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Abstract 

This paper presents a study on inference in a Fuzzy Logic Controller (FLC). Inference is made up of 
interpretation, implication, combination and defuzzification. These last two steps can be performed in two 
sequences. An explanation, through approximate reasoning, on how to implement other than the welì- 
known Mamdani and Larsen implications is given. (Dis)advantages of several combinations of implication, 
defuzzification method and sequence are discussed. Differences between FLC’s having either crisp (exact) 
values or fuzzy sets as nile consequents are studied. To verify this a rotation-translation robot is simulated. 

1 Introduction 
Fuzzy Control has proved to be a useful1 solution to control problems that involve processes too complex to 
describe in mathematical models or that are strongly non-linear. Basically, a Fuzzy Logic Controller (FLC; the 
shorthand FKBC, Fuzzy Knowledge Based Controller, is also in use) provides an algorithm which uses expert 
knowledge to calculate the control action to be taken. The expert knowledge represents the nature of human 
thinking and is implemented as rules of the form IF process state THEN control action. 

There is no general procedure for the design of a FLC, but a basic structure for the FLC exists. This 
structure consists of four components [Driankov et al. 93, Lee 901: 

fuzzification interface: Fuzzifies crisp (exact) input values (and optionally scales them) into fuzzy sets. 
knowledge base: Provides the necessary information for the other three components. Contains a database 

with definitions of the rnembershipfunctions, physical domains and scaling factors for the inputs and 
outputs of the FLC. It also contains the rulebase. 

inference engine: Infers the controller output. It covers interpretation, implication and combination. 
defuzzification interface: Defuzzifies fuzzy sets (and optionally scales them) into crisp values (control actions). 

Many choices have to be made when developing a FLC. The choice of implication and defuzzification 
method are subject of this study. Most FLC’s employ the well-known Mamdani or Larsen (product) implication 
and a defuzzification method that requires low computational effort. Many researchers have studied inference 
by means of implications [Tilli 92, Lee 90, Bandler & Kohout 80, Baldwin 801. This research concentrates on 
approximate reasoning (fuzzy reasoning) with implications, e.g. research on how well implications fullfill several 
(intuitive) demands in case of fuzzy reasoning according to the Generalized Modus Ponens/Tollens or the 
Compositional Rule of Inference. It is difficult to 
‘translate’ the conclusions of that research to usefull and understandable information to  help choosing an 
appropriate implication and defuzzification method for the FLC. 

In this article we study, in a practical way, the effects of different implications and defuzzification methods 
on a FLC. In section 2 some terminology and the necessary steps to perform inference in a FLC are given. 
It is stated that combination and defuzzification can be performed in two sequences. The choice of sequence 
determines the type of defuzzification method to be used (section 4). The choice of implication determines the 
operation with which combination must be performed. Sections 3 and 4 more deeply discuss implication and 
defuzzification. Section 5 discusses the use of Íuzzy sets as rule consequents. A FLC having crisp value as rule 

However, most FLC’s employ much simpler inference. 
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consequents is compared to a FLC having fuzzy sets as rule consequents. Finally, in section 6, simulations with 
a rotation-translation robot are presented to verify the observations we made in the previous sections. The FLC 
for the robot is also compared to a Computed Torque - PD controller. 

2 Inference 
i?. i terminology 

First we present some terminology that we use in this article. The rule base of a Fuzzy Logic Controller consists 
of fuzzy IF.. .THEN rules. In a FLC as proposed by Mamdani these rules have the form: 

IF process state THEN control action 
where ‘process state’ and ‘control action’ are fuzzy propositions. For instance, an (atomic) proposition is ‘error 
has the value of Negative Big’ and is denoted as ‘e is NB’. Here ‘e’ is a linguistic variable and ‘NB’ a linguistic 
value representing the fuzzy set (membershipfunction) ‘Negative Big’. A term set is a set of linguistic values that 
the iinguistic variable can take. In a FLC this term set usually is something like {NB,NM,NS,ZO,PS,PM,PB}, 
in which the capitals denote ‘Negative, Positive, Zero, Small, Medium and Big’. A rule for a SISO system 
(Single Input, Single Output) is e.g. IF e is NS THEN u is PM. The propositions ‘e is NS’ and the ‘u is PM’ are 
called the rule antecedent and the rule consequent respectively. The controller input, e (errorsignal), is defined 
on domain E .  The controller output, u, is defined on U. The meaning of a fuzzy IF.. . T H E N  rule is represented 
by a fuzzy relatior. (section 3). For MIMO systems (Multiple Inputs, Multiple Outputs) compound propositions 
are used to form rules like IF (el is NS AND e2 is Zo) OR e3 is Zo THEN u1 is PM AND u2 is ZO. The rule base 
consists of a set of such rules. 

