EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Predictions in information systems
a process mining perspective

Crooy, R.A.
Award date:
2008

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9a8ab892-8116-45e8-a02c-ce98a36692c4

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

Predictions in Information
Systems

a process mining perspective

Ronald Crooy, R.A.Crooy@gmail.com

November 10, 2008

Master’s thesis

Supervisors: prof.dr.ir. Wil van der Aalst
dr.ir. Boudewijn van Dongen
Referee: dr.ir. Hajo Reijers

for my anonymous reviewer

Abstract

Most part of our lives we have to wait for something or someone, and although
waiting is inevitable, it would be a big improvement if we knew how long we needed to
wait. Most commonly we wait for some process to end, for example for the payment
of an insurance claim. Not only do we always have to wait for the process to end,
we are also eager to know the outcome of the process. If our insurance company is
able to tell us in advance that it is very likely that our claim is be accepted in 2-3
weeks, it could make our waiting less of a burden. The organizations we deal with
are supported by information systems, which store a great deal of information. Using
all of this information it is possible to give a better prediction on e.g. our remaining
waiting time. Many obstacles exist in giving such a better prediction, such as privacy
laws or the size and complexity of a process.

In this thesis we describe a prediction method developed in the context of process
mining.This prediction method uses non-parametric regression in order to make pre-
dictions on the total remaining cycle time, the remaining cycle time until a certain
activity and the number of occurrences of an activity. The prediction method does
this with as little assumptions as possible, using a mix of continuous and (un)ordered
discrete data. As is customary in process mining, the prediction method uses an
event-log to derive all information needed for the predictions. The prediction method
described has been implemented as a plugin for ProM, a process mining framework.

In order to validate the method, a case study was performed using a case taken
from practice. The case study shows that the prediction method we describe performs
better than the average based predictor, which is a very simple predictor that bases a
prediction on the average remaining cycle time. Furthermore, the prediction method
was tested in a number of simulations. The results of these simulations give some
insights into the prediction method and shows that the prediction method performs
similar or better than the average based predictor, given that the prediction method
can use the best set of predictor variables.

In conclusion, we found that the non-parametric prediction has a good perfor-
mance, and is easy to apply to any process without pre-existing knowledge on the
underlying process.

Contents

1 Introduction
1.1 Theproblem
1.2 Requirements for a prediction methodo
1.3 Approach
1.4 Non-parametric regression
1.5 Process Miningo
1.6 ProM/Process Mining Group
1.7 Outline.

2 Related Work
2.1 Problem related work oo
2.2 Related work using simulations for predictions
2.3 Related work using stochastics for predictions
2.4 Related work using multiple linear regression for predictions
2.5 Predictions using a combination of techniques

2.6 Predictions using nonparametric regression L.

2.7 Approach

3 Non-parametric regression
3.1 The running example
3.2 Preliminaries
3.3 Thebasicidea
3.4 The continuous weight function 0L
3.5 The discrete weight function L.

3.6 Bandwidth variable optimization

4 Non-parametric regression as a predictor

© oo N O O

10
11
11

12
12
13
13
14
14
15
15

17
17
19
19
21
24
27

31

4.1 The running exampleo

4.2 Preliminaries L
4.3 Cases, logs, measurements
4.4 Predictor variables o
4.5 Response variables oo
4.6 Summary of the prediction method
Validation
5.1 Casestudy
5.1.1 Experiment setupo
5.1.2 Total remaining cycle time prediction
5.1.3 Remaining cycle time until 07212 Hertaxeren” prediction
5.1.4 Prediction of the occurrence of “0Z12 Hertaxeren”
5.1.5 Conclusion of the case study
5.2 Simulations
5.2.1 Hypothesis 1
5.2.2 Hypothesis2
5.2.3 Hypothesis 3
5.3 Summary of the case study and the simulations

The software

6.1 Introductiono
6.2 Programming environment Lo
6.3 The prediction plugin L
6.3.1 Limitations and design choices
6.3.2 Architecture

7 Future work

41
41
41
42
49
92
o6
o7
57
72
76
81

82
82
82
84
87
88

91

8 Conclusion 93
9 Appendix A : Experiment setup ii
10 Appendix B : CPNTools Simulation models viii
11 Appendix C : Process Model based upon the log of the Case Study XV

12 Appendix D : Bandwidth values of the nonparametric prediction of the
total remaining cycle time using attributes of the Case Study xvii

13 Appendix E : Bandwidth values of the nonparametric prediction of the
occurrence of ?0Z12 Hertaxeren” using occurrences of the Case Study xvii

14 Appendix F : Bandwidth values of the nonparametric prediction of the
occurrence of ”0Z12 Hertaxeren” using attributes of the Case Study xix

15 Appendix G: The events for cases 1 to 4 of the running example xix

1 Introduction

1.1 The problem

“A sure way to irritate people and to put evil thoughts into their heads is to keep them

waiting a long time. This makes them immoral.”
-Friedrich Nietzsche (1844 - 1900).

Most part of our lives we have to wait for something or someone, and although waiting is
inevitable, it would be a big improvement if we knew how long we needed to wait. This is
not as easy as one would imagine. Most commonly we wait for some process to end, for
example for the payment of an insurance claim. Not only will we always have to wait for
the process to end, we are also eager to know the outcome of the process. If our insurance
company could tell us in advance that it is very likely that our claim will be accepted in
2-3 weeks, it could make our waiting less of a burden.
Fl=e

Accept
Claim —DO—D Payment
Register
Claim
Dy
Claim

Figure 1: Imaginary insurance claim process

Imagine a simplified insurance claim handling process as shown in Figure 1. After an insur-
ance claim is filed, a process begins that eventually results either in a payment or not. For
example, the claim is checked to verify that it is filled in correctly, it is checked for possible
fraud, etc. Depending on the outcome of each activity, different activities follow that influ-
ence the waiting time. There was a time when an employee of your local insurance office
was able to know the entire process and knew enough about the customer to give a pretty
good estimate of the remaining waiting time. As times changed, so did these processes and
the technology supporting them. Nowadays, information systems have automated admin-
istrative processes and computers have taken over many jobs from humans. The processes
have grown more complex, are typically distributed over multiple organizations, and are
less transparent, making it impossible for an employee to understand the complete system.
In fact, an employee does not need to know the details of every customer or case in the
process. In many cases that would even be undesirable because of privacy laws.

Fortunately, the information systems that support administrative processes store all the
information they process and can use this to give an estimate for the remaining waiting

time. The time we wait, i.e. the time remaining until some event, is usually predicted to be
the time you have spent so far subtracted from the average total duration. For example,
if the average customer has to wait 3 to 5 weeks and you have been waiting for 1, on
average you still have to wait 2 to 4 weeks. This answer is based on the average (4 weeks)
plus/minus a confidence interval (1 week) to create a prediction (3 to 5 weeks) suited for
usually 90% to 95% of the cases. The prediction whether or not a specific activity will
occur (e.g. payment or no payment in the insurance example) can also be calculated by
taking the average probability of payment in any insurance claim.

However, the customer that files the insurance claim might have committed fraud in the
past, in which case the insurance claim is more likely to be thoroughly investigated. The
3 to 5 weeks are probably not a good estimate for the remaining waiting time in this case,
and the likelihood of payment becomes very low. Similarly, if by some irregularity an
insurance claim of 1 week old got stuck in the process for 5 weeks, then a predictor based
on the average predicts that this case is almost finished. In reality the remaining waiting
time has not changed during the 5 weeks, which could be predicted as nothing in this
case has changed. Although predicting the remaining cycle time is between x and y days
ensures a statistically correct prediction, in many cases you like to have a more precise
estimate. In a hospital for example; each day a patient is in the hospital, he is costing
his insurance company money and a replacement must be found at his work. Having a
more accurate estimation (e.g. 3 weeks and 2 to 4 days) would make it easier for his
boss to find a replacement, and would provide a more accurate cost assessment for the
insurance company. Employees are not able to personalise the predictions, as this would
be expensive, inefficient and impractical. In this thesis we show that, using a software tool,
we are able to give a customer a more personalised prediction based on information already
known. At the start, when little is known about the case at hand, the average prediction
is a very good prediction. However as more information becomes available, a substantial
better prediction can be given.

1.2 Requirements for a prediction method

In order to provide criteria for the selection of a suited prediction method, we formulate
a set of requirements that a possible prediction method should conform to. A prediction
method :

e must give accurate predictions.

e must be easy to use and give on-demand predictions.

e can only use what is in the event-log.

e must use all types of information contained in the event-log.

e must be able to distinguish relevant from irrelevant information.

7

e must make prediction with as few assumptions on the underlying process as possible.

Given this list of requirements we can compare the different methods, and select the method
that conforms best to our requirements. In the following section we describe the approach
we have chosen in general.

1.3 Approach

The data that information systems store can be used to construct an event-log, which is
a sequential list detailing all activities executed concerning a specific case. Because of the
availability of such a detailed event-log, it is possible to give a better (more personalised)
prediction. The event-log contains information such as the sequence of activities that have
occurred during a case, their durations, and possible data-attributes! of cases or activities.
The prediction method we present uses all of the information available for its predictions,
and is able to filter relevant information from irrelevant information. In order to make
predictions with as little assumptions as possible, we use non-parametric regression [17].
Non-parametric regression is a form of regression that bases a regression estimate directly
on the known data, instead of creating a parameterized model that computes an estimate.

Non-parametric
Regression
Model
Measurements
Partial Single L
case Measurement
Prediction

Figure 2: Overview of the prediction method

Figure 2 shows an overview of the prediction method. As mentioned, the prediction method
uses an event-log. The event-log contains information corresponding to a set of historical
cases. For each case we construct measurements, these measurements consist of a table
with the predictor variables and a response variable. Predictor variables are the variables
on which we base a prediction (e.g. the duration of an activity), and a response vari-
able is the value which we would like to predict (e.g. the remaining cycle time). Using
the measurements obtained from the event-log we create the non-parametric regression

le.g. the person responsible for a case, whether or not a person has committed fraud, etc.

model, this part of the prediction method is (algorithmically speaking) the most complex.
However, once the non-parametric regression model is created, making a prediction is a
straightforward process.

First, the partial case for which we need a prediction, is converted to a measurement.
Then all measurements of the historical cases are compared to the single measurement of
the partial case, each historical measurement receives a weight that indicates the relative
similarity of the historical case to the partial case. The predicted value is the weighted
average over the response variables of all cases.

1.4 Non-parametric regression

In the previous section we already described the prediction method in general, and men-
tioned the use of non-parametric regression [17]. Non-parametric regression is a less-known
form of regression that, unlike parametric regression, bases an estimation on a weighted
average of predefined measurements. While parametric regression computes a response
value directly on the values of predictor variables of the new case, non-parametric regres-
sion compares the new case to the set of historical cases and computes a response value on
a weighted average of the most similar (old) cases. As a result, the non-parametric regres-
sion requires no information on the underlying probability distributions, or the relations
between predictor variables.

Non-parametric regression is closely related to case-based reasoning [13]. In case-based
reasoning, a new case is compared to a set of historical cases, after which the most similar
cases are selected. This subset of similar cases are then used to formulate new prediction.
Non-parametric regression is very similar, however it uses a more statistical approach.
By using non-parametric regression, the prediction method requires no assumptions or ex-
isting knowledge on the underlying process, and is able to base predictions solely on the
information contained in the event-log.

As mentioned in the previous section, creating the non-parametric regression model is
(algorithmically speaking) the most complex part of the prediction method. In order to
create the regression model, the various predictor variables in the measurements must be
tested for their relevance in the comparison of cases. A “bandwidth” is used to for each
predictor variable to scale the weights and possibly smooth out or increase the effect of
a predictor variable. The regression model therefore determines the bandwidths for each
predictor variable. The bandwidths determine which predictor variables are relevant. With
the (old) measurements, and the bandwidth, the regression model is able to return a weight
that indicates the similarity of a historical case to a partial case. Using this weight for each
case, a local (weighted) average on the response variables is created that is the prediction
for the new case.

1.5 Process Mining

4 Real World) " Information System N

Supports

’

Controls

R o
Specifies Records
Models Configures events, like
Analyzes Implements messages and
Analyzes transactions
: Model 4 Event Logs)
Discovery
_
Conformance

]

Extension

e o hea !

Figure 3: Process Mining, picture taken from [35].

The process of extracting information from the event-log to enrich the information system
containing that process, is part of a technique called process-mining [3, 2, 5]. Process-
mining enables the extraction of information from event-logs, such as the discovery of
(process) models that describe a process that is supported by an information system.
The technique is related to data-mining, however, process-mining focusses on dynamic
behaviour. With the help of process-mining it is possible to discover, monitor, and improve
real processes, instead of assumed processes.

The prediction method discussed in this thesis is created and described in the context of
process-mining. As in process-mining, the prediction method described in this thesis uses
an event-log to create a prediction model that models the real world. The prediction model
in turn, is used by an information system to support the real world with predictions of

10

e.g. the remaining cycle time. Figure 3 illustrates the role of Process Mining with respect to
information systems. The prediction method presented in this paper is best illustrated in
this model as a combination of both “Model” and “Information System”, as the prediction
method uses an event-log to model the “Real World”, but is mostly used to support the
“Real World” with predictions.

1.6 ProM/Process Mining Group

The Process Mining Group? at the Eindhoven University of Technology is a cooperation
between the department of Mathematics and Computer Science and the department of
Technology Management. This group is responsible for the development of the ProM
Framework [14, 1]. ProM is a highly extensible framework that supports various process
mining techniques by the use of plugins, it is capable of importing from and exporting to
various information systems, workflow engines, and classical mining tools. ProM is devel-
oped in the platform-independent programming language Java, and is currently licenced
under Common Public Licence (CPL). The topic of this thesis was proposed in close co-
operation with the Process Mining Group. In fact, the prediction method described is
implemented as a plugin for the ProM Framework.

1.7 Outline

This thesis is structured in the following way; in the next chapter we discuss relevant
work, more specifically we discuss various approaches and show that the approach chosen
is reasonable given the requirements for a prediction method. In Chapter 3 non-parametric
regression is explained in detail. An example is used throughout this chapter to make
the abstract concepts behind the method more concrete. After the explanation of non-
parametric regression, Chapter 4 describes how non-parametric regression is applied to
predictions in a process-mining context. The same example as given in Chapter 3 is
used to clarify certain methods. To validate our approach, Chapter 5 shows a number of
simulations that illustrate important aspects of the prediction method. Also this chapter
contains a case-study that shows how the prediction method performs in a case taken from
practice. The ProM plugin that implements the prediction method we discuss, is described
in Chapter 6. In Chapter 7 we present some proposals for future work, in order to stimulate
researchers to continue researching this prediction method. Finally we reflect on the results
and draw conclusions in Chapter 8.

2http://www.processmining.org

11

2 Related Work

The problem of making predictions based on event-logs is summarised in two main points.
One is that the log contains different types of data, and the other is that there is no prior
knowledge available except what is in the log. With respect to the data in the log, we
distinguish three types:

e continuous data, such as the duration of an activity,
e discrete ordinal data (or ordered), such as the number of times an activity occurred,

e discrete nominal (or categorical) data, such as the person responsible for an activity,
or the type of insurance policy,

With respect to the prior knowledge, we assume that the only known information is con-
tained in the log. Things like the activities that occurred, the time they took, people who
executed them, etc. The goal is to make accurate predictions with as little assumptions on
the process, or any aspect of the process, as possible. In this chapter we first discuss some
problem related work, and we discuss different methods and their suitability. In conclusion
we motivate the chosen approach.

2.1 Problem related work

“2G Case Prediction in Staffware” The TIBCO Staffware iProcess Suite [32] is one
of the leading Business Process Management Suites (BPMS) on the market, and one of
the few that support case prediction. The prediction method used in Staffware, however,
is identified to have some shortcomings [29]. More specifically, the prediction method
assumes that each case takes the shortest path through the process, where all activities are
predicted to have constant cycle times. In other words, the prediction method in Staffware
is very optimistic, and assumes the cycle times of activities do not vary.

“Case Prediction in BPM systems: A Research Challenge” The challenges in
case prediction for Business Process Management are described in [27]. In short, any
prediction method presented for case prediction must be accurate, easy to use, fast (on-
demand predictions) and it should not interfere with the operation of the BPMS. Similar
to [29] this paper also mentions the shortcomings in the Staffware prediction method.

“Case prediction in BPM systems: Research to the predictability of the re-
maining time of individual cases” A study into the predictability of remaining cycle
time, is shown in [12]. This master’s thesis shows that research into predicting cycle times

12

in BPM systems is mostly focussed on project management and scheduling, instead of pro-
viding accurate predictions for customers or clients. Furthermore, this work shows in an
experiment that it is possible to provide better prediction than what is normally accepted.

“Cycle Time Prediction: When Will This Case Finally Be Finished?” The
work presented in this thesis is also presented in [15], this paper is a result of the work
done for this thesis and therefore relevant work. This paper has been written in parallel
with this thesis, and is to be presented on the COOPIS 2008 conference.

2.2 Related work using simulations for predictions

“Workflow Simulation for Operational Decision Support using YAWL and ProM”
Simulations are normally used for analysing the steady-state behaviour of processes. How-
ever, [28] describes how simulations can be used for operational decision support. By
combining simulation with techniques from Process mining [14], it is possible to make pre-
dictions for a single case. A simulation model is created using the designs of the information
system, next by using historical information (retrieved by process mining techniques) the
cycle time distributions of activities are determined, and finally the information system
provides the simulation with current-state information. This method makes use of the
event-log of information systems, which is precisely what is available in the context of the
problem in this thesis. However, because the designs of an information system are not al-
ways available or up to date, for this thesis we assume that this information is not present.
In conclusion, this method requires more information than is available, and is therefore
not a feasible method.

2.3 Related work using stochastics for predictions

“Estimating cycle times in stochastic Petri nets” One approach, as described in [6],
estimates the cycle times by using Petri nets and methods from stochastic processes under
the assumption that all process times are independent and have an equal time probability
distribution. Although, with the use of a technique called process mining [3] it is possible
to create a Petri net of the process, these Petri nets are not always correct, as domain
knowledge may be required to retrieve the correct Petri nets.

Furthermore the method described in [6] requires the probability distribution of process
times of activities to be independant and equal. Because we have no knowledge on the
probability distribution of the process times of activities, we make assumptions about this
probability distribution. Also it has to be assumed that this probability distribution is equal
for all activities, and that the process times of all activities are independent. Although we
are able to retrieve the process times of the activities from the log, the information on the

13

process times is not sufficient to determine their probability distributions, or if they are all
equal. In conclusion, the method described in [6] requires more information than available
in the log, also this method only uses a fraction of information that is typically available,
e.g. this method does not consider the process times of past activities or data-attributes.
Therefore, this method is not conforming to our requirements.

2.4 Related work using multiple linear regression for predictions

“Cycle time estimation for printed circuit board assemblies” A method proposed
in [16], shows how cycle times can be predicted for the manufacturing of printed circuit
boards using multiple linear regression. A linear parameterized model that is used to
make predictions is made using multiple linear regression. Therefore it must be assumed
that the process that generated the log can be modelled by a linear parameterized model.
Although this method does use all the available data from the log, it also requires making
assumptions on the underlying process. It is therefore also not a feasible method.

2.5 Predictions using a combination of techniques

“Factory cycle-time prediction with a data-mining approach” Using a combina-
tion of clustering and regression trees, the method described in [7] predicts the cycle time
for batches of products in semi-conductor manufacturers. The data is first analysed for
clusters based on the type of case after which a regression tree is created for each cluster.
The method proposed in this paper is in theory also applicable to our problem. However,
this method is meant for a specific type of process, namely the process of manufacturing
semi-conductors. A semi-conductor manufacturer is highly automated, meaning there is
little variance in the speed of cases. Therefore, a correct assumption in a semi-conductor
manufacturing process is that a new batch with equal properties as another batch should
have an (almost) equal cycle time. Whereas in an information system for the average ad-
ministrative process, every case is different, because the mainly human resources are not
as constant in production as machines in a semi-conductor manufacturer. Therefore, two
cases with equal properties can result in two completely different cycle times. This type of
variance in the measurements means the use of the classification resulting from a regression
tree is not the best choice for a prediction model.

In summary, this method is able to use all data in the log, based solely on what is available
from the log. But this method does not appear to be suited for information systems, as it
was designed for a semi-conductor manufacturer with more predictable resources and less
variation in the cycle times of activities.

14

“Cycle time prediction and control based on production line status and man-
ufacturing data mining” Comparatively, the work in [9] shows a combination of tech-
niques such as clustering, regression trees, polynomial regression and sensitivity analysis,
and also focusses on the cycle times of batches in a semi-conductors manufacturing plant.
The method is effectively not that different from the method chosen in [7], but consists
of more steps, specifically sensitivity analysis and polynomial regression. This method
does not provide benefits over the previously described method, it does however add more
complexity to the prediction method itself. Therefore it is not suited for the same reasons
as the previously described method.

2.6 Predictions using nonparametric regression

“A statistical approach to case based reasoning, with application to breast
cancer data” In Section 1.4 we introduced non-parametric regression, [13] shows an
application of non-parametric regression on a large dataset of breast cancer patients with
no knowledge on the aspects of the information in the dataset. This problem is comparable,
as it describes the prediction of survival times, which are a specific form of cycle times.
Although the title of [13] refers to case-based reasoning, an adapted form of non-parametric
regression is used that is best described as a more statistical form of case-based reasoning.

In summary, the prediction method as it is described in [13] and [17] requires no assump-
tions on the underlying process, however, this applied form of non-parametric regression
uses only continuous data as a bases for predictions.

“Nonparametric estimation of regression functions with both categorical and
continuous data” The non-parametric regression described in [25] is the first form
of non-parametric regression that combines continuous and discrete (un)ordered data in
a single model. Therefore, a prediction method using the non-parametric regression as
described in [25] is capable of making predictions with no assumptions or preexisting
knowledge on the underlying data or processes, and is capable of using all types of data as
a bases for the predictions.

2.7 Approach

Of all approaches described, both the method using a combination of clustering and re-
gression trees (Section 2.5) and the non-parametric regression (Section 2.6) conform to our
requirements (Section 1.2). The prediction method using combination of regression trees
and clustering is, compared to non-parametric regression, less suited for the prediction of
cases with few to no precedents, because regression trees are usually used for classifications
and not for the prediction of continuous information (like the remaining cycle time). Non-

15

parametric regression is therefore the method we use in the prediction method described in
this paper. In the following chapter we describe non-parametric regression in detail.

16

3 Non-parametric regression

3.1 The running example

As previously mentioned, the prediction method described in this thesis relies on non-
parametric regression. In this chapter we explain non-parametric regression in detail. In
order to make certain abstract concepts more concrete, we use a running example. The
running example is based on a log of a simulated process, that describes how repairs are
made to the houses of a housing rental organisation. The log of this process is found in [11].
The log contains 500 cases, with 4 different data-attributes (“phoneType”, “defectType”,

O—D Registar —{-O—b Analyze Detect

Fiepalr {Complex) Repalr (Simpla)

Y

Infarm User

Test Repalr

Y l
?\%
Restan Rﬁpﬂ.lr Archive Hepa”

v
Q

Figure 4: Petri net of the running example

17

“defectFixed” and “numberRepairs”), 8 different activities (“Analyze Defect”, “Archive
Repair”, “Inform User”, “Register”, “Repair(complex)”, “Repair(simple)”, “Restart Re-
pair” and “Test Repair”) of which 4 activities (“Analyze Defect”, “Repair(complex)”,
“Repair(simple)”, and “Test Repair”) have recorded duration’s. Also the process contains
a loop, meaning some activities may occur multiple times. The process, shown in Figure
4, starts by registering a defect, which is then analyzed. Finally a loop starts that repairs
(simple or complex) and tests the defect until it is repaired.

We have to stress that the process model shown in Figure 4 is constructed using a plug-in
of ProM [14]. This process model is not available to our regression model and is provided
only for reference purposes.

