EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Invariant manifolds and their role in mixing, with applications to point vortex systems

Cottaar, J.

Award date:
2008

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain


https://research.tue.nl/en/studentTheses/fc7a089e-3b85-46dc-bc42-637d42a1334b

Faculteit Technische
Natuurkunde

Groep Transportfysica
Gebouw Cascade

Technische Universiteit
Eindhoven Postbus 513
University of Technology

5600 MB Eindhoven

Invariant manifolds and their role
in mixing, with applications

Title: to point vortex systems
Author: J. Cottaar

Report number: R-1740-A

Date: November 25, 2008

Departments: Turbulence and Vortex Dynamics Group
Department of Applied Physics

Centre for Analysis, Scientific computing and Applications
Department of Mathematics and Computer Science

Eindhoven University of Technology
The Netherlands

Supervisors:  dr. ir. L.P.J. Kamp
prof. dr. R.M.M. Mattheij






Abstract

Laminar mixing is an important phenomenon both in geophysics and in industrial
mixing applications. However, a method to completely describe the mixing properties
of such flows is not yet available. In this work we focus on the relationship between
invariant manifolds and mixing in two-dimensional incompressible flows. We develop
the theory analytically and demonstrate it numerically using a flow which can often
be used as an idealized model of such flows: the point vortex system.

Mixing in 2D incompressible flows tends to be limited to subsets of the phase space.
Such a mixing subset is called an ergodic region. A small cloud of particles somewhere
in such a region will eventually mix to cover the whole region uniformly. The time
this takes depends on the initial location, a property which induces a structure on
the phase space: the mixing time distribution. There is an intermediate regime where
the cloud is no longer localized but is not distributed uniformly yet. In this regime it
exhibits a typical structure independent of the starting location: the partial mixing
structure. It turns out that the spatial distribution of the stable invariant manifold
describes the mixing time distribution, while that of the unstable invariant manifold
describes the partial mixing structure.

The concept connecting the invariant manifold to the mixing structures is the w-
measure. This is a probability measure on the ergodic region based on the spatial
variation of finite time Lyapunov exponents. It can be linked directly to the mixing
structures, while on the other hand it exactly describes the spatial distribution of
the invariant manifolds. This leads to two numerical methods to find this measure,
one based on computing Lyapunov exponents and the other on computing invariant
manifolds. Both methods are relevant, since the first performs well in regions of low
w-measure while the second performs well in regions of high w-measure.
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1 Introduction

The work described in this report was conducted at the Eindhoven University of Tech-
nology between August 2007 and November 2008. It is a continuation of the work
of Ronald Otten [60], which focused on the existence and computation of invariant
manifolds of distinguished hyperbolic trajectories in 2D incompressible flows. The
goal of the current work is to improve our understanding of these manifolds and their
physical relevance, particularly their use in describing the mixing process.

In this chapter, a general overview of current research into laminar mixing will first
be given (section 1.1). Next, we outline the current work and very briefly introduce
the most important concepts (section 1.2). Finally, the structure of the remainder of
the report will be described (section 1.3).

1.1 Background

The focus of this work is the study of mixing in laminar flows. Although several
concepts had long been known, this field did not really take off until the 1980s with
Aref’s introduction of the term ’chaotic advection’ [6]. The central issue is the ap-
pearance of features in advected markers on a scale much smaller than the flow scale,
as seen for instance in early experiments by Welander [74]. In other words, a flow
can exhibit Lagrangian chaos without Eulerian chaos [23]. Apart from being quite
an interesting phenomenon, this has several applications. For instance, in materials
processing laminar mixing is necessary when turbulent mixing is simply not possible
due to high viscosity, such as with polymer solutions [55]. Another application is
in geophysics and environmental sciences, for instance in the description of the large
scale transport properties of oceanic flows [65] or the local mixing of pollutants [48].

In this work we consider only two-dimensional incompressible flows. This choice is
necessary because it leads to a Hamiltonian description of the particle motion which
does not exist for 3D flows. This reduces the applicability to industrial mixing pro-
cesses since they are often three-dimensional, although it may be possible to generalize
our results to apply to stationary 3D flows [9, 26, 41]. On the other hand, in atmo-
spheric and oceanic flows the requirement of a 2D incompressible flow is often satisfied.
There are three primary reasons for this. Firstly, vertical velocities are generally much
smaller than horizontal velocities, as a result of which the velocity field at a fized level
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is often two-dimensional and incompressible [66]. Secondly, due to background rota-
tion many of these flows are geostrophic and so, by the Taylor-Proudman theorem,
are independent of the vertical coordinate [44]. Finally, there is often a density strat-
ification present. This inhibits vertical velocities, since gravity confines fluid elements
to layers of constant density [67].

There are several approaches to the study of transport and mixing in these flows.
These include the detection of transport barriers [15], characterization as a diffusion
process and analysis of the anomalies in such an approach [70], analysis of Poincaré
maps [46], computation of Lyapunov exponents and analysis of their spatial distribu-
tion [1, 10, 69] and the computation and analysis of the stable and unstable manifolds
of hyperbolic trajectories [33, 39, 51]. It is this final approach that forms the starting
point for this work.

1.2 OQutline

The traditional application of the stable and unstable manifolds mentioned above
is in lobe dynamics, where the transport between areas bounded by the stable and
unstable manifolds is characterized using turnstile mechanisms [50, 62]. We will use
a very different approach. We are not so much interested in the specific shapes of
parts of the manifold, but rather in their asymptotic space filling properties. We also
do not consider the stable and unstable manifold simultaneously, but show how each
one separately describes aspects of the mixing process. The stable manifold does so
for forward time, while the unstable manifold describes the process in reverse time.
In particular, they will be related to two important structures: the partial mixing
structure and the mixing time distribution. We will also demonstrate a quantitative
link to Lyapunov exponents [21].

So, the central point is the relationship between the following concepts:

e The invariant manifolds: The stable manifold of a trajectory is the set of all
trajectories that converge to it for forward time, while the unstable manifold
is the set of all trajectories that converge to it for reverse time. Under certain
conditions we may speak of global stable and unstable manifolds of the flow
without considering any specific trajectory.

e The w-measure: This is a rigorous probability measure on the phase space
or some subset of it, based on the spatial variation of finite time Lyapunov
exponents. It can be defined both for forward and for reverse time, leading to
different measures.
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e The partial mixing structure: This structure is not rigorously defined. It is found
by considering a number of particles which have started mixing, but are not yet
uniformly distributed. Their distribution turns out to be characteristic of the
flow and independent of their starting location. The partial mixing structure is
related to the negative time w-measure and to the global unstable manifold.

e The mixing time distribution: The time a cloud of particles takes to mix depends
on the starting location. In this way, a structure is induced on the phase space:
the mixing time distribution. It is related to the positive time w-measure and
to the global stable manifold.

To give an idea of the similarity between these concepts, examples of each of them
are shown in Figures 1.1.

There are strong parallels between this work and that of Adrover et. al. [2, 4, 16],
which also considers the measure theoretical properties of the global unstable mani-
fold. However, we expand on their work in several ways. In the first place, we make a
link to the actual mixing process, through the partial mixing structure and the mixing
time distribution. Also, we explicitly make the connection to Lyapunov exponents and
analytically show their relationship to the spatial distribution of the global invariant
manifolds. Finally, our theory and methods are not limited to periodic systems.

Various point vortex systems will be used to demonstrate the theory. These are
flows with infinite Reynolds number in which all vorticity is concentrated in a finite
number of points according to a Jd-distribution. The lack of viscosity, which follows
from the infinite Reynolds number, prevents the vorticity from diffusing. Although an
idealization, these systems are useful in describing flows consisting of vortices which
are small compared to the flow scale.

1.3 Report structure

Since the theory will be supported by the results of numerical simulations in point
vortex systems as we go along, we start by considering the properties of these systems
in detail in chapter 2. This chapter focuses on the behavior of the point vortices
themselves without considering the flow induced by them yet. Considerable attention
is devoted to the development of accurate numerical methods for calculating this be-
havior. Six typical vortex systems are analyzed in detail to serve as examples in later
chapters.

Next, a general overview of advection in point vortex systems is presented in chap-
ter 3, including an expansion of the numerical methods to efficiently handle tracer
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particles. The most important result is the presence in some of the systems of ergodic
regions, subsets of the phase space in which mixing takes place. These are considered
in more detail in chapter 4. We take a closer look at just what an ergodic region is and
what its mixing properties are. We will also encounter the mixing time distribution
and the partial mixing structure for the first time here.

Chapter 5 deals with the definition, properties and computation of Lyapunov expo-
nents and the w-measure induced by them. We also demonstrate the link between the
w-measure on the one hand and the mixing time distribution and partial mixing struc-
ture on the other hand, both analytically and numerically. Invariant manifolds and
their relationship to the w-measure are considered in chapter 6. Our conclusions fi-
nally are presented in chapter 7, along with some possible avenues for further research.
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b

Figure 1.1: Various structures in a typical point vortex system. From the top left
going horizontally: stable manifold (Figure 6.4), positive time w-measure
(Figure 5.6), partial mixing structure mirrored in the y-axis (Figure 4.1)
and mixing time distribution (also Figure 4.1).
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2 Point vortices

In this chapter the physical interest and behavior of point vortex systems will be dis-
cussed, and numerical methods to obtain the motion of these point vortices will be
introduced. This is actually quite a rich topic since as we will see the vortices them-
selves can exhibit chaotic motion within their phase space. The aim of this report
however is the description of the advection of passive particles in these systems, and
therefore this treatment will be fairly brief.

First the vorticity equation will be derived and discussed (section 2.1.1) and then
applied to define and describe the point vortex system (section 2.1.2). Next the nu-
merical methods to evolve such a system in time will be introduced (section 2.2) and
finally several three and four point vortex systems which will be used in the rest of
this report will be discussed, showcasing various possible behaviors (section 2.3).

2.1 Theory

2.1.1 The vorticity equation

The flow of a fluid in three dimensions is described by the laws of mass and momentum
conservation. These are in differential form [44]:

dp
il . = 2.1
P V() =0, (2.)
1
68_:5, +v-Vv= ;(Vp +B) + vV?v, (2.2)

where p is the density, v the velocity, p the pressure and v the kinematic viscosity
of the fluid, and B is the body force density, all of which are in general functions of
space and time.

We make several assumptions. In the first place the density p is constant, neither
depending on time nor space. This means that (2.1) reduces to

V-v=0. (2.3)
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The flow is also taken inviscid:
v =0, (2.4)

eliminating the last term from (2.2). Next the body forces are assumed to be conser-
vative, i.e.

V x B =0. (2.5)

We limit our attention to two-dimensional flows, implying

v, =0 (2.6)
and 5

Define the vorticity w as the curl of the velocity field,
w:=V Xv. (2.8)

Note that it follows from (2.6) and (2.7) that the x- and y-components of w are zero,
which means we might as well define it as a scalar:

0 0

—Vy — —Vy. 2.
Dz Y 8yvx (29)

wi=w, =

Finally, define the material derivative of a quantity as the time derivative of that
quantity along a trajectory of the fluid,

D 0
5= VY (2.10)

We are now ready to formulate the vorticity equation,
Dw
— =0. 2.11
De (2.11)
This can be verified by plugging it into (2.2) and using the assumptions above. This

shows that vorticity is advected by the flow. We can use this as the defining equation
for the flow since the velocity field can be determined from the vorticity using

v(x) ! /]R? w(x’)wdx’, (2.12)

~ o x — x'[2

assuming that the far field velocity is zero and the vorticity is zero except on a com-
pact set.
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2.1.2 Patch and point vortices

Consider a circular patch of positive vorticity a at the origin with radius R, with zero
vorticity elsewhere, so working in polar coordinates (r,0):

(r,0) a ifr <R, (2.13)
w(r,0) = ) )
0 ifr>R.

Denote the total vorticity by «, the strength of the vortex:

v i= / w(x)dx' = raR?. (2.14)
RQ
The velocity field is then given by

0 if r =0,
v(r0) = { %o, H0<r<R (215)
27?89 if R<r.

This can be derived either from (2.12) or more easily using symmetry arguments, but
it can be easily verified using (2.8).

Note that the boundary of the patch vortex is a streamline; since vorticity is ad-
vected by the flow this means that the vorticity distribution is stationary. Also note
that the velocities at the origin and outside the patch do not depend on its radius R
(assuming 7y is kept constant). This suggests a very simple model: we let R go to zero,
concentrating all the vorticity in a point. To test if this simplification is justified, we
compared the results of advection in pure point vortex system to those in systems of
small patch vortices using the contour dynamics method described in [73]; up to quite
large sizes the results were similar (these results are not included in this report). A
system of these point vortices can be described easily: the vortices are advected by
the flow caused by the other vortices.

Consider a system of N point vortices with identical strength 7, and denote their
positions by x;(t) = (z;(t),y;(t)) for 1 < i < N and ¢t € R. The system itself is
written as I'(t) = (x1(), ..., X,(t)). The time argument will usually be dropped when
no confusion can occur. The velocity field is simply the sum of the fields due to the
individual vortices, so

N
2y eexXxxy) if x £ x; for all i with 1 <i < N,

2 2 Tl
v(x,t) = N | (2.16)
= > o ifx=x
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As mentioned the motion of the point vortices is given by the velocity field at their
positions since vorticity is advected by the flow, so we have

dx; ¥ N e, X (x; — x;)

R (2.17)
@ "o 20 - x|
Or written out by component
N
dz; _ 0 Z Yi — Yy
dt 2m A=, (= w)? 4 (% — yy)*
. ) (2.18)
dyi v Z T — @
dt  2m 4= (wi—2)+ (i — v5)°

The point vortex system is Hamiltonian; with canonical variables (z;,y;) the Hamil-
tonian H is given by

H= 0373 los((r; —m)” + (y; — we)?) (2.19)

The equations of motion can than be formulated as

dt N 8%‘7
ay  oH (2.20)

Like in all Hamiltonian systems, H is a constant of motion. Further constants of
motion are the linear momenta P, and P, and the angular momentum L?, defined by

N
P, :’)/Zl’j,
j=1

N
Py=v> v (2.21)
j=1
1 N
2 2 2
L = Evg(xj%—yj).

Now define the map W(7") as the map moving a system forward by time T, i.e.

U(T)(T(t)) = D(t + T). (2.22)
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The reason that ¢ is not needed as an argument of W is that the system is autonomous.
Note that

(W(T) 0 W(S5))(I'(#)) =W (T)(L(S)(I'(#))) = W(T)(I'(t +5)) =
Ft+S+T)=v(T+S)T()),

so we find the important property
U(T)oW(S)=W(T+S9). (2.23)

Another important property of the map (7)) is that it is symplectic, meaning that
it conserves the two-form dz; A dy; for 1 < ¢ < N. In other words, areas and vol-
umes in the phase space are conserved under time evolution of the system. This is
a general property of Hamiltonian systems [54], and in fact any symplectic mapping
corresponds to a Hamiltonian system [53].

2.2 Numerical methods

In this section the numerical method used to approximate W(7") will be developed.
We will start with a simple first order Euler method (section 2.2.1) and show why this
is not adequate. We will move on to a first order symplectic scheme (section 2.2.2)
and then higher order symplectic schemes (section 2.2.3). Finally some further prop-
erties of the chosen method, a sixth order scheme, will be discussed (section 2.2.4).
All computations in this section were performed on the irregular four vortex system
(see section 2.3.2).

2.2.1 Explicit Euler integration

The simplest time integration method we can apply is first order explicit Euler. This
simply means that we compute the velocities of each of the point vortices using (2.17)
and move every point vortex a distance vAt, where At is the timestep. To be more
specific, denote the positions at timestep n, so at time nAt, by x7. The positions at
the next timestep are then computed by

N
e, X (x} —x7)
o AL s N T 2.24
J=1j#i J

This method is consistent and has a discretisation error of order At.
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We now investigate whether this method is adequate for our needs. To find out,
let us have a look at the conserved quantities, the linear momenta P, and P,, angu-
lar momentum L? and Hamiltonian H. The relative change in these quantities for a
typical system is shown for two values of At in Figures 2.1 and 2.2. Note that the
numerical method conserves P, and P, but not L? and H, although it does better
with a smaller timestep.

Of course we can conserve these quantities arbitrarily well by reducing the time
step since our method is consistent. Another option would be to use a higher order
method, which would reduce the error more efficiently. However, the fact remains that
both L? and H are diverging from their initial values. We can do better-the method
that will now be introduced conserves L? and keeps H close to its initial value.

14 ¢
g 13 — Py
8
G
Q12} Py
©
0 L2
1.1 1
/ H
1 b - - - - -

0 20 40 60 80 100

Figure 2.1: Relative change in P,, P,, L? and H, using explicit Euler integration with
At = 0.01. The curves for P, and P, overlap.

2.2.2 Symplectic integration

The main issue with explicit Euler integration is that it is not symplectic, i.e. the
mapping defined by repeatedly applying (2.24) does not conserve areas and volumes
in the phase space. If we could find a consistent symplectic method, it would corre-
spond to a system with a Hamiltonian slightly perturbed from our true Hamiltonian.
Since this perturbed Hamiltonian would be conserved to numerical precision, the true
Hamiltonian would not diverge [53].
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1.05
1.04
Py
Eul.lﬂ
3 - By
B 102
B L sopd
1.01 -
H
1 s ]
0 20 40 60 80 100

Figure 2.2: Relative change in P,, P,, L? and H, using explicit Euler integration with
At = 0.001. The curves for P, and P, overlap.

The method presented here was developed in [45]. We want to approximate W(At),
the operator moving the system At forward in time. Using Taylor expansion we can
write

[e.9]

U(A)(T(t) =L (t + At) = (Z 1 (At%>]> I(t) =

— 41
70 (2.25)

<Z % (AtH)j> I(t) = exp(AFH)T(2),

where H := % is the time differentiation operator corresponding to the Hamiltonian
H [68]. Note that H can be written as (see (2.19))

J—1

N
H=>"3 Q. (2.26)

7j=2 k=1

where €2, is the Hamiltonian corresponding to a dipole consisting of the point vortices
J and k,

Qi = —% log((x; — xx)” + (y; — y)?), (2.27)

with corresponding time differentiation operator €2;;. The operator

~

Qu(At) = exp(At€y) (2.28)
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then moves the dipole ahead by time At. This operator can be applied exactly; both
vortices simply rotate around their midpoint with angular velocity

~
= ——. 2.29
= Tl P 229
Note that
N j-1
H=> ) Q. (2.30)
=2 k=1
Now consider the operator
N j-1

=TT (2.31)

j=2k=1

where the product of two operators is defined as their composition. What this op-
erator does is take every dipole in turn and evolve it over a time At. Note that the
updated positions are used at each step. W (At) approximates W(At) with first or-
der discretisation error, it is symplectic and it conserves P,, P, and L? to numerical
precision. Let us investigate each of these three claims in turn.

First we will show that the approximation is consistent and of first order. We will
need the following theorem, which follows directly from the Baker-Campell-Hausdorff
formulas [27].

Theorem 2.1. Let X;, 1 <i < N, be a sequence of operators. Then for h > 0

log (Hexp (hX,) ) = hiXiJrO(hQ).

i=1 i=1
We now have

N j—1 N j—1

T (A) (2.31) H H Q,r(At) (2.28) exp(log(H H exp(At€;1))) T2.1

=2 k=1 j=2 k=1

N j-1 (2.30) (225) (2.32)
exp(AtY Y Q + O(A)) "= " exp(AtH) + O(AP)

=2 k=1

U(AL) + O(AL?),
showing that W™ (At) is indeed a first order approximation for W(At).

Next we will show that the mapping is symplectic. This is actually quite simple:
each of the elementary maps €2;;(At) corresponds to a Hamiltonian (namely €2;;) and
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hence is symplectic, conserving areas and volumes in the phase space. Since ¥ (At)
is composed of these elementary maps, it is symplectic as well.

Finally, let us see how W((At) conserves P,, P, and L2 We will demonstrate
this for the angular momentum L?; the argument for the linear momenta P, and P,

is similar. We will show that the elementary mappings ij(At) conserve L2, which
means that W (At) does as well. We can write L? (see (2.21)) as

N
1 1
=g Y @i+y)+ 50+ + i+ ).
i=1i) i

The first term is not altered by applying ij(At) since it influences only x; and x;.
The second term is simply L? for the two vortex system consisting of the vortices j
and k; since this is a conserved quantity in this system and ij(At) is exact, it is not
altered either. So L? is conserved under the operator ij(At).

We have now found a consistent symplectic integrator, which additionally conserves
all constants of motion with the exception of the Hamiltonian H. The behavior of
H using this method is shown in Figure 2.3. Note that H is not constant, but in
contrast to the results using explicit Euler integration it does not diverge. This is the
main reason to use a symplectic method.

1.04
1.03 |

o — P,
S 1.02 |

8

XS]

o 101} ] Py

>

3 i B A A 2
0.99 | ] H

20 40 60 80 100

Figure 2.3: Relative change in P,, P,, L* and H, using first order symplectic integra-
tion with At = 0.1. The curves for P,, P, and L? overlap.
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2.2.3 Higher order symplectic integration

Although the first order symplectic integrator found in the previous section has sev-
eral nice properties, it does not actually perform particularly well compared to our
‘naive’ first order Euler method (see Table 2.2). A possible approach to remedy this
is to find higher order methods. How to do this is well-known for the explicit Euler
method, but we would like to find higher order symplectic methods.

A second order method similar to (2.31) is readily available [45]:

IJ_V[JI_[ Qix(At/2) o ﬁ ﬁ ij(At/Q)- (2.33)

What this method does is similar to the first order method, which rotates every dipole
once. The difference is that we sweep over all dipoles twice, the second time in re-
verse order. Since it is composed of the same elementary maps as W (At), U@ (At)
is symplectic and conserves P,, P, and L. That it is second order can be shown using
a completely similar argument as in (2.32), using a higher order version of Theorem
2.1. We omit the details here as they are rather cumbersome.

This method already performs significantly better than the first order one (see Ta-
ble 2.2), but we can do even better. A simple way to construct higher order methods
is to use Richardson extrapolation. This involves computing the solution using dif-
ferent values of At, which allows us to estimate the lowest order error term and then
to eliminate it. Although this did work, the resulting method did not turn out to be
symplectic. This is not a surprise; after all there is no reason why it should be.