2.2 Type of Inference 

There are two approaches in performing inference in a FLC. They are mentioned here briefly because of 
completeness. For more information see [Driankov et al. 93, Lee 901’. 

composition based inference: All fuzzy relations describing the meaning of the individual rules are combined 
into one fuzzy relation. Composition2 of this relation with fuzzified crisp input deliveres the overall output 
fuzzy set. In this way a lookup table representing the FLC (without the defuzzification step) is constructed. 
For each combination of crisp inputs an output fuzzy set can be looked up (composed). This lookup table 
will become very large in case of large MIMO systems with many quantizations levels, which may cause 
memory problems at  implementation. An advantage of this type of inference is the low computational 
effort needed after the construction of the fuzzy relation. A disadvantage is the loss of insight as to  what 
happens in the FLC and the fact that some useful1 defuzzification methods (section 4) are no longer 
applicable. 

individual rule based inference: In this approach an output fuzzy set is determined for each individual rule. 
In section 2.5 we explain that there are two ways to handle these fuzzy sets in finding a crisp output value. 
An advantage of this approach is that it is easier to interpret because it more closely resembles the nature 
of human thinking. 

In this article we will use the individual rule based inference, because it is used in most FLC’s. 

2.3 Interpretation 

Interpretation is the determination of the truthvalue of the proposition in the antecedent part of the IF. . .THEN 
rule. The truthvalue, ,u(e), of proposition ‘ e  is NS’ is the degree to which e belongs to membershipfunction 
‘Negative Small’. A rule is active when this truthvalue is greater than zero. We will use, as many others do, the 
minimum, maximum and one minus operations to represent the AND, OR and N O T  connectives in compound 
propositions respectively, but in fact any t-norm (AND) or s-norm (OR, appendix A) can be used. The logic 
operations minimum and maximum are examples oft-  and s-norms respectively. 

We can determine truthvalues using either discrete (lookup table) or continuous (functional description) 
domains. In case of discrete domains, the number of quantizations has an essential influence on the behaviour of 
the controller [Lee 901. Therefore it seems best to use a functional description for the calculation of truthvalues. 

‘These two approaches only differ with certain implications, e.g. Gödel. In case of Mamdani implication there is no difference. 
2This operation is explained in section 3. 
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Figure 1: Rule firing using Mamdani (left) and Larsen (right) impiication. 

2.4 h p i i c a t i o n  

In a FLC, an implication (implication function, operator) is used to calculate the meaning of the rules. The 
fuzzy set representing the rule consequent is ‘modified’ according to  the definition of the implication and the 
truthvalue of the rule antecedent. This process is often called rule firing. The next section deals with this 
subject in greater detail. 

2.5 Combination f3 Defuezification 

The combination and defuzzification steps can be performed in two sequences. One can either first defuzzify and 
then combine (DFZ+COMB) or first combine and then defuzzify (COMB-SDFZ) the modified consequents of the 
individual rules. In the sequence COMB-+DFZ, all modified fuzzy sets are combined into one overall fuzzy set 
which is then defuzzified in a single defuzzification step. In the sequence DFZJCOMB, the modified fuzzy sets 
are first defuzzified, after which a weighted means of these local defuzzification values is calculated. Note that 
this not the same as the difference between composition and individual rule based inference, but an extension 
of the individual rule based inference. In composition based inference, the combination of rules has already 
been performed, leaving only defuzzification to be dealt with. In section 3.4 we return to the subject of rule 
combination. 

In a rule, the relation between the truthvalues of the rule antecedent, p ( e ) ,  and the rule consequent, p(u), is 
given by means of a fuzzy implication. In this section we start with the usual Mamdani and Larsen implications. 
We then look at multi-valued logic to see whether other implications can be used in Fuzzy Control. 

Consider two active rules. The truthvalues of the rule antecedents are e.g. p1 = 0.4 and pz = 0.7, and 
the (crisp) rule consequents e.g. u1 = 3 and u2 = 5 .  Obviously the natural way to determine the output is: 
(plu1 + pzuz)/(pi  + p ~ )  = (0.4 * 3 + 0.7 >E 5)/(0.4+ 0.7) = 4.27. In this example the implication is performed 
by weighing the rule consequent with the truthvalue of the rule antecendent. 

However, most FLC’s employ fuzzy rule consequents, i.e. the rule consequent is a fuzzy set. Then the 
proper method to perform implication is not obvious. Intuitively one would be inclined to either limit or weigh 
the consequent with the antecedent. Limiting the consequent to p(e )  leads to the well-known implication as 
proposed by Mamdani, while weighing the consequent with p(e )  leads to Larsen implication, which are the most 
used implications in fuzzy control. 

In case of Mamdani implication, the membershipdegree of the fuzzy set representing the rule consequent 
is limited to the truthvalue of the rule antecedent, thus producing the familiar ‘clipped’ shape of the fuzzy 
set shown on the left in figure 1. In case of Larsen implication each member of the fuzzy set is weighed with 
(multiplied by) p ( e ) ,  giving the result shown on the right in figure 1. The latter is often called scaled inference 
in literature. The above described process is called rule firing and similarly the truthvalue of the rule antecedent 
is called the firing strength of the rule. 

