EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Reviewing SWAP

Diederen, R.

Award date:
2007

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f3f59089-fd3a-4713-9aee-f6c273950580

Reviewing SWAP

By: Robin Diederen
Student at the technical university of Eindhoven, The Netherlands
Student 558931
robin DOT diederen AT gmx DOT net

Version 2.00
09-05-2007
Maastricht, The Netherlands

Introduction

Neubergher & Hughes is a softwarehouse for Linux based solutions, aiming at middle sized
companies. NLcom, the Dutch distributor and support center for Neubergher & Hughes
products, is where I was located. Besides their official role, NLcom has always been active
with the development of Neuberger & Hughes products. Both companies have been in this
market for quite some years (NLcom 8, Neuberger & Hughes 15) and have a vast amount of
(technical) knowledge on the production process of (Linux based) software.

During my graduation period I've worked together with both the CEOs and CTOs of both
Neubergher & Hughes and NLcom. These people introduced me to the open source
community. To this community I own quite some gratitude. Many opensource developers
seem to be very helpful and eager to explain techniques, even in little details. Without this
open community, doing what I did and writing this thesis would have been much harder.

Of course, the most important aspect of doing a graduation trajectory like this, is learning
and extending knowledge. And I must admit, I learned quite a bit from this project. Not just
technical (practical) knowledge, but I also extended my theoretical knowledge and I gained
insight in how theory and practice can be combined.

As this document contains information which may harm the Neubergher & Hughes
company, this document should only be accessible for Neubergher & Hughes, TU/e and
NLcom employees. If you happen to find this document elsewhere, please inform me (by
email).

page 2 of 101

Summary

Like many modern networked collaborative systems, Neuberger & Hughes' Exchange4Linux,
a groupware server for Linux, is implementing a SOAP interface. The goal is to open up the
Exchange4Linux server to a wide variety of new and existing (extensible) clients and
applications. By using SOAP, easy access should be possible.

For that reason, Neuberger & Hughes developed, for Exchange4Linux, an interface and
communication protocol called SWAP. To a large extent, SWAP has been generated from
existing software without any formal specification of its functionality. This report describes
the result of a “reverse engineering” research to describe and validate SWAP.

To judge the design and implementation of SWAP, a research was conducted. This research
was started from scratch and adapted to the needs of Neuberger & Hughes.

The reader of this document is supposed to have some knowledge about both the theoretical
and practical sides of formal modeling methods (mainly Petri nets), process algebras, basic
networking, webservices and databases. In order to make this report self-contained, some
explications of the techniques used have been added. Further information (including proofs),
can be acquired from the appendices and external sources, which are mentioned in the
footnotes of this document.

Thanks go out to:

e Marc Voorhoeve, Jeroen-Martijn vd Werf, Yaroslav Usenko, Jeroen Wulp (TU/e)
e Ryan Hughes, Helmuth Neubergher (Neubergher & Hughes)

e Gino de Jeu, Mark van den Bogaard, Timo Henczyk, Rik Bisschoff (NLcom)

e Joshua Boverhof, Charlie Moad, Rich Salz (ZSI / PyWebCVS)

e Scott Nichol (NuSOAP)

Words and abbreviations, colored in blue, can be looked up in appendix B1.

page 3 of 101

Index

REVIEWING SWAP......oorie ettt e st st et et e ne e e ne e sneesneenneeens |
INEFOAUCTION .ttt ettt ettt et ettt et e s bt e sate et eeabeeeaneeeane 2
SUIMIMATY ...tieeiiiieeiee ettt ettt e ettt e e st b e e sstbeeesabteeeasbee e nsteeassbaeseaseeesabseesanseeesnsseeeensneesnnnes 3
£ 16 L GO O T OO PP T PP UOPOROPPPRRPPRON 4
Le ADSEIACT. ..ttt et ettt e b e et eeh e b e e bt e e h bt e b et e bt e e hte e bt e ebeenaeeenaeeenee 6

1.1 EXChan@EALNUXcooiuiiiiiiieiiieeeiteeee ettt ettt e st e et e st e e e e e e ae e e 6
L2 SOAP ...ttt ettt e at e a ettt e eae e et e e eane 8
1.3 SWAP IMplementation..........ccccuiiiiiiieiiieeiiieeeieeeiiee et e eiteeeteeesteeesstaeesssaeessaesnnsaeessseessnsseesnnes 8

2. VerifyING SWAP......oo ettt ettt et be e e bttt et e e saeeesaeeeneee 10
2.1 REQUITEIMEILS. ..ottt ettt ettt ettt ettt e et e sbe e st e et e see e b e saneennaeebeesnneesane 10
Requirement 2.1.1: StADIIIEY....c..eoiiiiiiiiiieie e e 10

2.2 MOAEING AECISIONS. ...eeeurieeiiieeriieeeiteeeiteeeitteeriteessteeeestteeesateesestaeeessseeesnseeeenssaeesnsseessseeesnnsees 13
2.2.1 Modeling COMPIICAIONS.ccccuuieririeeriieeeiieeeiteesteeeteeesiteessaaeesebeeeesabeessnseeesnsseeesseeenns 13

2.2.2 Modeling and verification SOftWATEcooriiiiiiiiiiiiiieiiiee e 15

3. Putting the teSLS 1N PIACIICE. ..c...vttieiiieeiiieeiiee ettt ettt ettt e ettt e et e et e e st e eseabeeesbaeeeeareeenane 16
3.1 StADIIILY CESTINE.c..vieeeiiieiiiie ettt ettt e et e et e e et e e et ee s abeesabeeesabeeesasbeesnsaeesanseesnnns 16
3.1.1 Checking for deadlOCKS.uuiiiiiiiiiiieieeeeite ettt e e e 16

3.1.2 Mapping source code to Petri Net CONSIIUCES..........ceriuieiiiiiiiieeiiienieeee et 18

3.4 Performance tESHINE.cccuueitiiiiiiiieeee ettt ettt et et e bt e et e e bt e e bt e e be e et e e saeeenaneens 25
3.4.1 Overhead calCulations............coviiiiiiiiiiieieeeee ettt 25

4. PUtting SWAP 10 PIACLICE.eeiiuiieiiiieeeitee ettt ettt ee e st e e et e e e st e e sabteeeatbeesabbeessbeeenabeeas 29
AT SWAP + PHP....ooo ettt ettt et e s et 29
4.1.1 EXpected ProDICIMNIS.eeiiiiiiiieeeiieeeie ettt ettt e e et e e e s e e eebeeesbeeeaneeennee 29

4.1.2 NUSOAP and WSDLou.....oooiiiiieiieeee ettt ettt et esaaeesaeeens 29

4.1.3 SWAP fUNCHONS.eeiiiiiiiiii ittt ettt e et e et e et e e sabe e e s baeesane 29

4.1.4 Encountered SWAP Problems.cc.ueiiiiiiiiiiiiiiniiie ittt et e s e 30

4.1.5 Conclusion on PHP/NUSOAP with SWAP......cccooiiiieee e 32

4.1.6 Some PHP/NuSOAP (SWAP) code example..........coccueeeiiiiniiiiniiiiniieiiieeieeeiee e 33

4.2 Zimbra collaboration suite and SWAP...........ccooiiiiiiiee e 34
4.2.1 EXPECted PIODICINS. ...ceeuiiiiiiiiiiiiieeeite ettt ettt e et e et e st e st aeesabbeesabaeenans 34
4.2.27ZSTand WSDLi.....ooiiiiiie ettt ettt ettt 35

4.2.3 EXPloiting ZSTS aDIItIES.ueeeeirieeeiiieeiiieeesiieeeitee et e et eeeite e e s ereeeeaaeeeenneeeesnsaeeeeanes 36

4.2.4 Conclusion on ZSI with Zimbra/JAX.........coooiiiiiiiiiiiiee et 40

S CONCIUSIONS ...ttt ettt e et e e bt e st e e sab bt e sabteesabeeeeabbeesabeeesabeeenaseeas 41
AAPPEIIAICES. ..ttt ettt ettt et e et et e e ea bt e e e bt e e e eabe e e ebt e e e bt aeeeabbeeebbeeeeaaaeas 42
A1. Mapping source code tO PEIT NELS......ccccuieiriuieeiiiieeeiiieeriree et ettt e e sre e siree e sitaeesebeeesnbeeeens 42
A2. The reasoning behind program code to Petri net CONVersions.............cccveeeereuireeeniveeereineeeeenns 45
A3, SWAP SEIVET PEIIT NELS. ...ceiiuiiiiiiiiiiiiiee ettt ettt ettt e et eesnbee e e 52

1. Source code MOAEIS.........eoiiiiiiiiiiiiie et 52

2. FItered MOEL........ooiiiiiiiiiiee ettt ettt 64

A4, WOTLAN tESHNZ ISSUES. ...ceutiiuieiiiieiie ettt ettt ettt et e et e e bt e e bt e ebeeebbeeabeeeabeeenbbeeneeeeae 73

page 4 of 101

AS. Gain Of the TEAUCHON PIOCESS. . ..eeerrieeiriiieeeriieeeiieeeeteeeeitteeeesareeessteeesssreeeasssaeessssaeeesssseesansnes 73

A6. Manual checking for deadlocks.........cocuiiiiiiiiiiiiiiiieece e 73
RESUIES. ..ttt et e et e s st e e st e e et e e ebaeeenaees 74
AT7. Performance OPtMIZATIONS.eeeureeerieerriiieenieeertteeesiteestreeesaseesaseeessseessssaeessseeessssessssseesnnes 76
Optimization 1: Client-side Validation..........cocouuieriiieeniieeiiee ettt eeieee s e e e e s 76
Optimization 2: Batched MeSSaAZING........ccovuiiiiiiiiiiiiiiiieeie et 76
Optimization 3: Smart data handling............cccooiiiiiiiiiiiieec e 77
Optimization 4: MeSSaZe COMPIESSION......ueeirurreerririeeriieeerritteeeriteeesieeesasreeessireeessseeesnsnsesssnee 77
AS. Petri net reduction techniques eXplained............ccovviiiiiiiiniieiriieeee e 77
Technique 1: SubNet SUDSHIUTION.ccccuviieeiiieeeieeeeiiee et ee e e e e et ee e eaaeeeeebeeessnseeeennseaeens 77
Technique 2: predefined reducCtion TUIES..........cc.eeeeiiiieiiiiiiiiie e eevee e 77
Technique 3: parallel tranSItioNS.coviiriiriiiiieeieeeeee et 78
Technique 4: forced COMMUNICAION PAITS...cceuvrieiririeerriiieeeriteeesitteeeiieeesrbeeeessirteesebbeeeesaaeeens 78
APPICALION SETALEZY ... veeeeiieeiiieeeiieeeiteeesteeeeiteeesteeesteeeeateeesssaeesssseeeassaeesnseeennsseesnsseeensseessnnes 79
A9. Petri net flattening TULES........ocviiiiiiiiiiiieee e e 80
Hierarchical to non-hierarchicCal:............cooouiiiiiiiiiiiiiii e 80
XOR 10 NON-XOR ...ttt ettt et e s e st e bt e et e b e s saneens 80
A10. SWAP protocol overhead calCulations.............ooovierriieeiiieiiieeeiie ettt siee e 81
AT WSDLai ettt ettt e bt e et e e bt e bt e e beesab e e bt e e beeeabesanteenbeens 90
A12. SOAP error catching: SOAPLAULL..........cocoiiiiiiiiiiiee e 91
A3, FIering SOIULIONS.viiiiiieiiie ettt ettt e st e e st e e e st e e e snbeeesabeeesbaeenas 92
Solution 1: creating @ NEW ODJECT........uiiiiuiiiiiiieiiiie ettt ettt e et e et eeniaeees 92
Solution 2: delete unwanted attrTDULES.cco.ueiruiiirieiiieeiie e 92
Solution 3: filter on wanted attribDULES.cocueiiiiiiiiiiieiieie e 92
From specification t0 IMplemMeNntation.cceeriieriiiriiinie ettt ettt e e ens 93
Program COUR.uiiiiiiiiiiie ettt ettt st s 93
B1. Vocabulary / abbreVIations...........eeevieeriieeriieeniiieeiiteeeieeesiteeesteeesbeessseeessnbeessseeeensseeesseeenns 95
B2, RETEIENCES.eouiiiiieeiee ettt ettt et et ettt et s bt e st esabeesne e e e s 97
B3 LINKS. .ttt ettt e et e et e e sttt e et e e e eabeeeeas 98
B4, TIME SCHEMIE.coiiiiiiiiiiiicee ettt ettt e et e st e st e e satee e e 100

page 5 of 101

1. Abstract

Since 2002, Neuberger & Hughes, a German company, situated in the town of Plochingen
(near Stuttgart), has been developing Exchange4Linux. This piece of serversoftware
constitutes a Linux-based alternative to the Microsoft Exchange server (which is a
groupware platform). As the name suggests, the server is Linux based. As with many Linux
products, Exchange4Linux (sometimes referred to as Exchange4Linux) is an open source
product.

Recently, Exchange4Linux has been extended with a new interface. The protocol that defines
and uses this interface is called SWAP, which stands for Simple Workgroup Access Protocol.

By extending the Exchange4Linux server with SWAP, client development can be done much
faster, compared to when developing “native” clients for each specific platform.

SWAP was designed to (partially) overcome certain drawbacks. The idea is that by making
use of SWAP, developing client software should become easy and fast. This would open up
the world for the Exchange4Linux server.

SWAP has not reached a final state yet. As SWAP was not written from a formal
specification, but directly coded (be it partially automated) from the Exchange4Linux
servercode (and a whitepaper), there is no guarantee this products works correctly and
meets its requirements.

This document is mainly about the verification of the SWAP protocol and the changes that
need to be made in order to get SWAP to a final and stable version.

1.1 Exchange4Linux

Exchange4Linux is a workgroup server. Workgroup servers are mostly used in collaborative
environments where centralized managed communication (through, amongst others, public
agendas and tasks) is important. Users in the workgroup have access to both personal and
public data. In workgroups typically supported by Exchange4Linux, this data can be email,
calenders (agendas), contacts, notes and tasks.

From an architectural point of view, the Exchange4Linux server is quite different from the
market leading product: the Microsoft Exchange server. The software was developed in a
typical Unix / Linux tradition; when possible, existing components are tied together; only
non-existing parts are developed (either from scratch, or by modifying existing software).

page 6 of 101

exchangedlinux Architecture Diagram

—
=]
(=]
=
— |
= _'_I_I_':
I s - ="
- cmm— n— — =
- I]I]I]I]I]I]I]\ﬁ z =
exchangedlinux Server E WinS2 Outlook Client
: :
Tm = x 2
cx — = H
= B =} ?é E N E
C xa = =
B i i} Cif =
T | 2 Z vl g8 | ©
= -E wF B [T
= = g5 | E2 s
L F= i o I =
|38 | Lz | &k
S0l Ddabase] g P | go | B
(P ostgreSQL) 5 | g4 | @k
1197|858,
=3 E g g
- 5 “ g i : o
o =1 = = Internet e-mail (=R
i & =3 < L2510
jun] — m [=
a - T oE"W T
= o £SED
53g°
i Ay therti cation
passnd

implemented
features

e Grome Evolution i
i . Wieh Serices e
L . (Future festures

Lllustration 1: ExchangExchange4Linuxinux architecture diagram

Amongst others, Exchange4Linux is based on PostGreSQL (database), Apache HTTP
(webserver) and OmniORB (CORBA implementation) and Python (programming language,
which is used on the Exchange4Linux server). Exchange4Linux offers multiple interfaces,
including a SOAP interface. SWAP rests on that SOAP interface. On the backend, the SOAP
interface makes use of the CORBA interface. This CORBA interface has always been used as
interface to the Exchange4Linux system. Before the SOAP interface was added to the
Exchange4Linux server, the Exchange4Linux Outlook (by Microsoft) connector was the only
possible client. This connector, which enables Microsoft Outlook to communicate with
workgroup servers other than Microsoft Exchange, uses the CORBA interface on the
Exchange4Linux server.

Because the SOAP interface interacts with the server backend (through CORBA) and one or
more front ends (using the SWAP standard by exchanging SOAP messages), this interface
can be seen as both a server and a client (Illustration 2).

page 7 of 101

———FResponss—f- -l Feguest

CORBA S0AP —Responee et
interface interface
La——F ecuiest Lol Fequest
| Response—me =1

Client

Hllustration 2: SOAP / CORBA communication

Our main interest is the architecture and the client side of the SOAP interface.

1.2 SOAP

The SWAP protocol uses the SOAP protocol for messaging. SOAP, which stands for Simple
Object Access Protocol, is the successor of XML RPC and was originally designed and
backed by Microsoft.

SOAP was designed for transport over HTTP. The reasons may be obvious: HTTP is a broadly
accepted and implemented protocol, making the SOAP protocol widely available. This allows
SOAP messages to be sent over all HTTP enabled networks, including the internet; firewalls
will not present any problems.

SOAP messages are formatted using XML, which is, in its standard form, a text-based
markup language. Multiple messaging patterns are supported. The most common ones are
RPC and DC document-style. RPC is a messaging style in which a client sends a message
(request) in a predefined manner, to a server and the server answers (response); again in a
predefined manner. Every RPC request and response comes with a method name and a set
of attributes.

The document-style message pattern is not as strict as the RPC pattern is; in document-
style, messages may be formed any way an author likes them to (as long as they are
SOAP/XML compliant). Document-style messages offer more flexibility, but they are less
advanced.

More information on the SOAP protocol can be found on [1].

1.3 SWAP Implementation

The SWAP protocol is implemented as a Python application, using the Zolera Soap
Infrastructure (ZSI) Python component for the SOAP messaging part. With ZSI, SOAP
messages can be composed, encoded, send, received and decoded with an acceptable effort.

The SOAP messaging style SWAP uses, is the “remote procedure call” (RPC) style. The
messaging pattern of SWAP conforms to the RPC pattern : a user makes a call, which is
handled and computed on the remote system, after which a response is returned. Despite
what the names suggest, the messaging (RPC) style and messaging (RPC) pattern are totally
unrelated. For SOAP, RPC messaging style is just a term for a certain SOAP authoring
technique.

A more detailed explanation of SWAPs architecture and its position in Exchange4Linux is
explained in the picture on the next page. All SWAP client requests and responses are sent

page 8 of 101

as SOAP messages, formatted after the SWAP specification. With ZSI, messages are
converted between Python objects and SWAP formatted SOAP messages. These Python
objects are converted into (and from) CORBA objects, using the omniORB component.

amniJRB |

f 1 1

k] ¥

Fython SWAP implementation

e

—Fesponse

L eyt

Hllustration 3: ExchangExchange4Linuxinux SWAP-related components

The CORBA and SOAP implementations for Python, omniORB and ZSI are external

components, supplied by third parties (open source projects).

page 9 of 101

2. Verifying SWAP

SWAP abstracts from low level calls to perform operations on the Exchange4Linux
workgroup server. By making a single SWAP call, multiple actions can be performed on the
server backend. This way, SWAP acts as a simple, lightweight interface to a complex system.
To make sure SWAP functions within the specified parameters, there are several subjects
that are in need of research. Therefore, we need to validate SWAP against its requirements.