In Section 1.4, we described the non-parametric prediction method in general. We described
that an information system collects data concerning a certain process, and that this data is
used to construct an event-log. The event-log is used to derive the measurements that are
used to create a non-parametric regression model. Because we focus on non-parametric
regression in this chapter, we do not describe how the measurements are derived from
the event-log. Instead we use an example with simplified measurements to explain non-
parametric regression. The derivation of measurements from a log, their application in the
non-parametric regression are described in detail in Chapter 4.

Case properties
predictor variables | case 1 | case 2 | case 3 | case 4
Analyze Defect Duration(z1) 10 5 9 7
Repair (complex) Duration(xz) 14 44 10 0
Test Repair Duration (z3) 10 7 9 9
Repair (simple) Duration (z4) 0 0 0 5
Analyze Defect Occurrence (x5) 1 1 1 1
Repair (complex) Occurrence(zg) 1 1 1 0
Test Repair Occurrence (x7) 1 1 1 1
Repair (simple) Occurrence (xg) 0 0 0 1
phoneType Attribute(zg) T2 T2 T1 T1
defect Type Attribute(z1o) 9 8 6 1
defectFixed Attribute(z12) | true true true true
numberRepairs Attribute(x;2) 0 0 0 1
Abstract Response Variable Yy Y, Y; Y,

Table 1: Simplified measurements of four cases of the running example

Table 1 shows the simplified measurements of four cases taken from the simulated process
in Figure 4. These four cases are shown in full in Appendix G on page xix. In this
example we intentionally leave the response variables abstract, as these are not relevant
for the purpose of the running example at this point. The running example is described
in more detail in Chapter 4, at which point we use the running example to illustrate the
derivation of measurements. As described in Chapter 2, we distinguish three types of data;
continuous data, discrete ordinal (or ordered) data, and discrete nominal (or categorical)

18

data. An example of continuous data in Table 1 is the duration (in minutes) of an activity
and although they happen to be natural numbers, they should be seen as real numbers.
An example of discrete ordinal data is the number of occurrences of an activity. In Table
1 the occurrences of activities are all either 0 or 1, however these are natural numbers and
not limited to 0 or 1. The last type, the discrete nominal data is shown in Table 1 in the
form of data-attributes. Discrete ordinal values are best described as categories without
ordering, categories are either equal or not equal. Also, categories can never be put in
any order, as opposed to e.g. natural numbers, which are discrete ordinal (or ordered)
data. Note that, although we assume all data-attributes are categorical, they are not. For
example, the data-attribute “phoneType” is clearly categorical, while the numerical data-
attribute “numberRepairs” is very likely a discrete ordered variable. Although it judging by
“numberRepairs” and “phoneType” it appears that we can distinguish all data-attributes
with numerical values as discrete ordered and all non-numerical values as categorical, we
can not. A good example of where this goes wrong is with the data-attribute “defectType”,
which appears to be an ordered discrete variable judging by its numerical value, whereas
its name would indicate it is categorical. This shows that it is impossible to distinguish
whether a data-attribute is ordered or categorical, therefore we must assume that all data-
attributes are categorical.

The goal of regression analysis is to create a regression model on which we can accurately
estimate an unknown response variable based on a set of measurements. These measure-
ments are pairs of the predictor variables and the corresponding actual response variables.
In our case the predictor variables are the data contained in the log, such as the occurrences
of activities, the durations of those activities and possible data-attributes. The response
variables are the total remaining cycle time, the remaining cycle time until activity a, or
the occurrence of a. In the remainder of this chapter we describe non-parametric regres-
sion, assuming that we already have measurements and we use the example introduced
here to illustrate the math involved. Note that Chapter 4 describes how the measurements
are obtained.

3.2 Preliminaries

Let p € IN and C an unspecified abstract domain, we define ¥ € CP to be a p-dimensional
vector of C, also expressed by & = (21, z2, x3, ...,x,). For a vector ¥ € CP, z; denotes

the ith component of that vector. We define scalar multiplication, i.e. the product of a
vector 7 and a number a, by aZ = (azy, ars, axs, ... ,az,).

3.3 The basic idea

Given a set of measurements {(Z;, X;,Y;)}Y, where Z; is an unique identifier for each
tuple, X; = (X;1,Xi2,...,X;,) is the vector with predictor variables on some abstract

19

domain C? and Y; € R is the corresponding response variable. The unique identifier Z; is
needed to allow for duplicate measurements in the set. At this point we do not define Z;
in more detail, however in Chapter 4 we show how to construct a unique identifier. We
define v : C?» — R to be a regression function that models the relationship between Y; and
Xi in Equation (1). As we estimate the response variable Y; as good as possible we try to
minimize the error ¢;.

YQZV()&‘)+€¢ € — 0 (1)

Non-parametric regression is based on a technique called local averaging (also known as
smoothing) in which the estimate y’ for a y of a measurement ¥ = (zy,x9,...,17,) is
based on the known cases {(Z;, X;, Y;)}Y,. The local average is constructed such that the
estimate 3/ is a weighted average of the cases from {(Z;, X;, Y;)}Y, that are “closest” to Z.
We define v(Z) as the smoothing function in Equation (2).

S, 0(X, @)

In this equation 0 : (C? x C?) — R is a weight-function that returns a weight corresponding
to the relative distance between X, and 7. The higher the weight returned by ¢, the closer
and more important X; is for Z. Note that the divisor of Equation (2), vazl §(X;, @) is
the sum of relative distances between ¥ and each point XZ», or the density of)ZZ As the
weighted sum over Y; is divided by the density, a low density (meaning few cases are close
to) results in a bigger influence for the cases closest to Z. Equally a higher density
(meaning more cases are close to Z) results in a smaller influence for each of the cases close
to Z. In this way the local average is obtained.

7(@) = (2)

The example we presented in Table 1 in the beginning of this chapter contains all three
types of data, the durations of activities are continuous variables (i.e. minutes, hours,
etc.), the number of occurrences of each activity is a natural number (i.e. a discrete
ordered variable, such as the number of times a repair occurred), and the data-attributes
are assumed to be categorical (i.e. discrete unordered variables). Each of these three types
of predictor variables are contained within the vectors X, and Z. So far we have associated
X} and 7 to some abstract domain C. However,)ZZ and ¥ are vectors containing values in
RJ, D, and D, in which D, is the domain of the categorical predictor variables, and D,
is the domain of the discrete ordered predictor variables. Both discrete domains D, and
D, are subsets of D, the domain of all discrete predictor variables. Note that actually each
discrete predictor variable has its own domain, however for practical reasons we define the
discrete predictor variables to have the abstract domain D.

20

Xi - (Xi,17 e ;Xi,m7 Xi,m—i—h e 7Xz',m+l7 Xi,m+l+1; cee 7Xi,p) (3)

(. /

~ -~

~
eRS R €Dy €D, |
vV

€D

We define both X; and Z, as vectors of m continuous predictor variables, [categorical
predictor variables, p— (m+1) ordered predictor variables, and k as the number of discrete
predictor variables, i.e. k = p —m. This is illustrated by Equation (3), which shows how
X, is structured, and formalised in Equation (4). Note that, this definition of X, and 7
allows for a vector with e.g. 0 continuous predictor variables, or any other combination of
one or more types of predictor variables.

Definition 3.1 (Measurements Domain).
Given m, [, p € N, we define the predictor variables X = (X, Xo, ..., Xx) and Z such that:

<1<
LS 70 Xia € R{A
Va,bcz‘E]N: - . s Ty, Xip € Dy (4)
) < < Y 3
m+1<b<m+IA To, Xi0 € D,

m+l+1<c<p

In the remainder of this chapter we discuss the different weight functions that correspond
to the different predictor variables. First we discuss the continuous weight function, and
then the discrete weight function.

3.4 The continuous weight function

In this section we discuss the weight function ¢ : R™ x R™ — R for a continuous predictor
variable. For readability we define X¢ = (X1, Xg, oo, XE), 2t = (a5, a5, ..., 25,,) € R™
such that (Vj elN:1 S j S m S p: de = Xz‘,j VAN .T; = l’j), ie.)ff = (Xi’l,Xi’g, .. 7Xz',m)
and 7¢ = (21, 7o, . . . , Tim) are continuous predictor variables. The goal of §¢ is to return a
weight for a measurement X ¢, based on its distance to z¢. As Xjf and x¢ are both vectors
of individual predictor variables, the weight function returns the product of the weights
of each of the m individual dimensions of X;-C and z¢. Equation (5) shows the continuous

weight function, where h¢ € R A (Vi e N:1<j<m: h$ > 0), i.e. he = (h$, hS, ... hS)
is a m dimensional vector of real numbers larger than 0. The So—called bandwidth h¢
is used to increase or decrease the effect of a certain dimension of X¢, on the product
weight of X¢. The use of the bandwidth variables are described later in this chapter.

The vector of bandwidth variables h¢ is a part of the vector h = (hi,...,hy), such that
(VjE]N:lgjgm:hj:h;).

21

(X2t =[]0 R (=) (5)

The weight function §¢ makes use of a so-called kernel function k : R — R*. The kernel
function is a symmetrical, continuous and bounded function with [k(u)du = 1, that can
have a number of forms which are shown later. Substitution of Equation (5) (2) yields the
smoothing function in Equation (6), also known as the Nadaraya- Watson kernel estimator
24, 34].

m c\— xc'incf
fo\il Hj:l(hj) . ’f(ﬂh—jj) Y
7($C) = N ™ o1 o= X7 (6)
> Hj:l(hj)_ : "{(h—§)

The Nadaraya-Watson kernel estimator in Equation (6) uses a scale factor or bandwidth
h¢ to scale the weights, whereas the kernel function k is used to determine the shape of

the weight distribution. The most simple kernel function is the Uniform kernel function
1

<
k(u) = { (2) ’m N 1 , i.e. a function that, if combined with Equation (5), results in a

weight function which returns a Welght for points where the difference between x§ and
X;i; divided by hj is smaller than 1, and 0 for all other points. In other words, thls is a
We1ght function that returns a Welght of 5 1 to all points where the difference (or distance)
between zf§ and X7, is smaller than hj. The kernel function used in this thesis is the
(second order) Gaussian kernel, as shown in Equation (7).

e—u2/2

T (7)

The Gaussian kernel is a kernel that has continuous support, meaning that every point
receives a weight although it may be close to 0 (but not 0). If the density of the measure-
ments is very low (meaning there is a high variance in the measurements) and there are
few to no measurements that are “close”, then using a kernel with limited support (such
as the Uniform kernel) results in a prediction based on very few measurements. However,
a kernel with continuous support returns a non-zero weight for each point, resulting in a
prediction based on all measurements (although the influence of some might be negligible).
The software package NP [19], which we based our software on, provides regression func-
tions with the Uniform kernel, the Gaussian kernel, and the Epanechnikov kernel function.

3(1 — 442 <
The Epanechnikov kernel function is defined as k(u) = { 6(1 w) el <1

K(u) =

u| > 17 and like

the Uniform kernel it is bounded. Although many more kernels exist, these three kernels
are most commonly used. Figure 5 shows the three kernels, in this plot it is visible how
each kernel has an influence on the distribution of the weights. The Epanechnikov kernel

22

results in a much higher influence for very similar cases than the Gaussian kernel. Also it
is visible how the Gaussian kernel has continuous support, whereas the other kernels only
return a non-zero value for between 1 and —1.

anlk __.‘_________— Epanechnikov kernel function

e Uniform kernel function

Gaussian kernel function

Figure 5: Gaussian, Epanechnikov and Uniform kernel function

N 11m (pey- X=Xy
Dot Hj:l(hj) b “(#) Y
Yi= XX, 6 (8)

iy T (h) 7t - (=)

J

Substituting Equation (6) in (1) yields Equation (8), a smoothing function with m unknown
bandwidth parameters (h$, hS, ..., hS,), the values of which determine the errors ¢;. Equation
(5) shows that a smaller h$ results in a larger weight for that specific dimension of the
predictor variables. If b goes to infinity, the weight goes to 0. In this way the bandwidth

he scales the weights of each dimension of the predictor variables, but also functions as a
measure for the relative importance [26] of each dimension of the predictor variables. In
order to obtain a regression model with minimal error ¢;, it is necessary to find the optimal
bandwidth. Finding the optimal bandwidth parameters (or bandwidth selection) such that
the errors ¢; are minimal, is discussed further in Chapter 3.6.

As an example we show how the distance between cases 1, 2 and 4 from Table 1 are
computed. This example, shown in Table 2, is used to illustrate the concepts described,

23

therefore we limit ourselves to the comparison of the complete cases based on the dura-
tions. Assume Cases 2 and 4 from Table 1 are in our data-set and Case 1 is a new case.
Furthermore, assume the bandwidth Af is 7 for “Test Repair” and 2 for all other variables.

Continuous weights example

H Analyze Defect \ Repair (complez) \ Test Repair \ Repair (simple) H 0
bandwidth hs =2 hs = hg = hg =2
case 1 Xi; =10 i, =14 Xi3=10 Xi4=0 -
case 2 X5,=5 59 =44 X§,=17 X5,=0 -
O, = X5)/R) 0.00876 2.76535 x 10~ | 0.051991 0.19947 2.51344 x 10~
2
case 1 || Xg, =10 X7, =14 X, =10 X7, =0 -
case 4 X{, =7 Xi,=0 X§s=9 X§,=5 -
LL(CSRE S HITLE)] 0.06476 456736 x 1012 | 0.1760 0.05641 1.46236 x 10716

Table 2: Example of continuous weights

With these distances the density 37, 6°(X¢, X¢) becomes 1.46236 x 10716, As the weights
are divided by the density, the total influence of Case 2 becomes 2.51344 x 10754 /1.46236 x
10716 = 1.71876 x 1073 and the influence of Case 4 1.46236 x 10716/1.46236 x 10716 = 1.
The prediction would therefore be Y5 - 1.71876 x 1073% + Y} - 1, i.e. the prediction is based
almost completely on Case 4. In this example, the value of “Repair(Complex)” is most
responsible for the low weight for Case 2. Had the bandwidth of “Repair(Complex)” been
larger, then the difference in weights would have been smaller. This shows how a small
bandwidth increases the influence of a single predictor variable on the result.

In this chapter we have shown how the continuous weight function computes a weight for
a case based on the measurements. In the next chapter the discrete weight function is
described, that computes the weights for both categorical and ordered predictor variables.

3.5 The discrete weight function

In this section we define the discrete weight function §¢ : D*¥ x D¥ — R, in which k is the
total number of discrete predictor variables, [the number of discrete nominal predictor
variables, and D is the abstract domain of the discrete predictor variable, as defined in
Section 3.3. The discrete predictor variables consist of two types, namely the ordered
and the nominal discrete predictor variables. The only difference between the domain of
the discrete nominal predictor variables D, C D and the domain of the ordered discrete
predictor variables D, C D, is that there is a total order <p defined on the domain
D,. Note that actually, each single discrete predictor variable has an individual domain
and each single discrete ordered predictor variable has an individual order defined on its
domain. However for readability, we define all discrete predictor variables to have the

24

abstract domain D, and all discrete ordered predictor variables to have the abstract total
order <p.

Similar to X¢ and 2%, we use Xd (X4, XY, .. X)) and 24 = (2, 29, ..., zf) to denote

the discrete predictor variables, such that (Vj € N : 1 < j <k =p—m : X;fj =
Xijam N :c? = Tjim), l.e. the last k = p — m predictor variables in)?Z and 7 are discrete.
Also it holds that (Vj e N:1<j<[l: X!, €eD,)and (Vj e N:I1+1<j<k:X! e€D,),
i.e. the first [discrete predictor variables are categorical and the remaining k — [discrete
predictor variables are ordered.

The discrete weight function we use, i.e. the Li and Racine kernel [25], is applicable to both
categorical and ordered discrete data. This weight function is a variation of the weight
function proposed in [4] for categorical data, and although not applicable to ordered data,
it is easily generalised such that it is. We show how Equation (9) (the so called Aitchison
and Aitken kernel [4]) is adapted, as this provides an insight into its working. Note that in
the Aitchison and Aitken kernel Equation (9) and (10) are combined into a single equation,
however for readability we this format.

UXE, o) = Hﬁd) (9)

1 if X¢ =24

d d d 1,J R
B(X] ,]75173> { hd if ng v :vj»l (10)

As with the continuous weight function, the goal of the discrete weight function is to as-

sign a weight to a point based on the distance between X¢ and 24, For the categorical
case the distance between two unequal points is always equal, i.e. the categories either
match or they don’t. Also, just like in the continuous weight function there is a band-
width hd = (h{,hd, ... hY), such that (Vj € N:1<j<k:h?=h,), le. hiis a k
dimensional vector with the discrete bandwidth variables, as a result his a p dimensional
vector consisting of he and he. The discrete bandwidth variable is limited to the domain
0 < h§ < 1. Note that h{ is a measure of the relative importance of the current predictor
variable, where smaller means more important. If the bandwidth h? equals 1, the weight
of the current predictor variable becomes constant for all measurements, resulting in the
normal average over all measurements. In this case the predictor variable is irrelevant. If
h? is 0, the weight returned is 1 if X{fj is equal to x? and 0 if they are unequal, which
means the current predictor variable becomes an indicator.

25

#aE'DO:Xf’lj<pa<px‘;) ifl<j§]€/\ng<'D$ /\Xd%x‘j
#aGDO:m?<Da<DX{fj) ifl<j§k/\x;l<DXd /\Xd#x;i
iflS]Sl/\Xd + x4

(
Aj(XL xd) = g
0 1fXd = 1

j
J
(11)
In the ordered case the distance between two unequal variables is not always equal. We
therefore define A; : (D, D) — NN, a function that computes the distance between two
(un)ordered discrete variables. An example of a function that computes the distance
between Xi‘fj and xgl is given in Equation (11), which shows that the distance between
categorical variables is either 1 or 0. In Equation (11), the top two lines show that the
distance between ordered variables is dependent on <p, the distance between two discrete
ordered variables is equal to the distance between two natural numbers, as natural numbers
are also discrete and ordered.

1 if X4 = a4
X al) = A 12
6 (1,57]) { (hd)A (ng]) if chfj 7£ .T;i ()

Equation (12) shows a function that returns a weight for ordered typed variables. However,
because the distance between two unequal categorical typed variables is always 1, Equation
(12) returns (h9)' for categorical variables, which is equal to Equation (10). Therefore,
Equation (12) is suited for both ordered as well as categorical variables. Equally when
the distance in both categorical and ordered typed variables is 0 (i.e. the variables are
equal), one can also write (h?)? = 1. As a result (X7, z}) = (hd) Xi#5) | which we
combine into the product weight function in Equation (13). Leaving us the final version
of the discrete weight function ¢ : (D¥, D¥) — R, also known as the Li and Racine kernel
[25].

(hAX5) (7,01 <j<k:0<hi<1) (13)

k
=1

J

Our running example contains a total of 12 different discrete variables, each of the 8
activities has an occurrence and each case has 4 data-attributes, the discrete predictor
variable therefore has 12 dimensions. The measurement of each case is now a pair of a vector
with predictor variables and the corresponding response variable. We want to compare the
predictor variables of the partial case to the predictor variables in the measurements,
but not all of the 12 discrete dimensions of the predictor variables are equally relevant.
Therefore we use bandwidth 7 to adapt the influence of each individual dimension on
the weight of the whole measurement in the smoothing function. As with the continuous
weight function, we show a small example in Table 3. We take two occurrences and two

26

attributes from Table 1, specifically “Repair(complex)”, “Test Repair”, “phoneType”, and
“defectType”. The bandwidths for “phoneType” is 1, for “Repair(complex)” it is 0.1 and
0.5 for the rest.

Discrete weights example
H Repair (complex) \ Test Repair \ phoneType \ defect Type H 59
bandwidth h? =0.1 hI=0.5 hd=1 h{, = 0.5
case 1 Xﬁ,? =1 Xiig =1 X](_{g =T2 X](.i710 =9 -
case 2 xd, =1 X§s=1 | Xdg=T2| X ,=8| -
(nd)2i T, X5) 1 1 1 0.5 0.5
case 1 X¢. =1 X{s=1 X{g=T2] X{,,=9 -
case 4 Xf7:O ngzl ngle Xflozl -
(nd)2i(XT X5 0.1 1 0.9 0.5 0.045

Table 3: Example of discrete weights

In the beginning of this chapter we explained why it is necessary to assume that all data-
attributes are categorical, as a result the data-attribute “defectType” is also treated as a
categorical variable. With these weights the prediction for case 1 based on cases 2 and 4
becomes (Y3 - 0.91743 + Y, - 0.08257)/2, i.e. the prediction is largely based on case 2 with
a small (but noticeable) influence of case 4. As the bandwidth of “Repair(Complex)” is
very low, the weight for cases with an unequal value for “Repair(Complex)” is lower, and
therefore the influence of “Repair(Complex)” on the prediction is higher. The bandwidth
of “phoneType”, on the other hand, is very high. Therefore the influence of “phoneType”
on the weight is very low. This example shows how the bandwidth has an effect on the
influence of different predictor variables on the prediction. Now that all weight functions
are described, the process of obtaining the optimal bandwidth is described.

3.6 Bandwidth variable optimization

Both the continuous and the discrete weight functions multiply the weights of the individual
dimensions of a predictor variable in order to return a single weight, in the same way we
multiply both weight functions to obtain a single weight for a mixed predictor variable.
The bandwidth variables h = (hi1, hg, ..., h,) should ensure that the individual weights
are scaled such that the single combined weight yields a minimum error in the regression
function. By combining both the discrete and the continuous weight functions in a product,
we get the final smoothing function shown in Equation (14).

SN ae(Xe,) - 04X, wd) - Y,

RS A (14)
Soiny 0°(XE, 20) - 64X T, x?)

27

The smoothing function in Equation (14) estimates the response value based on a weighted
(local) average over the most similar cases in X compared to z. The bandwidth h € R,
which is defined such that (Vj € N : 1 Sjgm:hj:hj/\h§>0) and (VjeIN:1<j5<
k: h? =hjtm N0 < h‘} < 1), acts as a scale factor to determine what distance is accepted

s “close” and thus should receive a higher weight. Furthermore if h; receives a value that
is relatively extreme it also serves as a measure of the importance of the j* (discrete or
continuous) predictor variable, as shown in [26].

In both the discrete and the continuous case a bandwidth close to 0 indicates a predictor
variable that is important. If the bandwidth for a predictor variable is very small, cases
that are “distant”’ receive a very low weight, whereas cases that are “close” receive a much
higher weight. Also, for the continuous weight function the distance that is called “close”
is smaller as the bandwidth is smaller. Therefore a small bandwidth means a predictor
variable has a very big influence on which cases receive a high or low weight, as cases that
are not “close” receive a very low weight.

Besides the minimum of 0, there is also a maximum value of 1 for the discrete bandwidth
of the discrete weight function. If the discrete bandwidth equals 1 it results in a constant
weight of 1 independent of the value of Xﬁj, as the weights are multiplied, the weight of
1 is irrelevant. Therefore, a bandwidth equal to 1 indicates a discrete predictor variable
that does not influence the prediction.

However, the bandwidth for the continuous weight function has only the theoretical max-
imum of co. As the bandwidth for a specific continuous predictor variable increases, the
distance between values that is considered “close” increases. If the bandwidth is large
enough that all cases are considered “close” for this predictor variable, all cases receive a
high weight. If the difference in weights for cases is small their influence is also small. Thus,
only if a continuous bandwidth is larger than the variation in cases, the predictor variable
is irrelevant. It is therefore not straightforward to determine if a continuous predictor
variable is irrelevant. More on this topic is found in [26].

As the bandwidth h can increase or decrease the effect of certain components of X, there
is an asymptotically optimal [33] i’ such that ¢; = Y; — (X,) is minimal, assuming there
is some relationship between the predictor variables)?l and the response variable Y;. By
taking the mean square error as our error-measurement, we derive the target function in
Equation (15) needed to find an optimal n. By minimising M SE, over h we find the

optimal R’ such that the mean square error is minimal, meaning we have a v that models
the relationship between Y; and X; as accurately as possible.