Symplectic higher order methods can be obtained by applying ¥ multiple times,
varying the timestep to eliminate error terms. This is based on work by Yoshida [77].
Although he considered only Hamiltonians split as

H(z1, 2y, Y1, yn) = T(x1, oy zn) + V (Y1, - Un),

his methods turn out to work equally well for our more general splitting (2.26). This
will be checked in section 2.2.4. A fourth order method is given by

T (AL) = T (S ANTO (D AH T (P AL), (2.34)

i.e. three second order steps strung together. The coefficients cg ) are given in Table

2.1. A sixth order method could be constructed by stringing three fourth order steps
together, involving nine second order steps. However it is also possible using only
seven steps:

©)(AL) = (f[ w@)(cg“m)) v (P AL) (ﬁ qf@)(cg@m)) : (2.35)

Jj=3
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with coefficients again given in Table 2.1. Finally, an eighth order method is available
using fifteen steps:

U (AL) = (H\I} A ) CSAt<H\I/ A )

(2.36)

The performance of the various methods is compared in Tables 2.2 and 2.3. Note
that the performance increases up to sixth order but no further gain is obtained from
going to eighth order. Of course if we increase the accuracy requirement the eighth
order method will at some point show performance gains, but in most situations en-
countered in practice this accuracy was not required. For this reason the sixth order
method was chosen and used for all computations.

1 01(4) 01(6) cgs)

1] 1.35121 | 0.78451 | 0.62903
2 | -1.70241 | 0.23557 | 1.36935
3 -1.11777 | -1.06459
4 -0.80464 | 1.66336
5 -1.67897
6 -1.55947
7 0.311791
8 1.659000

Table 2.1: Coefficients for Yoshida’s higher order symplectic integrators [77]. For the
sixth order method, variant A is used (this choice is motivated in section
2.2.4). For the eighth order method, variant C is used.

2.2.4 Further properties

There are some more properties of the chosen method W (At) worth discussing.
First, one last word about the choice of method. There are three variants (A, B and
C) given in [77]. Furthermore, there is the sixth order method constructed by string-
ing together the fourth order method W three times, which we will call variant D.
The choice for variant A is motivated in Table 2.4. This is consistent with results
found in [53].

Next let us have a look at the computing time required for one timestep. Define an
elementary operation as one application of €2z, i.e. the rotation of one dipole. There
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Method At Computing time (a.u.)
Explicit Euler 5.7%107° | 100

First order symplectic | 4.3 x 107¢ | 133

Second order symplectic | 0.020 0.050

Fourth order symplectic | 0.20 0.018

Sixth order symplectic | 0.50 0.014

Eighth order symplectic | 0.50 0.030

Table 2.2: Timestep and computing time needed to calculate x1(20), the x coordinate
of vortex 1 at t = 20, to 0.01% accuracy. The computing time is given in
arbitrary units.

Method At Computing time (a.u.)
Second order symplectic | 1.8 x 107> | 100
Fourth order symplectic | 6.2 % 1073 | 1.03
Sixth order symplectic | 0.061 0.21
Eighth order symplectic | 0.090 0.30

Table 2.3: Timestep and computing time needed to calculate z1(80), the x coordinate
of vortex 1 at t = 80, to 0.01% accuracy. The computing time is given in
arbitrary units.

are N(N — 1)/2 dipoles (recall that N is the number of vortices), and each one is
rotated twice for one application of ¥(?)| so applying ¥(?) takes N(N — 1) elementary
operations. Since W) (At) consists of seven second order steps, it takes 7N(N — 1)
elementary operations. In particular, the computing time scales as N2,

Finally, we still need to check that the method is indeed sixth order. This is shown
in Figure 2.4, which shows the absolute error in z1(20) as a function of the timestep
At. There is clearly a regime (0.03 < At < 0.8) where the error is sixth order in
At. For smaller values of At, the error is dominated by computer precision, while for
larger values it is dominated by higher order error terms.

One final remark: Figure 2.4 might give the impression that a timestep as large as
0.8 already gives quite accurate results. However, this holds specifically at ¢t = 20;
due to the chaotic nature of the system (see section 2.3.2) this small error will wreak
havoc on the results at a later time. For comparison the error as a function of At for
t = 80 is shown in Figure 2.5; note that for accurate results we need to take At at
most 0.2. A more detailed analysis of the choice of timestep will be given in section
3.2.1.



2.3 Results

25

Method At Computing time (a.u.)
Sixth order A | 0.061 | 100
Sixth order B | 0.032 | 191
Sixth order C | 0.032 | 192
Sixth order D | 0.032 | 289

Table 2.4: Timestep and computing time needed to calculate z1(80), the x coordinate
of vortex 1 at t = 80, to 0.01% accuracy. The computing time is given in

arbitrary units.

0.01 ¢

0.00001 ¢

error

1.x1078 ¢

1.x107 ¢

10

Figure 2.4: Absolute error in z7(20), the z coordinate of vortex 1 at ¢ = 20, as a
function of At for the sixth order method. The drawn line has a slope of

6.

2.3 Results

In this section several systems will be introduced that showcase various possible be-
haviors for three and four point vortex systems.

The motion of many of these systems can be simplified by applying a properly
chosen background rotation. This simply means that we add a solid body rotation

with some angular velocity ) around some point r =

(rz,1y) to the velocity field
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Figure 2.5: Absolute error in x1(80), the x coordinate of vortex 1 at ¢ = 80, as a
function of At for the sixth order method. The drawn line has a slope of
6.

advecting the point vortices. Note that the equation defining the system, (2.17), is
invariant under rotation, so this does not affect the behavior of the system, and we can
apply this background rotation at any point without interfering with the numerical
method. The full equation of motion becomes:

N
dx; N e, X (x; — x;)
= ——————
dt 2w Pyt l|x; — x|

+ Qe, x (x; —1). (2.37)

We will see three types of motion in this section: stationary, where the point vor-
tices do not move at all; periodic, where they return to their initial configuration after
some time 7T),; and irregular, where the motion is chaotic in the phase space. The term
irregular is used instead of chaotic to avoid confusion later when we consider tracer
motion, which can be chaotic even in periodic systems. It is important to mention
here that the terms stationary, periodic and irregular apply to the system including
background rotation. For instance, periodic systems return to the initial configuration
at some point, but rotated at some angle # which is not in general commensurate with
27, meaning that the system is actually quasi-periodic. However, when we choose the
background rotation such that it provides a counterrotation # over one period the
system is truly periodic.
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For all systems presented here, the vortex strength ~+ is set to 1. There is no
loss of generality; other values of v can be achieved simply by rescaling time (recall
that we only consider point vortices of equal strength). A more detailed analysis
of the scaling behavior of point vortex systems can be found in [60]. A summary of
all systems discussed here, in the order they are introduced, can be found in Table 2.5.

System name Vortex positions | r Q Motion type

Stationary three vortex | (—3v/3,—3) (0,0) — Stationary
(5v3,-3)
(0,1)

3-periodic three vortex | (1,0) (0,0.333) | -0.37014 | Periodic
(—1,0) T, = 11.577
(0, 1)

2-periodic three vortex | (1,0) (0,1.829) | -0.016137 | Periodic
(~1,0) T, = 56.708
(0, 5.48689)

Stationary four vortex %(\/5, \/5) (0,0) —% Stationary
V2 v
12, -v2)
N

Periodic four vortex (1,0.3) (0,0) -0.16365 | Periodic
(—1,0.3) T, = 5.2934
(1,-0.3)
(—1,-0.3)

Irregular four vortex (1,0) N/A 0 Irregular
(_17 0)
(0,1)
(0.5,0.5)

Table 2.5: Summary of the systems introduced in this section. ) is the angular ve-
locity of the background rotation around point r.

2.3.1 Three vortex systems

The simplest three vortex system has the three vortices on an equilateral triangle;
this is the first system we will consider. The three vortices are placed on a circle of
radius 1 around the origin, at (—1v/3,—1), (3v/3,—3) and (0,1). The motion of the
vortices in this system is shown in the left part of Figure 2.6. The configuration is left
intact, rotating around the origin. This suggests that a properly chosen background

rotation around the origin will make the system stationary; in fact this is the case
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with @ = —5-. Indeed, just filling in (2.37):

%:l e, X (x3—x1) e, X (x3—Xy) . e — 1) =
d 2w< P —xlP s — %P )”“X“” )
1 ( X ((0.1) = (=3v3.=3) | e x((0,1) = @ﬁ,—%») )
20 \ 0.0 = (=33 =DIF 110, - V3 - DI (2.38)
e x ((0,1) — (0,0)) =
% <(—%,é\/§) + (—%,—é\@) - (1,0)) —0

and similarly % = % = 0. So with this background rotation the vortices do not
move (see the right part of Figure 2.6 as well); for this reason this system will be
referred to from here on as the stationary three vortex system (see Table 2.5). The
motion is stable, i.e. small perturbations of the equilateral triangle will not grow

exponentially [35].

05 L -1 -05 05 1

Figure 2.6: Vortex motion from ¢ = 0 to ¢t = 13.159 for the stationary three vortex
system without (left) and with (right) background rotation, with At =
0.001. The dots indicate the initial positions of the vortices.

Now let us consider the general case of three identical point vortices. As derived
in [7], the integrals H, L* and P? + Py2 are in involution. Since there are as many
integrals in involution as there are degrees of freedom, namely three, the three point
vortex system is integrable [75] and in fact an analytical solution is available [7, 47],
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although it will not be used here. Note that there are six parameters describing a three
point vortex system (1, y1, T2, Yo, T3 and y3). Five of these can be eliminated using
five symmetries: translation in either space direction or time, scaling and rotation
around the center of mass %(Px, P,). This means that only one parameter is required
to distinguish different systems; a useful one is:

exp(—27rH) 212213223
A= = 2.39
L3 (22, + 2f5 + 235)%/% (2:39)
with z;; := ||x; — x;]|| the distance between vortices i and j. Note that
0<A<I, (2.40)

with A = 1 for the equilateral triangle configuration. There are three different regimes:
A > A, :=1/V/2, A < A, and A = A, [47]; the nature of the vortex motion differs
between the three as we will now see.

Consider the system with the point vortices at (—1,0), (1,0) and (0, 1), on an isosce-
les triangle. For this system A = 0.91856 > A, and the background rotation needed
to achieve periodicity is given by €2 = —0.37014 around r = (0, 0.33333) (these values
were calculated using the method described in [47]). The motion of the vortices is
shown in Figure 2.7. Note that at ¢ = 11.577 the vortices are again in their initial
configuration, but that it is permuted. It would take three of these periods for the
vortices to be in their unpermuted initial configuration. Define the period T}, as the
first time after ¢ = 0 at which the vortices are in their initial configuration, permuted
or not. This is a useful definition because we are ultimately interested in the advection
in these systems, and since the point vortices are identical it is irrelevant whether the
configuration is permuted. So, for our current system we have 7, = 11.577. That
it takes three periods to return to the unpermuted initial configuration is a general
property of three point vortex systems with A > A.. It is also why this system will be
referred to from here on as the 3-periodic three vortex system (see Table 2.5). Note
that all three vortices follow the same trajectory, but at different times.

Next we consider the case A < A., using the system with the point vortices at
(—1,0), (1,0) and (0,5.4869). For this system A = 0.6 < A, and the background ro-
tation needed to achieve periodicity is given by €2 = —0.016137 around r = (0, 1.8290)
(again found using the method described in [47]). The motion of the vortices is shown
in Figure 2.8. Note the difference with the case A > A.: the three vortices no longer
follow the same trajectory. Instead, there are two vortices in a like-signed dipole con-
figuration, slightly distorted by a third vortex at a large distance. The two vortices in
the dipole do follow the same trajectory, at different times. For this system we have
T, = 56.708. Note that it now takes two periods to return to the unpermuted initial
configuration; this is a general property of three point vortex systems with A < A..
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Figure 2.7: Vortex motion from ¢t = 0 to ¢ = 11.577 for the 3-periodic three vortex
system without (left) and with (right) background rotation, with At =
0.001. The dots indicate the initial positions of the vortices.

This system will be referred to from here on as the 2-periodic three vortex system
(see Table 2.5).

Finally, the case A = A, = 1/4/2 corresponds to the stationary but unstable config-
uration of three point vortices on a line. This system is not considered further here.

2.3.2 Four vortex systems

Unlike three vortex systems, four vortex systems are, with the exception of some spe-
cific configurations, irregular [7]. First, let us consider some of these exceptions.

Take the system with vortices at %(\/5, \/5), %(—\/5, \/5), %(\/5, —\/5) and
%( —\/§, —\/5) The vortices form a square and are all on a circle with radius 1 around
the origin. The motion of the vortices in this system is shown in Figure 2.9. Just
like the equilateral triangle, the motion is stationary with the proper background ro-
tation, in this case with ) = —% around the origin. This can be checked just as was
done in the three vortex case in (2.38). This system will be referred to as the sta-
tionary four vortex system (see Table 2.5). This stationary configuration is stable [35].

An example of a periodic configuration is the four vortices on a rectangle [14]. So
consider the system with point vortices at (1,0.3), (—1,0.3), (1,—0.3) and (—1,—0.3).
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Figure 2.8: Vortex motion from ¢ = 0 to ¢t = 56.708 for the 2-periodic three vortex
system with background rotation, with At = 0.001. The left figure shows
the region around the dipole, the right figure the region around the isolated
vortex. The dots indicate the initial positions of the vortices.

This system is periodic with period 7, = 5.2934 for a background rotation given by
2 = —0.16365 around r = (0,0) (the value of T, was found by trial and error). The
motion of the vortices is shown in Figure 2.10. Note that the system can be considered
as two like-signed dipoles perturbing each other. It is 2-periodic in the sense described
earlier, i.e. it takes two periods to return to the unpermuted original configuration.
Since this is the only periodic system we will consider for four vortices, it will be
referred to simply as the periodic four vortex system (see Table 2.5).

As mentioned the four vortex system is usually irregular, so if we take a configura-
tion at random we have a good chance of finding an aperiodic system (of course we will
need to check it). So let us take the 3-periodic three vortex system and add a fourth
vortex halfway between vortices 2 and 3, giving a system with vortices at (—1,0),
(1,0), (0,1) and (0.5,0.5). The motion of the vortices in this system is shown in Fig-
ure 2.11. The lack of repeating structures here is already an indication of aperiodicity.

A typical characteristic of aperiodic Hamiltonian systems is that they exhibit ex-
ponential growth of small perturbations. In order to quantify these perturbations we
will need to define a distance in the phase space between two systems I' = (x1, ..., Xy)
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Figure 2.9: Vortex motion from ¢t = 0 to t = 6.5797 for the stationary four vortex
system without (left) and with (right) background rotation, with At =
0.001. The dots indicate the initial positions of the vortices.

and IV = (x], ..., Xy ):

IC=Tl =[Sl =l =[Sy = a2+ (=) (24D)

Jj=1

Now take I'(¢) to be the unperturbed system, and define the perturbed system I"(t)
by taking:
X] =X,
X,2 =Xz — (10_77 0)7
x4 =x3 + (1077, 0),

/
Xy =Xy,

(2.42)

i.e. vortex 2 is moved to the left over a distance of 10~7 and vortex 3 to the right over
the same distance. The growth of the perturbation in time is shown in Figure 2.12.
For comparison the same technique is applied to the periodic four vortex system. As
is clearly visible the system exhibits exponential growth of the perturbation while the
periodic one does not (the linear growth visible is explained by a slight difference in
the periods and rotation speeds of the perturbed and unperturbed systems). This
shows that our system is indeed irregular and so it will be referred to from here on as
the irregular four vortex system (see Table 2.5).
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Figure 2.10: Vortex motion from ¢t = 0 to t = 5.2934 for the periodic four vortex
system without (left) and with (right) background rotation, with At =
0.001. The dots indicate the initial positions of the vortices.

Figure 2.11: Vortex motion from ¢ = 0 to t = 100 for the irregular four vortex system
with no background rotation, with At = 0.001. The dots indicate the
initial positions of the vortices.
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Figure 2.12: Size of the perturbation ||I'(t) — I"(¢)|| as a function of time for the
irregular four vortex system (top) and the periodic four vortex system
(bottom). The line drawn in the left figure is a guide to the eye.
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3 Tracer advection

In this chapter we will consider the behavior of passive tracers, small particles that are
advected by the flow. For the time being we are concerned only with single tracers,
so mixing as such is not considered yet.

First we will develop the general theory of tracer advection in point vortex systems
(section 3.1). Next the numerical method used to compute tracer motion is introduced
(section 3.2) as an extension of the method developed in section 2.2, with particular
attention being paid to the choice of timestep (section 3.2.1). Finally, several tracer
trajectories will be shown for some of the example systems, with a brief examination
of the various regimes present in the phase space (section 3.3).

3.1 Theory

A (passive) tracer is an infinitesimal particle that moves with the flow without influ-
encing it. If the position of a tracer z is known at a time ¢y, so z(ty) = 2zg, then the
trajectory can be found from the ordinary differential equation (ODE)

dz
(d_t) :V(Z(t)7t)7 (31)
z(to) =20,

where the velocity field v is given by (2.16) and a term for the background rotation
(see section 2.3):

vixt) = % ; eZI ch (—Xx;(jil(li)) + Qe x (x —1). (3.2)

Note that the flow is incompressible,

V.-v=0, (3.3)
so there is a function ¢ : R? x R — R, the stream function, such that
_
T ay?
3.4
o (3.4)

v — .
v ox
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Explicitly, this stream function is given by
N
1 2 2y 1 2 2
Y(z,y,t) =~ ; log((z —2;(1))"+ (y —y;(1))") — 5 (@ —r2)" + (y —1)7). (3.5)

The equations of motion (3.1) can be combined with (3.4) to obtain, writing z(t) =

(22(t), 2 (1)):

dz,  OY

E - 83/ (Zxa Zya t)a

dz,, O

@ aatm el (36)
zx(o) =20z
2,(0) =20y.

Note the similarity with (2.20), the equation describing the motion of point vortex
systems in Hamiltonian form. What we have here are the equations of motion for
a tracer as a Hamiltonian system with one degree of freedom, with the Hamiltonian
given by the stream function . This has two important consequences.

The first of these is that the system is symplectic. We knew this already though-
conservation of areas in the phase space in this case simply means that the flow is
incompressible. This does suggest that the symplectic numerical methods developed
in section 2.2 will be useful here as well.

To understand the second consequence of the tracer motion being Hamiltonian,
note that there are as many degrees of freedom as there are integrals in involution
(namely one, the Hamiltonian 1), which means that the system is integrable [75].
However, this result holds only for autonomous Hamiltonian systems, i.e. where the
Hamiltonian does not depend explicitly on time. As can be seen in (3.5), the ex-
plicit time dependence results from the time dependence of the vortex positions, so
the tracer motion is integrable for stationary systems. However, for non-stationary
systems integrability does not have to hold [5]. It is not even necessary for the vortex
motion to be irregular; we will see that non-integrable tracer motion occurs even in
periodic systems. Although we only consider two-dimensional flows, it is important
to note that the this reasoning does not apply to three-dimensional flows as no stream
function can be given in that case. Stationary 3D flows can exhibit non-integrable
tracer motion [6].

For notational convenience we introduce the map ® which maps a tracer to its
position at a later time, similar to the map ¥ (see (2.22)) which does the same for a
point vortex system, so:

O(t,T)(z(t) =z(t+T), (3.7)
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for any tracer trajectory z and t, T € R. Note that unlike ¥ the map ® does depend
on the time ¢; this is because the tracer motion is in general not autonomous. Since
it corresponds to a Hamiltonian system, ® is symplectic; since the phase space is
two-dimensional this simply means that it is area-conserving. Similar to (2.23) we

have
O(t+T,5)0d(t, T)=o(t, T +59). (3.8)

Note that in considering ®(¢,7) T' need not be positive. Negative T" simply implies
solving (3.1) backwards in time. Filling in (3.8) with S = =T we get

O(t+T,~T)o®(t,T) = d(t,T — T) = B(t,0) = T,
where 7 is the identity mapping. This shows that ®(¢,7") is invertible, with
O(t, 7)™ = d(t + T, -T). (3.9)

This is not surprising; it simply states that if we move a tracer ahead by a time T'
and then back we return to the initial position. The following result will prove useful.

Theorem 3.1. ®(t,T) is continuous and differentiable almost everywhere for all
t,T € R.

Proof. Take any € > 0, and consider the set R defined as R? with closed e-balls
removed around the location of every point vortex. The velocity field (3.2) is then
Lipschitz continuous on R. Since ®(¢,T") describes the solution of (3.1), it is then also
Lipschitz continuous on R [20]. By Rademacher’s theorem [36] ®(¢,T) is then also
differentiable almost everywhere on R. The theorem now follows by letting € go to
Zero. ]

When we are dealing with a periodic system with period 7, so
v(x,t+T,) = v(x,1),

we have
O(t+1,T)=o(t,T). (3.10)

It is then useful to define the map f which maps a tracer through one period of the

system:
f:=®(0,7,). (3.11)

Note that combining this with (3.10) and (3.8) we find
&(mT,, (m+n)T,) = f", (3.12)

for any m,n € Z.
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3.2 Numerical methods

Obviously to compute tracer advection from some time ¢ to ¢t + 7', we need to com-
pute the vortex motion on the same interval, using the method developed in section
2.2. One possible approach is then to determine the velocity field v(x,t) from these
positions with (3.2), using some form of time interpolation if necessary. The ODE
(3.1) can then be solved using a Runge-Kutta method. This is the method used in [60].

A more efficient approach is to combine the computation of the tracer trajectory
with that of the point vortex system. Note that a vortex is advected by the flow,
just like a tracer. The difference is that a tracer does not affect the other vortices,
so it can be considered a zero strength point vortex. Write the system as I'(t) =
(x1(t), ..., xn(t)) and the system with tracer included as I'yqc () = (x1(2), ..., xn (1), Z(2)).
We will apply the numerical method to this system. This is an abuse both of notation
and of the numerical method since they were set up for systems of identical point
vortices; the abuse of notation is temporary, but the accuracy of the resulting method
will have to be checked.

The method used is the sixth order symplectic method W) Recall that one step
in this method is simply a sequence of second order steps U with varying timesteps,
so let us see how one of these steps affects our system I'. Using (2.33):

N41j-1 2 1
VOm) = [T [Tt/2) 0 TT 11 Qun/2).
J=2 k=1 J=N+1k=j—1

Recall that ij(At) is the exact map that moves the dipole consisting of vortices j
and k ahead by At. Note that Q(NJrl)k(At) is a special case: since vortex N + 1 is
our tracer and as such has zero strength, this map does not affect vortex k; it simply
rotates the tracer around this vortex.