2.1 Requirements

For SWAP, there are no documented, formal specifications. There was no official set of
requirements, so, in order to verify SWAP, its requirements have to be formulated, so a
requirements study on SWAP has been conducted.

Requirement 2.1.1: stability

We assume that the Exchange4Linux component is stable and fully functional. We also
assume that for all components SWAP relies upon communication errors are properly dealt
with. We therefor only concentrated on the proper termination from reachable states of the
SWAP protocol itself.

We consider the following (typical) causes for system instabilities:
- communication errors (due to hardware errors or failing connections)
- deadlock situations (architectural problems or coding mistakes)

- other coding mistakes

Subrequirement 2.1.1.1: Communication error handling

As SWAP is SOAP-based, we know that communication through SWAP will always be done
using the HTTP protocol. This implies that the TCP/IP protocol will be used for data
transport. The TCP/IP protocol has a built-in mechanism against basic (low level)
communication errors. This mechanism, implemented in TCP and ICM, guarantees that
data is transmitted and received properly. By calculating checksums, transmitted packets
can be checked for errors. More on this subject can be read on [2].

Communication errors due to broken connections, cannot be handled by the TCP/IP built-in
protection. The SOAP protocol does feature a fault detection mechanism, called the
SOAPfault system. From errors generated by the TCP/IP stack, SOAPfault can generate
human readable error messages. More information on the SOAP faults can be acquired from
appendix A12 and [3].

All programs using a SOAP framework fully supporting SOAPfault will react adequately at
both low- and high level communication and deal with those errors as necessary.

We conclude that errors in the communication are fully caught by TCP/IP and SOAP; we do
not need to do any checks on this.

page 10 of 101

Subrequirement 2.1.1.2: Checking for deadlocks

In a deadlock situation, a running program (or session) cannot be executed any further. A
deadlock is a state wherein no action can occur. Often, deadlocks in concurrent systems are
caused by conflicts.

From a theoretical point of view, deadlocks are considered to be architectural flaws, as
software architects / designers should, upon designing an architecture, make sure these
errors cannot occur. In practice, deadlocks can also occur because of coding (programming)
mistakes.

For deadlock checking, a model is needed. Models can be either language based (process
algebra) or graphical.

Requirement 2.1.2: platform independency

The SOAP protocol itself is platform independent. For any SOAP enabled platform, accessing
any SOAP service should be possible. Typically both sides, client and server, translate
between objects / variables in their local languages and messages encoded according to the
SOAP standard. So, SOAP acts as both a communication layer and an in-between layer,
often referred to as “middleware”. Data in SOAP messages complies to sharetypes as defined
in the SOAP standard. During each translation, data provided by a sending program are
translated to its equivalent in the SOAP standard and data in the SOAP standard is
translated to equivalent data which fits the receiving program.

SOAP is mainly used for remote access of procedures and that is exactly what SWAP was
developed for: accessing a remote, SWAP enabled, groupware server.

We know for a fact that most SOAP implementations do not implement all features of the
SOAP specifications (SOAP 1.1 and SOAP 1.2), as specified by the W3C. Researching all
possible platforms for SWAP clients is simply infeasible and from a business point of view,
not really interesting.

What's really interesting to Neuberger & Hughes is whether certain platforms (and thus
SOAP implementations on these platforms) can be used to access SWAP.

Requirement 2.1.3: integration with existing products

During the last decade, a number of workgroup systems (servers and clients) has been
developed and deployed. Although Microsoft's client, Outlook (not Outlook Express!), has
been the market leader for years, there are some good alternatives. Most clients can be
modified or extended to handle additional server types. Open source workgroup systems,
such as the Zimbra collaboration suite or Scalix, can be modified to access Exchange4Linux
through SWAP. Even open source webmail clients, such as Squirrelmail and HordeMail,
should be able to make use of SWAP too (be it partially, as such clients often do not feature
typical workgroup elements).

Although it would be preferable to test all potential clients for their compatibility with SWAP,
this is simply infeasible. Therefore we decide to ease up our requirements on this and decide
to make a tactical choice.

Also, with new technologies on the rise, current Exchange4Linux users may want to
upgrade to more modern software. Open source developers may want to create programs

page 11 of 101

that access the server through SWAP.

As there is a WSDL file for SWAP, which can ease up development seriously, we try to use it
where possible. More info on the WSDL standard can be found in the appendix All.

Subrequirement 2.1.3.1: PHP

One of the most popular languages on the web is PHP. NH is interested in the question
whether SWAP and PHP can work together. This is an interesting question, as there is an
important difference between Python (in which SWAP was programmed) and PHP: Python is
a strongly typed language, PHP is loosely typed.

Subrequirement 2.1.3.2: Zimbra collaboration suite

NH considers The Zimbra collaboration suite as a possible upgrade to existing
Exchange4Linux users. Zimbra features a SOAP interface which allows access to all of the
servers functionality. The idea is to use this SOAP interface to put data from the
Exchange4Linux database in Zimbras database. Here lies a task for SWAP, as SWAP can be
used to extract data from the Exchange4Linux database using SOAP.

Requirement 2.1.4: high performance

SWAP is meant to be used on a wide number of platforms. Besides regular desktop PCs,
SWAP is meant to be used on servers and multiple mobile devices too. Mobile devices (often
referred to as ultra-thin clients) require optimized software, as they typically have limited
processing power, a rather small amount of system memory and connect through slow (often
paid-per-kilobyte) wireless connections. Of course, non-mobile devices can benefit from
optimized software too.

Subrequirement 2.1.4.1: minimal overhead

SOAP is known for introducing some overhead; the protocol is text based which is not as
compact as binary data. Binary data is encoded as BASE64, which can lead up to a 33%
increase in size. ASCII data however, can be shrunk by about 500%.

Besides the overhead that comes with SOAP (there is little to be done about that, when
using SOAP), the structure of the messages can introduce overhead to. This overhead is
something we can control and which we want to keep to a minimum.

As the SWAP framework was partially generated from the CORBA backend, which never was
designed for mobile use (or optimized for that purpose), we expect some significant
overhead.

Subrequirement 2.1.4.2: smart architecture
Besides optimizing the body of messages, the number of messages should be optimized too.

SWAP communicates in a typical (classic) RPC manner: a client sends a request to the
server and the server answers. This communication pattern is very simple, but it is known
to have a few drawbacks. SWAP, being based on this pattern, may (and most likely, will)
have inherited those drawbacks.

page 12 of 101

The main problem lies in the simplicity of this communication pattern. All calculations are
done server-side and each operation requires at least two (rather lengthy) XML messages
(request, response) to be transmitted.

So, how can we optimize the architecture of the SWAP protocol to enhance its performance?
We consider some well known techniques and reason about their integration in SWAP. These
optimizations are described in appendix A7.

Note that the SOAP messages transceived by SWAP are RPC-style SOAP messages. Despite
what the name suggests, this has not anything to do with the RPC communication pattern
used in the SWAP implementation.

2.2 Modeling decisions

To make formal verifications possible, we decided to model the SWAP component using a
formal notation. Most formal notations have some mathematical background. This implies
that performing operations on the model, in its actual format or a converted format, can aid
in certain analysis.

We choose to model SWAP as a collection of Petri nets, mainly because of the ease of
modeling and the wide number of available testing tools. In chapter 3.1, we describe the
approach we decided upon. Basically, we verify certain properties Petri nets that have been
modeled after the SWAP source code.

The approach we took in converting from Python source code to Petri nets, is described in
appendix Al. From now on, we will refer to this process as “mknet”.

For the actual modeling, we found that Yasper, a graphical Petri net modeling program,
developed by the Eindhoven technical university, would suit our needs quite well. Yasper
uses the PNML format, which is basically a XML document. This is good, as XML files can
easily be translated to other file formats, by making use of XML style sheets (XSLT).

2.2.1 Modeling complications

The “mknet” conversion has the property that tests in the code (influencing the flow of
control) are replaced by a nondeterministic choice in the Petri net. We call this simplification
data abstraction. It dramatically reduces the state space, allowing to check properties.
However, by the same feat. caution is required when interpreting the results of these checks.

Let us explain this by giving a little example:

read x

while (x * x) >= 0 do
Xx 1= x — 1

return x

This code is converted to a sound Petri net. Despite this, the code is nonterminating, since
the square of any numerical value for x will be at least zero.

This also works the other way around:

read x
if (x * x) >= 0 then
return x

page 13 of 101

The code does terminate correctly; however it is converted to an unsound net.

wehile (% *) == 0dao return x

y D-O >

read x

Hllustration 4: Sound Petri net for a nonterminating program

if (x*x1==00do return x

*)C»-O B

@ — -@

read x

Hllustration 5: Non-sound Petri net for a terminating program

The reason that we nevertheless abstract from data is that any approach taking the actual
outcome of tests into consideration will lead to a spate space explosion that precludes any
check. The sketched approach allows us at least to increase our confidence. We accept the
fact that the proper termination in the net does not guarantee proper termination of the
code.

We are also prepared to perform additional checks on the code when errors are found in its
net.

Besides taking this approach, we also considered the use of colored Petri nets. Using colored
Petri nets, we would not have to abstract from data. However, converting our (Python) source
code to colored Petri nets would be a very complicated manner. Based on the number of
plausible scenarios, when taking data into account, a state space explosion was expected to
occur, even for very small colored Petri nets. Also, the number of analysis tools for colored
Petri nets is rather limited and certain properties are for colored Petri nets undecidable.

page 14 of 101

2.2.2 Modeling and verification software

To automate the testing of Petri nets, a toolset is required. Many toolsets for verifying various
aspects of Petri nets exist. Different toolsets aim at different targets. We were in need of a
soundness checker. After trying some, we decided to go with tools provided by the
Eindhoven technical university (for practical reasons too). Two toolsets have been
considered: mCRL2 and WofLan.

At first, a combination of Yasper and the mCRL2 toolkit seemed to be the most interesting
deadlock testing. The mCRL2 toolkit provides a converter which can perform conversions
from Yasper Petri nets to the mCRL2 process algebra. In the mCRL2 process algebra, we
would not have to perform the data abstraction. As SWAP operates on a database and the
(protocol) messaging itself depends on data too, we suspected that this data dependency
might a possible cause of deadlocks.

Another tool for testing we considered is WofLan. WofLan is a pure soundness checker. The
power of WofLan is the ability to check Petri nets, fully non-deterministic for non-soundness
issues. One thing we have to keep in mind: by taking this approach, we totally abstract from
data. By using nondeterminism to replace information lost by the data abstraction, this
issue could be circumvented in an acceptable manner.

After some testing, we decided to go along with WofLan. The mCRL2 toolset was still under
development and the stability of the product is not ready for production environments. Also,
mCRL2 missed some important features (like support for hierarchy) and it did not scale well.
Even for small Petri nets with minimal data dependencies, the generated state space grew
too big for feasible model checking.

It has been decided we only want to do soundness checks on the control flow of the SWAP
component (in a nondeterministic manner) and abstract from data. Given this situation,
WofLan suits our needs perfectly. As we know that WofLan is a reliable tool for doing this, we
have no reason to go with mCRL2.

Design documentation on SWAP is nonexistent. Therefore we performed our verification on
the source code, with the added advantage of catching coding errors as well. For different
parts of SWAP, different requirements apply. Because of this, we need to define exactly what
requirement we want to test against.

page 15 of 101

3. Putting the tests in practice

This chapter describes the tests we have done to verify whether SWAP meets the
requirements specified in the previous chapter. We also explain how we did tests, why we
made certain decisions and what our findings here are.

The tests described here are done with the most actual version of SWAP, version 0.7 that is.

Technical details, intermediate results and reasonings can be found in the appendices; when
necessary, we refer to the section of the appendices containing the corresponding
information.

3.1 Stability testing

3.1.1 Checking for deadlocks

Before we can start with the actual deadlock-freeness testing on SWAP, we do some
explaining and some optimizations.

Explanation of the architecture, related to modeling
The SWAP protocol instances a component based architecture.

After connecting to a SWAP server, a client can perform one of the eight (main) operations
SWAP features. From a functional point of view, these operations are independent of each
other, but they all are a part of the SWAP protocol. Conclusion: we can model SWAP as a
hierarchical Petri net; each SWAP operation will be modeled as a subcomponent of the SWAP
supercomponent.

We distinguish these levels:
1. Package level (overview)
Session level (use-case like)
User level (expressed in SWAP calls)
SWAP level (expressed in SOAP calls)
Server level (these are CORBA OmniORB calls, which are treated as black boxes)

The first level defines the SWAP package. This level is used for initiating and ending SWAP.
As this is a single transition with one input and output place (a minimal SMWF, which is
always sound), this does not influence the results of any automated test.

ok N

The second level, the session level, gives an overview of the actions a user can perform in a
session. These actions become available once a session has been started (after a successful
authentication to the workgroup server).

As SWAP calls are pretty close to actual use cases and it is the correctness of the SWAP calls
that we are interested in (not the architecture of a client), we choose to model the SWAP calls
as if they were use cases. Such a use case can be viewed as an SMWF too: a call is initiated
in its (only) input place, a single transition performs the call and the call ends in the single

page 16 of 101

output place of that call. Of course, the “single transitions” are actually subnets which
implies that a call is only sound if and only if its subcomponents are sound.

The third level, the SOAP level, defines how input data is picked up by the SOAP parser.
After parsing, the data is submitted to the SWAP server, some calculations are done and the
server transmits a response. If everything goes well, the data the server transmits is
formatted as a SOAP message. In some special cases, in case of failures, the server
generates non-SOAP (or even non-XML!) compliant messages.

These models of SWAPs functions are directly derived from the source code of the SWAP
framework. This level always contains one SWAP server process.

The fourth level, the SWAP level, defines how the specified input data is rendered and
submitted to the server. This level basically defines how a SOAP input is translated into calls
for the CORBA backend. Our testing will be done at this level, as this is rather complex.
After a SWAP call has been walked through, the response formatted or received by SWAP
(depending on the correct or wrong termination of a call), will be transmitted to the caller.

Some SWAP calls make use of external functions. These functions are not part of the SWAP
framework, but require SWAP to work correct. As these functions are black boxes, we model
them as subcomponents containing one single transition (another sound, minimal SMWF
net).

The fifth level, the server level, does computations at the backend, for the calls made by the
SWAP operations. At this level, the high level SWAP calls are “converted” into multiple lower
level calls. This conversion is done in multiple steps. First, a call is converted to its
corresponding CORBA call. Then, such a CORBA call is submitted to underlying layers
(lower level CORBA calls, calls to the BILL storage engine and to the SQL database).
If all goes well, the server executes the requested action(s) and replies accordingly. The
result is returned, though multiple layers, to the SWAP framework, which tries to parse this
received data into a SOAP message, which is to be returned to the client.

In our tests, we tested single SWAP call against the backend. Our tests prove that the
communication between such a SWAP call and the backend are free of errors. We did not
test multi-user SWAP, as multi-user concurrency is something that is dealt with by the
server backend, not by SWAP.

At this server level, many a thing can possibly go wrong. SWAP heavily depends on this
server level; SWAP can only work correctly if the server backend works correctly too(!). For
the verification of SWAP, no testing nor verification of the server backend was done. Testing
this backend would require different verification techniques and was not asked for by NH.
We reckon that this would be a hard and complicated matter, if possible (from a formal point
of view) at all. As the server's correct functioning is an important aspect for testing SWAP,
we assume the server to work correct. We assume that for every request made, the server
generates a valid response. Also, we assume that no action performed by any other client,
being executed at the same moment in time, influences the correct working of the server.
These assumptions allow us to model the whole server level as a single transition. This also
allows us to assume multi-user SWAP to work as required.

The assumptions we make are partially based on how the underlying database engine,
PostgreSQL, works. Upon accessing the database (through SWAP or some other
Exchange4Linux client), the records in the database which can be affected (by either that
call or some other call on the same records) are snapshotted by the database engine. All

page 17 of 101

actions in a transaction are performed on the snapshot. When all actions are performed, a
commit follows. This commit is responsible for submitting mutations to the actual database.
In case of problems, a rollback might occur.

Because of the snapshotting, we can argue that, upon accessing the database, each
transaction operates on an abstraction (of the state) of the database. After all actions in the
transaction have completed, the commit occurs. In case of problems, while performing the
commit, a rollback can occur. This proves that all actions, up to the moment the commit
successfully terminates, are inert. From this, we conclude that a commit can be considered
to be an atomic action. So, this proves, that concurrent actions cannot lead to (additional)
problems. This also proves that any commit is safe.

3.1.2 Mapping source code to Petri net constructs

We chose to model our Petri nets to the control flow of SWAP (appendices Al and A2). SWAP
only comes as source code; there are no (in-depth) documents on its architecture. Before we
can start modeling this source code into Petri nets, we need to define how we will convert
typical language constructs into Petri net equivalents.

Appendix Al describes for each typical Python language construct how we chose to model a
Petri net equivalent. The reasoning behind these Python-to-Petri-net mappings can be found
in appendix A2.

We will give a short example on our conversion technique here. As start, we use the following
Python code. We want to model the definition of this function (httphandler) as a classical
Petri net.

def httphandler (req):
func_path = ""
if reg.path_info:
func_path = reqg.path_info[l:] # skip first /
func_path = func_path.replace("/", ".")
obj = getattr (server, func_path)

object cannot be a module

if type(obj) == ModuleType:
raise apache.SERVER_RETURN, apache.HTTP_NOT_FOUND
if type(obj) != FunctionType:

raise apache.SERVER_RETURN, apache.HTTP_NOT_FOUND
return obj(req)

We first scan trough the source code. We notice that there is one starting point, there are
three possible ways out, a few assignments and three if-statements. These constructs
determine the control flow of our program. As we model our Petri nets to the control flow of
the program, we can use our observations as a skeleton for the Petri net we want to build.

page 18 of 101

Our Petri net will have one initial place, connected to a single transition. There will be one
output place too, but three transitions will connect to that output place. The if-statements
are branching points in the Petri net which will be translated to a set of conflicting
places/transitions (or XOR transitions, when using Yasper). Assignments will be pasted
between the different constructs. As, for nondeterministic testing, there is hardly any use for

func_path =
func_path replace
nry

> D-O >
func_path =
req path_info[1:] #=kip

first i
FALEE ><5

) ——

func_psath =™

it req.path_info:

¥
Ee)| [k
raise raize ohj = getattr(zersy
apache =ERVER_RE apache SERVER_RE func_path)
TURM, TURHM,
apache HTTP_NOT_ apache HTTP_MNOT_

FalRID

Lllustration 6: source code to petri net conversion
these assignments / transitions, we could very well leave them out. Our Petri net clearly
shows what we observed before. The source code of the program has been transcoded in a
straightforward manner, including the control flow. The translation of the control flow is the
most important part of the translation, as that is what we need for our testing
(nondeterministic soundness checking).

During the translation from SWAP source code to Petri nets, we did compact the nets
somewhat. In many cases, transitions can be subsumed without changing the behavior of
the Petri net (modulo a branching bisimulation).