So far we only paid attention to crisp inputs, so the rule antecedent has a single truthvalue. However, in some 
applications one wants to extend this to fuzzy inputs. Consider e.g. measurement errors. We can state that 
measurement errors, in a way, ‘fuzzify the input’ and can be represented by fuzzy sets. This leaves us with the 
problem of firing a rule with a fuzzy set as input. Literature on fuzzy control [Driankov et al. 93, Lee 901 reverts 
to multi-valued logic when dealing with this subject. It is stressed that one must clearly make the distinction 
between definitions of implications and reasoning with implications (approximate or fuzzy reasoning). 
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classical Mamdani 

P ( P )  P(4)  P(P-+d P(P+d 
O O 1 O 
1 O O O 
O 1 1 O 
1 1 1 1 

0.2 0.6 - 0.2 
0.6 0.2 - 0.2 

Gödel 

Larsen Gödel 

O 1 
O O 
O 1 
1 1 

0.12 1 
0.12 0.2 

P(P+d P(P--+d 

3.1 Definitions of Implications 

We first look at some definitions of fuzzy implications. An implication, denoted by p + q ,  defines a relation 
between two values ( p p  and p n ) .  The definitions of the Mamdani and Larsen implications, used in figure 1 are 
given in table 1. Both the Mamdani and Larsen implications are based on the fuzzy intersection p * q, where 
‘*’ denotes the t-norm ‘minimum’ in case of Mamdani and ‘algebraic product’ in case of Larsen implication. 
Although both implications seem right intuitively, one should note the following. Table 2 shows truthvalues of 
the propositions p and q in the first two columns. Subsequent columns show the truthvalues in case of classical, 
Mamdani, Larsen and Gödel implication respectively. Obviously the Mamdani and Larsen implications do not 
uphold classical logic. This of course, seems somewhat strange and invites us to look at  other implications. 
Literature provides us with many definitions of fuzzy implications which are often derived from implications in 
multi-valued logic. In their turn implications in multi-valued logic are derived from equivalences of the classical 
(binary) implication with logic operations or are based on certain requirements. As shown in table 1, Lukasiewicz 
and Kleene-Dienes implications are based on the equivalence p + q z TpVq, but differ in Lukasiewicz taking the 
bounded sum (Appendix A) to represent V,  whereas Kleene-Dienes takes the maximum. Gödel, Sharp-Rescher 
and Gaines-Goguen implications are based on the requirement p p  * ( p p  + pq)  5 p a .  Zadeh’s and the stochastic 
implication are based on p + q z -p V ( p  A q ) .  

Figure 14 in appendix C,  iIlustrates the big differences between these implications. Notice that the mis- 
matching of Mamdani and Larsen implication with classical logic is visible in the corner-points of the cubes. 
Table 1 offers just a small selection of known fuzzy implications. The study in this paper is limited to the first 
five implications in table 1. 
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3.2 Approximate Reasoning 

In classical logic the Modus Ponens (MP) is a well known inference rule (see the table below for the inference 
scheme). With this MP, the consequent is either utterly or not at  all true if the premise is true. However, 
human thinking is more flexible. Based on a premise that is partly true, we can still draw a conclusion. The 
MP is extended to the Generalized Modus Ponens (GMP), to reflect this way of reasoning. In this GMP the 
premise and the consequent can be ‘approximately true’. For instance, consider the implication ‘if the car i s  big 
then it is heavy’. The MP can only take the proposition ‘the car is big’ and its only conclusion then is, that the 
car is heavy. The GMP however, can take propositions like ‘the car is very big’ and may then conclude that 
‘the car is very heavy’. 

Modus Ponens Generalized Modus Ponens 
premise: P approximately p 
implication: P + 9  P + 9  
consequent: 9 approximately p 

The inference scheme of the GMP is imp!emented in a FLC via operation composition3. The rules of the FLC 
represent the implication in GMP. The meaning of the rule is represented by a fuzzy relation R. This relation 
comprises all characteristics of the involving fuzzy sets, i.e. all the information about the domain, shape and 
placement (support) of the fuzzy sets is stored in this relation. Our goal is to determine the outcome Y is B‘ 
of the rule IF X is A THEN Y is B ,  given the rule antecendent X is A’. The meaning of the original rule is 
stored in relation R. The accents (as in A’) indicate that variations in these propositions are allowed (e.g. X is 
very A ) .  

e the operation composition, we must first explain two other operations, viz. cylindrical extension 
(Ce) and projection (proj). Consider the fuzzy sets A on X and B on Y. A = [.3/21 . 6 / ~ 2  1/z3 . 6 / ~ 4  .3/x5] and 
B = [O/yl .3/y2 .6/y3 i/y4 .6/y5 .3/ys O/y7]. Then the construction of relation R proceeds as follows (Mamdani 
implication) : 

.6 .6 I .6 .6 .6 .6 .6 

.3 .3 I .3 .3 .3 .3 .3 

A and B are extended to the right dimensions. The corresponding elements of ce(A) and ce(B) determine the 
value of the corresponding element of relation RI according to the implication chosen. So in the above example 
(Mamdani implication) the minimum of ce(A) and ce(B) is taken element-wise. Projection is more or less the 
opposite of cylindrical extension. I t  projects a fuzzy relation onto one of its domains by taking the maximum4 
of each row or column, thus producing a fuzzy set. So far we have only defined relation R representing the 
meaning of the rule. Now we can start reasoning with R and fuzzy propositions like X is A‘. For that purpose 
we have operation cornposition (o), which is defined as: 

B’ = A’ o R = proj(ce(A’) A R) 

This means that the cylindrical extension of fuzzy set A’ is ‘connected’ to relation R via the logic AND operation 
(A), after which the resulting relation must be projected onto the domain of B‘ to obtain the desired fuzzy set 
B’. For instance, let A’ = [.2/x1 .4/z2 3 / 2 3  .7/24 .5/x5]. Then B’ is calculated as follows: 

31n literature the ‘Compositional Rule of Inference’ (CroI) is often presented as a special case of the GMP. Composition is then 
the implementation of this CRoI. One should not confuse operation composition with the type of inference called ‘composition 
based inference’. 