N
MSE, = (N)™) (V; — y(X)))? (15)

=1

There is one problem with this; by using M SFE, we estimate a Y; by ’y()? ;) which in turn

28

compares this X ; to all measurements in (Z;,)?i, Y;), thus comparing X ; to)?j. To limit
this type ofﬁbias we use a technique called leave-one-out cross validation, which means we
take {(Z!, X!, Y)Yt = {(Zi, X5, Y)}Y, \ (Z;, X;,Y;). In this way the estimation for Y;

is computed by a 7/ ()5]) that compares X; to each measurement in {(Z,)Zz’ Y3
N — — - -
12 0°(X, XE) - 0N (XY, X) Y

Z;‘V:Lj;ﬁi 6C(Xj(;7 ch) ’ 6d<de7 Xid)
Minimizing the MSE, over h provides us with the optimum h with an minimal mean
square error. Note however, that this minimization becomes very complex, meaning it
takes a long time to compute. In a realistic problem there might be V' variables (both
discrete and continuous), with for example N cases. It is easy to see that the complexity of
a single calculation of MSE., is ©(MSE.) = N?V. In order to find the complexity of the
bandwidth selection, the minimization must vary over the domain of h= (hi,he, ..., hy),
whichis (Vj e N:1<j<k:0<h;<oo)and (VjeEN:m+1<j<p:0<h; <1).
Because we can not iterate over an infinite number of values, we must limit this to a discrete
set of values. Assume ® is the domain size of fz, the more precise we want the minization
to be, the more values we must put in ©. Given D, first the minimization must vary each
component of h over its domain and then it must vary each component V' times in order to
find all possible combinations, thus the total complexity of finding the bandwidth becomes
O(N?V2?DV). This means the bandwidth minimization is of exponential complexity.

To ensure the bandwidth selection is computed within a feasible time, we use a subset of
the measurement during the bandwidth selection. This subset is of size %, i.e. the subset is
S times smaller than N. Given a set of measurements (Z;,)?i, Y;) for 0 <i < N, we define
a subset of those measurements (27, X', Y/) for 0 < s < (&), which we use with Equation
(16) to find an optimum bandwidth. This way the complexity of the bandwidth selection
becomes ((X)NV?*DVY), which is a factor £ smaller. In order to ensure the bandwidth
found using the subset of measurements is still a good bandwidth for the complete set of
measurements, we must try to balance the subset of measurements such that they still
present a good representation of the process. In the next chapter, we show that in order
to do this, a single case is split up into measurements representing that case over time. If
we randomly select cases and put all measurements of a case into the subset of cases for
the bandwidth selection, we ensure that we have a balanced set of measurements for the
bandwidth selection.

Much work on optimizing the bandwidth selection exists. For this thesis we have chosen not
to research this topic in-depth, as a software package we use provides optimized methods
for this [19, 20]. We therefore refer to [18, 21] or [31] for more information on this topic.

In summary, we now have a regression model that is capable of using both continuous,
discrete nominal and discrete ordinal predictor variables. The regression model uses a

29

bandwidth ﬁ, which we need to optimize once for a set of predictor variables using ', such
that the regression model has a minimal MSE over the cross-validated set of historical
measurements {(Z;, X, Y;)}. After the optimal bandwidth is found, we have a regression
model v that can be applied to a new partial case. In the next chapter we describe how
measurements, that lie at the basis of the prediction method, are obtained.

30

4 Non-parametric regression as a predictor

In Section 1.3 we explained that the prediction method presented in this thesis only uses
the data that is in the event-log. In the previous chapter we explain that non-parametric
regression constructs a local average for the prediction of a new partial case such that it is
based on the most similar cases. In this chapter we show how we derive the measurements
which we use with non-parametric regression in order to make predictions for (partial)
cases in information systems. Section 4.1 continues with the running example, which was
introduced in Section 3.1, and Section 4.2 presents some preliminaries to ensure all readers
are familiar with the syntax used in this thesis. The preliminaries can be skipped by
readers familiar with these notations.

4.1 The running example

The running example introduced in Section 3.1 was used to illustrate our approach. So far
we kept the running example simple to illustrate how non-parametric regression works. In
this chapter we show the running example in more detail, starting with the log. The log
used is stored in MXML format, which is a XML standard for storing event-logs. A frag-
ment of a log is shown in Figure 6, this example shows the “start”- and “complete”-events
related to the activity “Test Repair”, and the complete-event relating to “Analyze Defect”.
The events have a time-stamp, using the time-stamps of the “start”- and “complete”-events
we compute the duration of an activity. Table 4 lists all events of the case shown in Figure
6.

Timestamp Event Type Element Attributes
01.01.1970 09:38:00.000 complete Register -
01.01.1970 09:38:00.000 start Analyze Defect

01.01.1970 09:48:00.000 complete Analyze Defect defectType: 9
phoneType: T2

01.01.1970 10:04:00.000 start Repair(Complex) -
01.01.1970 10:18:00.000 complete Repair(Complex) -
01.01.1970 10:18:00.000 start Test Repair -
01.01.1970 10:28:00.000 complete Test Repair defectFixed: true
numberRepairs: 0
01.01.1970 10:32:00.000 complete Inform User -

01.01.1970 10:35:00.000 complete Archive Repair defectFixed: true
numberRepairs: 0

Table 4: Events of the case corresponding to the fragment of eventlog in Figure 6

Table 4 shows the sequence of events for a single case, and as the case progresses more
information becomes available. Also, as the case progresses the total remaining cycle time
decreases. As a result, the predictor variables and the corresponding response variable

31

<Process id="DEFAULT" description="Simulated process" >
<ProcessInstance id=...>

<AuditTrailEntry>
<Data>
<Attribute name="defectType">9</Attribute>
<Attribute name="phoneType">T2</Attribute>
</Data>

<WorkflowModelElement>Analyze Defect</WorkflowModelElement>

<EventType>complete</EventType>
<Timestamp>1970-01-01T09:48:00.000+01:00</Timestamp>
<Originator >Tester4</Originator>

</AuditTrailEntry>

<AuditTrailEntry>
<WorkflowModelElement>Test Repair</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>1970-01-01T10:18:00.000+01:00</Timestamp>
<Originator>Tester5</0Originator>
</AuditTrailEntry> <AuditTrailEntry>
<Data>
<Attribute name="numberRepairs">0</Attribute>
<Attribute name="defectFixed">true</Attribute>
</Data>
<WorkflowModelElement>Test Repair</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>1970-01-01T10:28:00.000+01:00</Timestamp>
<Originator>Tester5</0Originator>
</AuditTrailEntry>

</ProcessInstance>

</Process>

Figure 6: Fragment of an MXML log corresponding to case 1

for a case change at each event. If we use only the predictor and response variables of
a complete case, we lose a great deal of information. Therefore, the measurements of a
case are based on the prefizes of that case, meaning that for a single case, we derive a
measurement after each “complete”-event in that case. This is best explained by Table 5,
which shows the measurements that correspond to the events of the single case shown in
Table 4. Note that if the average case consists of 8 “complete”-events, and there are 1000

cases in the log, there are about 8000 measurements.

In Table 5 every column of values is a single measurement, each measurement corresponds
to a prefix of the case shown in Table 4. In other words; each measurement M, in Table

32

Measurements of case 1 [My [My [Ms | My [M5 | Mg |

response variable remaining cycle time || 5

\]
e
\]
—
\]
\]
w
o

Analyze Defect Duration 0 10 10 10 10 10

continuous prediction variable Repair (complex) Duration 0 0 14 14 14 14
Test Repair Duration 0 0 0 10 10 10

Repair (simple) Duration 0 0 0 0 0 0

defect Type attribute - 9 9 9 9 9

defectFixed attribute
phoneType attribute
numberRepairs attribute
Register Occurrence

Analyze Defect Occurrence
Repair (complex) Occurrence
ordered prediction variable Test Repair Occurrence
Repair (simple) Occurrence
Inform User Occurrence
Archive Repair Occurrence

categorical prediction variable true | true | true

—
N
=
2

O OO OO O
OO OO O
OO OO =
OOOHHH)—!O§
O»—lOHH»—A»—lo§
HHOD—'HH)—‘©§

Table 5: Example of measurements of the case in Table 4

5 contains the response variable and predictor variables as they are after each “complete”
event in Table 4. The measurements in Table 5 show how a single case generates multiple
measurements. In this table we have taken the total remaining cycle time as the response
variable, however, it is easy to use other response variables as we show later. Assume that
we have a new partial case for which we want to make a prediction. First, we derive the
single measurement m of that partial case. The prediction for this single measurement
m is computed by the non-parametric regression, which constructs a local average such
that the prediction is based on the weighted average of the response variable of the most
similar (old) measurements M. In other words, we use the measurements in M that are
most similar to m to construct a prediction for m. If we compare the measurement m of
a partial case to the measurements in M, we find that the most similar measurements are
those that correspond to a prefix that has the same length as the partial case has. In other
words, we compare a new partial case to the partial/prefixed cases that correspond to the
full cases from our log.

4.2 Preliminaries

Let n € IN. A sequence over S of length n is a function o : {1,..,n} — S. If n > 0 and
o(0) = aq,..,0(n) = a,, we write 0 = (ay, .., a,), and o; for o(i). The length of a sequence
is denoted by |o|. The sequence of length 0 is called the empty sequence, and is denoted
by (). The set of finite sequences over S is denoted by S*. Let v, 7 € S* be two sequences.
Concatenation, denoted by ¢ = v - 7 is defined as o : {1, ..., |v| + |7|} — S, such that for
1 <i< ||, o(i) =v(i), and for |v| <i < |o|,0(i) = 7(i — |v]).

33

Furthermore, the prefix from index ¢ to j on sequences is defined by v" =|; ; (v), such that
if ¢ > j, then v/ = (), otherwise v' = (v;,...,v;_1), i.e. for all sequences v holds that
Lo (v) =v. The term Z is used to denote column vectors and for a sequence o € S*, the
Parikh vector 73(0) : S — IN defines the number of occurrences of each element of S in the
sequence, i.e. d(s)=[{i |1 <i<|o|Ao(i) = s}, forall s € S.

Let X be a set and <y a total order on this set, we define pref : P(X) — P (P(X)) to be a
function such that for s € P(X) holds that pref(s) = {{e' € s | ¢ <xeVe =e} | e € s}U
{0}, i.e. a function that returns all prefixes for a given set X of totally ordered elements.

Let f : A — B be a function. For X C A, we define f(X) = {f(z) | z € X} , and for
b€ B we define f~1(b) ={a € A | f(a) =b}.

4.3 Cases, logs, measurements

In order to explain the measurements in detail, we start by formalising certain concepts
such as the definition of a log. Using the definition of a log we describe various other
functions that are used to derive measurements, as well as the measurements themselves.

Definition 4.1 (Log).
Let W = (C, A, AI, E, AN, AV, time, ai, act, case, case_attval, event_attval) be a log where:

- C is the set of case identifiers

- A is the set of activity identifiers

- Al is the set of activity instances

- F is the set of events

- AN is the set of attribute names

- AV is the set of attribute values

- time: B — R§ gives the time of an event

- ai: B — Al gives the activity instance where an
event refers to

- act: Al - A maps activity instances onto activities

- case: Al - C maps activity instances onto cases

- case_attval : (C x AN) — (AVU{L}) maps a case and attribute name onto
an attribute value

- event_attval : (E x AN) — (AV U{L}) maps an event and an attribute name
onto an attribute value

such that

- FE is totally ordered by relation <g

- (Veyenerm €1 <p €a = time(ey) < time(es))

- at, time, act, case, case_attval and event_attval are total functions

- “eventtype” € AN N {“start”, “complete” } C AV

- (Ve € E : event_attval(e, “eventtype”) € {“start”, “complete” })

- 1 denotes an empty attribute value, which is needed to make the functions total

34

In other words, a log contains a list of cases. The cases consist of a set of activity instances,
each activity instance corresponds to one or more events, and each activity instance also
corresponds to an activity. The events and cases contain attributes, such that all events
contain an attribute “eventtype” that has a value “start” or “complete”. Furthermore, all
events are ordered in time.

Definition 4.2 (Measurement Related Functions). Let ¢ € C, es C E, a € A, and
an € AN, such that (Ve € es : case(ai(e)) = ¢). We define :

is_.complete : FE — B
is_.complete(e) = (event_attval(e,” eventtype”) = "complete”), for e € £
start : P(E)—R¢
start(es) = rerélersl time(e)
end : P(E)—R{
end(es) = max time(e)
duration : P(E)— Rg
duration(es) = end(es) — start(es)
count : AXP(E)—N
count(a,es) = |{e € eslis_.complete(e) A act(ai(e)) = a} |
last_att : P(E)x AN - FE
last_att(es,an) = e,such that e € es A (L # event_attval(e,an)) A

- (3 €es: e >pe: (L +#event attval(e,an))
attval : P(E)x AN — AV

case_attval(c,an),iff = (Je € es : L # event_attval(e, an))

att_val(es,an) = {eventatwal(lastatt(es,an),an),otherwise

The function is_complete(e) returns true if the event is of type “complete”, start(es) and
end(es) return the time of the first and the last event for a set of events. The function
duration(es) returns the difference between the time of the first and the time of the last
event in a set of events, or in other words the duration. The function count(a,es) returns
the number of events of type complete in the set es that correspond to activity a, i.e. the
number of times activity a was completed in a set of events. This definition of count means
that we only count an activity if it was completed. The function att_val(es,an) returns the
last recorded value of the attribute an, or L. The last recorded value is the value of the
last event that contained a value for attribute an, or the value of the case attribute if no
event contains a value for attribute an. In att_val a function last,tt(es,an) is used, that
is only used here, this function returns the last event that contains a value for attribute
an, under the assumption that this event exists. Using these functions we construct the
remaining functions that derive the measurements from a log.

35

In Chapter 3 we showed that the non-parametric regression requires a set of measurements
{(Z:, X;, Y)Y, where Z; is a unique identifier for each tuple, X; € C? is a vector with
p predictor variables and Y; € R is the corresponding response variable. In other words,
the non-parametric regression requires a set with tuples, that contain a unique identifier,
a vector with predictor variables and a corresponding response variable. So far we left Z;
undefined, however, in Definition 4.3 we define a prefix es’ of a set of events es that belong
to a single case as the unique identifier. Because each es belongs to a single case each es
is unique, and as a result each prefix es’ is also unique.

Definition 4.3 (Measurements). Let W = (C, A, AI, E, AN, AV, time, ai, act, case,
case_attval, event_attval) be a log, and CP the domain of predictor variables. The set of
measurements M given a function pred_vars : P(E) — CP, that returns a vector with
predictor variables, and a function resp_var : P(E) x P(E) — Ry, that returns a response
variable, is :

U {(es', pred_vars(es’), respvar(es, es'))|es = ai~"(case™"(c)) A es' € pref(es)} (17)
ceC

In Definition 4.3, es’ denotes a prefix of the set of events (or case) es. As a result
pred_vars(es') are the predictor variables corresponding to that prefix, and resp_var(es, es’)
is the response variable that corresponds to that prefix es’ of the case es. Note that the
function pref was defined in the preliminaries, and returns all prefixes of a set of events.
In Definition 4.3 we can exchange resp_vars for a different function so that we are able to
use different response variables, in Section 4.5 we define three versions of resp_vars. We
need to define only a single version pred_vars, because this function is able to return a
vector with any combination of the three types of predictor variables.

4.4 Predictor variables

In Chapter 3 we distinguished three different types of predictor variables, namely the num-
ber of occurrences of activities, the duration of activities, and the data-attributes. The
prediction method allows for any combination of these predictor variables in the measure-
ments such that Equation (4) holds, in other words, the predictor variables are required
to be a vector such that the first m variables are continuous, the following [variables are
categorical and the last k — [variables are ordered. If m and [are O this results in a vector
with only activity occurrences, similarly if [is 0 we obtain a vector with both activity
durations and activity occurrences as predictor variables, in total we have eight possible
combinations of predictor variables. In the following section we define the predictor vari-
ables for the activity durations, the activity occurrences and the attributes. These three
types of predictor variables are be combined into a single vector of size p = m + k such
that Equation (4) holds.

36

Definition 4.4 (Activity Duration Predictor Variables). For es’ € P(E), and m € N,
let asd : {1,...,m} — A be a bijection that maps the numbers 1 to m to activities and
vice versa, i.e. an index of m activities. We define the function dur_pred_vars(es’) :
P(E) — R™ such that it returns a vector with the activity durations of size m. We define
dur_pred_vars(es’) = (pvy, pva, . .., puy,), for which we define pv; € R as:

D ascact—1(asd(s)) Quration (ai~! (as) Nes’)

count(asd(i), es’)

pU; = (18)

The function that returns the activity durations in Definition 4.4 computes the average
duration of an activity. The duration of each activity instance is computed as the difference
between the first and the last event corresponding to that activity instance of the activity
asd(i) in es’, which means that if an activity instance has both a “start”- and a “complete”-
event it has a duration and if it only has a “complete” event it has a duration of 0. In
Definition 4.4 the bijection asd : {1,...,m} — A acts both as a selector for which activity
durations are used as predictor variables, as well as an index to map the activity names to
numbers. If no ¢ € IN exists such that asd(i) = a then the duration of activity a is not in
the predictor variables.

Definition 4.5 (Attribute Predictor Variables). For es’ € P(E), and | € N, let ans :
{m+1,...,m+1} — AN be a bijection that maps [natural numbers to attribute names,
i.e. an index of attribute names. We define the function att_pred-vars(es’) : P(E) —
(D")! such that it returns a vector with data-attributes of size I, as att_pred_vars(es’) =
(pvy, pua, ..., pv;), where pv; = att_val(es', ans(i +m)).

In Definition 4.5 we use a bijection ans similar to asd. Next we define the predictor
variables for activity occurrences in Definition 4.6, in which we use aso a bijection that is
also similar to asd as a selector for the activity occurrences that are used in the predictor
variables. Note that the occurrences are discrete ordered predictor variables, meaning that
N C D°.

Definition 4.6 (Activity Occurrence Predictor Variables). For es’ € P(E), and k,l € N,
let aso : {m + 1+ 1,...,m + k} — A be a bijection that maps k — [natural num-
bers to activities and vice versus, i.e. an index of activities. We define the function
occ_predvars(es’) : P(E) — (D°)F! such that it returns a vector with the activity
occurrences of size k — [. We define occ_pred_vars(es’) = (pvy,pva,...,pug_;), where
pv; = count(es’,aso(i +m +1)).

With these definitions various combinations of different types of predictor variables can
be used such that Equation (4) holds. We vary what attributes and activities are used in
the predictor variables by using different functions for asd, aso, and ans. Note that m is
the number of activity durations mapped by asd, [the number of attributes mapped by
ans and k — [the number of activity occurrences mapped by aso. Using definitions 4.4,

37

4.5 and 4.6 we define the combination of all predictor variables in Definition 4.7, such that
Equation (4) holds.

Definition 4.7 (Combined Predictor Variables). For es’ € P(E), and p, k,l,m € IN, such
that p = m + k and | < k. We define the function pred_vars(es’) : P(E) — CP such that
pred_vars(es’) = (pvq, pve, ..., pu,), where

count(asd(i),es’) ™+ (@) duration (i (as) Nes’) iff 1 <i<m

as€act=1 (asd

pv; = § attwal(es’, ans(i)) ifm <i<m+1
count(es’, aso(i)) iftm+1<i<p
(19)

The example measurements shown in Table 5 are obtained using a asd such that it re-
turns (in this order) “Analyze Defect”, “Repair (complex)”, “Test Repair”’, and “Repair
(simple)”. Furthermore a single measurement of Table 5 is a tuple with a unique identifier
M, a vector with predictor variables, and a response variable, such that for the predictor
variables 7; it holds that (Vj e N:1<j<4:2;,;, e R)AVj e N:5<j<8:u; €
DY)AVj e N:9<j<15:x;; € D°).

In the next section we define the different response variables, with which we control what
we predict.

4.5 Response variables

There are three different types of response variables, the total remaining cycle time, the
remaining cycle time until activity a, and the occurrence of activity a. In this section
we define three versions of the function resp_vars : (P(E) x P(E)) — Ry, one for each
type of response variable. By using the correct version of resp_vars in Definition 4.3, the
measurements for each type of prediction are obtained.

Definition 4.8 (Total Remaining Cycle Time). trct_resp_vars(es,es’) = end(es)—end(es’)

Definition 4.8 is a function that returns the difference between the last event in the partial
case es’ and the last event in the complete case es, i.e. the total remaining cycle time. In
Definition 4.9 we define the remaining cycle time until activity a, a function that returns
the difference between the time of the first “complete”-event of activity a in the complete
case es, and the time of the last event in the partial case es’. However, if there is no
occurrence of the activity a in the measurement it is impossible to calculate a time until
that activity. Also, because the non-parametric prediction method is capable of predicting
the occurrence of an activity a, we assume for the prediction of the remaining cycle time
until a that the activity a will in fact occur. Therefore, we filter the cases such that only
cases that have an occurrence of activity a are used in the measurements. Equation (20) is
the alternative equation for Definition 4.3 used to construct the measurements. Note that

38

the remaining cycle time until an activity a becomes negative if the activity has already
occurred, therefore we ensure that resp_vars never returns a value lower than 0.

U.cc {(es', pred_vars(es’), reta_respvary(es, es'))|es = ai™" (case™ (c))A (20)
a € act(case™(c)) N es' € pref(es)}

Definition 4.9 (Remaining Cycle Time until a). rcta_resp-vars,(es, es’) = max(start({e €
es | is_complete(e)} Nai~t(act™(a))) — end(es’),0)

The total amount of occurrences of activity a in a sequence is the only response variable
that is equal for all measurements of a single case, i.e. the total amount of occurrences
of an activity in a case does not change as the case progresses. Note that the occurrence
predictor uses Definition 4.3, i.e. the occurrence predictor uses all cases and not just those
with an occurrence of activity a.

Definition 4.10 (Occurrence of a). occ_resp_vars(es,es’) = count(a, es).

In Definition 4.10 the occurrence response variable is not a continuous variable but a
natural number. At first sight this is not a problem, however, the regression functions
in equations (14) and (16) return a continuous variable, which means that the regression
functions can predict e.g. 0.56 occurrences. Therefore we need to round equations (14)
and (16), such that they return a natural number. Because the bandwidth selection uses
the rounded Equation (16), we ensure that a bandwidth is found such that the rounded
Equation (14) has a minimal error.

4.6 Summary of the prediction method

s li Cross-validation Non-parametric
— funetion — Regression
for bandwidth selection Model
I

event-log Measurements as

in MXML defined in Definition 5.3

Prediction of the
selected Response

variable using the
regression function

in Equation 14
Measurement } @
case
single measuremant

without response
variable

Figure 7: Detailed overview of the prediction method

Now that all math and functions necessary have been described, we summarize the predic-
tion method, and show how they are combined. Initially there is an information system

39

that supports so business process. This information system collects data on the cases that
are handled. An event-log in MXML is constructed based on the data in the informa-
tion system, using Definition 4.3 we can construct measurements that contain predictor
variables using Definition 4.7, and one of three possible response variables resp_vars (the
total remaining cycle time in Definition 4.8, the total cycle time until activity a in Defini-
tion 4.9, and the occurrence of activity a in Definition 4.10). The resulting measurements
M e (P(E) x C? x R) can be used to construct a non-parametric regression model.

Section 3.6 described how the non-parametric regression model can be created by mini-
mizing MSE,, (Equation (15)), the mean square error of the cross-validated regression
model, over the bandwidth h. This is an expensive computation in terms of time, but is
required only once for a set of measurements. As a result we find an optimum bandwidth
h such that the cross-validated regression model has a minimum error e. Now we have a
regression model 7 : C?» x R — R (Equation (14)) that uses the optimum bandwidth, the
measurements M and the single measurement of the partial case to make a prediction for
that partial case. The type of prediction we make is dependent on which response variable
is used in the measurements.

This prediction method is capable of handling mixed sets of predictor variables, more
specifically we can use continuous, discrete ordinal (or ordered), and discrete nominal (or
categorical) types of data. This prediction method can be used to predict both remaining
cycle time and occurrences of activities, and it requires no assumptions on the underlying
process to do so.

