted from the total amount of power measured.

Figure 3.1 shows how the total amount of power used by one actuator controller relates to
the actuator voltage. The amount of power used by the master and slaves includes both the
static and dynamic power dissipations of the FPGAs.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.80.70.60.50.40.30.20.10-0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8

Actuator coil voltage (V)

T
o

ta
l
p

o
w

e
r

(m
W

)

Actuators

H-bridges

Global enable on

Slaves

LVDS and Master

Figure 3.1: Power usage of the original actuator controller

The graph clearly shows that the power used by the actuators and H-bridges is highly de-
pendant on the actuator voltage setting, and that the power used by the FPGAs remains
constant. The increase in power usage of the actuators can be explained by the fact that a
higher voltage directly leads to more power being used by the analog electronics. Power usage
of the FPGAs remains constant, because the internal high frequency clocks of the FPGAs
keep running at the same speed, regardless of the value of the PWM duty cycle. Changing

30

the voltage setting does cause some changes inside the FPGAs, but these occur at such low
frequencies that they only have a small amount of influence on the total amount of power.

3.3 XUP development board

The power usage of the FPGA and custom electronics on the XUP development board was
determined by measuring the current drawn from the three independent power supplies on
the board (see appendix D). The problem with these power supplies is that they power the
complete development board, including a number of unused peripheral hardware units such as
an ethernet interface, and that the development board does not offer an easy way of measuring
the current drawn by the FPGA. Establishing the power used by the FPGA could only be
done by calculating the difference between the current drawn by a fully configured FPGA
and by the FPGA in a minimally configured state. The assumption with this approach is
that the power usage of the peripheral hardware doesn’t change much when loading different
configurations into the FPGA. The minimal configuration, used as a basis for the power
measurements, doesn’t perform any calculations so its dynamic power usage is 0. It does,
however, use an amount of static power that can’t be measured directly, so another assumption
is that the real amount of static power used, matches the values given in the data sheet of
the FPGA [9]. Figure 3.2 displays the results of the measurements on the XUP development
board, including the static power dissipation of the FPGA.

0

100

200

300

400

500

600

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Actuator coil voltage (V)

T
o

ta
l

p
o

w
e
r

(m
W

)

Slave 1

Slave 0

Master

LVDS

Figure 3.2: Power usage of the XUP development board

Like the graph in figure 3.1, this graph also shows that the power used by the FPGA stays
roughly the same, independent of the actuator voltage. A small difference exists between
the total power usage of the FPGAs and LVDS circuit on the original actuator controller (≈
670 mW), and the power usage of these on the development board (≈ 550 mW), which can
be caused by any of the following reasons:

• The different type of FPGAs used and the difference in manufacturer.

31

• The differences in the way power usage was measured.

• The alterations to the original code that were needed to let it run on the XUP devel-
opment board.

• The transition from three small FPGAs to one large FPGA.

The real cause for this difference, however, can’t be determined exactly, because very detailed
measurements are not possible.

The measurements done on the development board, have the extra advantage of showing how
the power usage is divided over the components of the system. The power used by the LVDS
circuit was established by measuring the voltage over its current sense resistor. The power
used by the other components (the master and two slaves), was calculated by disabling the
components one by one and measuring the total current drawn by the FPGA. This way of
measuring power usage is the reason for the difference in power between slave 0 and slave
1. While they have identical code, slave 0 has some added overhead, that is caused by the
optimizations done on a design with less components.

The H-bridge circuit operates, just like the LVDS circuit, on a voltage of 3.3 V and has a
current sense resistor to measure its total power usage. Figure 3.3 shows the results of power
measurements done on the H-bridge circuit.

0

5

10

15

20

25

30

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Actuator coil voltage (V)

T
o

ta
l

p
o

w
e
r

(m
W

)

H-bridge circuit

Figure 3.3: Power usage of the XUP H-bridge circuit

This graph has approximately the same shape as the graph for the actuators and H-bridges in
figure 3.1, but there is clearly too much power usage when the actuator voltage is 0, compared
to the original actuator controllers. The added power usage is likely to be caused by the extra
safety measures incorporated into this circuit, such as a fuse and current limiting resistors,
which consume some amount of power. There is also a small asymmetry in the graph, which
is likely to be the result of the different electrical characteristics of the components used to
construct the H-bridge. These differences in power usage are not of much importance, because
the power measurements of the H-bridge circuit won’t be used when making optimizations.

32

3.4 Simulation

The XPower tool [11] offers a way of determining power usage of a design, without imple-
menting it on real hardware. XPower uses formulas similar to equation 3.1, in combination
with simulation data and FPGA characteristics, to estimate power usage. To obtain the sim-
ulation data, a test bench for the original controller software was written (see appendix F.1).
The test bench has the ability to read LVDS packets from a file and to send them, during
simulation, to the master in the same way the packets are sent to the real actuator controller
by the ethernet-LVDS bridge. This mechanism is used to enable the generation of PWM
signals by writing the correct values to the actuator controller’s internal registers. Besides
setting the internal registers of the actuator controller, the test bench also has the task of
generating the necessary clock and reset signals.

The simulation data was obtained by simulating the post-place and route netlist of the con-
troller software with the ModelSim PE [13] simulator. The resulting value change dump
(VCD) file can be used by the XPower tool in combination with the compiled design file to
estimate power usage. Figure 3.4 shows the estimated distribution of dynamic power usage
over the various parts of the master code.

48.2

115.2

7.7 1.6

Clocks

RAM

LVDS transceiver

Other

Total: 172.7

Figure 3.4: Master power distribution (mW)

It is very clear that most of the power usage in the master is due to the clocks and the RAM,
used to buffer received LVDS packets. Only a small percentage is consumed by the LVDS
transceiver and other hardware resources in the FPGA.

Figure 3.5 shows an estimation of the distribution of dynamic power usage for both slaves.
This chart shows that most of the power, used by the slaves, is also due to the switching
activity of the system clocks. The other part of the total power usage is occupied by the
PWM counter and comparators. These components are both part of the system, used to
generate the PWM signals for the actuators.

33

169.4

42.5

24.8

Clocks

PWM counter

Comparators

Total: 236.7

Figure 3.5: Slave 0 and slave 1 power distribution (mW)

3.5 Conclusion

The data obtained from simulating the actuator controller software clearly shows that the
system clocks are a big source of power usage, both for the master and slave FPGAs. Reducing
this power usage can be achieved by reducing the frequency of the system clocks or by reducing
the amount of clocked hardware that is used in the design. One way to do this is by converting
the synchronous circuits of the original design into asynchronous circuits.