’In fact any 8-norms can be used when the fuzzy sets are finite. In case of infinite fuzzy sets the supremum (sup) must be taken. 
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ce(A’) min(ce(A’), R) B‘ = max(min(ce(A’), R)) 
I O I .3 I .6 I .8 I .6 I .3 I O 1 

In the same way we can deal with rneasiiïemeni eiioïs Sy using a. fuzzy set A’ thut represents this ermr. The 
operations ‘proj’ and ‘A’ can, again, be chosen to be any s- and t-norm respectively. These choices determine 
the name of the inference method commonly used in literature; cf. ‘sup-star’ (supremum-t-norm) inference in 
[Lee 903. If A is performed with minimum and psoj with maximum, the inference method is the well-known 
‘max-min inference’. We used this max-min inference in the above example. One should realize that this is not 
the same as combining rules with the maximum operator in case of Mamdani (min) implication, although many 
authors do mean this when they state that ‘max-min’ inference is used. 

Thus composition provides a means to ‘fire’ a rule when the input is represented by a fuzzy set. If the 
input is crisp, we can still use this composition for we can fuzzify the crisp.value e into a fuzzy singleton5. The 
cylindrical extension of a singleton contains zeros only, except for one row (column) made up of ones. Hence 
composition using singletons (rule firing) is equivalent to selecting one TOW (column) from relation R. This 
means that in this case all sup-star inference methods yield to identical results. In other words: In FLC’s in 
which truthvalues are determined by crisp state errors, different sup-star inference methods have no effect on 
the output. 

3.3 Implications in a F L C  

By means of this composition, we can incorporate any implication into a FLC, i.e. we can fire a rule with any 
implication. Figure 2 shows the results of a single rule fired under the Gödel, Lukasiewicz and Kleene-Dienes 
implications. Note that the results in figure 1 are obtained through composition of a singleton and R, when 
the Mamdani and Larsen implications are used to contruct relation R. Figures 1 and 2 clearly show the big 
differences between these implications. 

Figure 2: Output (thick lines) of a single rule îìreà using Gödel, Lukasiewicz and Kleene-Dienes implications. 

Figure 3: Output (thick lines) of two rules fìred using Gödel, Lukasiewicz and Mamdm’ implications and combined with 
the minimum or maximum operation (COMB+DFZ sequence). 

’A fuzzy singleton is a fuzzy set with membershipdegree one at e and zeros elsewhere. 
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DFZ+COMB 
Local Center of Gravity (LCoG) 
Local Mean of Maxima (LMoM) 
Local First of Maxima (LFoM) 

9.4 Combination of Rules 

In order to determine the overall controller output, the outputs of all the rules in the rulebase must be combined. 

COMB+DFZ: In this sequence the modified fuzzy sets are combined into one overall fuzzy set. For this purpose 
a suited operator is needed. The operator in question, the ‘ALSO connective’, depends on the choice 
of implication. In case of implications based on p *  q ,  every non-active rule yields to a fuzzy set that 
has membershipdegree zero throughout the domain. Therefore the ALSO connective must be a s-norm. 
In case of implications upholding classical logic, every non-active rule yields to a fuzzy set that has 
membershipdegree one throughout the domain. Therefore the ALSO connective must be a t-norm. Usually 
the maximum and the mizimum are take:: rpupectively. Figùre 3 &v-,ys the output of two active ruies 
after combination. The rules are combined with the maximum or the minimum operator. 

COMB+DFZ 
Center of Gravity (COG) 
Mean of Maxima (MOM) 
First of Maxima (FOM) 

DFZ-COMB: This sequence has a different approach towards the combination of rules. Combination is per- 
formed by calculating a weighted mean of the local defuzzification values. The chosen defuzzification 
method determines the type of weighing factors that should be used, while the chosen implication deter- 
mines the value of these weighing factors. Common weighing factors are the height6 and the urea of the 
modified fuzzy sets. These weighing factors shoii!d he determine:! cfter the implication has been performed, 
based on the resulting fuzzy sets. Note that in case of implications based on p * q (Mamdani, Larsen), the 
weighing factors, based on the height.s of modified fuzzy sets, are equal to the firing strengths of the rules. 

The following observations on the defuzzification methods and the implications can be made. 

1. The (Local) Center of Gravity method requires more computational effort than the (Local) Mean of 
Maxima and the (Local) First of Maxima methods. On the other hand, computers and fuzzy chips are 
getting ever faster, so in future computational effort may be less restrictive than it is nowadays. 

