
 Eindhoven University of Technology

MASTER

Optimal control of fluids based on lattice Boltzmann method discretizations

Palma, Vryan Gil S.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c101e034-6676-4eea-b468-179e52f95364

Optimal Control of Fluids based on

Lattice Boltzmann Method Discretizations

by

Vryan Gil S. Palma

Supervisor: Prof. Dr. René Pinnau

A thesis submitted in partial fulfilment
of the requirements for the degree of

Master of Science in Industrial Mathematics

Fachbereich Mathematik
Technische Universität Kaiserslautern

August 11, 2008

Abstract

In this study, the lattice Boltzmann method (LBM), based on the underlying statistical
mechanics on assumed fluid particle population interacting over a discrete lattice mesh,
is used to simulate fluid flows. LBM solves the macroscopic properties density, velocity
and pressure of fluid modeled by the Navier-Stokes equations. Assuming a desired fluid
behavior, we define an optimal control problem that has an objective function indicating
the proximity of a simulated fluid behavior to the desired fluid behavior, and has the
incompressible Navier-Stokes equations as the constraint. We aim to find the optimal
control, in the form of an external volume force on fluid, that steers the fluid simulation
towards the desired behavior. We perform the discrete adjoint method, a technique to
determine the gradient of the objective function efficiently, that utilizes the LBM as a
discrete solver of the constraint incompressible Navier-Stokes equations of the optimal
control problem. Finally, we apply the method of steepest descent, an iterative method
that uses the computed gradient, to search for the control that drives the simulation to
optimality.

i

ii

Acknowledgements

This work is the culmination of my 2-year European adventure as an Erasmus Mundus
master student. I would like to extend my deepest gratitude to the administrators of the
master programme in TU Eindhoven, the Netherlands and TU Kaiserslautern, Germany
for taking care of us - the international master students.

I would like to thank our professors in TU Eindhoven for giving us the first trainings
into what is it like being a master student. I would like to thank our professors in TU
Kaiserslautern for shaping us further, making us improve and become better. I would
like to thank Prof. Klar for his excellent teaching of the Numerics in PDE courses, Dr.
Marheineke for an insightful experience working on the modeling seminar, Prof. Pinnau
for his supervision in my master thesis and imparting on me how to work independently
and Dr. Thömmes for his guidance in this work and making me appreciate the field of
Computational Fluid Dynamics.

I would like to express my heartfelt gratitude to my Filipino family and friends who I can
not thank enough for always being there for me even when we are so many miles apart.
Finally, to the friends I met in Europe who, like me, have embarked into this wonderful
journey, who I call my family here, I will be forever grateful for being part of this chapter
of my life and for allowing me to be part of yours.

iii

iv

Contents

Abstract i

Acknowledgements ii

List of Figures viii

List of Tables ix

1 Introduction 1

2 The Lattice Boltzmann Method 5

2.1 Origins: The lattice gas automata . 6

2.2 From the Boltzmann equation to LBE . 7

2.3 From LBE to the incompressible Navier-Stokes equations 10

2.4 Boundary Conditions . 14

2.4.1 Periodic Boundary Conditions . 14

2.4.2 No-slip Boundary Conditions . 16

2.5 Implementation of LBM and simulations of fluid 17

2.5.1 Flow on an infinite channel . 19

2.5.2 Flow in a Cavity . 24

v

vi CONTENTS

3 Optimization using the discrete adjoint method 27

3.1 Optimal control problems . 27

3.2 Strategies in solving optimal control problems 28

3.3 The discrete adjoint method . 29

3.3.1 The duality viewpoint approach . 30

3.3.2 The Lagrange viewpoint approach 32

3.4 Optimal control of fluids based on LBM discretizations 35

3.4.1 Computations of the adjoint states and gradient 36

4 Method of steepest descent 45

4.1 Recognizing solutions . 45

4.2 Descent methods . 47

4.2.1 Choice of Search Direction . 47

4.2.2 Choice of Step Length . 48

4.3 Implementation, Results and Discussions . 50

4.3.1 Flow on an infinite channel . 51

4.3.2 Flow in a Cavity . 55

5 Conclusion 59

5.1 Limitations and recommendations for further work 60

Bibliography 61

Appendix 63

A.1 Full details of the computations of the adjoint states and gradient 65

List of Figures

1.1 Examples of lattice mesh and indicated possibilities of particle travel direc-
tions . 2

2.1 The discrete 9-velocity set labeled i = 0, . . . , 8 on a square lattice in two
dimensions . 10

2.2 12× 7 Square Lattice Structure . 15

2.3 Streaming process along direction i = 1 employing periodic boundary con-
ditions on the flow inlet and outlet . 15

2.4 The bounce-back boundary condition . 16

2.5 Implementation of bounce-back boundary condition in the streaming pro-
cess . 17

2.6 The evolution of the macroscopic properties u(x), u(y) and p from time t =
1, . . . , 500 assigning u(x)

0 to have a parabolic profile with u(x)
0,max = 1, u(y)

0 =
0 and F = (0, 0)T . 21

2.7 The u(x)
t at the steady-state at t = 637 . 22

2.8 The evolution of the macroscopic properties u(x), u(y) and p from time t =
1, . . . , 637 assigning u(x)

0 to have a parabolic profile with u(x)
0,max = 1, u(y)

0 =
0 and F = (0.1, 0)T . 23

2.9 Illustration of the effect of varying initial velocities, fixing the kinematic
viscosity and forcing . 24

2.10 The macroscopic properties u(x)
t , u

(y)
t and p at the steady-state at t = 510 . 25

vii

viii LIST OF FIGURES

3.1 The states computed and collected forward in time and used later for com-
puting the adjoint states backward in time. [15] 34

3.2 A schematic outline of the ”discretize then optimize” approach for opti-
mization using the incompressible Navier-Stokes equation as the constraint 36

3.3 The evolution of the macroscopic properties u(x), u(y) and p from time t =
1, . . . , 200, and the corresponding adjoint states computed from time t =
200, . . . , 1 . 40

3.4 Comparing the α(x)-component of the gradient using the discrete adjoint
method and the finite difference approximation 42

3.5 Comparing the α(y)-component of the gradient using the discrete adjoint
method and the finite difference approximation 43

4.1 An illustration of the velocities u(x)
t as the effect of the obtained control for

selected iterates of the steepest descent method k = 1, 5, 10 and 58 53

4.2 The contour map of the objective function for optimal control on an infinite
channel where the solution is α = (0.1, 0) 54

4.3 The contour map of the objective function for optimal control on fluid in a
cavity where the solution is α = (0, 0) . 58

List of Tables

2.1 Comparison of the effect of varying the viscosity in reaching the steady-state
for flow on an infinite channel . 23

2.2 Comparison of the effect of varying the viscosity in reaching the steady-state
flow in a cavity . 25

4.1 Sequence of iterates generated by the steepest descent method for opti-
mal control on an infinite channel assuming a starting control point α0 =
(0.09,−0.0015) where the solution is α = (0.1, 0) 52

4.2 Sequence of iterates generated by the steepest descent method for opti-
mal control on an infinite channel assuming a starting control point α0 =
(0.2,−0.004) where the solution is α = (0, 0) 55

4.3 Sequence of iterates generated by the steepest descent method for opti-
mal control on fluid in a cavity assuming a starting control point α0 =
(0.0027,−0.0027) where the solution is α = (0, 0) 56

ix

x LIST OF TABLES

Chapter 1

Introduction

To control a behavior of a system, as explained in a simple manner, pertains to influencing
the outputs of the system by manipulating its inputs and be able to steer the system
to produce desired outputs. This very idea opens up to a vast field of mathematics
involving control problems, control techniques and their various applications. Among the
many control approaches there are, optimal control is a control strategy where the control
inputted enables the system to optimize a particular gauge or indication of a system’s
performance.

We shall be interested in optimal control on fluids and attempt to influence the behavior of
fluid flows. Encompassing the small scale to the large scale, the blood circulating our veins,
the milk one spilled on the table, those 6 or 7 tropical cyclones hitting the Philippines per
year, in each day of our lives, we encounter countless occurrences characterized by fluid
flow phenomena. Thus it is not surprising at all why efforts have been devoted to model
fluid flow and undertakings have been directed to affect or alter fluid behavior. Causes
that motivate studies on control on fluid flows include improving efficiency of production
and product design, health, public safety, etc.

The Navier-Stokes equations mathematically describe fluid flows. It is an established set of
equations that models a large number of flow phenomena of various interests. The Navier-
Stokes equations, prevalently well-known as the foundation of many computational fluid
dynamics problems, are derived from the conservation of mass, momentum, and energy and
consequently give information regarding the macroscopic fluid properties: flow velocity,
pressure, and density of fluid.

A conventional and familiar approach of solving the Navier-Stokes equations and its sim-
plifications, such as the incompressible Navier-Stokes equations, is based on discretizing

1

2 Chapter 1: Introduction

the spatial domain to form a volume mesh or grid, transform the set of equations into
its discretized form and then apply a suitable numerical scheme to solve the discretized
equations. Discretization methods such as finite difference method (FDM), finite element
method (FEM) and finite volume method (FVM) are employed alongside many other
treatments and schemes that take care of efficient handling of discontinuities, avoidance
of spurious oscillations and several other occurrences causing deviations to the accuracy
of the fluid simulation.

On the other hand, one can choose alternative means of doing so. The lattice Boltzmann
method (LBM) is a method based on underlying statistical mechanics on assumed fluid
particle population interacting over a discrete lattice mesh. In this method based on
microscopic models of fluid particles, the collective behavior of microscopic particles leads
to the macroscopic properties of the fluid. And thus, with the LBM one solves an equivalent
discrete mesoscopic system on a lattice structure instead of solving the macroscopic system.
Among the primary scope of the applications of the LBM in computational fluid dynamics
is the numerical solution of the incompressible Navier-Stokes equation. In this work, we
shall put particular attention in involving the LBM in modeling fluid flows and solving
the macroscopic properties velocity, pressure, and density.

Figure 1.1: Examples of lattice mesh and indicated possibilities of particle travel directions

In the optimization that we shall be performing, first, we envision a certain fashion to
how we desire the simulated fluid to behave. Our goal is to determine the optimal control,
represented by an external volume force on the fluid, that maneuvers a simulation towards
the desired behavior. Optimality will be measured by how the macroscopic properties
of the simulated flow approximate those of the desired. We note that the macroscopic
properties of the flow are the solutions of Navier-Stokes equations. In this work, we shall
use the LBM to determine the macroscopic properties of the fluid flow. Hence, we shall
use the LBM as a solver for the Navier-Stokes equations.

Chapter 1: Introduction 3

Having introduced the ingredients we need, we conduct an explorative study entitled
Optimal Control of Fluids based on Lattice Boltzmann Method Discretizations. This work
is organized as follows. In Chapter 2, we give an overview of the LBM and its fundamentals
and present some fluid simulations using this method. We formally define in Chapter 3
an optimal control problem and discuss strategies in solving it. We also emphasize in the
chapter the particular approach, the so-called ”discretize and optimize,” that we shall be
heading to. In Chapter 4, we perform a systematic search for the optimal control among
an infinite number of possible candidates and layout and analyze results. Finally, we
wrap-up in Chapter 5 with our conclusions.

4 Chapter 1: Introduction

Chapter 2

The Lattice Boltzmann Method

Noted as an effective and promising tool in computational fluid dynamics, the lattice Boltz-
mann method is considered an alternative way of simulating fluid behavior apart from the
conventional approaches of modeling and simulating fluid flows [4]. LBM is a method
based on microscopic models of fluid particles and corresponding mesoscopic kinetic equa-
tions where ultimately the macroscopic properties of the fluid results from the collective
behavior of the microscopic particles. LBM is a method that is characterized by the evo-
lution of particle distributions and this evolution is basically composed of 1. a streaming
process describing how the particles propagates in a phase space or velocity space wherein
a simplified set of velocities is utilized, and 2. a collision process representing the redistri-
bution of particle populations when the particles interact. Among the many strengths of
this method, LBM has attracted attention due to its ability to easily represent complex
physical phenomena, such as handling complex geometries and boundaries and incorpo-
rating interfacial interactions, simplicity in implementation and numerical efficiency [13],
[4].

In this chapter, we present a brief overview of the LBM. We discuss the beginnings of the
LBM from the theory of gases. We present a derivation of the LBM from the Boltzmann
equation taking a 2-dimensional LBM model for demonstration. From this 2D LBM model,
we derive the 2D incompressible Navier-Stokes equation. We then use the LBM model to
simulate fluid flows and discuss results.

5

6 Chapter 2: The Lattice Boltzmann Method

2.1 Origins: The lattice gas automata

The origins of the lattice Boltzmann method can be traced to the lattice gas automata
(LGA). LGA is a dynamic that uses discrete time, space and particle velocities representing
an evolution modeled by

ni(x + ci∆t, t+ ∆t) = ni(x, t) + Ωi(n(x, t)), (2.1)

where x refers to nodes that denotes a particle position in the phase space, t is a point
in time and ∆t is time increment. The variables ni refers to a set of Boolean variables
that describes the particle occupation at nodes and is associated with a number of particle
velocities labeled i = 1, . . . ,M . The evolution of the particles consists of streaming and
collision. Streaming refers to the movement of a particle to the nearest node dictated by
the velocity ci, while collision refers to the rule of scattering and changing of position upon
interaction of particles arriving at the same node. The said collision rule is represented
by Ωi(n(x, t)).

LBM differs from LGA since instead of Boolean variables ni representing particle occupa-
tion at nodes, LBM uses a single-particle distribution. This particle distribution denotes
the density or the amount per unit volume of particles being located about node x moving
in velocity direction i at time t. LBM benefits from this replacement due to the elimina-
tion of the statistical noise in the method. Furthermore, a linearized collision operator in
place of Ωi(n(x, t)) is also used for simplification. A standard linearized collision operator
is the well-known Bhatnagar-Gross-Krook (BGK) collision operator which uses a single-
relaxation-time. In lattice BGK collision operator, a local equilibrium distribution term
is present and this is chosen in such a way that we recover the Navier-Stokes equations.
All in all, the derivation starts by replacing n in LGA equation (2.1) by f , the particle
distribution, hence obtaining a kinetic equation for the particle distribution - the lattice
Boltzmann equation (LBE). Its components is computed particularly the collision term so
that it ultimately lead to the recovery of the macroscopic Navier-Stokes equation (see [4]
for discussion.) We have

fi(x + ci∆t, t+ ∆t) = fi(x, t) + Ωi(f(x, t)),

where similarly, x gives the particle position in the phase space, t is a point in time and ∆t
is time increment and the fi’s are the particle distributions associated with the particle
velocities ci with directions labeled i = 1, . . . ,M , respectively. Ωi(f(x, t)) denotes the
collision operator that represents the rate of change of fi whenever particles collide. The
particle velocity moments of fi gives the macroscopic density ρ and momentum ρu, i.e.