3.1.3 Building the source code model

As a first step in the translation and error-checking process, we use the self defined
mappings (and technique) to create Petri nets from the source code. This is mostly a
straightforward operation (the main difference is in the initial/final places/transitions of the
mapping, as those often are combined with other places/mappings)

Applying these mappings results into the Petri nets which can be found in the appendix A3.

page 19 of 101

3.1.4 Filtering the source code model

The source code model is a direct copy of the source code itself (be it another language).
Parts of that source code are unimportant to automated deadlock testing, so we want to
leave those parts out, as testing on less complex models is less error prone and less
intensive (thus safer and faster). By shrinking the Petri nets' size (count of nodes), we try to
prevent a state space explosion from happening. When doing automated checking, which is
usually done by the automated generation of a coverability graph, a state space explosion
can easily occur.

After performing reductions, we want to be left with a less complex Petri net. If we perform
this reduction well, the resulting Petri net should be bisimilar to the original net. To be
precise, we want to create a branching bisimulation between the original Petri net and the
reduced version. As a branching bisimulation is soundness preserving, we know that the
reduced Petri nets are as sound as the original and more complex Petri nets are. The
definition for bisimulation equivalence is borrowed from [4].

Petri net reduction is a subject which has been under research for over 20 years. There is a
wide variety of reduction techniques; many of them show similarities. We decided to go with
these 4 techniques:

1. Replacing subnets by single transitions
2. Applying predefined reduction rules

3. Parallel transitions reduction

4. Forced communication reduction

These techniques are explained in appendix AS.

Reductions in practice

We choose to combine the techniques mentioned above. By a combination of these
techniques, we did success in achieving a sizable reduction.

The order in which the reductions are applied is important. If, for example, we use a
reduction rule (option 2) on a net, we may break the ability to replace a bigger part of the
original net by a single transition, resulting in a less optimal reduction. This issue
necessitates a reduction strategy, which is described in appendix A8.

3.1.5 Flattening the model

After reducing the original Petri nets, we need to perform two more steps before our nets can
be converted to an algebraic specification. The Woflan platform we are interested in to use
for testing cannot handle the Petri nets as generated by Yasper. Woflan cannot handle Petri
nets with hierarchy and XOR transitions, as they are no standard Petri net components.

These issues can be overcome by remodeling any hierarchical Petri net to an equivalent net,
but without hierarchy and XOR transitions. This means that all (single) transitions defining
a subcomponent will be replaced by the “full” definition of that subcomponent and all XOR
transitions will be replaced by their classical Petri net equivalent. This will be done for each
subnet on each level, so that we will end up with a non-hierarchical Petri net.

page 20 of 101

As a result of applying the flattening rules, we gain a bisimulation equivalence between the
original net and the flattened model. This bisimulation guarantees that all the properties of
the original net (including its drawbacks) are featured by the flattened net as well.

How these flattening conversions are done is explained in appendix A9'.

3.1.6 Soundness check - WofLan specification checking

WofLan is a powerful soundness checker for (classical) Petri nets. For any Petri net, WofLan
checks whether the net is sound and indicates possible causes in case of non-soundness.
Just like Yasper, WofLan has been developed by the Eindhoven university.

Since the WofLan file format is not compatible with the Yasper file format, we have to do
some conversions first, in order to get the Yasper-made Petri nets into WofLan readable
format. First, we (again) apply the flattening conversions on the reduced nets. The
intermediate result can be used for making the final conversion to the WofLan file format.

It turns out that all SWAP components that should be sound actually are sound modulo
data abstraction.

One component, the “Exchange4LinuxWeb” component, not being sound is actually what we
intended for. Although this non-sound construct is no part of the original source code, we
choose this to simulate the way SWAP really functions, as SWAP continuously listens for
incoming connections. Of course, this could have been modeled as a sound Petri net too, but
we prefer this livelock over a more theoretical approach. We reason this choice is safe, as
this will lead to a non-terminating service spawning child processes.

1 An automated LaQuSo flattening and XOR conversion tool has recently been developed.

page 21 of 101

Level Component Check

1 Exchange4LinuxWeb Livelock required
2 Authorization & session May not deadlock, must terminate
starting
3 CreateFolder May not deadlock, must terminate
3 GetWorkgroupStorage = May not deadlock, must terminate
3 GetFolderList May not deadlock, must terminate
3 GetLargeProperty May not deadlock, must terminate
3 CreateObject May not deadlock, must terminate
3 GetObject May not deadlock, must terminate
3 UpdateObject May not deadlock, must terminate
3 DeleteObjects May not deadlock, must terminate
4 soap_CreateFolder May not deadlock, must terminate
4 soap_GetWorkgroupStor May not deadlock, must terminate
age

4 soap_GetFolderList May not deadlock, must terminate
4 soap_GetLargeProperty May not deadlock, must terminate
4 soap_CreateObject May not deadlock, must terminate
4 soap_GetObject May not deadlock, must terminate
4 soap_UpdateObject May not deadlock, must terminate
4 soap_ DeleteObjects May not deadlock, must terminate
5 list_subfolders May not deadlock, must terminate
5 set_waiting_message May not deadlock, must terminate

Table 1: WofLan SWAP testing results

3.1.7 Manual checking for deadlocks

In theory, deadlocks can be related to data. Petri nets constructs such as XOR transitions
and conflicting places, can lead to such data-related deadlocks. Let us explain this with a
little example.

Example
Suppose, a program , waiting for certain data to be provided to this (Pseudo) code:
repeat
receive (x)
until G(X)

, where G(x) is a condition on x. Now suppose this condition cannot be evaluated to true, no
matter what value x holds.

Because we abstract from data, errors like these will be left uncatched, when using the
method described thus far. As we want to catch such errors too, we decided on doing some
research on problems to be expected. This was done by scanning the SWAP source code for
vulnerabilities as described above.

While scanning the SWAP source code (as described in appendix A6) for sensitive points, we
noticed that most of the points which we would expect to be unsafe have been implemented
in a safe way. The bigger part of these potential vulnerabilities are if-statements, with guards
excluding each other. From logic theory, we know that always one of these conditions must
hold. This implies that these if-statements cannot lead to deadlocks. Mathematically:

page 22 of 101

guardN —guard = TRUE

'..:'._ Gl =
True

. hefare code after code. ...

fal

receivelx)

Hllustration 7: Petri net loop

In our Python code, all if-statements have been implemented in a safe manner. Many if-
statements only contain a single assignment, which never can lead to deadlocks. All other if
statements have been augmented with a “raise” exception, which escapes the if-statement if
an exception occurs. Of course, the same applies to the if-then-else and the if-then-else-elif
statement.

We found that only one specific construct in the SWAP source code cannot fully be checked
by using WofLan (or any other pure soundness checker on Petri nets). Since the construct is
relatively simple, we decided to do this check manually. Appendix A6 describes this check.

3.2 Platform independency

From a theoretical point of view, SOAP based programs should run on any platform
supporting SOAP. This should make SOAP-based programs practically platform
independently. Neuberger & Hughes, with quite some experience in this field, is interested
whether SWAP can cooperate with commonly used platforms.

As mentioned above, it is mainly the SOAP implementation that determines what can be
done and what cannot. The server end, which is where SAP is situated, contains ZSI as its
SOAP implementation. ZSI is Python-based and is regarded with Python as one of the best
platforms for webservices, due to their mature SOAP and XML implementations.

It is well known that many SOAP implementations are far from complete. As SWAP does not
use all the features of ZSI (and thus SOAP), SOAP implementations to be used for SWAP
clients do not have to be fully compatible with neither ZSI or SOAP. A minimal requirement
for possible SOAP clients is that an implementation to be used is at least compatible with all
the SOAP features and types as used in SWAP. This also implies that SOAP 1.2 support is
mandatory.

Researching SWAPs platform independency would actually be researching whether ZSls

page 23 of 101

features used by SWAP are compatible with the implementation of those features in likely
(according to NH) client platforms. So, after identifying likely client platforms, we can check
their specifications against SWAPs requirements.

SWAP comes with a WSDL (which stands for Web Service Description Language) file. These
XML formatted files give the needed insight into the messaging structure of a webservice.
WSDL files also describe how and where to connect to a webservice. Because WSDL files are
actually XML documents, both authoring and reading them is fairly easy, for both humans
and machines. Many modern development environments possess support for WSDL; they
can generate WSDL files for webservices. WSDL files can also be used to generate SOAP
client and servers implementations from. Also, many SOAP implementations possess some
form of WSDL support; they either can convert a WSDL to client source code, or address a
WSDL directly, so that SOAP messages are generated at runtime, from specified data and
the WSDL.

The benefits of using a WSDL for us are clear; SWAP clients (often called stubs) can
automatically be generated from this formal specification. This allows fast development and
is less error prone than generating client implementations “by hand”.

More information on WSDL can be acquired from [5]. Appendix All gives a short description
of the structure of WSDL documents.

Typing problems

Communication with SWAP is done in RPC messaging style: the client sends a SOAP
encoded message and the server responds with a SOAP encoded message which can be
decoded by the client. Upon encoding and decoding messages, objects of the used language
will go through some conversions. These conversions often include typecasting between
SOAP/XML datatypes and the datatypes of the platforms on the server- and client
endpoints. How these type conversions are done is specified in the SOAP implementation
doing that conversion.

Although SOAP types should be identical for each SOAP implementation, the
implementation of the language native types (on the server or client endpoint) can differ. Or
worse: certain types might not exist at all.

Checking (efficiently) for typing issues requires a smart approach. From SWAPs WSDL, we
know what types are used in SWAP. From ZSI, we know how these types correspond with
Python types, so a logical approach would be to check the specification of Python types
against their corresponding types in client implementations. This is not entirely safe though;
as we know from our experience with a PHP client for SWAP, SOAP implementations might
do type conversions, leading to unspecified problems. For more information on this subject,
please read chapter 4.1.4, problem 3.

page 24 of 101

3.4 Performance testing

3.4.1 Overhead calculations

Calculating real life overhead is, in our case, impossible, as the amount of overhead depends
on the type and amount of data that is transmitted in a message. Despite this, we can make
some good calculations, showing where significant overhead can occur.

In order to get an idea how big the amount of (theoretical) overhead is, we evaluate the SOAP
responses of SWAP. We only evaluate the responses, as we are in full control of the amount
of overhead in the SOAP requests we make.

Some SWAP messages can be used for more than one single object type. Depending on the
objecttype, the response from the Exchange4Linux server differs. So, to calculate the
amount of overhead, we should, for each object type, make a call to the server and evaluate
the specific response.

In the table below (table 2), we give the amount of theoretical overhead we calculated. On
some of these calculations, we elaborated in appendix A10.

SWAP call Overhead (theoretical)

GetWorkgroupStorage 0%
GetFolderList 0%
GetContent (email) 27%
GetContent (note) 269%
GetContent (contact) 24%
GetContent (journal) 29%
GetContent (appointment) 21%
CreateObject (email) 27%
CreateObject (note) 26%
CreateObject (contact) 24%
CreateObject (journal) 29%
CreateObject (appointment) 21%
DeleteObject 0%
GetLargeProperty 0%
UpdateObject Untested, call is broken
CreateFolder 0%

Table 2: SWAP messages overhead (theoretical)

Most of this calculated overhead is due to SWAP messages that contain redundant fields. As
SWAP uses very generic messages, for multiple object types, it's common practice that some
of the message fields remain unused. We also notice that the amount of overhead for
messages not containing any data is small.

Those unused message fields are not much of an issue as these unused fields only add
some plain text (tags), which is not much data, compared to the rest of the message,
assuming the message contains besides the regular control data some object data too.
This implies that calls submitting information (CreateObject and CreateFolder) will in
practice have a low amount of overhead, despite the computed amount of theoretical
overhead. This overhead we are willing to accept.

One might wonder why we are willing to submit redundant data anyway. The SWAP WSDL is
the cause of this; upon sending out a CreateObject or CreateFolder request, an object for

page 25 of 101

this type is instanced from the WSDL definition. Only the fields which are specified with
data during the instantiation of this object will contain data.

There is another problem though: if, we have redundant message fields, these fields can
contain redundant data too. Depending on the amount of data and redundant fields, the
overhead can lead to too large messages. This is what happens in data retrieving calls; if a
certain value is transferred in multiple fields (because of the compatibility issues), messages
will easily grow big.

Suppose, for a worst case example, that an email with a(n) (binary) attachment is retrieved
through SWAP. And, suppose, that the SWAP message contains this part twice. If the size of
the whole SWAP message, without the attachment, is 10kb, and the attachment size is
10mb, than the overhead can come near to 99%, which is of course unwanted. In reality, in
most cases, the overhead is not that severe.

Working towards a solution

Optimizing the SWAP calls would lead to a lesser amount of overhead, but this would
require the complete redesign of SWAP. SWAP was meant to be compatible with all versions
of Exchange4Linux (=3.00). Most of the superfluous data is there for compatibility reasons;
different versions of Exchange4Linux require different key/value pairs, for the same data.

For now, Neuberger & Hughes does not consider performance the gain to outweigh the
redesign costs. A future version of Exchange4Linux (version 4) will carry a filtered version of
the entire interface.

From an architectural point of view, solving compatibility issues in the way which was done
in the Exchange4Linux server backend, is not the best approach. As this solution, which is
considered to be more of a work around, lowers the performance of the whole, we want to
improve the situation, without modifying Exchange4Linux and the most part of SWAP.

By extending or modifying only SWAP in such a way so that every call with redundant data
can be reduced to an optimized version (without redundant data) of that call, we can get rid
of a fair part of the overhead, without making too much changes to the Exchange4Linux
server and SWAP. This is not a pretty solution either, but given the situation, we consider it
acceptable and it can be implemented in reasonable time.

Current situation

When using ZSI to transmit SOAP messages, the SOAP messages are transmitted and
received after some parsing steps (seen from a data-related point of view):

SOAP "‘%_,_Y;s—" SOAP I
PyObj parsing parsing PyOb]

Metwork: [Internet

Hlustration 8: ZSI to ZSI communication

Initially, in a ZSI-based program, a PyObj (Python object) is composed. This Python object
contains both data and other descriptional information on the message to be created and

page 26 of 101

send. After composing the object, a SOAP parsing module (ZSIs SoapWriter module in our
case) takes over control and renders a SOAP request message, which is transmitted over a
network (often, this network is the internet).

At the other side of the network, the same process happens, just the other way around. The
decomposition of a SOAP message into regular application data (in our case, this is a Python
object too) is done by another SOAP parsing module (ZSIs SOAPParsing module). After the
SOAP message has been parsed, the data will be stored in a Python object again.

Because of the seriousness of the overhead in the data retrieving calls and the small impact
of the overhead in the data submitting calls, we choose to aim at removing the overhead
from the retrieving calls.

Optimizing data retrieving calls

The server backend of the SWAP framework was created by partially exporting the
Exchange4Linux CORBA backend by CapeClear's CapeConnect [7]. This export created
SOAP calls for a (selected) set of CORBA calls.

Upon making a data retrieval call to SWAP, SWAP itself makes a request to the CORBA
backend, reads the response by the CORBA backend and outputs this response in a SOAP
message.

The conversion was done as follows:

E4L Databaze

CORBA 4 CapeConnedt SAP
backend . export

Hlustration 9: CORBA to SOAP export

The CORBA messages are the ones that cause the redundant data. CORBA was used on
Exchange4Linux before SWAP (and still is, as SWAP talks to the server through CORBA).
When releasing new versions of Exchange4Linux, the architecture of the messages changes.
To maintain the optimal compatibility with older clients, the CORBA calls have been kept
compatible, by not deleting (or renaming) any keys in the messages, but only by adding new,
often duplicate (seen from a data point of view), keys.

These duplicate keys are the main source of the redundant data (and thus the overhead).

The best solution to this would be to clean up the CORBA backend and re-generate / re-

page 27 of 101

author SWAP after the new backend. This would break the compatibility with many clients
though. As Neubergher & Hughes is planning a backend clean up for the next major version
of Exchange4Linux, adding another interface is not interesting right now (as that might
mean that in the near future, two different interfaces have to be remodified).

We consider multiple solutions to this issue, based on the idea of filtering unwanted data
out. These solutions are described in appendix A13.

Integration

The optimized solution we choose will be positioned before the parsing component of ZSI.
The method we call “object filtering”, described in appendix A13, filters unwanted attributes
from objects, before transmitting them. This object filtering can be regarded as a form of
data compression. The argument of the ZSI parsing module will thus become the filtered
object instead of the one that was received from the (CORBA) backend.

CORBA |
ohject Object filter Z3l object

Hllustration 10: Object filter integration

page 28 of 101

4. Putting SWAP in practice

Here we describe the practical side of SWAP. We tested two scenarios in which SWAP is an
important asset: a PHP application accessing SWAP and a Python application combining
SWAP with another SOAP interface.

4.1 SWAP + PHP

PHP is one of the most prominent languages for web applications. Many webapplications are
developed in PHP and PHP is supported on many (web)servers. This all makes the
combination of PHP with SWAP quite interesting.

Before PHP version 5, there was no official support for SOAP in PHP. As SOAP has been used
for several years, a few third-party PHP-SOAP implementations have been developed.
Starting from the latest major release of PHP, PHP5, SOAP support is integrated into the
language. We ran some tests with the native PHP-SOAP implementation, but this quickly
showed some serious errors. Many SOAP operations are not or only partially supported. So
we used the NuSOAP implementation. This is the oldest SOAP implementation for PHP,
which is also considered to be the best matured and featured.

As PHP4 is still the most popular version of PHP, PHP4 compatibility is a must. NuSOAP can
be used on PHP4, without any compromises.

4.1.1 Expected problems

PHP is a loosely typed language. As both SOAP and the server, written in Python, are
strongly typed, we will have to be on our guard for typing problems. PHP features less types
than Python does.

PHP can “guess” what the type of a certain variable is; every variable whose type cannot be
guessed, results in a string typed variable. Also, complex types (structs, records) are
unknown to PHP; PHP renders all complex types in multidimensional arrays.

So, we conclude, that it is important to check for typing errors, which may occur during the
encoding and decoding of SOAP messages.

4.1.2 NuSOAP and WSDL

NuSOAP supports WSDL files. Unlike many other SOAP implementations, NuSOAP can
address a WSDL directly. When using a WSDL, NuSOAP can access a SOAP service by
specifying that service from a WSDL and the data to send to it. Many developers regard this
as a nice approach, as this allows fast and easy development of SOAP clients. The drawback
of this, is that the SOAP encoding and decoding are done “on the fly”, resulting in less
control over the messages.

4.1.3 SWAP functions

Next in line is testing if all 8 of the SWAP functions can successfully be used from a
NuSOAP/PHP implementation. Our findings are in the table below.

page 29 of 101

An example of the program code of the SWAP PHP client can be found in chapter 4.1.6.

SWAP function Result Comments
GetWorkgroupStorage OK
GetObject Almost OK |Incompatibility between server and client BASE64
implementation; see chapter 4.1.4, problem 1.
GetLargeProperty Not OK PHP cannot handle the chunks SWAP returns (chunk

decoding error). The only solution would be to modify how
the server returns requested data.