2. In general, the Mean of Maxima and First of Maxima methods yield to dicontinuities in the controller 
output. Suppose two rules with (different) symmetrical, triangular fuzzy sets as consequents are active. If 
we use the Mamdani implication and Mean of Maxima defuzzification, then the crisp output is the center 
of one of the two fuzzy sets, depending on which rule has the highest firing strength. These discontinuities 
occur at undesired places and consequently are unwanted. They cause the controller output to  change 
step-wise, which results in large strain on the actuators and a ‘nervous’ dynamical behaviour of the FLC. 
More important, the step-wise change of output leads to oscillations in the control signal (section 6). 

As already 
mentioned, non-active rules (usually greater in number than the active ones) yield to fuzzy sets with 
membershipdegree one throughout the domain. So their weighing factors are either one (height) or equal 

3. Implications upholding classical logic are unsuited for use in the D F Z ~ C O M B  sequence. 

6The height of a fuzzy A on X is equal to its highest membershipdegree. hgt(A) = max(pA(z)),z E X .  
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to the width of the domain (area). As a consequence, their defuzzification value are located at the center 
of the domain in case of Local Center of Gravity and Local Mean of Maxima. Thus, non-active rules drive 
the controller output towards the center of the domain, which means that the FLC will not (OE hardly) 
take any control action. In case of Local First of Maxima, the output is driven towards the left side of 
the domain. 

4. The implications based on the requirement p p  ( p p  + pq) 5 pq always yield to defuzzification values 
that lie in the overlap of the consequents of the active rules (see figure 3, Gödel implication). It makes 
them very ‘cautious’ decision makers in those cases where the support’ of the overlap is small compared 
to the support of the consequents of the active rules. Furthermore, this means that if the consequents of 
two active rules have an empty intersection, the fuzzy set after combination has membershipdegree zero 

for use in FLC’s in which this can occur. We can show that it is likely to occur in case of rulebases as 
in figure 8 (matrix structure). Each ‘2x2 sub-matrix’ that has entries of which any combination of the 
involving fuzzy sets has an empty intersection, induces such an occurrence. For term-sets as in figure 7 
this is the case when a 2x2 sub-matrix contains e.g. the linguistic values ‘NS’ and ‘PS’. 

5. The implications based on p + q f -p  V q and p + q E -p V ( p  A q )  yield to (after combination) a fuzzy 
set that has a minimum membershipdegree of one minus the highest truthvalue of the rule antecedents 
(see figure 3)8. Thus the fuzzy set has a constant membershipdegree at the greater part of the domain 
and only a small ‘bump’ located within the supports of the consequents of the active rules. In case of 
the Center of Gravity method, the location of the ‘bump’ has little influence on the defuzzification value, 
which will always be driven towards the center of the domain. So the FLC will take very little control 
action. A defuzzification method like First of Maxima overcomes this problem, but generally leads to 
unwanted discontinuities. 

6. By ‘clipping’ the rule consequent, the Mamdani implication does not preserve the shape of the original 
fuzzy set. The Larsen implication, on the contrary, preserves the original shape and so has the advantage 
of maintaining a constant defuzzification value in case of a single active rule (figure 4). In case of only 
one active rule, we want the controller output to be the same for every value of the firing strength of that 
rule. 

throi?ghoilt the dnmain. The con,trd!er F&piit, is the3 undefi,ed. This rilakrs thme imp!ications znfit 

COG MOM FOM 

Figure 4: Difference in defuzzifìcation value for Mamdani (o) and Larsen (e) implication when firing a singie rule. The 
height of the dots represents the fiing strenght. 

5 Crisp vs Fuzzy Rule Consequents 
In this section we study the usefulness of fuzzy sets as rule consequents. For this purpose, we compare a FLC 
with crisp rule consequents (ccFLC) to a FLC with fuzzy sets as rule consequents (fcFLC). The advantage of the 
ccFLC is its simplicity. The implication and defuzzification steps are reduced to the calculation of a weighted 
mean. The ‘fuzziness’ of the controler is retained by the fuzzification of the rule antecedents. Reasons for using 
fuzzy sets as rule consequents are in the first place that the importance of the seperate rules can be adjusted 
by changing the shape and/or support of the fuzzy setsg. Secondly extra design parameters come available 
to tune a FLC with e.g. a neural net [Berenji & Khedkar 923. We try to determine for which combinations of 
implication, defuzzification method and shape of fuzzy sets will the output of a fcFLC will differ significantly 
from the output of a ccFLC. We have two FLC’s with rules of the form: 

ccFLC: IF.. .THEN Ui = ai fcFLC: IF.. . T H E N  Ui = Li 
Where ai E IR and Li a linguistic value representing the rule consequent. The output of the ccFLC is calculated 
as the weighted mean of the crisp consequents ai.  The firing strengths of the rules (pi) are used as weighing 

7The support of a fuzzy set A,  defined on domain X, is a subset of A containing the elements with membershipdegree greater 

‘Other t-norms for combination of rules yield to a lower ‘minimum membershipdegree’. 
than zero. S(A) = {z E X  I /LA(”)  > O} 

a FLC with crisp output a similar effect can be obtained by assigning a weighing factor to each rule. 
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DFZ+COMB LCoG LMoM LFoM 
Mamdani ao X ++ 
Larsen X X X 

factors: u = (E; p i u i ) / ( C ;  p i ) .  This ccFLC can be seen as a special case of a Sugeno FLC. The rule consequent 
then is a function of the system inputs. A typical rule is e.g. IF e1 is PS AND e2 is PM THEN u = uiel + a2e2. 
If the rule consequent in the Sugeno FLC is a constant value, the ccFLC is obtained. The output of the 
fcFLC depends on the implication, defuzzification method and sequence. The Centers of Gravity of the fuzzy 
consequents are taken as crisp consequents for the ccFLC. This ccFLC is equivalent to method Fuzzy Mean 
used by [Jager et al. 921. 