ρ =
∑

i

fi,

Chapter 2: The Lattice Boltzmann Method 7

ρu =
∑

i

cifi,

p = c2sρ =
1
3
ρ.

2.2 From the Boltzmann equation to LBE

Formulated by Ludwig Boltzmann, the Boltzmann equation, also known as the Boltzmann
transport equation, describes the evolution of a particle distribution density in a velocity
space [22]. In the works [9] and [4], it has been shown that the LBE can also be obtained
from the Boltzmann equation for discrete velocities by using a small Mach number expan-
sion. From this derivation, LBE can be viewed as a discretized form of the Boltzmann
equation wherein we perform the discretization in some manner in time and space. This
way of derivation thus demonstrates that LBE is independent of LGA in contrast with
what Section 2.1 suggests. We consider the Boltzmann equation equipped with Bhatnagar-
Gross-Krook collision operator and let this single-relaxation-time approximation be our
starting point. Hence, we have

∂f

∂t
+ c · ∇f = − 1

λ
(f − g), (2.2)

where f ≡ f(x, c, t) is the single-particle distribution function, c is the microscopic veloc-
ity, λ is the relaxation time due to collision, and g is the Maxwell-Boltzmann distribution
function. The Maxwell-Boltzmann distribution, a well-known distribution in statistical
physics, gives the particle distribution of molecules in thermodynamic equilibrium [22]
and is given by

g ≡ ρ

(2πRT)D/2
exp

(
−(c− u)2

2RT

)
,

where R is the ideal gas constant, D is the dimension of the space, and ρ,u and T are
the macroscopic mass, velocity and temperature, respectively, and are the microscopic
velocity moments of the distribution function f which obeys the conservation constraints

ρ =
∫
fdc =

∫
gdc, (2.3)

ρu =
∫

cfdc =
∫

cgdc, (2.4)

ρε =
1
2

∫
(c− u)2fdc =

1
2

∫
(c− u)2gdc, (2.5)

8 Chapter 2: The Lattice Boltzmann Method

where the temperature can be derived using the relation involving the number of degrees
of freedom of a particle D0, Avogadro’s constant NA and the Boltzmann constant kB,

ε =
D0

2
RT =

D0

2
NAkBT.

Defining the material derivative or the time derivative along the characteristic line c as

d
dt
≡ ∂

∂t
+ c · ∇,

we can write (2.2) as
df
dt

+
1
λ
f =

1
λ
g. (2.6)

We integrate (2.6) over a time step of ∆t. Under the assumption that ∆t is small enough
and that g is locally smooth enough such that terms of order O(∆t2) can be neglected in
its approximation, we obtain

f(x + c∆t, c, t+ ∆t)− f(x, c, t) = −1
τ

[f(x, c, t)− g(x, c, t)] (2.7)

where τ ≡ λ/∆t is the dimensionless relaxation time. (2.7) is the evolution equation of
the distribution function f with discrete time.

One can observe that g is a function of macroscopic variables ρ,u and T , hence, calculation
of ρ,u and T is needed to construct the equilibrium function g. A properly constructed
equilibrium function will lead to the Navier-Stokes equation [9], [18]. With the use of∫

ψ(c)g(x, c, t)dc =
∑

i

Wiψ(ci)g(x, ci, t)

as an appropriate discretization in the velocity space so that integration can be approx-
imated by quadrature up to a certain degree of accuracy, where ψ(c) is a polynomial
function of c, Wi is the weight coefficient of the quadrature and ci is the discrete velocity,
we can be able to discretize the conservation constraints (2.3)-(2.5) as

ρ =
∑

i

fi =
∑

i

gi,

ρu =
∑

i

cifi =
∑

i

cigi,

ρε =
1
2

∑
i

(ci − u)2fi =
1
2

∑
i

(ci − u)2gi,

where
fi ≡ fi(x, t) ≡Wif(x, ci, t), (2.8)

Chapter 2: The Lattice Boltzmann Method 9

gi ≡ gi(x, t) ≡Wig(x, ci, t). (2.9)

As fully detailed in [9], we apply the low Mach number expansion on g and retain only
the terms up to order O(u2) and denote this as f eq. We shall have

g ∼ f eq ≡ ρ

(2πRT)D/2
exp

(
− c2

2RT

)
×

{
1 +

(c · u)
RT

+
(c · u)2

2(RT)2
− u2

2RT

}
.

Further, it has been remarked in [9] that discretizing the momentum space is coupled
to discretizing the configuration space such that a lattice structure is obtained. The
quadrature must also be accurate enough to satisfy the conservation constraints and retain
the necessary symmetries required to recover the Navier-Stokes equation.

In this work, we shall simulate 2-dimensional fluid flows and use the the lattice Boltz-
mann model in two-dimensional space with 9 velocities, also known as D2Q9. And hence,
resulting from the discussions above, using the notations

ci =

(0, 0), if α = 0,(
cos

[
(α−1)π

2

]
, sin

[
(α−1)π

2

])
c, if α = 1, 2, 3, 4(

cos
[

(2α−9)π
4

]
, sin

[
(2α−9)π

4

])√
2c, if α = 5, 6, 7, 8.

and a set of weight coefficients

wi =

4
9 , if α = 0,

1
9 , if α = 1, 2, 3, 4

1
36 , if α = 5, 6, 7, 8,

obtained from Wi in (2.8)-(2.9) and given by the relation

Wi = (2πRT)D/2 exp
(

c2

2RT

)
wi,

with RT = c2s = c2/3, the equilibrium distribution f eq
i for the 9-velocity lattice Boltzmann

evolution equation

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −1
τ

[fi(x, t)− f eq
i (x, t)] (2.10)

is given by

f eq
i = wiρ

[
1 + 3

(ci · u)
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

]
. (2.11)

10 Chapter 2: The Lattice Boltzmann Method

Figure 2.1: The discrete 9-velocity set labeled i = 0, . . . , 8 on a square lattice in two
dimensions

2.3 From LBE to the incompressible Navier-Stokes equa-
tions

There have been several works and several treatments applied to demonstrate the recovery
of the Navier-Stokes equation from the LBE such as those in [8], [12], [18]. Since in this
work, the incompressible Navier-Stokes equations shall be of interest, we follow first a
proposed lattice Boltzmann model for incompressible Navier-Stokes equations as presented
in [8]. The incompressible Navier-Stokes equations are then derived from the proposed
incompressible lattice Boltzmann model via Chapman-Enskog procedure.

[8] discusses and sets forth a necessity to improve the LBM for simulations of the in-
compressible Navier-Stokes equations in general, especially for unsteady flows, due to the
compressible effect, a trait of LBM causing density fluctuation. The work develops a lattice
Boltzmann model for the incompressible Navier-Stokes equations where the fundamental
idea suggests that the compressible effect can be explicitly eliminated by discarding the
terms of higher order Mach number, i.e. the terms of order O(Ma2).

In an incompressible flow, ideally, so that the divergence of the velocity is zero, the density
is assumed as constant, i.e. ρ = ρ0. Assuming an order O(Ma2) density fluctuation of δρ,

Chapter 2: The Lattice Boltzmann Method 11

we write ρ = ρ0 + δρ and substituting to (2.11), we have

f eq
i = wi(ρ0 + δρ)

[
1 + 3

(ci · u)
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

]
= wi

[
(ρ0 + δρ) + ρ0

(
3
(ci · u)
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

)
+δρ

(
3
(ci · u)
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

)]
.

And since Ma ≡ u
c , ignoring O(Ma3) terms or higher such as δρ · u

c and δρ · u2

c2
, we obtain

f eq
i = wi

[
ρ+ ρ0

(
3
(ci · u)
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

)]
. (2.12)

This is the equilibrium distribution function of the incompressible lattice Boltzmann model
where terms are of order O(Ma2) or lower. Since p typically appears in the incompressible
Navier-Stokes equation as an independent variable, we introduce a local pressure distri-
bution defined as

pi ≡ c2sfi =
1
3
fi,

and hence from here, the p-representation of the evolution equation of the LBE system is
obtained and given by

pi(x + ci∆t, t+ ∆t)− pi(x, t) = −1
τ

[pi(x, t)− peq
i (x, t)] . (2.13)

And since p = 1
3ρ (and p0 = 1

3ρ0),

peq
i ≡ c2sf

eq
i = wi

[
p+ p0

(
3
(ci · u)
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

)]
(2.14)

and the macroscopic properties are given by

p =
∑

i

pi, (2.15)

p0u =
∑

i

cipi, (2.16)

ρ =
1
c2s
p = 3p. (2.17)

Hence, (2.13)-(2.17) comprise the proposed lattice Boltzmann model for incompressible
Navier-Stokes equations in [8] we shall be adapting in this work.

At this point, through the proposed model, the incompressible Navier-Stokes equation can
be derived via the Chapman-Enskog procedure. The Chapman-Enskog procedure provides

12 Chapter 2: The Lattice Boltzmann Method

a way of relating the mesoscopic picture of the Boltzmann equation to the macroscopic
hydrodynamic picture by successive aprroximations using a mean-free timescale as a per-
turbation parameter [20]. Since a thorough discussion of the Chapman-Enskog analysis
goes beyond the scope of our study, we only present in following an outline of the analysis
based on [8] where the full details can be found.

We introduce the following expansions

fi(x + ci∆t, t+ ∆t) =
∞∑

n=0

εn

n!
Dn

t fi(x, t) = fi +Dtfi +
ε2

2!
D2

t fi + . . . ,

fi =
∞∑

n=0

εnf
(n)
i = ε0f

(0)
i + ε1f

(1)
i + ε2f

(2)
i + . . . ,

∂t =
∞∑

n=0

εn∂tn = ε0∂t0 + ε1∂t1 + ε2∂t2 + . . . ,

where ε = ∆t and Dt ≡ (∂t +ci ·∇). We can rewrite the lattice Boltzmann equation (2.10)

to order of O(ε0) : f
(0)
i = f eq

i , (2.18)

to order of O(ε1) : Dt0f
(0)
i = −1

τ
f

(1)
i , (2.19)

to order of O(ε2) : ∂t1f
(0)
i +

(
2τ − 1

2τ

)
Dt0f

(1)
i = −1

τ
f

(2)
i , (2.20)

where f eq
i is defined in (2.12) and Dtn ≡ (∂tn + ci · ∇). The conservation constraints can

be written as

∑
i

f
(0)
i = ρ,∑

i

cif
(0)
i = ρ0u,∑

i

f
(n)
i = 0, ∀n > 0,∑

i

cif
(n)
i = 0, ∀n > 0.

The Chapman-Enskog ansatz states that the time dependence of fi is through the variables
ρ and u and hence

∂tfi =
∂fi

∂ρ
∂tρ+

∂fi

∂u
∂tu.

Chapter 2: The Lattice Boltzmann Method 13

Through the properties of the 9-bit tensor E(n) =
∑

i6=0wici,1ci,2 . . . ci,n, we can obtain∑
i

f
(0)
i = ρ, (2.21)∑

i

cif
(0)
i = ρ0u, (2.22)

∑
i

ci,αci,βf
(0)
i =

1
3
c2ρδαβ + ρ0uαuβ, (2.23)

∑
i

ci,αci,βci,γf
(0)
i =

1
3
c2ρ0(δαβuγ + δγαuβ + δβγuα). (2.24)

The moments of (2.19) lead to the zeroth-order results

∂t0ρ+∇ · (ρ0u) = 0 (2.25)

∂t0(ρ0u) +∇ ·Π(0) = 0, (2.26)

where Π(0) =
∑

i cicif
(0)
i is the zeroth-order momentum flux-tensor. Using Π(0)

αβ given in
(2.23), (2.25)-(2.26) can be written as

1
c2s
∂t0 p̃+∇ · u = 0

∂t0u + u · ∇u = −∇p̃− u∇ · u,

where p̃ = c2sρ/ρ0 is the normalized pressure.

The moments of (2.20) lead to the first-order results

∂t1ρ = 0

∂t1(ρ0u) +
(

2τ − 1
2τ

)
∇ ·Π(1) = 0,

where Π(1) =
∑

i cicif
(1)
i which can be expanded into

Π(1)
αβ = τ

[
c2s(uαρ+ uβ∇αρ) + ρ0(uα(u · ∇)uβ + uβ(u · ∇)uα)− c2sρ0(∇αuβ +∇βuα)

]
.

We discard terms of order O(Ma3) and terms of order O(u3) to be consistent with the
small velocity expansion of f eq

i up to the order O(u2) resulting to(
2τ − 1

2τ

)
∇α ·Π(1)

αβ = − ν

∆t
ρ0∇2uα +O(Ma3),

where

ν =
2τ − 1

6
∆x2

∆t
.

14 Chapter 2: The Lattice Boltzmann Method

Combining the zeroth and first order results where ∂t = ∂t0 + ε∂t1 , setting expansion
parameter ε = 1, we obtain the incompressible Navier-Stokes equation accurate to order
O(Ma2) for the continuity equation and O(Ma3) in momentum equation

∇ · u = 0 +O(Ma2)
∂u
∂t

+ u · ∇u = −∇p̃+ ν∆u +O(Ma3).

2.4 Boundary Conditions

The problem of formulating the proper boundary conditions to be used in the LBM model
comes down to finding the most suitable relations between the incoming and outgoing
populations [21]. An important consideration in the modeling of fluid flows is the treatment
of the fluid surroundings. Normally, macroscopic information on boundaries are given
such as no-slip boundary conditions on walls for fluid flows. Translating this macroscopic
information into the microscopic distribution functions is where the difficulties arises.
Different treatments are proposed by different authors as these treatments are developed
to provide better accuracy and stability for the simulation [13].

We shall examine two classes of boundary conditions in this work, namely, the periodic
boundary conditions and the no-slip boundary conditions and apply it on a simple domain
represented by a rectangular grid.

2.4.1 Periodic Boundary Conditions

Naturally, when one wants to model a flow on an infinite domain, one takes a finite portion
of the domain and apply periodic boundary conditions on the domain boundaries. The
main idea is that a traveling particle which go outs of the system on the right will reenter
on the left. Periodic boundary conditions replicate the behavior of the fluid making a
simulation consisting only of a small lattice but behaving as if it is infinite in size. Periodic
boundary conditions are typically used when the effects of the surface can be neglected.

To implement the periodic boundary conditions, we use the concept of buffers. This means
we associate a buffer to a lattice node and store temporarily in memory the information
such as particle distribution, density, velocity, pressure, etc. for each lattice node while
the information moves from one place to another due to either streaming or collision.
As illustrated in Figure 2.2, 1 represents the fluid particle nodes and 0 as a ghost node
represents either the walls as boundary or the flow inlet or outlet in a domain. We have

Chapter 2: The Lattice Boltzmann Method 15

an m × n lattice where there are m − 2 fluid particle nodes along the vertical axis and
n− 2 fluid particle nodes along the horizontal axis.