GetFolderList OK
CreateObject Not OK AnyType treated as a StringType; see chapter 4.1.4, problem
3
CreateFolder Not OK AnyType treated as a StringType; see chapter 4.1.4, problem
3
UpdateObject Unknown, |The call is broken; UpdateObject extends CreateObject
probably |which does not work; see chapter 4.1.4, problem 3
not OK.
DeleteObjects OK

Table 3: SWAP functions from PHP

As the table above shows, only 3 out of 8 SWAP functions work without problems. In the
next section, we will investigate the existence and nature of possible solutions.

4.1.4 Encountered SWAP problems

From our attempt to implement a NuSOAP/PHP SWAP client, we know there are a few
problems. In this section we will investigate those errors and try to come up with solutions.
NH prefers solution on the client side, since modifying SWAP would require quite some
efforts.

Problem 1: BASE64 decoding error

Although BASEG64 is an official standard (RFC 2045 [8]), there are multiple ways to encode
(and encode) special characters.

One of those special characters is the newline character (carriage return feed; often referred
to as CR -carriage return-, LF -line feed-, or CR/LF).

The PHP implementation of BASE64, for what the newline character is concerned, differs
from the Python BASE64 implementation. This results in a faulty decoding: newline
characters are omitted. Python encodes a newline character as “OA” (hexadecimal), while
PHP decodes this HEX code to “CR”, while it actually needs a “CR/LF” pair.

This error is not really a SWAP error, but rather a compatibility issue between PHP and
Python. We could solve this issue by modifying the SWAP framework, but we will not, as this
would result in a “dirty hack” (which is not interesting for this research). This would also
result in some overhead, as we would have to send each BASE64 message twice of even
three times (in case we want to support all three types of newline characters).

page 30 of 101

Problem 2: typing errors

The following simple SOAP types are used in SWAP [9]:

SOAP Type Python / ZSI supported PHP / NuSOAP supported
string yes yes
anyType yes limited
complexType yes yes

Table 4: Simple SOAP types

ComplexType types

The SOAP type complexType is used for various complex data structures. A structured data
set, often referred to as a “struct”, which is used by many programming languages
(including Python and thus SWAP), is not known in PHP. The same goes for other complex
Python types, such as lists and dictionaries; all of those types are in PHP implemented with
(multidimensional) arrays.

The multidimensional approach PHP takes is quite a bit more rudimentary than the
approach of Python (and many other languages for that fact). The main drawback of this
approach is that it is harder to create and parse these multidimensional arrays (resulting in
lower performance too), but this does not prevent SWAP for working with PHP.

AnyType types

SWAP also uses the SOAP anyType construct. As the name suggests, an anyType typed
variable can hold values of any type. This variable is often used to send entire objects, like
XML documents, in a SOAP body.

The SOAP implementations on both ends should know how to handle these variables, as the
server and/or the client implementations should deal with them accordingly. When using an
anyType typed variable, the type is changed upon assignment.

For instance: the server sends out an integer using an anyType variable. In that case, the
SOAP implementation should convert the variable to an integer. On the client end, the
anyType-as-integer variable is received and reconverted into an integer. This is a rather
powerful feature of SOAP, as this allows more generic structures, keeping interfaces simple
and easy.

Here lies a compatibility issue: SOAP implementations should be able to recognize types and
convert them as such. This conversion should be a done to a type that is compatible with
the type on the server end.

As PHP is a loosely typed language, we expected its abilities to (correctly) guess the
supposed type of a anyType variable not as good as we need. NuSOAP being an open source
product (written in PHP) allowed us easily to evaluate how NuSOAP treats anyType typed
variables.

The answer: all anylype typed variables are automatically typecasted into stringtyped
variables. Here lies a problem, as the SWAP server expects not just stringtypes in the
anyTyped variable (but also integers and BASE64 encoded variables). This will give problems

page 31 of 101

on the server end, as by the server, stringtyped variables will be treated as strings. This is a
serious problem, rendering NuSOAP unusable for the SWAP framework as it stands.

A quick search on the web tells us that the anyType is a problem with many SOAP
implementations. From a theoretical point of view, this is not an error in the SWAP
framework, but in practice, it hurts the compatibility of SWAP.

Therefor it's advised to refrain from using the anyType, but rather specify a somewhat
bulkier, though less problematic interface. This implies that changes to SWAP will need to be
made, if we want better compatibility.

Solution 1: change the WSDL

By extending the WSDL with some additional messages, the anyType problem can be
overcome. As we know for a fact, what the Exchange4Linux server is expecting in anyType
fields, we can add messages to the WSDL which explicitly require such a typed variable to
be entered. So, if we know that in a variable, we expect a integer (xsd:integer type), we make
a new message, in which the anyType specification (xsd:anyType) has been replaced by an
integer specification.

In big systems, this solution would be worthless, as many combinations may exist. Suppose
a WSDL features messages which contain not just 1, but rather n anyType typed variables.
Then suppose (as this is the case with SWAP), these variables can hold 3 types (string,
integer, BASE64). The maximum number of messages would be n®. The conclusion is clear:
this is not feasible in big systems. A better solution is provided below.

Solution 2: change the server implementation

Modifying the server implementation in the same way we could modify the WSDL, by writing
for each specific message a specific handler (server side SOAP services, for dealing with
WSDL messages), would lead to the same kind of problem we described above: the number
of handlers would easily explode. In practice, handlers are more complex than WSDL
messages, so the result of this solution would even be less preferable!

There is a smarter way however. If we extend the handlers and the messages somewhat, we
still can do with a limited number of messages. The idea is to add, for each anyType typed
variable, another variable, which holds information on the type in the anyType. With this
descriptional information added, the clients and server deduce the field's data type, making
type guessing superfluous.

The drawback of this solution is the overhead this introduces, but since the number of
anylype typed variables in SWAP (like in many SOAP based architectures) is quite small, we
accept this drawback. As this additional message is short (for instance, an integer field, with
a 1-digit code for each type), the introduced amount of overhead remains between bounds.

4.1.5 Conclusion on PHP/NuSOAP with SWAP

In its current form, SWAP cannot be used with NuSOAP/PHP. We see that both PHP and
NuSOAP have some drawbacks which could make a client implementation for SWAP as it
stands, a hard or even impossible wish. By patching both sides for the errors described in
chapter 4.1.4, these issues can be overcome.

page 32 of 101

NuSOAP, being an open source project, is under active development. Therefor it can be
expected (but not depended on) that missing features will be added and incorrect ones
improved. Bearing in mind these observations, NH will have to decide the future of SWAP
with PHP/NuSOAP.

4.1.6 Some PHP/NuSOAP (SWAP) code example

The code example hereunder gives some insight in the way PHP/NuSOAP works.
Direct connection to the WSDL.:
Sclient = new soapclient_nu('http://localhost/Groupware.wsdl', 'wsdl');

Sclient->setCredentials ('robin5', 'passme');

Here, we bind, with some credentials, to the WSDL file. Data from the WSDL file is used to
establish the connection the actual SWAP server.

Arrays with input data, specified as in the WSDL:

Soption = array ('key' => "OPKey", 'wvalue' => "", 'status' => "");
Sparam_gws = array ('store'=> "robin5", 'options' => Soption);
Sgws = Sclient->call ('GetWorkgroupStorage', Sparam_gws);

unset (Soption);

Soption = array ('key' => "20PKey", 'value' => "ABLCDS", 'status' =>
"20PStat") ;

Sparam_gfl = array ('storageId' => "robin5", 'objectId' => "", 'options' =>
Soption);

Sgfl = S$client->call('GetFolderList', Sparam_gfl);
unset ($option);

This first two lines show how objects (represented in arrays) are composed. After composing
the object, the object is transmitted. That is what the third line does. The second part of the
program performs a similar action; an object is composed and transmitted.

Result parsing:

Smessage = $gfl['result']['message'];

print "<hl>Result of GetFolderList call: S$message</hl>";
Scount = count ($gfl['folders']['item']);

print S$count;

print_r ($gfl);

After the SWAP server has responded with a SOAP message, the response has to be parsed
and decoded. Again, objects are represented as arrays, so we have to decompose those
arrays into variables or sub arrays (which may contain arrays as well). For decomposing
these arrays, we also use the WSDL, as this WSDL exactly describes the response that is
expected.

Result printing:
print "<h2>List of all folders on the server:</h2>";

foreach (Sgfl['folders']['item'] as $item)
{

foreach (S$Sitem['entry'] as $entry)

{

print "";

page 33 of 101

print S$entry['value'l;
print "
";
print "";

}

}

print "<hr>";

This final code fragment shows how decomposed data is printed to the screen.

4.2 Zimbra collaboration suite and SWAP

Although details differ, most groupware systems have a common core. This core, which
exists of typical objects (and operations on them), such as notes, contacts, emails etc, is
available in about any groupware system. It should therefor be possible, in one way or the
other, to make multiple groupware systems communicate with each other. In our case, we
want to make use of SWAP on the Zimbra collaboration suite, in order to build a
communication layer between Exchange4Linux and the Zimbra collaboration suite. SWAP
can act as an inbetween layer for server-to-server use too.

As we want to connect the Exchange4Linux server and the Zimbra collaboration suite
(short: Zimbra) through SWAP and SOAP, we make use of the ZSI (Python) implementation.
ZSI is regarded as a mature SOAP implementation and SWAP was based upon ZSI, so, for
the SWAP side of the implementation, we expect little to no problems. Also, by trusting in
ZSI's maturity, we hope to avoid problems such as the ones we did face with PHP/NuSOAP.

Zimbra, including its SOAP interface, is developed in Java. The used Java SOAP
implementation, JAX, is also considered to be mature, but not as feature-rich as ZSI is.

The open source edition of Zimbra possesses a documented SOAP interface. Using the
document as a guide, we have developed a Python client for Zimbra, using ZSI.

As Zimbra is far more featured than Exchange4Linux is, we only need a part of Zimbras
features in order to migrate data from the Exchange4Linux database to the Zimbra
database. Because Exchange4Linux and Zimbra have a different data definition for their
objects, there is an additional hurdle to take: how should the data be mapped? We will not
worry about that for now; first we have to figure out if SWAP and Zimbras SOAP interface
could possibly work together. If this can work, Neubergher & Hughes will determine how the
data will be mapped.

Zimbras SOAP interface introduces another challenge, besides possible compatibility issues
between the Java JAX and the Python ZSI implementation.

In SOAPs first few years, SOAP with WSDL was mainly used in RPC/encoded style. As a
result of this, most SOAP implementations handle RPC/encoded style best. Zimbras SOAP
interface however, requires document style soap (a so-called document/literal binding). ZSI
can do this, but not as good and easy as it can do RPC/encoded style. This requires some
investigation: can we get ZSI to meet Zimbras demands?

4.2.1 Expected problems

We learned a bit from our previous experience with NuSOAP/PHP. Again, we will be using
two different SOAP implementations and programming languages on the server and client
sides and we expect compatibility issues. Although the gap between Python and Java is

page 34 of 101

much smaller as the gap between PHP and Python (Java and Python are often considered as
direct competitors), minor differences do exist.

From the documentation on Zimbras SOAP interface, we know that Zimbra requires
document-style SOAP. It is well known that document-style SOAP is less supported than
classic RPC style SOAP is. ZSI is known to be strong with RPC style SOAP and it can do
some document-style SOAP.

4.2.2 ZSI and WSDL

ZSI features an extensive support for WSDL. Like NuSOAP, ZSI allows direct access to the
WSDL. The same drawback as with NuSOAP applies: for complex interfaces, the use of this
direct interface may become infeasible. There is another way in which ZSI can use WSDL;
through a converter called “WSDL2Py”. This converter can create the classes and client
stubs required for accessing the SOAP service described by that WSDL. With this technique,
it should be possible, that with little client code a Python client for the SOAP service can be
achieved.

Upon calling WSDL2Py on a WSDL file, when the call is received, the converter should
generate two files: a services and a types file. The services file creates the client stubs. These
client stubs provide an interface to the underlying ZSI functions. When providing the correct
data to the client stubs, using ZSIs underlying functions, these client stubs render the
specified information and request into a SOAP message and request. The information to be
provided is an object. This object is an instance of the corresponding message class in the
messages file.

Client stub example:

def Authenthicate(self, request):
if isinstance(request, AuthRequest) is False:
raise TypeError, "%s incorrect request type" % (request.__class__)
kw = {}
no input wsaction
self.binding.Send (None, None, request, soapaction="Zimbra_Authenticate",

* ey)
no output wsaction
response = self.binding.Receive (AuthResponse.typecode)
if isinstance(response, AuthResponse.typecode.pyclass) is False:
raise TypeError, "%s incorrect response type" % (response.__class_)

return response

Here we see how a client stub is built. The most important aspect is the “Send” operation.
The action called “Zimbra_Authenthicate” is transmitted; the object to be transmitted is the
“request” parameter, which was provided to the function upon initialization. After calling the
“Send” operation, a response is to be expected. This response is caught by the “Receive” call;
the object called “response” is instanced with the data received by the “Receive” call. Note
that either the request or response data doesn't meet its expectation (that is the case if it
does not comply to its predefined form), exceptions will be thrown!

Type class example:

class AuthRequest_Dec (ZSI.TCcompound.ComplexType, ElementDeclaration):
schema = "http://localhost/zimbra/public/zimbra.wsdl"

page 35 of 101

literal = "AuthRequest"
def __ _init__ (self, **kw):

ns = ns0.AuthRequest_Dec.schema

TClist = [nsO.accountregoptions_Def (pname="account", aname="_account",
minOccurs=0, maxOccurs=1l, nillable=False,
encoded=kw.get ("encoded")), ZSI.TC.String(pnam

kw["pname"] =
("http://localhost/zimbra/public/zimbra.wsdl", "AuthRequest")
kw["aname"] = "_AuthRequest"
self.attribute_typecode_dict = {}
ZSTI.TCcompound.ComplexType._ _init_ (self, None, TClist, inorder=0,
*x k)
class Holder:
__metaclass__ = pyclass_type
typecode = self
def _ init__ (self):

pyclass
self._account = None
self._password = None
self._preauth = None
self._prefs = []
return

Holder.__name___ = "AuthRequest_Holder"

self.pyclass = Holder

This code fragment shows how a message object is composed. The first few lines of code are
for ZSIs internal use and are mostly automatically generated. The body of the “__init__
function is the most important, as here all message parts are declared. Our example has
four parts: account, password, preauth and prefs. Note that prefs is a list, so this message
part may contain more than a single value!

”

Client code:

def main():
msgb = AuthRequest ()
msgb.Account = msgb.new_account ('robin')
msgb.Account.set_attribute_by ("name")
msgb.Password = "passme"

loc = ZimbraSoapLocator ()
port = loc.getZimbraPortType (tracefile = sys.stdout)

port.Authenthicate (msgb, [])

ZSIs client code is rather compact. After instancing an object for the request “msgb”, data is
added to the object. Then, the object is transmitted and the response is printed to the
system's screen (“sys.stdout”).

4.2.3 Exploiting ZSIs abilities

After writing a WSDL for Zimbras SOAP interface (or better, for the parts of the interface we
want to use), we used the WSDL2Py tool to generate a types file and client stubs for our
client to communicate with.

While developing the Zimbra client software, we found ZSI to have a few problems with the
Zimbra SOAP interface. It turns out that ZSI can do what we need it to, but not without

page 36 of 101

making some slight modifications and using functions in a non-standard way.

Problem 1. SOAP header objects are not rendered

During the conversion from WSDL to Python, message header objects, specified in the used
WSDL, are not taken into account. The WSDL2Py tool just “skips” over this part of a
message. As ZCS requires most messages to include a header, for security (authentication)
purposes, we had to find another way to get headers rendered in the SOAP message.

With some help of the ZSI developers, we found a way to overcome this issue. The solution is
to create an additional complexType in the WSDL file and modify ZSI to render a SOAP
object between the header tags (minor modification). After instancing this object, describing
the header, we supply this to the modified client stubs.

Header object (non-WSDL compliant!):

<xsd:element name="AuthRequestHeader">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="tag one" minOccurs="0" maxOccurs="1"
nillable="True" type="xsd:string"/>
<xsd:element name="tag two" minOccurs="0" maxOccurs="1"
nillable="True" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

The header object specified above is a “regular” WSDL element. The modifications we made
to ZSI make it possible to render WSDL elements in SOAP message headers.

To get these header objects rendered, we need to make a some changes to the generated
source code (client types) too. These changes are required (notation is in CVS style; the “-”
stands for “line delete”, the “+” for “line add”)

() kw = {}

(+) kw = {'soapheaders': soapheaders}

(+) outheaders = self.binding.ps.ParseHeaderElements((NAMEOFTHECALL.typecode,))
(-) return response

(+) return outheaders,response

Problem 2. Tag attributes are not rendered

As with the headers, also tag attributes are not rendered by WSDL2Py. That is, if the tag
attributes are mentioned in a WSDL conforming to the WSDL standards. By re-authoring
the WSDL, with an alternate construction for the tag attributes, we can get ZSI to render
attributes, if specified.

Attributed object (non-WSDL compliant!):

<xsd:complexType name="accountregoptions">
<xsd:simpleContent>
<xsd:extension base="xsd:string"/>
<xsd:attribute name="by" type="xsd:string"/>

page 37 of 101

</xsd:simpleContent>
</xsd:complexType>

By using the object described above as type for a message element, we can specify an
attribute. In this case, the “by” part of the message is the attribute, which can be called
from the client stubs and code.

To add the attribute to the message, we need to make another change to the by wsdl2py
generated client stubs. This is only one line of code, again in CVS notation:

(+) self.attribute_typecode_dict["by"] = ZSI.TC.String|()

Problem 3. Defect SOAP tags

SOAP envelopes consist of several parts. Two important parts are the message header and
message body part. ZSI encodes these message parts with <header> and <body> tags;
Zimbra however expects these parts to be <soap:Header> and <soap:Body>. By changing the
string value representing the contents of these tags, this problem was solved.

Problem 4. Namespaces in header and body tags

Zimbra expects namespace information in the header and body tags. These namespaces tell
Zimbra to what part of the SOAP implementation the data in the header or body tag should
be provided.

For example, Zimbra may expect a message formed like this:

<soap:Header xmlns:="urn:zimbraAccount”>
header information

</soap:Header>

<soap:Body xmlns:="urn:zimbraMail”>
body information

</soap:Header>

ZSI does not support any data in the header and body tags. Without this extra data, Zimbra
cannot determine for what part of the Zimbra suite the data is intended.

So, we need to add this information to our SOAP calls. ZSI uses the DOM component to
compose the XML/SOAP objects, which more or less supports what we need. The
implementation of the DOM model provided by ZSI can add prefixes to opening tags of a
XML document. By slightly changing that implementation, we can turn the prefixing
function into a postfixing function. Providing the namespace as an argument to the modified
DOM method will create the required tags.

Although the underlying DOM implementation has support for postfixing for namespaces
now, ZSI still cannot handle this. The ZSI methods calling the DOM methods (or the ZSI
methods calling other ZSI methods which call DOM methods) were never intended to call
this part of DOM.

By extending the DOM implementation with an option to postfix the opening tag of an
object, we can add namespaces to the SOAP header and body tags.