The RAM used in the master FPGA also uses a relatively large amount of power, that is
linearly dependant on the size of the memory. Since this memory is used as a temporary
buffer for storing LVDS packets, an obvious optimization would be to reduce the size of the
buffer or to remove the buffer completely. The PWM counters and comparators inside the
slaves can be optimized by implementing them in a more power efficient way, possibly using
a different design for the counters and a PWM clock with reduced frequency.

34

Chapter 4

Design

The power measurements, listed in chapter 3, show which parts of the original software use
most of the power. In both the master and slaves, the power used by the system clocks
is significant, since these modules run on high clock frequencies and use a lot of FPGA
resources. Besides the power used by the system clocks, a large portion of the total power
for the master is consumed by the internal RAM. In the slaves, most of the power is used by
the system clocks, but a fairly large amount of power is also consumed by the PWM counter
and comparators.

To optimize the power usage of the actuator controller, new designs for the controller software
were made, based on the results of the power measurements. This chapter describes these
new designs and shows how they reduce the total amount of power used.

4.1 Power reduction techniques

There are several techniques that can be used to reduce the power usage of a design. The most
obvious one is to lower the frequency of the system clock. Power usage is linearly dependent
on the clock frequency, so any change to the clock has an immediate effect on the power usage
of a design. Since power usage is also linearly dependent on the amount of hardware used,
reducing resource usage can also lead to a design with lower power usage.

Another commonly used technique is clock gating. Clock gating reduces power by temporarily
disabling the clock to parts of a design that are unused at that moment. Since the clock is
disabled, no dynamic power is used by the corresponding hardware. More advanced techniques
include power gating, to temporarily disable power to certain parts of a design, and lowering
the operating voltage of the FPGA. Since power usage is quadratically dependent on the
operating voltage, large power reductions can be achieved with this technique.

The optimizations made to the actuator controller will be mainly based on lowering the clock
frequency and reducing the amount of hardware used, since the other techniques are difficult
to apply to the existing controller software.

35

4.2 Asynchronous master

The main task of the master is to transmit and receive LVDS packets and to decode their
contents for the slave modules. In the original design, the master uses a 64 word RAM to
temporarily store the received packets, before sending their contents to the slaves. This setup
allows the master to reject packets with an invalid checksum, as the checksum can only be
calculated after a complete packet has been received. The RAM buffer also helps to resolve
timing-issues related to the communication between the master running at 200 MHz and the
slaves running at a lower speed of 125 MHz. Because the slaves are slower, the master has
to store a packet until all of the data in the packet has been received and processed by the
slaves. Figure 4.1 shows the internal architecture of the original master.

Receive

Master

LVDS in

Transmit

LVDS out

Protocol

handler

Data

handler

RAM Slave

data-bus

Figure 4.1: Original master architecture

The transmit and receive modules are used to serialize and de-serialize the LVDS data. The
protocol handler decodes the LVDS data and writes it to the RAM, which is read by the data
handler, that has the task of sending the data to the slaves. Responses from the slaves are
sent directly to the transmit module without first passing through the RAM.

Master

LVDS in

LVDS out

Slave

data-bus
LVDS

transceiver

Packet

handler

Data

Pause

Figure 4.2: Optimized master architecture

The optimized design for the master, shown in figure 4.2, consists of two modules, connected
together with handshake channels. The LVDS transceiver has the same functionality as the

36

transmit and receive modules in the original master. It is connected to the packet handler
with a 16 bit wide data channel in each direction and a pause channel, used to indicate the
pause between two consecutive LVDS packets. The packet handler combines the functionality
of the protocol handler and the data handler, but doesn’t use a RAM to buffer the packets.
Instead, it processes the packets asynchronously and sends the data words contained in them
directly to the slaves. The biggest advantage of this approach is that the RAM, responsible
for most of the power usage, is eliminated from the design. The downside however is that
packets with an invalid checksum will also be sent directly to the slaves. This disadvantage
was considered to be acceptable, since packet errors occur only rarely and usually don’t cause
much trouble when they do occur. Using asynchronous logic instead of synchronous logic for
the modules reduces the power used by the system clocks.

4.3 Asynchronous slave

An actuator controller consists of a master and two slave modules. Figure 4.3 shows the
internal architecture of one of these slave modules. Each slave provides the PWM signals
needed to drive 31 actuators of the deformable mirror. Since the mirror only has 61 actuators,
one PWM unit of the second slave is left unconnected. All data sent to and from the slaves is
handled by the address decoder. The address decoder holds the global configuration registers
and controls the settings of the PWM units, including their setpoints and enable states. To
communicate with the PWM units, the address decoder is connected to each of them with
a data-bus for reading and writing, and a number of control lines. This setup leads to a
high fan-out at the address decoder, since each wire has to go to all 31 PWM units. A high
fan-out may cause timing related issues and an increase in resource usage, resulting in higher
power usage. Another module with a high fan-out is the PWM counter. The PWM counter
increments its internal 11 bit register every clock cycle and resets when the maximum number
has been reached. Like the address decoder, the PWM counter is also connected to every
PWM unit.

Slave

PWM

counter

PWM8
.
.
.

PWM8
.
.
.

PWM8
.
.
.

PWM7
.
.
.

PWM

channels

Slave

data-bus
Address

decoder
data-bus

control lines

31 PWM units

Figure 4.3: Original slave architecture

37

Figure 4.4 shows the architecture of the optimized slave. This new design combines the
functionality of the two original slaves into one module, providing control signals for all 61
actuators of the deformable mirror.

Slave

Counter

PWM

cell

PWM

cell

PWM

channels

Decoder

Slave

data-bus
PWM

hub

PWM

hub

PWM

hub

PWM

hub

PWM

hub

.

.

.

.

.

.

.

.

.

.

.

61 PWM unitsTree structure

PWM

cell

.

.

.

.

.

.

Figure 4.4: Optimized slave architecture

Combining the two slaves is possible since the optimized module is designed to run on one
FPGA. The new slave module reduces resource usage, since the address decoder and PWM
counter don’t have to be duplicated for the two slaves. The internal components of the
optimized slave are connected together with handshake channels and are constructed out of
asynchronous logic. This helps to reduce the power usage resulting from the system clocks,
since less clock signals are needed when using asynchronous logic.