Figure 2.2: 12× 7 Square Lattice Structure

Consider the D2Q9 lattice Boltzmann model in two-dimensional space with 9 velocities.
Let us examine what happens to the particle distribution fi (or pi for the proposed model of
[8]) associated with each of the 9 velocity directions as labeled in Figure 2.1. Here, we use
9 matrices fi where particle distribution is stored at each lattice node. Upon application
of the streaming process to each matrix depending on the associated velocity direction,
the periodic boundary condition is imposed by filling the empty inward population by
the outward population. As an illustration, Figure 2.3 depicts the streamed population
along direction 1. As described, we fill the empty incoming population by the outgoing
population which are temporarily lying on the ghost nodes. Finally, 0 is reassigned to
ghost nodes. Imposing periodicity for the streamed population along the other directions
follows in similar fashion.

Figure 2.3: Streaming process along direction i = 1 employing periodic boundary condi-
tions on the flow inlet and outlet

16 Chapter 2: The Lattice Boltzmann Method

2.4.2 No-slip Boundary Conditions

One of the most typically used boundary condition is the no-slip boundary condition. It is
a familiar knowledge that a no-slip boundary condition for viscous fluid represents a fluid
with zero velocity at a solid boundary. The idea behind this states that at the contact
surface, a moving fluid in contact with a solid body will not have any velocity relative
to the body. For the implementation of the no-slip boundary conditions, the so-called
”bounce-back” treatment is typically used. A simple [24] approach is a direct reflection
of particles approaching the walls. Here, when a particle hits a node of the wall, the
particle distribution scatters back to the node it came from. Let us apply the bounce-back
boundary conditions in the D2Q9 model as illustrated in Figure 2.4. Consider the particles
that arrives at nodes W, X, Y and Z. Whenever a particle going in direction 8 arrives at
W from node X, a direction-6 particle is bounced back to node X the following time step.
Similarly, if a particle traveling along direction 4 arrives at W from Y, a direction-2 particle
is sent back to node Y the following time step, and for a particle traveling along direction
7 arrives W, a direction-5 particle is sent back to node Z. This logic using direct reflection

Figure 2.4: The bounce-back boundary condition

at the walls as implemented with use of buffers is shown in Figure 2.5. Here, the figure in
the left-hand side illustrates the population streamed along direction 2 and in the figure
in the right-hand side the population streamed along direction 4. In the left-hand side
figure, the population arriving at the wall is bounced back to its original location before
the streaming along the opposite direction, i.e. direction 4. The same concept applies to
the population arriving at the wall in the right-hand side figure.

It is worth pointing out that there are several variations and improvements to the simple
bounce-back technique that is pointed above as presented in various works. In [11], some
approaches for the implementation of no-slip boundary condition were compared and a

Chapter 2: The Lattice Boltzmann Method 17

Figure 2.5: Implementation of bounce-back boundary condition in the streaming process

developed approach is proposed along with the advantages and difficulties that comes with
it.

2.5 Implementation of LBM and simulations of fluid

In the previous sections, we provide necessary background as foundation to be able to
implement LBM and simulate fluid flow. Summarizing, as we have seen in the previous
sections the lattice Boltzmann evolution equation using the simplest collision operator,
i.e. the single-relaxation-time BGK, is given by

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −1
τ

[fi(x, t)− f eq
i (x, t)]

with the equilibrium distribution

f eq
i = wiρ

[
1 + 3

(ci · u)
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

]
.

and equations for the macroscopic properties

ρ =
∑

i

fi, ρu =
∑

i

cifi, p =
1
3
ρ. (2.27)

The right-hand side of the evolution equation represents the collision process while the
left-hand side represents the streaming. Furthermore, (2.27) gives the update rule for the
macroscopic properties at each point in time in the evolution.

As we expect a constant density for the incompressible Navier-Stokes equation, we use a
corresponding formulation, setting p = csρ and p0 = csρ0, with the evolution equation is

18 Chapter 2: The Lattice Boltzmann Method

given by

pi(x + ci∆t, t+ ∆t)− pi(x, t) = −1
τ

[pi(x, t)− peq
i (x, t)]

with the equilibrium pressure distribution

peq
i ≡ c2sf

eq
i = wi

[
p+ p0

(
3
(ci · u)
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

)]
and equations for the macroscopic properties

p =
∑

i

pi, p0u =
∑

i

cipi, ρ = 3p

where the pressure p̃ appearing in the Navier-Stokes equation is given by p̃ =
p

ρ0
and the

kinematic viscosity is ν =
2τ − 1

6
. In addition, this model offers computational simplicity

that shall benefit us in the succeeding chapters wherein we evaluate derivatives.

For our fluid simulation, it is an important point to emphasize our interest to apply an
external force to drive the fluid flow. This external force shall then be regarded as a
control that we shall be investigating further towards the next chapters. To incorporate
an external body force to engine the fluid flow, we introduce a simple force term of the
form

1
3
ci · F

where F = (Fx, Fy)T is a vector representing the 2-dimensional volume force and shall be
introduced as a part of the collision term.

As already introduced in the previous section, for our implementation, we use buffers
for storing particle distributions, density, velocity, pressure, etc. for each location. This
technique provides an easy implementation of the streaming and the application of the
boundary conditions as described in the previous section. Note that there are many
ways to carry out the implementation of LBM where one normally takes into account the
computational speed and efficiency of the implementation in fulfilling the dictates of the
application where it will be used. We start with initializing values for the distributions
and macroscopic properties. Since the we are dealing with a evolutionary problem, we
produce a sequence of iterates for each point in time and ideally, at some point, a steady-
state solution is reached and the process is terminated. One possible condition to impose
stipulating that the steady-state is reached is by using the criteria

∑
i

∑
j

(∣∣u(x)(xij , t+ ∆t)− u(x)(xij , t)
∣∣ +

∣∣u(y)(xij , t+ ∆t)− u(y)(xij , t)
∣∣)∑

i

∑
j

(∣∣u(x)(xij , t)
∣∣ +

∣∣u(y)(xij , t)
∣∣) < tol,

(2.28)

Chapter 2: The Lattice Boltzmann Method 19

where tol is an assigned tolerance value. We present here an algorithm that we shall use
for the LBM as outlined in Algorithm 1.

Algorithm 1 D2Q9 LBM with BGK
Set initialization values:

p0 = pinit

u0 = uinit

pi,0 = peq
i,0(p0,u0)

t = 1

while steady-state is not yet reached do

compute the equilibrium distribution
peq

i,t(pt,ut)
perform collision

p̄ =
(
1− 1

τ

)
pi,t + 1

τ p
eq
i,t(pt,ut)

apply forcing
p̄ = p̄+ F

perform streaming
apply boundary condition technique
update

pi,t+1 = p̄
pt+1 =

∑
i pi,t+1

ut+1 =
∑

i cipi,t+1

t = t+ 1

end while

Finally, using what we have gathered, we implement LBM to simulate fluid flows. All
simulations presented here have been performed in Matlab 7.0.4 on a T60 IBM Thinkpad.

2.5.1 Flow on an infinite channel

First, let us consider a flow on an infinite channel driven by a constant volume force. We
model this on the unit square domain assigning the left side to be the flow inlet and the
right to be the flow outlet, and the top and the bottom to be the channel walls. We
construct a square mesh in this domain for the lattice. To model the flow on an infinite

20 Chapter 2: The Lattice Boltzmann Method

channel, we prescribe periodic boundary conditions on the inlet and the outlet. The no-slip
boundary conditions will be modeled by the bounce-back scheme at the channel walls.

We run simulations for 25 × 30 lattice of fluid particles, kinematic viscosity of 1 (giving
τ = 3.5) and macroscopic density ρ0 of 1 for every node. Time step ∆t is assumed to be
1.

First we test the trivial case when the fluid has zero initial velocities u(x)
0 = 0 and u(y)

0 = 0
and volume force vector F = (0, 0)T is applied. As expected, for any number of iterations,
u

(x)
t and u(y)

t remained zero, and p is 1 for every node.

Next, we investigate what happens when the fluid has nonzero initial velocity but there is
an absence of force to drive the flow. We assign initial velocity u

(x)
0 to have a parabolic

profile having a maximum value u
(x)
0,max = 1 while u

(y)
0 = 0 and volume force vector

F = (0, 0)T is applied. Figure 2.6 shows the evolution of the macroscopic properties
u(x), u(y) and p from time t = 1, . . . , 500. The figure on the upper left plots u

(x)
t for

t = 1, . . . , 500. The parabola marked by + represents the initial horizontal velocity
u

(x)
0 , the parabola marked by ◦ gives u(x)

50 , / gives u(x)
100, . gives u(x)

300 and ∗ for gives
u

(x)
500. For each iterations, the parabola flattens until u(x)

t becomes zero. The flattening
of the parabola can be attributed to the effect of the viscosity as the fluid approaches its
steady-state. The particles have an initial horizontal velocity but the viscosity slows down
the motion of the particles until they eventually stop moving. The figure on the upper
right plots u

(y)
t for t = 1, . . . , 500. As shown, they are characterized by computational

noise with magnitude of 10−16 suggesting that the vertical velocity that is initially set to
zero remains zero. The figure on the bottom suggests p remained constant throughout
t = 1, . . . , 500. On both last 2 figures, + represents the initial profile while × marks the
profile at t = 500.

Next, we assign initial u(x)
0 to have a parabolic profile having a maximum value u

(x)
0,max =

1 while u
(y)
0 = 0 and volume force vector F = (0.1, 0)T is applied. Now the simulation

is driven by a constant volume force eastwards. We observe the flow until it reaches the
steady-state as described by (2.28) where we set tol = 10−7, the machine single-precision.
Figure 2.7 shows the steady-state u

(x)
t reached after 637 iterations where u

(x)
637,max =

15.9989 . We observe that the particles in the center travels with the highest speed and
the speed decreases when the particles are nearer the channel walls. Figure 2.8 shows the
evolution of the macroscopic properties u(x), u(y) and p from time t = 1, . . . , 637. The
figure on the upper left plots u(x)

t for t = 1, . . . , 637. The parabola marked by + represents
the initial horizontal velocity u(x)

0 , the parabola marked by ◦ gives u(x)
50 , / gives u(x)

100, .

gives u(x)
300 and ∗ for gives u(x)

637. The parabola colored red gives the analytical solution
which gives an error difference of 0.0479 with respect to the obtained numerical solution.

Chapter 2: The Lattice Boltzmann Method 21

Figure 2.6: The evolution of the macroscopic properties u(x), u(y) and p from time t =
1, . . . , 500 assigning u(x)

0 to have a parabolic profile with u
(x)
0,max = 1, u(y)

0 = 0 and F =
(0, 0)T

22 Chapter 2: The Lattice Boltzmann Method

As we observe, the forcing increases the initial velocity for some time until the velocity
converge to the steady-state velocity. As shown in the upper right, u(y)

t for t = 1, . . . , 637
are characterized by computational noise with magnitude of 10−14 suggesting that the
vertical velocity remains zero. The figure on the bottom suggests p remained constant
throughout t = 1, . . . , 637.

Figure 2.7: The u(x)
t at the steady-state at t = 637

We also investigate and test the effect of varying initial velocities by fixing the kinematic
viscosity and forcing. Figure 2.9 shows results for fluid kinematic viscosity of 1, volume
force vector F = (0.1, 0)T , setting u

(y)
0 = 0 for 3 cases of initial horizontal velocity u

(x)
t

shown in the left figure: 1. for u(x)
0 having a parabolic profile with u(x)

0,max = 1 marked by

/, 2. for u(x)
0 = 0 marked by + and 3. for u(x)

0 having a parabolic profile which is negative
of case 1 marked by ◦. The figure on the right suggests the coinciding of the resulting
steady-state horizontal velocities obtained marked by /,+ and ◦ after 637, 641 and 646
iterations, respectively for each cases. All steady-state horizontal velocities obtained have
u

(x)
t,max = 15.9989.

Lastly, we compare the effect of the varying the viscosity in reaching the steady-state.
We set the volume force vector to be F = (0.1, 0)T , u(x)

0 to have a parabolic profile with
u

(x)
0,max = 1 and u

(y)
0 = 0. Table 2.1 indicates that larger viscosity implies less iterations

to reach the steady-state and lower horizontal velocity at the steady-state.

Chapter 2: The Lattice Boltzmann Method 23

Figure 2.8: The evolution of the macroscopic properties u(x), u(y) and p from time t =
1, . . . , 637 assigning u(x)

0 to have a parabolic profile with u
(x)
0,max = 1, u(y)

0 = 0 and F =
(0.1, 0)T

viscosity µ τ no. of iterations u
(x)
t,max

0.75 2.75 807 21.0481
1 3.5 637 15.9989

1.5 5 473 11.0994
2 6.5 407 8.7996

2.25 7.25 393 8.0830

Table 2.1: Comparison of the effect of varying the viscosity in reaching the steady-state
for flow on an infinite channel

24 Chapter 2: The Lattice Boltzmann Method

Figure 2.9: Illustration of the effect of varying initial velocities, fixing the kinematic vis-
cosity and forcing

2.5.2 Flow in a Cavity

To model a flow in a cavity, we prescribe a no-slip boundary conditions on all 4 sides of
the domain. Hence, in this setup, there is no inlet and outlet for the flow. We observe
what happens to the flow when there is a nonzero initial velocity and zero forcing to drive
the flow.

We run simulations for 25 × 30 lattice of fluid particles, kinematic viscosity of 1 (giving
τ = 3.5) and macroscopic density ρ0 of 1 for every node. We assign initial u

(x)
0 to have

a parabolic profile having a maximum value u
(x)
0,max = 1 while u

(y)
0 = 0 and volume

force vector F = (0, 0)T is applied. We observe the flow until it reaches the steady-
state. Figure 2.10 shows the steady-state u(x)

t , u
(y)
t and p reached after 510 iterations. As

expected, the velocity zeroes out (magnitude of 10−6) throughout time and the pressure
remains constant throughout the domain (approximately) 1.

Once again, we compare the effect of the varying the viscosity in reaching the steady-state
when zero volume force is applied shown in Table 2.2. We set u(x)

0 to have a parabolic
profile with u

(x)
0,max = 1 and u

(y)
0 = 0. As expected, larger viscosity implies less iterations

to reach the steady-state.

Chapter 2: The Lattice Boltzmann Method 25

Figure 2.10: The macroscopic properties u(x)
t , u

(y)
t and p at the steady-state at t = 510

viscosity µ τ no. of iterations
0.75 2.75 667
1 3.5 510

1.5 5 350
2 6.5 252

Table 2.2: Comparison of the effect of varying the viscosity in reaching the steady-state
flow in a cavity

26 Chapter 2: The Lattice Boltzmann Method

Chapter 3

Optimization using the discrete
adjoint method

Optimization is a familiar concept we encounter in our everyday lives as we are faced daily
with decisions to make. In decision-making, one normally chooses what is best to serve
his interest among the choices bounded by the limits of his resources. In this chapter,
we shall be looking on a certain type of an optimization problem and examine ways of
solving this. We shall attempt to formulate a way of solving the problem in such a way
that the optimization can be done inexpensively and can be applied in the context of fluid
simulation using the LBM.