For testing purposes, we created some static calls addressing the DOM extension, but we
must admit that this solution is not very desirable. We have contacted the ZSI developers to

page 38 of 101

find a better solution for this problem. Until then, the indicated bypass must be used.

Problem 5

Upon receiving messages, ZSI does checks on namespaces. The way JAX embodies
namespaces in the body and header tags is not supported by ZSI and confuses the program.
As we know beforehand what namespaces will be submitted (as this is documented by
Zimbra), we can safely remove this check.

4.2.4 Consequences of the modifications

Of course, modifying ZSI has a few consequences. We tried to keep the consequences to an
absolute minimum, so ZSI can be used for other purposes too. Modifications to other part of
the system may have consequences too.

> The WSDL we are writing is no standard WSDL (not WSDL 1.0 or 1.1 compliant). For our
ZSI application this is no problem, but most likely our WSDL can not be used with any
other WSDL-enabled SOAP implementation.

> The additional objects which describe the headers will not cause any problems with any
other WSDL parser, as these are just additional objects without any dependencies on
them in that WSDL. The modifications introduced for the attribute rendering will cause
problems though, as they describe both the attribute and the message in another way
than specified in the WSDL standard.

> A client cannot be developed in a straightforward way. After running a WSDL2Py
conversion, changes have to be made to the generated code. If we update a WSDL, we
have to re-convert that WSDL to Python stubs too. That means that all changes to the
stubs which were made prior to the conversion will be gone.

We tackle this drawback by generating a separate WSDL for each Zimbra call, resulting
in per-call Python stubs. All these Python stubs can again be called from a single client.
This solution is 100% transparent to all clients.

> Quite a few modifications had to be made to ZSI. We tried to keep ZSI in the best
possible shape; instead of modifying ZSI functions, we added functions in which we
modified their original implementations. However, there is no guarantee that this
modified version will flawlessly support other applications using ZSI running on that
same server (which can be the case on a SWAP enabled server)

Also, ZSI cannot be updated as normally would be possible with a “regular” installation.
At the time of writing, ZSI 2.0, the version we are using, is a non-final version. This
implies that the maintainability of the server (as ZSI is a part of that) may become
problematic. So, modifying ZSI may hurt its compatibility and does hurt its
maintainability for sure.

Despite the issues described above, we decided to go along with this approach. Doing things
this way should give us better insight in the features ZSI lacks, the possible pros of JAX over
ZSI and the feasibility of communication between SWAP and other SOAP interfaces (as JAX
is a very prominent SOAP implementation). The gained knowledge and experience is very
worthwhile for both Neuberger & Hughes and the developers of the ZSI project.

page 39 of 101

Examples of the Zimbra WSDL, converted (modified) client files and the modified ZSI
distribution are available on the CDROM this document is on.

4.2.4 Conclusion on ZSI with Zimbra/JAX

Without modifying ZSI and pulling some tricks, communication between ZSI and JAX would
not be possible. Our efforts have led us to the conclusion that ZSI lacks quite some
important SOAP aspects and that the interoperability between ZSI and JAX is not as easy as
we suspected it to be. Although this does not really disable ZSI (and thus SWAP) to be used
with SOAP webservices on different platforms, the ability to quickly develop and deploy
SOAP clients, as SOAP was intended for, is clearly out of reach.

If Neuberger & Hughes decides to develop a migration tool for Exchange4Linux users, these
notes should, along with the additional information the CDROM, aid them in deploying a
ZSI client for Zimbra collaboration suite.

page 40 of 101

5. Conclusions

The core activity of this project was the reviewing of SWAP. We did a requirements study and
checked SWAP against its requirements. We argue that with SWAP, Neuberger & Hughes hit
the right direction, but that there is still work to be done.

We are pleasantly surprised by SWAP being implemented safely; so far, we only found one
serious error. Of course, we may have overseen problems, despite the fact we have good faith
in the quality of the SWAP source code and our research.

SWAPs architecture could use some attention, especially if SWAP is to be used with a lot of
simultaneous connections or for mobile use.

Also, SWAP reveals that some parts of Exchange4Linux need attention. As future versions of
Exchange4Linux will probably resolve this issue, SWAP will benefit from this too. Together
with enhancements described in this document, SWAP can enter its next stage.

All in all, we think that SWAP has a lot of potential. So, we conclude that Neuberger &
Hughes hit a good direction with SWAP. There is still work to be done though. Especially the
compatibility with SOAP implementations other than ZSI and the performance could be
increased.

Besides the verification of the SWAP protocol, some research in various specific subjects has
been done. These specific researches are mainly interesting to either Neuberger & Hughes or
the Eindhoven technical university. We did research in methods to create formal models
(Petri nets in our case) from source code and testing methods on those models.

We also did some practical tests with SOAP applications. We tried to use SWAP from PHP,

using SOAP, and tried to access a Zimbra collaboration suite server, using Python and
SOAP.

page 41 of 101

Appendices.

Al. Mapping source code to Petri nets

The table hereunder, describes how we mapped typical Python statements to Petri net
constructs. The set of proposed mappings define the “mknet” conversion. The reasoning
behind these mappings can be found appendix A2.

Python
language
construct

Petri net equivalent

Graphical notation

variable
assignment

/ single
modification

a single transition

azzignment

if

decision diamond with 2 outputs;
1 output will connect to a
transition that will be fired if the
condition for the if statement
holds, the other output of the
diamond will connect to the same
place the transition that is fired if
the if statement holds puts out
to; this implies that only a
transition is fired if the
conditional expression holds

if .. else

decision diamond with 2 outputs;
each output will connect to a
(different) transition; one
transition is fired is the
conditional statement holds; the
other is fired if the conditional
statement does not hold; both the
transitions connect to the same
output place

it biochy

elze hody

page 42 of 101

Python Petri net equivalent Graphical notation
language
construct

if .. elif .. else |this is basically an if statement
with an if..else statement as the
“transition” to be fired if the first if
statement does not hold; this will
be modeled as a decision diamond
with 2 outgoing arcs; if the first _ i elift 3
conditional statement holds, the it

code in the body of that if
statement will be executed; the
other outgoing arc is connected to
another decision diamond, the elif
diamond, which is a regular if-else
decision diamond with two

trijie

outgoing arcs; all transitions (of .
T hod |=& hocl
both the if- and the elif 1 ne FisE Rady
transitions) have an outgoing arc
to one single output place
if body
try .. except |This is basically an if statement, try .. except
with as main difference that the s
branching occurs after the C O . 4
program fragment in the try- try clause + program]
clause has been executed fragment in try clause 5‘3
¥
except code

page 43 of 101

Python
language
construct

Petri net equivalent

Graphical notation

return

Stops the current program (or
function) and returns to the
calling function; this is modeled
as a single transition that is
connected to a final place; if the
net features multiple return calls
(Python allows this), all return
calls connect to a single transition
(@ dummy), as Yasper doesn't
allow final places to have more
than a single input

or:

@

return

return 1

return 2

return 3

durmimy

for .. in

For each item of a collection of
items (Python array, list or
dictionary type), some action is
performed. After each, and before
the first, iteration, a check on
remaining items is performed.
This is modeled as a XOR
transition that either fires an
action, which returns to the XOR
transition, or it breaks the loop.

befare far.in

rak

check remaining

%‘ter far .in

items

‘or loop action

O

for loop action

pass

Python statement that doesn't do
anything at all; usually used to
execute the (empty) body of a loop;
this can be modeled by either
“nothing” or a single transition
(which consumes a token and
produces the same token again);
we choose to model pass as such
an empty transition

O—

L)

pazs

page 44 of 101

Python Petri net equivalent Graphical notation
language
construct

while decision diamond with 2 ingoing hefore while after while
and 2 outgoing arcs; one ingoing
arc is used to initiate the while
loop; the other is used to reinitiate
the while loop after execution of
the body; one outgoing arc is
connected to a subnet that will be
initiated if the condition for the
while loop holds; the other
outgoing arc is connected to a
subnet that will be executed once
the while loop is done

action 2 action 1

Table 5: Source code to Petri net mappings

A2, The reasoning behind program code to Petri net conversions

The if statement

Hlustration 11: IF-statement

We distinguish two situations:

page 45 of 101

1. the guard of the if condition holds

>
>

>

the outgoing arc for the “true” condition is chosen by the XOR statement
the code in the body of the if statement, represented by a transition, is executed

note: the body of the if statement can be a program too; in that case, we might
want to use a subnet (or its definition) instead of a single transition

after the execution of the if body, the if-net puts a token in its final place

2. the guard of the if condition does not hold

>
>

The if ..

the outgoing arc for the “false” condition is chosen by the XOR statement

there is nothing to be executed so the if-net puts a token in its final place

else statement

if body

elze hody

Hlustration 12: If ... else statement

We distinguish two situations:

1. the guard of the if condition holds

>
>

>

the outgoing arc for the “true” condition is chosen by the XOR statement
the code in the body of the if statement, represented by a transition, is executed

note: the body of the if statement can be a program too; in that case, we might
want to use a subnet (or its definition) instead of a single transition

after the execution of the if body, the if-net puts a token in its final place

2. the guard of the if condition does not hold

>
>

the outgoing arc for the “false” condition is chosen by the XOR statement
the code in the body of the else statement, represented by a transition, is executed

note: the body of the else statement can be a program too; in that case, we might
want to use a subnet (or its definition) instead of a single transition

after the execution of the else body, the if-net puts a token in its final place

page 46 of 101

The if .. elif .. else statement

trijie

if bocly elze body

if bocly

Hlustration 13: If .. elif .. else stament

We distinguish three situations:

the guard of the if condition holds

1.

>
>

>

the outgoing arc for the “true” condition is chosen by the XOR statement
the code in the body of the if statement, represented by a transition, is executed

note: the body of the if statement can be a program too; in that case, we might
want to use a subnet (or its definition) instead of a single transition

after the execution of the if body, the if-net puts a token in its final place

the guard of the if condition does not hold, but the guard of the elif statement holds

>

>

the outgoing arc for the if statement's “false” condition is chosen by the XOR
statement, the elif statement can fire now

the outgoing arc for the elif statement's “true” condition is chosen by the XOR
statement

the code in the body of the elif statement, for the “true” condition”, represented by
a transition, is executed

note: the body of this statement can be a program too; in that case, we might want
to use a subnet (or its definition) instead of a single transition

after the execution of the elif (true) body, the if-net puts a token in its final place

the guard of the if condition does not hold and neither does the guard of the elif
statement

>

the outgoing arc for the elif statement's “false” condition is chosen by the XOR
statement

page 47 of 101

2 the code in the body of the elif statement, for the “false” condition”, represented by
a transition, is executed

note: the body of this statement can be a program too; in that case, we might want
to use a subnet (or its definition) instead of a single transition

=2 after the execution of the elif (final) body, the if-net puts a token in its final place

The try .. except statement

The proof for the this statement is a bit tricky. The problem lies in how the source code is
written and how this source code is executed. This code snippet provides a little example:

try
<some program code here>
except

<in case something goes wrong>

The try clause, including its body, is always completely executed. If the code in the body of
the try clause fails, the except clause is initiated. This construct can cause the program to
jump; in case something in the body of the try clause goes wrong, the program jumps to the
body of the except statement; if not, the program jumps to the code after the entire
try/except block.

After each statement in the body of the try clause, it's possible to jump to the except code.
That would mean that for every clause in this code, we would have to model a jump to the
body of the except clause.

We have some luck here; in the SWAP program code, the body of all try and all except
statements are rather short and plain (no branching by if statements etc there). This implies
that these blocks of codes can safely be replaced by a single transition, which makes
modeling the try .. except clause easier.

try . except
try clause + program

fragmert in try clause . try Tails

except code
Hllustration 14: Try .. except statement

So, we distinguish two situations:

1. The try clause is initiated; the code in the body of the try clause is executed and the
code in the body of the try statement successfully terminates

page 48 of 101

> After the last of the code in the body of the try statement is executed, a token is
put into the final place of the try/except net

2. The try clause is initiated; the code in the body of the try clause is executed and the
code in the body of the try statement fails at some point

2 After the failing line of code (or, in our case, after the transition representing the
body), the program jumps to the except clause

2 The body of the except cause is executed (usually, this body is used for generating
error messages)

> After the last of the code in the body of the except statement is executed, a token
is put into the final place of the try/except net

Return statement

The return statement is mandatory for all functions in Python; functions are allowed to have
more than a single return statement.

In case a function has a single return statement, we have the following net:

return

Hllustration 15: Single outpoint

This is modeled as a single transition; it's nothing more than a single transition.

However, in case a function has more than one single return statement, we have to be a bit
creative:

return 1

] b-@
return 2 durmmy
return 3

Hllustration 16: Return statement - multiple returns

Yasper does not allow (sub)nets with more than one transition to be connected to a final
place (of a subnet), so we have to come up with some solution. Our solution is to make use
of a dummy transition, which works like this:

page 49 of 101

- presume we have 3 return statements (which of course are modeled as transitions): rl, r2
and r3

- 11, r2 and r3 share an output place connected as input place to a dummy transition
- the dummy transition outputs to the final place of the subnet

As the name suggests, the dummy transition does not do a thing, but collecting a token
from one of the return statements and putting it out to the final place of the subnet. Which
return statement is chosen depends on how the program branches.

The for .. in statement

OA‘ter for.in

hetare for.in

check remaining
items

) O

‘or loop action for loop action
Hlustration 17: For .. in statement

This Python construct allows program code to be executed for a series of items. After
entering the net, we distinguish two situations:

1. There are remaining items in the series
2 The body of the for .. in statement is initiated

2 After the code in the body has been executed, we return (again) to the check for
remaining items

2. There are no remaining items in the series
2 A token is put in the final place of the for .. in-net

Each time, when checking for remaining items (that is, upon initiation of the for .. in loop,
or, after an iteration of the loop), Python shrinks the list of remaining items by one item.
This implies that this loop will always end (even if there is no data provided). We do not
model this “shrinking” explicitly. As our testing methods are non deterministic testers, we
know that during the testing of this, this loop will finish terminate (and that all both cases
will be tested).

page 50 of 101

The pass statement

This statement does not do anything; it is used to fill empty bodies, because empty bodies
might be disallowed by certain implementations. This can be modeled as a single transition,
(a dummy) or just be left out, or as single transition.

The while statement

hefore while after while

action 2 action 1
Hlustration 18: While statement

This statement is almost identical to the for .. in statement, with one exception: the for .. in
statement is executed for a series of items, while the while loop is executed as long as
certain condition holds. After initiating the while loop, we distinguish 2 situations:

1. The while condition holds

1. The body of the while loop is initiated

2. After the body of the while loop has been executed, the loop is reinitiated
2. The while condition does not hold

1. A token is put in the final place of the while-net

Just as with the for .. in statement, the while statement is tested non deterministically. The
same guarantees apply here.

page 51 of 101

A3. SWAP server Petri nets

1. Source code models

Level 1: system overview

EdLveb

Level 2: SWAP session view

Start

L0

StartSession

GetitvorkgroupStorag Login
e

CeleteChjects

EtLargeProperty

Anather session

EndSession

page 52 of 101

Level 3: CreateFolder

specify inputdata encode basetd fields

Level 3: CreateObject

specify inputdata encode basebd fields

Level 3: DeleteObjects

SOAP parsing

SOAP parsing

SOAP parsing

I

shecify inputdata

SOMP ok

throwye S04AP
exception

Terminate call

SOAP transmit soap_CreasteObject

throw S04AP
exception

Terminate call

SOAP transmit

soap_CresteObject

throw SOLP
exception

Terminate cal

¥

(r——»

]

SOAP transmit

zoap_DeleteChjects

page 53 of 101

Level 3: GetFolderList

SOAP parsing

\ Pl i S
4.-0 S .w..=©—r >

specify inputdata throw SOLP Terminate cal
exception

SOMP ok

0[]

SOAP transmit soap_GetFolderList

Level 3: GetLargeProperty

Terminate call

SOAP parsing

throwe SOAP
exception

Save File

specify inputdsta

SOAP transmit soap_GetlargePrope

Level 3: GetObject

SOAP parsing

throw SOAP
exception

decode bazebd fields

specify inputdata Terminate call

SOAP transmit F0ap_GetObject

Level 3: GetWorkgroupStorage

page 54 of 101

SOAP parsing

L .G

throse SOLP Terminate call
exception

specity inputdata

S LY

SOAP transmit soap_GetWorkgroup
<

Y

Level 3: UpdateObject

SOAP parsing

S

specify inputdata throw SOLP Terminate cal
exception
SOAF ok
¥
S0AP transmit soap_UpdateChject

page 55 of 101

Level 4: soap_CreateFolder

check for specified
parse input entry and types

instantiste rezponse . ot (entry
item .

start & nesw session

check for value
copy lizt of propeHies

alue =et empty container =pegified
speciff class

create empty
properisslist

=t valued container
for each property

clazs
remaip
erties
o o copy single property
i emsAning in @ nevy list of
F, propetties properties
property of type intialize and fill
CLASS nevwFolder ohjiect
commit newwFolder
object
roperty of type set values
F. PR_DISPLAY _NAME
property of type =%
COMMEMT
check for errors
s#t values inttiate except
E

faormulate response
ors

O

(redformulate
rEsponse

return response

page 56 of 101

Level 4: soap_CreateObject

parse input

(i——

tem

start & new session

check propetties ‘

creste neswy
serverobject

instartiste response

copy list of properties

check for specified
propetties and type

properies

compile response

check for specified
propetties

specified

spegified

copysingle property
@ newy list of
properies

-l
]

F 3

create empty list of

propery
not of properties
propepty of Shing type
string type orkey 1=
and hey = "PR_HEILL assign to zerverabject
"PR_¥BILL _MESSSE
_MEFSAG E_RLOB_ O—p
E_BUOB_ e . I
' zet empty response
[rope;
. valug'=
UnictcdeTy commit akject
i e
remafning
properties notjok —bO—b
check property value ’ sel responze ohjec
property caonvert value to latin-
wirke to stream e = 1 and assign to
Unicoie]y serverakject
e
check far commit ok

4 =y
HEGHRFOT

check stream
no

e

propetties

o

o —

4

check for remaining
properies

page 57 of 101

Level 4: soap_DeleteObjects

start a nevw essian

check for objectld=s
and type of objectids

Y

L
s

check far objectids

parse input abije

Sh

3
ified speci

d

B
'

not
(objectdids P Ct.ﬁ'dds
shegfied e

d of Li'aSTT f convert all objectids
AtTypey =Y to strings

ohjectids

creste empty list
called ohjectlds

if objectlds specified
ohjectlds

convert specified
objectld to string and
make a list of that

set messages OK

faor each ohjectld

add result to
response

zet code and
Messages

zpecified ©

check rc

delete remains
zet messages not Ok

I

farmulate responze

imvake new
resultentry

check far deletion

~
]

zet code and
Messages

page 58 of 101

Level 4: soap_GetFolderList

hrovese input for

start a new session ACLE values
heck options
parse input instantia_te response
item FErmEHning
options
INCLLDE
ACLS key