The decoder and counter modules have approximately the same functionality as the address
decoder and the PWM counter in the original slaves. The only difference is that the new
decoder has to handle 61 PWM units instead of 31. This leads to a small increase of the
resources used by the decoder, but the total amount will still be smaller than the amount of
resources used by the two separate address decoders. Another difference between the original
and the optimized design is the way in which the decoder is connected to the PWM units.
Instead of a high fan-out data-bus, a tree structure is used to make the connections to the
PWM units. The tree structure, with branching factor 4 and depth 3, can accommodate
43 = 64 PWM units. Using a tree has the advantage of a low fan-out per module and smaller
timing delays, but also requires some extra hardware for the PWM hubs, that are used to
route the data through the tree.

4.4 Recursive PWM

The PWM units of the original slaves are based on the design shown in figure 4.5. The value
of a counter register, that is incremented every clock cycle, is continuously compared to a
setpoint value by a comparator. When the counter is smaller than the setpoint, the output
of the comparator becomes zero. When the counter is greater than or equal to the setpoint,

38

the output of the comparator changes to one. Since the PWM signal needs to start at one at
the beginning of a duty cycle, and turn zero when the setpoint has been reached, the output
of the comparator is connected to an inverter. The output of the inverter is connected to a
flip-flop, which stores the value at its input every rising clock-edge. The flip-flop is effectively
a 1 bit memory and is needed to keep the PWM output stable during each clock period.

PWM unit

Clock

PWM
D Q>=

Up

counter

Setpoint

A

B

Comparator Flip-flopInverter

Figure 4.5: Counter-comparator PWM

The power simulations of the original controller software have shown that approximately 28%
of the total power used by the slaves, is due to the PWM counter and comparators. The PWM
counter is incremented every positive edge of the 125 MHz system clock, so a lot of switching
takes place in the counter, resulting in a relatively high power usage. The comparators also
use a lot of power, because they are connected directly to the counter.

To reduce the power used by the PWM units, several alternatives for the counter-comparator
scheme were created. Figure 4.6 shows the design, called recursive PWM, that was considered
most promising in terms of power usage and practical implementation.

PWM unit

Clock

PWM

D Q D Q D Q D Q

...

...

Setpoint

Cmp 0 Cmp 1 Cmp 2 Cmp N-2 Cmp N-1

bit 0 bit 1 bit 2 bit N-2 bit N-1

Figure 4.6: N-bit recursive PWM

The recursive PWM unit is partially based on the PWM designs found in [14]. It is essentially
a modularized version of the standard counter-comparator PWM scheme. The flip-flops at the

39

top of the diagram have the same function as the counter in the original design. Each flip-flop
divides the frequency of its incoming clock signal by two, creating an inverted up-counter.
The modules below the flip-flops contain only combinatorial logic, that is used to compare
the setpoint to the counter value, stored in the flip-flops. Each module functions as part of an
N-bit comparator, passing on information about the comparison to the modules further down
the chain. Since all comparator modules, except the first one, are the same, extending the
recursive PWM unit is just a matter of adding more of the bit modules, depicted in figure 4.7.

PWM bit module

clk_in

pwm_out

D Q

setp_bit

Cmp
pwm_in

clk_out

Figure 4.7: Recursive PWM bit module

The following equation shows how the frequency of the outgoing clock fclk out is related to
the frequency of the incoming clock fclk in for each bit module:

fclk out =
fclk in

2
(4.1)

Equation 4.2 describes the combinatorial function contained in each comparator module Cmp:

pwm out = ((clk out ∧ setp bit) ∨ pwm in) ∧ (clk out ∨ setp bit) (4.2)

The biggest advantage of this design over the original counter-comparator design, is the fact
that the recursive PWM unit is active on both clock-edges. Because it is active on both
clock-edges, the input clock can be halved while still maintaining the same PWM output
frequency, reducing overall power usage. A disadvantage of this design is the higher use of
FPGA resources and the possible instability of the output signal as a result of gate-delays,
introduced by the chain of divider flip-flops.

40

Chapter 5

Implementation

The designs from chapter 4 were implemented using different hardware description languages.
The asynchronous master and slave were programmed in Haste [15, 16]. Haste is a pro-
gramming language, specifically designed for the construction of asynchronous logic (see ap-
pendix E). To implement the asynchronous logic on an FPGA, the synchronous design flow of
Haste is used. The synchronous design flow uses clocked hardware to simulate asynchronous
circuits, as it is difficult to implement these circuits directly onto an FPGA. The recursive
PWM unit was implemented in Verilog and integrated into the original controller code in two
different ways.

This chapter describes how the designs for the master and slave modules were implemented,
and what issues had to be resolved in order to get a working design.

5.1 Asynchronous master

The asynchronous master consists of two processes, connected together with a bidirectional
data channel and a pause channel. The first process, called trans, has the task of serializing
and de-serializing the LVDS data, and detecting the pauses between LVDS packets. To receive
the LVDS data, the transceiver first waits for the negative edge of a start-bit. After a start-bit
has been detected, the transceiver begins to sample the incoming LVDS signal every 25 ns.
The sampled bits are stored in a 16 bits shift register and sent to the packet handler. Data
words, received from the packet handler, are converted to LVDS signals by first sending a
start-bit, followed by 16 bits of data and a stop-bit. The appropriate delays between the bits
are created with a number of skip instructions. Since the LVDS transceiver runs on a clock
frequency of 200 MHz, each skip instruction causes a delay of 5 ns. A resolution of 5 ns is
needed to sample the 25 ns long bits. Pauses between two LVDS packets are detected by a
separate process, that counts the number of consecutive high bits. When 18 consecutive bits
are high, a signal is sent to the packet handler.

The second process in the master, called packet, handles the LVDS data at the packet level.
After a pause has been detected, the packet header, containing the module id and command
type, is received. The module id determines whether the packet should be processed further or

41

not. The command type decides how the words, following the header, are handled. The packet
handler sends the data, contained in the packets, directly to the slave without first storing it
in a RAM. Responses received from the slave are sent to the LVDS transceiver, after adding
the appropriate header and checksum. In the current implementation, the packet handler
runs on a clock frequency of 100 MHz, but this may be lowered to reduce power usage in
further implementations.

Resource Used Available Utilization

Slice flip-flops 280 27,392 1%
4-input LUTs 331 27,392 1%
Digital clock managers 1 8 12%
Logic slices 266 13,696 1%

Table 5.1: Asynchronous master resource usage

Table 5.1 shows the resources used by the asynchronous master on the Virtex-II Pro FPGA.
Only one DCM is used to create the 200 MHz system clock, since the 100 MHz clock is already
present on the development board. The resource usage of the master is very low, so the power
usage of the master is expected to be low as well.