We studied difference in controller output in case of one and in case of two active rules. We used symmetrical 
and a-symmetrical sets as fuzzy consequents. Figure 5 shows the consequents of two active rules. The firing 
strength of rule one, p l ( e ) ,  is set at a constant value. The firing strength of rule two, p 2 ( e ) ,  takes values 
from [O, i]. The projection of the dots on the x-axis is the output after defuzzification. The height of the dots 
represents p2(e) .  Table 4 is based on the results of figure 5 and a similar figure in case of symmetrical sets as 
well as figures like figure 4. Since the Gödel, Lukasiewicz and Kleene-Dienes implications are not suited for use 
in sequence DFZ-SCOMB, they do not appear in figure 5 and table 4 for that sequence. 

DFZ-GOMB LCoG LMoM LFoM 
Mamdani + o ++ 
Larsen + + + 

I COMB-~DFZ I COG I MOM I FOM 1 COMB+DFZ 1 COG I MOM f FOM I 

Gödel + O + Gödel ++ + + 
Lukasiewicz + O + Lukasiewicz ++ + + 

Table 4: Differences between the fcFLC and the ccFLC. Based on results as in figure 5. 
little difference, o: little difference, +: difference, ++: great difference, d: discontinuities 

x: n o  difference, 00: very 

fcFLC: first defuu then combine 

m 
2 

L m 
-I 

LCoG LMoM LFoM 

fcFLC: first combine then defuu 

Figure 5: ControlIer output of the CCFLC and the fcFLC in case of two active rules. 
(fuzzy set on the left) and piz(e) E [O, i]. The height of the dots represents pZ(e). 
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The following conclusions can be made: 

1. In the sequence COMB-+DFZ, one should apply a Center of Gravity like defuzzification method. We 
draw this conclusion because of the expected discontinuities caused by the Mean of Maxima and First of 
Maxima methods. For the Gödel and Lukasiewicz implications, not marked with a ’d’ in table 4, we can 
state the following. The Lukasiewicz implication yields to discontinuities when three or more rules with 
different rule consequents are active. The Gödel implication can result in undefined controller output (see 
section 4). 

2. The previous conclusion and observations 5 and 4 in section 4, lead to the conclusion that only implications 
based on p * q, used in combination with a Center of Gravity like defuzzification method, are well-suited 
for use in the sequence COMB+DFZ. 

3. When we look at table 4, we see that, in case of symmetrical rule consequents, the fcFLC’s that are 
well-suited for fuzzy control, are (almost) identical to the ccFLC. An exception is Mamdani implication 
in combination with First of Maxima defuzzification. So we recommend that one can better use crisp rule 
consequents when one does not plan to tune the FLC by changing the shape and placement of the fuzzy 
consequents. 
Note that the fcFLC’s marked with ‘ x ’  in table 4 are only equal to the ccFLC when all fuzzy consequents 
are symmetrical. In most FLC’s the fuzzy sets ‘NB’ and ‘PB’, are non-symmetrical, but this will not 
cause much difference in the output. The Larsen implication in combination with Local Center of Gravity 
defuzzification is only equal to the ccFLC if the symmetrical fuzzy conseqeunts are of the same size. 

6 Simulations of a Rotation-Translation Robot 

To verify some of the observations discussed in sections 4 and 5, 
simulations are performed using a model of a rotation-translation 
robot (RT-robot) as in figure 6. An arm, with length 1 and mass 
rn, connects an effector to, and keeps it at distance r from the center. 
The effector has mass mL, the center of the robot has inertia J. Force 
F directly changes r while torque T changes the angle ‘p of the robot 
arm. The robot moves in a horizontal plane, so there is no influence 
of gravity. Our goal is to fix arm r at a desired length, while the RT- 
robot is spinning at  a constant speed. The arm speed P and the angle 
<p are of less interest. Equations describing the robot’s dynamics are 
as follows. 

F = P I T  - (PIT - p2)g2  Figure 6: The RT-robot model. 

T = (p3 - 2pzr + p1r2)+ +  PIT - p2)GT 

Where p i  = m + mL, p2 = 6ml and p3 = J + +mlz.  A state vector 2 is chosen as: g = [r <p P +IT. The 
errorsignal is defined as g = -d - 2, where -d is the desired state 2 d  = [Td  Ipd +d ( e d I T .  