COMPOSE FESpONSEe
ohject

D-O >
return response assign listacls
object n
remSgning
options

CK - Od -
lizt subfolders of determine
specified parentfolder parentfalder

page 59 of 101

Level 4: soap_GetLargeProperty

start & new session impart options check options

Femgining

parse input instantiste response
item

et notifs

check for remaining
options

a2
=5

creste new
zerverabject in
readmaode

open & nesw stream

FERUATOOITY check prewrite £

if presyrite

rite:

check prewrite read

/'

write streamchunk

Wrte preverite

hasebd encodings

I

rermaining data

O @

COMPOSE FESHONSE return response
object ohject

page 60 of 101

Level 4: soap_GetObject

start @ new session impott options

parse input instantiste response
ohject

Eoan
OhjectClasshaps for

empty response
specified class

entry [/ =zet temclass

set lictacls

= r
spegified SRecHigd =&t objectProphaps
to default class

extend response tem creste e
weith properties serverobject

=set ohjectProphaps
to specified class

key = key =
T INCLUDEACLS MOCOMTERMT ©

check gptions

np
spedified
key given

=set nocontent

check head of acl list

check for listacls

get properties of
ohjectProphaps

update response tem

et object acl

check for nocorntent

listaci= not
spedified

Fheck ohject acl
initialize contentslist

check for contertslist

[
[

initialize acls

set fal

set folde

=&t folder
ohject

empt:

ceracl

racls to
i

acls to
acls

=et class property to
temclass
check for temclass

set class property to
defautt

[

update response tem

check nRows

extend contentsList

©

=pecified

break

v
L

[
[

finalize response item

O

page 61 of 101

Level 4: soap_GetWorkgroupStorage

instantiste response
item

parse input

append

versioninformation to

response

return response item

check serverversion
in keys

e check for remaining
T keys
; no keys
COMPOSE Fesponse n;r SasIEn FEmgninG
itemn
¥
check session =t O: -t
response . intialize sess=ion
m seszipn OH read put in options
check far
weaitfornotificationopti
no checkremaining users
[§
LSErs

remajring
LFers

extend list of users

catch specified user

X

set waiting message

check t

X

initiate rew @

[]
A

o, users
T zpecitied
check for specified initiate list of users
USErs

page 62 of 101

Level 4: UpdateObject

check input for

start & nevy session properties
proertiss ot
oy ropetties
[i Eﬁin and
QHASYRE it e

prarse input instantiste response ’ - check input for
object assign list properties

nothings

et read mods check properties

- single property of
' E_BLOBE_W type ‘

o -t creste empty list - -

set write mods place property in

art & new server
session commit stream

pro_per‘t'y of . - .

wyrite chunks to

remaining
properties

check co

|
&
©

check commit result
set Swaprc

k property value *

i

unicpclastope
progerty

=et object to latin-1
encoding
- S,

lesve encoding ,._.

check swaprc check needscommit

et SUWAP reply CoOmpose response
ohject

remowve serverobject

commit

return response

page 63 of 101

Level 5: list subfolders

Level 5: set waiting message

O

The level 5 models are “fake” models. The given Petri nets are sound workflow nets that do
not do anything. This is because the level 5 calls are actually components of the
Exchange4Linux server backend that are used by SWAP. Their verification is not in the
scope of this research and thus they'll be considered flawless (hence the sound workflow
nets).

2. Filtered model

Not all subnets will or can be reduced. Only those we reduced will be mentioned here; the
ones that can not be reduced are equivalent to those we distilled from the source code.

Level 4: soap_CreateFolder

page 64 of 101

check for specified
entry and types

check for value

llreate empty
for each property propertieslist

copy single property
in & ness list of
properties

check for errors

property of type
COMMEMT

initiate except

(relformulate
response

return response

page 65 of 101

Level 4: soap_CreateObject

check for specified
properties and type

I properties
—— nict

@‘—‘_f speditied or

nct o
listtype
ropert check for specified
specified properies
. nathing
— Py single property spedgified
@ neswy list of
properties
. create new
check properties serverobject
property create empty list of
nat of properties
Heing type
or kgy 1=
"PR_HEILL assign to serverohject
_MESSAE
E_BLOB_ . O—b et empty respo
L f 3
propel
valug'l=
UnigadeTy commit object
i pe
remsning
properties nat)ak
check property value ‘
property convert value to latin-
slUe = 1 and assign to
Unicothely serverohbject
pe
. check for commit ok
F 3
¥
C_/ = treaif-roh-by ,/_/'O
check stream o
no strEmmgk
[R=Tas 13
properties

_____-———"/f
check for remaining
properties

page 66 of 101

Level 4: soap_DeleteObjects

for each objectid

add result to
response

check for objectids
and type of ohjectlds

®

check for ohjectids

ohjechds objectids
spentified specifted

convert all objectlds

if ohjectlds specified
ohjectlds

convert specified
ohjectld to string and
make & list of that

et meszages OH

zet code and
MESSaYes

specified ©

st messages not OK

check for deletion

-l
e

zet codde andd
MESSaYEs

delete remains

page 67 of 101

Level 4: soap_GetfolderList

Y

check options

IMCLLIDE
AL key

list subfolders of
specified parertfolder

page 68 of 101

Level 4: soap_GetLargeProperty

check options

@ .

import options

remgining

check far remaining
options

check far
propetyMame

check presvrite

readimodify

if priasyrite

wytite prewrite

remmaining data

page 69 of 101

Level 4: soap_GetObject

- key = key = -
S INCLUDEACLS NOCOMTENT T

spedified
sCan key given
JhisctClasshaps for

specified class

=et lictacls

=et nocontent -

Maps fet okbjg
dazs to default class

check head of acl list

check for listacls

=t falderacl
check for nocontent

= not
spedified =et folder acls to

emply

Fheck object acl

=et folder acls to

check for contentslist ohject acls

check nRaws

set class property to
temclass

wclass

=t class property to
default .

page 70 of 101

Level 4: soap_GetWorkgroupStorage

check serverversion
inkeys

remaining
key=

append
versioninformation to
rEsSpOnse

return response item

L .

check for remaining

¥

keys
check session
check far
weaitfornotificationopti wealt ke
an et
remaining users
gusers O ® Q<

nat S

&

Q

remgining set waiting message

opticme

for each user ’ check t

uzeks not
Recified

<> O

check for zpecified

noars

1 mA1

page 71 of 101

Level 4: soap_UpdateObject

=zet read mode check properties

=et write mode

property of
=string type

for each property ‘

¥ key i=
ack serverobject = L=
&
not| ok
b 4)
rerfhening
propgriies

check commit result ‘»

resut ok

k property walue ‘ : II

not ynispded

unichdgs operty
progerty

e @& . \
rem3iging
properties

=et object to latin-1
encoding
- TR

leave encading .,,.

return response

check input for
propeties

check input for
properties

nothi

create emp

place property in list

check commit result

FemEning
propettis

check swaprc check needscommit

cormmit

-of 101

A4. WofLan testing issues

After reducing the to be tested Petri nets, we converted these nets into a flat net. After doing
so, we did a conversion to the WofLan TPN format. A problem occurred; WofLan crashed
upon opening the generated TPN file. The size of the input file seems to be responsible for
this issue.

In order to circumvent this problem we chose to split up the input file in multiple parts. To
be exact, we made for each subnet, a separate Yasper diagram. After converting these
separate Yasper files into classical Petri nets (as there is no hierarchy in these nets, as we
use nets of just one level, we only have to do a XOR2AND conversion), we generated TPN files
from these nets. Some of these files were not readable by WofLan. It turned out that
(converted) PNML files, with as first transition a XOR transition cannot be read by WofLan.
By adding a dummy transition in front of the XOR transition (which has no effect on the
soundness of the whole) this problem was circumvented. After reapplying the conversions,
we acquired files readable by WofLan.

In order to make this way of testing possible, we used a bottom-up approach. We started
testing on the lowest level (the lowest level nets, which are trivial SMWF nets, were not
tested, as their soundness is trivial, as any SMWF net is always sound) and modeled each
sound subnet as a single transition (which of course is sound too).

So, after doing a series of tests, we achieved some nice results.

A5. Gain of the reduction process

By comparing the file size of the filtered and flattened model to the file size of the flattened
non-filtered model, we can get an insight what we gained from the reductions we did. Of
course, all descriptional information is erased from both files, before comparing.

The filtered version has a file size of 177740 bytes, the non-filtered version has a file size of
276396 bytes. This sums up to a reduction of (about) 36%. As, when using automated
checking tools, the coverability graph grows in an exponential way, compared to the size of
the Petri net (or its conversion), we may suspect a serious gain in this reduction.

A6. Manual checking for deadlocks

In order to manually check for deadlocks, we made use of the unfiltered Petri nets and the
program code. This was done by performing these steps:

1. In a Petri net, we identify sensitive points (which is a location where deadlocks related
to data might occur) (branching point by either a XOR transition or conflicting places)
in a Petri net

or,
in the SWAP source code, we identify sensitive points which wait for an event to
happen (that event may be the “arrival” of data)

2. Consider the scenarios that are likely / possible to happen, with relation to a
sensitive point

page 73 of 101

3. Analyze, using the source code, how different scenarios are treated, using the Petri
nets, how this “treatment” branches.

In case of problems, in the third step of the check described above, we have to find a
solution to these issues. This step has to be performed carefully, as changing the program
might introduce new errors. So, for every change proposed, we considered its effects on the
rest of the program and did re-checks where necessary.

Results

After considering the source code, we notice that there is only one construct requiring some
attention. In the soap_GetObject call, there is a “while 1” loop. This loop will only terminate
upon reaching the “else” clause of the embodied if-else statement. This else clause can only
be reached when the environment either does not hand over any more data (the result of a
“get” call is empty) or it keeps on submitting data on which the condition for X holds.

The problematic code:

while 1:
<assignment to variable X, including a poll to the environment>
if <condition on X>
<some non relevant code>
else
break

If the conditions, mentioned above, for breaking the loop are not met, the program would
end up in a deadlock situation.

An optimal solution would be to limit the number of times this loop is fired. In that case, we
still could make use of this “while 1” construct. The code could look like this:

while 1:
if (current =< limit)
<assignment to variable X, including a poll to the environment>
if <condition on X>
<some non relevant code>
else
break
current += 1
else
break

Although this construct is safe, presuming a correct limit is provided, we still have a
problem: how can we know what the limit is? Ideally, the environment would provide us with
the count of items we would be receiving. This cannot be the case here however, as this
would require more changes in the CORBA backend and (most) Exchange4Linux clients.

As we have insight in the number of rows that are provided by the environment, we can
prespecify the proposed limit. Although that is a bit of a solution, it's not 100% safe either.
The problem is that repeatedly polling the environment for data, while there is no data to be
delivered, ends us up in undefined territory (which of course, is bad programming too).

A small patch solves this issue. When polling the environment for data, while there is no
(new!) data to be delivered, there are two scenarios which can happen:

— the same data as before is delivered

page 74 of 101

— no data is delivered

So, by adding a check for these two scenarios, we have a safe solution to this issue. Our
solution looks like this:

limit = <value for limit>
previous = “NoValue”
while 1:

if (current =< limit)
<assignment to variable X, including a poll to the environment>
if (!'=X) or (X==previous)
<exception handle>
if <condition on X>
previous = X
<some non relevant code>
else
<exception handle>
current += 1
else
<exception handle>

This solution is safe. In case one of both cases of repeatedly polling the environment for data
applies, this is detected and an exception in thrown.

while 1

Fack 2

init end

if fcurrent == limit)

e inc current

S

excgption

=gxception=

init body

exception

it (=1 or it =condition on X=
[==previous)

Lllustration 19: Safe Petri net for while-1 loop

page 75 of 101

A7. Performance optimizations

Here we describe a few optimizations to the SWAP architecture. These optimizations can be
considered to be implemented in SWAP, in order to achieve a better performance.

Optimization 1: Client-side validation

When a message is submitted, the SWAP backend (omniORB or the PostGreSQL database)
checks the submitted data for (in)correct information. A number of those checks are rather
trivial, which could easily be done at the client side, even on ultra-thin clients.

For example: suppose we want to submit a new contact (object which contains personal
information) to the database and we enter a misspelled email address (no @, no subdomain,
no top level domain etc). With this simple communication pattern, the whole object,
including the SOAP control data has to be submitted to the server, parsed by the server and
an error has to be replied back to the client. This implies that the whole path for accessing
an object, has to be walked twice, just for generating an error message. We consider this to
be very inefficient. An error like this could've easily been detected at the client side, before
submitting the message.

This technique, which we'll refer to as client-side validation, is one of the important aspects
of the AJAX concept. By doing a client-side validation, we can lower the number of
exchanged messages, including the load on the connection, Like mentioned above, that is
just what we need. There is another gain in applying this technique too: the responsiveness
of client applications will become better, as validation results can almost be generated and
displayed instantly, after submitting a message (which only will be done if the client-side
validation succeeds successfully).

A good thing about this client-side evaluation is, that if we know how the SWAP server
validates incoming information (that does not need any database checks), we can integrate
these checks into our clients, without making any changes to SWAP. Of course, this will
yield a double check for these fields. Without modifying SWAP, the server will still check for
errors on fields we know they'll confirm to the requirements. As these checks do not put a
high load on the server (and because of these checks, the server load will be lower anyhow),
we do not see any problems in using this technique.

Optimization 2: Batched messaging

In case a user wants to do a series of operations at once, doing this in a batched way
usually gives the highest performance. If this is not done in some batched mode, for each
operation, the entire path for setting up a connection, encoding, computing and decoding
has to be walked. By doing as much as possible in a single session, the load on the
connection to the server and the server itself will become better.

With SOAP, this can be done in a fairly easy way. SOAP supports multiple
messages/operations per SOAP message. This implies that in a single session and a single
SOAP envelope, a series of operations can be performed.

There is a drawback to this technique too; we have to take certain failures and problems into
account. In single-operation SOAP messages, if some operation fails, the initiater (usually a
user) receives an error message, acknowledging that the requested operation went wrong.

page 76 of 101

However, when submitting multiple operations at once, an error message could lead to
confusion. For example, depending on how the receiving component for batched messages is
implemented, some parts of the batch that should be computed, after the error occurred,
might not be dealt with. This is a very important aspect (amongst others) to consider before
allowing batched requests. Also, operations depending on earlier operations in a batch
queue may suffer from errors.

For now, NH considers batched messaging as an interesting aspect for future use, but not
interesting for the time being (integration issues)

Optimization 3: Smart data handling

Optimizing the amount of data tripping the wire can be done from the architecture too. By
adjusting the data that is transferred as good as possible to the requesters needs, the
performance can possibly be increased (depending on the difference between the transferred
information and the needed information).

There is always a trade-off point between optimality and generality. More general messages
allow a simple messaging pattern; the drawback is that a requester will, most likely, not get
the exact data requested, but more (or even worse, less) information.

Optimization 4: Message compression

As SWAP messages are sent as SOAP messages, which are always plain text messages, the
right compression technique can reduce the size drastically. Although this is no fix for
redundant message fields (including their values), applying a compression algorithm before
sending out a message (and, of course, upon deflating that same message upon receiving),
can lead to much smaller messages. The drawback of this approach is the higher load
message compressing/decompressing will cause on both the server- and clientside.

AS8. Petri net reduction techniques explained

Technique 1: Subnet substitution

Due to the nature of our Python-to-Petri-net mappings, some constructions appear more
than once. These constructions, which we will refer to as subnets from now on, would be
checked more than once, which may be unnecessary.

In certain cases, we can replace a subnet by a single transition. The following rules apply:
1. The subnet should be sound
2. The initial place of the subnet to be substituted should be safe

An formal definition can be found in [10] (theorem 3, rule 3).

Technique 2: predefined reduction rules

By replacing (sub)nets by simpler variants, we can reduce Petri nets easily to smaller nets.
This subject has been researched [12] and yielded some very useful results. We use results
from this research as distilled in [13].

page 77 of 101

This technique is somewhat similar to the substitution technique. Despite, there is a
difference. For these substitutions, stronger requirements on the non-reduced nets apply.
Although the substitution techniques are more powerful, the use of these predefined
reduction rules is tempting. The gain in applying them is less, but so is the time it costs to
apply them at all. The diagram (next page) shows those techniques.

The reduction rules as depicted in illustration 20 may need some additional explanation. All
these rules apply as depicted, and to “weaker” versions of them (i.e. less incoming or
outgoing arrows). However, they might not apply to stronger versions (more incoming or
outgoing arrows). In case we want to use stronger versions of these rules, we have to check
on their correctness!

Technique 3: parallel transitions

This reduction preserves all the information from the original net in the reduced net, but
makes the net “just smaller” [14]. When applying the parallel transitions reduction, all
transitions with the same input and output places, are merged into a single transition. Of
course, if we have multiple subnets (containing 1 or more transitions), with an identical set
of input and output places, these nets can safely be reduced using this technique.

Technique 4: forced communication pairs

The forced communication pairs reduction is a lossy reduction; not all properties of the
original net will be preserved in the reduced net. The most important property, for the tests
we want to perform on the reduced nets although, is that (possible) deadlocks are preserved
[14]. This implies that this reduction is fine for deadlock testing.

This technique reduces a subnet (often described as a series of communications) to a single
transition. Some constraints apply to this technique. If other transitions communicate with
the subnet between the input and output place(s) of that subnet, this technique cannot be
applied.

page 78 of 101

O =~ <= »(X

A
I\
A4
y s

‘_.—

A0 .

il

i N |
i o .

)10
;

Hllustration 20: Predifined reduction rules

Application strategy

Our greedy strategy looks (as an algorithm, in pseudo-code style) like this:
REDUCE_PETRI_NET (PN)

1 List subnets of PN which can be substituted
2 Replace those subnets by the corresponding substitutions
3 List subnets of PN which can be reduced by the Parallel transitions technique
4 Replace those subnets by the a single transition, while keeping their
input and output places
5 List subnets of PN which can be replaced by equivalents from the reduction
rules

page 79 of 101

6 Replace those subnets by the equivalents of the reduction rules

7 List subnets of PN which can be reduced by the Forced communications
techniques
3 Replace those subnets by a single transition, while keeping their

input and output places

We reckon the fact that this greedy algorithm is not 100% safe. It may happen that a certain
reduction yields a less optimal solution than theoretically possible. If we notice this, during
the reduction of our Petri nets, we will deviate from the proposed algorithm, in order to gain
a more optimal solution than the greedy algorithm would give us. As a reduction is not
absolutely necessary (soundness checks on non-reduced nets checks should give the same
results on reduced nets, if the reduction is done well), we can allow some sloppiness.

A9. Petri net flattening rules

Hierarchical to non-hierarchical:

The net

Before Subnet Subnet After Subnet

with subnet

Subnet transition 1 Subnet transition 2

becomes

oo~

Betfore Subnet Subnet transition 1 Subnet transition 1 After Subnet

This flattened net is bisimilar to the original, hierarchical net.

XOR to non-XOR:

A net with the following fragment (containing a XOR transition)

1 h Destinatio

HKOR (:

Source 2 Destination 2

Source n

page 80 of 101

will be turned into this equivalent

Source 1 HOR N HOR out 1 Destination 1
//ﬁ internal
—.-Q—r place —.-O—r
Source 2 HORIn2 HOR out 2 Destination 2

This partial net is bisimilar to the fragment containing the XOR transition.