5.2 Asynchronous slave

The asynchronous slave consists of a decoder process, a counter process and a tree structure,
containing 61 PWM units. The decoder controls which internal registers are written to or
read from, and handles the commands coming from the packet handler. The counter process
is used by the 61 PWM units to generate their PWM signals. It has an internal register, that
is incremented every positive edge of the 125 MHz system clock. The tree structure consists
of PWM hubs and PWM cells. The PWM hubs are at the nodes of the tree and are used
to route the data from the decoder to the PWM cells and vice versa. The PWM cells are
placed at the leafs of the tree and have the task of generating the PWM signals. Each PWM
cell has a small decoder with internal configuration registers to handle the commands from
the main decoder, located at the base of the tree. The PWM cell generates the PWM signals
in much the same way as in the original actuator controllers, using the data stored in the
configuration registers.

Resource Used Available Utilization

Slice flip-flops 10,234 27,392 37%
4-input LUTs 11,905 27,392 43%
Digital clock managers 1 8 12%
Logic slices 9,873 13,696 72%

Table 5.2: Asynchronous slave resource usage

42

Table 5.2 shows the resource usage of the asynchronous slave. In contrast with the master,
the slave module does use a lot of resources. It uses one DCM to generate its 125 MHz
system clock, but it also takes up 72% of the available logic slices in the FPGA. Most of these
resources are due to the 61 PWM cells and the attached tree structure. The implementation
of the slave in Haste uses more resources than the original slave, so in terms of power usage,
the original implementation is likely to be more efficient.

5.3 Asynchronous actuator controller

The asynchronous master and slave were connected together to form a complete actuator con-
troller, capable of controlling 61 actuators. The Haste design flow doesn’t support connecting
modules running at different clock speeds, so the generated Verilog modules had to be assem-
bled manually. The passivator modules, used to connect the handshake lines of two Haste
modules, were replaced by the passivators listed in appendix F.2. These new passivators can
handle synchronous handshake signals, originating from modules running at different clock
speeds.

Resource Used Available Utilization

Slice flip-flops 10,514 27,392 38%
4-input LUTs 12,236 27,392 44%
Digital clock managers 2 8 25%
Logic slices 10,139 13,696 74%

Table 5.3: Asynchronous actuator controller resource usage

Table 5.3 shows how much FPGA resources are used by the asynchronous actuator controller.
Most of the resources are used by the slave, while only a small percentage of the resource
usage is due to the master and various other modules like the passivators and reset logic.
Because so much resources are used, the timing constraints of the controller design only hold
on speed-grade 7 FPGAs.

5.4 Recursive PWM

The recursive PWM design from chapter 4 was implemented as a Verilog module (see ap-
pendix F.3). To test the module, it was integrated into the code of the original actuator
controller. All counter-comparator units were replaced by recursive PWM units and the
central counter was removed, as each PWM channel now had its own counter. The clock
frequency for the two slaves was lowered from 125 MHz to 62.5 MHz and the write-delays
in the master were doubled to compensate for the lower clock frequency. Figure 5.1 shows
an example of two PWM signals being generated by the recursive PWM units on the XUP
development board. This image clearly shows that the signals are generated at the correct
frequency by a slave running at half its original clock speed. The only concern with the design

43

of the recursive PWM units is the fact that glitches may occur in the output signal as a result
of gate delays in the counter section of the PWM unit. Because these glitches are very small
spikes in the PWM signal, they may reduce the accuracy of the output signal and cause wrong
actuator positions. Simulations have shown the presence of glitches in the PWM signal, but
they have not been found in the signals generated by the development board.

Figure 5.1: Oscilloscope image of the recursive PWM signals

Another version of the original actuator controller was made by taking the top part of the
recursive PWM unit and creating the counter module, shown in figure 5.2, out of it. This
counter module (listed in appendix F.4) replaces the original central counter, allowing the
slaves to run at half their clock speed. Inverters are used to enable the counter to count up.

Recursive counter

Clock

Counter

D Q D Q D Q D Q

...

...

bit 0 bit 1 bit 2 bit N-2 bit N-1

Figure 5.2: N-bit recursive counter

Because the resource usage of both these adaptations is almost the same as the resource usage
of the original controller, lowering the clock speed of the slaves is likely to reduce overall power
usage.

44

Chapter 6

Results

The power usage of the optimized controller designs was determined by measurements on the
XUP development board and with the help of estimations from the Xilinx XPower tool. The
measurements were carried out the same way as the measurements for the original controller
software, shown in chapter 3. The only difference was that the asynchronous actuator con-
troller needed to be implemented on a development board with a speed-grade 7 FPGA. A
speed-grade 7 FPGA uses a little more power than the speed-grade 6 FPGA, used for the
original controller software.

6.1 XUP development board

0

100

200

300

400

500

600

700

Original controller Asynchronous

controller

Recursive PWM Recursive counter Optimal controller

T
o

ta
l

p
o

w
e

r
(m

W
)

Slaves

Master

Figure 6.1: Power usage of controller designs on XUP development board

Figure 6.1 shows the results of the power measurements on the XUP development board.
Each bar represents the total amount of power used by a controller design and also shows

45

how this power is distributed over the master and slave modules. The static power, dissipated
by the FPGA, is not included in the power usage of the designs.

The first bar represents the total amount of power used by the original controller software on
the XUP board. The second bar shows how much power is used by the implementation of
the actuator controller in Haste. While the total amount of power is higher than the original,
the master needs less power to perform its tasks. The third and fourth bar show the power
usage of the two implementations of the recursive PWM unit. These designs only change
the slave modules, so the power usage of the master is the same as in the original controller.
Both slave modules show an improvement in terms of power usage, but the biggest reduction
of power can be seen in the recursive counter design. Combining the slaves of the recursive
counter design with the asynchronous master would lead to a controller with power usage
corresponding to the last bar in the graph. This optimal controller shows a reduction in
power usage of approximately 29%.

6.2 Simulation

Figure 6.2 shows the power usage data, obtained by simulating the optimized controller
designs. The bars represent the power usage of the designs in the same way as in figure 6.1.
Although a lot of similarities exist between the simulated data and the measurements on the
XUP board, a number of differences can be observed. First of all, there is a large difference
between the measured power usage of the asynchronous controller and the simulated power
usage. This difference is likely due to the fact that the power estimation tool can’t determine
the activity rates for the design with enough accuracy. Secondly, power usage is estimated
too high for the master modules and too low for the slaves. This is probably also caused by
the inability of the power tool to estimate the activity rates correctly.