40

5 Validation

To validate our method it is necessary to verify where the prediction method behaves
as expected, and to test the performance of the prediction method. With the help of
simulations we verify specific aspects of processes that either increase or decrease the
performance of the prediction method, such as the effect of deferred or exclusive choices
on the flow in a process. To show that our prediction method performs better than the
simple average estimators mentioned in the introduction, a case study has been conducted.
In Section 5.1 we describe this case study, in which the non-parametric prediction method
is tested on a case taken from practice. In Section 5.1 we show a set of simulations that is
used to verify certain properties of the method.

5.1 Case study

To test the performance of our prediction method, we applied it to a log taken from practise.
As a benchmark we used simple average estimators mentioned in the introduction and we
show that out approach outperforms these estimators. We used a dataset called “bezwaar
WOZ” from a Dutch municipality [23]. The process described in this log is the process
of handling objections filed against real estate taxes. A model of the process is shown in
Appendix C on page xv.

5.1.1 Experiment setup

Case description From the log, that originally contained 1982 cases, we only kept those
cases of which both their first and their last activity were performed in the measurement
period. Furthermore, we cleaned the log such that the activities not relating to the main
procedure were contained less outliers. This resulted in a log containing 706 cases, which
were handled by the municipality between February 28 2005 and November 8 2005 (a
period of 252 days). In total, 9218 events were recorded, relating to the start and comple-
tion of 12 activities. Note that the start-events were only used to obtain the durations of
each activity, i.e., only “complete” events were used in the measurements. Furthermore, all
cases and all events were annotated with data attributes, which we all used in the analysis.

Method By using a 10-fold cross-validation, we used 90% of the log as the set of cases
on which we base our measurements. Note that the measurements consist of the prefixes of
the cases in the log, as described in Chapter 4. The prefixes of the cases in the remaining
10% of the log are then used as “partial” cases for which we make a prediction. This way
we predict the remaining cycle time for each prefix of each case in the log without bias.
We have predicted the total remaining cycle time, the occurrence of the activity called
“0Z12 Hertaxeren”, and the remaining cycle time until the activity “07Z12 Hertaxeren”.

41

For all three types of prediction, we have tested the average predictor, the nonparametric
predictor with only occurrences, with only data-attributes, with only activity-durations,
and with all three (occurrences, data-attributes and activity-durations) combined.

Hardware For each of the regression experiments, the optimal values for the bandwidth
parameters were calculated using a package called NP [19], which includes an internal
cross-validation for finding the optimal values of the bandwidth parameters and is an
implementation of the non-parametric regression described in [25]. Bandwidth selection
and the computation of the predictions for each partial prefix were done using the software
package R [20], running on four dual quad-core 2.66GHz Intel Xeon CPUs with 16 GB
of memory each. This setup allowed us to run the 10 experiments of the 10-fold cross
validations in parallel, as each experiment uses a single thread. A detailed overview of the
experiment setup is given in appendix A on page ii of the Appendix.

Benchmark A straightforward way to predict the remaining cycle time, is to make a
prediction based on the average. As mentioned in the introduction, this works by taking
the average total cycle time minus the time spent waiting so-far. It is common to add
a certain confidence interval to this prediction, such that the predicted value becomes a
range of likely values. As the average is based on all cases, an average prediction with a
confidence interval of for example 95% results in a predicted range that most likely contains
the actual value. As we focus on the accurate estimation of a single value rather than a
range, we use the average prediction without a confidence interval.

The average predictor for the remaining cycle time works assuming each case has a total
cycle time equal to the average total cycle time over all cases. The average predictor for the
discrete case, the average occurrence estimator, works in the same way. As the occurrences
of a certain activity a can be 0, 1, and in case of loops 2 or more, the average amount of
occurrences based on all cases becomes the prediction for each case. Thus if, on average, a
case contains the occurrence of activity a once, the average occurrence predictor predicts
1 for all cases.

5.1.2 Total remaining cycle time prediction

Results of the total remaining cycle time prediction

For each experiment we recorded the estimates and the actual values. These were used to
calculate the absolute error, the relative error and the mean square error for the complete
experiment. The overall mean square errors are shown in Table 6. A scatterplot with the
average based predictions, the nonparametric predictions and the actual values is shown
in Figure 8. In this scatterplot the X-value denotes the time spent at the time of the
prediction, and the Y-value denotes the (predicted or actual) total remaining cycle time.

42

Scatterplot of actual values and predictions

remaining cycle time

25000 50000 75000 100000 125000 150000 175.000 200000 225000 250000 275000 300000 325000 350000 7SO0
Time(minute) since heginning of the process

| ® actual Total remaining cycle ime ® nonparametric estimator: Total remaining cycle time & average estimator: Total rsmaining cycle tlme‘

Figure 8: Scatterplot of Total remaining cycle time predictions and actual values, with the total
remaining cycle time on the Y-axis and the time spent on the X-axis.

Figure 9 shows the actual remaining cycle time and the predicted total remaining cycle
time, as predicted by the average predictor and the non-parametric predictor based on only
data-attribute variables. in Figure 9 the cycle time since the beginning of a case is shown
on the horizontal axis, and the actual or predicted remaining cycle time on the vertical
axis. Figure 10 show the mean square error of these predictors, in which the horizontal
axis shows the time since the beginning of a case and the vertical axis shows the mean
square error.

As shown in Figure 8, each prediction or measurement is a single point, the lines in the
charts in this chapter are based on histograms. A histogram works as follows; the domain
of the horizontal axis (or X-axis) is divided into bars. For these charts we have chosen a
bar to be 7 days wide, as the longest case is 252 days long we will have 36 bars. Each
prediction or measurement falls into a bar depending on its X-value, both the X-values
and the Y-values(vertical axis) of all points in the bar are averaged. The average X-value

43

and the average Y-value become the coordinates for the single point of that bar. This way
we construct a single line based upon a great deal of measurements. As the line represents
the average value, we add the 95% confidence interval to the chart in the form of the
coloured area surrounding the line. Note that we must assume a normally distributed
error in order to calculate the confidence interval, which does not influence the predictions
or the prediction method.

In Figure 9 on page 45, the line representing the average cycle time predictor should be a
straight line with a constant variance. The reason this should be a straight line is because
it is the prediction based on the average cycle time minus the time since the beginning
of the case. Because the chart shows the predicted remaining cycle time against the time
since the beginning of the case this becomes a straight line. The reason this is not a com-
pletely constant straight line (i.e. no variance) is because the average cycle time prediction
is (just like the non-parametric predictor) “trained” on 90% of the log and tested on 10%,
then repeated 10 times on a different stretch, resulting in a prediction for each case in the
log. This 90% is a different part of the log each repetition, thus resulting in a different av-
erage each repetition, therefore the line is shown is the average of 10 slightly different lines.

Discussion of the total remaining cycle time prediction

Table 6: Results Total Remaining Cycle Time Prediction

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 2687.47 + 133.69
Nonparametric Predictor | only activity durations 5134.12 + 320.02
Nonparametric Predictor | only activity occurrences | 1754.61 + 115.38
Nonparametric Predictor | only case attributes 1532.85 + 103.25
Nonparametric Predictor | all 1573.42 + 106.44

Figure 10 shows that in the beginning and at the end of a process, the average predictor
and the non-parametric predictor perform rather equal. In the beginning of a case, little
information is available for each case, meaning all cases are very similar. The “local-
average” is therefore more like the actual average. One can see in the chart that the error
of the non-parametric estimator decreases after 10 days of the process. This shows that,
as more information becomes available on each case, the prediction becomes better. In
the last part of the chart it is visible that the average predictor continuously predicts 0
remaining cycle time, this is because these are the cases that take longer than the average.
As the average prediction is the average total remaining cycle time minus the cycle time

44

Total remaining cycle time
180

£

Total rermaining cycle time (days)

0 10 20 30 40 S0 60 FO 80 90 100 110 120 130 140 150 160 17C. 180 190 200 210 220 230 240 350
Time(day) since heginning ofthe process

|-I- actual Total remaining cycle time -e=nonparametric estimator; Total remaining cycle time -+ average estimator: Total remaining cycle time|

Figure 9: Total remaining cycle time prediction based on only data-attributes, with the total
remaining cycle time on the Y-axis and the time spent on the X-axis. Each line is based on a
histogram, and the coloured area surrounding it is the 95% confidence interval

45

Mean s{uare error
13000

12500

12000

11500

11000

10500

10000

o500

aooo

IR EEEEEEREEEEE

2500

2000

7500

yooo

8500

8000 | W W W I 1 M @M M oI mm mm o onmo om o

Mean square error

5500

Sooo

3500

3000

2500

2000

1500

1000

500

N .

0 10 20 30 40 S0 60 FO B0 90 100 110 120 130 140 150 160 170 120 190 200 210 220 230 245 250
Time(day) since heginning ofthe process

|-I- ahsolute error of nonparametric estimator: Total remaining cycle time - absolute error of average estimator: Total remaining cycle time|

Figure 10: Mean square error of Total remaining cycle time prediction based on only data-
attributes, with the mean square error on the Y-axis and the time spent on the X-axis. Each line
is based on a histogram, and the coloured area surrounding it is the 95% confidence interval

46

so-far, this results in a negative value. As it is impossible to have a negative remaining
cycle time, 0 is predicted.

Durations Table 6 shows that the durations are the worst basis for a prediction. This is
explained by the fact that the durations in the log were not recorded such that they are an
accurate representation of the duration of activities in the process. Some activities have
durations that correspond to the actual duration of those activities, while other durations
correspond to the time it took to input the results of the activities into the computer. As
a result, the durations of activities present hardly any information for the non-parametric
predictor to compare cases such that it can accurately predict the remaining cycle time.
Because the durations of activities present so little predictive value, the nonparametric
predictor using durations performs worse than the average based predictor.

Attributes The attribute based predictor performs the best, which is not surprising as
the attributes contain information on the case. Information detailing the difficulty of a case,
or other information that has a direct relation to the duration of that case. The bandwidth
values (shown in Appendix D on page xvii) for the non-parametric predictor show that
the attributes “new_queue”, “id”, and “priority” are the most influential attributes. The
“priority” attribute is either “True” or “False”, the name suggests that this attribute indeed
has a big influence on the process time of a case. The attribute “new_queue” appears to be
the next activity for this case, therefore this attribute changes at each activity. Another
attribute that is relatively important is “queue”, which indicates the activity that was just
completed. As the non-parametric predictor uses all variables to compare and selects the
most relevant cases, the combination of “queue” and “new_queue” are a good basis for
comparison. The fact that the attribute ”id” is an important factor in the prediction is
interesting. An attribute that is much like “id”, is the attribute “name”. Both attributes
are unique identifiers for cases. As the cross-validation splits up the log, it ensures that the
measurement of a case are never used to make a prediction for that same case. Therefore,
there is no prediction for which this attribute will be equal. Because the bandwidth is low,
and there is not a single prediction for which this attribute is equal, it simply becomes a
scalar for the weights and it is therefore irrelevant to the prediction. However, this shows
that it is very difficult to derive information from the values in the bandwidth, as there
are many factors to take into account.

The last part of the charts (starting around 100 days) are the predictions for the cases that
take the longest. However, the (average) actual remaining cycle for these cases is relatively
constant. This suggests that one of the last activities has an exponentially distributed
cycle time for these cases. We will come back to this with the prediction of the remaining
cycle time of the occurrence of the activity ”70Z12 Hertaxeren”.

47

Occurrences The results in Table 6 shows that the occurrence based predictor has an
accuracy not much lower than the attribute based predictor. This means that the sequence
of events for a case is almost equally useful in the prediction of the duration as information
on the case itself. Apparently there is a sequence of activities that indicate a degree of
complexity, thus enabling the non-parametric predictor to estimate a longer duration. In
Figure 58 in Appendix C, a Petri-net is shown with a colour in each place. The colors
(blue, yellow and red) indicate a degree of time that is spent in that place on average.
An example of a trace with a very long process time (on average) is; “Domain:heusl”,
“0Z02 Voorbereiding”, “0Z06 Stop Vordering”, “0Z08 Beoordelen”, “0Z12 Hertaxeren”,
“07Z16 Uitspraak”, ’0Z20 Administratie” and “0Z24 Start Vordering”. An example of a
very short trace is “Domain:heusl” followed by “0Z04 Incompleet”. Many different traces
are possible in this model, each with different average process times. The non-parametric
regression compares cases based on the activities that occurred, it is therefore inevitable
that the predictions for cases with an equal sequence are equal.

All predictor variables Comparing the figures in Table 6 shows that the mean square
error of the combined predictor of the occurrences, the attributes and the durations is
only slightly higher than the mean square error of the predictor based only on attributes.
Although the expectation was that the addition of various less relevant predictor variables
decreases the accuracy, the accuracy suffered only slightly. This result shows that the
nonparametric predictor is capable of selecting the best predictor variables.

Comparison In comparison, the predictor with data-attributes performs best. This is
not surprising as the data-attributes contain information such as the priority of the case, the
difficulty of the case and some information on recent and future activities. The predictor
based on occurrences is also a good predictor, this indicates that a better prediction can
be made without having to store privacy sensitive information.

The computation of the bandwidth selection is very slow, which was expected to be a
problem as it is an exponential computation (see Section 3.6). The number of cases in
the experiments in this example is not extraordinary large, 706 cases is probably a small
number for large companies. The computation for the bandwidths took less than a day
for both the attributes-only and the occurrences-only predictions, while the bandwidth-
selection for the predictions with a combination of all variables took almost three days.
Fortunately, for the practical application of the approach the bandwidth only needs to be
calculated once, after it has been found, the predictions themselves are computed in linear
time. This leads to a suggestion for future work; the idle-time bandwidth optimization. As
the computers providing predictions are usually not busy during the nights and weekends,
they can continue optimizing the bandwidth. More suggestions for future work are found
in Chapter 7.

48

5.1.3 Remaining cycle time until ”0Z12 Hertaxeren” prediction

Results of the remaining cycle rime until ?’0Z12 Hertaxeren” Prediction Sim-
ilar to the Total remaining cycle time, we have tested the Remaining cycle time until
“07Z12 Hertaxeren”. As explained in Section 4.5 for the prediction of the remaining cycle
time until a specific activity, we assume that this activity will in fact occur. In a real life
application of this method, we assume the occurrence is first predicted after which the
remaining cycle time is predicted only when the activity is predicted to occur. Therefore
we limit the predictions to cases in which “0712 Hertaxeren” actually occurs.

Table 7: Results Remaining Cycle Time until ”0Z12 Hertaxeren” Prediction

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 399.54 + 38.05
Nonparametric Predictor | only activity durations 1052.32 + 38.05
Nonparametric Predictor | only activity occurrences | 307.05 + 46.14
Nonparametric Predictor | only case attributes 257.34 + 33.23
Nonparametric Predictor | all 385.67 + 87.44

Because the average time until “0Z12 Hertaxeren” is shorter than the average time until
the end of the process, the absolute errors are also smaller. The average predictor shows
that on average the activity “0Z12 Hertaxeren” occurs after 207 days, while the average
time until the end of the process was 174 days. This shows that cases in which the activity
‘0Z12 Hertaxeren” does not occur are cases that take relatively little time. As a result, the
mean square error is relatively low.

Discussion of the remaining cycle time until ”0Z12 Hertaxeren” Prediction

Durations The durations are by far the worst predictor for predicting the remaining
cycle time until the activity “0Z12 Hertaxeren”, the results in Table 7 show that the mean
square error of this predictor is significantly larger. Again, the durations of activities have
very little predictive value in this process.

Attributes Similar to the prediction of the total remaining cycle time, the predictor
based on attributes performs the best. Figures 11 and 12 show the estimations and mean
square errors of the nonparametric predictor using attributes. The charts show how the
average prediction is the best possible estimation at the start of the process, these charts
also show how the nonparametric predictor mimics the average predictor in the beginning.

49

Remaining cycle time until 0212 Hertaxeren

Remaining cycle time

] 25 50 75 100 125 150 175 200 225 250
Time(days) since beginning ofthe process

-#- average estimator: Remaining cycle time until 0212 Hertaxeren

=& nonparametric estimator: Remaining cycle time until 0Z12 Hertaxeren actual Remaining cycle time until 0Z12 Hertaxeren

Figure 11: Remaining cycle time until 70712 Hertaxeren” predictions with only data-attributes

20

Mean square error Remaining cycle time to 0212 Hertaxeren

Mean square error

] 25 50 75 100 125 150 175 200 225 250
Time(days) since heginning of the process

-m- absolute error of nonparametric estimator; Remaining cycle time until 0Z12 Hertaxeren

=#- ahsolute error of average estimator: Remaining cycle time until 0212 Hertaxeren

Figure 12: MSE of Remaining cycle time until ”0Z12 Hertaxeren” predictions with only data-
attributes

51

As we noticed in the discussion of the results for the prediction of the total remaining
cycle time, the average remaining cycle time stays constant which suggests there are most
likely activities that have an exponentially distributed cycle time. Because the predictions
of “0Z12 Hertaxeren” also shows this, it is safe to say that the sequence of activities that
lead to “0Z12 Hertaxeren” contains the activity that is exponentially distributed.

Occurrences The occurrences based predictions are not the best, but certainly better
than the all most predictions, as it is only outperformed by the nonparametric predictor
using attributes. The bandwidths of occurrence based prediction of the remaining cycle
time until “0Z12 Hertaxeren” shows that the occurrences of the activities “0Z08 Beoorde-
len”, ‘0Z04 Incompleet”, “0Z10 Horen”, and “0Z15 Zelf Uitspraak” are important. The
process model of the case study in Appendix C shows that all sequences that include the
activities “0Z10 Horen” and “0Z15 Zelf Uitspraak” are not likely to include “0Z12 Her-
taxeren”, while sequences that include “0Z08 Beoordelen” are likely to also include “0Z12
Hertaxeren”. Comparing cases on these activities provides a good performance.

All predictor variables The combination of all predictor variables provides less accu-
racy compared to the occurrences or the attributes, however more than the accuracy of the
durations. This shows that more predictor variables can decrease the performance of the
nonparametric predictor, because then there are also more irrelevant predictor variables.
This leads to a suggestion for future work, the removal of redundant predictor variables.

Comparison The accuracy of the nonparametric predictor compared to the average
predictor is not significantly higher, nonetheless the results show that the nonparametric
predictor performs better in this example. This example also shows that the presence of
irrelevant predictor variables decreases the accuracy of the predictor.

5.1.4 Prediction of the occurrence of “0Z12 Hertaxeren”

Results of the Prediction of the occurrence of “0Z12 Hertaxeren”

Using the same settings (10-fold cross-validation, etc) as the remaining cycle time predic-
tion, we have tested the predictions of the occurrences. We must first note that there are
some limitations to the software used for this; as the package used for the regression does
not allow us to adapt the bandwidth selection functions easily, we could only round the
predictions themselves to natural numbers. Internally the prediction method calculates an
optimal bandwidth for a continuous response value, the bandwidth is therefore not opti-
mized for the rounded predictions but for the unrounded predictions. This could lead to a
suboptimal bandwidth.

52

Table 8: Definition of results

example Actual
1 0
. 0 A B
Predicted 11 D
False Positive Rate DL_iB
False Negative Rate %
Total Error % x 100%

In this experiment each prediction can only be 0 or 1, therefore the mean square error
is not a good predictor in this case. A different method, using the definition of Type I
and Type II errors, is to show the False Positive Rate and the False Negative Rate. The
False Positive Rate shows the proportion of cases with 0 occurrences that were erroneously
predicted to have 1 occurrence, equally the False Negative Rate shows the proportion of
cases with 1 occurrence that were erroneously predicted to have 0 occurrences. Table 8
shows an overview of the definitions of all results shown. In this table the relation between
the False Negative Rate, the False Positive Rate and the tables with predictions versus
actual values are shown. Table 9 shows an overview of the accuracy of the results. Tables
10 and 11 show the results of all predictions, the tables show the number of predictions
categorised by two dimensions, actual value and predicted value.

Recall that the average predictor predicts the average number of occurrences. For this
experiment it predicted 1 occurrence, i.e. it predicted that the activity “0Z12 Hertaxeren”

Table 9: Overview Results “0Z12 Hertaxeren” Prediction

Predictor Variables used False Negative Rate | False Positive Rate
Average Predictor - 0 1
Nonparametric Predictor | only activity durations 0.761740 0.229557
Nonparametric Predictor | only activity occurrences | 0.017265 0.510878
Nonparametric Predictor | only case attributes 0.001727 0.933983
Nonparametric Predictor | all 0.099102 0.603151

Predictor

Variables used

Total error

Average Predictor - 31.5%
Nonparametric Predictor | only activity durations 59.4%
Nonparametric Predictor | only activity occurrences 17.3%
Nonparametric Predictor | only case attributes 29.6%
Nonparametric Predictor | all 25.8%

23

Table 10: Results “0Z12 Hertaxeren” prediction using the non-parametric predictor

nonpar. predictor Actual nonpar. predictor Actual
case attributes 1 0 occurrences 1 0

. 0| 5 88 . 0| 50 652
Predicted 119891 1945 Predicted 119346 631
nonpar. predictor Actual nonpar. predictor Actual
durations 1 0 all 1 0

. 0| 2206 1027 . 0| 287 529
Predicted 11 690 306 Predicted 112609 804

Table 11: Results “0Z12 Hertaxeren” Prediction using the average occurrence predictor

avg. predictor Actual

1 0

. 0| 0 0
Predicted 4 1 9506 1333

will always occur. As a result the total error of the average predictor will always be lower
than 50%, in this case the error was 31.5%.

Discussion of the prediction of the occurrence of “0Z12 Hertaxeren”

Durations Similar to the other predictions, the durations provide little insight into the
process as the predictions based on durations perform the worst.

Attributes Table 9 shows that the predictor based on attributes is second best if we
look at the Total error. However, the False Positive/Negative Rate are more interesting.
The False Positive Rate shows the rate of cases for which we (erroneously) predicted that
“0Z12 Hertaxeren” would occur, and the False Negative Rate is the rate of cases for which
we erroneously predicted “0Z12 Hertaxeren” would not occur. For this predictor the False
Positive Rate is almost 1 and the False Negative Rate is almost 0. The results in Table
10 show that this is because almost all predictions were predicted to have an occurrence
of “0Z12 Hertaxeren”.

Appendix F on page xix shows that the attributes “error”, “name”, “id”, and “priority”
are the most influential variables. Judging by their names both “error” and “priority”

o4

Occurrence of 0212 Hertaxeren prediction

average occurrence

0 1 2 3 4 5 G 7 a] 10
Event sequence

- average estimator: Occurance of 0212 Hertaxeren -#= actual Occurance of 0212 Hertaxeren
e nonparametric estimator; Occurance of 0Z12 Hertaxeren

Figure 13: Prediction of the occurrence of “0Z12 Hertaxeren” with only occurrenes

95

are obviously important predictor variable. As with the total remaining cycle time, the
other two attributes “name” and “id” are always unique and therefore always irrelevant
variables.

Occurrences The non-parametric predictor based on occurrences performed the best,
with an error of 17%. The occurrences present information on what activities have already
occurred. By looking at the process model in Appendix C on page xv and the bandwidth
values in Appendix E on page xvii, we can determine which activities are most influential
in the prediction. The occurrences “OZ04 Incompleet” is one of the occurrences with a
low bandwidth value, the process model indicates that this is indeed a very short path
that does not lead to “0Z12 Hertaxeren”. The path “0Z02 Voorbereiden”, “0Z09 Wacht
Beoordeling” is another path that indicates “0Z12 Hertaxeren” will not occur. However,
the path “0Z02 Voorbereiden”, “0Z12 Hertaxeren” is a path that always leads to “0Z12
Hertaxeren”. Although this is logical for a human, the non-parametric regression does not
know what activity it is predicting. The non-parametric regression only knows that it has
a set of measurements with predictor variables and a single response variable, on which it
must base a prediction for a new case.