3.1 Optimal control problems

Consider the problem

min
v∈V

ϕ̂(v) subject to Q̂(v) = 0 (3.1)

where ϕ̂ : V → R and Q̂ : V → Z, V and Z are Banach spaces, and where Q̂(v) = 0
typically represents a partial differential equation or a system of coupled partial differential
equations (PDEs). In this optimization problem, the function ϕ̂ is known as the objective
function or cost function and Q̂(v) = 0 is the optimization constraint. The domain
V of ϕ̂ is the search space while the elements v ∈ V are the feasible solutions. A feasible
solution that minimizes the objective function is called an optimal solution.

The optimization variable v admits a natural splitting into 2 parts: a state w ∈ W and
a control α ∈ Y , where W and Y are Banach spaces. The problem (3.1) can now be

27

28 Chapter 3: Optimization using the discrete adjoint method

formulated as
min

(w,α)∈W×Y
ϕ(w,α) subject to Q(w,α) = 0 (3.2)

where ϕ : V = W × Y → R and Q : V = W × Y → Z, where W,Y and Z are function
spaces. We call the constraint Q(w,α) = 0 as the state equation.

The splitting of v = (w,α) is a typical strategy in optimization and problems of this
structure are called optimal control problems. Here w ∈ W describes the state of the
considered system represented by Q(w,α) = 0. Assuming the well-posedness of Q(w,α) =
0, for every α ∈ Y , there exist corresponding unique w(α). The control α ∈ Y is a
parameter that we shall aim to determine such that α drives the system to optimality.

3.2 Strategies in solving optimal control problems

One of the possible ways of attacking an optimization problem is by using gradient-based
methods. Here, the optimization procedure requires the first derivatives of the objective
function. Difficulties and challenges arise, however, when an attempt to obtain these
derivatives are carried out. As emphasized in [19], one consideration that needs to be
taken into account is whether such derivative information is available, not only in the sense
that it has to exist and be continuous, but also whether their values can be computed with
reasonable expense.

In solving the optimization problem (3.2) using gradient-based methods, the principal step
is determining the gradient of the objective function ϕ(w,α), i.e., evaluating the derivative
of the function ϕ(w,α) with respect to parameter α in the situation where ϕ depends on
α indirectly, via the intermediate variable w(α). There are number of ways of computing
the gradient which can be categorized mainly into: 1. Sensitivity or Forward approach
and 2. Adjoint or Backward or Reverse approach.

In the sensitivity approach, generally speaking, we compute the sensitivity of the solution
(state) w of the state equation with respect to the control α in some way. The gradient
of the objective function ϕ is then evaluated by applying the chain rule of differentiation,

using the sensitivity
∂w

∂α
where we will ultimately have

Dϕ(w,α)
Dα

=
∂ϕ

∂w

∂w

∂α
+
∂ϕ

∂α
.

Computing the matrix-vector product
∂ϕ

∂w

∂w

∂α
can rather be expensive since this will con-

sist of an entire state equation for each control.

Chapter 3: Optimization using the discrete adjoint method 29

On the other hand, using the adjoint approach, we omit the sensitivities of w and instead
we introduce a variable ψ we call the adjoint state as shall be explained in details in
Section 3.3, where ultimately we solve the equation

Dϕ(w,α)
Dα

= −ψT ∂Q

∂α
+
∂ϕ

∂α
. (3.3)

In applying the adjoint method, the terms appearing in equation (3.3) need to be com-
puted. Suppose we are given a system of PDE serving as the state equation, the optimal
control problem constraint. However, instead of using this system of PDE in its continu-
ous form, we can take instead a discretized representation of the system of PDEs (i.e. a
set of algebraic equations and algebraic expressions as an approximation for the system
of PDE) and w the discrete representation of the solution of the system. This discretized
representation shall function as the constraint Q(w,α) = 0. And from this shall follow
the computation of the terms of the gradient equation. We call this method the dis-
crete adjoint method and this whole procedure is coined in [10] as ”discretize then
optimize”.

The description ”discretize then optimize” distinguishes this to another way of tackling
the optimization problem. This approach is done with the continuous Q(w,α) = 0 as a
starting point. From here, the system is differentiated at the continuous level to obtain
the adjoint formulation of the problem defining an adjoint solution and then the adjoint
discretization follows. This approach is called the continuous adjoint method since the
adjoint technique is applied on the continuous level and the whole procedure is described
as ”optimize then discretize.”

In this work, we shall be heading towards the ”discretize then optimize” track and among
the possible methods for a class of gradient-based optimization approaches, we shall put
our interest in the application of the discrete adjoint method for the advantage it offers in
computational efficiency.

3.3 The discrete adjoint method

In the following 2 subsections, we present 2 ways of deriving the so-called adjoint equation
and gradient equation we use for the discrete adjoint method.

30 Chapter 3: Optimization using the discrete adjoint method

3.3.1 The duality viewpoint approach

As a motivation (also used in [15] and [6]), let us assume a matrix A and vectors g and c
are known. Suppose we want to compute

gT b such that Ab = c. (3.4)

The straightforward treatment to this problem is to solve b and then compute gT b. Alter-
natively, as another treatment we introduce s and compute

sT c such that AT s = g. (3.5)

Observe that
sT c = sT (Ab) = (AT s)T b = gT b.

Hence, solving sT c is accomplishing the original aim of solving gT b. The constructed
problem (3.5) is called the dual problem of (3.4). The advantage of resorting to solve
the dual problem becomes apparent when we have an aggregate of vectors bi and ci,
forming matrices B and C. Thus, (3.4) becomes

gTB such that AB = C

and the dual problem reformulates to

sTC such that AT s = g.

Clearly, the dual is easier to solve in eventually computing the value of gTB.

Now, recall our optimal control problem (3.2). Suppose in particular, that the state
equation is an evolution equation that can be written as

Qt(wt, wt−1, αt−1) = 0 (3.6)

where the subscripts denote time indexing, i.e. wi, αi are the state and the control at time
i, respectively. Assuming that w0 is a given initial state, we then evolve into T subsequent
states w1, . . . , wT . We can write (3.6) in a form of an explicit update rule

wt = Qt(wt−1, αt−1). (3.7)

Thus, (3.2) reformulates into

min
wt∈Rm,αt∈Rn

ϕ(wt, αt) subject to wt = Qt(wt−1, αt−1), t = 1, . . . , T. (3.8)

The reason for this assumption on the form of the state equation will become apparent in
the following section.

Chapter 3: Optimization using the discrete adjoint method 31

Let us collect the states and control to form vectorsW = [w1, . . . , wT]T and α = [α1, . . . , αT]T

and define a vector function

Q(W,α) = [Q1(w0, α0), . . . , QT (wT−1, αT−1)]T ,

and therefore we can write our optimization constraint (3.7) as

W = Q(W,α). (3.9)

Now computing the gradient of ϕ with respect to control α,

dϕ

dα
=

∂ϕ

∂W

dW

dα
+
∂ϕ

∂α
. (3.10)

Computing this directly is extremely costly, as the matrix
dW

dα
consists of an entire state

sequence for each control. As we shall see, the adjoint method provides a way of side-
stepping this computation while still arriving at exact gradient of ϕ [15]. Differentiating

the constraint equation (3.9) gives us a linear constraint on the derivative matrix
dW

dα
.

Thus, the first term of equation (3.10) calls for calculating

∂ϕ

∂W

dW

dα
such that

(
I − ∂Q

∂W

)
dW

dα
=
∂Q

∂α
. (3.11)

As we have seen in the movitation demonstrated above, using the dual, (3.11) can be
efficiently computed as

P T ∂Q

∂α
such that

(
I − ∂Q

∂W

)T

P =
∂ϕ

∂W

T

. (3.12)

To calculate P , let us rewrite the constraint in equation (3.12) as

P =
(
∂Q

∂W

)T

P +
∂ϕ

∂W

T

. (3.13)

As W is an aggregate of a sequence of forward states w1, . . . , wT , similarly, we may view
P as an aggregate of a sequence of variables ψ1, . . . , ψT we call the adjoint states. (3.13)

implies ψT =
dϕ

dwT

T

and

ψt =
(
∂Qt

∂wt

)T

ψt+1 +
∂ϕ

∂wt

T

, t = T − 1, . . . , 1. (3.14)

32 Chapter 3: Optimization using the discrete adjoint method

Finally, the gradient in (3.10) is computed by

dϕ

dα
= P T ∂Q

∂α
+
∂ϕ

∂α
,

which is equivalent to

dϕ

dαt
= ψT

t

∂Q

∂αt
+
∂ϕ

∂αt
, t = 1, . . . , T. (3.15)

(3.14) is called the adjoint equation and (3.15) is called the gradient equation and
the procedure of obtaining these equations using the dual problem and introducing the
adjoint variables is referred to in literature as the duality viewpoint approach.

3.3.2 The Lagrange viewpoint approach

The adjoint equation (3.14) and the gradient equation (3.15) can be derived in another
manner often referred to in literature as the Lagrange viewpoint approach. Once
again, let us recall the reformulated optimal control problem (3.8) and suppose the objec-
tive function ϕ has the form

ϕ =
T∑

t=1

ϕt(wt, αt). (3.16)

Let gt ∈ Rn×1 be the gradient of ϕt with respect to control αt ∈ Rn×1.

As outlined in [10], to solve gt, let us use ut = dαt ∈ Rn×1 and zt = dwt ∈ Rm×1 and
differentiate the state equation wt = Qt(wt−1, αt−1). We have

zt︸︷︷︸ =
∂Qt

∂wt−1
(wt−1, αt−1)︸ ︷︷ ︸ zt−1︸︷︷︸ +

∂Qt

∂αt−1
(wt−1, αt−1)︸ ︷︷ ︸ ut︸︷︷︸, z0 = 0.

∈ Rm×1 ∈ Rm×m ∈ Rm×1 ∈ Rm×n ∈ Rn×1

(3.17)
Differentiating (3.16),

dϕ︸︷︷︸ =
T∑

t=1

[
∇wϕt(wt, ut)︸ ︷︷ ︸ ·zt

]
+

T∑
t=1

[
∇αϕt(wt, ut)︸ ︷︷ ︸ ·ut

]
,

∈ R ∈ Rm×1 ∈ Rn×1

(3.18)

where∇wtϕt(wt, ut) is the gradient of ϕt with respect to the state variables and∇αtϕt(wt, ut)
is the gradient of ϕt with respect to the control variables.

Setting

Gt =
∂Qt

∂wt−1
(wt−1, αt−1) Ht =

∂Qt

∂αt−1
(wt−1, αt−1)

γt = ∇wtϕt(wt, ut) ht = ∇αtϕt(wt, ut),

Chapter 3: Optimization using the discrete adjoint method 33

(3.17) becomes
zt = Gtzt−1 +Htut. (3.19)

Multiplying ψt ∈ Rm×1 to (3.19), we get

ψT
t︸︷︷︸ zt︸︷︷︸ = ψT

t︸︷︷︸ Gt︸︷︷︸ zt−1︸︷︷︸ + ψT
t︸︷︷︸ Ht︸︷︷︸ ut︸︷︷︸

R1×m Rm×1 R1×m Rm×m Rm×1 R1×m Rm×n Rn×1

ψt · zt = GT
t ψt · zt−1 + HT

t ψt · ut

and summing up through time, we get

T∑
t=1

ψt · zt =
T∑

t=1

GT
t ψt · zt−1 +

T∑
t=1

HT
t ψt · ut.

Since z0 = 0, we reduce to

T∑
t=1

ψt · zt =
T∑

t=2

GT
t ψt · zt−1 +

T∑
t=1

HT
t ψt · ut

T∑
t=1

ψt · zt =
T−1∑
t=1

GT
t+1ψt+1 · zt +

T∑
t=1

HT
t ψt · ut

0 = −ψT · zT −
T−1∑
t=1

ψt · zt +
T−1∑
t=1

GT
t+1ψt+1 · zt +

T∑
t=1

HT
t ψt · ut

0 = −ψT · zT +
T−1∑
t=1

(
−ψt +GT

t+1ψt+1

)
· zt +

T∑
t=1

HT
t ψt · ut. (3.20)

On the other hand, (3.18) becomes

dϕ =
T∑

t=1

γt · zt +
T∑

t=1

ht · ut

dϕ = γT · zT +
T−1∑
t=1

γt · zt +
T∑

t=1

ht · ut (3.21)

Adding (3.20) and (3.21), we obtain

dϕ = (−ψT + γT) · zT +
T−1∑
t=1

(
−ψt + γt +GT

t+1ψt+1

)
· zt +

T∑
t=1

(
HT

t ψt + ht

)
· ut. (3.22)

In choosing ψT so that the term with zt in (3.22) vanishes, we then require

ψT = γT , ψt = GT
t+1ψt+1 + γt, t = T − 1, . . . , 1. (3.23)

34 Chapter 3: Optimization using the discrete adjoint method

(3.23) is called the adjoint equation, which solves states ψt, called the adjoint states,
backward in time. Fulfilling the adjoint equation, we then have

dϕ =
T∑

t=1

(
HT

t ψt + ht

)
· ut

dϕt =
(
HT

t ψt + ht

)
· ut, t = T − 1, . . . , 1.

Therefore, the gradient gt ∈ Rn of ϕt with respect to control α ∈ Rn is given by the
gradient equation

gt =
dϕt

dαt
= HT

t ψt + ht, t = 1, . . . , T. (3.24)

In this framework, adjoint variables, i.e. the multiplied variable ψt and chosen such that
the term with zt in (3.22) vanishes, are viewed as Lagrange multipliers (see [6].) Notice
that the adjoint equation (3.23) and gradient equation (3.24) are the same as (3.14) and
(3.15) derived in the previous subsection using duality.

As we observe in both approaches, the adjoint method is a process of establishing the
gradient via a set of introduced variables we know as the adjoint states. This is done
by simulating and collecting each states forward in time through an evolutionary state
equation-operator and then passing through each corresponding adjoint equation-operator
in reverse order utilizing the collected states to compute the adjoint states as illustrated
in Figure 3.3. This is the reason why the adjoint method is also called the backward or
reverse method.

Figure 3.1: The states computed and collected forward in time and used later for comput-
ing the adjoint states backward in time. [15]

Chapter 3: Optimization using the discrete adjoint method 35

3.4 Optimal control of fluids based on LBM discretizations

Now that we are equipped with the method of determining the gradient of an objective
function of an optimization problem, we shall now be placing what we gathered in the
context of optimization involving fluid flows.