A10. SWAP protocol overhead calculations

In a perfect world, not a single protocol would have overhead. In the real world, more (or
even all) protocols have some overhead. Keeping overhead to a minimum is good practice to
ensure maximum performance. In this appendix, we calculate the amount of overhead of the
(initial) SWAP protocol and do some recommendations on how to force back the amount of
protocol overhead.

We will not give a full specification of the overhead of all possible messages. SWAP itself is
not responsible for message overhead, but the underlying CORBA layer is. We will, however,
give some examples proving that message overhead should be taken seriously. And, we will
prove that with SWAP, we can take care of this overhead in a reasonable manner.

We will calculate the overhead for some SWAP calls. This is done by making a SOAP call to
Exchange4Linux, through SWAP, and evaluate the SOAP response. For all polymorphic calls
(those calls can be instanced for multiple purposes or with multiple object types), we only
evaluate a few important calls. After looking at each field in the SOAP response, we judge its
necessity and its size. From our initial analysis, we know that redundant data is transmitted
and we expect some information to be bulky.

For each SOAP message we evaluate, we make a table which mentions each key in the
message. The table is used for checking duplicates. Each request & response message
contains some basic information on the called process and the result of the call. As these
parts of the message are mandatory to the correct working of the system, we will not put
these keys in our tables.

Note: we do not model this table after the structure of the SOAP messages. The hierarchy in
these XML documents is neglected, as this is of no importance to the amount of overhead in
a message.

1. GetWorkgroupStorage (monomorph)

The GetWorkgroupStorage call is used to get information on the store (database) of the
workgroup server. This call can be regarded as an initial call to the system. This call is not
mandatory though; SWAP can be used fully without making a GetWorkgroupStorage call
first.

Request message:

page 81 of 101

Tag/key Comment Duplicate
options

The body of the global GetWorkgroupStorage call is almost empty. There are no duplicates.

RCSQOI’ISC message:

Tag/key Comment Duplicate
Exchange4Linux_SWAP_VERSION_MINO

=~

Exchange4Linux_SWAP_MIN_VERSION_
MINOR

Exchange4Linux_SWAP_MIN_VERSION_
MAJOR

Exchange4Linux_SWAP_VERSION_BUILD

Exchange4Linux_SWAP_MIN_VERSION_
BUILD

Exchange4Linux_SWAP_VERSION_MAJO

=~

Exchange4Linux_SWAP_MIN_VERSION_
RELEASE

Exchange4Linux_SWAP_VERSION_FULL

Exchange4Linux_SWAP_VERSION_RELE
ASE
USERS

This response does not contain any duplicates.

2. GetObject (polymorph)

The GetObject call is used to retrieve any object from the database. The request message for
all types is the same (as only the ID of the requested object has to be put in); the response
message varies per objecttype.

Reguest message (email):

Tag / key Comments Duplicate
storageld
objectld
options

This request message does not contain any duplicates.

Tag / key Comments Duplicate
Objectld
Parentld

page 82 of 101

Tag / key Comments Duplicate

Class Class, ObjectClass, class,
itemclass

Type

PR_CREATION_TIME

PR_LAST_MODIFICATION_TIME

Class

Class, Class, ObjectClass, class,
itemclass

Comment comment, PR COMMENT

Created created

Delivered delivered

Flags flags, PR_MESSAGE_FLAGS

ItemNo

Modified modified

Name name

ObjectClass Class, Class, ObjectClass, class,
itemclass

Parent parent

Serial serial

Status status, PR_MSG_STATUS

Title title, PR_DISPLAY_NAME

Type type

class Class, Class, ObjectClass,
itemclass

comment Comment, PR_COMMENT

created Created

delivered Delivered

flags Flags, PR_MESSAGE_FLAGS

itemclass Class, Class, ObjectClass, class

modified Modified

name Name

parent Parent

seq_no

serial Serial

status Status, PR_MSG_STATUS

title Title, PR_DISPLAY_NAME

type Type

PR_0x36D00102

PR_0x36D10102

PR_0x36D20102

PR_0x36D30102

PR_0x36D40102

PR_0x36D70102

PR_ASSOC_CONTENT_COUNT

page 83 of 101

Tag / key Comments Duplicate
PR_ATTACH_NUM
PR_COMMENT Comment, comment
PR_CONTAINER_CONTENTS
PR_CONTAINER_HIERARCHY
PR_CONTENT_COUNT
PR_CONTENT
PR_CONTENT_UNREAD
PR_DISPLAY_NAME Title, title
PR_FOLDER_ASSOCIATED_CON
TENTS

PR_FOLDER_TYPE
PR_LONGTERM_ENTRYID_FOR
M_TABLE
PR_MAPPING_SIGNATURE
PR_MDB_PROVIDER
PR_MESSAGE_DELIVERY_TIME
PR_MESSAGE_FLAGS Flags, flags
PR_MSG_STATUS Status, status
PR_RECORD_KEY
PR_SEARCH_KEY

PR_STATUS
PR_STORE_ENTRYID
PR_STORE_RECORD_KEY
PR_STORE_SUPPORT_MASK
PR_SUBFOLDERS

PROPNAMES

Objectld

ItemNo

PR_MESSAGE_FLAGS
PR_SUBJECT
PR_SENDER_NAME
PR_MESSAGE_DELIVERY_TIME

Out of 71 items in the message body, 19 of them are duplicates. This implies that the
protocol overhead on the response of the GetObject call for email items is at least 27%. As all
of the items in the message body are key < value pairs, the overhead may grow, depending
on the length of the values of the duplicate keys. If, for example, the length of a duplicate
value is large compared to the rest of the message body, the overhead may become much
worse (theoretically speaking, the overhead may grow up to 99,9%).

Tag/key Comment Duplicate
storageld

objectld
page 84 of 101

Tag/key Duplicate

options

There are no duplicates here.

Response message (note):

Tag/key Duplicate

Objectld

ParentId

Class Class, ObjectClass, class

Type

PR_MESSAGE_SIZE

PR_CREATION_TIME

PR_LAST_MODIFICATION_TI

ME

Class Class, ObjectClass, class,
itemclass

Comment comment, PR_COMMENT

Created created

Delivered delivered

Flags flags, PR_MESSAGE_FLAGS

Itemno

Modified modified

Name name

ObjectClass Class, Class, class, itemclass

Parent parent

Serial serial

Status status, PR_MSG_STATUS,
PR_STATUS

Title title,
PR_DISPLAY_CONVERSATIO
N_TOPIC,
PR_NORMALIZED SUBIJECT,
PR_SUBIJECT,
PR_DISPLAY_NAME

Type type

class Class, Class, ObjectClass,
itemclass

comment Comment, PR_COMMENT

created Created

delivered Delivered

flags Flags, PR_MESSAGE_FLAGS

itemclass Class, Class, ObjectClass, class

page 85 of 101

Tag/key
modified

Comment

Duplicate
Modified

name

Name

Parent

parent

seq_no

serial

Serial

status

Status, PR_MSG_STATUS,
PR_STATUS

title

Title,
PR_DISPLAY_CONVERSATIO
N_TOPIC,
PR_NORMALIZED_SUBIECT,
PR_SUBIJECT,
PR_DISPLAY_NAME

type

Type

PR_0x10800003

PR_0x340F0003

PR_ALTERNATE_RECIPIENT _
ALLOWED

PR_ATTACH_NUM

PR_BODY

PR_CLIENT_SUBMIT_TIME

PR_COMMENT

Comment, comment

PR_CONVERSATION_TOPIC

Title, title,
PR_DISPLAY_NAME,
PR_NORMALIZED_ SUBIJECT,
PR_SUBIJECT

PR_DELETE_AFTER_SUBMIT

PR_DISPLAY_BCC

PR_DISPLAY_CC

PR_DISPLAY_NAME

Title, title,
PR_DISPLAY_CONVERSATIO
N_TOPIC,
PR_NORMALIZED_SUBIJECT,
PR_SUBJECT

PR_DISPLAY_TO

PR_FOLDER_TYPE

PR_HASATTACH

PR_IMPORTANCE

PR_LONGTERM_ENTRYID_FR
OM_TABLE

PR_MAPPING_SIGNATURE

PR_MDB_PROVIDER

PR_MESSAGE_DELIVERY _TI

PR_MESSAGE_DELIVERY_TI

page 86 of 101

Tag/key
ME

Comment

Duplicate
ME

PR_MESSAGE_DELIVERY_TI
ME

PR_MESSAGE_DELIVERY _TI
ME

PR_MESSAGE_FLAGS

Flags, flags

PR_MSG_STATUS

Status, status

PR_NORMALIZED_SUBJECT

Title, title,
PR_DISPLAY_CONVERSATIO
N_TOPIC,
PR_DISPLAY_NAME,
PR_NORMALIZED_SUBIJECT

PR_ORIGINATOR_DELIVERY _
REPORTED_REQUESTED

PR_RECORD_KEY

PR_RTF_COMPRESSED

PR_RTF_IN_SYNC

PR_SEARCH_KEY

PR_SENSITIVITY

PR_STATUS

Status, status

PR_STORE_ENTRYID

PR_STORE_RECORD_KEY

PR_STORE_SUPPORT_MASK

PR_SUBJECT

Title, title,
PR_DISPLAY_CONVERSATIO
N_TOPIC,
PR_DISPLAY_NAME,
PR_SUBIJECT

PR_SUBJECT_PREFIX

MAPI_000046E9 355840x0003

MAPI_000046E9 355860x0003

MAPI_000046E9 355870x0003

MAPI_000046E9 355880x0003

MAPI_000046E9 355890x0003

MAPI_0000E6C1 340490x0003

MAPI_0000E6C1 340510x000B

MAPI_0000E6C1 340540x000B

MAPI_0000E6C1 340620x000B

MAPI_0000E6C1 340640x0003

MAPI_0000E6C1 340720x0003

MAPI_0000E6C1 341300x0003

MAPI_0000E6C1 341320x001E

MAPI_0000E6C1 341440x0040

PROPNAMES

page 87 of 101

Out of 86 items in the body of the message, 22 are duplicates. The minimal overhead

is about 26%.

Response message for a contact:

Tag/key Comment Duplicate

Objectld

Parentld

Class Class, ObjectClass, itemclass,
class

Type Type, type

PR_MESSAGE_SIZE

PR_CREATION_TIME

PR_LAST_MODIFICATION_TI
ME

Class Class, ObjectClass, itemclass,
class

Comment comment

Created created

Delivered delivered

flags Flags

ItemNo

Modified modified

Name

ObjectClassParent

Serial serial

Title title

Type Type, type

class Class, Class, ObjectClass,
itemclass

comment Comment

created Created

delivered Delivered

flags Flags

itemclass Class, Class, ObjectClass, class

modified Modified

name

parent

seq_no

serial Serial

title Title

type Type, Type

PR_0x10800003

page 88 of 101

3. GetFolderList (monomorph)

The GetFolderList call is used to list all the folders in a store. Upon specifying the store
(MORE INFO), all the folders, including the folder hierarchy, are listed.

Request message:

ey/tag Comment Duplicate
storageld
store

There are no duplicates here.

Response message:

Tag/key Comment Duplicate
UID

PARENTUID
CLASS
FolderDepth
DISPLAY_NAME
COMMENT

ACL

There are no duplicates here. This may sound a bit surprising, as the keys in the table
occur multiple times in the response message. This is because the keys are per jfolder keys
(unique per folder). For each key in the specified folder in the GetFolderList request, these
keys are listed (the root folder, called “IPM::SubtreeFolder”, excepted).

4. DeleteObjects (polymorph)

Although the DeleteObjects is polymorph (it can be applied to every type of object, including
folders), the request and response messages always look the same.

Request message:

ey/tag Comment Duplicate
objectlds

There are no duplicates here.

Response message:

ey/tag Comment Duplicate
message
key
message

page 89 of 101

Although the “message” tag appears twice in the response message, the meaning of both is
different. So, there are no duplicates.

Conclusion

Although we did not give a full specification or measurement of the message overhead SWAP
inherited, we see that calls which are formed after the object they are embodying, always
contain a significant amount of overhead. And that is an important aspect of the system
(mainly the Exchange4Linux CORBA layer) which needs to be taken care of.

All. WSDL

Generally speaking, there are multiple ways of opening up a SOAP server to the world. One
way, which is relatively easy, common and fast (and thus often preferred), is to develop a
SOAP server and let the development environment (Microsoft Visual Studio .NET for
example), generate a descriptional file, a so-called WSDL file ,from the source code.

This WSDL file describes and specifies the interface to remote procedures (webservices).
This interface consists of 6 parts:

1. global definitions
types

messages

ports

bindings

2R

services

The first part, the definitions section, describes all the namespaces [15] that are
used/needed to use this WSDL file. These namespaces define several important aspects,
such as (simple) types and messages. Namespaces can be considered as classes which can
be instantiated to make use of the definitions they hold. This makes rapid development for
commonly used things possible.

The second part, the types section, describes how variables should be typed. SOAP can
handle both primitive and complex types. The set of built-in simple types SOAP has are
inherited from XML [16]. This section is used for self-defined types as well (which mostly
exist of simple types).

The third part, the messages section, describes what messages should look like. Here, per
type of message, the names and type of the data fields are specified. These fields can both
be simple type, or instances of complex types.

The fourth part, the porttype section, specifies what messages are used for a (remote stored)
procedure which can be called. Usually, a remote procedure is accessed through a “request”
call and answers as a “response”. Invoking a remote procedure is done through a port; the
port addresses the messages.

The fifth part, the bindings section, augments SOAP actions (which are in fact ports) with
namespaces. This section is used to determine what namespaces are used for the defined
port.

page 90 of 101

The sixth and last part, the service part, specifies what service the WSDL should
communicated with. Or, put differently, the connection to the SOAP server is specified here.

Using a WSDL is not required for using SOAP. This WSDL-less mode, often referred to as the
non-WSDL mode, is not preferred unless absolutely necessary. Using non-WSDL mode
requires much more code to be written and makes the development of SOAP programs
slower and more error prone.

All primitive types, supported in WSDL, are actually the standard types supported by XML.
Different or more complex types can be defined by using these primitives. The table below
lists the XML primitive types.

string Boolean float

double decimal binary

integer nonPositivelnteger negativelnteger
long int short

byte nonNegativelnteger unsignedLong
unsignedInt unsignedShort unsignedByte
positivelnteger date time

Table 6: XML types

Besides these primitive types, WSDL also supports higher level types, which are derived
from object oriented languages. These high level types, always declared as a “complexType”
objects, can be accumulated with additional operators, as the table below shows:

Type Meaning
restriction adds restrictions to the allowed data in the base type
extension adds functionality to a specified base type

Table 7: SOAP complexType extensions

Arrays are supported too. In WSDL, there is a notion of a sequence. This sequence can be
used on any type, including complex types. By specifying a “minOccurs” and “maxOccurs”
value, which can be set to any natural number (taking maxInt into account that is) or
"unbounded”, quite some flexibility is offered [17].

Al12. SOAP error catching: SOAPfault

The SOAP protocol does feature a fault detection mechanism, called the SOAPfault system.
SOAPfault knows the following faults: VersionMismatch, = MustUnderstand,
DataEncodingUnkown, Sender and Receiver. The latter two errors, SOAPfault::Sender and
SOAPfault::Receiver, relate, amongst other errors, to networking errors.
From errors generated by the TCP/IP stack, SOAPfault::Sender and SOAPfault::Receiver can
generate human readable error messages. More information on the SOAP faults can be
acquired from [18].

page 91 of 101

A1l3. Filtering Solutions

Solution 1: creating a new object

A first solution would be to create a new object which contains only the fields that are
required for that type of workgroup object. After composing the new object, we would send
that one out, instead of the class generated from the CORBA object.

1. NewObject = InstanceOf TEMPLATE

2. FOR EACH Attribute IN ReceivedObject

3. IF Attribute IN NewObject

4. FILL IN NewObject VALUE FROM Attribute

With n as the number of attributes in the received object and m as the number of attributes in the
new object, this is a ©(nm) solution, which is not really good. Another drawback of this
solution is that upon creating the new object, the memory load might become quite high,
especially when objects with (binary) attachments are involved.

Solution 2: delete unwanted attributes

For each SOAP message, there is a single Python object which contains all the data (in
key/value pairs) for that message. Python features the possibility to modify instanced
classes. One of the methods of the class modifiers is the “del” method, which enables us to
remove attributes from class instances. By removing all unwanted attributes, an “optimized”
version of the class instance will remain. Sending out that object will render a more compact
SOAP message.

A reason to prefer this solution is that the delete method will be performed in (1) time (so
for the whole object, containing n key/value pairs, this would be performed in ©(n) time) .
The drawback is that we would need to keep up a list of unwanted/unneeded attributes per
(workgroup) objecttype. This results in limited flexibility and is not really pretty.

Solution 3: filter on wanted attributes

By defining, per workgroup objecttype, a set of required attributes, we can filter on these
attributes. As Python is an imperative language, this would lead to a low-performing
solution.

1. FOR EACH Attribute IN PyObj
2. IF NOT (Attribute IN RequiredAttributes)
3. Delete Attribute

The problem with this solution is that for each attribute, we need to check the set of
required attributes. This will not perform very well, as, for n received attributes and m
required attributes, this would result in a ©(nm) solution, because, for each attribute, we
need to check a set of required attributes.

From an architectural point of view, this approach seems acceptable, although the
performance will most likely be bad, especially for objects with a high count of attributes.

page 92 of 101

Verifying automatically generated objects against a predefined set of keys is pretty though,
as we would be using some kind of template.

Python features some constructs we know from functional programming languages (Haskell
for instance) which are programmed to be efficient. The filter function would be very useful
here. Filter is used to filter elements of a list; after applying filter (on a list of length n,
function filter runs in ©(n) time) to a list, only the elements which satisfy a (specified)
predicate will remain. The problem is that this construct only operates on list types; we have
to filter object attributes though. Still, this filter function can be used.

As we cannot just use the filter function, we need to look into a somewhat more complex
solution. Python features a set of operations which can list properties of class instances. The
most common functions for listing class properties are the dir, getmembers and getattr
functions or the __dict__ class built-in property. We decide to go with the __dict__ property.

By making a list of all the attributes in the object, we can filter on any attribute not in the
list of prerequired keys. After making this list, unwanted keys can be removed. All this
operations are done in O(n) time, so this will result in a ©(n) algorithm, which is pretty.

1. AttributeList = LIST OF (Object.Attributes)

2. DeleteList = FILTER (NOT (AttributeList, RequiredAttributes))
3. FOR EACH Item IN DeleteList

4. DELETE Object.ltem

We prefer this solution, because it runs in reasonable time and allows the required
flexibility.

From specification to implementation

The required and generated collection of attributes can be considered as a (mathematical)
set. To remove unwanted attributes from the generated set of attributes, we should compute
the intersection between the required and generated set. As the required attributes set is a
subset of the generated attributes set, we'll end up with an attribute set that is equal to the
required attribute set.