0

100

200

300

400

500

600

700

Original controller Asynchronous

controller

Recursive PWM Recursive counter Optimal controller

T
o

ta
l

p
o

w
e

r
(m

W
)

Slaves

Master

Figure 6.2: Power usage of controller designs in simulation

46

Since simulation doesn’t always produce results with high enough accuracy, it is better to
use the measurements on the development board to make decisions about the design of the
controller. Simulations, however, are useful for determining the distribution of power in a
design.

0

1

2

3

4

5

6

7

8

9

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Number of PWM channels

T
o

ta
l

p
o

w
e

r
(m

W
)

Counter-
comparator

Recursive

Figure 6.3: Power usage of different PWM units

Figure 6.3 shows another comparison of the standard counter-comparator PWM unit with
the improved recursive PWM unit. Besides the fact that the recursive PWM units are more
efficient, their power usage also increases more linearly.

47

48

Chapter 7

Conclusion

The software for the original actuator controllers was migrated successfully to the XUP devel-
opment board. With the help of custom electronics, the modified code was tested by sending
commands over the LVDS interface and observing the outputs of the development board and
the H-bridge circuit. The migrated controller software has all the capabilities of the original
software and meets the requirements listed in appendix A.

The power usage of the controller software was measured on the original actuator controllers,
on the XUP development board and with the help of simulations. The development board did
not have a straightforward way of measuring the power usage of its FPGA, so a less accurate
differential measuring method had to be used. Only the dynamic power usage of the FPGA
could be measured using this method, so the static power dissipation had to be estimated.
The simulations were useful for finding out how the power usage was distributed internally
over the modules and to test the functionality of new designs. The power measurements
and simulation data were used to create optimized versions of the software for the actuator
controller.

7.1 Power reduction

According to the measurements on the XUP board, the asynchronous actuator controller as
a whole is less efficient in terms of power usage than the original actuator controller. This is
primarily caused by the large amount of resources used by the slave module and the high clock
speed it needs to run on. The asynchronous master uses less power than the original master,
as it is able to process the LVDS packets without using a RAM. The downside of implementing
an asynchronous design on an FPGA is the fact that the asynchronous design needs to be
simulated by synchronous hardware. The synchronous simulation uses more power than is
needed for a true asynchronous implementation, so ideally, the complete actuator controller
would be implemented asynchronously on a dedicated chip. This implementation would have
less restrictions on its design and offer the possibility of larger power reductions. If the
controller would be implemented on a dedicated chip, other designs for the PWM units could
be used, lowering the internal clock frequency of the slaves drastically. All intermediate logic,
passing on information from the LVDS packets, would be asynchronous and switch only at the

49

arrival of new LVDS packets. Reducing or eliminating the system clocks has an immediate
effect on the total power usage of the actuator controller.

The designs with the recursive PWM units and the recursive counter are both more efficient
than the original controller. The recursive PWM units take up a lot of resources from the
FPGA, so the power reduction is not very large in this design. The recursive counter uses
less resources, so in this case the power reduction is more significant. In both designs, the
reduced power is a result of the lower clock frequency for the slave modules. The recursive
PWM units and counter are easily integrated into the original controller code, but there are
still some concerns regarding the accuracy and stability of the generated PWM signals.

When the master of the asynchronous controller is combined with the slaves of the recursive
counter design, a total power reduction of approximately 29% can be achieved.

7.2 Future work

The following list shows a number of possible future research topics, regarding the optimiza-
tion of the actuator controllers:

• The implementation of the actuator controllers using real asynchronous circuits and the
effects on power usage.

• Implementing real asynchronous circuits on an FPGA without the need for synchronous
simulations.

• The optimization of the electronics of the actuator controllers with respect to power
usage. Examples are the use of a different type of FPGA, with lower static power
dissipation or using one FPGA instead of three to reduce power overhead.

• Applying more advanced power reduction techniques, such as clock gating and FPGA
voltage reduction.

• Finding a power simulation method that delivers more accurate results and gives a clear
insight into the power usage of a design.

• Improving the measuring method for the power usage on the XUP development board.

50

Bibliography

[1] R. Hamelinck, N. Rosielle, M. Steinbuch, and N. Doelman. Large adaptive deformable
membrane mirror with high actuator density: design and first prototypes. In 5th In-
ternational Workshop on Adaptive Optics for Industry and Medicine. Edited by Jiang,
Wenhan. Proceedings of the SPIE, Volume 6018, pp. 287-299 (2005).

[2] R. Hamelinck, N. Rosielle, M. Steinbuch, R. Ellenbroek, M. Verhaegen, and N. Doelman.
Actuator tests for a large deformable membrane mirror. In Advances in Adaptive Optics
II. Edited by Ellerbroek, Brent L.; Bonaccini Calia, Domenico. Proceedings of the SPIE,
Volume 6272 (2006).

[3] R. Ellenbroek, M. Verhaegen, N. Doelman, R. Hamelinck, N. Rosielle, and M. Stein-
buch. Distributed control in adaptive optics: deformable mirror and turbulence model-
ing. In Advances in Adaptive Optics II. Edited by Ellerbroek, Brent L.; Bonaccini Calia,
Domenico. Proceedings of the SPIE, Volume 6272 (2006).

[4] IEEE Computer Society. IEEE Standard Verilog Hardware Description Language, 1364-
2001.

[5] IEEE Computer Society. IEEE Standard VHDL Language Reference Manual, 1076-2002.

[6] I. Løkken. PCM-PWM analysis brief. http://www.iet.ntnu.no/~ivarlo/, 2004.

[7] Altera Corporation. Cyclone II Device Family Data Sheet.

[8] Xilinx Inc. Xilinx University Program Virtex-II Pro Development System, Hardware
Reference Manual.

[9] Xilinx Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.

[10] National Semiconductor Corporation. DS91D176/DS91C176 Multipoint-LVDS (M-
LVDS) Transceivers, Data Sheet.

[11] Xilinx Inc. Xilinx ISE 9.1i Software Manuals and Help.

[12] Keshab K. Parhi. VLSI digital signal processing systems: design and implementation.
Wiley-Interscience, 1999.

[13] Mentor Graphics Corporation. ModelSim User’s Manual, 2007.

[14] Jinwen Xiao. An ultra-low-quiescent-current dual-mode digitally-controlled buck converter
IC for cellular phone applications. PhD thesis, University of California, Berkeley, 2003.

51

http://www.iet.ntnu.no/~ivarlo/

[15] Handshake Solutions. Haste-Programming Language Manual, 2007.

[16] Handshake Solutions. Handshake Technology Design Flow Manual, 2005.

[17] Emdes Embedded Systems. Ethernet-LVDS bridge communication protocol specification,
2007.