The optimal control problem (3.8) is recalled by

min
wt∈Rm,αt∈Rn

ϕ(wt, αt) subject to wt = Qt(wt−1, αt−1), t = 1, . . . , T,

the optimization problem we considered where the state equation takes the form of ex-
plicit update rule involving the states. Consider some particular 2-dimensional flow as a
reference which is characterized by its macroscopic properties ρ, u(x), u(y), p we regard as
the reference or desires states. We create an objective function ϕ which essentially
gives an indication of how closely a simulation mimics this reference flow. This quantity
we intend to optimize is given by

ϕ(wt, αt) =
1
2

∫
Ω×T

∣∣∣wt − wd
t

∣∣∣2 +
λ

2

∫
Ω×T

|αt|2 , (3.25)

where the state variable wt at time t consists of macroscopic properties at time t of the
simulated flow, say wt = (ρt, u

(x)
t , u

(y)
t , pt)T , the control variable αt at time t consists of

the external volume force, say αt = (α(x)
t , α

(y)
t)T and wd

t gives the reference or desired
state. The first term in the objective function measures the distance of wt and wd

t and
the second term is a regularization term with parameter λ > 0. In practice, typically
λ ∈ [10−5, 10−3] [10].

At this point, it is clear that a fluid flow phenomena is described by the Navier-Stokes
equation and is characterized by the macroscopic fluid properties. We optimize the ob-
jective function such that the states satisfies, hence, are subject to, the Navier-Stokes
equation acting as the constraint. However, as we have already mentioned in Section 3.2,
the direction ”discretize then optimize” we are heading to concerns a state equation that
is a discretized representation of the constraint as the starting point. This is where the
LBM comes into play. The LBM solver shall portray the role of wt = Qt(wt−1, αt−1),
computing the states wt forward in time functioning as the discretized representation of
the Navier-Stokes equation. A schematic diagram for our optimal control problem is given
in Figure 3.2.

From this idea we have established follows the application of the discrete adjoint method.
We note that we aim to evaluate the derivative of objective function ϕ with respect
to control α, in this situation where ϕ depends on α indirectly, via the state w as an
intermediate variable as discussed in Section 3.2, which involves the differentiation of the

36 Chapter 3: Optimization using the discrete adjoint method

objective function leading to the gradient equation and the computation of the terms
present in the gradient equation.

minϕ(w,α) s. t. Q(w,α) = 0,

⇓

minϕ(w,α) s. t. Q1(w,α) :=
∂u
∂t

− ν∆u + u · ∇u +∇p− α = 0,

Q2(w,α) := ∇ · u = 0,

where state w are the properties which is the incompressible Navier-Stokes
appearing in the incompressible equation in continuous level
Navier-Stokes eequation and α

is the external forcing ⇓
discretize

⇓

the LBM solver,
Qc(w,α) = 0, collision operator,

minϕ(w,α) s. t. Qs(w,α) = 0, streaming operator,
Q1,2(w,α) := u−

∑
cipi = 0,

Q3(w,α) := p−
∑
pi = 0

Figure 3.2: A schematic outline of the ”discretize then optimize” approach for optimization
using the incompressible Navier-Stokes equation as the constraint

3.4.1 Computations of the adjoint states and gradient

We follow in our computation the derivation of the gradient equation (3.24)

gt =
dϕt

dαt
= HT

t ψt + ht, t = 1, . . . , T.

in Subsection 3.3.2 where ψt is obtained from the adjoint equation (3.23)

ψT = γT , ψt = GT
t+1ψt+1 + γt, t = T − 1, . . . , 1,

Chapter 3: Optimization using the discrete adjoint method 37

In our implementation, let us set the state wt to be comprised of the macroscopic prop-
erties explicitly appearing in the incompressible Navier-Stokes equation, which are also
used in the LBM model of [8] for the incompressible Navier-Stokes equation, i.e. wt =
(u(x)

t , u
(y)
t , pt)T and set the control variable to be the 2-dimensional external volume force

αt = (α(x)
t , α

(y)
t)T .

Writing ϕ =
∑T

t=1 ϕt(wt, αt), then from (3.25) we have

ϕ(wt, αt) =
T∑

t=1

1
T − 1

(
1
2

∫
Ω

∣∣∣wt − wd
t

∣∣∣2 +
λ

2

∫
Ω
|αt|2

)
,

hence,

ϕt(wt, αt) =
1

T − 1

(
1
2

∫
Ω

∣∣∣wt − wd
t

∣∣∣2 +
λ

2

∫
Ω
|αt|2

)
.

We need the derivatives

γt = ∇wtϕt(wt, yt), ht = ∇αtϕt(wt, yt),

where yt = dαt. This is given by

∂ϕt

∂wt
(wt, αt) =

1
T − 1

(
wt − wd

t

)
= γt ∈ R3×1

∂ϕt

∂αt
(wt, αt) =

1
T − 1

(λαt) = ht ∈ R2×1

Next we need, Gt =
∂Qt

∂wt−1
(wt−1, αt−1) and Ht =

∂Qt

∂αt−1
(wt−1, αt−1). We follow the model

of [8] for the incompressible Navier Stokes equation thus giving us the equations for the
macroscopic properties, the states u(x)

t , u
(y)
t , pt and time t as given by

u(x)((xi, yj), t) = p1((xi, yj), t)− p3((xi, yj), t) + p5((xi, yj), t)
−p6((xi, yj), t)− p7((xi, yj), t) + p8((xi, yj), t)

u(y)((xi, yj), t) = p2((xi, yj), t)− p4((xi, yj), t) + p5((xi, yj), t)
+p6((xi, yj), t)− p7((xi, yj), t)− p8((xi, yj), t)

p((xi, yj), t) =
9∑

î=1

pî((xi, yj), t).

(3.26)

38 Chapter 3: Optimization using the discrete adjoint method

These properties in (3.26) at time t are functions of the pressure distributions pî,t at time
t. Now, the pressure distribution pî,t at time t is a function of the collision term (that
includes forcing) at time t− 1, and further, the collision term at time t− 1 is a function of
the properties u

(x)
t−1, u

(y)
t−1, pt−1 at time t− 1. Upon tracing this chain of dependence we

clearly observe the state at time t is an explicit function of the state at time t − 1. The
equations involved are broken down into full details in (A.1)-(A.4) in the Appendix.

To compute Gt,
wt = Qt(wt−1, αt−1)

can be written as

wt =

u

(x)
t

u
(y)
t

pt

 =

Q1

t (wt−1, αt−1)

Q2
t (wt−1, αt−1)

Q3
t (wt−1, αt−1)

 , (3.27)

and thus,

Gt =
∂Qt

∂wt−1
=

∂Q1
t

∂u
(x)
t−1

∂Q1
t

∂u
(y)
t−1

∂Q1
t

∂pt−1

∂Q2
t

∂u
(x)
t−1

∂Q2
t

∂u
(y)
t−1

∂Q2
t

∂pt−1

∂Q3
t

∂u
(x)
t−1

∂Q3
t

∂u
(y)
t−1

∂Q3
t

∂pt−1

.

Next, we compute the entries of Gt. Let us take for example
∂Q1

t

∂u
(x)
t−1

, the (1, 1)th entry of

Gt. On the first equation of (3.26), we apply the differential operator
∂

∂u
(x)
t−1

, thus we have

∂

∂u
(x)
t−1

u(x)((xi, yj), t) =
∂

∂u
(x)
t−1

p1((xi, yj), t)−
∂

∂u
(x)
t−1

p3((xi, yj), t) +
∂

∂u
(x)
t−1

p5((xi, yj), t)

− ∂

∂u
(x)
t−1

p6((xi, yj), t)−
∂

∂u
(x)
t−1

p7((xi, yj), t) +
∂

∂u
(x)
t−1

p8((xi, yj), t).

(3.28)

Chapter 3: Optimization using the discrete adjoint method 39

For each terms of (3.28), we have applied the differential operator
∂

∂u
(x)
t−1

which means

applying the chain rule tracing along the sequence of dependence that ultimately leads to
u

(x)
t−1. This is demonstrated in full details in (A.7)-(A.10) of the Appendix. Similarly, the

same procedure is applied to obtain the rest of the entries of Gt and once all the entries
of Gt are computed, we proceed to the computation of the adjoint states from the adjoint
equation (3.24)

ψT = γT , ψt = GT
t+1ψt+1 + γt, t = T − 1, . . . , 1.

From our computations, it is an observation worthy of emphasis that for each time t,
the computation of the adjoint states through the adjoint equation done in reverse time
can also be viewed as some sort of LBM since the procedure keeps the collision, forcing,
streaming and application of rules for boundaries which operates on derivatives of the
properties u(x)

t , u
(y)
t , pt and of the pressure distributions (or particle distributions, due to

original LBM formulation.)

To visualize, Figure 3.3 shows the adjoint states of a simulated flow. First, the figures on
the left column show the evolution of the macroscopic properties u(x), u(y) and p from
time t = 1, . . . , 200 for fluid of viscosity 1, with initial velocity u

(x)
0 having a parabolic

profile with maximum value u
(x)
0,max = 1 and u

(y)
0 = 0, driven by constant volume force

α = (−1, 0). The trend of u(x)
t can be followed as the parabola marked by × represents

u
(x)
1 , the parabola marked by ◦ gives u(x)

10 , . gives u(x)
50 , ∗ gives u(x)

100, · is for u(x)
180 and

+ is for u(x)
200. u

(x)
t is characterized by computational noise and p remains 1 for each node

throughout time t = 1. We assign the desired states to be those driven by constant force
α = (0.1, 0) from time t = 1, . . . , 200. Computed through the adjoint equation (3.23), we
see the adjoint states ψ(1)

t , ψ
(2)
t and ψ(3)

t on the left column of Figure 3.3. It is interesting
to observe the trends of ψ(1)

t and ψ
(2)
t , reverse in time, followed as the markings: + for

t = 200, · for t = 180, ∗ gives t = 100, . gives t = 50, ◦ gives t = 10 and × represents
t = 1. From t = 200 to t = 1, ψ(1)

t grows and extends along the negative direction until it
reaches a peak and retracts back to zero. ψ(2)

t grows and extends along the negative and
positive direction until it reaches a peak and retracts back to zero and ψ(3)

t is characterized
by numerical noise. As an interpretation, by looking at the construction of the adjoint
equation, ψ(1)

t can be viewed as a combination of the rate of changes of u(x), u(y) and p

with respect to u(x). ψ
(2)
t can be regarded as a combination of the rate of changes of

u(x), u(y) and p with respect to u(y), and similarly, ψ(3)
t , with respect to p.

Similar to the computation of Gt, we determine Ht =
∂Qt

∂αt−1
(wt−1, αt−1). Following the

40 Chapter 3: Optimization using the discrete adjoint method

Figure 3.3: The evolution of the macroscopic properties u(x), u(y) and p from time t =
1, . . . , 200, and the corresponding adjoint states computed from time t = 200, . . . , 1

Chapter 3: Optimization using the discrete adjoint method 41

breakdown of Qt given by (3.27), we have

Ht =
∂Qt

∂αt−1
=

∂Q1
t

∂α
(x)
t−1

∂Q1
t

∂α
(y)
t−1

∂Q2
t

∂α
(x)
t−1

∂Q2
t

∂α
(y)
t−1

∂Q3
t

∂α
(x)
t−1

∂Q3
t

∂α
(y)
t−1

,

whose entries are also obtained by applying the differential operator
∂

∂α
(x)
t−1

or
∂

∂α
(y)
t−1

which

means applying the chain rule along the sequence of dependence that ultimately leads to
α

(x)
t−1 or α(y)

t−1 demonstrated in full details in (A.13)-(A.16) of the Appendix. Finally, the
gradient is computed through

gt = HT
t ψt + ht, t = 1, . . . , T.

As a side remark, we may consider when the gradient is computed with the finite difference
approximation

∇ϕ(α) · ei ≈ ϕ(α+ hei)− ϕ(α)
h

,

where ei is a vector with 1 on the ith position and 0 elsewhere, as a simple test and
compare this with the results of the discrete adjoint method we discussed above. To
illustrate, assuming a constant volume force α = (α(x), α(y)) driving the flow acting as a
control, let us set the desired states to be those driven by constant force α = (0.1, 0), set
h = 10−7 and compute the gradient of the objective function with respect to the control
using discrete adjoint method and the finite difference approximation given above. Figure
3.4 compares α(x)-component of the gradient (i.e. the derivative of the objective with
respect to α(x)) resulting from the finite difference approximation and the discrete adjoint
method over samples of α ∈ [−0.6, 0.9] × [−0.05, 0.05] as the bottom figure shows their
difference that is within 10−6 order of magnitude. Figure 3.5 compares the α(y)-component
of the gradient for the two methods and the bottom figure shows their difference.

Note that in our discrete adjoint method implementation, for a certain control all the
components of the gradient is computed within one forward sweep and one backward
sweep as described in Section 3.3. In contrast, with the finite difference approximation,
we have to do one forward simulation with control α + hei to obtain the macroscopic
quantities then solve for the value of the objective ϕ(α+ hei), and then perform another
forward sweep for ϕ(α). And since we compute each component of the gradient, we

42 Chapter 3: Optimization using the discrete adjoint method

Figure 3.4: Comparing the α(x)-component of the gradient using the discrete adjoint
method and the finite difference approximation

Chapter 3: Optimization using the discrete adjoint method 43

Figure 3.5: Comparing the α(y)-component of the gradient using the discrete adjoint
method and the finite difference approximation

44 Chapter 3: Optimization using the discrete adjoint method

repeat the procedure for all i. Hence in general cases, finite difference approximation will
be expensive when the control has many components (e.g. when other parameters are
introduced in the control or when control varies for each node and for each point in time).

Chapter 4

Method of steepest descent

At this point it is clear that we seek for the control α that minimizes the objective ϕ.
We wish to do this in a systematic way such that we may not be forced to compute the
value of ϕ for every possible control α there is. We take note that computation of ϕ
amounts to some expense and we do not want compute this value whenever they are not
necessary. This choice of such systematic way shall then determine whether the optimal
control problem is solved quickly or slowly or the optimal control is not found at all.
However, since we do not wish to compute the value of ϕ for too many α’s, we can not
have a good overall picture of the shape of ϕ and we hope that ϕ does not take a sharp
drop in some regions where we do not sample the value of ϕ.

4.1 Recognizing solutions

A natural question that arises is how to recognize or verify that indeed a variable α is
a minimizer of a certain function ϕ. We follow for the discussion the definitions and
theorems from [16].

Definition A point α∗ is a global minimizer if ϕ(α∗) ≤ ϕ(α∗) for all α ∈ D, where D
is the domain of interest.

The global minimizer is difficult to find because usually the knowledge of ϕ is only local.
We have the following definition:

Definition A point α∗ is a local minimizer if there is neighborhood N of α∗ such that
ϕ(α∗) ≤ ϕ(α∗) for all α ∈ N ⊂ D.