The equation above can be rewritten as

N j—1 N 2 1 1
U (h) = [T T]r/2) o [ Qvrow(r/2) o TT Quvenw(r/2) o TT TT Qn(h/2).
j=2 k=1 k=1 k=N j=N k=j-1

(3.13)
Let us analyze how this operator affects the point vortex system I' and the tracer z
separately. Note that the operators €211y, do not affect the vortices, so

W (h)(1) — (HH w2 T TT O h/z) ).

j=1k=1 j=N k=j—1
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This is identical to (2.33), so the motion of the vortices themselves is not influenced
by the tracer. This is consistent with the physical system; after all the tracer is a
passive particle and as such should not have any effect on the vortices.

As described in section 2.2.3 or seen directly in the above equation, ¥®) consists of
two sweeps over all dipoles, the second in reverse order. Define I';; as the intermediate
system, i.e. after one sweep:

Dine = (H 11 ij(h/z)) (). (3.14)

j=N k=j—1

Now define ®®) (T, h) : R? — R? by:

O (T, h) (2 (HQN+1 (h/2) o f[ Qv ine(h/2) )( ), (3.15)

k=N

where the vortex positions required for Q( N+1)k are taken from Ty QD(Q)(FM, h) then
describes the effect of U(?)(h) on z, as can be seen directly in (3.13). What this oper-
ator does is rotate the tracer around every vortex in turn, and then again in reverse
order, using the intermediate positions of the vortices.

So for every application of W(? we can compute the vortex motion ignoring the
tracer and then use the intermediate position, i.e. between the two sweeps, to compute
the tracer motion. This shows how we can find an approximation for ®(¢, At); simply
apply W) (At) to the system at time ¢; for each of the seven second order steps (see
section 2.2.3) store the timestep used, h;, and the intermediate system, I’ ;, for
1 <j <7 ®(t,At) is then approximated by:

Note that the intermediate systems Iy ; do not depend on the tracer position, so
their computation needs to be done only once, after which any number of tracers can
be computed directly using the above equation. The accuracy of this method is shown
in Figure 3.1; just like in section 2.2.4 a regime of sixth order convergence is visible.

In periodic systems with period 7}, if we take At such that 7, = nAt for some
n € N we can find an approximation for f (see (3.11)):

8 = Hfb (J — DAL, A). (3.17)
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Figure 3.1: Absolute error in z,(20) as a function of At with z(0) = (0,0), for the
irregular four vortex system (see section 2.3.2). The drawn line has a
slope of 6.

This can be used to compute tracer trajectories which span more than one period
efficiently, since using the above equation combined with (3.12) we don’t need to
compute the vortex motions for the entire interval.

We will often encounter situations where we need to advect a tracer forward from
t tot + T and then back to t. It is important to note that due to possibly chaotic
dynamics (3.9) need not apply to the numerical map, so it is possible for the tracer
to end up in a completely different position. When the system itself is chaotic, the
intermediate vortex positions I'i,; ; can even diverge for a forward run followed by a
backward run. This problem can be solved by locking the system and trajectory, i.e.
for the backward run do not recompute I'iy; ; and the tracer positions, but simply use
those from the forward run in reverse order.

3.2.1 Choosing the timestep

For all our systems (see section 2.3) we need to find a timestep At which allows us
to accurately compute tracer motion. Note that this also means we are accurately
computing the vortex motion; if there is a large error here the tracer trajectory will
also be affected.

First let us consider the stationary systems. The error in the z-coordinate of a
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tracer starting at zo = (0,0) at various times is shown in Figure 3.2 for the stationary
three vortex system. Note that for At < 0.1 the error is caused by numerical accuracy,
while for larger At the error is mainly caused by the numerical method. So we can
take At = 0.1, a reasonable value in the sense that computations with it run in a
feasible time. Results for the stationary four vortex system are similar, also leading
to At =0.1.
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Figure 3.2: Absolute error in z,(t¢) as a function of At with z(0) = (0,0), for the
stationary three vortex system. The circles correspond to ¢ = 100, the
squares to t = 200 and the diamonds to ¢ = 300.

Next consider the periodic systems. The error in the z-coordinate of a tracer
starting at zo = (0,0) at various times is shown in Figure 3.3 for the 3-periodic three
vortex system. Note that unlike the stationary case the error now depends on the
time t over which we compute the tracer motion. This is a result of the chaotic
dynamics, which causes errors to grow exponentially. However, there is still a clear
cutoff in At below which numerical accuracy dominates the error; again it is located
at At = 0.1. Similar results hold for the other periodic systems, leading to At = 0.1
for the 2-periodic three vortex system and to At = 0.02 for the periodic four vortex
system.

Finally, the irregular case. Results for the irregular four vortex system are shown in
Figure 3.4. This is similar to the periodic case; the cutoff where numerical accuracy
dominates is at At = 0.02. All the timesteps found are summarised in Table 3.1;
these will be used in the remainder of this report, unless specified otherwise.
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Figure 3.3: Absolute error in z,(t) as a function of At with z(0) = (0,0), for the
3-periodic three vortex system. The circles correspond to t = 207}, the
squares to t = 407}, and the diamonds to ¢t = 607,,, with 7, = 11.577 the
period of the system.
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Figure 3.4: Absolute error in z,(t) as a function of At with z(0) = (0,0), for the
irregular four vortex system. The circles correspond to t = 40, the squares
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System At
Stationary three vortex | 0.1
3-periodic three vortex | 0.1
2-periodic three vortex | 0.1
Stationary four vortex | 0.1
Periodic four vortex 0.02
Irregular four vortex 0.02

Table 3.1: Timestep used for computations, determined by the cutoff value below
which numerical accuracy dominates the error.
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Figure 3.5: Absolute error in z,(t) as a function of At with z(0) = (0,0.96), for the
irregular four vortex system. The circles correspond to t = 40, the squares
to t = 80 and the diamonds to ¢t = 120.
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One final remark: to determine At as above, we have only considered one initial
position for the tracer. Using a different initial position would not necessary lead to
the same timestep. For instance, Figure 3.5 shows the error for a tracer starting at
(0,0.96) in the irregular four vortex system (instead of (0,0) as in Figure 3.4), which
is very close to the vortex at (0,1). Note that a much smaller timestep would have to
be taken now, At ~ 0.001 as opposed to At ~ 0.02. In general we found that close
to the vortices the numerical method is less accurate, possibly as a result of the large
velocity gradients there; this will not be a major issue since this regime is not that
important (see sections 3.3 and 4.3.1).

3.3 Results

The most direct way to gain insight into the tracer motion is to consider their trajec-
tories. These are shown for the stationary systems in Figures 3.6 and 3.7. Note that
the trajectories are confined to closed one-dimensional curves which are level sets of
the stream function W, i.e. streamlines. This is consistent with the theoretical results

in section 3.1.
f

-1

Figure 3.6: Five tracer trajectories for the stationary three vortex system, from ¢t = 0
to t = 100. The squares indicate the initial positions of the tracers; the
dots indicate the positions of the stationary vortices.

Trajectories for the 3-periodic three vortex system are shown in Figure 3.8. We see
immediately that the behavior is much more varied than in the stationary case. Four



3.3 Results 45

Figure 3.7: Five tracer trajectories for the stationary four vortex system, from ¢ = 0
to t = 400. The squares indicate the initial positions of the tracers; the
dots indicate the positions of the stationary vortices.

types of motion are visible, which can be used to partition the phase space:

e Outer region: The red tracer in the left picture is an example of this. It performs
a quasi-circular motion around the vortex system, both as a result of the vortex
flow field and of the background rotation.

e Islands: The green and blue tracers in the left picture are examples of this.
Although their motion is not strictly periodic, it is confined to small islands
in the phase space. For instance, the blue tracer moves between two islands
above and below the vortices (for this reason, these islands are referred to as
2-periodic); the green tracer is in a 3-periodic island.

e Vortex cores: The yellow tracer in the left picture is an example of this. It
starts near the blue vortex and stays near it (this is not directly visible since
the vortex motion is not pictured) while rotating around it. We could call this
a 3-periodic island around the vortex; the distinction is made because in any
system there are islands at the vortices, while the existence of other islands is
not necessary, as we will see later.

e Ergodic region: The purple tracer in the right picture is an example of this. It
visits a large region of the phase space, without performing any sort of appar-
ently periodic motion. A more rigorous definition of the ergodic region will be
given in the next chapter.
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Figure 3.8: Four tracer trajectories for the 3-periodic three vortex system for 20 peri-
ods of the system (left) and a fifth one for 60 periods (right). The squares
indicate the positions of the tracers at every period of the system; the dots
indicate the initial positions of the vortices. To avoid confusion the vortex
motion is not pictured; it is shown in Figure 2.7.

Similar results hold for other periodic systems. Consider the periodic four vortex
system, for which some trajectories are shown in Figure 3.9. The red tracer is in the
outer region, the blue tracer in a 19-periodic island, the yellow tracer in a vortex core
and the purple tracer in the ergodic region. In the 2-periodic three vortex case, results
are similar (not pictured).

Finally, consider the irregular four vortex system. Three trajectories are shown in
Figure 3.10. Three of the regions identified earlier are visible: the green tracer is in
the outer region, the red tracer is in the ergodic region and the purple tracer is in the
vortex core of the red vortex. This may not be immediately apparent, since it follows
an apparently chaotic trajectory similar to the red tracer in the ergodic region. In
Figure 3.11 part of the path is shown together with that of the vortex; it is clear that
the tracer is ‘sticking’ to the vortex. Unlike the periodic case there are no islands (see
also section 4.3.1).
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Figure 3.9: Three tracer trajectories for the periodic four vortex system for 40 periods
of the system (left) and a fourth one for 200 periods (right). The squares
indicate the positions of the tracers at every period of the system; the dots
indicate the initial positions of the vortices. To avoid confusion the vortex
motion is not pictured; it is shown in Figure 2.10.

Figure 3.10: Two tracer trajectories for the irregular four vortex system, for t = 0 to
t = 400 (left) and a third one for ¢ = 0 to t = 80 (right). The squares
indicate the positions of the tracers at t =0, 10, 20, ...; the dots indicate
the initial positions of the vortices. To avoid confusion the vortex motion
is not pictured; it is shown in Figure 2.11.
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Figure 3.11: Trajectories of a tracer and one of the vortices for the irregular four
vortex system, for ¢ = 0 to t = 26. The squares and red dots indicate the
position of the tracer and vortex at ¢t =0, 2, 4, ...; the other dots indicate
the initial positions of the remaining vortices.
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4 Ergodic regions

In the previous section we analyzed the behavior of tracers in periodic systems by
looking directly at their trajectories. Conclusions were drawn based on their posi-
tions at every period of the system; for instance, the green tracer in Figure 3.8 is
in a 3-periodic island because there are three regions in the phase space it can visit
at every period of the system. This suggests that we may learn a lot by considering
only these positions, not the full trajectories. This leads to the technique known as
Poincaré maps [38], and the ergodic regions they define.

We will start by defining ergodic regions and Poincaré maps and examining the link
between the two (section 4.1.1), followed by an analysis of the relationship between
ergodic regions and mixing (section 4.1.2). Next, numerical methods are developed
to find ergodic regions, using the Poincaré map (section 4.2.1) and a more general
technique, tracer cloud spreading, that is also applicable to irregular systems (section
4.2.2). Finally, the ergodic region is computed for all nonstationary example systems
(section 4.3.1) and a first look is taken at the actual mixing process (section 4.3.2). We
will see two structures important to a description of this process, the partial mixing
structure and the mixing time distribution. Both will play an important role in the
remainder of this report.

4.1 Theory

4.1.1 Definition and basic properties

Let (R? X, 1) be the Lebesgue measure space associated with R? [11]. Fix some
periodic vortex system with period 7}, defining the periodic mapping f : R* — R?
as f = ®(0,7,) (see section 3.1). Recall that f is continuous (Theorem 3.1) and
symplectic, i.e. for any 4 € &

u(f(A)) = p(A). (4.1)
Definition 4.1 ([8]). R € X is an ergodic region if and only if:

1. R 1s compact;

2. f(R) =R;
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3. w(R) > 0;
4. For every closed C C R such that f(C) =C and p(C) > 0 we have C = R.

So an ergodic region is a compact subset of R? invariant under f with positive
measure that cannot be partitioned into smaller sets with these properties. Note that
R is allowed to have subsets invariant under f as long as they have zero measure or
are not closed; for instance it may contain fixed points or cycles of f. An important
property of ergodic regions is that they are invariant under time reversal.

Theorem 4.2. R € ¥ is an ergodic region under f if and only if it is an ergodic
region under f~1.

Proof. This is easily checked for each property listed in Definition 4.1 in turn. m

We will now examine the concept of ergodic regions being generated by points
within them. This is defined as follows. Define the Poincaré map for x € R? and
N € N by [38]:

Px,N):={f'(x)|0<i<N}. (4.2)

So the Poincaré map is just the first N iterates of x under f. N is allowed to run
negative, so we consider Poincaré maps for both positive and negative time. We also
consider the infinite time variant, for both positive and negative time simultaneously:

P(x,00) :={f(x)]i € Z} . (4.3)

Now, define £(x) as the closure of P(x,00). If £(x) is ergodic, then we say that x
generates £(x). The following two theorems establish the usefulness of this concept.

Theorem 4.3. Let R be ergodic and x € R such that u(€(x)) > 0. Then £(x) =TR.
Theorem 4.4. Let R be ergodic. Then £(x) =R for almost all x € R.

So an ergodic region R is generated by almost all points it contains, and in addition
for those points x € R that do not generate R we have u(€(x)) = 0, so they do not
generate any ergodic region at all by property 3 of Definition 4.1. Several preliminary
results, some of which will prove to be quite useful in their own right, will be necessary
to prove both theorems.

Lemma 4.5. If e is a limit point of P(x,00) with x € R?, then f(e) and f~'(e) are
limit points of P(x,00) as well.

Proof. Since e is a limit point of P(x,00), there is a sequence (a,) with n € Z and
with no repeating elements such that

lim f*(x) =e.

n—oo
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By continuity of f we have:

Fl&) = f(lim £ (x)) = lim f(*(x)) = lim £+ (x),
so f(e) is the limit of a sequence in P(x, c0) with no repeating elements and hence is
a limit point. The proof for f~!(e) is similar. O

Corollary 4.6. For all x € R?, P(x,00) contains either no isolated points or only
1solated points.

Proof. This follows directly from Lemma 4.5. O

Proof of theorem 4.3. Let R be ergodic and x € R such that u(€(x)) > 0; we then
need to show that £(x) = R. Consider P(x,00). If it contains only isolated points,
then p(€(x)) = 0, contradicting the assumptions. So by Corollary 4.6, P(x, c0) con-
tains no isolated points.

Now consider any e € £(x), so e is the limit of points in P(x, 00). Since it contains
no isolated points, e must be a limit point of P(x,00), and so by Lemma 4.5 both
f(e) and f~!(e) must be as well, showing f(e) € £(x) and f~!(e) € £(x). This shows
that f(E(x)) = £(x).

Since x € R and f(R) = R, we have P(x,00) C R. Because R is closed we then
have £(x) C R. We have already shown that f(€(x)) = £(x) and by assumption
u(€(x)) > 0, so by property 4 of Definition 4.1 £(x) = R, completing the proof. [

The following result is necessary for the proof of theorem 4.4.

Lemma 4.7. Let A be an open subset of an ergodic region R, x an interior point of
R and N € Ny. Then there exists n > N such that x € f™(A).

Proof. Consider
c=J
n=N

and its closure D. We have f(C) = C\ f¥(A) C C and by (4.1) u(f(C)) = u(C);
these two properties imply f(C) = C because C is open. By continuity of f we then

have f(D) = D, and since u(D) > u(C) > u(fN(A)) L u(A) > 0 we have D = R

by property 4 of Definition 4.1. So x is an interior point of D, which is the closure
of C. Since C is open, we have x € C. So there is an n > N such that x € f*(A),
completing the proof. ]
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Proof of Theorem 4.4. For y € R and § > 0, define
Aly,0) = {x|x e R, ¥n € Z: || f"(x) — yI| > 6},

i.e. those points for which the Poincaré map stays at least a distance ¢ from y for
both positive and negative time. Now fix y and §; we will write A instead of A(y, d)
for convenience and show that p(A) = 0.

Suppose 1(A) > 0. Consider
B=J A

and its closure C. Clearly we have B = f(B) and so by continuity of f C = f(C).
Also, we have u(C) > u(B) > u(A) > 0 and so by property 4 of Definition 4.1 we
have C = R. However, by the definition of A the point y must be a distance of at
least 0 from C, contradicting y € R.

As a result of the above, we have:
p(Aly,d)) =0 (4.4)
for all y € R and 6 > 0. Now consider
A(S) = {x|x e R* ,Ir e RVn € Z: || f"(x) — r|| > 0}

for 6 > 0, i.e. those points for which the Poincaré map stays at least a distance o
from at least one point in R for both positive and negative time. Now fix 9; we will

show that p(A(0)) = 0.

First take {y;|]1 < i < N} for some N € N with y; € R and such that for all
r € R there is an ¢ such that ||r — y;|| < §/2; this is possible because R is compact
by property 1 of Definition 4.1. Now let any x € A(J) be given. Fix r such that
| f™(x) —r|| > 9§ for all n € Z; this is possible by the definition of A(J). Now, take
i such that ||r — y;|| < 6/2; this is possible by the definition of {y;}. We have using
the triangle inequality and the two inequalities above:

(%) —yill > || f"(x) —x|| = ||t —yil| > 6 — /2 =6/2
for all n € Z. So we have x € A(y;,0/2).

The result above shows that
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so we have:

p(A(9)) < (U Alyi, 0/2) ) < Zu (yi,6/2))

using (4.4). Now, note that A(d;) C A(d2) for §; > s, so:

p (U A<5>> = lim (A(5) = 0,
0>0

So for almost all x € R, we have that there is no § > 0 such that x € A(d) and so
the set

{/"(x)[n € Z} = P(x, 00)

is dense in R. This shows that R C £(x) and so by Theorem 4.3 we have £(x) = R,
completing the proof. O

4.1.2 Relationship to mixing

In the previous section we have seen that one tracer ‘fills up’ an ergodic region, making
these regions quite useful in describing the advection properties. However, does it also
tell us anything about the mixing properties of the system? The answer is yes; under
certain conditions any open set in an ergodic region will eventually fill the entire
region in some sense, as we will now show.

Definition 4.8. Consider an ergodic region R. If for all open A C R we have
f™(A) N A #£ O asymptotically for all n € N then R is called aperiodic.

Asymptotically for all n € N here means that if g(/N) is the number of n with
n < N such that f*(A)N.A # (), we have

. g(N)

]\}13(1)0 N = 1. (4.5)
If an ergodic region is not aperiodic, then f"(A) N A = ) for some finite proportion
of the periods. This implies that tracers spend time in different regions periodically
or quasiperiodically. For instance, we would expect this to be the case if the ergodic
region contained multiple disconnected components-obviously this would impede mix-
ing. We are now ready to formulate the main result connecting mixing to the ergodic
region and Poincaré maps, writing N (X, r) for the r-neighbourhood of X

Theorem 4.9. If R is an aperiodic ergodic region, then for any open A C R and
e > 0 we have R C N(f"(A),€) asymptotically for all n € N.
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Proof. Let open A C R and € > 0 be given. Take a finite collection of points
{yi|]l < i < N} with y; € R such that for all x € R there is an i such that
||x — yi|| < €/2. This is possible because R is compact by property 1 of Definition
4.1.

Define B; as the open disk centered at y; with radius €/2 for 1 < i < N. Be-
cause R is ergodic and A and B; are open there must at least one m € Ny such that
f™(A)NB; # 0 (Lemma 4.7). For the following, fix i. Note that f™(A) N B; is open
so, because R is aperiodic, we have f™(A)NB; N f*(f™(A) N B;) # O asymptoti-
cally for all n € N. Since f™(A) N B; N f*(f™(A) NB;) C f*(A) N B;, we have
fmtm(A) N B; # () asymptotically for all n € N and so f™(A) N B; # () asymptotically
for all n € N.

Since the property derived above holds asymptotically for all n € N for individual
7, it must hold for all 7 with 1 < i < N simultaneously, asymptotically for all n € N.
We will now show that for fixed n this implies R C N(f™(A), €), thereby completing
the proof.

Fix n such that f*(A)NB; # () for 1 <i < N and consider any x € R. Now fix
i such that ||x — y;|| < €/2; this is possible by the choice of y;. Take z such that
z € f"(A) N B;; then by the definition of B; we have ||y; — z|| < €/2. Now by the
triangle inequality:

Ix —zl] <[lx —yill +[lyi — 2l <e/2+¢€/2=e

Since z € f™(.A) this shows x € N(f™(A), €). Since x was freely chosen in R, we have
R CN(f*(A),e). O

So any open set will be spread over the full ergodic region R by repeated applica-
tions of f. Of course due to area preservation it can never actually fill R, but it can
do so arbitrarily well in the sense described in the above Theorem. Note that due
to invariance of R it is not possible for tracers inside it to escape, so the mixing is
strictly limited to R.

We have already seen that no mixing takes place in stationary systems. Using the
concepts introduced in this chapter we can show this formally by demonstrating that
there are no ergodic regions in these systems. Note that we have to arbitrarily pick a
period T}, to define f.

Theorem 4.10. There are no ergodic regions in stationary vorter systems.
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Proof. If there is an ergodic region, then it has a generator by theorem 4.4, so take x
such that £(x) is ergodic. Consider the set

C={ylv(x) =¥y}

with ¢ the stream function (see (3.5)); the time argument has been omitted since it is
constant for a stationary system. Now P(x,00) C C since W and thus f conserves 1.
1 is continuous, so C is closed, showing that £(x) C C. Now, it can be seen directly
that 1 is not constant on any set of positive measure and so C has zero measure. This
shows that p(€(x)) = 0, contradicting property 3 of Definition 4.1. So there are no
ergodic regions. ]

4.2 Numerical methods

4.2.1 Poincaré maps

The results in section 4.1.1 show a simple way to find ergodic regions for periodic
systems: simply compute the Poincaré map P(x, N) for some x we suspect to be in
the ergodic region and for large N. If this set appears to fill a region with positive
measure densely, then we have found an ergodic region. Note that by Theorem 4.3
we are assured that we are seeing the entire ergodic region and not some subset of it.
We will not attempt to formally prove that any of the regions we will see is actually
ergodic; this is generally quite difficult [78].