6.1 Fuzzy Controller 

We use errorsignal g to build a rule base. A term set with membershipfunctions {NB,NS,ZO,PS,PB} is used. 
The rules are of the form: 

or the form 
Thus we obtain a PD-like FLC that uses e, and e+ to determine force F and eV and e, to determine torque T.  
The MIMO system is devided up into two MISO systems. However, these MISO systems interact because r and 
T influence ‘p and +. Figure 7 shows the mapping of the membershipfunctions in the term set on a normalized 
domain. This mapping is used for all input and output signals. The errorsignal g is scaled to fit this domain. 
Figure 8 shows the rule base we used to control the RT-robot. Both MISO systems have the same rule base. 
Note that these choices for the membershipfunctions and the rule base are not the only correct ones. There are 
many other possible rule bases and membershipfunctions to control the robot. 

IF e, is NS AND ep is PB THEN F is PS IF eP is NS AND e, is PB THEN T is PS 
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Figure 7: The term set on a normalized domain. 
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Figure 8: The rule base. 

6.2 

Since a (mathmatical) model of the RT-robot is available, we can compare the FLC with a model-based con- 
troller. A Con;piited Torque / PE controller (CTPDC) is chosen. Using the mathmatical model, the force 
and torque are calculated. P- and D-actions are added to correct parameter errors. Here is how the CTPDC 
calculates its outputs Fc and Tc. 

Computed Torque / P D  Controller 

Fc = P a r d - ( p a r - p b ) ~ 2 + P ~ e ,  +Dier 
Tc = (pe - 2par +par2)@d + 2(par - pa)@‘. + &elp + Dze, 

Parameter errors are ‘made’ by chosing parameters pa,  pa and p ,  unequal to p i ,  p:, and p 3  (max 15%). 

6.9 Simulation Results 

In each simulation we performed, the rule base, the scaling factors, the term set and the domain remain 
unchanged. The sequence, implication and defuzzification method are changed to cover all possible combinations 
mentioned in section 5 (table 4). To indicate a certain fcFLC, we will use names like ‘the sequence, implication, 
defuzzification method FLC’. The desired arm position is 0.6 m. The desired rotational velocity is 1 radss-’. 

Figure 9 affirms the observation that there is no difference between the ccFLC (-) and the D F Z ~ C O M B ,  
Larsen, Center of Gravity FLC ( e .  -) in case of a domain as shown in figure 7. In this figure the dotted line is 
hidden by the solid line. A sharp eye can see the dotted line appear in the graph in the lower left corner (force). 
This is due to the non-symmetry of the membershipfunctions ‘NB’ and ‘PB’. The figure also shows that the 
COMB+DFZ, Mamdani, Center of Gravity FLC (- -) has almost the same output as the ccFLC. 

Figure 10 illustrates the discontinuities in controller output in case of a COMB+DFZ, Mamdani, Mean of 
Maxima FLC. All other €cFLC’s that have a d-mark in table 4 show similar responses. Note that the control 
signal keeps oscillating (arm position) and that the applied force and torque show large steps. Figure 11 
illustrates the *inactiveness’ o€ the C O M B ~ D F Z ,  Xleene-Dienes, Center of Gravity FLC. The control of the arm 
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Figure 10: Simulation with the COMB+DFZ, Mamdani, 
Mem of M m h a  FLC. Discontinuities in the controller 
output result in oscillations in the control signd. 

Figure 11: Simulation with the COMB+DFZ, Kleene- 
Dienes, Center of Gravity FLC. This fcFLC takes very 
little control action. 

rotational velocity arm oosition 

0.5 I .5 2 

0.4 

1.5 
0.2 

O 0.5 

force moment 

Figure 12: Simulation with the Computed Torque / PD controller. 

position is very poor, because force F is hardly changed. Figure 12 shows the results of the RT-robot controlIed 
by the CTPDC. This CTPDC has better damped response for the arm position than the FLC, but the response 
 OS the rotational velocity is significantly worse. This is probably due to the fact that the FLC splits up the 
RT-robot system into two MIS0 systems, while the CTPDC treats it as one MIMO system. So the FLC is 
more focussed on controlling just T and + and therefore has good performeance there, but it looses performance 
on e.g. angle c p .  Not shown in the simulation figures is the fact that angle cp  very slowly approaches its desired 
value. That is why the rotational velocity still hasn’t entirely reached the desired value (i rad/s) after some 
seconds. The CTPDC however, has the right angle within the second but as a consequence looses performance 
on the rotational velocity. 

Conclusions and Recommendations 
o The main choice concerning inference in a FLC is the choice whether t o  use crisp or fuzzy rule consequents. 