45

46 Chapter 4: Method of steepest descent

Most algorithms are able to find only a local minimizer, which is the point that achieves the
smallest value of ϕ in its neighborhood. It is usually difficult to find the global minimizers
for functions that are wavy (with many oscillations) as algorithms for finding the global
minimizers get caught up and stuck at local minimizers. In contrast, when functions are
smooth, there are more efficient and practical ways to identify local minima. Further, an
important set of special of functions known as convex functions are functions for which
every local minimizer is also a global minimizer. To study the minimizers of smooth
functions we begin with the following theorem:

Theorem 4.1.1 (Taylor’s Theorem) Suppose that ϕ : Rn → R is continuously differen-
tiable and that s ∈ Rn. Then we have that

ϕ(α+ s) = ϕ(α) +∇ϕ(α+ ξs)T s

for some ξ ∈ (0, 1).

Assuming α∗ is a local minimizer, we try to determine implications of this on ∇ϕ(α∗). We
shall call these the necessary conditions for optimality. We have the following theorem:

Theorem 4.1.2 (First-Order Necessary Conditions) If α∗ is a local minimizer and ϕ is
continuously differentiable in an open neighborhood of α∗, then ∇ϕ(α∗) = 0.

Proof Let us prove this by contradiction. Suppose that ∇ϕ(α∗) 6= 0. Let us define
the vector s = −∇ϕ(α∗) and note that sT∇ϕ(α∗) = − ||∇ϕ(α∗)|| < 0. Because ∇ϕ is
continuous near α∗, there is a scalar T > 0 such that

sT∇ϕ(α∗ + ξs) < 0, for all ξ ∈ [0, T].

For any ξ̄ ∈ (0, T], we have by Taylor’s theorem that

ϕ(α∗ + ξ̄s) = ϕ(α∗) + ξ̄sT∇ϕ(α∗ + ξs), for some ξ ∈ (0, ξ̄).

Therefore, ϕ(α∗ + ξ̄s) < ϕ(α∗) for all ξ̄ ∈ (0, T]. We have found a direction leading away
from α∗ along which ϕ decreases, so α∗ is not a local minimizer. This is a contradiction.
�

We call α∗ a stationary point if ∇ϕ(α∗) = 0. Hence, according to Theorem 4.1.2, any
local minimizer must be a stationary point. In addition, when the objective function is
convex, local and global minimizers are simple to characterize. We have the following:

Theorem 4.1.3 When ϕ is convex, any local minimizer α∗ is a global minimizer ϕ. If in
addition ϕ is differentiable, then any stationary point α∗ is a global minimizer of ϕ.

Chapter 4: Method of steepest descent 47

4.2 Descent methods

The last several decades have seen the development of powerful optimization methods for
optimization problems [16]. Typically, optimization methods are iterative algorithms for
finding solutions of minimization problems. Here, the user supplies a starting point α0

and the algorithm generates a sequence of iterates {αk} that terminates when either a
minimizer has been approximated by some sufficiency criteria or when no more progress
can be made. Among such methods, a general class of methods known to be globally
convergent are the descent methods [10]. The idea of descent methods is to find, at the
current kth iterate αk, a direction sk such that ϕ(αk + ξsk) is decreasing at ξ = 0. To
decide how to move from one iterate to the next, the descent method uses information
about the function ϕ at αk and possibly also information about α0, . . . , αk−1 and find
a new iterate αk+1 giving a smaller function value than αk. An algorithm of a general
descent method is presented in Algorithm 2.

Algorithm 2 General descent method
Choose an initial point α0.
for k = 0, 1, . . . do

if ∇ϕ(αk) = 0 then
Stop.

end if
Choose a descent direction sk.
Choose a step size δk > 0.
Set αk+1 = αk + δksk.

end for

4.2.1 Choice of Search Direction

In using the descent method, one major consideration needed to be taken is the choice of
the descent direction. The steepest descent direction −∇ϕ(αk) is the most obvious choice
for search direction since intuitively, among all the directions we could move from αk, it
is the one along ϕ decreases most rapidly. Further, if sk = −∇ϕ(αk) =: −∇ϕk, then

sT
k∇ϕk = − ||∇ϕ(αk)|| < 0,

and this property guarantees that the function ϕ can be reduced along this direction along
sk. Hence, we have an algorithm that finds a local minimum of a function using gradient

48 Chapter 4: Method of steepest descent

descent where one takes steps proportional to the negative of the gradient of the function at
the current point. This is called the method of steepest descent or gradient descent.

4.2.2 Choice of Step Length

The success of the descent method does not only depend on appropriate and effective
choice of the descent direction sk. It also depends on the choice of step length δk for each
iteration. In the descent method, it is an important consideration to decide how far to
move along the descent direction. In choosing the step length δk, we aim that the resulting
δk gives a substantial decrease of ϕ but at the same time we do not want to spend too
much effort on coming up with the choice. The best choice for δk is obviously is

δk = arg min
δ>0

ϕ(αk + δsk),

but this is expensive to compute. However, a practical strategy is to perform an inexact
approximate to this giving ϕ sufficient reduction where the computation is less expensive.

An inexact approximation providing an efficient way of computing an acceptable step
length δk that reduces the cost in some measure of sufficiency is stipulated by the Wolfe
conditions. A step length δk is said to satisfy the Wolfe conditions if the following two
inequalities hold:

ϕ(αk + δksk) ≤ ϕ(αk) + c1δks
T
k∇ϕ(αk), (4.1)

sT
k∇ϕ(αk + δksk) ≥ c2s

T
k∇ϕ(αk), (4.2)

with 0 < c1 < c2 < 1. Inequality (4.1) is known as the sufficient decrease or the Armijo
condition which ensures that δk decreases ϕ sufficiently and (4.2) is the curvature
condition which makes sure that the slope of the function ϕ(αk + δsk) at δk is greater
than c2 times that at δ = 0.

However, if the algorithm chooses its candidates appropriately, we can dispense (4.2) and
just use the sufficient decrease condition to terminate the search for the proper step length.
This is done through the backtracking approach (see [16]). For clarity, from what we
gathered, we present in Algorithm 3 the algorithm of the backtracking steepest descent
method using the Armijo condition that we shall adapt in our implementation.

Chapter 4: Method of steepest descent 49

Algorithm 3 Steepest Descent for minimizing ϕ

Set iteration counter k = 0 and initial guess for the control α0 = (α(x)
0 , α

(y)
0).

while ||∇ϕ(αk)|| > tol, do

Compute the descent direction sk, we take sk = −∇ϕ(αk).

Select a step length δk to somehow minimize ϕ(αk + δsk) over δ ∈ R. We do this by
employing the Backtracking Line Search Method which uses the Sufficient Decrease/
Armijo’s condition. Set iteration counter j = 0, initial step length guess δ0 > 0 and
choose ω ∈ (0, 1) and κ ∈ (0, 1).

while ϕ(αk + δjsk) > ϕ(αk) + κδjsT
k∇ϕ(αk) (= ϕ(αk) + κδj(− ||∇ϕ(αk)||2)), do

δj+1 = ωδj .
j = j + 1.

end while

Set δk = δj .

Update αk+1 = αk + δksk.

k = k + 1.

end while

50 Chapter 4: Method of steepest descent

4.3 Implementation, Results and Discussions

In this section we implement our algorithm and present and analyze the obtained results.
We adapt notations as they were in Subsection 3.4.1. For our implementation, we apply
the following numerical integration rule for the evaluation of the objective function and
the gradient norm. For the objective function ϕ, we have

ϕ(wt, αt) =
1
2

∫
Ω×T

∣∣∣wt − wd
t

∣∣∣2 +
λ

2

∫
Ω×T

|αt|2

=
1
2

∫
Ω×T

(
u

(x)
t − u

(x)d
t

)2
+

(
u

(y)
t − u

(y)d
t

)2
+

(
pt − pd

t

)2

+
λ

2

∫
Ω×T

α
(x)2
t + α

(y)2
t

=
1
2

1
T − 1

1
m− 1

1
n− 1

T∑
t=1

m∑
i=1

n∑
j=1

([(
u

(x)
t − u

(x)d
t

)2

+
(
u

(y)
t − u

(y)d
t

)2
+

(
pt − pd

t

)2
]

+ λ
[
α

(x)2
t + α

(y)2
t

])

where wt ≡ w((xi, yj), t) and αt ≡ α((xi, yj), t). Further, the norm of the gradient is given
by

||gt||L2(Ω×T) =
(∫

Ω×T
|gt|2

) 1
2

=
(∫

Ω×T

[
g
(x)2
t + g

(y)2
t

]) 1
2

=

 1
T − 1

1
m− 1

1
n− 1

T∑
t=1

m∑
i=1

n∑
j=1

[
g
(x)2
t + g

(y)2
t

] 1
2

where gt ≡ g((xi, yj), t).

We first identify a desired state whose behavior is what we aim our simulated flow to
achieve. As required by the algorithm to supplied by the user, we start with an initial
guess for the forcing. We use the LBM as the (forward) solver of the states as we presented
in Chapter 2. We then proceed with computing the adjoint states through the adjoint
method (backward) solver allowing us to compute the gradient of the objective function,
as presented in Chapter 3, giving us the descent direction enabling us to update the forcing
iterate leading us to a new forcing, new control yielding a smaller value of the objective.
This results to a new forcing which then requires another forward simulation of the states

Chapter 4: Method of steepest descent 51

and backward computation of the adjoint states leading to a new gradient. The process
continues until we detect a stationary point.

4.3.1 Flow on an infinite channel

First, we test our implementation of the algorithm for control of fluid flows on an infinite
channel. We simulate flows on a 50 × 40 lattice mesh. In this simulation, the periodic
boundary conditions are used on the inlet and outlet of our constructed lattice and the
bounce-back boundary conditions are used for the no-slip boundary conditions on the
channel walls. Assuming a fluid on an infinite channel with kinematic viscosity of 1
throughout time t = 1, . . . , 100 where the fluid has a zero initial velocity, we consider the
states of a flow driven by a constant volume force of α = (0.1, 0). Let us refer to the
generated states as the desired states for the optimal control problem.

An interesting inquiry for the optimal control problem to test the algorithm would be: on a
fluid of a kinematic viscosity of 1, what driving force, constant throughout all the nodes of
the domain and throughout each time t = 1, . . . , 100, should one employ so as to influence
the behavior of the states of the simulation for it to be as ”close” as possible to those
of the desired states. In other words, this problem tests whether the algorithm finds the
solution that we already know which is obviously α = (0.1, 0). We use a stopping criteria
demand the program to terminate when ||∇ϕ|| ≤ 10−7, machine precision, is assigned.

Favorable results are obtained and are presented in Table 4.1. An arbitrary starting point
of α0 = (−0.09,−0.0015) for the iteration procedure of steepest descent was chosen. It
is apparent from this table that there is a clear trend of decreasing for the values of ϕ
and ||∇ϕ|| towards zero. This is expected since we want to minimize ϕ and due to the
first-order necessary condition, if we are approaching the minimum, then ||∇ϕ|| → 0. The
number of Armijo sub-iterations are also given on the table. For each main iteration of
the steepest descent method, we set an initial guess δ = 10 for the step length and the
Armijo condition determines which step length gives a sufficient decrease for the objective
function by reducing it a reduction rate of ω assigned to be 0.1 until the appropriate step
length is determined and identified as δk. Observe that for the selected kth iterates shown
in the table, 2 Armijo sub-iterations were performed. This means δk = 0.1 for these values
of k provided in the table. The program terminates when a stationary point is sufficiently
approximated at k = 58 as imposed by the stopping criteria. Affirmative results shown
clearly tells that the iterates {αk} for the control converges to α = (0.1, 0). Figure 4.1
visualizes the generated u

(x)
t for certain obtained iterates of the steepest descent method

with respect to the desired u
(x)
t . We visualize and observe the behavioral trend of the

velocities u(x)
t as the effect of the control for k = 1, 5, 10 and 58.

52 Chapter 4: Method of steepest descent

ϕ ||∇ϕ|| α(x) α(y) k armijo
steps

142.3 0.48066 -0.09 -0.0015 1
89.896 0.37898 -0.051008 -0.0016388 2 2
56.826 0.30032 -0.020013 -0.0016775 3 2
35.944 0.2387 0.0046295 -0.0016277 4 2
22.745 0.19002 0.024223 -0.0015118 5 2
2.3042 0.060907 0.076038 -0.00068683 10 2
0.23135 0.019375 0.092421 -0.00022236 15 2
0.023129 0.0061354 0.097601 -6.4442e-005 20 2
0.0023114 0.0019405 0.09924 -1.803e-005 25 2
0.00023113 0.00061374 0.099759 -4.9887e-006 30 2
2.3129e-005 0.00019416 0.099924 -1.3754e-006 35 2
2.3162e-006 6.1438e-005 0.099976 -3.788e-007 40 2
2.3245e-007 1.9446e-005 0.099992 -1.0428e-007 45 2
2.3725e-008 6.1557e-006 0.099998 -2.8707e-008 50 2
2.8085e-009 1.9489e-006 0.099999 -7.9019e-009 55 2
1.9493e-009 1.5485e-006 0.099999 -6.1049e-009 56 2
1.4069e-009 1.2303e-006 0.1 -4.7166e-009 57 2
1.0645e-009 9.7753e-007 0.1 -3.644e-009 58 2

Table 4.1: Sequence of iterates generated by the steepest descent method for optimal
control on an infinite channel assuming a starting control point α0 = (0.09,−0.0015)
where the solution is α = (0.1, 0)

Chapter 4: Method of steepest descent 53

Figure 4.1: An illustration of the velocities u(x)
t as the effect of the obtained control for

selected iterates of the steepest descent method k = 1, 5, 10 and 58

54 Chapter 4: Method of steepest descent

Figure 4.2 illustrates the contour map of the objective function over the subdomain
[0.04, 0.14]× [0.015,−0.015]. It is clear in the map that the objective attains its minimum
at (0.1,0). The orange line traces the path of the control iterates obtained from steepest
descent method with the points marked by ∗ are the control generated by the algorithm
starting from the initial guess α = (−0.09,−0.0015) as it approach (0.1,0). Therefore, we
see that method of steepest descent leads us to (0.1,0), i.e., to the point where the value
of the function ϕ is minimal. It is important to note however that producing this map is
extremely expensive since this requires evaluation of ϕ for a good number of control points
to get an accurate shape of ϕ. As we have explained in the beginning of the chapter, we
do not want to do such. This is being remedied by the steepest descent as it computes
only necessary evaluations to reach the optimal control.

Figure 4.2: The contour map of the objective function for optimal control on an infinite
channel where the solution is α = (0.1, 0)

For the same desired case, we also test different initial guesses such as α0 = (0.15, 0.0005),
α0 = (0, 0), etc. but are omitted here since they yield similar favorable results. For α0 =
(0.15, 0.0005), stationary point is approximated after 53 iterations, and for α0 = (0, 0),
after 56.