All predictor variables The non-parametric predictor using all predictor variables per-
forms better than the predictor using attributes and worse than the predictor using oc-
currences. As with the remaining cycle time until “0Z12 Hertaxeren” this shows that the
addition of more predictor variables can decrease accuracy. However, the accuracy of the
non-parametric predictor using all predictor variables is much better than the accuracy of
the predictor using durations, therefore this also shows that the non-parametric predictor
is capable of selecting the better predictor variables, but still suffers in accuracy.

Comparison In comparison, the non-parametric predictor using occurrences has by far
the highest accuracy, which shows that the non-parametric predictor is in fact better
than the average predictor. The prediction of the occurrence of “07Z12 Hertaxeren” also
shows that the non-parametric predictor is capable of selecting the most relevant predictor
variables, but the non-parametric predictor still suffers in accuracy if many irrelevant
predictor variables are present.

5.1.5 Conclusion of the case study

For the case study we applied the non-parametric prediction method to a log taken from
practice. We have tested all three types of prediction, namely the total remaining cycle
time, the remaining cycle time until an activity and the occurrence of an activity. The re-
sults of the case study show that the non-parametric predictor is substantially better given
the right selection of variables. However, the non-parametric predictor is not significantly

26

better than the average predictor in all types of predictions. Furthermore the case study
shows that, although the non-parametric predictor suffers in accuracy from irrelevant pre-
dictor variables, it is capable of selecting the relevant predictor variables from irrelevant
predictor variables.

In order to explain the behaviour of the non-parametric predictor in specific types of
processes, the rest of this chapter shows simulations.

5.2 Simulations

By testing the prediction method on a log created by a simulated processes, it is possible to
verify the output. In other words, we can formulate a hypothesis about the predictions for
a simulated process, the results either confirm or reject the hypothesis. All processes shown
in this chapter, are simulated using CPN-Tools [10]. CPN-Tools is a tool for simulating
colored Petri Nets, the tool is maintained by the CPN group of the University of Aarhus
in Denmark. All CPN-Tools models are shown in Appendix B on page viii, for each
simulation experiment 1000 cases were used. The number of 1000 cases is chosen for
practical reasons, if there are more cases the time needed to compute the predictions on
each simulation becomes too long. (For 1000 cases some of the computations already took
3 days.)

5.2.1 Comparison of the non-parametric and the average predictor

The previous chapters described how the non-parametric predictor bases its predictions
on a local average of cases that most resembles the case for which we predict. In order
to compare cases, any combination of activity occurrences, the activity durations, and/or
data-attributes is used. The average predictor relies on the total average, and the time-
spent-so-far for predictions. If there are no good predictor variables to compare cases, the
non-paramatric predictor based on occurrences will expand the the local average such that
it constructs an average prediction for each possible prefix. Therefore, the non-parametric
predictor using the optimal predictor variables is always similar or better than the average
predictor, even in processes in which the average prediction is the best possible prediction.

Hypothesis 1. The mean square error of the non-parametric predictor is not significantly
higher than the mean square error of the average predictor.

In order to test this hypothesis we look at two different aspects of a process, the cycle
time distribution and the structure of the process. Both the cycle time distribution and
the structure of the process influence the performance of a predictor. Two simulations
are constructed, each constructed to test one of these two aspects. The first process we
simulate is a process where all cycle times are exponentially distributed. In this process
the cycle times of completed activities have no predictive value, also the average is the

o7

best prediction for the remaining cycle time. The second simulated process is a parallel
process, in which the sequence of activities is unpredictable. In both simulations the
worst-case-scenario are tested, if both simulations show the non-parametric predictor is
not significantly higher than the mean square error of the average predictor the hypothesis
is confirmed.

Simulation 1: cycle time distribution Figure 14 shows a sequential process with
exponentially distributed process times. This process is simulated by a CPN-Tools sim-
ulation, shown in Appendix B Figure 50. Because the process times are independently
distributed, the actual remaining cycle time is independent of the value of the duration
of any previous activity. The average predictor however, is dependent on the value of
the duration of activities A, B, and C. Whereas, the non-parametric predictor compares
cases and bases a prediction on the remaining cycle time of the most similar cases. In the
case of the non-parametric predictor using occurrences this results in a average for each
possible prefix, which means an average is constructed at each point in the process. The
non-parametric predictor based on durations does the same, although the actual value of
the duration of an activity is irrelevant in this process, any non-zero duration is equal to
an occurrence of at least 1. This means the non-parametric predictor constructs a predic-
tion based on the average remaining cycle time at each point in the process instead of an
average remaining cycle time based on the time spent so far. Therefore, this simulation
is supposed to show that the mean square error of the non-parametric predictor is not
significantly higher than the mean square error of the average predictor. The process is

O~ O O o~ 0

Figure 14: Simulated Process 1

simulated both with and without queueing, to provide an extra insight into the effect of
queueing on the performance of the predictors. The activities are M /M /1-queueing models
for which the occupation-rate is varied to be 0, 0.7 and 0.9. We will denote Simulation la
as the simulation of a sequential process without queues, Simulation 1b as the simulation of
a sequential process with queues and occupation-rate 0.7, and Simulation 1c as the simula-
tion of a sequential process with queues and occupation-rate 0.9. Figure 51 in Appendix B
shows the same sequential process with queues, in which each activity is modelled by Fig-
ure 52. In order to vary the occupation rate, we have kept the (exponentially distributed)
arrival rate steady at an average of 10 minutes between each arrival. For Simulation 1b
the average process time of each activity was 7 minutes, in Simulation 1c it was 9 minutes.
Because Simulation la is done without queues, there was no arrival rate and the average
process time of each activity was 10 minutes.

o8

Table 12: Results Simulation la : sequential process no queues

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 298.59 + 22.95
Non-parametric Predictor | only activity durations 223.96 + 23.25
Non-parametric Predictor | only activity occurrences | 204.11 + 22.58
Non-parametric Predictor | both 203.23 + 22.43

Table 13: Results Simulation 1b : sequential process with queues and occupation rate 0.7

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 2345.49 + 248.78
Non-parametric Predictor | only activity durations 2054.44 + 253.65
Non-parametric Predictor | only activity occurrences | 1963.42 + 250.48
Non-parametric Predictor | both 1951.98 + 252.00

Table 14: Results Simulation 1c : sequential process with queues and occupation rate 0.9

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 17909.14 + 1927.06
Non-parametric Predictor | only activity durations 15576.97 + 1994.79
Non-parametric Predictor | only activity occurrences | 15049.60 + 1939.57
Non-parametric Predictor | both 15097.09 + 1946.61

Results Simulation 1 Tables 12, 13, and 14 show the mean square errors of the sim-
ulations with their corresponding 95% confidence interval. Figures 15, 17,and 19 show
histograms of the estimations of the non-parametric predictor with the lowest MSE, the
average predictor and the actual predictions. Figures 16, 18, and 20 show charts with
the mean square errors of the best performing non-parametric predictor and the average
predictor. Figures 21, 23 and 25 show the scatterplots of the actual remaining cycle times,
Figures 22, 24 and 26 show the scatterplots of the non-parametric predictor with the lowest
MSE and the average predictor.

The hypothesis that the mean square error of the non-parametric predictor is not sig-
nificantly lower than the mean square error of the average predictor, is confirmed. The
results in tables 12, 13, and 14 show that in each simulation the non-parametric predictor

29

Estimations simulation 1: sequential process no queues

Remaining cycle time
"
=]

[N R A -]

o

5 10 15 20 25 30 35 40 45 50 55 &0 B85 70 75 80 a5 a0 a5 100 105 110 115 120 125
Time(minutes) since beginning ofthe process

|—-— actual Total remaining cycle time -#=nonparametric estimator: Total remaining cycle time -+ average estimator: Total remaining cycle time‘

Figure 15: Total remaining cycle time - Simulation la: sequential process no queues

performed equally or significantly better. In Simulation la (sequential process without
queues) the mean square error of the non-parametric predictor based on all predictor vari-
ables is significantly lower than the mean square error of the average predictor. In all other
simulations the mean square error of the best-performing non-parametric predictor is lower
but not significantly lower than the mean square error of the average predictor.

Discussion Simulation 1 In Figure 22, the line of the average predictor confirms that
on average the total cycle time of a case is around 40 minutes. Figures 24 and 26 show
that because of the queues in the process, the total average cycle time increases. More
specifically it appears that with an occupation rate of 0.7 the average sojourn time® of
the process is around 80 minutes, and with an occupation rate of 0.9 it is around 170

3sojourn time = process time + waiting time in the queue

60

MSE simulation 1: sequential process no queues

MSE
o
g

o 5 10 15 20 25 30 a5 40 45 50 55 a0 85 70 75 a0 a5 a0 85 100 105 110 115 120 125
Time(minutes) since beginning ofthe process

|-I— absolute error of average estimator: Total remaining cycle time =@ ahsolute error of nonparametric estimator: Total remaining cycle 1ime|

Figure 16: Mean Square Error - Simulation la: sequential process no queues

minutes. Note that because of the 10-fold cross validation, the average predictor consists
of 10 different lines.

In all three simulations, the actual remaining cycle time fluctuates just above respectively
10, 20 and 50. This is because the remaining cycle time is dependent on the last activity
which is exponentially distributed. However, what is more important is that this fits the
average sojourn time for the complete process that we estimated in the previous paragraph.
As these simulations are based on processes with M /M /1-queues, eventually the queues
will become “stable”, meaning that the queue-lengths will become stable and with the
queue-lengths the average sojourn time. However, because these simulations are too short
for the queues to become stable, the average remaining sojourn time will luctuate more,
which what we see in Figures 17 and 19. Because all four activities will have an equal
arrival rate and process time, eventually all four activities will have an equal sojourn time.
Therefore, if one activity has an sojourn time of about 20 minutes, the total sojourn time

61

Estimations simulation 1: sequential process with queues occupation rate 0.7

Remaining cycls time
&

0 25 s 78 100 125 1860 175 200 225 260 275 300 326 360 376 400 426 460 476 500
Time(minutes) since beginning of the process

= actual Total remaining cycle time estimator. Total remaining cycle time ~+ average estimator. Total remaining cycle time

Figure 17: Total remaining cycle time - Simulation 1b: sequential process with queues and an
occupation rate of 0.7

MSE simulation 1: sequential process with queues occupation rate 0.7

S|
o
g

0 25 50 75 100 125 180 175 200 225 250 275 300 325 350 375 400 425 460 475 500
Time(minutes) since beginning of the process

[5= absolute error of average estimator. Total remaining eyele time 8- absoluts error of nonparametric estimator: Total remaining cyele time |

Figure 18: Mean Square Error - Simulation 1b: sequential process with queues and an occupa-
tion rate of 0.7

62

Estimations simulation 1: sequential process with queues occupation rate 0.9

210

100

Remaining cycls time
8
g

0 100 200 300 a0 so0 00 o0 E 00 1000 100 1200 1300

Time(minutes) since beginning of the process

= actual Total remaining cycle time estimator. Total remaining cycle time ~+ average estimator. Total remaining cycle time

Figure 19: Total remaining cycle time - Simulation lc: sequential process with queues and an
occupation rate of 0.9

MSE of Simulation 1: sequential process with queues occupation rate 0.9

140,000
135,000
10,000
125,000
120000
115,000
110,000
105,000
100,000
05,000
an.000
e5.000
a0,000

75,000

MSE

70,000
85,000
e0.000
=5.000
0000
45,000
0,000
35,000
a0.000
25000
20,000
16,000
10,000

5,000

al
0 400 500 800 700 &0 200 1000 1100 1200 1ao0
Time (minutes) since beginning of the process

[5= absolute error of average estimator. Total remaining eyele time 8- absoluts error of nonparametric estimator: Total remaining cyele time |

Figure 20: Mean Square Error - Simulation 1c: sequential process with queues and an occupation
rate of 0.9

63

Scatterplot Simulation 1a: actual values

90 {"n

remaining cyle time

o 5 W 15 20 2 30 3 40 45 s S5 & & 70 75 8 8 S 8 100 105 1o 15 13 15
Time(minute) since beginning of the process

= actual Total remaining cycle time

Figure 21: Scatterplot of total remaining cycle time - Simulation 1a: sequential process without
queues

Scatterplot Simulation 1a: predictions

32 I

3
;gllllllllll'lll ENRRRENNNRRREARRRRAnRY =y H on0""0 LI | LI]
3 I
27 '
2]
5 I
gu 1
s 1

El‘; IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIl““"I'II““'l-l b e - .

7 1

i3

15 ll

u 1

3 l

12 I

n

w{" IllllIII|II|IIIIIIIIIIIIIIIlIIIIII|IIII|IIIII|I'II|IIlIl“"lll'I = apeEgegtet, ,, ° H o= L]

5 W 15 22 25 ® 35 4 45 S0 S5 60 65 0 75 8 8 % 9 10 15 10 15 120 125
Time(minute) since beginning of the process

® nonparametric estimator: Total remaining cycle time ® average estimator: Total remaining cycle time

Figure 22: Scatterplot of predictions - Simulation la: sequential process without queues. The
three red lines consists of the predictions for the three possible states in the sequential process.

64

Scatterplot Simulation 1b: actual values

Remaining cycle time

g

[" =
u -
o] .
e L
FILLL] " u H n
a7s 500

200 225 250 275 300 325 350 375 400 a5 450
Time(minute) since beginning of the process

® actual Total remaining cycle time

Figure 23: Scatterplot of total remaining cycle time - Simulation 1b: sequential process with

queues and an occupation rate of 0.7

Scatterplot Simulation 1b:predictions

Bty .
.
" L]
.
. .
.
" .
L s, an = n .
s . . .=
-"lh. o -
"t ” s

175 200 325 350 375 a0 azs 450 a7s 500

Time(minute) since beginning of the process

[= nonparametric estimator: Total remaining cycle time average estimator: Total remaining cycle time

Figure 24: Scatterplot of predictions - Simulation 1b: sequential process with queues and an
occupation rate of 0.7. Three clusters are visible, one for each state, but also dependent on the

duration of each activity.

65

Scatterplot Simulation 1c: actual values

Remaining cycle time

- am -
e L.
ng s am .
w” oyl "y "fu, s " ., "N n
500 550 600 650 700 750 800 850 500 950 1,000 1050 1100 1150 1200 1250 1300 1350
Time(minute) since beginning of the process

® actual Total remaining cycle time

Figure 25: Scatterplot of total remaining cycle time - Simulation lc: sequential process with
queues and an occupation rate of 0.9

Scatterplot Simulation 1c: predictions

L L} -
. m . F
- m L}
. 3 .
. =
- L]
.
- . -
e T 1 = g s
._Il.\ P T H -
. . -
. . i .
. .
.
" L]
.
B0 s 700 7% 800 &0 90 50 1000 1050 L1 110 1200 1250 1300 1350

550
Time(minute) since beginning of the process

= nonparametric estimator: Total remaining cycle time ® average estimator: Total remaining cycle time

Figure 26: Scatterplot of predictions - Simulation lc: sequential process with queues and an
occupation rate of 0.9. Three clusters are visible, one for each state, but also dependent on the

duration of each activity.

66

for this process will be around 80 minutes. This matches the average sojourn time found
by the average predictor.

In Simulation 1a, the best performing non-paramatric predictor was the occurrence based,
as is clearly shown in Figure 22 by the three distinct lines of predictions. As there are
three different possible states (A, AB, and ABC'), the non-parametric predictor has three
local-averages resulting in three different predictions. This shows that the non-parametric
predictor does not predict based on the actual values of the predictor variables, it compares
cases and bases a prediction on the remaining cycle time as it was in those cases.

In simulations 1b and 1c¢, the non-parametric predictor performs best with a combination
of durations and occurrences. As a result, the scatterplots of the predictions in figures 24
and 26 show that the predictions are more dependent on the time spent, and not just on
the location in the process. There are still three different clusters visible that correspond
to the three possible states, however, the first cluster appears to be based mostly on the
duration of activity A, as it follows the line of the average predictor. This shows that,
because of the simple nature of the non-parametric predictor, which is to compare cases,
assign a weight and compute the weighted average, it allows for complex behavior. In this
case it results in predictions that are partly dependent on the time spent and partly on
the location in the process.

The non-parametric predictor has a lower mean square error than the average predictor in
all three simulations. However as the difference is not significant, we can say that even in
a process with exponentially distributed cycle times, the non-parametric predictor (with
the best set of predictor variables) performs at least as good as the average predictor.

67

Simulation 2: process structure Figure 27 shows a parallel process, and the corre-
sponding simulation model is found in Figure 53 in Appendix B. In this simulation activity
A and activity D take no time, and activities B1, B2, B3, C'1, C2, and C'3 have indepen-
dent normally distributed process times (> 0) with 10 days on average and 3 days standard
deviation. In this process, neither the occurrences of activities nor the durations of activi-
ties have any predictive value. However, the time-spent-so-far does have predictive value.
Therefore, this simulation tests if the mean square error of the non-parametric predictor
is not significantly higher than the mean square error of the average predictor.

O~ o oo -
O~ O = O = oM 0
O = J-O = J-

Figure 27: Simulated Process 2

Table 15: Results Simulation 2 : parallel process

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 5241.52 + 194.30
Non-parametric Predictor | only activity durations 4436.31 +176.40
Non-parametric Predictor | only activity occurrences | 4988.29 + 194.43
Non-parametric Predictor | both 4317.40 + 170.28

Results Simulation 2 The results of the simulation are shown in Table 15, Figure
28 shows the estimations, and Figure 29 shows the mean square errors of the predictions.
Furthermore, Figure 30 shows the scatterplot of the non-parametric predictions and Figure
31 shows the scatterplot with the actual values and the average predictions. The results
show that the mean square error of the non-parametric predictor is significantly lower than
the mean square error of the average predictor, therefore we confirm the hypothesis that
the non-parametric predictor has similar or better performance.

Discussion Simulation 2 Figure 31 shows the scatterplot for the actual values and the
average predictor, in this plot it can be seen that the parallel process is normally distributed

68

Simulation 2: Estimations

580

e
EEEEEEEEEEEE

remaining cycle tim
R

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725
Time(hours) since beginning of the process

|-l— actual Total remaining cycle time -~ nonparametric estimator: Total remaining cycle time ~+- average estimator: Total remaining cycle time ‘

Figure 28: Total remaining cycle time - Simulation 2: parallel process

Simulation 2: MSE
18,000

17,000
16,000
15,000
14,000
13,000
12,000
11,000
10,000
o s,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000

1,000

o

0 25 S0 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 G50 675 70O 725
Time(hours) since beginning of the process

|{ absolute error of average estimator: Total remaining cycle time -e-absolute error of nonparametric estimator: Total remaining cycle time ‘

Figure 29: Mean Square Error - Simulation 2: parallel process

69

Simulation 2: scatterplot of non-parametric predictor

a8

a0

ars

3s0

328

300

278

remaining cycls time

260

226

0 25 &0 75 100 125 150 175 200 205 250 275 300 325 50 375 400 425 40 475 60D 525 650 675 600 €25 650 676 700 725
Time (hour) since beginning of the process

[= nonparametric estimator: Total remaining eycle time |

Figure 30: Simulation 2: scatterplot non-parametric predictor

Simulation 2: scatterplot of actual values and average predictor

remaining cycle fims

0 =

Time(hour) since beginning of the process

[= actual Total remaining cycle fime_ average estimator: Total remaining cycle fime |

Figure 31: Simulation 2: scatterplot actual values and average predictor

70

ion 2: P P ic using occurrences il ion 2: P P ic using

maining cyele fim;
= -
= a "
u
0
]
-
]
L
u
e
u
H
u =
"
u H
]
=
g
-
maining cyele tim;

e]

375 400 425 4a0 478 s 00 225 250 275 300 328 30 78 00 428 460 478
inning ofthe process Time(hour) since beginning of the process

= _nonparametric estimator: Total remaining cycle time = nonparametic estimator: Total remaining cycle time

Figure 32: Simulation 2: scatterplot non-parametric predictor using occurrences (on the left)
and durations (on the right).

by the linear shape of the scatterplot. There is an average cycle time of 24 days, through
which the average predictor works. Note that, although each of the parallel sequences
A-Bl1-C1, A-B2-C2 and A - B3- (3 is on average 20 minutes long, the total average
cycle time is slightly longer, 4 minutes long to be precise. Because the process is parallel,
the total cycle time is the maximum of three different normal distributions?, as a result
the probability of the total cycle time being larger than 20 is greater than the alternative.

Figure 30 shows the plot of the non-parametric predictor, by comparing the estimations
of the average predictor to the estimations of the non-parametric predictor, we get an
insight into how the non-parametric predictor has a lower mean square error. Remember
that the non-parametric predictor only compares cases and returns the local average of
the remaining cycle time of the most similar cases. If the first activity of a case takes a
long time, for example 14 days, the average predictor will predict a very straightforward
10 days remaining. However, the non-parametric predictor will construct a local average,
based on all cases with the same sequence and the most similar durations for each activity.
The prediction is therefore based on what activities they have finished and what time each
activity took, which is a more realistic bases for a prediction.

In Figure 32 the scatterplots of the non-parametric predictor using occurrences (on the left)
and the non-parametric predictor using durations (on the right) are shown. This figure
shows that the non-parametric predictor using occurrences predicts the same remaining
cycle time for each prefix-length, meaning that the prediction is not based on the time

1E(max(z,y)) > max(E(x), E(y))

71

spent but on the location in the process. The non-parametric predictor using durations
shows clusters that are a bit similar. This is because any duration longer than zero indicates
that an activity has occurred, meaning the non-parametric predictor using occurrences can
also distinguish occurrences. However, the shape of the scatterplot of the non-parametric
predictor using durations is more like a combination of the the average predictor and the
non-parametric predictor using occurrences. The shape suggests that the remaining cycle
time is dependent on the time spent. This is best explained by an example. Imagine that
the activities B1 and B2 take a very short time to finish, because the total cycle time of
the complete process is the maximum of three normal distributions, the probability of the
rest of the case taking much more time than the time spent so far, is also greater. This
shows that because the non-parametric predictor returns a weighted average, the complex
behavior of the process contained within the logged data is not mimicked, but used to
predict as accurately as possible.

Discussion Simulations 1 and 2 with respect to Hypothesis 1 These simulations
show that there is always a set of predictor variables for which the non-parametric pre-
dictor performs similar or better than the average predictor, in fact the simulations show
that the non-parametric predictor with the best set of predictor variables is at least as ac-
curate as the average predictor and in many cases more accurate. All four simulations are
considered to be worst-case-scenario’s for the non-parametric predictor. Therefore, if the
non-parametric predictor with the best set of predictor variables performs similar or better
in these simulations, we can assume that there is a set of predictor variables for which the
non-parametric predictor with the best set of predictor variables performs similar or better
than the average predictor in all processes.

5.2.2 The effect of choice in a proces

If a process has any form of choice, there is more than one path that can be taken in this
process. As different paths result in different cycle times, the variation in the total average
cycle time increases. And as the variation increases, the accuracy of the average predictor
decreases. In the worst case scenario the choice is a deferred choice, meaning there is no
variable indicating which path will be taken. The alternative is exzclusive choice in which
the choice is known at forehand, or can be derived from the available data. Although the
non-parametric predictor can not distinguish which path will be chosen, it can distinguish
which path has been chosen, resulting in different predictions for different paths. Therefore,
the non-parametric predictor is a better predictor in processes with choices than the average
predictor.

Hypothesis 2. Choices in processes that result in different cycle times increase the accu-
racy of the non-parametric predictor relative to the accuracy of the average predictor.

72

B1 —DO—D C1 \
-

Figure 33: Simulated Process 3

Simulation 3 Figure 33 shows a process with choice, the probability of the choice is %
that either choice is taken. All activities have independent normally distributed process
times, and sequences B1-C1, B2-C2 and B3-(C3 have different flow times. To be precise,
the activities B1 and C'1 are on average 3 days with a standard deviation of 1 day, B2
and C?2 are on average 10 days with a standard deviation of 6, and B3 and C'3 both have
an average of 20 days and 6 days standard deviation. Furthermore, activity A has a flow
time of 20 days and 6 days standard deviation and D has no flow time. This process is
simulated both with and without predictive data-attributes, i.e. the process is simulated
for deferred choice, and exclusive choice. Figure 54 in Appendix B shows the CPN-Tools

model used to simulate this process.