To verify the mixing properties, we need to check aperiodicity. The following result
connects this to properties of the Poincaré map.

Lemma 4.11. An ergodic region R is aperiodic if and only if for all open A C R and
x € R such that x is a generator of R we have: asymptotically for all n € N there is
an i € Z such that both f'(x) and ™™ (x) are in A.

Proof. We will show that f™(A)N.A # () if and only if for all generators x of R there
is an 7 € Z such that both fi(x) and f*"(x) are in A.

Suppose f"(A)N A # (). Since A is open, so is f"(A) using continuity of f, and so
their intersection is open as well. Since P(x, 00) is dense in R and f"(A)NA C R, we
can take j € Z such that f/(x) € f"(A)NA. Now take i = j—n. Since f7(x) € f"(A),
we have fi(x) = fi7"(x) € A. Also, fi*"(x) = fI(x) € A, completing the proof in
one direction.

Now suppose there is an ¢ € Z such that both f/(x) and f"*"(x) are in A. Since
fi(x) € A, we have fi"(x) € f"(A) and so fi™(x) € AN f*(A), implying f"(A) N
A # (0. This completes the proof. ]
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So to check that an ergodic region is aperiodic, we take an open region A inside it
and for a generator x compute a list of n such that f™(x) is in \A; this can be done
directly from the Poincaré map (for n < N). Then the proportion of j < J that
occur in this list as the difference between two of its elements should converge to 1
for J — oo.

The Poincaré map technique is very efficient in the sense that every application
of f yields a point in the ergodic region. However, there are some disadvantages to
this technique. In the first place, it is not suitable for resolving fine scale structures;
we are always forced to evaluate the full ergodic region. To create detailed pictures
of parts of the ergodic region, we have to wait for the Poincaré map to visit these
parts, meaning we may need many applications of f to find a single point. Another
disadvantage is that we learn nothing about time scales or intermediate structures of
the mixing. Theorem 4.9 guarantees that mixing will take place eventually, but gives
no bounds on the time required to accomplish this and does not describe the process.
Finally, the technique is defined in terms of f and so can be applied only to periodic
systems. In the following section we will see how this limitation can be overcome.

4.2.2 Tracer cloud spreading

To generalize the method to irregular systems, we need a definition of the ergodic
region that does not depend on f. A natural method to accomplish this is to make
use of the mixing properties established in section 4.1.2. Write B(x,r) for the open
disk with radius r centered at x and d(x,.4) for the distance of x to some set A, i.e.

d(x, A) = inf ||x —al. (4.6)

Theorem 4.12. Let R be an aperiodic ergodic region. Then there exists 6 > 0 such
that for almost all x € R

R=Arlre X, liminf d(r,¢(-T1,T)B(¢(0,-T)x,d)) =0},

T—do0,TeT
where T = {T|T € Ry, B(¢(0,-T)x,0) C ¢(0,-T)R}.

Proof. First, we need to pick §. Take y € R and § > 0 such that B(y,2J) C R; this
is possible because R is compact and has positive measure. We will show that the
theorem holds when x is a generator of R; by Theorem 4.4 it then holds for almost
all x € R. So fix some x such that x is a generator of R.

First, suppose r € R. We need to show that
liminf d(r,¢(=T,T)B(¢(0, —T)x,0)) = 0. (4.7)

T—+o00,T€T
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Define 77 = {nT,n € N, f"(x) € B(y,0/2)} where T, is the period of the sys-
tem. Note that we can write 7/ = {T'|T" € R;,T/T, € N, ®(0, -T)x € B(y,d/2)}.
Now, ®(0,-T7)x € B(y,0/2) implies B(®(0, -7)x,6) C B(y,2)) C R = f"(R) =
»(0,—T)R, so T' C T. As a result of this

Tliinooi’ljl“fer(r’ gb(_T? T)B(¢<O’ _T)X7 6)) < T—E&E?ET’ d(I‘, ¢<_T’ T)B(¢(07 _T)X’ 5))
(4.8)

Also as a result of ®(0,—T)x € B(y,d/2) we have B(y,d/2) C B(¢(0,—T)x,¢)) for
T € T'. We now have:
liminf d(r, (=T, T)B(¢(0,—-T)x,d)) < liminf d(r,¢(=T,T)B(y,d/2)) =

T—Zdoc0,TeT’ T— o0, T€ET’

lim inf d(r, f"(B(y,d/2))) =0,
TN S (r, f"(B(y,6/2)))

where the last inequality follows from Theorem 4.9 and aperiodicity of R. This result
together with (4.8) implies (4.7), completing the first part of the proof.

Next, suppose r is not in R. We need to show that

liminf d(r,¢(=T,T)B(¢(0, —T)x,6)) # 0. (4.9)

T—4o00,T€T

Write r = d(r, R); since R is closed we have r > 0. Now suppose for some 7' € 7 we
have

d(r, o(—T, T)B((0, —T)x, 8)) < r. (4.10)

Then ¢(—T,T)B(¢(0, —T)x, J) is not a subset of R, since then we would have d(r, R) <
r. However, this means that ¢(0, =T)o(—T1,T)B(¢(0,—T)x,9) = B(¢(0,—T)x, ) is
not a subset of ¢(0, —T')R, contradicting 7" € 7.

So there is no 7' € 7 such that (4.10) holds, meaning that

liminf d(r,¢(=T,T)B(¢(0, =1)x,6)) > r > 0.

T—4o00,TeT
So (4.9) holds, completing the proof. O

This gives us an alternate method to find ergodic regions, which we will call tracer
cloud spreading. We take x which we suspect to be in an ergodic region, and we follow
its trajectory backwards over some large time T to ®(0, —7)x. Next we consider the
disk around this point B(®(0, —T")x, ) for some § small compared to a typical length
scale of the ergodic region. We can approximate this disk by considering a large
amount NN of tracers spread out randomly inside it. Finally, we go back to ¢t = 0 by
applying ®(—T7,T') to these tracers; we then have a set of points that asymptotically
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(i.e. for T)N — o) fill the ergodic region densely, similar to a Poincaré map. Note
that we do need to satisfy the condition

B((0, —T)x,8) C ¢(0, —T)R, (4.11)

i.e. ¢(0, —T)x should be at least a distance ¢ from any boundary of the image of R
under ¢(0, —T"); if we do not satisfy this then part of the tracer cloud is outside the
ergodic region. In practice this is not an issue if 9 is taken small enough.

Tracer cloud spreading is much less efficient than the Poincaré map-for each point
we need to evaluate ®(—T,T), typically for T much larger than the period of the
system T),, while for the Poincaré map we only need to evaluate f = ®(0,7,) for
every point. Its advantages are that it can be applied to irregular systems and that
it is directly related to the mixing process. This means that by considering finite T
instead of the limit 7" — oo we can obtain information on the intermediate mixing
structures and timescales.

4.3 Results

4.3.1 Computation of ergodic regions

The ergodic region for the 3-periodic three vortex system, computed using the Poincaré
map, is shown in Figure 4.1. We see that indeed a region of positive measure is filled
densely by the iterates of one point. Other structures such as islands and vortex cores
are visible as holes in this ergodic region, while the outer region is simply the entire
area outside it.

The ergodic region for the periodic four vortex system is shown in Figure 4.2.
Note that there are two large islands above and below the vortices, surrounded by
a chain of smaller islands on their boundaries. These islands are 19-periodic (the
blue tracer in Figure 3.9 is in such an island) and are in fact surrounded by smaller
152-periodic islands themselves, as can be seen in the detailed picture. This structure
might continue on even smaller scales, but obtaining a more detailed figure was not
possible due to the computing time involved. Note that in general an island does not
necessarily have such an irregular boundary, as can be seen on the right in Figure 4.1.

The ergodic region for the 2-periodic three vortex system is shown in Figure 4.3.
Note that it is similar to the periodic four vortex system; this may be a result of the
dipoles present in both systems. The large islands are now to the left and right of
the vortices and again have irregular boundaries, although no island chain along the
boundary is clearly visible in this case. Note that there is a second ergodic region
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Figure 4.1: Poincaré map of (0,0) with N = 10° for the 3-periodic three vortex system.
Right: detail of a 3-periodic island boundary.

separating the vortex cores which is not connected to the main one.!

Before using tracer cloud spreading to find the ergodic region of the irregular four
vortex system, we verify that it is equivalent to the Poincaré map technique by apply-
ing it to the 3-periodic three vortex system. This is shown in Figure 4.4; note that the
ergodic region is the same as that found earlier using the Poincaré map (see Figure
4.1). The resolution is far lower; 10° points are used for tracer cloud spreading as
opposed to 10° for the Poincaré map. This is because of the much higher computing
times involved.

The ergodic region in the irregular four vortex system, found using tracer cloud
spreading, is shown in Figure 4.5. Note that the ergodic region is fairly well defined,
but there is some fraying along the edges. This has to do with the nature of the
advection; near the boundary of the ergodic region and the outer region tracers tend
to get trapped for long times in circular paths before at some point returning to the
main ergodic region [14], so convergence is very slow here. Using higher 7" would lead
to an improvement but is unfeasible due to computation time. Also note that there
are no islands (except possibly near the boundary with the outer region), but vortex

1Zaslavsky found that the barrier separating the two ergodic regions may be permeable [47]. No
evidence of this was found for this particular system.
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-2

Figure 4.2: Poincaré map of (0,0) with N = 10° for the periodic four vortex system.
Right: detail of a 19-periodic island.

cores do exist.

Aperiodicity is checked only for the 3-periodic three vortex system; this is done
using the method described in section 4.2.1 in Figure 4.6.

An interesting point is that the ergodic regions share the reflection symmetries of
the point vortex system. This may appear trivial, but it is not; the velocity field,
tracer trajectories and f do not share this property. For instance, consider the 3-
periodic three vortex system. The ergodic region shown in Figure 4.1 is symmetric in
the y-axis, just like the associated vortex system, but if we look at Figure 3.8 we can
clearly see that this does not hold for individual trajectories. This can be understood
as follows. Consider what happens when we mirror the system using a reflection sym-
metry axis of the vortex system. This effectively reverses the rotation direction of
the vortices without affecting their positions; tracer trajectories, Poincaré maps and
ergodic regions are also mirrored. Now, if we reverse the time direction we restore the
original system, since this also reverses the rotation direction of the vortices without
affecting their positions. However, this does not affect the ergodic region, since it is
invariant under time reversal by Theorem 4.2. This shows that the ergodic region is
equal to its mirror image even though individual trajectories and Poincaré maps need
not be.
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2+

Figure 4.3: Poincaré map of (0,3) with N = 10° (black) and of (0,0) with N = 10°
(red) for the 2-periodic three vortex system. Right: detail of a 1-periodic
island boundary.
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Figure 4.4: Tracer cloud spreading for the 3-periodic three vortex system, using x =
(0,0.1), 6 = 0.2, T = 1800 and N = 105.
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Figure 4.5: Tracer cloud spreading for the irregular four vortex system, using x =
(0,0), 6 = 0.3, T = 3000 and N = 10°.
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Figure 4.6: Plot of the proportion of 7 with 0 < 5 < J such that there is an n
with 0 < n < 10° — j such that f*((0,0)) and f™*7((0,0)) are both
in (—0.12,0.12) x (—0.12,0.12). That this proportion converges to 1 for
increasing J shows that this property holds for asymptotically all j (see
(4.5)). Of course the bound on n (10°) would have to be increased to
consider higher J than shown.
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Figure 4.7: Mixing of a tracer cloud in the 3-periodic three vortex system. Initially, 10%
tracers are uniformly spaced on a grid in (1, 1.1) x (=1, —0.9). The position
of the tracers at various times is shown; from top left going horizontally
t=0,t =28, t=12T, t = 167,, t = 397, and t = 997}, with
T, = 11.572 the period of the system.
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4.3.2 Mixing properties

As mentioned in section 4.2.2, there is another advantage to tracer cloud spreading
over Poincaré maps. Since the method is directly connected to the mixing process,
we can analyze this process by considering finite T', instead of the limit to infinity
used to find the ergodic region. This allows us to find information on the timescales
connected to and intermediate structures present during the mixing process. For a
general overview, consider Figure 4.7, where the mixing of a tracer cloud in the 3-
periodic three vortex system at various times is shown. The behavior seen here is
typical: there is an initial period where stretching takes place but no folding (first 3
pictures), after which a partial mixing structure is formed (pictures 4 and 5). Finally,
the cloud fills the entire ergodic region (picture 6) as predicted by Theorem 4.9.

The same process occurs for other starting locations of the tracer cloud. An impor-
tant point is that the partial mixing structure is similar for different starting locations.
For instance, the left part of Figure 4.9 shows the partial mixing structure for another
starting location; note the similarities with Figure 4.7. What does vary is the time
before the mixing process starts, i.e. the time spent in the initial regime where no
folding takes place yet. This is shown in Figure 4.8, where the average squared dis-
tance between tracers in a cloud as a function of time is shown for various starting
locations. This defines another structure in the ergodic region, which we will refer to
as the mixing time distribution. It can be computed by covering the ergodic region
with a grid and spacing N tracers uniformly in each grid square. We then compute
the time required for the average squared distance between the tracers in one square
to reach some threshold ¢; this then is the mixing time for that grid square. This
technique is applied to the 3-periodic three vortex system in the right part of Figure
4.9.

So we have now identified two structures within the ergodic region that are relevant
to the mixing properties: the partial mixing structure and the mixing time distri-
bution. These are shown for the other three nonstationary systems in Figures 4.10
through 4.12. The remainder of this report will focus on describing and computing
these structures, including a rigorous definition of both as a measure defined on the
ergodic region. Note that the two structures are somewhat analogous: the partial
mixing structure shows regions that have undergone mixing, while the mixing time
distribution shows regions that will undergo mixing. And indeed, we see similarities
between both structures if we consider their mirror images using symmetry axes of the
vortex systems (recall that time reversal is identical to mirroring the velocity field).
This is shown for the 3-periodic three vortex system in Figure 4.13.
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Figure 4.8: Average squared distance between tracers in a cloud of 100 tracers as a
function of time, with the tracers initially uniformly spaced on a grid in
(1,1.1) x (—1,-0.9) (green, see also Figure 4.7), (—1,—0.9) x (—1,—0.9)
(blue, see also Figure 4.9) and (2,2.1) x (—1,—0.9) (red).

Figure 4.9: Mixing structures in the 3-periodic three vortex system. Left: tracer cloud
of 250,000 tracers initially uniformly spaced on a grid in (—1,—-0.9) X
(—1,-0.9) at t = 81}, with T}, = 11.572 the period of the system, showing
the partial mixing structure. The gray background is the full ergodic re-
gion as shown in Figure 4.1. Right: mixing time distribution on a 100x100
grid with N = 25 and 6 = 1. All regions which have not started mixing
at t = 400 are colored black.
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000.0

0.5

Figure 4.10: Mixing structures in the 2-periodic three vortex system. Left: tracer
cloud spreading using x = (0,0.5), 6 = 0.01, T = 1600 and N = 105,
showing the partial mixing structure. The gray background is the full
ergodic region as shown in Figure 4.3. Right: mixing time distribution
on a 100x100 grid with N = 25 and § = 1. All regions which have not
started mixing at ¢ = 1000 are colored black.

Figure 4.11: Mixing structures in the periodic four vortex system. Left: tracer cloud
spreading using x = (0,0), § = 0.01, T'= 30 and N = 10°, showing the
partial mixing structure. The gray background is the full ergodic region
as shown in Figure 4.2. Right: mixing time distribution on a 100x100
grid with N = 25 and 6 = 1. All regions which have not started mixing
at t = 100 are colored black.
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Figure 4.12: Mixing structures in the irregular four vortex system. Left: tracer cloud
spreading using x = (—0.7,—0.1), § = 0.01, T = 200 and N = 10°,
showing the partial mixing structure. The gray background is the full
ergodic region as shown in Figure 4.5. Right: mixing time distribution
on a 100x100 grid with N = 25 and 6 = 1. All regions which have not
started mixing at t = 400 are colored black.

Figure 4.13: Mixing time distribution (background) and mirrored partial mixing struc-
ture (red) as shown in Figure 4.9 for the 3-periodic three vortex system.
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5 Lyapunov Exponents

In this chapter we will explore the concept of Lyapunov exponents and their applica-
tion in describing the mixing process in point vortex systems. Lyapunov exponents
describe the stretching undergone by infinitesimal fluid elements. This stretching,
together with the folding of material lines, drives the mixing process [61]. In the
asymptotic case, we can use these exponents to define a timescale for the mixing. For
finite times they can be used to describe both the partial mixing structure and the
mixing time distribution found in section 4.3.2.

We will first give a detailed description of the general theory of Lyapunov exponents
(section 5.1.1), followed by an analysis of their role in describing mixing in point vor-
tex systems (section 5.1.2). Here we will also introduce the the topological entropy,
another timescale related to the mixing process, and the w-measure, a rigorously de-
fined probability measure which is directly related to the partial mixing structure and
the mixing time distribution. Next the numerical methods used to find the Lyapunov
exponents, topological entropy and w-measure will be introduced (section 5.2), fol-
lowed by their actual computation (section 5.3).

5.1 Theory

5.1.1 Definition and basic properties

Lyapunov theory is based on the stretching of small perturbations of trajectories, so
we start with some words on the Jacobian of the flow map ®(¢,7"). Recall that this
is the map that takes a tracer from its position at time ¢ to its position at time ¢t + 71T
(see section 3.1). Its Jacobian is the 2-tensor from R? to R? defined by

V(x, £, T)ox — lim Lt D)+ €0%) = @ T)(x). (5.1)

€

for all 6x € R?. If we have a trajectory x(¢) and a slightly perturbed one x'(t) =
x(t) + 0x(t), then the Jacobian describes the evolution of this perturbation:

Sx(t +T) = VO(x(t), t, T)ox(t) + O||6x(1)[|?). (5.2)
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We can use this equation to derive a useful identity. We have directly from the
equation above

6x(t+ T+ S) = Vo(x(t),t, T + S)6x(t) + O(||6x(t)|?),
but also applying (5.2) twice
ox(t+T+S8)=Vo(x(t+T),t+T,8)x(t+T)+ O(|6x(t)|]*) =
VO(x(t+T),t+T,S)VO(x(t),t, T + S)ox(t) + O(||ox(t)||?) =
VO((t, T)x(t),t +T,9)VO(x(t),t, T + S)ox(t) + O(||ox(t)||*),

where the last equality follows directly from the definition of the flow map (3.7). This
gives us:

Vo(x,t, T+ S) = VO((t, T)(x),t + T, S)Vd(x,t,T). (5.3)

This could also have been derived directly from (3.8) using the chain rule. It shows
that if we compute the Jacobian of a trajectory from ¢ to t + 7 + .S, we can take the
product of the Jacobians of the one from ¢ to t+ 7" and the one from t+7 to t+T1T+S.
Note that because the flow map preserves area we have

det(VP(x,t,7T)) = 1. (5.4)
This also shows that V®(x,¢,T) is invertible. In fact, using (5.3) with S = —T"
Vo(x,t,T) " = VO(®(t, T)(x),t + T, -T). (5.5)

Where no confusion can occur the arguments x and ¢ will be omitted. The final ar-
gument 7" however will never be omitted, so V®(T') is short for V®(x,t,T).

So to analyze the stretching of small perturbations we should consider the stretching
properties of the Jacobian V®. To this end, consider

A(x,t,T) = (VO(x,t, T)*Vd(x,t,T))47 (5.6)

where * denotes matrix conjugation (the power of 1/2|T| is taken for scaling properties
which will be needed later). Note that due to (5.4)

det(A(x,t,T)) = (det(VP(x,t,T)*) det(VP(x,t, T))) /27 = 1. (5.7)

A(x,t,T) admits an orthonormal basis of eigenvectors [64] with positive eigenvalues.
Denote these by e1(x,t,T) and ey(x,t,T) with corresponding eigenvalues 7, (x,t,T)
and ny(x,t,T), ordered such that n;(T) > ny(T). ' Using (5.7) we have

n2(T)

= S Em), (5.8)

le;(T) and e (T) are not completely defined by this, since their orientation is not fixed. We should
actually use the eigenspaces of A(T), but this would needlessly complicate the notation.
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When equality holds we have n;(T) = no(T) = 1, so A(T) is the identity matrix.
In this case e;(T) and ey(T) can be taken as any orthonormal basis of R?. These
directions are called the (finite time) Lyapunov directions. The relevance to stretching
is shown Theorem 5.3 below.

Lemma 5.1. For allx € R? and t,T € R, we have

VO(x,t,T)ei(x,t,T) = n(x,t, ) ey (d(t, T)(x),t + T, =T)
VO(x,t,T)ey(x,t,T) = ny(x,t,T) Mley (&(¢, T)(x),t + T, -T)

up to orientation.

Proof. We will show only the first equality; the proof of the second is similar using
(5.8). For identity up to orientation we need to show that the scale and direction of
both sides are equal. First the scale:

[VO(x,t, T)e(x,t,T)||> = (VO(x,t,T)e;(x,t,T), VO(x,t, T)ei(x,t,T)) =
(e1(x,t,T), VO(x,t, T)'VO(x,t, T)ey(x,t,T)) = (e1(x,t,T), A(x,t, T)* e, (x,t,T)) =
(er(x,t,T),m(x,t,T) e (x,t,T)) = m(x,t, 7)1 =

[l (x,t, T) ey (®(t, T)(x),t + T, —T)||%.

To show equality of direction, note that by definition the right side is an eigenvec-
tor of A(®(¢,T)(x),t +T,—T) with eigenvalue at most 1, so it is an eigenvector

of A(®(t,T)(x),t +T,—T)"2T! with eigenvalue at least 1. We will show this same
property for the left side. First, note that

A@(t, T)(x),t + T, —-T)"2" =
(VO(D(t, T)(x), t + T, ~T)*" V(D (t, T)(x),t + T, ~T)) " &
Vo(x,t, T)\V(x,t,T)*.
We now have
A(@(t, T)(x),t+T,=T)MVO(x,t,T)es(x,t,T) =
VO(x,t, T)VO(x,t, T)'VO(x,t,T)e,(x,t,T) =
Vo(x,t, T)A(x, ¢, T)Mey(x, 1, T) = m(x,t,T)"'Vd(x, 1, T)ei(x,t, T).