Now, we test the algorithm when the desired states are those generated when a zero forcing
is applied. This suggests that we verify whether the algorithm finds the solution that is
known to be α = (0, 0). An arbitrary starting point of α0 = (0.2,−0.004) for the iteration
procedure was chosen. Table 4.2 affirms that the iterates {αk} for the control converges

Chapter 4: Method of steepest descent 55

ϕ ||∇ϕ|| α(x) α(y) k armijo
steps

156.83 0.53916 0.2 - 0.004 1
99.794 0.41817 0.15949 -0.0038791 2 2
63.491 0.32738 0.12715 -0.0037145 3 2
40.38 0.25794 0.10135 -0.0035279 4 2
25.672 0.20407 0.080757 -0.0033335 5 2
2.66 0.064683 0.025839 -0.002436 10 2

0.28337 0.020653 0.0082287 -0.0017581 15 2
0.048343 0.0086509 -0.0034518 -0.00049388 20 2
0.0053951 0.0027595 -0.0010936 -0.00035558 25 2
0.00088621 0.0011539 0.00045943 -9.9497e-005 30 2
0.0001513 0.00048386 -0.00019306 -2.7835e-005 35 2

1.6903e-005 0.00015432 -6.1148e-005 -2.0039e-005 40 2
2.7745e-006 6.4539e-005 2.5695e-005 -5.6061e-006 45 2
4.7347e-007 2.7063e-005 -1.0797e-005 -1.5683e-006 50 2
5.2973e-008 8.6322e-006 -3.4199e-006 -1.1291e-006 55 2
8.6864e-009 3.6098e-006 1.4371e-006 -3.1586e-007 60 2
1.4816e-009 1.5136e-006 -6.0388e-007 -8.8365e-008 65 2
9.4564e-010 1.2035e-006 -4.7984e-007 -8.2744e-008 66 2
6.0599e-010 9.5716e-007 -3.8127e-007 -7.748e-008 67 2

Table 4.2: Sequence of iterates generated by the steepest descent method for optimal
control on an infinite channel assuming a starting control point α0 = (0.2,−0.004) where
the solution is α = (0, 0)

to α = (0, 0) as the values of ϕ and ||∇ϕ|| shows a clear trend of decreasing towards zero.

4.3.2 Flow in a Cavity

We test our implementation of the algorithm for fluid flows in a cavity. We simulate flows
on a 50×40 lattice mesh. Here, the bounce-back boundary conditions are used to stipulate
the no-slip boundary conditions on all the 4 walls of the cavity. We assume that the fluid
has a kinematic viscosity of 2.5. The desired states are those states from T = 1, . . . , 100
generated when the fluid has a zero initial velocity and there is zero forcing applied.

We assign an initial guess α0 = (0.0027,−0.0027) as the constant volume forcing through-
out time as a starting point for the control. From this, the algorithm shall search for
the control that will minimize the objective function. Clearly, the solution is α = (0, 0).
Hence, we expect the algorithm to generate a sequence of iterates {αk} for the control
that converges to α = (0, 0). A stopping criteria commands the program to terminate
when ||∇ϕ|| ≤ 10−16, machine double precision, is assigned.

56 Chapter 4: Method of steepest descent

ϕ ||∇ϕ|| α(x) α(y) k armijo
steps

0.047676 0.0049905 0.0027 -0.0027 1
0.0053097 0.0010622 -0.00079628 -0.0014286 2 1
0.0022448 0.00069076 -0.00057793 -0.00089992 3 1
0.00096238 0.00045234 -0.00041946 -0.00056657 4 1
0.00041934 0.00029863 -0.00030444 -0.00035648 5 1
8.7731e-006 4.3216e-005 -6.1322e-005 -3.4718e-005 10 1
2.7615e-007 7.6687e-006 -1.2354e-005 -3.2575e-006 15 1
1.0474e-008 1.4936e-006 -2.489e-006 -2.7987e-007 20 1
4.1931e-010 2.9882e-007 -5.015e-007 -1.8471e-008 25 1
1.6995e-011 6.0159e-008 -1.0105e-007 9.7796e-011 30 1
6.9036e-013 1.2125e-008 -2.0361e-008 4.0442e-010 35 1
2.8046e-014 2.4438e-009 -4.1027e-009 1.2024e-010 40 1
1.1391e-015 4.9251e-010 -8.267e-010 2.8131e-011 45 1
4.6261e-017 9.925e-011 -1.6658e-010 6.0614e-012 50 1
1.8785e-018 2e-011 -3.3565e-011 1.261e-012 55 1
7.6275e-020 4.0301e-012 -6.7634e-012 2.5807e-013 60 1
3.097e-021 8.1207e-013 -1.3628e-012 5.2403e-014 65 1
1.2575e-022 1.6363e-013 -2.7461e-013 1.0597e-014 70 1
5.1051e-024 3.2971e-014 -5.5331e-014 2.1404e-015 75 1
2.0746e-025 6.6468e-015 -1.115e-014 4.3337e-016 80 1
8.4545e-027 1.3421e-015 -2.2501e-015 8.9191e-017 85 1
4.4348e-027 9.72e-016 -1.6329e-015 6.5446e-017 86 1

Table 4.3: Sequence of iterates generated by the steepest descent method for optimal
control on fluid in a cavity assuming a starting control point α0 = (0.0027,−0.0027)
where the solution is α = (0, 0)

Chapter 4: Method of steepest descent 57

Table 4.3 shows the sequence of iterates for ϕ, ||∇ϕ|| and α generated by the steepest
descent method for optimal control on fluid in a cavity where k is the iterate number. The
number of Armijo sub-iterations are also given on the table. For each main iteration of
the steepest descent method, we assign an initial guess δ = 10 for the step length and the
Armijo condition determines which step length gives a sufficient decrease for the objective
function by reducing it a reduction rate of ω assigned to be 0.1 until the appropriate
step length is determined and identified as δk. Table 4.3 provides us with the values
of ϕ and it is apparent they decrease to zero as expected due to the Armijo condition
guaranteeing the decrease in the objective value for each iteration. Observe that for the
selected kth iterate, 1 Armijo sub-iteration were performed. This means δk = 1 for these
values of k provided in the table. We also expect due to the first order necessary condition
that ||∇ϕ|| should approach zero. The program terminates when a stationary point is
sufficiently approximated at k = 86.

Figure 4.3 illustrates the contour map of the objective function over the subdomain
[−0.003, 0.003]2. Evidently, we see that the objective attains its minimum at (0,0). The
orange line traces path of the control iterates obtained from steepest descent method with
the points marked by ∗ are the control generated by the algorithm starting from the initial
guess α = (0.0027,−0.0027) as it approach (0,0). Therefore, we see that method of steep-
est descent leads us to (0,0), i.e., to the point where the value of the function ϕ is minimal.
We note once again that this is expensive map is produced only for the reason that it may
be interesting to demonstrate the trend of the iterates produced by the steepest descent
method.

58 Chapter 4: Method of steepest descent

Figure 4.3: The contour map of the objective function for optimal control on fluid in a
cavity where the solution is α = (0, 0)

Chapter 5

Conclusion

A number of accomplishments have been achieved in this work. We have studied the Lat-
tice Boltzmann method and examined its treatment that sets it apart from the typically-
used schemes of simulating fluid flow and solving the incompressible Navier-Stokes equa-
tion. We have seen that the LBM uses molecular particle populations called distribution
functions to model the space and time-averaged microscopic movements of fluid particles,
and is governed by streaming and collision process where the collision rule is set so that the
incompressible Navier-Stokes equations are satisfied. We have considered 2-dimensional
fluid flows driven by an external force and introduced a simple forcing term to the LBM
evolution equation. We have used the D2Q9 LBM model, a 2-dimensional LBM model
that makes use of 9-velocity directions, and fluid have been simulated for cases on flow on
an infinite channel and flow on a cavity, differing in the boundary conditions applied.

We have defined an optimal control problem on fluids composed of the state (the macro-
scopic properties of fluid), the control (the external forcing), the objective function, which
indicates a measure of the deviation of the behavior of a simulated flow with respect to
a desired flow behavior, and the constraint (the incompressible Navier-Stokes equation).
We have also introduced the treatment we want to employ in solving the optimal control
problem which is to ”discretize then optimize.” This suggests that we minimize an ob-
jective function such that the LBM solver serves as the discretized representation of the
optimization constraint. The work has also given an account of and the reasons for the
use of the discrete adjoint method. We have seen that the discrete adjoint method allows
efficient evaluation of the derivative (the gradient) of the objective function that depends
on the solution of a discretized PDE where the derivative is computed inexpensively by in-
troducing a set of variables called the adjoint states that is computed through a backward
solver derived from the LBM forward-solver.

59

60 Chapter 5: Conclusion

The negative of the computed gradient has then been used as the choice of the direction of
descent in the descent method for finding the optimal control - the local minimizer of the
objective function. An algorithm has been proposed and implemented. As a test case, we
have performed the optimization to find the optimal control, constant throughout all the
nodes of the lattice and throughout time that yields the simulated flow that best behaves
like the desired states. We have investigated and assessed the application of the method
of steepest descent for flows on an infinite channel and flows in a cavity.

Above all, this explorative study has developed insights and understanding to the ”dis-
cretize then optimize” attack on an optimal control problem employing the LBM to com-
pute states forward time and an LBM-type solver to compute adjoint states backward in
time. Competencies, in comparison to other techniques, and limitations of this numerical
scheme shall lead to a better understanding of its implications on various applications and
lead the way to further research for the improvement and extension of such scheme.

5.1 Limitations and recommendations for further work

However, a number of limitations restrains the results of this work and opens up to exten-
sions for further work and investigation. First, we have only surveyed flows in 2-dimensions
with the use of D2Q9 model. Note that other models are also available in 2D and 3D.
Many authors proposed modifications for the bounce-back boundary condition, (e.g. in
[24] and [11]) for better accuracy, hence they may also be considered since we have only
used a simple reflection rule in our implementaion. We have also made an assumption
of a convenient and simplified form of the forcing term which we use as the control in
the optimization problem. Different representation of the forcing term have also been
proposed (e.g. in [7] or [23]), thus, investigations may be needed to examine the effect
of such forcing term in accuracy and stability of the LBM with regards to satisfying the
incompressible Navier-Stokes equation. Further work needs to be done to establish the
most suitable forcing term depending on the dictates of the application. Moreover, we
have to note that modifying the forcing term will change the adjoint equation. Also, for
the optimal control problem, the study was limited by a control that is constant through-
out space and time. Other objective functions can also be considered. Furthermore, the
steepest descent method has also been criticized for taking too long to converge to a local
minimum. Note that several works have proposed techniques to accelerate the steepest
descent (e.g. [1] and [17]) and other methods apart from the steepest descent method can
also be performed (see [16]). Finally, it will also be interesting to compare our findings to
the results of the ”optimize then discretize” track, and possibly, to the results of the other
Navier-Stokes equations solvers apart from the LBM.

Bibliography

[1] N. Andrei, An acceleration of gradient descent algorithm with backtracking for uncon-
strained optimization. Numer. Algor. 42 (2006). 63-73.

[2] A. Bronstein, M. Bronstein, Numerical Optimization. Course material in Numerical
geometry of nonrigid shapes. Department of Computer Science, Technion - Israel
Institute of Technology. <http://www.cs.technion.ac.il/ mbron/index.html>

[3] A. Caiazzo, Asymptotic Analysis of lattice Boltzmann method for Fluid-Structure
interaction problems. Ph.D. diss., Scuola Normale Superiore Pisa, TU Kaiserslautern,
2006.

[4] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows. Annual Rev. of Fluid
Mech. 30 (1998). 329-364

[5] S.T. Engler, Benchmarking the 2D Lattice Boltzmann BGK Model. Course mate-
rial in Complex Systems Simulations. Amsterdam Center for Computational Science,
Universiteit van Amsterdam. <http://staff.science.uva.nl/ sloot/CSS/>

[6] M. Giles, N. Pierce, An Introduction to the Adjoint Approach to Design. Applied
Scientific Research. 65 (2000). 393-415.

[7] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice
Boltzmann method. Phys. Rev. E 65 (2002). 026701:1-12.

[8] X. He, L.-S. Luo, Lattice Boltzmann Model for the Incompressible NavierStokes Equa-
tion. J. Stat. Phys. 88 (1997). 927-944

[9] X. He, L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann
equation to the lattice Boltzmann equation, Phys. Rev. E 56 (1997). 6811-6817.

[10] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Lecture Notes of the Autumn School
Modelling and Optimization with Partial Differential Equations. Hamburg, 26-30
September 2005.

61

62 Bibliography

[11] T. Inamuro, M. Yoshino, F. Ogino, A non-slip boundary condition for lattice Boltz-
mann simulations. Phys. Fluids. 7 (1995). 2928-2930.

[12] M. Junk, A. Klar, L.-S. Luo, Asymptotic analysis of the lattice Boltzmann Equation.
Journal Comp. Phys. 210 (2005). 676-704.

[13] LBM: Lattice Boltzmann Method. 18 May 2008. <http://www.lbmethod.org/>

[14] L.-S. Luo, Lattice Boltzmann Methods for Computational Fluid Dynamics. National
Institute of Aerospace, Virginia, USA. <http://research.nianet.org/ luo>

[15] A. McNamara, A. Treuille, Z. Popovic, J. Stam, Fluid control using the adjoint
method. ACM Transactions on Graphics. 23 (2004). 449-456.

[16] J. Nocedal, S.J. Wright, Numerical Optimization. Springer, New York. 2nd ed. 2006.

[17] F.A. Potra, Y. Shi, Efficient line search algorithm for unconstrained optimization. J.
Opt. Theory and Applications. 85 (1995). 677-704.

[18] Y.H. Qian, D. d’Humieres, P. Lallemand, Lattice BGK Models for the Navier-Stokes
equation. Europhys. Letters. 17 (1992). 479-484.

[19] R. Schneider, Applications of the Discrete Adjoint Method in Computational Fluid
Dynamics. Ph.D. diss., The University of Leeds, 2006.

[20] R.K. Standish, On Various Questions in Nonequilibrium Statisti-
cal Mechanics Relating to Swarms and Fluid Flow. 30 Oct 1997.
<http://www.hpcoders.com.au/docs/thesis.pdf>

[21] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford
University Press. 2001.

[22] F.J. Vesely, Statistical Physics: Course material with JAVA applets. In-
stitute of Experimental Physics, University of Vienna. 25 Jan 2005.
<http://homepage.univie.ac.at/Franz.Vesely/sp english/sp/sp.html>

[23] T. Wang, J. Wang, Two-fluid model based on the lattice Boltzmann equation. Phys.
Rev. E 71 (2005). 045301:1-4.