By applying both the non-parametric and the average predictor to the log of this process,
and comparing the results, the hypothesis is tested. Note that after activity A is completed,
before the choice is made, both predictors should have similar accuracy as the average is
the best guess at this point.

Table 16: Results Simulation 3 : process with choice

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 144706.06 + 6579.22
Non-parametric Predictor | only activity durations 101298.57 + 5420.18
Non-parametric Predictor | only activity occurrences | 78143.24 + 5182.85
Non-parametric Predictor | occurrences+durations 77524.78 + 5136.86
Non-parametric Predictor | all 20295.47 +1673.97

Results Simulation 3 The results in Table 16 shows that the non-parametric predictor
is more accurate than the average predictor. In Simulation 1 and Simulation 2, the dif-
ference in the accuracy of average predictor and the non-parametric predictor was in the

73

Simulation 3a: estimations

remaining cycle time

0 100 200 30 400 SO0 ©00 0D 80D 000 1000 1,100 1200 1300 1400 1500 1,800 1,700 1800
Time(hour) since beginning of the process

[= actual Total remaining cycle time o estimatar. Total remaining cyele time_+ average estimator. Total remaining cycle time |

Figure 34: Scatterplot Simulation 3a with non-parametric predictor using attributes, occur-
rences and durations, in which the choice is known beforehand(exclusive choice)

Simulation 3b: estimations

remaining cycle tims

0 10 200 a0 400 S0 600 700 80D 60D 1000 1100 1200 1300 1400 1500 1800 1700 1800
Time (hour) since beginning of the process

[= actual Total rmaining cycle time_® nonparametric estmator: Total remaining cycle time + average estimator: Total remaining cyele time |

Figure 35: Scatterplot Simulation 3b with non-parametric predictor using occurrences and
durations, in which the choice is not known beforehand(deferred choice)

74

majority of results not significant. The relative difference in the accuracy of the predic-
tors in this simulation compared to the relative difference in accuracy of the predictors in
simulations 1 and 2 is very large. In this simulation the best performing non-parametric
predictor performs about 6.5 times more accurate than the average predictor, in simula-
tions 1 and 2 the non-parametric predictor was between 1.2 and 1.4 times more accurate.
Therefore we can confirm the hypothesis that choices in process that result in different
cycle times increase the accuracy of the non-parametric predictor relative to the accuracy
of the average predictor. Note that Simulation 3a and Simulation 3b are the same sim-
ulations, using different predictor variables. Simulation 3a is result of a non-parametric
predictor with a data-attribute indicating the choice, and Simulation 3b is the result of a
non-parametric predictor without that data-attribute.

Discussion Simulation 3 Because both Hypothesis 1 and Hypothesis 2 have been con-
firmed, we know that the non-parametric predictor performs at least as good as the average
predictor, furthermore the non-parametric predictor performs much better than the average
predictor as the variance in the cycle times increase as a result of choice in the process.

Figure 34 shows a scatterplot of the actual values, the predictions of the average predictor
as well as the non-parametric predictor (based on all data) for exclusive choice, and Figure
35 shows a scatterplot of the actual values, the average predictor and the non-parametric
predictor (based on only occurrences) for deferred choice. Note that only the values of the
non-parametric predictor are influenced by the presence of information on the choice.

Figure 35 shows the scatterplot of the non-parametric predictor for the deferred choice, in
this scatterplot the non-parametric predictions can be divided in three different (horizontal)
clusters are visible, and a line that follows the average predictor. The non-parametric
predictor in this simulation uses the occurrences to determine what choice was made.
Therefore it shows three distinct clusters of predictions, one for the sequence A-B1 around
480 hours, one for A - B2 around 240 hours and one for A - B3 around 72 hours. More
interestingly is the line of non-parametric predictions that follows the average predictor.
This line of dots contains the non-parametric predictions after activity A, at this point
in the process the occurrences have no information. The only information at this point
that differs is the duration of A. Remember that the average predictor predicts using the
total average cycle time minus the time spent so far, resulting in a straight line. Because
the non-parametric predictor has only the duration of activity A to compare cases, the
prediction becomes dependent on the time spent, which results in predictions that resemble
the average predictor.

Figure 34 shows the scatterplot of the non-parametric predictor for excusive choice. In this
scatterplot there are 6 clusters, of which two overlap. Three of these are the same clusters
as in Figure 34, and the other three are the predictions after activity A. Because there is a
data-attribute present that describes which choice is made, the non-parametric predictor
can make three different predictions, one around 960 hours, one around 480 hours, and

75

one around 144 hours. Meaning that around 480 hours there are two clusters, which is
the reason there are as many dots around 480 hours. This shows that the non-parametric
predict uses the data-attribute in combination with the occurrences to create different
predictions for different types of cases.

This simulation perfectly illustrates how the non-parametric predictors compares cases
based on the predictor variables. The difference in exclusive choice and deferred choice
shows how the non-parametric predictor constructs a local average. In the exclusive choice,
the non-parametric predictor distinguishes three different local averages from the start. In
the deferred choice, the non-parametric predictor initially can not distinguish the different
choices, only after the choice is made is the non-parametric predictor able to distinguish
the three different types of cases.

5.2.3 The effect of loops in a proces

A loop, like a choice, can be predictable or unpredictable. In a process with a loop that is
data-based, the number of loops is dependent on some predetermined data. Assuming this
data (on which the number of loops to come is based) is available for the non-parametric
predictor, it can distinguish cases based upon this data. Therefore the predictor makes
different predictions for cases in which we expect a different number of loops.

However, in a process for which the loop is based on a random choice, we can not distinguish
cases in advance. The non-parametric predictor can only distinguish how many times the
process has looped so far. With this information the non-parametric predictor constructs a
local average over all measurements with at least as many loops, while the average predictor
is dependent on the total average number of loops. For example, a partial case with 3 loops
so far is compared to all measurements with 3 loops. Since all measurement with 3 loops
correspond to all cases with at least 3 loops, the non-parametric prediction is based on a
better subset than average prediction. This leads to the following hypothesis.

O+ QL 0o o> -0

Figure 36: Simulated Process 4

Hypothesis 3. Loops in processes that result in different cycle times increase the accuracy
of the non-parametric predictor relative to the accuracy of the average predictor.

76

Simulation 4 Figure 36 shows a process with a loop, in this process all activities have
independent normally distributed process times that are not significantly different. There
are two different simulations for this process.

Simulation 4a: In this simulation, activity A determines the number of iterations and stores
this value in an data-attribute. As a result, the log contains the number of occurrences
of each activity, the average duration of each activity, and the total number of iterations.
The number of iterations for this process has a maximum of 11, and each possible number
of iterations (1...11) is selected with an equal probability of ﬁ

Simulation 4b: In this simulation, the loop is based on choice with a probability of % This
process has therefore no theoretical maximum number of iterations. Note that there is no
information available in the form of a data-attribute on which the choice will be made.

Table 17: Results Simulation 4a : process with a loop, exclusive choice

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 7069.55 + 105.18
Non-parametric Predictor | only activity durations 7821.55 + 148.42
Non-parametric Predictor | only activity occurrences | 4924.50 + 83.74
Non-parametric Predictor | only attributes 5095.58 + 87.25
Non-parametric Predictor | all 45.05 + 1.21

Table 18: Results Simulation 4b : process with loop, deferred choice

Predictor Variables used Mean Square Error
+ 95% confidence interval
Average Predictor - 2784.02 + 163.69
Non-parametric Predictor | only activity durations 2647.49 + 151.10
Non-parametric Predictor | only activity occurrences | 1893.30 +121.51
Non-parametric Predictor | both 2276.43 + 130.43

Results Simulation 4 The results in tables 17 and 18 show that the non-parametric
predictor is significantly more accurate than the average predictor in both simulations.
Figures 37 and 39 show scatterplots of simulations 4a and 4b, Figures 38 and 40 show
scatterplots of the actual remaining cycle times and average predictions of both simulations.

Discussion Simulation 4 In Simulation 4a, the accuracy of non-parametric predictor
using all predictor variables, compared to the other predictors, is more than a hundred

77

times higher. The explanation of this huge difference lies not in the high accuracy of the
non-parametric predictor using all variables, but in the low accuracy of the other predictors.
Because the process contains a loop, the variation in cycle times is large, which results in a
poor performing average predictor. The non-parametric predictor using durations is based
upon the average duration of activities, which is even less useful than time spent so far. The
non-parametric predictor using occurrences can count the occurrences and compute better
average estimations, however it has no information on the remaining number of iterations.
On the other hand, the non-parametric predictor using attributes has information on the
total number of loops it will have, but no information on the current state. By combining
the attributes and the occurrences, the non-parametric predictor has information on both
the current state and the total number of iterations, as a result it can accurately predict
the remaining cycle time for a case.

In Simulation 4a, there are a predefined number of iterations (minimum 1, maximum 11),
where each number iterations will occur with equal probability. This means that there
are 11 different types of cases, each case has a predefined number of iterations. Figure 38
shows the actual values and the average predictions in a scatterplot, in this plot the 11
different types of cases are visible in the form of lines of clusters. Because the total number
of iterations for a case, and the occurrences of activities is known, the non-parametric
predictor can distinguish each type of case. Figure 37 shows the scatterplot of the non-
parametric predictor, in this plot it is visible how the non-parametric predictor constructs
a local average for each prediction. As a result, the error of the non-parametric predictor
is directly related to the variation in the cycle times. Whereas the average predictor
constructs a single average prediction for all cases, which means that the average predictor
will predict that each case will iterate 5 times.

The difference between Simulation 4a and 4b, is that in Simulation 4a each number of
iterations has an equal probability of occurring. In Simulation 4b however, 0 or 1 iterations
are the two most likely possibilities, as the iteration is based on deferred choice. This
has two results that decrease accuracy of the non-parametric predictor; an unpredictable
number of iterations, and outliers. Because there is no information on the number of
iterations that each case will have, it is impossible to predict the remaining cycle time with
an accuracy as high as that of the non-parametric predictor in Simulation 4a. The outliers
that are created as a result of the structure of this process introduce even more variation
in the remaining cycle times, thereby increasing the error.

Table 18 shows that the non-parametric predictor is better than the average predictor.
Although the non-parametric predictor can not predict the number of iterations, it can
distinguish that the amount of iterations so far. Figure 39 gives us an insight into the
behavior of the non-parametric predictor in this simulation. Basically it will return a
prediction based on the location in the process, also it will predict about the same value
at the same point in the process. Note that it will not predict exactly the same value, as
the local average suffers from the increase of variation with each iteration. This behavior
is visible in Figure 39 by the clusters of predictions that all have the same prediction but a

78

4a: scatterplot of non-parametric predictor

10 20 30 40 SO e 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360
Time(minute) since beginning of the process

= nonparametric estimator: Total remaining cycle time

Figure 37: Scatterplot Simulation 4a: non-parametric predictor

4a: scatterplot of actual values and average predictor

g

remaining cycle time
§EE

To 20 30 40 S0 €0 70 8 9 100 L0 130 130 140 150 180 170 180 150 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360
Time(minute) since beginning of the process

= actual Total remaining cycle time e average estimator: Total remaining cycle time

Figure 38: Scatterplot Simulation 4a: actual values and average predictor

79

Simulation 4b: scatterplot of the non-parametric predictor

10 20 30 40 50 &0 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340
Time (minte) since beginning of the process

= nonparametric estimator: Total remaining cycle time

Figure 39: Scatterplot Simulation 4b: non-parametric predictor

Simulation 4b: scatterplot of actual values and average predictor

remaining cycle time
EHE

B

.
- . L . L]
. - & e d - - r
» = 1WA, " e - . .
P R R T R R T T T T YT TR T TR TR TP
Time(minute) since beginning of the process

= actual Total remaining cycle time e average estimator: Total remaining cycle time

Figure 40: Scatterplot Simulation 4b: actual values and average predictor

80

different time spent. The shape and size of the clusters is and indiction of variation, which
increases after each iteration.

These simulations show that the non-parametric predictor compares cases on a combination
of all predictor variables. If the non-parametric predictor compares a case on only the
occurrences or only the data-attribute that indicates the number of loops, it would never
have the accuracy shown in Simulation 4a. It is important to understand that the non-
parametric predictor does not use the value of the data-attribute to derive the number of
iterations, rather it categorizes all cases based on the value of that data-attribute. Also
it categorizes cases based on the occurrences of activities. The combination of those two
pieces of information results in local averages that accurately predict the remaining cycle
time.

5.3 Summary of the case study and the simulations

The case study suggests that the non-parametric predictor performs better than the av-
erage predictor in case taken from practice. Furthermore the case study shows that the
non-parametric predictor is capable of selecting relevant predictor variables and ignoring ir-
relevant predictor variables, however, the non-parametric predictor does suffer in accuracy
from the presence of irrelevant predictor variables.

The simulations suggest that the non-parametric predictor is at least as good as the average
predictor. This was illustrated using two processes that are considered to be the worst case
scenario for the non-parametric predictor. The simulations also show that the performance
of the non-parametric predictor is relatively better than the performance of the average
predictor if loops or choices are present, especially if these loops or choices are predictable
by e.g. a data-attribute. More importantly, the simulations illustrate the working of the
non-parametric predictor, especially how the local average works.

From both the case study and the simulations, we conclude that the non-parametric pre-
dictor is a better predictor than the average predictor. However, the accuracy of the
non-parametric predictor can be increased by intelligently selecting a subset of predictor
variables, and perhaps designing the process such that there is information on choices
included in the data-attributes.

81

6 The software

6.1 Introduction

The work presented in this thesis was implemented in the process mining framework ProM
[14]. ProM is a process mining framework that offers various process mining methods and
can easily be extended with plugins. The ProM framework, combined with the ProM-
import application, provides facilities for easy import, export, filtering or checking of logs.

Two plugins were developed; the prediction plugin and the visualization plugin. The pre-
diction plugin can use a log to test predictions by the use of cross-validation after which it
writes the predictions back to the log. It is also able to simply process a log and writing
the optimum bandwidth back to that log. The plugin also provides an interface for single
predictions for other plugins. After the predictions are tested and written back to the log,
the visualization plugin uses the log in which the predictions are written to visualize the
predictions in charts. The log with only the bandwidth in it, is used by the Recommen-
dation service [30], this is a plugin that provides a server for other workflow engines to
connect to and ask for recommendations concerning a single case. The Recommendation
service also provides predictions to other workflow engines by asking for a single prediction
of the prediction-plugin. Based on the log with the bandwidth in it, and a single case, the
prediction-plugin returns a single prediction.

6.2 Programming environment

As sir Isaac Newton wrote ”If I have seen further, it is by standing on the shoulders of
giants.”, it is in this spirit that both the work presented in this thesis and the software are
based on the work of others. More specifically on ProM, the R-project, the NP-package
for R, and JFreeChart.

ProM The ProM framework was developed by the Process Mining group® at the Uni-
versity of Technologies Eindhoven, a detailed description is given in [14]. Process
mining is a technique with which one can derive information from an event-log on
the process that created the log. It is possible for example to retrieve the workflow
model of the information system as it is in reality, based on the sequence of events
in the log. ProM is a framework that enables a user to import a log and analyze
it in various ways with the help of plugins. Through the use of plugins the ProM
framework is continuously growing in functionality. The ProM framework, as well
as its plugins, were developed in Java. This language enables Object-Oriented pro-
gramming and is platform-independent. As a result ProM is highly extensible, and
available for all platforms. As a framework, ProM enables a programmer to write

Shttp://www.processmining.org

82

a plugin without worrying about importing the log, exporting the log, etc. As the
prediction method described in this thesis is also based on a log, the ProM framework
provides an excellent basis for it.

A part of ProM that we specifically rely on is the Recommendation service as de-
scribed in [30]. The Recommendation service is designed to connect to other work-
flow software (specifically the workflow engine 'Declare’) and give recommendations
on choices that need to be made in currently active cases. This is relatively similar
to the prediction engine that returns e.g. remaining cycle times on currently active
cases. Both the recommendation service and the prediction engine require a log and
a new (partial) case as input, and return some piece of information. The recommen-
dation service is flexible enough to use the prediction-plugin in order to provide a
single prediction to the workflow system it is connected to. We have therefore chosen
to use the recommendation service as a means to connect to workflows to provide
predictions.

R with NP The non-parametric regression (see Chapter 3) used in the prediction method,
has already been implemented as a package for R called NP [19]. R 6 is an open source
statistical language and environment developed to be similar to S [8], a statistical
language and environment developed by Bell Laboratories for statistical research. R
provides two main techniques to connect to Java. The first is called JRI and uses
R as a dynamic library, the second is Rserve, of which there is a server and a client
version enabling Java to connect to R on a server via TCP/IP. Although a wrapper
is present to enable a connection via both, the server/client implementation is the
preferred choice to enable use of a grid-machine. The NP package, is one of the many
statistical packages available for R. The non-parametric regression as implemented
by NP, is an exact match to the regression techniques as described in [25]. This is
also the main reason that R with NP was chosen as a basis for this plugin.

JFreeChart JFreeChart’ is a package for Java that enables the creation of various forms
of charts, to visualize the accuracy of the predictions some charts are created with
the help of this package.

Shttp://www.r-project.org
"http:/ /www.jfree.org/jfreechart/

83

6.3 The prediction plugin
ProM [.o] . == x|
"mQR O® = (EEE Prol]

[F] Settings for mining Raw Bezwaar_WO0Z_Cleaned_with_start_and_complete.mxmlyz (unfiltered) using Prediction Miner

] Bezwaar_W0Z_Cleaned_with_start_and_complete.nxml.gz Prediction Miner

Bezwaar_WOZ_Cleaned_with_start_and_comp|
Connections toR | prediction settings

Domain: heus1

0202 Voorbereiden

0204 Incompleet
Processes 0Z06 Stop vordering
0208 Beoordelen
0Z09 Wacht Beoord
0210 Horen
0Z12 Hertaxeren
0215 Zelf uitspraak
0Z16 Uitspraak
0218 Uitspr. wacht
0720 Administatie
0224 Start vordering
Second Order Gaussian

Cases Select elements to use:

Events

Event classes

Kernel function for continuous variables:

Event types Li and Racine

iz

I
@ 10-fold cross validation with 1 repititions in progress

Li and Racine

Originators B] day

Cancel

select "start"-event
select ‘complete’_event
use K-fold Crossvalidation

use All cases for bandwidth selection

Total remaining cycle time

start

MEIEIEEERER KRR

complete

choose cases by chance(or choose N random cases)?
select chance

Select size for bandwidth selection

Select K for K-fold-cross-validation

Repeat bandwidth selection

use Data Attributes?

use Durations?

:

use Occurances?

Set the tolerance for the bandwith selection

start mining

> 15:00:19 [M] co d to Rserve on sviscl04.win tue.n|

Figure 41: Screenshot of ProM with prediction plugin running

The prediction plugin has 2 graphical parts, the settings window and the results windows
which is basically a windows with a lot of tables. Figure 41 shows a screenshot of ProM
with the settings window of the prediction plugin and a progress bar, the progress bar
indicates that the prediction plugin is already running. ProM is responsible for the the
main user-interface, loading the log, loading the plugin, etc. The settings windows is the
main user-interface of the plugin, an overview of settings is shown in Table 19.

Although most settings are clearly related to aspects of the prediction method described
in previous chapters, there are some settings that we have not yet discussed. The first
settings “elements to use”, is an option to filter certain activities from the measurements.
ProM has a filter-function built-in, however the filter ProM uses completely removes the
activity from the log, which results in a different cycle time if the activity was at the begin
or end of the case. The “type of time measurement” setting is used to choose the format
of the predicted remaining cycle times. The settings "start event” and ”complete event”
select which events in the log determine the start and end of an activity. The log, of
which an example is shown in Figure 6, consists of events. By default these events have

84

types like “start” and “complete”, however in some logs they are named differently. The
start-event and complete-event of one specific activity are used to determine the duration
of that activity.

The option ”choose cases by probability” selects the method of choosing the subset of cases
for the bandwidth selection. As explained in Chapter 3.6, the bandwidth selection is of
exponential complexity. Therefore a subset of the measurements is used to keep the time
to compute the optimal bandwidth feasible. Two methods of choosing a subset for the
bandwidth were implemented, one method selects S cases at random, the second method
selects cases with a probability p, and thus probably selects p x N cases, N being the total
number of cases.

The setting "repeat bandwidth selection” is related to option to use a subset of the cases
for bandwidth selection. As the cases are chosen randomly, it is possible that the subset of
cases (randomly) chosen for the bandwidth selection is a very poor choice. By repeating
the cross-validation, the probability of a poorly chosen bandwidth affecting the results is
reduced. The last setting is the ”tolerance for the bandwidth selection”, this is a setting
that is necessary for the NP package. The method we use to optimize the bandwith
requires a value that determines when the optimization function has reached an optimum.
The lower this value is set, the longer the optimization will continue. Therefore this is also
a setting to reduce computation time.

The prediction plugin is relatively straightforward in use. The plugin has a log as input, a
GUI then prompts for settings after which the log is processed and the measurements are
extracted. Based on what settings the user has selected, the measurements are exported
to R in order to apply the non-parametric regression by use of the NP package. If a K-fold
cross validation was selected in the settings, the results are shown in a table for the user
to inspect and the predictions (non-parametric and average) are written back to the log.
For the purpose of analysis, the predictions of both the non-parametric and the average
predictor, the actual values and the absolute and relative error are written into the log,
which can in turn be shown in charts by the visualization plugin. Otherwise, if no cross-
validation was required, the optimum bandwidth is calculated only once over the complete
log, which is then written back to the log. The log with only the bandwidths can then be
stored by the recommendation engine, which can call for a single prediction given a log
with bandwidths and a single case.

The communication with R is done by either JRI or Rserve, the first is a rather straightfor-
ward method of calling the locally installed R software. The second method is a TCP/IP
enabled method, of communicating with an R-server, which enables distributed calculation
of the K-fold cross-validation. Each of the K regression analysis is an independent sequence
of calculations, meaning they can be easily done in parallel. By running Rserve-server on
multiple computers it is possible to connect to multiple servers on multiple computers thus
running a K-fold cross validation a maximum of K-times faster.

85

Table 19: Overview of the Settings used by the prediction plugin

Setting

Options

elements to use
kernel function for
continuous values

kernel function for
categorical values

kernel function for
ordered discrete values
type of time measurement
predict the

start event

complete event

use k-fold cross-validation

use all cases for bandwidth selection
choose cases by probability
probability for the bandwidth selection
size for the bandwidth selection

k for k-fold cross-validation

repeat bandwidth selection

use data-attributes

use occurrences

use durations

tolerance for the bandwidth selection

86

<activities in the process>
[Second Order Gaussian,
Second Order Epachanikov,
Uniform]|

[Aitchison and Aitken,

Li and Racine]

[Wang and van Ryzin,

Li and Racine]

[second, minute, hour, day]
[total remaining cycle time,
remaining cycle time

until element <..>,
occurrence of element <..>|
[start]

complete]

true,false]

true,false]
true,false]
<number>
<number>
<number>
<number>
[true,false]
[true,false]
[true,false]
number

[
[
[
[

6.3.1 Limitations and design choices

As every piece of software, there are some limitations to the implementation as opposed
to the theory of predictions.

Constant variables The NP package provides us with many highly optimized non-para-
metric regression functions. However, the function used in our software does not
allow one predictor variable to be constant. As the NP package is normally used for
a single regression analysis, this feature is understandable. In those circumstances
the regression is run only once, and the user can simply remove the constant variable.
However, the prediction method we discuss is automated and requires the software
to continue, even in the presence of constant predictor variables. In order to deal
with this the prediction plugin removes all constant variables from the regression-
analysis it sends to R and NP. When e.g. 10-fold cross validation is used on a log,
each regression-analysis uses a different 10% of the log, it is therefore possible for
a regression variable to be constant in only one regression analysis. This means it
might be possible that each regression analysis in a cross-validation is on a different
set of variables. In general this does not change the results much as the regression
variables that are constant are usually completely smoothed out, meaning they have
almost no influence. Because of this, the bandwidth variables are only exported to
the log after a single regression analysis (no cross validation) which is used for the
recommendation engine.