Since ny(x,t, T)?T! > 1, this completes the proof. O

We will assume from here on that the orientation of the Lyapunov directions is
chosen such that the identities in the above Lemma hold directly, i.e. not just up to
orientation.
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Lemma 5.2. For all x,0x € R? and t,T € R, we have

VO(x,t,T)ox =(ey(x,t,T),0x)m (x,t, T) ey (O(t, T)(x),t + T, =T+
(ex(x,t,T),0x)m1(x,t,T) Fley(®(t, T)(x),t + T, —T)

Proof. This follows directly from Lemma 5.1 and orthonormality of e;(x,t,7) and
(SD) (X, t, T) ]

Theorem 5.3. The identity

|V (x,t,T)ox|| = \/(el(x,t, T),0%)2m(x,t, )4l + (ex(x,t,T), 0%)2m (x,t, T) 2
holds for all x,0x € R? and t,T € R.

Proof. This follows directly from Lemma 5.2 and orthonormality of e, (®(¢,T)(x),t +
T,—T) and eo(®(t, T)(x),t + T, -T). O

We are now ready to define the finite time Lyapunov exponents A;(x,t,7") and
)\2 (X, t, T)
/\172(X, t, T) = IOg 7]1’2(}(, t, T) (59)

Although this definition will be used in the remainder of this report, there are non-
equivalent alternatives, such as the one found in [15]. Note that by (5.8) we have

M(T) = —M(T) (5.10)

and

M(T) > 0. (5.11)

So it is enough to consider only A;(7"), which is called the finite time maximum Lya-
punov exponents (FTMLE).

We now shift our attention to asymptotic Lyapunov exponents. For this we consider
the limit for 7" to £oo. This is justified by Oseledec’s theorem [22, 59].

Theorem 5.4 (Oseledec). The limits

AL (x,t) := lim A(x,t,T)

T—o0
5.12
A_(x,t) = Tlim A(x,t,T) (5.12)

exist for all x € R? and t € R.
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From here on we will consider only the positive limit; all results can be easily
extended to the negative limit by replacing 7" by —7". We define e;, and e, to be the
eigenvectors associated with A, with respective eigenvalues 7, and no1 (714 > 124 ),
and define similarly to (5.9)

AL (X, 1) = log 1 (X, 7). (5.13)

From their definitions it is clear that e; 2.+, 12,4 and Ay 2.4 are equal to the limits for
T — oo of their finite time counterparts introduced above. In particular,

A (1) = lim Ay (x,4,7). (5.14)

A1 is the (asymptotic) maximum Lyapunov exponent (MLE). It is typically defined
more simply as the exponential growth rate of small perturbations [15]. The following
theorem shows the equivalence of this definition to ours for almost all perturbations.

Theorem 5.5. The MLE satz’sﬁes

Ay (x,t) = llm log |[|[V®(x,t, T)ix|| =

ITI
[0, T)(x + e0x) — (L, T)(x)]|
efox]]

pm T e \T\ log

for all 6x € R? satisfying (6x, ey (x,t)) # 0 and for all x € R? and t € R.
Proof. Fix x, t and 0x as above. Define a;(T) and ay(T') by

a1 (T) := (dx,e1(T))
as(T) = (6x,es(T))

and their corresponding limits for 7' — oo a; and ay. By assumption we have
ay # 0. (5.15)

We now have
19, T)(x +edx) — &, T)(X)|| _

lim lim — log

A, P o]
o |(t, T)(x + ex) =, T)(x)[| 1 (5.1)
jlggolli% (mlo c - mlOgHéxH =

(5:8)

lim —10g||V<I>( )ox|| = lim log (v (T) 21 (T)2 ™ + o (T) o (T) 2

o |T| 2T
1
hm Mlog(m(T)MTl(al(T) +a2(T) m(T)~ 4\T|) 11m lognl(T) (5.13) /\1+,

completing the proof. O]
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An important property of the MLE is that it is constant along trajectories, which
means it makes sense to speak of the Lyapunov exponent of a trajectory without
specifying any specific time. This fact is established in the following theorem.

Theorem 5.6. The MLEFE is constant along trajectories:
A1+(®(t, S)(X), t+ S) = )\1+<X, t)7
for allx € R? and t, S € R.

Proof. Take any 0x € R? such that
(5X7 el+(x7 t)) 3& Oa (5 16)
(6X7 V(I)(tha S)*el-i-((b(ta S)(X),t+S)) 7& 0. ‘
We then have
(VO (x, 1, §)0x, €1, (D(t, S)(x), 1 + 5)) # 0,
and so by Theorem 5.5:
1

T

5.3)

A (@(,8)(x), 1+ 5) = lim - Tog|[V(®(L,5)(x),  + 5, T)V(x, 1, 5)ox]|

1 . 7 1 T5.5
Tlgrgo mlog |IVO(x,t,S + T)ox|| = Tlglgo T = SI[T] log [|[V®(x,t,T)ix|| =
)\1+(X7 t)a
completing the proof. Il

The condition (0x,e14(x,t)) # 0 in Theorem 5.5 is important. If it does not hold,
then dx is perpendicular to e;(x,t) and hence oriented along e, (x, ), the eigenvec-
tor associated with the negative Lyapunov exponent. By the following Theorem it
will remain oriented along this direction and hence the perturbation does not grow.

Theorem 5.7. If the MLE is strictly positive, then es is conserved along trajectories,
.e.:

e (P(t, 9)x,t+5) = VP(x,t,5)er (x,1)
up to scaling, for allx € R? and t,S € R.

Proof. Since the MLE is strictly positive, we have
ma(x,t) > 1. (5.17)

Consider the finite time stable direction ey(®(t, S)x,t + S,T). Since it is the eigen-
vector with minimal eigenvalue of A(®(¢, S)x,t+ 5,7, it is the solution of the mini-

mization of [64]
Fr(z7) = ||[VO(®(t, ) (x),t + S, T)zr||? (5.18)
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for z; € R? subject to the constraint

||z7|]* = 1. (5.19)
Now define V<I>( S) ( 5 T)
x,t,9)eq(x,t,5 +
= . 2
A = G0 (x,t, S)ea(x,1, S £ T))| (5.20)
Since
IVO(x,t, S)es(x,t, 8+ T)|| > [|[VO(x,t, S)es(x, £, S)|| "= 1a(x, 8, 5)°
and
IVO(®(t, S)(x),t + S, T)V(x, 1, S)es(x, £, S + T)|| ‘£
IVO(x,t, 5 + Tes(x,t, S + T)|| 2" no(x,t, 8 + T) ST,
we have
VO (D(t, S)(x),t + S, T)VD(x,t, S)es(x, t, S + T)||?
Frlar) = IVO(x,t, Sea(x,t, S + T2 =
s Uy 2 s Uy (521)

772(X,t, S 4 T)2|S+T|
ne(x, t, S)25|

Since ag satisfies (5.19), we have:

na(x,t,S + T)2|S+T| (5.

. . . 8)
jlglolo FT<e2((I)(t7 S>X7t+57 T)) < 7121010 FT<aT> < ’_Zlggo 772(X7t, S)2|S| -
. m(x,t,S)24s (5.17) 0
M et 5+ T
(5.22)

Since e1(x,t, S+7T) and ex(x, t, S+7T') are orthogonal and hence linearly independent
and VO(x,t,5) is invertible, we can write ex(P(t, S)x,t + 5,7T) as
e (P(t,9)x,t+5,T) =

5.23
a1 (T)VO(x,t, e (x,t,S +T) + ax(T)VO(x,t,S)ex(x,t, S+ T) (5.23)

for unique oy (7'), a2(T') € R. We decompose the asymptotic stable direction in the
same way:

e (O(t, 9)x,t+5) =y VO(x,t,5)e14(x,t) + e VO (x,t, S)eqs (X, 1). (5.24)
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Note that

Pt =

—

9

lim ay(T) = as. (5.25)

T—o00

If we can show that a; = 0, then the statement to be proven follows from (5.24).
Assume «a; # 0; then by (5.25) we have

lim a;(T)? > 0. (5.26)

T—o0
Now:

lim Fr(ex(®(t, S)x,t + $,T)) (318)(5:25)

2

=1

5.3)

T—o0

2
lim || Y u(T)VO(a,t, S + Thes(x, 1,5 + T)|[ "2
i=1

T—o00 <

2
lim Z o2(T)mi(x,t, S + T)H5+T (58)
i=1
Jim or (T)mu(x,t, S + T4 g (T (x, 8, S 4 T) =29 = o,

contradicting (5.22). So oy = 0, completing the proof. O

By time reversal, e;_ is also conserved along a trajectory. It is important to note
that the property does not extend to e, and e;_; they are in general not conserved by
the flow. The directions e, and ey are referred to as the stable Lyapunov direction
and the unstable Lyapunov direction respectively, following [29]. Not only are they
conserved by the flow, but any perturbation not initially aligned along either of them
will converge to one.

Theorem 5.8. If the MLE is strictly positive and the stable and unstable Lyapunov
directions do not coincide, then perturbations not aligned along the stable Lyapunov
direction converge to the unstable one, i.e. when A4 (x,t) > 0 and |(es—, es;)| < 1,
we have

. ( O(t, T)(x + €6x) — B(t, T)(x)
19(¢, T)(x + eox) — (¢, T)(x)

T ey (P(t, T)x,t + T)> =+1

T—o0 e—0

for all 6x € R? satisfying (6x, e, (x,t)) # 0 and for all x € R? and t € R.



5.1 Theory 7

Proof. As in earlier proofs, define o;(T") and 5;(T) b

a;(T) := (6%, e;(x,t,T))

Bi(T) = (ey_(x,1),e(x,t,T)) (5.27)

with their corresponding limits for 7' — oo a; and ; for i = 1,2. Note that by the
assumptions in the statement of the theorem we have

a #0;
B #0.

For convenience, define r to be the limit in the statement of the theorem; we then
need to show that » = 1. We have

( O(t, T)(x + e0x) — P(t,T)(x) .
||<I>(t T)(x 1 eox) — (L T) (X

(5.28)

r = lim lim
T—o0 e—0

((t, T)x,t + T)) (%)
lim lim Vo(x,t, T)ox e
T—o00 e—0 HV(I)(X t, T)(SXH’ 2
Vo(x,t,T)ox  VO(x,t,T)es—(x,t
|VO(x,t, T)ox||" ||[VP(x,t,T)es(x,t

lim lim
T—o00 e—0

(®(t, T)x,t + T)) 27
)
)

H)'

Now the numerators above can be rewritten using Lemma 5.2, and similarly Lemma
5.3 can be applied to the denominators. Using orthonormality of e; and e, and
simplifying the notation by using (5.27), this leads us to:

-~ lim m(T)*May (T)B1(T) + m(T)*Mas(T)5s(T) .
oo \/in(T) ey (T)? + i (T) =2 g (T)2/my (T)1B1(T)? + 1 (T) ~2T135(T)2

The MLE is strictly positive by assumption, so 7,4 > 1. Combining this with (5.28)
yields:
a1

ol
completing the proof. O]

= 1,

A discussion of the process of this convergence along with results for the its speed
can be found in [22]. For T — —oo, perturbations not aligned along the unstable
Lyapunov direction converge to the stable one. Note that this does not mean that
perturbations converge to some universal direction, since the Lyapunov directions are
not constant in time. The condition in the above theorem that the Lyapunov direc-
tions should not coincide is generally satisfied in practice (see also section 6.3.1); only
some very specifically constructed flow fields violate this property while retaining a
positive MLE.
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We can now fully describe how a slight perturbation dx(0) at ¢ = 0 evolves if
we know the Lyapunov exponents and directions. If it is aligned along the stable
Lyapunov direction, then it will remain so by Theorem 5.7 and it will be damped,

|0x(T)]| ~ exp(=AT)

for T' — oo, with A > 0 the maximum Lyapunov exponent. Otherwise, the component
aligned along e, the direction perpendicular to the stable Lyapunov direction, will
dominate. The direction of the perturbation will converge to the unstable Lyapunov
direction by Theorem 5.8 and it will grow exponentially,

[0x(T)]| ~ exp(AT)

for T" — oo, by Theorem 5.5. Note that this only holds as long as the perturbation
remains small.

5.1.2 Lyapunov exponents in periodic point vortex systems

In this section we will consider the relationship between mixing in point vortex sys-
tems and Lyapunov exponents, both asymptotic and finite time. Results will not be
derived as rigorously as in the preceding chapter; in some cases more formal argu-
ments can be found in the cited literature, but in other cases numerical observations,
which will be shown in section 5.3, are the only backup of the informal arguments we
use.

Consider a periodic point vortex system, with 7}, the period and R the main ergodic
region. Recall that this implies that R is invariant under f and that mixing takes
place inside it, i.e. any open set contained in R will asymptotically fill it completely
in the sense of Theorem 4.9. Note that V®(¢,T') is periodic in ¢ for all T' € R, with
period 7,,. This implies that the Lyapunov exponents and directions introduced in
the last section, both asymptotic and finite time, are also periodic in ¢ with period T},.
So it is sufficient to consider only the interval 0 <t < T},; we will go even further and
consider only ¢ = 0, allowing us to omit the time argument. We will write V f(x,n)
for the Jacobian of the periodic mapping f™ (see section 3.1) with n € N:

Vfix,n):=Vo(x,nT,). (5.29)
We also make the assumption, already mentioned in the previous section, that
(e2-(x), e14(x)) # 0, (5.30)

almost everywhere, i.e. that the stable and unstable Lyapunov directions do not co-
incide.
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First, we consider some continuity and boundedness properties. By definition the
ergodic region does not contain a vortex; if it did it would be a vortex core (see section
3.3). As aresult of this the velocity (3.2) is bounded on R, so V&(x,t,T) is as well for
fixed ¢,7" € R. This means that the finite time Lyapunov exponents A\;(7") and \o(7T")
are bounded on R. The same obviously applies to the asymptotic Lyapunov expo-
nents by the existence of the limit (5.14). Since ®(x, ¢, T) is continuously differentiable
(Theorem 3.1), V&®(x,t,T) is continuous in x € R for all ¢,7 € R. This also applies
to A(x,t,T) then, and hence the finite time Lyapunov exponents and directions are
continuous on R. The asymptotic Lyapunov directions are continuous as well by the
stable manifold theorem [63]. In general the asymptotic Lyapunov exponents are not
continuous, however as we will now show they are constant almost everywhere on R.
Note that this implies continuity almost everywhere, but not necessarily everywhere.

We will now argue that the MLE A\, (x) is constant almost everywhere on R. To
do this we will derive an alternative expression for \;, which will turn out to be quite
useful in its own right. It is based on the fact that a perturbation directed along the
unstable Lyapunov direction e, remains so. First, note that using Theorem 5.5 we
have:

. 1
A (x) = Jim - log [[V(x, T)ex ()] = lim ——log ||V f(x, e (9| (5.31)
oo |T| n—o0 ),

where the limit for 7" € R is discretised to a limit for n € N. Note that the condition
in the theorem is satisfied due to (5.30). We can decompose the expression in the
logarithm as follows:

(53)

IV F(x,n)er (x)|| "= ||V F(f(x),n = DV F(x, Des (x)]| =7 (5.32)

IVF(f(x),n = Dea (FEIIVF(x, Dea (x)]]

This shows why we need to use a perturbation aligned along the unstable Lyapunov
direction: if not we cannot split the norms as done in the second equality above. Now
define h : 'R — R by

h(x) == Tiplog 19 £(x, es(x)]|

Repeatedly applying (5.32) then gives
IV f(x,n)es(x)[| = [ [ exp(Tph(f"(x))) = exp (Tp > h(f"(X))> - (533)
i=0 '
Now returning to (5.31):

Mis() = lim - logep (T ih(f“(x») = hm DY) 63

n—oo N p
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So the asymptotic Lyapunov exponent is just the average of h over the trajectory.
Now suppose x is a generator of the ergodic region R (recall that this holds almost
everywhere in R by Theorem 4.4). Its iterates then 'fill up’ the entire set R, asymp-
totically uniformly because f is symplectic. So the computation of the average in
(5.34) can be replaced by a spatial averaging. This result is stated more formally in
Birkhoff’s ergodic theorem, which in our case states the following [13, 43].

Theorem 5.9 (Birkhoff). For any Li-integrable function g : R — R, we have

n—1
1 1
fim >~ 0(7"()) = s [ gy
for almost all x € R.

Using Theorem 5.3 and boundedness of the finite time Lyapunov exponents, h is
bounded on R and thus Li-integrable, so

A () = lim Z " 00) = ey | naa (5.3)

for almost all x € R. The right side is independent of x, so this shows that A;, is
constant almost everywhere in R, and that it can be written as a time averaging of
a finite time stretching exponent. This also allows us to omit the position argument,
writing simply A;, for the MLE of the ergodic region. We will assume throughout
that the MLE is strictly positive, i.e.

Ay > 0. (5.36)

The fact that the MLE is constant on R means it is a useful timescale in describing
the mixing process, since stretching of material elements is a crucial element of this
process. We would also like to be able to use Lyapunov exponents to learn more
about the structures described at the end of the previous chapter, the partial mixing
structure and the mixing time distribution. We will show that both can be rigorously
defined as a measure on the ergodic region.

Obviously the asymptotic Lyapunov exponents will give no information on the mix-
ing structures, as they are constant almost everywhere within the ergodic region. This
means we must turn our attention to the finite time Lyapunov exponents. This im-
mediately presents a problem: we are faced with an arbitrary choice of the Lyapunov
time 7', which is not present in the definition of the mixing structures. So we want
to define a measure using the finite time Lyapunov exponents which converges for
T — oo and for T' — —o0o, but not to the trivial constant measure. Similar to the
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treatment of the previous section consider only the case of positive T'; the argument
for negative T is similar.

Consider two small subsets of the ergodic region A and B of equal measure, and
take any a € A and b € B. We will try to quantify the difference in mixing times
of these two regions using the finite time maximum Lyapunov exponents (FTMLEs).
Suppose A mixes poorly, i.e. has a large mixing time, while B mixes well. We would
then expect A to undergo less stretching initially, so the FTMLE will be lower. So a
first approach would be to consider

)\1 (a, T)

A (b, T)

For properly chosen T this may give some information on the relative mixing prop-
erties, but recall that we want to avoid this choice. Taken in the limit for T — oo,
the quantity above converges to 1, since both the numerator and the denominator
converge to A;;, and so doesn’t carry the information we are looking for. Instead of
using the ratio of the Lyapunov exponents, we could also consider the ratio of the
actual stretching:

exp(Ai(a, T')|T)

exp(Ai (b, T)[T)

Asymptotically both the numerator and the denominator will behave as exp(A;+7),
but if A initially undergoes less stretching the numerator will remain smaller than the
denominator by some factor. This is assuming of course that this ratio above actually
converges for T'— oo. Unfortunately it doesn’t, as we will now show in outline (the
full derivation is somewhat cumbersome). Assume that we can write b = f(a) with
m € N and suppose for the moment that (5.37) converges for 7" — oo:

(5.37)

= lim 29) lim —nl(a, n)" 153
n—oo exp (A1 (b, nT},)nT},) n—oo 11 (b, nT,)"Tr
IVf(a,n)e;_(a)]|/(ei(a,n), e (a)) (.30
)II/(e1(b,n), ;- (b))
|
~(

) T exp()\l(a, nTp)nTp) (5.9
)

) V(e
) n=oe [[Vf(f™(a),n)ex-(f™(a))]l
) : 1
IV f(a,m)es—(a)|| lim :
n—oo [|[Vf(f(a), m)ex—(f"(a))l]
The remaining limit is the inverse of the stretching from period n to period n + m.
This value will clearly fluctuate depending on whether f"(a) is in a regime of high
stretching or low stretching, so the limit does not exist. The crucial issue is that

although exp(A;(a, T)|T|)) does behave as exp(A+T") for T — oo, it does not do this
in the strong sense that their ratio converges. Instead of taking just one element out

a)|| 5.7
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of A and B, we could of course use a large amount and take the average, but this
would not solve the problem. However, if we do not use a finite amount of points we
obtain a converging quantity:

o fyeaexpa(y, T)IT])dA
F(A,B) = Tlioofegexpu [ TNaA

(5.38)

We will argue that this limit exists and show how it is related to the mixing time dis-
tribution. First, let us examine the asymptotic properties of these integrals. Consider
the behavior of

1

S(T) =5 /y . exp(\(y, T)|T|)dA. (5.39)

R. is defined as the subset of R consisting of all x such that 71im M(x,T) = A4

This is chosen for convenience; since R. C R and R \ R, is of measure zero the value
of S(T') would be the same integrated over R. Note that S(T") is simply the average
value over R of exp(A(T)|T|). We are interested in its scaling properties, so define

o(T) := —log S(T), (5.40)

ITI

with corresponding limit for 7" — oo o (its existence is assumed). o is known as
the topological entropy [32, 58, 76]. Actually, the original definition of the topological
entropy is rather different from the one given here. The statement that o, is the
topological entropy is based mainly on the fact that this turns out to hold numerically.
We will return to this point in sections 5.3.1 and 6.1.2. Using Jensen’s inequality [40],
we find:

=1 log L

oy = lim —1lo

S \T\ u(R)
1

lim —/ logexp(Ai(y, T)|T|)dA =
T= i(R) Jyer. |T|

1 1
lim—/ My, T)dA = —— / lim A\ (y,T)dA =
PR Jyen, MY AT LR fy, AN

%
— ApdA = Ay
M(R) YER. o "

So the topological entropy is greater than or equal to the MLE. At first glance it
might seem that equality should hold; after all, the integrand behaves as exp(A;t)
asymptotically almost everywhere in R. So let us see if we can show the opposite

/ exp(u(y. T)[T])dA >
yER.

(5.41)
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inequality:
lim = log = / exp(M(y, T)|T|)dA
o — X : =
Fr IT\ #R) Jyer, 1
1
lim —log ——= exp(A [T]) exp((M(y, T) = A )[T])dA =
T—00 \T\ u(R) R
YERc
1
Ay + hm log ——= / exp((M(y, T) — Aiy)[T])dA < (5.42)
ITI #(R) Jyer.

1
A 1 1 A T A THdA =
s+ lim m 08— / _explma 6 7) M 17)

Ay + lim max A (x, T) — Ay

So if the FTMLE Ay (x,T) converges uniformly to the MLE i, the opposite inequal-
ity holds as well and we have o, = A;,. This shows that the difference between the
topological entropy and the MLE is, in some sense, the degree of non-uniformity in
the convergence of the FTMLEs. We will see that in practice o is strictly greater
than Ay, so the FTMLE converges to the MLE non-uniformly.