In case of fuzzy consequents a sequence, implication and defuzzification method must be chosen. Minor 
choices involve the choices of t -  or s-norms to be used for interpretation and implementation of operation 
composition. In FLC’s using crisp errors as input, different choices o f t -  and s-norm for implementation 
of operation composition, i.e. the choice of inference method (e.g. max-min or max-dot), have no effect. 

o The use of fuzzy sets as rule consequents is, in most cases, redundant when these consequents are repre- 
sented by symmetrical fuzzy sets. A FLC with crisp rule consequents then has (nearly) identical output. 
Fuzzy consequents are useful for tuning purposes. 
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a In a first combine then defuzzify sequence, the Mean of Maxima and First of Maxima defuzzification 
methods generally produce undesired discontinuities and should therefore not be used in that sequence. 
This also implies that in this sequence a Center of Gravity like defuzzification method must be used. 

a Implications upholding classic logic can only be used in a first combine then defuzzàfy sequence. Combi- 
nation of rules must be performed with a t-norm, because every non-active rule yields to a modified fuzzy 
set that has membershipdegree one throughout the domain. 

a Implications based on the requirement p ( p )  ( p ( p )  -+ p(q)) 5 p(q) (e.g. Gödel) yield to undefined con- 
troller output when non-overlapping rule consequents are active. Since this is quite likely to occur, these 
implications are not suited €or use in a FEC. 

a The implications based on p -+ q E - ~ p  V q and p -+ q E - ~ p  V ( p  A q)  (e.g. Lukasiewicz and Kleene-Dienes) 
result in FLC’s that take very little control action and are therefore of little use in fuzzy control. 

a The preceding conclusions imply that in a first combine then defuzzify sequence only implications based 
on p * q (e.g. Mamdani and Larsen), in combination with only a Center of Gravity like defuzzification 
method, are suited for use in a FLC (see also [Lee 903, pg. 425). These implications are also the only ones 
suited for the first defuzzify then combine sequence. 

a Implications based on p * q (Mamdani and Larsen) have almost identical output in both sequences if 
Center of Gravity is used (figure 5). Combining all conclusions, we recommend the use of the first defuzz 
then combine sequence when building a FLC. An advantage is that implementation is easier. Also the 
Local Mean of Maxima and Local First of Maxima methods, which have less computational effort than 
the (Local) Center of Gravity, become available. 

a Only individual rule- based inference was studied. Observations and/or conclusions regarding implications 

a Differences between FLC’s having either crisp or fuzzy rule consequents should be studied more thoroughly. 
Tuning a FLC by modifying crisp output values and weighing factors assigned to rules instead of modifying 
shape and support of output fuzzy sets may be very usefull. At least it is simpler and offers a reduced set 
of tuning parameters. 

that uphold classic logic could be invalid in case of composition based inference. 
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t-norm 
min(a, b )  
a.b 
max(0, a + b - i) 

a, b = l  
b, a = i  
O ,  a < l , b < l  

A t- and s-norms 

name t-norm 
maximum max(a, b)  
algebraic sum 
bounded sum 

drastic sum 

a + b - a.b 
min( 1, a + b) 

U ,  b = O  
b, a = O  
1, a > O , b > O  

Trianguiar norms, t- and s-norms are used to represent the AND and OR operations respectively. A t-norm (*) 
denotes a class of binary functions that satisfies the following criteria: 

a * b = b * a  
( a  * b )  >~r c = a * (6  * c)  
a 5 c and b 5 d +  a *  b 5 c i d  
a * l = a  

An snorm (o) denotes a class of binary functions that satisfies the first three criteria of t-norms and: 

a o O = a  

Many t- and s-norms can and have been developed that meet these criteria. Table 5 lists some of the best 
known in fuzzy logic. 

~~ 

name 
minimum 
algebraic product 
bounded difference 

drastic product 

B Defuzziñcation Methods 
Here we give definitions of the defuzzification methods used in this 

article. (figure 13). The Center of Gravity method, sometimes called 
Center of Area method, is defined on domain X as (continuous, discrete): 

1 W X  

cy=, xi  * P A ( x i )  

cy=i P A ( S i )  
ZCoG = .fx 3 * P A  d x  

.fx P A  (z) dz 
ZCoG = 

Where n is the number of quantizations. 

membershipdegree of the fuzzy set. This maximal membership degree is 
called the height of a fuzzy set A on X and is defined a.do: 

XCoA 

The First of Maxima method calculates the first occurance of maximal XMoM 
13: Defuzzification methods 

hgt(A) = max(pA(z)), 

I F ~ M  = min(z E X I ~ A ( x )  = hgt(X)) 

z E X 
The First of Maxima and similarly the Last of Maxima can be expressed as: 

~ 

XL,M = max(z E X I p ~ ( z )  = hgt(X)) 
The Mean of Maxima method, sometimes called Middle of Maxima method, calculates the mean of all members 
of the fuzzy set that have maximal membershipdegree. Using the above equations: 

2 M o M  = (XFoM + X L o M ) / 2  

In the sequence COMB+DFZ, the defuzzification methods are applied directly to the combined fuzzy set. In 
the sequence DFZ-+COMB, the defuzzifications are applied locally, after which the local defuzzification values 
are combined by calculating a weighted means. 

Here I is the number of active rules. The weighing factors wj  are equal to the height of the modified rule 
consequents in case of First of Maxima and Mean of Maxima defuzzification. In case of Center of Gravity 
defuzzification, they are equal to the area of the modified rule consequents. 

'OFormally the sup (supremum) should be taken instead of the maximum and the inf ( injemum) instead of the minimum. 
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C Graphical Representation of Implications 

Mamdarù Larsen 

. ,  
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. ,  
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. .  
SharpRescher GainesIGcg w n  

Figure 14: Graphical representation of some implications 
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