Bandwidth selection As shown in Section 3.6, the bandwidth selection procedure is of
exponential complexity. This basically means that calculating the bandwidth gets
exponentially slower in the amount of variables, the size of the log, and the domainsize
of the bandwidth. In order to keep calculations within reasonable time, a setting is
added to the program to choose a subset of size n of the cases on which to calculate
the bandwidth. This ’bandwidth-set’ is randomly chosen either by probability p (e.g.
0.2 leading to probably N - 0.2 cases) or by randomly choosing n cases. These cases
are chosen before the measurements are extracted from them, otherwise it is possible
to get a bandwidth-set with for example only empty cases.

Rounded occurrence predictions In Chapter 4 we described an occurrence predictor
that rounds the results of the regression functions. Altough we were able to round the
predictions themselves, we were unable to alter the bandwidth selection to internally
round the predictions. Therefore the bandwidth is selected to be optimal for a
continuous prediction and not for the rounded predictions. This might result in
some loss of accuracy.

87

SettingsGUI |

satli ngsg ;- T . T Settings 2)
P 1 :
2 : :
o I—-=--- L — | i
; : '-
e LogVariableExtracter meapsﬁgirﬁ:a%s !
PredictionMiner measurements connections !
Settings =---4log F---= . !
Lo mport crossValidate :
er_ export predictOnce _ !
LY selectBandwidth X
o . |
| Y o o e & | I
| J | |
i ‘f NonParametricRegression E
| ‘ measurements \
L Rconnection :
Loy selectBandwidth '
RegressionResults predict i
results R 1
printTables ! '
exportToLog ! !
Rconnector !
connection |

connectToRserve |

connectToJdRI

Figure 42: UML diagram of the prediction plugin

6.3.2 Architecture

The architecture of the prediction plugin is straightforward, as shown in Figure 42. Note
that some minor classes were left out this diagram to prevent clutter. The Settings-class is a
static class that can be accessed by all other classes when needed, this class is initialized by
the settingsGUI. The predictionMiner is the main class that is called after the settingsGUI
by ProM, in Figure 43 the sequence in which this class calls all other classes is shown.

Each of the classes shown has its own reason of existence, the function of each class is
clear from the name. The LogVariableEztracter for example derives the measurements
from the log. As the only function with access to the log, it is also responsible for writing
back variables to the log. A more interesting relation is that between the Predictor-class,
the NonParametricRegression-class and the Rconnector-class. The Predictor-class makes
sure that measurements are cross-validated, or not. It combines the right variables for the
regression functions, so that the regression part in the NonParametricRegression-class can

88

SettingsGUI

PredictionMiner
! LogVariableExtracter

—— P

settings

Log
.

— done —

[Predictor |

i
e Nonpar.Reqgres.

crassValidate

> L

predictOnce
' measure —
ments |

1
regressionResdults
' .

)
)
1

write back to log
—

Figure 43: message sequence diagram of the prediction plugin

89

be run as separate threads. As mentioned before, the software can connect to a server
with Rserve by TCP/IP. This enables us to run a K-fold cross-validation on (maximum
K) multiple servers in parallel.

90

7 Future work

During the development of this prediction method, the problems encountered give rise to
various solutions. However, for practical reasons, the most optimal solution cannot always
be chosen. In order to encourage others to continue researching the use of non-parametric
regression as a prediction method for cycle times, we give some suggestions for future work.
Therefore we present some suggestions for future work here, with a short description of its
usefulness.

Set-based comparison of categorical predictor variables In the current form of re-
gression, a categorical predictor variable has only one value. However, in a process
with loops a certain task might be encountered several times in a log. As explained
in Chapter 3, the duration of a task like this are averaged and the occurrences are
counted as one would expect. A categorical predictor variable like the name of the
person (e.g. “Mike”) who was responsible for the task can also change, overwrit-
ing the name of the person (e.g. “Tim”) responsible for the previous iteration of
this task. However, if categorical predictor variables could also be a set of values
(e.g. {“Mike”,“Tim”}), a more realistic prediction model is obtained. In the current
solution information is lost, and most likely some accuracy with it.

Automated redundant variable removal The most important part when creating a
prediction model with non-parametric regression is the bandwidth selection process.
A method to smoothed out (i.e. ignore) irrelevant predictor variables by allowing
the bandwidth of the specific variable to approach 0, is shown in [25]. Based on this,
[22] shows irrelevant predictor variables can automatically be removed, based on the
bandwidth. Removing the irrelevant predictor variables would decrease computation
time and increase accuracy. Although one could manually remove irrelevant predictor
variables, an automated removal could be more accurate. The selection of variables
could be done based on the relative size of the bandwidth, but also more straightfor-
ward statistical methods can be applied to enhance the prediction. Whatever method
used, choosing a more relevant (sub)set of predictor variables will increase accuracy
and decrease computation time.

Idle-time bandwidth optimization As the computers providing the predictions are
usually not used during the nights and weekends, they can continue to optimize
the bandwidth-variables. As over time information systems change, so do the models
that describe them. By constantly optimizing the bandwidth, any trends or changes
relevant to the prediction of the remaining cycle time will also be included in the
non-parametric predictor.

Selection of the training-cases Over-time the number of recorded cases will grow, mean-
ing that the bandwidth-selection will also become more complex. Also, a lot of cases
might become obsolete over time, meaning they have no relation to the (evolved)

91

process anymore. Rules and regulations might drastically chance the process behind
the information system. If a large set of cases that is not representative anymore
to the current process are kept, they could seriously decrease the accuracy of pre-
dictions and harper performance. This issue could be resolved by selecting a set
of cases on which to base the predictions that accurately describe all possibilities.
Although this will be a big set of cases, an optimum can be found such that com-
putations remain in a feasible order of time, while maintaining a high accuracy in
predictions. Statistical methods (e.g. cluster analysis) can be applied to decrease the
size of the training-cases without decreasing, maybe even increasing, the accuracy of
the predictions.

Attribute prediction Like the prediction of occurrences and remaining cycle time, it
also possible to predict the value of an attribute. This requires the attribute to be
present for each case at each point in the process.

92

8 Conclusion

In this thesis we described a prediction method in the context of process mining, meaning
it derives information from an event-log. The event-log is constructed based on the data
stored by the information system. From the event-log we derive measurements, which are
used as a bases for the non-parametric regression. Non-parametric regression is a form of
regression that requires no assumptions on probability distributions, or other information
on the data. The non-parametric regression model must be constructed once, after it has
been constructed predictions can be made for any (new) case. Non-parametric regression
works by constructing a local (weighted) average over the recorded remaining cycle time of
the old cases that are most similar to the new case for which we need a prediction. A case
study and several simulations show that the non-parametric prediction method performs
similar to or better than the average predictor depending on the cycle time distribution
and the structure of a process. The ProM plugin that implements the prediction method
is used for both the case study and the simulations, this plugin is described in Chapter 6.
In the previous chapter we presented some suggestions for future work, and in this chapter
we discuss the results and their relevance.

Both the case study and the simulation in Chapter 5 show that the non-parametric pre-
dictor performs better than the average based predictor. The prediction method requires
no deep knowledge of the process in order to use it, but if more knowledge on the process
is available it can be used to optimize the data that the prediction method uses. Further-
more, no assumptions on the process are made, meaning that this prediction method can
be applied to any type of process. For these reasons this prediction method is excellent for
large complex processes. Because it is possible to simply start the process of optimizing
the regression model without knowing anything of the process, wait until it finishes, and
start using the prediction method. In short, because the prediction method requires very
little knowledge of the process it is easy to just start using it.

However, despite these strengths, the prediction method has some limitations. Building
the regression model, although required only once, is a very expensive computation in
terms of time, more specifically the (algorithmic) complexity of the prediction method
is exponential. The computation of the results shown in Chapter 5 took a long time,
although the examples were small and the calculations were not as precise as desired. If
the prediction method is used in practice, it will need to work on larger data-sets and
compute a regression model with more precision. Note that there is the possibility of
over-optimizing the model, although this is not investigated in this thesis. If the data-set
is analyzed, cleaned and optimized at forehand, it would save a lot of time building the
regression model. Also, because the regression model is built only once, it is possible to
optimize the regression model while the information system is idle, which does not solve
the problem but handles it in a more practical way.

In this thesis we have compared the prediction model only to the average based predictor,

93

however, there are many (more intelligent) predictors available. Before the prediction
method is applied to any actual information systems, a comparison of the accuracy of
different methods should be done. Every process is different, and every prediction method
has a different approach with different strengths and weaknesses. It is very likely that for a
particular type of process there is a “custom” made prediction method that performs much
better than the non-parametric prediction method. However, many information systems
exist that support extremely complex processes, or processes that are simply not important
enough to justify a dedicated approach. Basically, the benefits of analyzing a process, with
no certainty that it would actually result in a better prediction method, do not always
outweigh costs. The non-parametric prediction method is in terms of costs a very cheap
method, while in terms of computation a very expensive method.

94

References

1]

W.M.P. van der Aalst, B.F. van Dongen, C.W. Giinther, R.S. Mans, A.K. Alves de
Medeiros, A. Rozinat, V. Rubin, M. Song, and H.M.W. Verbeek. ProM 4.0: Compre-

hensive Supports for Real Process Analysis. In Application and Theory of Petri Nets
2007, volume 4546, 2007.

W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and
Knowledge Engineering, 47(2):237-267, 2003.

W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering, 16(9):1128-1142, 2004.

J. Aitchison and CGG Aitken. Multivariate binary discrimination by the kernel
method. Biometrika, 63(3):413-420, 1976.

A K. Alves de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M.
Weijters. Process Mining: Extending the a-algorithm to Mine Short Loops. BETA
Working Paper Series, WP 113, Eindhoven University of Technology, Eindhoven, 2004.

F. Baccelli and P. Konstantopoulos. Estimates of cycle times in stochastic Petri nets.

P. Backus, M. Janakiram, S. Mowzoon, C. Runger, A. Bhargava, N.N. America, and
CA Gardenia. Factory cycle-time prediction with a data-mining approach. Semicon-
ductor Manufacturing, IEEE Transactions on, 19(2):252-258, 2006.

R.A. Becker. A Brief History of S. Computational Statistics, pages 81-110, 1994.

C.F. Chien, C.W. Hsiao, C. Meng, K.T. Hong, and S.T. Wang. Cycle time prediction
and control based on production line status and manufacturing data mining. Semicon-
ductor Manufacturing, 2005. ISSM 2005, IEEE International Symposium on, pages
327-330, 2005.

AK.A. de Medeiros and CW Gunther. Process mining: Using CPN tools to create
test logs for mining algorithms. system, 15(05):00, 2004.

A.K.A. de Medeiros and A.J.M.M. Weijters. ProM Tutorial.

S.N. den Hertog. Case prediction in BPM systems: Research to the predictability
of the remaining time of individual cases. Master’s thesis, Eindhoven University of
Technology, Eindhoven, 2008.

J. Dippon, P. Fritz, and M. Kohler. A statistical approach to case based reasoning,
with application to breast cancer data. Computational Statistics and Data Analysis,
40(3):579-602, 2002.

95

[14]

B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool

support. In Application and Theory of Petri Nets 2005, volume 3536 of Incs, pages
444-454. Springer, 2005.

B.F.v. Dongen, R.A. Crooy, and W.M.P.v.d.Aalst. Cycle time prediction: When will
this case finally be finished? CooplIS, 2008.

K. .R. Haberle and R. J. Graves. Cycle time estimation for printed circuit board
assemblies. [EEE Transactions on Elektronics Packaging Manufacturing, 24(3):188—
194, July 2001.

W. Hardle. Applied Nonparametric Regression. Cambridge University Press Cam-
bridge, 1990.

W. Hardle and J.S. Marron. Optimal bandwidth selection in nonparametric regression
function estimation. Annals of Statistics, 13(4):1465-1481, 1985.

T. Hayfield and J. S. Racine. np: Nonparametric kernel smoothing methods for mixed
datatypes, 2008. R package version 0.14-3.

K. Hornik. The R FAQ, 2008. ISBN 3-900051-08-9.

C.M. Hurvich, J.S. Simonoff, and C.L. Tsai. Smoothing parameter selection in non-
parametric regression using an improved Akaike information criterion. Journal of the
Royal Statistical Society: Series B: Statistical Methodology, 60(2):271-293, 1998.

Q. Li and J.S. Racine. Nonparametric estimation of conditional CDF and quantile
functions with mixed categorical and continuous data. Journal of Business and Fco-
nomic Statistics, forthcoming, 2004.

A.K.A. de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University of
Technology, Eindhoven, 2006.

E.A. Nadaraya. On Estimating Regression. Theory of Probability and its Applications,
9:141, 1964.

J. Racine and Q. Li. Nonparametric estimation of regression functions with both
categorical and continuous data. Journal of Econometrics, 119(1):99-130, 2004.

J.S. Racine, J. Hart, and Q. Li. Testing the Significance of Categorical Predictor

Variables in Nonparametric Regression Models. Econometric Reviews, 25(4):523-544,
2006.

H. A. Reijers. Case prediction in BPM systems: A research challenge. Journal of the
Korean Institute of Industrial Engineers, 33:1-10, 2006.

96

28]

[31]

[32]
[33]

[34]

[35]

A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge.
Workflow Simulation for Operational Decision Support using YAWL and ProM. BPM
Center Report BPM-08-04, 2008.

B. Schellekens. 2G Case Prediction in Staffware, 2005. Draft version of master’s thesis,
Eindhoven University of Technology.

M.H. Schonenberg, B. Weber, B.F. van Dongen, and W.M.P. van der Aalst. Support-
ing Flexible Processes Through Recommendations Based on History. Lecture Notes
i Computer Science, 5240:51-66, 2008.

M. Smith and R. Kohn. Nonparametric regression using Bayesian variable selection.
Journal of Econometrics, 75(2):317-343, 1996.

TIBCO Software Inc. Staffware Process Objects (SPO) Programmer’s Guide, 2004.

P. Vieu. Nonparametric regression: Optimal local bandwidth choice. Journal of the
Royal Statistical Society. Series B (Methodological), 53(2):453-464, 1991.

G.S. Watson. Smooth Regression Analysis. Sankhya: The Indian Journal of Statistics,
26:359-372, 1964.

Process Mining Website. http://www.processmining.org.

9 Appendix A : Experiment setup

The experiment was done in ProM, the process mining framework, using a log of the
process appealing to the tax on houses of a municipality. This log is not publicly available,
however more information can be found in [23].

Initially the log is loaded into ProM, as shown in Figure 44, so we can start to analyze it.
ProM offers a great deal of plugins with which it is possible to analyze a log.

4 proM [5.0] |8 x|
File Mining Analysis Conversion Exports Window Help

"mQR O® = E= Prol

=] Bezwaar W07 _Cleaned_with_start_and_complete.mxmi

Bezwaar_WOZ_Cleaned_with_start_and_complete.mxml.gz

Y

start analyzing this log

Figure 44: Screenshot of ProM with the log loaded

For the purpose of our experiments we must load the prediction miner plugin, in order to
start our experiments. The initial screen of the prediction miner plugin is shown in Figure
45. The screenshot shows that we have already connected to 4 servers running Rserve,
these servers will perform the calculations.

The second part the prediction miner plugin, shown in Figure 46, shows the settings of the
plugin. These settings control all aspects of the regression performed. We can select to
use cross validation, or to train only once on the log. For this experiment we will use the
following settings.

1

File Mining Analysis Conversion Exports Window Help

"mQR ©O@ B[

[=] Bezwaar_W07_Cleaned_with_start_and_complete.mxml.gz

Bezwaar_WOZ_Cleaned_with_start_and_complete.mxml.gz

LS B) setings for mining Raw Bezwaar \WOZ_Cleaned_with_start_and_complete.mxml.z (unfiltered) using Prediction Miner

Prediction Miner

Events connections toR | prediction settings

hdd R connection|
Event classes. Delete R connection

swiscl01.wintue.ni:6311
SviSCI0d.wintue.nk:6311

Event types ‘sviscl03.wintue.n:6311

File Mining Analysis Conversion Exports Window Help

"mQR ©O@ B[

plugin

[Setings fox mining Raw Bezwasr_ WO Cleaned._wi_start_and_

[=] Bezwaar_w07_Cleaned_with_start_and_complete.mxmi.gz {TS T TR v TsrAd
Bezwaar_WOZ_Cleaned_with_start_and_comp

connections toR |~ predi

Domain: heus1
0202 Voorbereiden

Processes

0Z15 Zelf uitspraaks
0716 Uitspraak
0Z18 Uitspr. wacht

- Select elements to use:
0220 Administatie

Event classes. 0224 Start vordering

Events

e Kernel function for categorical variables: Li and Racine

Kernel function for ordered discrete variables: Liand Racine

choose type of time measurement day

Predict the : Total remaining cycle time

select start"-event start

select'complete’-event complete

use K-fold Crossvalidation

use All cases for bandwidth selection

select chance
Select size for bandwidth selection
Select K for K-fold.cross.validation
Repeat bandwidth selection

use Data Attributes?

use Durations?

use Occurances?

Setthe

9 (1] connectad to Rerve on sviscl0d.win fue.nl

tart mining

Figure 46: Screenshot of ProM with prediction plugin(2)

111

& proM [5.0] =lElx

File Mining Analysis Conversion Exports Window Help

"mQR OO =@

[~] settings for mining Raw Bezwaar_Y¥0Z_Cleaned_with_start_and_complete.mxml.gz (unfiltered) using Prediction Miner

[] Bezwaar_W0Z_Cleaned_with_start_and_complete.mxml.gz Prediction Miner

Bezwaar_WOZ_Cleaned_with_start_and_compf|

Processes

Cases

Events

Event

Event types

Originators

connectionsto R prediction settings

Select elements to use:

Kernel function for continuous variables:

x
I
® 10-fold cross validation with 1 repititions in progress

Cancel

select ‘startevent

select ‘complete”-event

use K-fold Crossvalidation

use All cases for bandwidth selection

Domain: heus1
0202 Voorbereiden
0204 Incompleet
0206 Stop vordering
0208 Beoordelen
0209 Wacht Beoord
0210 Horen

0712 Hertaxeren
0715 Zelf uitspraak
0716 Uitspraak
0Z18 Uitspr. wacht
0720 Administatie
0724 Startvordering

Second Order Gaussian

Li and Racine

Li and Racine

day

Total remaining cycle time

start

MEREIEREEEERRRE]

complete

choose cases by chance(or choose N random cases)?
select chance

Select size for bandwidth selection

Select K for K-fold-cross.validation

Repeat bandwidth selection

use Data Attributes?

use Durations?

1

use Occurances?

Set the tolerance for the bandwith selection

start mining

Figure 47: Screenshot of ProM with prediction plugin running

Running the prediction miner will, depending on the settings and the servers, take a long
time. The settings as shown in the screenshot will result in the prediction of the total
remaining cycle time with the non-parametric predictor based on occurrences. Eventually
the plugin will finish, and Figure 48 will be shown. The results are summed up in a window
with a tabbed view with tables, also the results were written into the log which is presented
to the ProM framework again in order to further analyze it.

v

Table 20: Overview Settings prediction plugin

Setting Options Value for the experiments

all activities
Second Order Gaussian

elements to use
kernel function for

<activities in the process>

continuous values

kernel function for
categorical values

kernel function for
ordered discrete values
type of time measurement
predict the

[Second Order Gaussian,
Second Order Epachanikov,
Uniform)|

[Aitchison and Aitken,

Li and Racine]

[Wang and van Ryzin,

Li and Racine]

[second, minute, hour, day]
[total remaining cycle time,
remaining cycle time

until element <..>,
occurrence of element <..>|

Li and Racine

Li and Racine

day

total remaining cycle time

start event [start] start
complete event [complete] complete
use k-fold cross-validation [true, false] true

use all cases for bandwidth selection | [true,false] true
choose cases by chance [true,false] -

chance for the bandwidth selection <number> -

size for the bandwidth selection <number> -

k for k-fold cross-validation <number> 10

repeat bandwidth selection <number> 1

use data-attributes [true,false] true/false
use occurrences [true,false] true/false
use durations [true,false] true/false
tolerance for the bandwidth selection | number 0.1

LI

File Mining Analysis Conversion Exports Window Help
[-[51x]

4 prom [5.0]
File Mining Analysis Conversion Exports Window Help

'mQX @@ EEED

ieaned _with_start_and_complete.mxmlgz (unfiltered) using Preciction Miner 7 o* & X

[5 Settings for mining Raw Bezwaar_WOZ_(

[~ Results - Prediction Miner on Raw Bezwaar WOZ_Cleaned_with_start_and_complete.mxmlyz (unfitered) 5 : Gt X
MSE | MAE [estimations | Bandwidths | Prefixed Total remaining cycletime | Occurences | Prefized occurences
repitition 0
part 0, durni prediction 2363.318004863404
part 0, my prediction 2067 581200404166
part 1, dumb prediction 1663895261 466257
part 1, rmy prediction 1375.3485245092306
part 2, dumb prediction 1654.761070600531 t
part 2, my prediction 12657038040714315 ering
part 2, durni prediction 1456470576300 en
part 3, my prediction 78.0170374063805 oord
part 4, dumb prediction 1231419537324
part 4, my prediction 61.090556994230. T
part &, dumb prediction 81.034874816311 o
part 5, my prediction 9519626487 4222
part 6, duri prediction 1784.444592775627:
part 6, my prediction 1106.184381081 it
part 7, dumb prediction 1602776269605 o
part 7, my prediction 518793380937 ering
part & dumb prediction TH0.066531 1 e -
part 8, my prediction 7018726531 95098
part 9, durni prediction 510.604962918203 ~
part 8, my prediction 495.444770350863
cycle time -
select ‘complete'-event complete ~
use K-fold Crossvalidation
use All cases for bandwidth selection L]
choose y (or choose (]
select chance
Select sizefor bandwidth selection | 151
Select K for K-fold-cross validation | 10F
Repeat bandwidth selection 1
use Data Attributes? L]
use Durations? L]
use Occurances?
Set the tolerance for the bandwith selection 01

Figure 48: Screenshot of ProM with prediction plugin results

The table shows results such as the mean square errors/mean absolute error/ of each of
the cross validated measurements, the actual estimations, and the varous measurements.