Now let us return to F(A, B) as defined in (5.38). Consider the behavior of the
integral in the numerator. Initially this will depend on the specific location of A, i.e.
whether it is in a region of poor mixing. However, eventually this set will be spread
out over the full ergodic region, so we expect it to scale as exp(o,T). There is a
crucial difference with the stretching associated with single trajectories as considered
n (5.37): after being spread out over the full ergodic region, the trajectories in A no
longer collectively pass through different regimes. This means we can expect the limit

- fyeA exp(\i(y, T)|T|)dA
T—o0 exp(o4|T')

(5.43)

to converge, directly showing the convergence of the limit in (5.38). We can now
define a non-trivial measure based on the FTMLE:

Jirce exp(Mi(y, T)|T|)dA
5 Jocr exp(M(y, T)|T])dA’

10+(C) = F(C,R) = (5.44)

for all C C R. Note that, assuming its existence as argued above, this is a probability
measure on R. Following [2], it will be referred to as the (positive time) w-measure.
Just like Lyapunov exponents and directions, we can also define it for finite time by
omitting the limit:

fyeC exp(/\1 (Y7 T) |T|)dA

o (C,T) := T e oxp O (y ) T A

(5.45)
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Having managed to define this measure, we still need to relate it to the mixing time
distribution. This is now fairly straightforward. Consider again the sets A and B as
defined above; recall that A mixes poorly while B mixes well. Consider the behavior
of the integrals in (5.38). Using (5.44), we know that asymptotically for T'— oo:

/GA exp(M(y, T)|T[)dA = - (A) / exp(Mi(y, T)|T])dA = Cexp(o(T'—=7(A))),

yYER
(5.46)
defining C' as
. nyR eXp<)‘l (ya T)|T|)dA
Ci= 711—I>Iolo exp(o,T) (5.47)
and 7(A) as
1
7(A) = ——log(uw+(A)). (5.48)

O+

A similar expression holds for B. Eventually both sets will become indistinguishable
as they are mixed by the flow (recall that they have equal measure), so any difference
between 7(.A) and 7(B) will be caused by the initial mixing. From (5.46) we see that
it can be considered a lag time before asymptotic behavior sets in. This is consistent
with what we have seen in the previous chapter: there is an initial period in which no
folding takes place, after which mixing starts according to the partial mixing struc-
ture which does not depend on the starting location. From this it becomes clear that
7(A) — 7(B) is the difference in mixing times between A and B. Note that we cannot
make a direct connection between 7(A) and the mixing time of A because they are
not uniquely defined?.

In other words, using the measure p,,. we can identify which regions are about to
undergo high stretching and thus mixing. Similarly, taking the limit 7" — —oo we
find p,,_, with which we can identify regions which have undergone high stretching.
This establishes the link between p,,_ and the partial mixing structure, and formalizes
the duality between the mixing time distribution and the partial mixing structure as
each others’ reverse time equivalents. The relationship between pu,,_ and the partial
mixing structure will be examined more closely in section 6.2.3.

2In particular, the calculation method for the mixing time described in section 4.3.2 has a somewhat
arbitrary parameter ¢, and there are other reasonable choices for C' in (5.46).
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5.2 Numerical methods

5.2.1 Computing Lyapunov exponents

To compute the Lyapunov exponents, topological entropy and w-measure, we first
need to find the Jacobian of the flow map V®(x,t,T) for x € R? and t,7 € R. We
can find its columns by considering its action on the standard basis vectors:

Gy .. B T)(x+ ee,) — B(t, T)(x)

(VO(x,t,T))1 = VO(x,t,T)e, = lim

(VO(x,,T))5 = VO(x, 1, T)e, ‘= i 2 ce, 7 |
o €

So we can find the first column of V®(x,t,T') by following the trajectory of x and
the slightly perturbed trajectory x(,) = x+de, from ¢ to t+7". The result is then sim-
ply the perturbation at time t 4T divided by §. The second column is found similarly
by taking the perturbation in the y direction. There is a numerical issue however: if
the MLE is positive, then these perturbations will grow exponentially. This means
that although they may be initially small enough to be in the linear regime, they
will not remain so indefinitely, which is a problem when considering large 7.2 The
standard solution to this problem is to rescale the perturbation whenever it threatens
to escape the linear regime [25].

In practice, the following algorithm is used to determine the first column of V&(x, ¢, 7).
Set
X(z) = X + 0€,,

with & small (typically, 6 = 107® is used), and
Sy = 0.

This variable will be used to keep track of any rescaling done. Apply ®(¢, At) to both
x and X(;), i.e. evolve both trajectories by one timestep. We use s, to keep track of
the growth of the perturbation:

Sz = 8; + log (—HX(Z')(S_ XH) .

Now rescale the perturbation so that its size is set to ¢ again:

X(p) — X
X(z) = X+ 5L,
|[%(2) — x|

3Note that we cannot take the perturbation arbitrarily small. Since it is defined as the difference
between two trajectories, this would cause numerical issues.
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The above step, i.e. applying ®(¢, At) and rescaling, is repeated until ¢+ 7" is reached.
At this point, we have found the first column of V®(x,¢,T) as:

X)) — X exp(s,) cos b,
(V0,1 T))s = exple) L = (RO )

with 6, the angle describing the orientation of the perturbation at time t + 7. The
second column is found similarly; note that we do not need to recompute the trajectory
of x this time, but only the perturbed trajectory x(,). This yields:

_( exp(s;)cosB, exp(sy)cosb,
Vot T) = ( exp(s,)sind, exp(s,)sinf, /- (5.50)

The matrix is stored as (s, Sy, 0, 0,); for large values of T' the actual values of the
entries exceed the numerical limit. A similar method is described in [39].

Having found V®(x,¢,T'), we still need to extract the Lyapunov exponents from it.
Recall that the FTMLE \;(x,t,7T) is the logarithm of the maximal eigenvalue of

Ax,t,T) = (VO(x,t, T)*V(x,t,T))/2"
Using (5.7), this yields:
log <% (tr + \/’m>>
2[T| ’

M(x,t,T) = (5.51)

with

tr = exp(2s,) + exp(2s,).
However, we run into the problem of numerical overflow again here. This can be
remedied by using the following expression when s, > 1 and/or s, > 1:

2max(s,, sy) + log(1 + exp(—2|s, — s4]))
2|T|

The MLE )\, is simply the limit for 7" — oo of the FTMLE A\ (x,¢,T) with x € R.
We have just seen how to compute the FTMLE, so finding the MLE is just a matter
of taking this limit. However, this is not the most efficient method. Note that it
requires the computation of three trajectories over a large time T-the unperturbed
one, and the ones initially perturbed in the z and in the y direction. Using Theorem
5.5 however, we see that we need to consider only one perturbed trajectory-its growth
rate, although not equal to the FTMLE for finite T', will converge to the MLE for
T — oo. The algorithm is very similar to the one above, except that no perturbation
in the y direction is used. The MLE is simply given by the limit for 7" — oo of:

$.(T) ‘
T

M(x, 1, T) ~ . (5.52)

)\1+,est(T> - (5'53)
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5.2.2 Computing the topological entropy and the w-measure
Recall that the topological entropy is defined as

1
1(R)

by (5.39) and (5.40). Computing this integral for finite 7" is theoretically simple; after
all, the integrand is continuous on R (see section 5.1.2). We simply take a finite but
sufficient number of points spread uniformly over R and compute A (7") for each of
these points as described in the previous section; we can then directly compute the
integral and if T is sufficiently large we have the topological entropy. However, there
are a two snags.

li ! |
o 1m ——- 10
+ = Too |T| g

/ - exp(A\(y, T)|T|)dA (5.54)

Firstly, if we fix the number of points used to compute the integral then (5.54) will
simply converge to the MLE A, , not the topological entropy, as described in section
5.1.2. So as we increase T' we also need to increase the number of points used to com-
pute the integral as the FTMLE field becomes less smooth. This can rapidly increase
the computational workload; it would be nice if we can reuse some computations when
increasing T'. The second issue is that we need to find a set of points spread uniformly
over R, requiring very detailed knowledge of the ergodic region if we need many points.

Both of these issues can be resolved for periodic systems by using the Poincaré map.
Using Theorem 5.9 (Birkhoff) and discretising the limit for 7', we can rewrite (5.54)
as:

o, = 7}1_{210 ]\}1_120 n_p log — Z exp(A1(f'(x),nT,)nT,). (5.55)
Recall that 7}, is the period of the system. The method now consists of computing
Vo&(y,0,T,) as described in section 5.2.1 for all y € P(x, M), with x a generator of
R and M large. Computing (5.55) with n = 1 is then straightforward: we can find
A1 (T;,) directly from V®(T,); how to achieve this is also described in section 5.2.1%.
For higher n we need to find V®(n1},) for y € P(x,M); this can be accomplished
without recomputing any trajectories. Specifically, using (5.3), we have:

Vo(y,0,nT,) = ’H Vo(fi(y),0,T,). (5.56)

The matrices in the right hand side of this equation are available in the precomputed
list. Numerical overflow could theoretically become an issue again here, necessitating
rescaling, but in practice n is never large enough for this to occur. So after the
precomputation we can compute the topological entropy according to (5.55) for any

4Note that the unperturbed trajectory is already known from the computation of the Poincaré map.
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n and N with N +n < M without having to recompute trajectories; this allows for
fast convergence checking. Using the notation of (5.53), we can write o as the limit
for n, N — oo of:

1 N-1

1 )
Open(N,n) = —log + > exp(M(f'(x), nT,)nT,,). (5.57)
p i=0

The limit for N should be taken first, and then the one for n (see (5.55)).

The w-measure can also be obtained from this list. We rewrite (5.44) as:

1
fw+ (A) = lim —/ x(y, A)exp(A(y,T)|T|)dA, 5.58
) = Jim e | X0 Ay, DIT) (5.5%)
with y defined by
1 ifyed
JA) = ’ 5.59
Xy 4) {0 o (559)
and C(T') used as a normalization constant such that
s (R) = 1. (5.60)
Similar to (5.55), we can rewrite this as:
1 N-1
pps (A) = lim lim ———— Y  x(f'(x),A) exp(M(f'(x),nT,)nT,).  (5.61)

n—oo0 N—o00 NC(nTp)

7

Il
o

Again, everything on the right hand side can be obtained from the precomputed list.
Note that we are using only those points that are inside A; if we want to compute
the w-measure on multiple subsets of R, this filtering can of course be done simul-
taneously. If these subsets are a partition of R, then C' can be determined as well.
Note that once the list is calculated, it can be used to find the behavior of small
perturbations without having to compute any trajectories; this means it can also be
used in calculating the MLE using the method described earlier.

The methods described in this section up to now require periodicity and so cannot
be applied to irregular vortex systems. Instead, we need to use (5.44) directly to
compute the w-measure. Suppose we have partitioned the relevant part of the phase
space (i.e. that part containing the ergodic region) into a grid. We can then compute
the Lyapunov exponents within each square, and use (5.44) to find the w-measure from
this, treating the denominator as a normalization constant. For low 7" the integral can
be approximated simply by the value in one point; for higher values of T' averaging
over multiple points within one square is required.
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5.3 Results

Several results relating to the theory and methods described earlier in this chapter will
now be presented. We first focus on computing the asymptotic time scales, i.e. the
maximum Lyapunov exponent and the topological entropy (section 5.3.1). We will
then attempt to find the w-measure and relate it to the mixing structures (section
5.3.2).

5.3.1 Asymptotic results

We will first compute the MLE for all non-stationary systems. First, consider the
periodic three vortex system. The convergence of the estimate for the MLE using
(5.53) up to 107 periods is shown in Figure 5.1. Note that the convergence process is
very irregular as the trajectory passes through various stretching regimes. This makes
it difficult to obtain an accurate value for the MLE, but from the results given we can
conclude Ay = 0.025. Results for the other periodic systems are not pictured but
the values for A\;, can be found in Table 5.1. Convergence results for the irregular
four vortex system are shown in Figure 5.2, leading us to conclude A\, ~ 0.02 for this
system. Note that the Lyapunov exponent does not appear to have converged yet
despite the high value of T'; this poor convergence is explained by the fact that not
only does the trajectory itself pass through different regimes of mixing as in periodic
systems, but the entire vortex system passes through different regimes as well.

0.028} 8 0.028 V
~ 0.026 1 ~ 0026+
e ho—m—— — |E
g g
+ 0.024f + 00241
~ ~

0.022} : 0.022+

0.020 : : ‘ : : ‘ 0.020

0 5.x10°1.x10%1.5% 102. x 102.5% 108. x 10’ 3

T ©log(T)

Figure 5.1: Convergence of the estimate for the MLE in the 3-periodic three vortex
system as a function of T', using x=(0,0). The right figure is a log-linear
plot of the left figure to highlight the behavior of the convergence.

Finding the topological entropy is more difficult since it involves taking two limits.
We first focus on the inner limit in (5.57), i.e. fixing n for now. Convergence results
for various n are shown in Figure 5.3. Consider n = 15 first (bottom right). From
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Figure 5.2: Convergence of the estimate for the MLE in the irregular four vortex
system as a function of T', using x=(0,0). The right figure is a log-linear
plot of the left figure to highlight the behavior of the convergence.

System N | n| Aypest(NT)) Ot est(N, 1) | 04 man
3-periodic three vortex | 107 | 9 | 0.025 0.1 0.10
2-periodic three vortex | 10° | 6 | 0.005 0.02 0.022
Periodic four vortex 108 | 5 1 0.08 0.3 0.27
Irregular four vortex Aitest(4.6 % 107) = 0.02 | N/A 0.33

Table 5.1: Calculated values of the MLE and the topological entropy for various sys-
tems. For the meanings of n and N, see (5.53) and (5.57). The final
column shows the value of the topological entropy found using the man-
ifold method, which will be described in section 6.1.2. The method used
to compute o, for the periodic systems cannot be applied to the irregular
system.

the sharp increases and gradual declines, it is apparent that the integral in (5.54) is
dominated by small regions of extreme stretching. We can also see that this effect
becomes more and more pronounced as n increases. As a result, convergence is deter-
mined by the requirement to ’hit’ all these areas in the Poincaré map. For N = 107,
the maximum value we can reasonably compute o .4 for, reasonable convergence is
achieved for n < 9.

Next, we consider the outer limit, i.e. the one for n. As explained above we cannot
go above n = 9; the estimates for the topological entropy up to this point are shown in
Figure 5.4. Convergence is far from apparent, but it still seems reasonable to conclude
that o, =~ 0.1. Estimates for the topological entropy for the other periodic systems
can be found in Table 5.1 (the method cannot be applied to the irregular systems
as mentioned in section 5.2.2). Note that for these systems N = 105 an order of
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magnitude lower than for the 3-periodic three vortex system. This was necessary
because of the excessive computing times involved, but it means the other estimates
are even less accurate. The main reason to compute them is to compare them with
the estimates obtained using the manifold method, which will be discussed in the next
chapter. Recall that our current definition of o is not actually the standard definition
of the topological entropy; the manifold method however is based on this standard
definition. Therefore the similar results obtained using both methods indicate that
o is indeed the topological entropy. Also, note that the topological entropy is indeed
greater than the MLE, indicating non-uniform convergence of the finite time Lyapunov
exponents.
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Figure 5.3: Convergence of the estimate for the topological entropy in the 3-periodic
three vortex system as a function of N for various n, using x = (0,0).
From top left to bottom right going horizontally: n=1, n=9, n=10 and
n=15.

5.3.2 The w-measure

The convergence behavior of the w-measure i, as computed using (5.61) for in-
creasing n is shown in Figure 5.5. Like all plots in this section, the color scale is
logarithmic. This is chosen because otherwise features of the distribution in areas of
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Figure 5.4: Convergence of the estimate for the topological entropy in the 3-periodic
three vortex system as a function of n for N = 107, using x = (0, 0).

low w-measure would not be not visible. It is clearly visible that as n increases the
approximation of the w-measure becomes less and less regular. This is not surprising:
it is continuous for all finite n (this follows from the definition (5.44) and continuity
of finite time Lyapunov exponents), but not in the limit for n — oo, where a fractal
structure appears. A more detailed discussion of the convergence of 1, (7)) to fiy+
and of the properties of this fractal structure can be found in [2, 31, 57].

To compare the w-measure to the mixing time distribution, we compute f,, from
the mixing time distribution using (5.48), and compare this to the results of using
(5.61). This comparison is shown in Figure 5.6; note that the agreement of the results
is excellent. Similar results for the 2-periodic three vortex system and for the periodic
four vortex system are shown in Figures 5.8 and 5.10 respectively. In all three cases,
we can see that the features in areas of low w-measure are not as well resolved as
those in areas of high w-measure. This is caused by the limited value of n; looking
back at Figure 5.5 we see that for increasing n more and more features are visible.

The partial mixing structure is not as clearly defined as the mixing time distri-
bution, so the comparison will be somewhat less detailed. As described in section
5.1.2, we need to use the negative time w-measure pu,,_. For the periodic systems,
this measure can be found easily from ., , since for a symmetric point vortex system
reversing time just means mirroring in the symmetry axis (see section 4.3.1). Results
for all periodic systems are shown in Figures 5.7, 5.9 and 5.11. Again, good agreement
between the w-measure and the mixing structure is visible.
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The positive time w-measure for the irregular four vortex system is compared with
the mixing time distribution in Figure 5.12. The method using the Poincaré map
applied to the periodic systems cannot be used here, and the alternative method
described in section 5.2.2 is somewhat less efficient. This means we cannot take T'
as high as necessary to actually consider it as the limit for 7" — oo, but nonethe-
less the agreement with the mixing time distribution is excellent. The negative time
w-measure’ is compared with the partial mixing structure in the left part of Figure
5.13. Although the agreement is good, careful observation reveals that there are some
features in the partial mixing structure not present in the w-measure. This is caused

by the limited value of T'.

5Note that since the irregular four vortex system is not symmetric we have to compute this
separately-we can’t just mirror p, like before.
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-Lé =14 -12

Figure 5.5: Left: w-measure p,,. in the 3-periodic three vortex system computed using
(5.61) with N = 107 and (from top to bottom) n = 1, n = 5 and n =
9 on (—3,3) x (—2.8,3.2) using a 300x300 grid. Right: detail showing
(—1.7,-0.8) x (—1.4,—0.5) using a 200x200 grid.
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Figure 5.6: Left: w-measure pi,,, in the 3-periodic three vortex system computed using
(5.61) with N =107 and n = 9 on (—3,3) x (—2.8,3.2) using a 100x100
grid. Right: g, as computed from the mixing time distribution as found
in Figure 4.9, using (5.48).

Figure 5.7: Negative time w-measure i, in the 3-periodic three vortex system com-
puted using (5.61) with N =107 and n =9 on (—3,3) x (—2.8,3.2) using
a 300x300 grid. Red overlay: partial mixing structure as found in Figure
4.9.
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Figure 5.8: Left: w-measure p,,. in the 2-periodic three vortex system computed using
(5.61) with N = 10° and n = 6 on (—8,8) x (—5.5,9) using a 100x100
grid. Right: 1,4+ as computed from the mixing time distribution as found
in Figure 4.10, using (5.48).

Figure 5.9: Negative time w-measure i, in the 2-periodic three vortex system com-
puted using (5.61) with N = 10% and n = 6 on (—8,8) x (—5.5,9) using
a 300x300 grid. Red overlay: partial mixing structure as found in Figure
4.10.
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Figure 5.10: Left: w-measure i, in the periodic four vortex system computed using
(5.61) with N = 10° and n = 5 on (—2.6,2.6) x (3,3) using a 100x100
grid. Right: ., as computed from the mixing time distribution as found
in Figure 4.11, using (5.48).

1_

Figure 5.11: Negative time w-measure p,_ in the periodic four vortex system com-
puted using (5.61) with N = 10% and n = 5 on (—2.6,2.6) x (3, 3) using
a 300x300 grid. Red overlay: partial mixing structure as found in Figure
4.11.
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Figure 5.12: Left: w-measure g, in the irregular four vortex system computed us-
ing (5.44) with 7' = 40 on (—2.8,3) x (—2.5,3.3) using a 100x100 grid,
averaging over 16 values for every grid square. Right: p,,. as computed
from the mixing time distribution as found in Figure 4.12, using (5.48).

=2k

Figure 5.13: Left: Negative time w-measure p,,_ in the irregular four vortex system
computed using (5.44) with 7' = —50 on (—2.8,3) x (—2.5,3.3) using a
300x300 grid, without averaging inside grid squares. Right: Same, with
the red overlay the partial mixing structure as found in Figure 4.12.
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6 Invariant manifolds

In the previous chapter, we have seen that the positive and negative time w-measures
formalize the concepts of the partial mixing structure and the mixing time distribu-
tion respectively. However, actually computing them was a difficult process requiring
very long calculations due to slow convergence. In this chapter we will introduce an
alternative method based on invariant manifolds. These can be compared to the man-
ifolds of a hyperbolic stagnation point a in a dynamical system: the stable manifold is
then the set of all trajectories that converge to a in forward time, while the unstable
manifold is the set that converges to a in reverse time. Since our systems do not
have points which are stationary for all time, we consider instead the manifolds of
trajectories. It will turn out that these are non-terminating curves which are dense in
the ergodic region. Their spatial distribution is exactly the w-measure.

We will first define invariant manifolds of trajectories and derive several properties
(section 6.1.1). We will then limit ourselves to finite segments of these manifolds,
and describe how their length changes in time (section 6.1.2). The theory section is
concluded with a derivation of the equivalence of the w-measure and the manifold
measure, i.e. the spatial distribution of the invariant manifolds (section 6.1.3). Next,
the numerical methods used to find invariant manifolds will be described (section 6.2).
Finally, several properties of the manifold will be checked using numerically computed
invariant manifolds in the 3-periodic three vortex system (section 6.3.1) and the w-
and manifold measures for all non-stationary systems are compared (section 6.3.2).

6.1 Theory

6.1.1 Definition and basic properties

We start our discussion from the following definition of invariant manifolds, as found
in [60]:

Definition 6.1. The stable manifold M, (a,t) associated with a point a € R? at time
t € R s the set of points of which the trajectory converges to the trajectory of a
asymptotically forward in time, i.e. for x € R? we have x € M (a,t) if and only if

Tim [[8(t, T)(x) — (1, 7)(a)|| = 0.
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The definition of the unstable manifold M_(a,t) is similar, but with the direction of
time reversed (i.e. the limit is replaced by T — —o0).