Formally expressed:

R = set of required attributes

G = set of generated attributes

F = set of filtered attributes

R is a subset of G: RSG

F is a subset of G and after finishing, equalto Ri FSGARSFAFZ<R

So, for each message with overhead, we have to compute the filtered set. Neuberger &
Hughes will define these sets.

Program code

This predicate can be used for filtering on unwanted objects. In semi-pseudo code, our

page 93 of 101

program will look like this:
1. AttributeList = Object. dict_.keys()
2. DeleteList = AttributelList - RequiredAttributes
3. FOR Item IN DeletelList if not Item.startswith(” ”)
4. delattr(Object, Item)

This code fragment is a pretty straightforward translation from the pseudo code. The only
important difference is the the second condition for the “FOR” loop, which is necessary as
we would otherwise be deleting class methods too.

page 94 of 101

B1. Vocabulary / abbreviations

The list hereunder contains the definition of less common words and abbreviations used
throughout the thesis document. The words / abbreviations explained below are, in the text,
once per word / abbreviation, marked in blue. The list is sorted in an alphabetical order.

Apache HTTP: open source webserver by the Apache foundation
BASEG64: a method to denote binary codes / strings in ASCII

bisimulation: a relation between two or more transition systems; if the bisimulation holds,
the systems should behave perfectly alike

branching bisimulation: a stronger variant of the bisimulation equivalence in which for all
actions in the first system, there is a corresponding action in the second system

branching point: a certain part in a programs code where the chosen path is determined by a
case distinction

colored Petri net: a variant on regular Petri nets, where data can play a role
commit: making a set of tentative changes (here, to the database) permanent
CORBA: stands for Common Object Request Broker Architecture, a middleware solution

CVS: stands for Concurrent Versions System, a filesystem like environment which can
intelligently deal with different versions of (non-binary) files, mainly used in software
development

data abstraction: replacing the outcome of a test by a nondeterministic choice when
converting programming (Python) code into a Petri net

DOM: stands for Domain Object Model, an object oriented approach of HTML and XML
deadlock-free: a system, program, or model, where no deadlock situation can occur

groupware: multi-user environment, used for storing and accessing centralized
organizational data such as emails, agendas, notes, task lists and logbooks

guard: a condition (often on data, often expressed as a predicate) which can be either true or
false

Hierchical Petri net: a Petri net in which transitions can be Petri nets too
HordeMail: an IMAP webmail client developed with PHP

HTTP: stands for HyperText Transfer Protocol, a communication protocol for communication
between webbrowsers and webservers

IMAP: stands for Internet Message Access Protocol, a centralized manner of storing email on
a server, using a live connection to view email items

inert: no changes are inflicted by a series of transactions

Java: a platform independent, object oriented programming language, originally designed by
the SUN company, prominent for webapplications

page 95 of 101

JAX: a Java SOAP implementation
LaQusSo: a research facility of TU/e
Linux: an open source, POSIX compatible, operating system, created by Linus Torvalds

mCRL2: stands for micro CRL, version 2, a process algebraic language which can take data
into account

Microsoft Exchange: Microsofts (market leading) groupware server

middleware: software that stands between applications or application layers, often used for
converting communication or data between distinct native formats

namespace: set of variables (possibly including their values / definitions)
NuSOAP: a PHP SOAP implementation

OmniORB: an open source CORBA object request broker (middleware layer), developed in
C++

Open source: way of software distribution where the software's source code is freely
accessible

overhead: in our case, the part of a message which is not part of the required data

PHP: stands for PHP HyperText Processor, a scripting language originally intended for simple
webapplications; nowadays it's an object oriented programming language, mainly used on
the internet

PNML: Yasper's native fileformat

POSIX: stands for Portable Operating-System Interface for uniX, a standard for interfacing to
UNIX and UNIX like systems (often referred to as *nix) systems

PostgreSQL: a relational database system using the SQL language for access

Python: originally an object oriented scripting language, nowadays a prominent language for
commercial and scientific software

rollback: making a database mutation ((partial) commit) undone

RPC: stands for Remote Procedure Call, a messaging technique in which objects restored
remotely are accessed through a predefined interface and protocol

Scalix: a groupware solution by the SCALIX company

SMWEF: stands for StateMachine Workflow Net, a Petri net in which every transition has
exactly one incoming arc and one outgoing arc. Also, each place has one incoming arc and
one outgoing arc, except for the initial and final place; any SMWF is sound

SOAP: stands for Simple Object Access Protocol, a XML-based protocol for sending messages
over a HTTP network

SOAP message body: the most important part of a SOAP message, stored in a SOAP
envelope, usually used for storing the request or response data

SOAP message envelope: the object containing a SOAP message

SOAP message header: a part of a SOAP message, stored in a SOAP envelope, giving

page 96 of 101

information on the SOAP message and its environment; sometimes “misused” to store data
too

Squirrelmail: an IMAP webmail client developed with PHP

SWAP: stands for Simple Workgroup Access Protocol, designed and implemented by
Neubergher & Hughes to allow easy access to Exchange4Linux (and possible other
workgroup servers)

tag: a variable container in both HTML and XML

TCP: stands for Transaction Control Protocol, part of the TCP/IP protocol responsible for the
transmission of data packets and their checksumming

W3C: stands for World Wide Web consortium, an alliance responsible for standardizing web
technologies

webservice: a service or application which can be accessed over a network (the internet, in
most cases)

whitepaper: a decision paper shorty documenting a solution of a design
WofLan: stands for WorkFlowAnalyzer, a Petri net analyzer by TU/e

WSDL: stands for Web Services Description Language, a XML document describing the
interface to a web service

XML: stands for extensible Markup Language, a both human- and machine readable
language that allows to a structured markup for documents

XML RPC: a remote procedure call protocol using XML as markup language

XOR transition: a Petri net construct used by Yasper, which represents a single place with
multiple (zero or more) incoming arcs and multiple (zero ore more) outgoing arcs; often used
to model branching points

XSLT: stands for XML StyleSheet, allows the rewriting of XML documents in an automated
way by following the StyleSheet

Yasper: stands for Yet Another Smart Process EditoR, a Petri net modelling and simulation
program by TU/e and Deloitte

Zimbra collaboration suite: a groupware solution by the Zimbra company

ZSI: stands for Zolera SOAP Implementation, a SOAP implementation by the Zolera company
(bankrupt), nowadays an open source SourceForge project

B2. References

[1] http://www.w3.0rg/TR/soap/

[2] http:/ /www.w3.0rg/TR/soap/

[3] http: / /www.w3.org/TR/soapl2-partl /#soapfault

[4] Branching time and abastraction in bisimulation semantics, dJournal of the ACM,
43(3):555—600, by R.J. van Glabbeek and W.P. Weijland, [ARGIWe96]

[5] http: //www.w3.0org/TR/wsdl

page 97 of 101

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part1/#soapfault
http://www.w3.org/TR/soap/

[6] http://en.wikipedia.org/wiki/Base_64

[7] http://www.capeclear.com
[8] http://www.ietf.org /rfc/rfc2045.txt
[9] SWAP whitepaper: http://www.neuberger-hughes.com/pub/swap/swap-ref.pdf

[10] Workflow verification: Finding control-flow errors using Petri net based techniques by
W.M.P. van der Aalst

[11] The modeling, analysis and synthesis of communication protocols by Siyi Terry Dong.
[DON83]

[12] Petri nets properties, analysis and applications by T. Murata (IEEE vol. 77 no. 4 1989),
[MURS89]

[13] Verification of WF-nets by H.M.W. Verbeek

[14] A compact Petri net representation for concurrent programs by Matthew B.Dwyer,
university of Massachusetts

[16] http://www.dpawson.co.uk/xsl/xslvocab.html
[17] http: / /www.developer.com/services/article.php /10928 1602051
[18] http: //www.w3.org/TR/soapl2-partl /#soapfault

B3. Links

These links refer to web pages containing information on the subjects we dealt with in this
thesis. Interested readers may want to visit these pages to gather more information on a
certain subject. This set is not complete, nor intended to be complete. Despite this, the
information on these links will give a very good impression on the matters discussed.

Neubergher & Hughes: http://www.n-h.net/
Nlcom: http://www.nlcom.nl

SOAP (brief): http://en.wikipedia.org/wiki/SOAP
SOAP (in detail): http://www.w3.org/TR/soap/
WSDL (brief): http: //en.wikipedia.org/wiki/WSDL
WSDL (in detail): http: //www.w3.org/TR/wsdl
ZSI: http://pywebsvces.sourceforge.net/zsi.html
NuSOAP: http://dietrich.ganx4.com/soapx4/
Python: http://www.python.org/

PHP: http://www.php.net/

Exchange4Linux: http://www.exchange4linux.com/
Zimbra: http://www.zimbra.com/

page 98 of 101

http://www.zimbra.com/
http://www.exchange4linux.com/
http://www.php.net/
http://www.python.org/
http://dietrich.ganx4.com/soapx4/
http://pywebsvcs.sourceforge.net/zsi.html
http://www.w3.org/TR/wsdl
http://en.wikipedia.org/wiki/WSDL
http://www.w3.org/TR/soap/
http://en.wikipedia.org/wiki/SOAP
http://www.nlcom.nl/
http://www.n-h.net/
http://www.w3.org/TR/soap12-part1/#soapfault
http://www.developer.com/services/article.php/10928_1602051
http://www.dpawson.co.uk/xsl/xslvocab.html
http://www.google.nl/url?sa=X&start=2&oi=define&q=http://www.dpawson.co.uk/xsl/xslvocab.htm
http://www.neuberger-hughes.com/pub/swap/swap-ref.pdf
http://www.ietf.org/rfc/rfc2045.txt
http://en.wikipedia.org/wiki/Base_64

Scalix: http://www.scalix.com/

Colamo: http://www.colamo.org/

Petri nets (and related subjects): http: //www.informatik.uni-hamburg.de/TGI/PetriNets /
Well behaving modules: http://ieeexplore.ieee.org/iel5/373/5730/00218219.pdf#search=%22wbm%20petri%22
Yasper: http://www.yasper.org/

WOofLAN: http://is.tm.tue.nl/research /woflan.htm

PNML page: http://wwwis.win.tue.nl/~jmw/pnml

page 99 of 101

http://wwwis.win.tue.nl/~jmw/pnml/
http://is.tm.tue.nl/research/woflan.htm
http://www.yasper.org/
http://ieeexplore.ieee.org/iel5/373/5730/00218219.pdf#search="wbm petri"
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.colamo.org/
http://www.scalix.com/

B4. Time scheme

Week Planned

S: SOAP, WSDL, Python, ZSI, Apache Axis,
pache Ant, Subversion, AJAX, PHP, PHP-
SOAP, NuSOAP

Actual

S: SOAP, WSDL, Python, ZSI, Apache Axis,
Apache Ant, Subversion, AJAX, PHP, PHP-
SOAP, NuSOAP

S: SOAP, WSDL, Python, ZSI, Apache Axis,
pache Ant, Subversion, AJAX, PHP, PHP-
SOAP, NuSOAP

S: SOAP, WSDL, Python, ZSI, Apache Axis,
\Apache Ant, Subversion, AJAX, PHP, PHP-
SOAP, NuSOAP

S: SOAP, WSDL, Python, ZSI, Apache Axis,
pache Ant, Subversion, AJAX, PHP, PHP-
SOAP, NuSOAP

S: SOAP, WSDL, Python, ZSI, Apache Axis,
\Apache Ant, Subversion, AJAX, PHP, PHP-
SOAP, NuSOAP

S: SOAP, WSDL, Python, ZSI, Apache Axis,
pache Ant, Subversion, AJAX, PHP, PHP-
SOAP, NuSOAP, Ex
changExchange4Linuxinux, OmniORB, SWAP

S: SOAP, WSDL, Python, ZSI, Apache Axis,
\Apache Ant, Subversion, AJAX, PHP, PHP-
SOAP, NuSOAP

S: Exchange4Linux, SWAP

S: Exchange4Linux, SWAP

: PHP, NuSOAP, S: SWAP servercode

E: PHP, NuSOAP

S: SWAP servercode, Code to Petri net
conversion techniques

S: SWAP servercode, Code to Petri net
conversion techniques, E: PHP, NuSOAP

: NuSOAP based SWAP client

I: NuSOAP based SWAP client

: NuSOAP based SWAP client

I: NuSOAP based SWAP client

: NuSOAP based SWAP client

I: SWAP servercode to Petri net conversions

: SWAP servercode to Petri net conversions

I: SWAP servercode to Petri net conversions

: Petri net optimizations, E: Python, ZSI

I: Petri net optimizations

: Python, ZSI

[E: Python, ZSI

: Petri net optimizations, E: Python, ZSI,
SDL

I: Petri net optimizations, E: Python, ZSI,
'WSDL

: Python SWAP client, T: SWAP message
overheads

I: Python SWAP client, T: SWAP message
overheads

S: Zimbra, mCRL2

S: Zimbra, mCRL2

S: Zimbra, mCRL2, I: PNML mCRL2
conversions

S: Zimbra, mCRL2, I: PNML mCRL2
conversions

18 : Petri net optimizations I: Petri net optimizations
79 S: WofLan, I: PNML TPN conversions S: WofLan, I: PNML TPN conversions
0 I: SWAP WofLan testing I: Petri net optimizations, SWAP WofLan
testing
1 : SWAP WofLan testing, Zimbra WSDL I: SWAP WofLan testing, Zimbra WSDL, S:
7SI/ WSDL
2 D: Writing of thesis D: Writing of thesis
3 D: Writing of thesis D: Writing of thesis

page 100 of 101

Week Planned
S: SWAP architecture, I. SWAP architecture
adjustments

Actual
S: SWAP architecture, I: SWAP architecture
adjustments

: SWAP architecture adjustments

I: SWAP architecture adjustments

[: Zimbra WSDL, WSDL to Python
conversions

I: Zimbra WSDL, WSDL to Python
conversions, ZSI modifications

: Writing of thesis

ID: Writing of thesis

: Writing of thesis

ID: Writing of thesis

: Zimbra WSDL, WSDL to Python
conversions, ZSI modifications

I: Zimbra WSDL, WSDL to Python
conversions, ZSI modifications

: Python/ZSI Zimbra client

I: Python/ZSI Zimbra client

: Python/ZSI Zimbra client

I: Python/ZSI Zimbra client

: Python/ZSI Zimbra client

I: Python/ZSI Zimbra client

: Zimbra ZSI client, ZSI modifications

I: Zimbra ZSI client, ZSI modifications

: Zimbra ZSI client, ZSI modifications

I: Zimbra ZSI client, ZSI modifications

: Writing of thesis

ID: Writing of thesis

: Writing of thesis

D: Writing of thesis

: Writing of thesis

ID: Writing of thesis

: Writing of thesis, I: Zimbra ZSI client, ZSI
odifications

ID: Writing of thesis, I: Zimbra ZSI client, ZSI
modifications

: Writing of thesis, I: Zimbra ZSI client, ZSI
odifications

ID: Writing of thesis, I: Zimbra ZSI client, ZSI
modifications

: Documentation for NH (ZSI, NuSOAP),
roundup

ID: Writing of thesis, Documentation for NH

41 D: Writing of thesis, Documentation for NH

ID: Writing of thesis, Documentation for NH

Legend:
D: Documentation

I: Implementation (action)
E: Experiment

S: Study

page 101 of 101

	Reviewing SWAP
	Introduction
	Summary
	Index
	1. Abstract
	1.1 Exchange4Linux
	1.2 SOAP
	1.3 SWAP Implementation

	2. Verifying SWAP
	2.1 Requirements
	Requirement 2.1.1: stability
	Subrequirement 2.1.1.1: Communication error handling
	Subrequirement 2.1.1.2: Checking for deadlocks
	Requirement 2.1.2: platform independency
	Requirement 2.1.3: integration with existing products
	Subrequirement 2.1.3.1: PHP
	Subrequirement 2.1.3.2: Zimbra collaboration suite

	Requirement 2.1.4: high performance
	Subrequirement 2.1.4.1: minimal overhead
	Subrequirement 2.1.4.2: smart architecture

	2.2 Modeling decisions
	2.2.1 Modeling complications
	2.2.2 Modeling and verification software

	3. Putting the tests in practice
	3.1 Stability testing
	3.1.1 Checking for deadlocks
	Explanation of the architecture, related to modeling

	3.1.2 Mapping source code to Petri net constructs
	3.1.3 Building the source code model
	3.1.4 Filtering the source code model
	Reductions in practice

	3.1.5 Flattening the model
	3.1.6 Soundness check - WofLan specification checking
	3.1.7 Manual checking for deadlocks
	3.2 Platform independency

	3.4 Performance testing
	3.4.1 Overhead calculations
	Optimizing data retrieving calls
	Integration

	4. Putting SWAP in practice
	4.1 SWAP + PHP
	4.1.1 Expected problems
	4.1.2 NuSOAP and WSDL
	4.1.3 SWAP functions
	4.1.4 Encountered SWAP problems
	Problem 1: BASE64 decoding error
	Problem 2: typing errors
	ComplexType types
	AnyType types

	4.1.5 Conclusion on PHP/NuSOAP with SWAP
	4.1.6 Some PHP/NuSOAP (SWAP) code example

	4.2 Zimbra collaboration suite and SWAP
	4.2.1 Expected problems
	4.2.2 ZSI and WSDL
	4.2.3 Exploiting ZSIs abilities
	Problem 1. SOAP header objects are not rendered
	Problem 2. Tag attributes are not rendered
	Problem 3. Defect SOAP tags
	Problem 4. Namespaces in header and body tags
	Problem 5

	4.2.4 Conclusion on ZSI with Zimbra/JAX

	5. Conclusions
	Appendices.
	A1. Mapping source code to Petri nets
	A2. The reasoning behind program code to Petri net conversions
	The if statement
	The if .. else statement
	The if .. elif .. else statement
	The try .. except statement
	Return statement
	The for .. in statement
	The pass statement
	The while statement

	A3. SWAP server Petri nets
	1. Source code models
	2. Filtered model

	
A4. WofLan testing issues
	A5. Gain of the reduction process
	A6. Manual checking for deadlocks
	Results

	A7. Performance optimizations
	Optimization 1: Client-side validation
	Optimization 2: Batched messaging
	Optimization 3: Smart data handling
	Optimization 4: Message compression

	A8. Petri net reduction techniques explained
	Technique 1: Subnet substitution
	Technique 2: predefined reduction rules
	Technique 3: parallel transitions
	Technique 4: forced communication pairs
	
Application strategy

	A9. Petri net flattening rules
	Hierarchical to non-hierarchical:
	XOR to non-XOR:

	A10. SWAP protocol overhead calculations
	1. GetWorkgroupStorage (monomorph)
	2. GetObject (polymorph)
	3. GetFolderList (monomorph)
	4. DeleteObjects (polymorph)
	Conclusion

	A11. WSDL
	A12. SOAP error catching: SOAPfault
	A13. Filtering Solutions
	Solution 1: creating a new object
	Solution 2: delete unwanted attributes
	Solution 3: filter on wanted attributes
	From specification to implementation
	Program code

	B1. Vocabulary / abbreviations
	B2. References
	B3. Links
	B4. Time scheme