=l8lx]

2 ProM [5.0]
File Mining Analysis Conversion Exports Window Help
4 prom [5.0]

File Mining Analysis Conversion Exports Window Help

'mQX @@ EEED

[Settings for mining Raw Bezwaar_WOZ_Cleaned_with_start_and_complete.mxml.gz (unfiltered) using Prediction Miner . a” &” B
0w X

[7] Resutts - Prediction Miner on Raw Bezwaar \WOZ_Cleaned_with_start_and_complete.mxmlg? (unfittered)
MSE | MAE [estimations | Bandwidths | Prefixed Total remaining cycletime | Occurences | Prefixed accurences |
my predi dumb predictor | _my prediction error_|_dumb predictor ertor | _my prediction SD_|_dumb predictor 5D

73279972 7683546770170 |50.22218217285689 [50.71056469959189 [12.1635850001005... 13,1 4413765436964 |~
70.464307: 077058458983 |58 267166696016 58.7 13.0561880627372... |13.0731673331423. | =
2t 71400574 43905... 611 0638403068437 |50.71 056460855187 [13.0020042079563... 13.00018267 71386 en
E 25970369 168120381815638 59.71056468659109 |2.6019399a707900...|7 56825527 7813951
45948837 3680991038927: 7 B77B5668407281... |T B 4 9049184
73274672 51.345793669060 7620475558 |13.1635050801005.. |13.14413765436964 | | lering
70464307 45.67240954323842 762047956 [13.0561980627372. |13.104429576101 en
71.400674 52.34411546586956 i 78657 |13.0020042079563... |13, 21017630, oord
25970360 5.387205023563766 7620475558 |2.501930908707908... |71 90729787207
45943032 70639804507337 |-0.41273351184795... 7620479550 [0.67735568407281... |7.190716100992: -
9.21 7326030092, 73279677 FE83646770178 |-16.9373638688007.. - 148971 747..13.163585080109: 13.14413765438! iraak
136090356796, [170.464307; 688019005721 |17 57268250537 25...-15.44 0561950627 372... 1 3. 0237 748627
344700756044, [171 400674 0957 30403669...|-14.9441355757971..15.44 0920042079563...|13.03440594740
34803208611111 259703698945268 |1 2248004003341567 |-1.034f 019389870790 Mal £
1753759750259, 0.4594883% H 1166957 1563723... [0.322 775560407261 |Na ptie
119.046956 3425 73279972 4 [172.76835467701 70 |53.93301501869023 1635950801095, |13.14413765436854 | | [fering
118.8146186680: 70.464307: 6 |171.6360170034067 |51 6486891844421 3.0661980627372. 009928777634... | aussian -
117.0501556333 71400574 4341 41834761 3.0920043079563 336234660554... |
1751481608796 25970369 1 [4.508222090148972 50193998707 908, 7345933636801 | ~
1.76120964635807. 45948837 3 3 |-1.291808141477684 Br7E5568407281 73334028140
145665867 662037 ... [{73.279972 70178 [24.41 410449524576 3.1635850801 095 413765436904 M
747685, 170464307 2 2.74011110573842 4670149807... 13.0661980627372 002832701074 -
3518 7140057418 i) 5.4146327450621 48701409807, 3.0920042079563. 3412937062.
48148... [6.2597 0369 4 380421592463787 4870149607... |2.50193908707908 7575127187 cycle time -
74074 0.459408328 1721307215...|-0.34819678731091 4670149807... [0.67785568407281 o 409
211.9032 8212 73.2708721612828 [172 76835646770 38 6237465308468, 1348640151118.../13.1635860801095. ~
select ‘complete’-event ~

use K-fold Crossvalidation
use All cases for bandwidth selection

choose v (or choose

select chance

Select size for bandwilth selection
Select K for K-fold-cross-validation

Repeat bandwidth selection

use Data Attributes?

use Durations?

use Occurances?

Set the tolerance for the bandwith selection

Figure 49: Screenshot of ProM with prediction plugin results

Vil

10 Appendix B : CPNTools Simulation

if OK(id)

then 1° (id+1)
SR,

output ();

action
(createCaseFile(id));
id@+1

input (id, role1);
output ();

1'id action
(addATE(id, "A'

["start"], calculateTimeStamp(), rolel, []1));

TIMEDINT
input (id, role1);
output ();
1'id action
(addATE(id, "A", ["complete"], calculateTimeStamp(), rolel, [1));
TIMEDINT

input (id, role1);
output ();
action

(addATE(id, "B", ["start"], calculateTimeStamp(), rolel, []));

1'id

input (id, rolel);
output ();
action

1'id (agdATE(id, "B", ["complete™], calculateTimeStamp(), role1, [1));

input (id, rolel);
output ();

input (id, role1);
output ();

, ["complete"], calculateTimeStamp(), rolel, [1));

TIMEDINT

input (id, rolel);
output ();

TIMEDINT

input (id, role1);
output ();

action
(addATE(id, "D", ["complete"], calculateTimeStamp(), role1, [1));

TIMEDINT

Figure 50: CPNTools simulation model 1a

viil

models

TIMEDINT

if OK(id)
then 17 (id+1)
else empty
@+expTime(10)
e (nput (id);
output ();
action
(createCaseFile(id));
TIMEDINT
LAY name

1 ("B")* hame

server

Activity

TIMEDINT

1 ("CY name

Activity

Activity

TIMEDINT

Figure 51: CPNTools simulation model 1b

1X

input (id, rolel,name);

output ();

action

(addATE(id, name, ["start"], calculateTimeStamp(), rolel, [1));
input (id, rolel,name);
output ();

action
(addATE(id, name, ["complete"], calculateTimeStamp(), rolel, [1));

INT

@+expTime(9)

1id 1°(1,id 1°(1,id) 1id
start complete
Out TIMEDINT

ServerxJob

TIMEDINT

1" name

Activity

Figure 52: CPNTools simulation model “server”

TIMEDINT

if OK(id)

tid then 1°(

Generator

id+1)

else empty

input (id);
oul

tput ();

action

1" id@+

TIMEDINT

o
LA
a

outp!

(createCaseFile(id));

input (id, rolel);

ut ();

1'id action

TIMEDINT - (addATE(id, "A", ["start"], calculateTimeStamp(), role1, [1));
input (id, rolel);
1'id output ();
action
(addATE(id, "A", ["complete"], calculateTimeStamp(), rolel, [1));
1 1%id
id “id
. TIMEDINT . TIMEDINT . TIMEDINT
. i
@-+normTime(14400.0,4320.0) 1id i @+norrtn(T:jme(|1414)90-0,4320-0)

input (id, role1); +normTifne d.0,4320.0 e et

output (); B1 start @ I3 4440 0) B3start| Ooutput O

action wg3" [" .

(addATE(id, "B1", ["start"], calculateTimeStamp(), role1, (1)), $i"ig T L (RUUATEGd, 83", [start’] calculateTimeStamp(), rolet, [1));

! input (id, role1);
output ();
O O
(addATE(id, "B2", ["start"], calculateTimeStamp(), role1, [1));
< IMEDINT 7 JIMEDINT — JIMEDINT
t (id, rolel), input (id, role1);
input (id, role1); B1 complete B2 complete output ();
output (J; pl p B3 complete outpu
action = - o addATE(id, "B3", ["complete"], calculateTimeStamp(), rolel, H
(addATE(id, "B1", ["complete"], calculateTimeStamp(), role1, [1)); 1id 1id 1 id ((L plete’] PO,)
input (id, role1);
output ();
~ TIMEDINT TIMEDINT action
- iJIMEDINT 1tid “id (addATE(id, "B2", ["complete"], calculateTimeStamp(), role1, [1));

input (id, rolel);

output (); @+normTime (14400

@+normTime 15

[N

C1 start

S
)
R
o

action
(addATE(id, "C1", ["start"], calculateTimeStamp(), role1, [1)); i

H.
a

49.0,4320.0)

ime(14400.0,4320.0)

@-+nort
input (id, role1);
C3 start output ();
action

(addATE(id, "C3", ["start"], calculateTimeStamp(), rolel, [1));
input (id, role1);

.a

T JIMEDINT T JMEDINT ~JMEDINT gz:i[())l: 0;
(addATE(id, "C2", ["start"], calculateTimeStamp(), role1, [1));
input (id, role1); C1 complete C2 complete C3 complete Lnupt:tugi?),'rolen;
output (); :
v . action
(edn 1 v (addATE(id, "C3", ["complete"], calculateTimeStamp(), rolel, []));

(addATE(id, "C1", ["complete"], calculateTimeStamp(), role1, [1));

input (id, rolel);

'“
-

output ();
MEDINT,y TIMEDINT TIMEDINT action
1%id (addATE(id, "C2", ["complete"], calculateTimeStamp(), rolel, [1));
1'id
input (id, rolel);
output 0;
N action

1

D complete

a

1%

Figure 53: CPNTools

(addATE(id, , ["start"], calculateTimeStamp(), rolel, [1));

JIMEDINT

input (id, role1);
output ();
action
(addATE(id,

", ["complete"], calculateTimeStamp(), rolel, [1));

TIMEDINT

simulation model 2

TIMEDINT

input (id);

output ();

action
(createCaseFile(id));

@-+normTime(28800.0,8640.0)
TIMEDINT input (id, role1);

output ();

action

(addATE(id, "A", ["start"], calculateTimeStamp(), rolel, []));

input (id, rolel,attrib);

output ();

action

(addATE(id, "A", ["complete"], calculateTimeStamp(), rolel, ["choice",attrib]));

* (id, attrib)
1°(id,"option1")
(id,"option3")

. ttrib="option2"] %‘?aéﬁﬂggp{mnﬂ 1 @-+normTime(28800.0,8640.0)

input (id, rolel);

@+normTime(4320.0,1440.0)

[attrib="option1"]

input (id, role1); @+npBaTKtae(]14400.0,8640.0)| B3 start

output (); output ();
action < action i "B3" [" i
(addATE(id, "B1", ["start"], calculateTimeStamp(), role1, [1)); Wi d tid 1'id (addATE(id, "B3", ["start"}, cajcylateTimestamp(), role1, [1));
output ();
. action
addATE(id, "B2", ["start"], calculateTimeStam rolel H
‘H;I'IMEDINT — TIMEDINT — TEDINT G (id, A 1, PO, D)
input (id, role1) input (id, rolel);
input (id, rolel); B1 complete B2 complete output ();
output (); P i B3 complete action
action B . addATE(id, "B3", ["complete"], calculateTimeStam rolel ;
(addATE(id, "B1", ["complete"], calculateTimeStamp(), rolel, [1)); ‘drIMEDINT L"id 1id ¢ (id, L P L PO/ LD
input (id, rolel);
output ();
. TIMEDINT TIMEDINT action
1id i “id (addATE(id, "B2", ["complete"], calculateTimeStamp(), rolel, [1));

@+normTime(4320.0,1440.0)

e(28800.0,8640.0)
input (id, rolel);
output ();
action
(addATE(id, "C3", ["start"], calculateTimeStamp(), rolel, [1));

input (id, rolel);

output ();

action

(addATE(id, "C2", ["start"], calculateTimeStamp(), rolel, [1));

d
rezssand o 56400
id

input (id, rolel);

output ();

action

(addATE(id, "C1", ["start"], calculateTimeStamp(), rolel, [1));

input (id, rolel);

output ();

action

(addATE(id, "C3", ["complete"], calculateTimeStamp(), role1, [1));

input (id, role1);

output ();

action

(addATE(id, "C1", ["complete"], calculateTimeStamp(), rolel, [1));
input (id, rolel);

output ();

action

(addATE(id, "C2", ["complete"], calculateTimeStamp(), rolel, [1));

TIMEDINT
1id

input (id, role1);

output ();

N action

1id (addATE(id, "D", ["complete"], calculateTimeStamp(), rolel, []));

TIMEDINT

D complete

Figure 54: CPNTools simulation model 3

xii

if OK(id)

input (id); then 1" (id+1)
output ();

ction else empty
(createCaseFile(id)); id@+1

action
(addATE(id, "A", ["start"], calculateTimeStamp(), role1, [1));

1" (loops,id)

1°id

TIMEDINT .
input (id, role1); 1d
output ();
action . . .
(addATE(id, "E", ["complete"], calculateTimeStamp(), role1, [1)); imput (1, rolet,100ps);

output ();
1 (loops,id) i A [' "loops"
‘ (addATE(id, "A", ["complete"], calculateTimeStamp(), role1, ["loops", Int.toString(loops)]));

ServerxJob

* (loops, id)
@+normTime(10.0,3.0)
input (id, rolel);
output ();
action

1 (loop @RHATE(id, "B", ["start"], calculateTimeStamp(), role1, [1));

ServerxJob

1" (loops,id) output ();

["complete"], calculateTimeStamp(), role1, [1));

ServerxJob
1" (loops, id)
@-+normTime(10.0,3.0)

input (id, role1);
output ();

action
1" (lodpgddyTE(id, "

["start"], calculateTimeStamp(), rolel, [1));

ServerxJob

ServerxJob
1" (loops,id) input (id, role);
output ();

1" (loops-1,id) action

(addATE(id, "C", ["complete"], calculateTimeStamp(), role1, [1));

1" (loops, id)

[loops>0] @-+normTime(10.0,3.0)

input (id, role1); 1" (loops,id)
output (); 1 (0,id)
Saden [loops=0] @-+normTime(10.0,3.0)
(addATE(id, "E", ["start"], calculateTimeStamp(), role1, [1)); P .0,3.

input (id, role1);

output ();
N action
1" (loops,id) (addATE(id, "D", ["start"], calculateTimeStamp(), role1, [1));
Serverxlob
1 (loops,id)
input (id, role1);
output ();
action
1+ (loops, id) (addATE(id, "D", ["complete"], calculateTimeStamp(), role1, [1));

ServerxJob

Figure 55: CPNTools simulation model 4a

xiil

INT

¥ Ok i)
then 1 [id+l}
eke empty

out put
action

(createCaseFiielid ol

TIMEDINT(
\-.

id @enormTime{10.0.3.0]

npue (. Foiel
uk [

action
[eccATE(D, "A". ["2ar” |, caley ReeTimeSamp(l. oel, [111;
TIMEDINT
input [id, relell;

cutpit (1
adtion
oA TEfId, "E”, [complete”], caic ulsteTimeSte mpp), mikel, |

Input (4, miell
cuput i
action

JATE] . "%, ["complete”]. caiculateT memamp(l. roiel. |

{ad

@ 4normTime(10.0,3.0]
input [id. relel};
cutpk (1
action
[2casTE(ID, "B",

"1, ekuleteTimestme (), rekel, (1}

Input fid, kel
output [}

action

ddATE (i, "B", ["oomp lete”], calculteTimeStamprl, ke, |

TIMEOIN

#ncrmTime(10.0,3.0}
input [, rekll;
output [},

- kulsteTimeamp (], rokl, (]}

action
[2AAATE[E, "C7, ["start’

e
TIMEDINT

Input (id, rolel];
“utPut [k

action

(200 ATE(IC, "C7, [Toomplete”], a2y

teTmeRamp(l. wkel, |

@ anormTime{10.0.3

npee (id, roiell;
wutput (1

. cakulateTimeSampll, ralel, (115

on
acdsTED, "E”, |

action
-

1'd [2ddATEfId, 0%, |

inpug (k. rokel]

Fu!
icn

2ddATE(d, "D°, | complete”], calcy lekeTimeStamp (], rokel, [11L

=

TIMEDINT I
id

o

[

N

1
1id
i

{)
T TIMEDINT

Figure 56: CPNTools simulation model 4b

Xiv

11

Appendix C : Process Model based upon the log
of the Case Study

Figure 57: Process Model of the Case Study

XV

Figure 58: Petri Net with performance indication of the Case Study

Xvi

12 Appendix D : Bandwidth values of the nonpara-
metric prediction of the total remaining cycle time
using attributes of the Case Study

Table 21: Bandwidth values of the non-parametric prediction of the total remaining cycle time
using attributes of the Case Study

new._queue
0,01149
0,02623
0,02772
0,02384
0,00622
0,02751
0,01107
0,02759
0,02352
0,02341

o_resource
0,00026
0,36730
0,46843
0,91299
0,38815
0,40038
0,77150
0,40346
0,36085
0,78296

type
0,33895
0,89060
0,86008
0,99676
0,97134
0,89018
0,99954
0,89009
0,88451
0,91297

error
0,99997
0,99998
0,99998
0,09994
0,98739
0,99987
0,98083
0,99998
0,00621
0,98714

id
0,00449
0,00195
0,00238
0,00731
0,00968
0,00282
0,00857
0,00498
0,00484
0,00043

rule
0,99876
0,99762
0,99847
0,99940
0,99998
0,99641
0,99916
0,99687
0,99995
0,99251

queue
0,08552
0,13132
0,15544
0,15188
0,61930
0,08884
0,22329
0,14982
0,08707
0,08713

The rows in this table represent the 10 bandwidths as

validation.

name
0,01381
0,04941
0,04758
0,01740
0,00696
0,03269
0,01228
0,01439
0,01043
0,16666

priority
0,00137
0,04368
0,04268
0,05108
0,02598
0,04276
0,03743
0,04011
0,03061
0,02213

time_stamp
0,76644
0,33677
0,51585
0,51242
0,40198
0,57884
0,21267
0,77040
0,34142
0,99053

workset
0,06708
0,13964
0,13706
0,16722
0,09201
0,18723
0,19911
0,09705
0,12497
0,12134

calculted by the 10-fold cross-

13 Appendix E : Bandwidth values of the nonpara-
metric prediction of the occurrence of ”0Z12 Her-
taxeren” using occurrences of the Case Study

The rows in this table represent the 10 bandwidths as calculted by the 10-fold cross-

validation.

Xvil

TIAX

Table 22: Bandwidth values of the nonparametric prediction of the occurrence of 70712 Hertaxeren” using occurrences of the

Case Study

0z20
administratie
2.35E-04
0.001426
0.001495
9.90E-04
3.37TE-04
0.001333
0.001147
0.001081
7.12E-04
0.001792

0z18
uitsprwacht
0.996845
0.094331
0.093431
0.999258
0.096817
0.091349
0.277147
0.998818
0.346665
0.991992

0z12
hertaxeren
2.71E-04
2.40E-06
1.05E-06
1.66E-06
3.54E-06
2.19E-06
3.13E-05
3.86E-05
1.10E-05
4.56E-05

0z10
horen
8.31E-04
8.31E-04
0.001301
0.003174
0.001463
5.81E-06
7.34E-04
0.002964
8.67E-04
0.527785

0z16
uitspraak
5.74E-03
0.009928
0.008736
0.998612
0.008615
0.006278
0.008777
0.005481
6.30E-04
0.987721

0z15
zelfuitsprk
0.622222
0.986649
0.998055
0.989352
0.978289
0.992813
0.292017
0.977255
0.98658
0.999944

0z02
voorbereidn
0.999999
0.999256
0.9999
0.145888
0.999256
0.992355
0.999943
0.999981
0.999936
0.189582

0z04
incompleet
3.81E-03
0.003501
0.003956
0.004733
0.004296
0.003451
0.004171
0.003669
0.005277
0.001348

0209
wachtbeoord
0.002427
0.003375
1.26E-04
0.011913
0.002062
0.00369
0.002537
0.002721
0.002554
1.15E-04

0206
stopvorderng
8.89E-01
0.997967
0.968292
9.29E-04
0.453143
0.999691
0.969115
0.995753
0.99888
0.999864

0208
beoordelen
0.460793
0.460793
0.460793
0.460793
0.460793
0.460793
0.460793
0.460793
0.460793
0.460793

domainheusl
0.016886
0.022563
0.021737
0.014047
0.017699
0.017009
0.022575
0.018954
0.006989
0.012711

0z24
startvorderng
0.999548
0.999992
0.999995
0.998103
0.999987
0.999997
0.999492
0.999336
0.999999
0.994009

14 Appendix F : Bandwidth values of the nonpara-
metric prediction of the occurrence of ”0Z12 Her-
taxeren” using attributes of the Case Study

Table 23: Bandwidth values of the nonparametric prediction of the occurrence of 70712 Her-
taxeren” using attributes of the Case Study

new_queue o_resource type error id rule.num queue name priority timestamp workset
0.999893 0.964036 0.954539 0.025045 9.65E-18 0.064335 0.980805 2.18E-05 0.07529 0.098259 0.996528
0.999999 0.675157 0.901458 4.14E-04 1.86E-16 0.164746 0.621298 6.26E-08 0.116095 0.677209 0.999991
1 0.582591 0.982406 5.85E-04 2.49E-18 0.107479 0.998514 9.40E-08 0.044906 0.80048 0.999821
0.999992 0.426587 0.999999 7.75E-14 1.77E-17 0.105036 0.999926 1.51E-07 0.033186 0.3141 0.999995
1 0.91454 0.996671 3.68E-05 7.99E-17 0.10341 0.802329 1.27E-09 0.159488 0.50883 0.999995
0.999999 0.999996 1 7.01E-04 3.01E-17 0.040972 0.974106 6.48E-08 6.08E-04 0.903802 0.999998
1 0.992911 0.820255 0.34045 2.44E-19 0.155134 0.881992 2.90E-10 2.94E-06 0.390378 1
0.794306 0.485053 0.99986 6.44E-05 8.38E-18 0.028888 0.563247 4.76E-10 0.024957 0.440867 0.999997
1 0.661551 0.8251 2.40E-06 5.88E-18 0.093585 0.999677 2.24E-11 0.098347 0.032173 0.999907
0.999999 0.684836 0.991553 1.11E-04 3.75E-17 0.085861 0.960532 6.24E-09 0.181782 0.92384 0.999998

The rows in this table represent the 10 bandwidths as calculted by the 10-fold cross-

validation.

15 Appendix G: The events for cases 1 to 4 of the

running example

Timestamp Event Type Element Attributes
01.01.1970 09:38:00.000 complete Register -
01.01.1970 09:38:00.000 start Analyze Defect -
01.01.1970 09:48:00.000 complete Analyze Defect defectType: 9
phoneType: T2
01.01.1970 10:04:00.000 start Repair(Complex) -
01.01.1970 10:18:00.000 complete Repair(Complex) -
01.01.1970 10:18:00.000 start Test Repair -
01.01.1970 10:28:00.000 complete Test Repair defectFixed: true
numberRepairs: 0
01.01.1970 10:32:00.000 complete Inform User -
01.01.1970 10:35:00.000 complete Archive Repair defectFixed: true
numberRepairs: 0

Table 24: Events of Case 1

Xix

Timestamp Event Type Element Attributes
02.01.1970 15:58:00.000 complete Register -
02.01.1970 15:58:00.000 start Analyze Defect -
01.01.1970 16:03:00.000 complete Analyze Defect defectType: 8
phoneType: T2
02.01.1970 16:18:00.000 complete Inform User -
02.01.1970 16:22:00.000 start Repair(Complex) -
02.01.1970 17:06:00.000 complete Repair(Complex) -
02.01.1970 17:06:00.000 start Test Repair -
02.01.1970 17:13:00.000 complete Test Repair defectFixed: true
numberRepairs: 0
02.01.1970 17:23:00.000 complete Archive Repair defectFixed: true
numberRepairs: 0

Table 25: Events of Case 2

Timestamp Event Type Element Attributes
03.01.1970 10:10:00.000 complete Register -
03.01.1970 10:10:00.000 start Analyze Defect -
03.01.1970 10:20:00.000 complete Analyze Defect defectType: 6
phoneType: T1
03.01.1970 10:43:00.000 start Repair(Complex) -
03.01.1970 10:56:00.000 complete Repair(Complex) -
03.01.1970 10:56:00.000 start Test Repair -
03.01.1970 11:03:00.000 complete Test Repair defectFixed: true
numberRepairs: 0
03.01.1970 11:06:00.000 complete Inform User -
03.01.1970 11:09:00.000 complete Archive Repair defectFixed: true
numberRepairs: 0

Table 26: Events of Case 3

XX

Timestamp Event Type Element Attributes
04.01.1970 09:02:00.000 complete Register -
04.01.1970 09:02:00.000 start Analyze Defect -
04.01.1970 09:09:00.000 complete Analyze Defect defectType: 1
phoneType: T1
04.01.1970 09:14:00.000 start Repair(Simple) -
04.01.1970 09:19:00.000 complete Repair(Simple) -
04.01.1970 09:19:00.000 start Test Repair -
04.01.1970 09:28:00.000 complete Test Repair defectFixed: true
numberRepairs: 1
01.01.1970 09:32:00.000 complete Inform User -
01.01.1970 09:32:00.000 complete Archive Repair | defectFixed: true
numberRepairs: 1

Table 27: Events of Case 4

xx1

	Abstract
	Contents
	1 Introduction
	2 Related Work
	3 Non-parametric regression
	4 Non-parametric regression as a predictor
	5 Validation
	6 The software
	7 Future work
	8 Conclusion
	References
	9 Appendix A : Experiment setup
	10 Appendix B : CPNTools Simulation models
	11 Appendix C : Process Model based upon the logof the Case Study
	12 Appendix D : Bandwidth values of the nonpara-metric prediction of the total remaining cycle timeusing attributes of the Case Study
	13 Appendix E : Bandwidth values of the nonpara-metric prediction of the occurrence of "0Z12 Her-taxeren" using occurrences of the Case Study
	14 Appendix F : Bandwidth values of the nonpara-metric prediction of the occurrence of "0Z12 Her-taxeren" using attributes of the Case Study
	15 Appendix G: The events for cases 1 to 4 of therunning example