Note that a itself is trivially in M, (a,t). As usual we will consider only posi-
tive time (i.e. stable) manifolds, with the treatment for negative time being similar.
Several alternative definitions exist, e.g. those found in [34, 50, 51]; the relationship
between some of these and the one we use here is established in [60].

We will now describe various basic properties of invariant manifolds. In the first
place, why are they called invariant? This is because they are advected by the flow,
as is established by the following Theorem.

Theorem 6.2. For alla € R? and t,S € R, we have:
(I)(ta S)M+(a7 t) = M+((I)<t7 S)(a)7 t+ S)
Proof. Consider any x € M_(a,t). Then we have:

lim [|0(t+ 8, T)(@(t, $)x) - @(t + 5, T)(@(t, S)a)]| =

Jm [[0(2,5 + T)(x) = (t, 5+ T)(a)|| = lim ||, T)(x) — 2, T)(a)]| = 0,
and by Definition 6.1 this gives us
O(t, S)x € Mo (B(t, S)(a),t + S).
From the above, we conclude
O(t, )M, (a,t) € M, (D(t, S)(a),t + 9),

and by the same argument

M (B(t, ) (), t +8) X &(t,9)(t + S, —S)M.(B(t, S)(a),t + S) C

B(t, )M (D(t + S, —S)(®(t, S)(a)),t + S — §) L @ (t, )M, (a, 1),
completing the proof. Il

Another important property is that it does not matter which point on the stable
manifold we choose; any choice will lead to the same manifold.

Theorem 6.3. Let a € R? and t € R. Then for allb € M, (a,t), we have:

M, (b,t) = M, (a,t).
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Proof. Suppose x € M (a,t). We then have:

Tim [|2(t,7)(x) — (2, T)(b)]| =
lim [|(t, T)(x) — (1, T)(a) + D(t, T)(a) — D(t, T)(b)]| <

T—o00

lim [|®(2, T)(x) — (¢, T)(a)|| + || (¢, T)(b) — (¢, T)(a)[| = 0,

T—o00

where the last equality follows because both x and b are M (a,t). So x € M, (b, ).
From the above, we have
M (a,t) C Mi(b,t).
In particular, a € M, (b, t), so we can reverse the above argument to show
M. (b,1) € M, (at),
completing the proof. O

So, what kind of sets are these manifolds? We will answer this question by con-
sidering local properties, based on the Lyapunov exponents. First, suppose a has
a vanishing (positive time) MLE. This will typically be the case for most points in
stationary vortex systems or the islands in periodic vortex systems. This means that
locally there is no direction in which nearby trajectories are asymptotically attracted,
so no nearby points are in M (a,t). Any other trajectories that asymptotically ap-
proach that of a would eventually have to enter the linear regime. However, the
MLE is constant along a trajectory, so these points cannot continue approaching a
for T' — oo. So if the MLE of a vanishes at time ¢, then

M, (a,t) = a. (6.1)

Note that this does not mean that non-trivial invariant manifolds do not exist in sta-
tionary systems. Although most points have zero MLE, there are exceptions, namely
stagnation points and any points on their invariant manifolds. A detailed description
of these manifolds can be found in [60].

Now suppose a has positive MLE, as is the case in an ergodic region or a stagnation
point in a stationary system. This implies that locally there is a direction along which
trajectories are attracted to that of a, namely the stable Lyapunov direction eq . All
other directions are repelled, so the stable manifold is locally a line along e,,. This
property holds not just at a, but everywhere along the manifold due to Theorem 6.3.
This implies that the global stable manifold is a continuous curve [50]. Using this
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property we can also alternatively define M (a,t) as the solution {(6) of the ODE
28]:

d
=)

¢(0) = a,

for 0 € R. It is important to understand that # is not a time parameter; the above
equation defines the entire manifold at time t. Instead, it is an arc length parameter.

(6.2)

A consequence of the above is that stable manifolds cannot intersect themselves
or each other transversally, as this would mean the intersection point would have
two attracting directions. There are now two possibilities: either the manifold is a
closed curve of finite length, or it has infinite length. Closed manifolds do occur,
for instance in stationary systems; we consider only invariant manifolds in ergodic
regions from here on. As before, we consider only ¢ = 0, allowing us to omit the time
argument. Invariant manifolds in ergodic regions are never closed, as is established
by the following Theorem in the case of manifolds of generators.

Theorem 6.4. Let R be an ergodic region. Then M (a) is not a closed curve for
any generator a of R.

Proof. Suppose that for some generator a of R M (a) is a closed curve and hence has
finite length. Note that it cannot cross any boundary of R, since that would imply a
trajectory outside R, which will never enter R, approaches the trajectory of a, which
will never leave R. So M (a) encloses an open set A of R (we do not include M, (a)
itself in A).

Now, take n € N such that f"(a) € A; this is possible by Lemma 4.7 because a is
a generator of R. By Theorem 6.2, we have

f"My(a)) = M (f"(a)).

By continuity of f, f"(M.(a)) encloses f"(A), and so M, (f"(a)) encloses f"(A).
Since stable manifolds cannot intersect and a € A, M (f"(a)) is contained in A, and
since a is an internal point of A, we conclude

u(f"(A) < p(A),
contradicting symplecticity of f. m

Since invariant manifolds have infinite length it is possible for them to be dense in
the ergodic region, and in fact they are. The argument showing this is based on one
of the numerical methods for computing manifolds, and will be presented in section
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6.2.3, after this method has been introduced. We have already seen that it does not
matter which point on the manifold we pick to define it (Theorem 6.3). Now that we
know that manifolds are dense in the phase space, we can go even further: it does
not matter which point in the ergodic region we pick to define the stable manifold.
After all, suppose we have two manifolds M (a) and M (b), with b ¢ M_ (a). For
any x € M (a), there is y € M (b) arbitrarily close to x and with the direction
of the manifolds arbitrarily parallel (due to continuity of ey, ). This means that the
manifolds are in a sense equivalent and it makes sense to speak of the global invariant
manifold of the ergodic region, without specifying any single point it is based on.
This argument is considered in somewhat more detail in [29]. Note that this also
means that, at least in this system, there is no need to find distinguished hyperbolic
trajectories as defined in [39] to obtain invariant manifolds.

6.1.2 Manifold segments

Since curves of infinite length don’t lend themselves well to numerical analysis, we
need to restrict ourselves to finite segments of the invariant manifold. We simply de-
fine a manifold segment of length L M (a,t; L) as the solution of (6.2) for 0 <0 < L
(or L <60 <0 for L <0). Note that there is some ambiguity at this point since the
orientation of e, is arbitrary, but as L goes to infinity both sides will tend to the
same global invariant manifold anyway.

Three important properties of any invariant manifold M (a,t) in an ergodic region
were discussed in the previous section: it is dense in the ergodic region, it does not
matter if we define it based on any other point b € M, (a,t) (Theorem 6.3) and it is
advected by the flow (Theorem 6.2). We will now examine if and how these properties
apply to manifold segments. Obviously, the manifold will not be dense in the ergodic
region, since it has finite length. Although it fills the ergodic region arbitrarily well
in the limit for L — oo, it does not do so for any finite L.

Now assume b € M (a,t; L), assuming for simplicity L > 0. Since a is an end-
point of the manifold segment while b is not in general, the manifold segment of b
M (b, t; L) will not be equal to that of a. However, it is not difficult to see that the
following property does hold:

M (a,t;L) = My (b,t;~1) | JM.(b,t; L — 1) (6.3)
where 0 < [ < L is the distance along the manifold from a to b.

Finally, we consider the invariance of manifold segments under advection by the
flow. It will turn out to be convenient to use the unstable manifold for this purpose,
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although of course similar results hold for the stable manifold. Since M_(a,t; L) C
M _(a,t), we have

O(t, T)M_(a,t; L) C ®(t, TI)M_(a,t) = M_(®(t,T)(a),t + T).
Since M _(a,t; L) is connected and ®(¢,T) is continuous, ®(¢,T)M _(a,t; L) is also
connected and so it is a segment of the unstable manifold M_(®(¢t,T)(a),t + T)
starting at ®(¢,7")(a). This means we can write:

O(t, T)M_(a,t; L) = M_(D(t, T)(a),t + T; L(T)), (6.4)

with £ : R — R a function specific to a and t describing the evolution of the length
of the manifold segment. Note that

£(0) = L. (6.5)

We will now discuss the behavior of £, i.e. we examine how the length of a manifold
segment evolves in time.

We will see in a moment that the range of £ is R, so which value we take for
L = £(0) is not important. We take 0 < L < 1, i.e. the manifold segment is initially
in the linear regime. By the discussion in the previous section, it is then a line segment
oriented along the unstable Lyapunov direction e;_(a,t). Recalling section 5.1.1, for
T — —oo this perturbation of the trajectory of a is damped exponentially at rate
Ai— > 0 and so we have:

lim £(T) = 0. (6.6)

T—o00
We can also see this directly from Definition 6.1: the points on it converge to the
trajectory of a for T' — —oo. It is important to note that none of this implies that £
decreases monotonically with decreasing T'.

Next, consider the case T" > 0. Initially the manifold will remain in the linear
regime and grow exponentially at rate A;y. Again, this does not mean that £ is a
monotonically increasing function; it is certainly possible for the length to decrease
with increasing 1" at some point, but the general trend will be exponential growth.
This means that at some point it will leave the linear regime. We will not consider the
dynamics in this intermediate regime, but will instead skip ahead to the asymptotic
behavior for T — oo. For this purpose we will give a closed form expression for £(7T').
Let us fix T, and suppose we lengthen the initial segment by an infinitesimal amount
at a, i.e. add dL to L. What influence will this have on £(7")? The answer to this
question is found directly from Theorem 5.3, recalling that the manifold segment is
oriented along e,_(a,t) at time ¢:

dL(T) =
ALy (er(a, 1, T), e (a, 1)) a, 1, )27 + (eo(a, 1, T), eo-(a, 1) 2 (a, 1, T) 211,
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Asymptotically for T — oo, the first term will dominate if

(el—i-(a? t)7 €2 (a7 t)) 7é 0.

This is assumed as we have done before (see (5.30)). We then have in the asymptotic
case:

dL(T) =dL(ey, (a, 1), 65 (a, t))m(a,t, )" Z
) t)a €2 (a7 t)) eXp(/\l (av 2 T) ’T|)7

so that:
£(T) = / (e1(3.8), e (y, ) exp(Ma(y, £, T)IT)ds.  (6.7)
yEM_(at;L)

Due to continuity of e;_ and e;,, we have with L small enough:

< (el+(Y7t)7e2—(Y7t)) < 27

1
2 (el—i-(a? t)7 €o— (a7 t))

for all y € M_(a,t; L). This allows us to rewrite (6.7) as:

L(T)=C(T) /EM ) exp(A(y, ¢, T)|T|)ds, (6.8)

where

a< C(T) < p,
with
o =5 (er(a.t).er(a 1))
8 =2(e1+(a,t),es_(a,t)).

We now define the asymptotic growth rate o, of the manifold:
) 1
om = lim —log L(T). (6.9)

Using (6.7) and the fact that C'(7") is bounded from above and below by strictly
positive constants independent of 7', we have:

1
O = lim —logC(T)/ exp(Mi(y, ¢, T)|T])ds =
T yEM_(atiL)

T—o00 ‘

(6.10)

1
lim —

o | exp(h(y, £, T)[T])ds.
T—o0 |T| YEM_(a,;L)



106 6 Invariant manifolds

We have already seen in section 5.1.2 that this limit is equal to the topological entropy.
There is one important difference though: we are not integrating over an area now
but over a line segment. Still, it seems reasonable to conclude that

Om = 04 (6.11)

This has already been verified by numerical analysis in section 5.3.1; these results can
be found in Table 5.1. This also justifies our use of the term 'topological entropy’ for
o, . Actually, we still have not used the original definition, which involves the rate of
information loss in dynamic systems [32]; however, the link between that definition
and the manifold segment growth rate is well established [57, 76].

In summary, the length of a segment of the unstable manifold goes to zero expo-
nentially for " — —oo with rate A;_ and grows exponentially for 7" — oo with rate
o4+. Note that £(T') takes on the full range of values in R, for 7' € R, a fact that was
used at the start of this discussion. There is an important difference in uniformity
between the two limits for T', already briefly mentioned above. For T" — —oo, the
segment will be short enough to be entirely in the linear regime, and the evolution
of its length is described by the evolution of the size of a small perturbation. This
means, recalling the discussion in section 5.1.2, that although we have

1
lim = log L(T) = —\_ (6.12)

the limit £(T)
im ————— 6.13
2 exp(—|T) (6.13)
does not converge. Now consider the case T'— oco. As the length of the manifold seg-
ment increases, it will approach the global unstable manifold (recall that this manifold
is independent of the starting location). This means it will not pass through regimes

with different mixing properties anymore, so the limit

lim £(1)

=) 6.14
A, (oL 7] (6:14)

does converge.

Finally, we consider the behavior of a material curve contained in the ergodic re-
gion, not necessarily a manifold segment, for 7" — +o00. For T' — o0, any parts of the
curve not parallel to the stable Lyapunov direction e;, will align themselves along
the unstable Lyapunov direction e;_ by Theorem 5.8 and so the curve will approach
the global unstable manifold. For points where the curve s aligned along the stable
Lyapunov direction, this property will be conserved at that point by Theorem 5.7 and
so the curve cannot approach the unstable manifold. Various types of behavior are
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now possible; this is explored in detail in [17]. We will limit ourselves to stating here
that almost all material curves converge to the global unstable manifold for 7" — oc.
Similarly, for 7' — —oo almost all material curves converge to the global stable man-

ifold.

6.1.3 Relationship with the w-measure

We will now investigate the space filling properties of the global stable manifold more
closely. We have already seen that it is dense in the ergodic region, but what does its
distribution look like? To frame this question we define the manifold measure
using the spatial distribution of the manifold, i.e. for A C R piy(A) is the fraction
of the global stable manifold in A.

Definition 6.5. The stable manifold measure pi,,, is defined by

ary X(¥, A)ds 1
s (ALt) = Lhm fyeM+( L) _ _ Lhm Z/ N
o fy6M+(a;L) S e yEM4(a;L)

for any generator a of R and open A C R, with x(y,A) as defined in (5.59), i.e.
equal to one when'y € A and zero otherwise.

That the measure is independent of the choice of a follows from the fact that all
manifolds of generators are equivalent, as discussed in section 6.1.1. In the remainder
of this section we will argue that the stable manifold measure is equal to the positive
time w-measure introduced in section 5.1.2.

A defining aspect of the manifold measure is that it is invariant under the dynamical
system defined by (6.2). We can show explicitly that p,,, has this property. Similar
to ®(t,T), the operator taking a trajectory from time ¢ to time ¢t + 7" in the ODE
(3.1), define w(f) : R — R as the operator taking an initial condition to 6 in (6.2).
Note that what this operator does is just move a point a distance 6 along its stable
manifold. Then the invariance of u,,, simply means that

Ner(wil(e)A) = fim+(A), (6.15)

for all open A C R and all # € R. Noting that applying w(f) to a manifold just
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means shifting it over a distance 6, we have:

1
lim —/ X(y,A)ds
L= L Jyewo)ymy (aiL)

i 1
Jim 1 / N, A)ds = 1 (A),
o yEM4(w(0)(a);L)

showing that (6.15) holds.

So, we need to show that (6.15) holds for the w-measure . Because (6.2) is
autonomous, it suffices to show that

s (0™ (6)4

for all open A C R. Notice that this expression is simply the flux of ., traveling
into A under the w-system (6.2)'. Unfortunately we cannot compute this directly
since (1,4 is discontinuous, so we will instead show that it holds in the limit using the
finite time w-measure p,,(7), i.e. that

—0, (6.16)
0=0

lim R(T) := lim 4 (w1 (0)A,T)

Jim Am =0, (6.17)

6=0
for all open A C R. We use the fact that the finite time w-measure is continuous for
all T € R, i.e. there is a density function p,(7T") : R — R such that:

(AL T) = / puly: T)dA, (6.18)

y€eA
for all A C R. Explicitly this density function is given by (see (5.45)):
exp(A(x,T)|T)
[ exp(M(y, T)|T[)dA

We will now focus on estimating (6.17) for fixed T' > 0. As mentioned this is the flux
of ,, flowing into A under the w-system, so we have writing 0.A for the boundary of
A and n for the outward-pointing normal:

S OAT)

pu(x;T) = (6.19)

[R(T)| =

/ puly; T)(e2 (y) - m)ds| =
0=0 y€eoA

Y

/ V - (puly: T)ess (y))dA
yeA

!The term w-system for (6.2) is taken from [2].
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using Gauss’ divergence theorem. Continuing:

|R(T)| =

/ v-<pw<y;T>e2+<y>>dA\g [ 19 puliTien(v)1dA =
yeA yEA

6.19)

/ ) 1pw(y; T)V - €24 (y) + €51 (y) - Vpuly; T|dA =
ye

Syealexp(y, DTV - €2, (y) + €24 (y) - Vexp(hi(y, T)|T])|dA
T e exp(n(y. T)[T)dA -
Jyea@M(y, DITDIV - 21 (y) + e2+(y) - V(M (y, T)TDIA
T, e exp(n(y DT A <
Jyeaexp(y, T)IT)dA
Jyer exp(M(y, T)[T])dA

(A T) / V- 24 (¥) + €21 (y) - Yy, T)|T])|dA.

yeA

/eA V- ex(y) +ear(y)  V(y, T)|T))|dA =

To proceed, we need to estimate the integrand. This is simple using the following
result by Thiffeault [72]:

Tlg& (V- ez (y) + e (y) - V(M(y, T)T)) = 0. (6.20)
This is actually a very powerful constraint on the Lyapunov exponent and it has
several interesting consequences for the behavior of material lines advected by the
flow [49, 71]. We use it to complete the derivation of (6.17):

Tim [R(T)| < Jim (A7) / V- €01 (y) + €2 (y) - VO (y, T)[T])|dA =

yeA

e ) [ |Jim (9 -e2uy) + easly) - V(. TIT)] 42 =0

T—o00

This completes the argument that the manifold measure is equal to the w-measure:

Hm+ = Hw+- (6.21)

So the stable manifold is concentrated in areas where the forward time finite time
Lyapunov exponent is high. Similarly, the unstable manifold is concentrated in areas
where the reverse time FTLE is high. It is worth noting that the above argument also
applies to irregular systems, not just periodic ones. Note that there is some similarity
between this method and the approach of Lagrangian coherent structures (LCS) [69],
which identifies ridges of the FTLE field with approximations of the global invariant
manifold.
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6.2 Numerical methods

We will focus on computing the unstable manifold in this section; computing the sta-
ble manifold is of course similar, with the direction of time reversed. Two definitions
of the invariant manifold are given in section 6.1.1. These are Definition 6.1, based on
the attracting properties, and the ODE (6.2), based on the alignment along the un-
stable Lyapunov direction. Both of these definitions give rise to a numerical method
for computing the manifold.

Using (6.2) is the simplest of these two. We already know how to approximate
ey (y,t), namely as the limit for 7" — —oo of the minimal eigenvector es(y,t,T") of
A(y,t,T). How to compute this matrix is described in section 5.2.1. All that is then
necessary is to apply a time integration method for §. We use the fourth order classi-
cal Runge-Kutta formula, a description of which can be found in [52]. The ’timestep’
Af is dynamically chosen to ensure sufficient resolution in areas of high curvature.
We will refer to this method as the ODE solving method. It has three important
parameters: the maximum timestep A#, the maximum rotation per timestep « and
the time used for determining the unstable Lyapunov direction 7 (see section 5.2.1).
Although this method does find invariant manifolds, it has a very serious drawback:
due to small errors in the computation of the unstable Lyapunov direction and/or
the time integration, it is possible for the manifold to leave the ergodic region. This
behavior is highly unphysical and ruins the important property of the global unstable
manifold being dense in the ergodic region.

The underlying problem of the ODE solving method is that it does not make use
of the inherent stability of the invariant manifold. We have seen in section 6.1.2 that
(almost) any material curve within the ergodic region will converge to the unstable
manifold for forward time, which indicates that if we have small errors in the com-
puted manifold these will be damped under forward time evolution. We would like
our numerical method to take advantage of this property. This leads to the advection
method for finding invariant manifolds.

Suppose we are looking for M_(a,0; L), i.e. the unstable manifold segment of a
at ¢ = 0 with length L. Recall the discussion in section 6.1.2: a small segment of
the unstable manifold will grow in length to infinity for increasing 7' while remain-
ing a manifold segment. So, to obtain the manifold at ¢ = 0 we first go backwards
in time to —T for some properly chosen? T, following the trajectory of a to obtain
®(0,—T)(a). We now define C(—T') as the line segment connection a and a + (Ly, 0)
for small Ly, typically using Ly = 107*. Computing ®(—T,T)C(—T) then gives an

2This choice does not affect the final manifold, but if it is taken too small the manifold segment
found may not have the desired length, while if it is taken too large more time and memory is
used by the computation.
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approximation for the unstable manifold. What happens is that initially (i.e. at ¢
close to —T') C(t) remains short enough to be in the linear regime and aligns along
the unstable Lyapunov direction. Upon leaving the linear regime it is then an actual
unstable manifold segment which will continue to grow up to ¢ = 0. There are two
issues to tackle before we can actually apply this method: how to efficiently compute
the image of C(—7') under ®(—T,T), i.e. how to advect a continuous curve, and how
to ensure the final manifold segment C(0) has the desired length L. We will discuss
both of these problems in the following subsections.

6.2.1 Advecting a material line

We first describe how to compute the advection of a material line within the flow.
This is based on the description found in [51]. We write T = NAt with At the
timestep and N € N. This may require slightly adjusting 7. The curve C(—T + nAt)
is approximated for 0 < n < N by M(n) points (x, ;|1 < j < M(n)). The trick is
to make sure we have enough points to have the curve well resolved. The simplest
method is of course to ensure we have enough points initially, i.e. represent C(—T),
the initial line segment, by a huge number of points M (0) and simply advect them
all individually. However, as we will see the growth of the manifold segment is very
irregular, meaning that to resolve the manifold as a whole several areas will have far
more points than necessary. It is much more efficient to dynamically add points when
the manifold is not well resolved, and to remove them when possible. This raises two
questions: how do we determine if the curve is well resolved, and how do we add
points if we find this is necessary?