52

Appendix A

Actuator controller requirements

Authors: Rogier Ellenbroek, Roger Hamelinck

A.1 Input

1. The actuator controller communicates via LVDS, using the protocol described in [17].

2. The functionality implied by the protocol described in [17] needs to be supported by
the actuator controller.

3. The number of setpoints that can be received every second is only limited by the speed
of the LVDS communication.

A.2 Output

The output of the actuator controller consists of PWM signals that are suited to drive the
existing actuators and accompanying analog circuitry.

1. Because the supply voltage is 3.3 V and the maximum actuator voltage 0.8 V, the duty
cycle of the PWM signals only has to be set from 37.5% to 62.5%.

2. The range of 37.5% to 62.5% has to be set with a resolution of 14 bits. To accomplish
this, the range of 0% to 100% may be set with a resolution of 16 bits.

3. Given the model specified in section A.4, the generated PWM signal needs to determine
the actuator position in such a way that:

• The average deviation in the steady-state is 0.
• The RMS deviation is smaller than the movement resulting from the least signifi-

cant bit of the setpoint. This is approximately 1 nm.

All transient effects in the PWM signal, after a setpoint update, need to disappear in
less than 100 µs.

53

A.3 Latency

The time between receiving a setpoint update via LVDS and adjustment of the PWM signal,
needs to be smaller than 2 µs.

A.4 Electromechanical actuator model

Modeling the electronics and mechanics of the actuator have led to a continuous-time transfer
function between the voltage delivered by the H-bridge and the position of the actuator. For
the electronics, only the relative gain of the model is relevant (i.e. the gain relative to the
steady-state). In this case, the following normalized transfer function (with Laplace variable
s) holds:

H(s) = (A.1)
0.08814

1.027 · 10−23s5 + 8.279 · 10−19s4 + 2.413 · 10−14s3 + 8.331 · 10−10s2 + 3.22 · 10−6s+ 0.08814

The Bode plot corresponding to this function can be seen in figure A.1. The gain at the PWM
base frequency of 60 kHz is so low that the deviation of the actuator position is much smaller
than the movement associated with the least significant bit of the setpoint. Improvements to
the model have shown that the 60 kHz PWM base frequency may be lowered.

10
2

10
3

10
4

10
5

10
6

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

M
a

g
n

itu
d

e
 (

a
b

s
)

Bode Diagram

Frequency (Hz)

Figure A.1: Bode plot for transfer function H(s)

54

Appendix B

Heat dissipation

Author: Roger Hamelinck

B.1 Requirements

1. The surface temperature of the mirror should not be higher than 1 ◦C above the tem-
perature of the surrounding air.

• The assumption is that the heat at the mirror-side is transferred by natural con-
vection. The typical heat transfer coefficient, associated with natural convection,
is 10 W/m2.

• The generated heat is dissipated at the front- and backside of the actuator-plate.

• The maximum dissipation per actuator Pact, is given by the following formula:

Pact =
2h
N

(B.1)

In this formula, h represents the heat transfer coefficient and N the number of
actuators per m2.

• If we choose: h = 10 W/m2 and N ≈ 25000 actuators per m2 (at a 6 mm pitch),
then Pact ≈ 1 mW.

2. The total amount of power that may be dissipated to the environment is equal to 30
liters of air, with a temperature of 1 ◦C above the temperature of the surrounding air,
every second.

• The power needed to raise the temperature of 1 liter of air (at constant pressure)
by 1 ◦C every second, is approximately 1 W.

• The total amount of power that may be dissipated by the complete system (elec-
tronics and actuators) is therefore 30 W.

• This requirement is based on a system with 8000 actuators, so the system is allowed
to dissipate: 30 W

8000 ≈ 4 mW per actuator.

55

B.2 Conclusion

If all of the generated heat is transferred to the surrounding air, the system is only allowed to
dissipate a maximum of 4 mW per actuator. The maximum dissipation at the actuator-plate
is 1 mW per actuator, so this leaves 3 mW per actuator available for the electronics.

56

Appendix C

Schematics for custom electronics

Xilinx

LVDS

IC1

IC2

R1..R8: 100 Ohm

DS91D176TMA

DS91D176TMA

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

J5

F1

R
1

RE_N
2

DE
3

D
4

GND
5

A
6

B
7

VCC
8

R
1

RE_N
2

DE
3

D
4

GND
5

A
6

B
7

VCC
8

R1
R2
R3
R4

R5
R6
R7
R8

C1 C2

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

X1

R
9

1

2

TEST

LVDS1_NLVDS1_P

LVDS2_P LVDS2_N

+
3

V
3

GND

100mA +
3

V
3

+
3

V
3

GND

GND

100nF 100nF

GND

+
3

V
3

1
E

T
1

T
2

T
1

T
2

GND

Figure C.1: Schematic for the LVDS interface

57

X
ili

n
x

S
i1

0
1

6
X

S
i1

0
1

6
X

1
1

2
2

3
3

4
4

5
5

6
6

R
1

..
R

4
:
5

 O
h

m
1

2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

J
6

F
1

R
1

R
2

R
3

R
4

R6
Q

1
Q

2

Q
3

Q
4

R7 R8

R9 R10

C
1

L
1

R
1

1

C2

1
2

3
4

C
O

IL

R5

1
2

3
4

T
E

S
T+3V3

G
N

D

1
0

0
m

A

+3V3 1E G
N

D

220k 220k

220k 220k

4
.7

u
F

2
2

0
u

H

6
k
3

4

4.7uF

1E

T1 T2

S1 S2

T
1

T
2

S
1

S
2

Figure C.2: Schematic for the H-bridge circuit

58

Appendix D

Power measurement method

The XUP development board doesn’t have connectors for measuring the current through the
FPGA directly, so another method for establishing the power usage of the FPGA had to be
found. The development board has three independent power supplies, that generate 2.5 V,
3.3 V and 1.5 V for the components on the board. Each power supply has a connector that
can be used to measure the total current drawn from the power supply. The power supplies
provide power to a lot of other components besides the FPGA, so the current running through
the FPGA can only be established by calculating the difference in current between a minimally
configured FPGA and an FPGA configured with the design to be measured.

The code for the minimal configuration, shown in appendix F.5, doesn’t perform any cal-
culations so its dynamic power usage is 0. The difference in total power usage of a design
and this minimal configuration is therefore equal to the dynamic power used by the design,
assuming that the power usage of the other components on the development board doesn’t
change. Because the minimal configuration still uses static power, the static power of a de-
sign can’t be measured by calculating the difference, so it has to be estimated with the help
of information available in the data sheet of the FPGA [9]. Table D.1 shows the baseline
current measurements of a minimally configured FPGA in two different speed-grades. These
measurements already include the estimations of the static power dissipation.