Several possible criteria for determining if a curve is well resolved are discussed in
[51]. These were tested, with the best results being found by using the Hobson variant
criterion [37] with parameters chosen as described below. This criterion stipulates
three properties which every interval between two points should satisfy. In the first
place, two consecutive points should never be too far apart, since if they are we might
miss the development of features in between these points:

% =Xl <7, (6.22)

with 7 = 0.05 being a typical value. Note that we omit the subscript n for notational
convenience. The second property limits the amount of rotation the manifold is
allowed to undergo between consecutive points. This ensures areas of high curvature
are well resolved. Explicitly, we require:

sin-! |[%j-1 — xj-1]] i 1% — x| <, (6.23)
2|[x; — xj-1]| 2[|xj41 — x|
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where
Xj+1 — Xj42

Xj = Xj41 + %501 — %51

|41 — X2
A typical value is a = 7/25, meaning that a small circle would require 50 points
to be considered well resolved. The final requirement is that the distance between
two points should never be too small. If it is, then numerical issues might induce
artificial curvature. This would then lead to the need to add more points by the
second property, which would be even closer together, thus destabilizing the method.
So, the third requirement is:

1% — x4l =6, 6.24)

(
with 6 = 1077 being a typical value. So we consider the curve C(—=T + nAt) well
resolved if it satisfies (6.22), (6.23) and (6.24) for all j with 2 < j < M(n) — 1.3

So suppose we have found a well resolved representation of C(—7 + nAt). We then
need to find one of the curve at the next timestep C(—T + (n + 1)At). Recall that
C(—=T +nAt) is defined by the sequence of points (x,, ;|1 < j < M(n)). The first step
is then to advect these points by one timestep:

X1, = P(=T + nAt, At)(xn,;). (6.25)

We then check whether the sequence (x/,,, ;|1 < j < M(n)) satisfies the Hobson vari-
ant criterion described above. If it is not satisfied by some interval (], ;, X}, 11 j11),
then we need to add a point on this interval. We could base this on interpolation in
the sequence of image points (x;,,, ;), but by assumption the curve C(—7'+ (n+1)At)
is not well resolved by this sequence, meaning that this interpolation cannot be ac-
curate. However, also by assumption the curve C(—T + nAt) is well resolved by the
sequence (X, ;). So we find a point X, 11 by interpolation between x,, ; and x,, j11
and determine x/_, i1 using (6.25). We repeat this until C(—=T + (n + 1)At) is well
I3

resolved, and then remove any points if that removal does not violate (6.22) through
(6.24). The reason to delete redundant points is to avoid unnecessary computations.
We then obtain the sequence (x,+1,;) simply by renumbering (x/,, , ;) to get rid of any
non-integer indices.

One question now remains: just how do we determine where to place x,_ .. 1 by

n,j+5
interpolation, i.e. how do we parameterize C(—T + nAt) between points? This i2s an
important issue; our numerical advection method is accurate enough to ensure that if
Xp,,; 1s in the ergodic region then so is the image point x;, ,, ;. However, if the inter-
polation method is not accurate enough it can cause the insertion of points outside

the ergodic region, leading to unphysical behavior of the computed manifold segment.

3The rotation requirement (6.23) cannot be applied at the endpoints. These points require a slightly
altered form, which we will not discuss here.
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Again, several possible methods are discussed in [51]. In our case Dritschel’s cur-
vature method [19] worked best. The formulas do not contain any extra parameters
and are easily implemented, but are rather complex and so will not be reproduced here.

6.2.2 Controlling the length of the manifold segment

We now turn to the second issue mentioned earlier: how do we ensure that the mani-
fold segment found at ¢t = 0, C(0), has the desired length L? We have two parameters
we can alter to achieve this: the integration time 7" and the initial length of C(—T)
Ly. Of these Ly seems to be the easiest to adjust. We simply compute C(0) for some
T and Lg. Say its length Lg,, is ten times too small; we then simply repeat the cal-
culation taking Lg ten times as large. This does assume that Lgn, is approximately
linearly proportional to Ly. Unfortunately, this assumption does not hold, as is shown
in Figure 6.1. Adjusting 7" leads to similar issues (Figure 6.2).

4000 ———

3000

2000

L fina

1000

0.00005 0.00010 0.00015 0.00020
Lo

Figure 6.1: Length Lgy,, of the unstable manifold segment obtained using the advec-
tion method in the 3-periodic three vortex system as a function of Ly,
with a = (0,0) and 7" = 300.

So an alternative method not based on adjusting Ly and 7' is necessary. We will
describe one based on the growth properties of the manifold segment as described in
section 6.1.2, i.e. irregular growth for small lengths based on the MLE and regular
growth for large lengths based on the topological entropy. Define L,, as the length
above which growth is dominated by the topological entropy; we will assume

L>L,,. (6.26)

Note that this means that if the manifold segment has at least length L at any time,
it will grow with every timestep. This suggests a simple approach: simply cap the
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Figure 6.2: Length Lg,, of the unstable manifold segment obtained using the advec-
tion method in the 3-periodic three vortex system as a function of 7', with
a=(0,0) and Ly = 107*. Right: detail of the area around T = 385.

length of the manifold segment at L, removing points as necessary. A disadvantage
of this method is that if T" is very large, the length L will be reached long before
t = 0 and we have to advect a manifold segment of length L over many timesteps.
As a result, the complexity is O(LT'), preventing us from simply taking T" very large.
However, this is a working reference technique for find a manifold segment of length L.

The method used in practice has two key improvements. One is an adaptive rescal-
ing technique, which we will not discuss here. It reduces the complexity to O(LlogT).
The second improvement is based on the fact that once the length of the manifold

segment is at least L, , we can predict its growth. Explicitly, if for

1 L
T.= —Ilog

6.27
o087 (6.27)

ot

the manifold segment C(—7;) has length L, , then the final manifold segment C(0)
will have length approximately L. We can ensure it has length at least L by taking
T. slightly larger than in (6.27). The method now consists of computing 7., find-
ing M_(®(0,-T¢)(a), —T.; L,,) using the basic method, advecting this segment to
t = 0 and removing points beyond length L. The complexity of this approach is
O(Ly, logT + L).

6.2.3 Further notes

Unless stated otherwise, we always use the parameters as given above (i.e. Ly = 1074,
a=7/25 7=0.05and § = 10~7) when applying the advection method. T is simply
chosen large enough to find a manifold segment of length L; its actual value does not
affect the result as long as this constraint is satisfied. The value of L, also does not
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affect the result, although it may not reach the desired length L if L,, is taken too
small. A good value is L,, = 500.

The advection method turns out to be much faster and more reliable than the ODE
solving method for finding invariant manifolds. It is not however as closely related
to the definition of the manifold, and so it is worthwhile to check that both methods
give identical results. This is shown in Figure 6.3. Note that the manifolds found
using both methods eventually diverge from each other; however, the points at which
this happens depends on the parameters used in the ODE solving method, indicating
that this is a result of inaccuracies in this method, and not of any in the advection
method. In fact, reducing the parameters for the advection method to yield a more
accurate manifold does not produce any visible changes (not pictured).

20 J— . . . .
_2:‘ > -1 0 B ) e T 0 1 2

Figure 6.3: Comparison of the advection method and the ODE solving method for
finding the invariant manifold. Red, both sides: unstable manifold seg-
ment of (0, 0) with L=35 in the 3-periodic three vortex system, found using
the advection method. Blue, left: Found using the ODE solving method
with A8 = 0.01, « = 7/125 and T" = 200. Blue, right: Found using the
ODE solving method with Af = 0.001, o = 7/1250 and 7" = 400.

We conclude this section by presenting a further argument, based on considering
the manifold as the result of the advection method, for the relationship between the
partial mixing structure and the negative time w-measure, which is related to the
unstable manifold by section 6.1.3. Imagine a small disk around some point a in the
ergodic region at ¢t = —T' for some sufficiently large 7. We want to track the advec-
tion of this disk to t = 0. There are two approaches: either place a large amount of
particles in the disk and advect these to t = 0, or follow the evolution of the boundary
of the disk. The first method will reveal the partial mixing structure, as discussed in
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section 4.3.2 (see Figure 4.7 in particular). Eventually the particles will spread out
over the full ergodic region, but assuming we have taken enough points the mixing
structure will still be visible at ¢ = 0. So, the image of the disk under ®(—7,7)
reveals the partial mixing structure.

The second method mentioned is to follow the evolution of the boundary of the
disk, a contour kinematical approach. Numerically this is achieved using the methods
described in section 6.2.1. It is basically identical to the advection method if the ini-
tial disk is small enough-after all, the circle will be deformed by Lyapunov stretching
into two line segments joined by a sharp bend*. So the unstable manifold is also the
(boundary of the) image of the disk under ®(—T7,7"), which by the discussion above
reveals the partial mixing structure. This again establishes the link between the un-
stable manifold and negative time w-measure on the one hand and the partial mixing
structure on the other hand.

The above argument can also be used to show that the global unstable manifold
is dense in the ergodic region, a result that has already been used throughout this
chapter: the image of the disk under ®(—7',T) is asymptotically dense in the ergodic
region by Theorem 4.12, so the same applies to its contour which is asymptotically
the global unstable manifold.

6.3 Results

6.3.1 Properties of the manifold

In this section we will examine several properties of invariant manifolds discussed
earlier. Results will be shown only for the 3-periodic three vortex system, but they
hold for all other systems as well, including the irregular system. All manifolds are
computed using the advection method.

First things first: let us have a look at the actual manifolds. The stable manifold
for the 3-periodic three vortex system is shown in Figure 6.4. The stable and unstable
manifold are shown together in Figure 6.5, which includes some detailed pictures of
parts of the manifolds. Note that the unstable manifold is the mirror image of the
stable manifold in this case, which is again caused by the fact that mirroring the sys-
tem is equivalent to reversing the direction of time (see section 4.3). In both figures,

4This approach is actually used in [60] to compute invariant manifolds. It has the advantage that
the contour is closed and so has an area which should remain constant by symplecticity, allowing
us to dynamically check the accuracy of the numerical method. The disadvantage is the increased
computational work since we are basically computing the entire manifold twice, as there are two
initial line segments.



6.3 Results 117

several very sharp bends in the manifolds are visible. It is important to note that
these are not singularities; although the curvature is very high it is still finite. This is
a result of the continuity of the asymptotic Lyapunov directions. Another important
feature is that all intersections of the stable and unstable manifolds with each other
are transversal, justifying the assumption, first encountered in Theorem 5.8, that the
asymptotic Lyapunov directions are nowhere identical.

We have stated in section 6.1.1 that the global stable manifold is independent of
the point chosen as the starting location. This property is shown in Figure 6.6. Note
that although both manifolds are not completely identical, they share the same global
structure. However, there is another problem: the manifold should be dense in the
ergodic region. Even though we are considering segments that are quite long, up
to L = 20.000 in Figure 6.4, they leave large areas of the ergodic region uncovered.
This is a result of the irregularity of the w-measure, causing the manifold, which is
distributed according to this measure, to cluster heavily in certain areas. That more
and more areas are filled as L increases is shown in figure 6.8.

Finally, we check the growth properties of the invariant manifold, as described in
section 6.1.2. To this end, £(7") is shown as a function of 7" in Figure 6.7. Recall
that L£(T) is the length of the manifold segment ®(0,7) M (a,0; Ly) for specified
a € R and Ly € R. The behavior described in the theory is clearly visible: irregular,
non-monotonic exponential growth with rate A, the maximum Lyapunov exponent,
in the linear regime, followed by regular, monotonic exponential growth with rate o,
the topological entropy, in the asymptotic regime.

6.3.2 Comparing the w-measure and the manifold measure

In this section we will demonstrate the equivalence of the w-measure and the manifold
measure by computing the manifold measure for all systems and comparing this to the
w-measure as found in section 5.3.2. Given a manifold segment of sufficient length
L, the manifold measure is found directly from Definition 6.5. As in the previous
chapter, all results use logarithmic color scales so that the features in area of low
w-measure are visible.

Results for the 3-periodic three vortex system are shown in Figure 6.9, using the
same color scaling as in section 5.3.2 for both pictures. Note that the areas of high
w-measure are identical on both sides, but that the other features present are not
visible in the manifold measure. This is easily explained: the manifold is not long
enough yet to have passed through these areas. Unfortunately it is not possible to
increase L further due to memory constraints. To highlight the similarities, the same
results are shown in Figure 6.10, with the color scaling chosen to hide the features
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Figure 6.4: Stable manifold segment of (0,0) with L = 20.000 for the 3-periodic three
vortex system. The gray background is the full ergodic region as shown
in Figure 4.1.
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Figure 6.5: Top left: Stable (black) and unstable (red) manifold segments of (0,0)
with L = 2.000 for the 3-periodic three vortex system. Going horizontally
from there: progressive details.
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Figure 6.6: Left: stable manifold segment of (0,0) with L = 2.000 for the 3-periodic
three vortex system. Right: Same, of (—2,2).
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Figure 6.7: £(T') as a function of T" for the 3-periodic three vortex system, with a =
(0,0) and Ly = 1071%. The dotted and dashed lines are guides to the eyes
with slopes A;+ = 0.025 and o, = 0.1 respectively.
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Figure 6.8: Stable manifold segment of (0, 0) for the 3-periodic three vortex system for
various lengths. From the top left, going horizontally: L = 200, L = 400,
L = 2.000 and L = 20.000. The gray background is the full ergodic region
as shown in Figure 4.1.
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Figure 6.9: Left: Positive time manifold measure for the 3-periodic three vortex sys-
tem found using the stable manifold segment of (0,0) with L = 20.000
(shown in Figure 6.4). Right: Positive time w-measure as found in Figure
5.6 (using a higher resolution than used there).

Figure 6.10: Positive time manifold measure (left) and w-measure (right) for the 3-
periodic three vortex system as shown in Figure 6.9, with the color scale
adjusted to highlight the similarities between both measures.
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not present in both measures. It is now clear that in this region both measures are
indeed identical. Note also that the w-measure is not as well resolved as the manifold
measure. All further pictures will use color scaling to highlight the similarities, so
it is important to note that in all cases there are features present in the computed
w-measure which are not visible in the computed manifold measure.

Results for the other periodic systems are shown in Figures 6.11 and 6.12. It is
not necessary to consider the negative time measures, since these are just the mirror
images of the positive times measures for all periodic systems. This is not the case
in the irregular four vortex system. Results for this system are shown in Figures 6.13
(positive time) and 6.14 (negative time). In all cases the similarities between both
measures are apparent, although the w-measure is not as well resolved as the manifold
measure, particularly in the case of the irregular system. The effect is much stronger
there because of the lower quality of the computed w-measure.

Figure 6.11: Left: Positive time manifold measure for the 2-periodic three vortex sys-
tem found using the stable manifold segment of (0,0) with L = 16.000.
Right: Positive time w-measure as found in Figure 5.8 (using a higher
resolution than used there).

Overall however these results support the conclusion of section 6.1.3 that the man-
ifold measure and w-measure are identical. Any differences between the computed
measures can be explained by the numerical methods not having converged yet: the
computation of the manifold measure is inaccurate in areas of low w-measure since
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Figure 6.12: Left: Positive time manifold measure for the periodic four vortex system
found using the stable manifold segment of (0, —0.75) with L = 20.000.
Right: Positive time w-measure as found in Figure 5.10 (using a higher
resolution than used there).

the manifold is simply unlikely to pass through these areas for finite L, while the com-
putation of the w-measure is inaccurate in areas of high w-measure since the measure
is highly irregular there, as a result of which any computation using a finite amount of
points easily misses some areas of high w-measure. It is also interesting to note that
the computation of the manifold measures in this chapter took a few hours, while the
computation of the w-measures in the previous chapter took a few days.
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Figure 6.13: Left: Positive time manifold measure for the irregular four vortex system
found using the stable manifold segment of (0,0) with L = 15.000. Right:
Positive time w-measure as found in Figure 5.12 (using a higher resolution
than used there).

Figure 6.14: Left: Negative time manifold measure for the irregular four vortex system
found using the unstable manifold segment of (0,0) with L = 15.000.
Right: Negative time w-measure as found in Figure 5.13.
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7 Conclusions and recommendations

7.1 Conclusions

The central question of this work, posed at the start of chapter 1, was the relevance
of invariant manifolds to the description of the mixing process in two-dimensional
incompressible flows. We have shown how, through the w-measure, they describe the
mixing time distribution and the partial mixing structure. This allows us to concisely
describe how mixing occurs in any given 2D incompressible flow.

In the first place, there are multiple regimes within the phase space with different
mixing properties. If the flow is stationary, no mixing occurs anywhere. If it is non-
stationary mixing can occur, but that it occurs in some regions of the phase space
does not guarantee that the whole phase space mixes. In fact, there are one or mul-
tiple ergodic regions, and possibly one or more islands as well. Every ergodic region
mixes, in the sense that particles seeded inside them according to some distribution
will asymptotically be spread uniformly over this region. Islands are distinguished
from ergodic regions by the fact that mixing does not occur within them. If there
are multiple ergodic regions, they all mix individually but no particles are exchanged
between them. Islands are typical of periodic flows, but can occur in irregular flows
as well.

Now consider the mixing within an ergodic region. In particular, we will examine
what happens to a small cloud of many particles seeded somewhere in this region.
We already know that eventually it will spread out over the full ergodic region, but
we want to describe the process. Initially, the cloud will stay intact, undergoing some
stretching but no folding. The duration of this phase depends on the initial location,
a fact which can be used to define a structure in the ergodic region: the mixing time
distribution. At some point it will be stretched so much that folding occurs, and a
typical structure becomes visible: the partial mixing structure. This structure con-
tinues to evolve and become more complex, until at some point the features are too
complex for the limited number of particles to capture and all that remains visible is
a uniform distribution over the ergodic region. So, in describing the mixing there are
two relevant structures in the ergodic region: the mixing time distribution and the
partial mixing structure.
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These two structures are formalized by the concept of the w-measure. This is based
on Lyapunov exponents, the rate of exponential separation of nearby particle tra-
jectories. These can be considered both asymptotically and using finite times. The
asymptotic value, known as the maximum Lyapunov exponent (MLE), is constant in
the ergodic region and is hence a useful timescale in describing the mixing process.
The finite time values can be used to identify regions of high stretching, inducing in
this way a well-defined measure on the ergodic region, the w-measure. For positive
time, this corresponds to the mixing time distribution; for negative time, to the par-
tial mixing structure.

Another approach is based on the stable and unstable invariant manifolds of tra-
jectories in the ergodic region, i.e. the attracting and repelling sets respectively of
these trajectories. These are non-terminating curves in the ergodic region, invariant
under the flow. They are also dense in the ergodic region, although not uniformly
distributed. In fact, they are distributed exactly according to the w-measure, with
the global stable manifold corresponding to the positive time w-measure and hence
the mixing time distribution, and the global unstable manifold to the negative time
one and hence the partial mixing structure.

Converging numerical methods have been introduced to determine the w-measure
based on both of these approaches, i.e. Lyapunov exponents and invariant manifolds.
These give identical results asymptotically, but both are necessary because the con-
vergence properties are very different. In particular, the Lyapunov method should be
used when we are looking for features in areas of low w-measure, while the manifold
method is most accurate in areas of high w-measure.

7.2 Suggestions for further research

There are several avenues of possible further research based on these results, which
fall into two categories: ways to expand the methods to analyze more aspects of the
flow and the mixing process on the one hand, and applications to physical systems on
the other hand.

7.2.1 Further analysis

The relationship between invariant manifolds and Lyapunov exponents is a very im-
portant component of this work. There is another approach, already briefly men-
tioned, that also relies heavily on this relationship, namely the computation of La-
grangian coherent structures (LCS). A detailed description of these structures can be
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found in [69]. The central point is that invariant manifolds are approximated by ridges
in the finite time Lyapunov exponent field. This is very similar to our results, where
invariant manifolds are highly concentrated in areas of high Lyapunov exponent. A
comparison of the LCS approach to the w-measure approach could lead to a better
understanding of both methods and the mixing process in general.

We have seen several examples of transport barriers. These are barriers which
particles cannot cross. For example, the edges of islands in the ergodic region or of
vortex cores are transport barriers. A concept which we have not considered is that
of partial transport barriers, barriers which are rarely crossed by particles. There are
several methods to find them in periodic systems based on the transition matrix, which
approximates the fluid motion by a Markov process on a grid [18]. Partial transport
barriers are then found by identifying almost invariant sets, using eigenvector analysis
[3] or graph algorithms [56]. To give an impression, an eigenvector of the transition
matrix is shown for the periodic four vortex system in Figure 7.1. The dark and light
regions near the left and right dipoles respectively indicate partial transport barriers
(there are other partial barriers visible as well). These play an important role in the
mixing process, and so further developing these methods may provide fundamental
insights into this process. Another interesting point, also visible in Figure 7.1 when
compared with Figure 6.12, is that the structure of the w-measure is also visible in
the eigenvector.

Finally, we have only considered the negative and positive time w-measures sepa-
rately. It is also possible to combine them using the symmetric product measure [30].
This measure describes the spatial distribution of the intersections of the stable and
unstable manifolds with each other. In peroidic systems it is asymptotically identi-
cal to the Bowen measure, which describes the spatial distribution of periodic cycles
[42]. The relationship (if any) of this measure to the mixing properties has yet to be
established.

7.2.2 Possible applications

The methods developed here can be applied to any incompressible 2D flow as long as
we can accurately compute particle trajectories, i.e. we have a good approximation
for ®(t,T). A specific use could be the prediction of which areas mix the fastest, for
instance to determine where a catalyst should be injected to be efficiently mixed in a
reactor. Oceanic flows are often approximately incompressible and two-dimensional
and so are a frequent target for these analysis methods. Examples of the application
of the methods mentioned above can be found in [48] (LCS) and [24] (partial transport
barriers).

A new type of industrial mixer, found for instance in ’lab-on-a-chip’ implementa-
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Figure 7.1: Second eigenvector of the transition matrix for the periodic four vortex
System.

tions, is the static mixer [12]. The concept is that of a fluid flowing through some
suitably shaped pipe which induces mixing. An important point is that the flow is
stationary. This does not contradict the earlier statement that no mixing takes place
in stationary flows, since we are now considering a 3D flow. Still, the methods devel-
oped here can be applied; the motion along the pipe takes the role of time [41]. It
might also be possible to extend the methods to arbitrary stationary 3D flows, us-
ing an extension of symplectic topology to odd-dimensional spaces: contact topology
[9, 26].
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