Device 2.5 V 3.3 V 1.5 V

xc2vp30-6 0.0318 A 0.2566 A 0.0064 A
xc2vp30-7 0.0481 A 0.2587 A 0.0110 A

Table D.1: Baseline current measurements

Calculating the total power usage of a design Ptot is now just a matter of measuring the
current at each power supply Im, subtracting the baseline currents Ib from the measured
currents and multiplying the resulting currents with their corresponding voltages, as shown
in equation D.1.

Ptot = 2.5(Im2.5 − Ib2.5) + 3.3(Im3.3 − Ib3.3) + 1.5(Im1.5 − Ib1.5) (D.1)

59

60

Appendix E

Haste introduction

Haste is a high-level programming language, comparable to Verilog or VHDL, that can be
used to create asynchronous hardware designs. Asynchronous designs usually have low power
usage because of the absence of clock signals. The Haste compiler, created by Handshake
Solutions, translates the Haste code to a handshake circuit, which can be mapped to an
asynchronous Verilog netlist for implementation on a dedicated chip or to a synchronous netlist
for implementation on an FPGA [16]. The synchronous netlist is effectively a simulation of the
asynchronous circuits, so it lacks some of the benefits of a real asynchronous implementation.

Haste supports multiple parallel processes, communicating with each other through handshake
channels. To facilitate communication with the outside world, constructs are available to
sample inputs directly without the use of handshakes. Variable types are created by combining
the built-in boolean and range types into tuples. Haste has most of the standard programming
language constructs like if-statements and repetitions, and some additional constructs to
enable the communication through handshake channels.

The following Haste fragment shows an example program for a one-place FIFO buffer [15]:

U8 = type [0 . . 2 5 5]

& f i f o :main proc (a?chan U8 & b ! chan U8) .
begin

t : var U8
|

forever do
a? t

; b ! t
od

end

This program continuously reads data from input channel a into variable t and then outputs
it again using channel b.

61

62

Appendix F

Code listing

F.1 Actuator controller test bench

1 ‘timescale 1ns / 1ps
2
3 module main sim ;
4 // Parameters
5 parameter CLK = 5 ;
6 parameter CLK LVDS = 12 . 5 ;
7
8 // Inputs o f main
9 reg c l k 100 ;

10 reg r e s e t n ;
11 reg LVDS1 RXD;
12 reg LVDS2 RXD;
13
14 // Outputs o f main
15 wire [3 : 0] l ed n ;
16 wire LVDS1 TXD;
17 wire LVDS1 TXEN;
18 wire LVDS1 RXEN N;
19 wire LVDS2 TXD;
20 wire LVDS2 TXEN;
21 wire LVDS2 RXEN N;
22 wire [4 : 0] K;
23 wire Z0 , Z1 ;
24
25 // Simulat ion v a r i a b l e s
26 reg c l k l v d s ;
27 reg b i t l v d s ;
28
29 // I n s t a n t i a t e main
30 main UUT (. c l k 100 (c l k 100) , . r e s e t n (r e s e t n) , . l ed n (l ed n) ,
31 .LVDS1 TXD(LVDS1 TXD) , .LVDS1 RXD(LVDS1 RXD) ,
32 .LVDS1 TXEN(LVDS1 TXEN) , .LVDS1 RXEN N(LVDS1 RXEN N) ,
33 .LVDS2 TXD(LVDS2 TXD) , .LVDS2 RXD(LVDS2 RXD) ,
34 .LVDS2 TXEN(LVDS2 TXEN) , .LVDS2 RXEN N(LVDS2 RXEN N) ,
35 .K(K) , . Z0 (Z0) , . Z1 (Z1)) ;
36

63

37 // Generate c l o c k s i g n a l s
38 always #CLK c lk 100 = ˜ c lk 100 ;
39 always #CLK LVDS c l k l v d s = ˜ c l k l v d s ;
40
41 // Send LVDS s i g n a l
42 always @(posedge c l k 100) begin
43 LVDS1 RXD <= b i t l v d s ;
44 end
45
46 i n i t i a l begin
47 // I n i t i a l i z e v a r i a b l e s
48 c l k 100 = 0 ;
49 LVDS1 RXD = 1 ;
50 LVDS2 RXD = 0 ;
51 c l k l v d s = 0 ;
52 b i t l v d s = 1 ;
53
54 // Generate r e s e t s i g n a l
55 r e s e t n = 1 ; #CLK
56 r e s e t n = 0 ; #(20∗CLK)
57 r e s e t n = 1 ;
58
59 // Wait a number o f c l o c k c y c l e s b e f o r e sending a packe t
60 #(120∗CLK)
61
62 sendPacket (0) ; #(40∗CLK LVDS) // Write 0x1707 to 0x28
63 sendPacket (1) ; #(40∗CLK LVDS) // Write 0x1707 to 0x68
64
65 sendPacket (2) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x20
66 sendPacket (3) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x21
67 sendPacket (4) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x22
68 sendPacket (5) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x23
69 sendPacket (6) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x24
70 sendPacket (7) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x25
71
72 sendPacket (8) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x60
73 sendPacket (9) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x61
74 sendPacket (1 0) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x62
75 sendPacket (1 1) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x63
76 sendPacket (1 2) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x64
77 sendPacket (1 3) ; #(40∗CLK LVDS) // Write 0 x f f f f to 0x65
78
79 sendPacket (1 4) ; // Send BurstWrite packe t
80 end
81
82 task sendPacket (input integer f i l e num) ;
83 reg [3 1 9 : 0] f i l ename ;
84 reg [1 7 : 0] word ;
85 integer i ;
86 integer i n f i l e ;
87
88 begin
89 // I n i t i a l i z e v a r i a b l e s
90 word = 18 ’ h20000 ;
91 i n f i l e = 0 ;
92
93 // Generate f i l ename

64

94 $sformat (f i l ename , ” packet%0d . bin ” , f i l e num) ;
95
96 // Open LVDS packe t f i l e
97 i n f i l e = $fopen (f i l ename , ” rb”) ;
98 i f (i n f i l e == 0) begin
99 $display (”Unable to open packet f i l e ”) ;

100 $finish ;
101 end
102
103 // I n i t i a l i z e word r e g i s t e r
104 word [8 : 1] = $ f g e t c (i n f i l e) ;
105 word [1 6 : 9] = $ f g e t c (i n f i l e) ;
106
107 // Read data from packe t f i l e
108 while (! $ f e o f (i n f i l e)) begin
109 for (i = 0 ; i < 18 ; i = i + 1) @(posedge c l k l v d s) begin
110 // Transmit one b i t
111 b i t l v d s = word [i] ;
112 end
113
114 // Read two by t e s from the packe t f i l e
115 word [8 : 1] = $ f g e t c (i n f i l e) ;
116 word [1 6 : 9] = $ f g e t c (i n f i l e) ;
117 end
118
119 // Close LVDS packe t f i l e
120 $fclose (i n f i l e) ;
121 end
122 endtask
123 endmodule

F.2 Passivator

1 ‘timescale 1ns / 1ps
2
3 module pa s s i v a t o r (
4 input c lk 0 ,
5 input c lk 1 ,
6 input R 0 ,
7 input R 1 ,
8 output reg A 0 ,
9 output reg A 1) ;

10
11 // Assignments
12 assign A 01 = A 0 | A 1 ;
13
14 // Reg i s t e r s
15 reg t ;
16
17 i n i t i a l begin
18 // I n i t i a l i z e r e g i s t e r s
19 A 0 <= 0 ;
20 A 1 <= 0 ;
21 t <= 0 ;

65

22 end
23
24 always @(negedge A 01) begin
25 // Update t o g g l e r e g i s t e r
26 t <= ˜ t ;
27 end
28
29 // Generate acknowledge f o r c l o c k 1
30 always @(posedge c l k 1) begin
31 i f (A 1) begin
32 A 1 <= 0 ;
33 end
34 else begin
35 i f (R 0 && R 1 && ! t)
36 // Output acknowledge
37 A 1 <= 1 ;
38 else
39 A 1 <= 0 ;
40 end
41 end
42
43 // Generate acknowledge f o r c l o c k 0
44 always @(posedge c l k 0) begin
45 i f (A 0) begin
46 A 0 <= 0 ;
47 end
48 else begin
49 i f (t)
50 // Output acknowledge
51 A 0 <= 1 ;
52 else
53 A 0 <= 0 ;
54 end
55 end
56 endmodule

F.3 Recursive PWM

1 ‘timescale 1ns / 1ps
2
3 module pwm rec #(
4 parameter PWM BITS = 11) (
5 input c lk ,
6 input [PWM BITS−1:0] setp ,
7 output pwm) ;
8
9 // Wires

10 wire c l k i [PWM BITS−1 : 0] ;
11 wire pwm i [PWM BITS−1 : 0] ;
12
13 // Assignments
14 assign pwm = pwm i [PWM BITS−1] ;
15
16 // Generate PWM b i t modules

66

17 generate
18 pwm 0 m pwm 0 (clk , c l k i [0] , pwm i [0] , s e tp [0]) ;
19
20 genvar i ;
21 for (i = 0 ; i < (PWM BITS−1); i = i + 1) begin : m pwm i
22 pwm i m pwm i (c l k i [i] , c l k i [i +1] , pwm i [i] , pwm i [i +1] , s e tp [i +1]) ;
23 end
24 endgenerate
25 endmodule
26
27 module pwm 0(
28 input c l k i n ,
29 output c lk out ,
30 output pwm out ,
31 input s e t p b i t) ;
32
33 // Assignments
34 assign pwm out = (c l k ou t & s e t p b i t) & (c l k ou t | s e t p b i t) ;
35 assign c l k ou t = c l k i n ;
36 endmodule
37
38 module pwm i (
39 input c l k i n ,
40 output reg c lk out ,
41 input pwm in ,
42 output pwm out ,
43 input s e t p b i t) ;
44
45 // Assignments
46 assign pwm out = ((c l k ou t & s e t p b i t) | pwm in) & (c l k ou t | s e t p b i t) ;
47
48 // Divide input c l o c k
49 always @(posedge c l k i n) begin
50 c l k ou t <= ˜ c l k ou t ;
51 end
52
53 i n i t i a l begin
54 // I n i t i a l i z e c l o c k r e g i s t e r
55 c l k ou t <= 0 ;
56 end
57 endmodule

F.4 Recursive counter

1 ‘timescale 1ns / 1ps
2
3 module count #(
4 parameter NUM BITS = 11) (
5 input c lk ,
6 output [NUM BITS−1:0] n) ;
7
8 // Wires
9 wire b i t i [NUM BITS−1 : 0] ;

10

67

11 // Assignments
12 assign b i t i [0] = c lk ;
13
14 // Generate counter b i t modules
15 generate
16 genvar i ;
17 for (i = 0 ; i < (NUM BITS−1); i = i + 1) begin : m count i
18 coun t i m count i (b i t i [i] , b i t i [i +1]) ;
19 end
20 endgenerate
21
22 // Generate b i t ass ignments
23 generate
24 genvar j ;
25 for (j = 0 ; j < NUM BITS; j = j + 1) begin : m b i t j
26 assign n [j] = ˜ b i t i [j] ;
27 end
28 endgenerate
29 endmodule
30
31 module coun t i (
32 input c l k i n ,
33 output reg c l k ou t) ;
34
35 // Divide input c l o c k
36 always @(posedge c l k i n) begin
37 c l k ou t <= ˜ c l k ou t ;
38 end
39
40 i n i t i a l begin
41 // I n i t i a l i z e c l o c k r e g i s t e r
42 c l k ou t <= 0 ;
43 end
44 endmodule

F.5 Minimal configuration

1 ‘timescale 1ns / 1ps
2
3 module main (
4 output [3 : 0] l ed n) ;
5
6 assign l ed n = 4 ’hA;
7 endmodule

68

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1. Introduction
	Adaptive mirror system
	Actuator controllers
	Pulse-width modulation
	H-bridge
	PWM resolution
	Problem description

	2. XUP implementation
	Original actuator controllers
	XUP development board
	Custom electronics
	Migrating controller software
	Testing the development board

	3. Power usage
	Power usage in FPGAs
	Original actuator controllers
	XUP development board
	Simulation
	Conclusion

	4. Design
	Power reduction techniques
	Asynchronous master
	Asynchronous slave
	Recursive PWM

	5. Implementation
	Asynchronous master
	Asynchronous slave
	Asynchronous actuator controller
	Recursive PWM

	6. Results
	XUP development board
	Simulation

	7. Conclusion
	Power reduction
	Future work

	Bibliography
	Actuator controller requirements
	Input
	Output
	Latency
	Electromechanical actuator model

	Heat dissipation
	Requirements
	Conclusion

	Schematics for custom electronics
	Power measurement method
	Haste introduction
	Code listing
	Actuator controller test bench
	Passivator
	Recursive PWM
	Recursive counter
	Minimal configuration