[24] D.P. Ziegler, Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys.
71 (1993). 1171-1177.

[25] Q. Zou, X. He, On pressure and velocity boundary conditions for the lattice Boltzmann
BGK model. Phys. Fluids. 9 (1997). 1591-1598.

Appendix

A.1 Full details of the computations of the adjoint states and gradient

Following the proposed model of [8] for the incompressible Navier Stokes equation, we have here the LBM model of the flow on an infinite channel
full detailed in the following anatomization:

The macroscopic properties are given by

u(x)((xi, yj), t) = p1((xi, yj), t)− p3((xi, yj), t) + p5((xi, yj), t)− p6((xi, yj), t)− p7((xi, yj), t) + p8((xi, yj), t)

u(y)((xi, yj), t) = p2((xi, yj), t)− p4((xi, yj), t) + p5((xi, yj), t) + p6((xi, yj), t)− p7((xi, yj), t)− p8((xi, yj), t)

p((xi, yj), t) =
9∑

î=1

pî((xi, yj), t).
(A.1)

65

The streaming process after collision and forcing is depicted by

p1((xi, yj), t) =
�
1− 1

τ

�
p1((xi−1, yj), t− 1) + 1

τ
peq
1 ((xi−1, yj), t− 1) + 1

3
α(x)((xi−1, yj), t− 1) i = 2, . . . , n, j = 1, . . . , m,

p2((xi, yj), t) =
�
1− 1

τ

�
p2((xi, yj−1), t− 1) + 1

τ
peq
2 ((xi, yj−1), t− 1) + 1

3
α(y)((xi, yj−1), t− 1) i = 1, . . . , n, j = 2, . . . , m,

p3((xi, yj), t) =
�
1− 1

τ

�
p3((xi+1, yj), t− 1) + 1

τ
peq
3 ((xi+1, yj), t− 1)− 1

3
α(x)((xi+1, yj), t− 1) i = 1, . . . , n− 1, j = 1, . . . , m,

p4((xi, yj), t) =
�
1− 1

τ

�
p4((xi, yj+1), t− 1) + 1

τ
peq
4 ((xi, yj+1), t− 1)− 1

3
α(y)((xi, yj+1), t− 1) i = 1, . . . , n, j = 1, . . . , m− 1,

p5((xi, yj), t) =
�
1− 1

τ

�
p5((xi−1, yj−1), t− 1) + 1

τ
peq
5 ((xi−1, yj−1), t− 1) + 1

3
(α(x)((xi−1, yj−1), t− 1) + α(y)((xi−1, yj−1), t− 1)) i = 2, . . . , n, j = 2, . . . , m,

p6((xi, yj), t) =
�
1− 1

τ

�
p6((xi+1, yj−1), t− 1) + 1

τ
peq
6 ((xi+1, yj−1), t− 1) + 1

3
(−α(x)((xi+1, yj−1), t− 1) + α(y)((xi+1, yj−1), t− 1)) i = 1, . . . , n− 1, j = 2, . . . , m,

p7((xi, yj), t) =
�
1− 1

τ

�
p7((xi+1, yj+1), t− 1) + 1

τ
peq
7 ((xi+1, yj+1), t− 1) + 1

3
(−α(x)((xi+1, yj+1), t− 1)− α(y)((xi+1, yj+1), t− 1)) i = 1, . . . , n− 1, j = 1, . . . , m− 1,

p8((xi, yj), t) =
�
1− 1

τ

�
p8((xi−1, yj+1), t− 1) + 1

τ
peq
8 ((xi−1, yj+1), t− 1) + 1

3
(α(x)((xi−1, yj+1), t− 1)− α(y)((xi−1, yj+1), t− 1)) i = 2, . . . , n, j = 1, . . . , m− 1,

p9((xi, yj), t) =
�
1− 1

τ

�
p9((xi, yj), t− 1) + 1

τ
peq
9 ((xi, yj), t− 1) i = 1, . . . , n, j = 1, . . . , m.

(A.2)

The periodic and the bounce back boundary conditions are taken care of

p1((x1, yj), t) =
(
1− 1

τ

)
p1((xn, yj), t− 1) + 1

τ p
eq
1 ((xn, yj), t− 1) + 1

3α
(x)((xn, yj), t− 1) j = 1, . . . ,m,

p4((xi, ym), t) =
(
1− 1

τ

)
p2((xi, ym), t− 1) + 1

τ p
eq
2 ((xi, ym), t− 1) + 1

3α
(y)((xi, ym), t− 1) i = 1, . . . , n,

p3((xn, yj), t) =
(
1− 1

τ

)
p3((x1, yj), t− 1) + 1

τ p
eq
3 ((x1, yj), t− 1)− 1

3α
(x)((x1, yj), t− 1) j = 1, . . . ,m,

p2((xi, y1), t) =
(
1− 1

τ

)
p4((xi, y1), t− 1) + 1

τ p
eq
4 ((xi, y1), t− 1)− 1

3α
(y)((xi, y1), t− 1) i = 1, . . . , n,

p7((xi, ym), t) =
(
1− 1

τ

)
p5((xi, ym), t− 1) + 1

τ p
eq
5 ((xi, ym), t− 1) + 1

3 (α(x)((xi, ym), t− 1) + α(y)((xi, ym), t− 1)) i = 1, . . . , n,

p5((x1, yj), t) =
(
1− 1

τ

)
p5((xn, yj−1), t− 1) + 1

τ p
eq
5 ((xn, yj−1), t− 1) + 1

3 (α(x)((xn, yj−1), t− 1) + α(y)((xn, yj−1), t− 1)) j = 2, . . . ,m,

p8((xi, ym), t) =
(
1− 1

τ

)
p6((xi, ym), t− 1) + 1

τ p
eq
6 ((xi, ym), t− 1) + 1

3 (−α(x)((xi, ym), t− 1) + α(y)((xi, ym), t− 1)) i = 1, . . . , n,

p6((xn, yj), t) =
(
1− 1

τ

)
p6((x1, yj−1), t− 1) + 1

τ p
eq
6 ((x1, yj−1), t− 1) + 1

3 (−α(x)((x1, yj−1), t− 1) + α(y)((x1, yj−1), t− 1)) j = 2, . . . ,m,

p5((xi, y1), t) =
(
1− 1

τ

)
p7((xi, y1), t− 1) + 1

τ p
eq
7 ((xi, y1), t− 1) + 1

3 (−α(x)((xi, y1), t− 1)− α(y)((xi, y1), t− 1)) i = 1, . . . , n,

p7((xn, yj), t) =
(
1− 1

τ

)
p7((x1, yj+1), t− 1) + 1

τ p
eq
7 ((x1, yj+1), t− 1) + 1

3 (−α(x)((x1, yj+1), t− 1)− α(y)((x1, yj+1), t− 1)) j = 1, . . . ,m− 1,

p6((xi, y1), t) =
(
1− 1

τ

)
p8((xi, y1), t− 1) + 1

τ p
eq
8 ((xi, y1), t− 1) + 1

3 (α(x)((xi, y1), t− 1)− α(y)((xi, y1), t− 1)) i = 1, . . . , n,

p8((x1, yj), t) =
(
1− 1

τ

)
p8((xn, yj+1), t− 1) + 1

τ p
eq
8 ((xn, yj+1), t− 1) + 1

3 (α(x)((xn, yj+1), t− 1)− α(y)((xn, yj+1), t− 1)) j = 1, . . . ,m− 1.

(A.3)

The equilibrium distributions for the 9 velocity directions are given by

peq
1 ((xi, yj), t− 1) = 1

9

h
ρ((xi, yj), t− 1) + 3u(x)((xi, yj), t− 1) + 9

2
u(x)2((xi, yj), t− 1)− 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i

peq
2 ((xi, yj), t− 1) = 1

9

h
p((xi, yj), t− 1) + 3u(y)((xi, yj), t− 1) + 9

2
u(y)2((xi, yj), t− 1)− 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i

peq
3 ((xi, yj), t− 1) = 1

9

h
p((xi, yj), t− 1)− 3u(x)((xi, yj), t− 1) + 9

2
u(x)2((xi, yj), t− 1)− 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i

peq
4 ((xi, yj), t− 1) = 1

9

h
p((xi, yj), t− 1)− 3u(y)((xi, yj), t− 1) + 9

2
u(y)2((xi, yj), t− 1)− 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i

peq
5 ((xi, yj), t− 1) = 1

36

h
p((xi, yj), t− 1) + 3(u(x)((xi, yj), t− 1) + u(y)((xi, yj), t− 1)) + 9

2
(u(x)((xi, yj), t− 1) + u(y)((xi, yj), t− 1))2 − 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i

peq
6 ((xi, yj), t− 1) = 1

36

h
p((xi, yj), t− 1) + 3(−u(x)((xi, yj), t− 1) + u(y)((xi, yj), t− 1)) + 9

2
(−u(x)((xi, yj), t− 1) + u(y)((xi, yj), t− 1))2 − 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i

peq
7 ((xi, yj), t− 1) = 1

36

h
p((xi, yj), t− 1) + 3(−u(x)((xi, yj), t− 1)− u(y)((xi, yj), t− 1)) + 9

2
(−u(x)((xi, yj), t− 1)− u(y)((xi, yj), t− 1))2 − 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i

peq
8 ((xi, yj), t− 1) = 1

36

h
p((xi, yj), t− 1) + 3(u(x)((xi, yj), t− 1)− u(y)((xi, yj), t− 1)) + 9

2
(u(x)((xi, yj), t− 1)− u(y)((xi, yj), t− 1))2 − 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i

peq
9 ((xi, yj), t− 1) = 4

9

h
p((xi, yj), t− 1)− 3

2
(u(x)2((xi, yj), t− 1) + u(y)2((xi, yj), t− 1))

i
.

(A.4)

We need, Gt =
∂Qt

∂wt−1
(wt−1, αt−1). Recall we have

wt = Qt(wt−1, αt−1).

We can write this as

wt =

u

(x)
t

u
(y)
t

pt

 =

Q1

t (wt−1, αt−1)

Q2
t (wt−1, αt−1)

Q3
t (wt−1, αt−1)

 , (A.5)

and thus,

Gt =
∂Qt

∂wt−1
=

∂Q1
t

∂u
(x)
t−1

∂Q1
t

∂u
(y)
t−1

∂Q1
t

∂pt−1

∂Q2
t

∂u
(x)
t−1

∂Q2
t

∂u
(y)
t−1

∂Q2
t

∂pt−1

∂Q3
t

∂u
(x)
t−1

∂Q3
t

∂u
(y)
t−1

∂Q3
t

∂pt−1

. (A.6)

Now let us compute the entries of Gt. For example, suppose we want to differentiate the system Qt with respect to u(x)
t−1, dealing with the chain of functions

that can be traced along (A.1) to (A.4) we have for the macroscopic properties

∂

∂u
(x)
t−1

u(x)((xi, yj), t) =
∂

∂u
(x)
t−1

p1((xi, yj), t)−
∂

∂u
(x)
t−1

p3((xi, yj), t) +
∂

∂u
(x)
t−1

p5((xi, yj), t)−
∂

∂u
(x)
t−1

p6((xi, yj), t)−
∂

∂u
(x)
t−1

p7((xi, yj), t) +
∂

∂u
(x)
t−1

p8((xi, yj), t)

∂

∂u
(x)
t−1

u(y)((xi, yj), t) =
∂

∂u
(x)
t−1

p2((xi, yj), t)−
∂

∂u
(x)
t−1

p4((xi, yj), t) +
∂

∂u
(x)
t−1

p5((xi, yj), t) +
∂

∂u
(x)
t−1

p6((xi, yj), t)−
∂

∂u
(x)
t−1

p7((xi, yj), t)−
∂

∂u
(x)
t−1

p8((xi, yj), t)

∂

∂u
(x)
t−1

p((xi, yj), t) =
9∑

i=1

∂

∂u
(x)
t−1

pi((xi, yj), t),

(A.7)

for the distribution functions

∂

∂u
(x)
t−1

p1((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
1 ((xi−1, yj), t− 1) i = 2, . . . , n, j = 1, . . . ,m,

∂

∂u
(x)
t−1

p2((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
2 ((xi, yj−1), t− 1) i = 1, . . . , n, j = 2, . . . ,m,

∂

∂u
(x)
t−1

p3((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
3 ((xi+1, yj), t− 1) i = 1, . . . , n− 1, j = 1, . . . ,m,

∂

∂u
(x)
t−1

p4((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
4 ((xi, yj+1), t− 1) i = 1, . . . , n, j = 1, . . . ,m− 1,

∂

∂u
(x)
t−1

p5((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
5 ((xi−1, yj−1), t− 1) i = 2, . . . , n, j = 2, . . . ,m,

∂

∂u
(x)
t−1

p6((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
6 ((xi+1, yj−1), t− 1) i = 1, . . . , n− 1, j = 2, . . . ,m,

∂

∂u
(x)
t−1

p7((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
7 ((xi+1, yj+1), t− 1) i = 1, . . . , n− 1, j = 1, . . . ,m− 1,

∂

∂u
(x)
t−1

p8((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
8 ((xi−1, yj+1), t− 1) i = 2, . . . , n, j = 1, . . . ,m− 1,

∂

∂u
(x)
t−1

p9((xi, yj), t) =
1
τ

∂

∂u
(x)
t−1

peq
9 ((xi, yj), t− 1) i = 1, . . . , n, j = 1, . . . ,m,

(A.8)

for the periodic and the bounce back boundary conditions,
∂

∂u
(x)
t−1

p1((x1, yj), t) =
1

τ

∂

∂u
(x)
t−1

peq
1 ((xn, yj), t− 1) j = 1, . . . , m,

∂

∂u
(x)
t−1

p4((xi, ym), t) =
1

τ

∂

∂u
(x)
t−1

peq
2 ((xi, ym), t− 1) i = 1, . . . , n,

∂

∂u
(x)
t−1

p3((xn, yj), t) =
1

τ

∂

∂u
(x)
t−1

peq
3 ((x1, yj), t− 1) j = 1, . . . , m,

∂

∂u
(x)
t−1

p2((xi, y1), t) =
1

τ

∂

∂u
(x)
t−1

peq
4 ((xi, y1), t− 1) i = 1, . . . , n,

∂

∂u
(x)
t−1

p7((xi, ym), t) =
1

τ

∂

∂u
(x)
t−1

peq
5 ((xi, ym), t− 1) i = 1, . . . , n,

∂

∂u
(x)
t−1

p5((x1, yj), t) =
1

τ

∂

∂u
(x)
t−1

peq
5 ((xn, yj−1), t− 1) j = 2, . . . , m,

∂

∂u
(x)
t−1

p8((xi, ym), t) =
1

τ

∂

∂u
(x)
t−1

peq
6 ((xi, ym), t− 1) i = 1, . . . , n,

∂

∂u
(x)
t−1

p6((xn, yj), t) =
1

τ

∂

∂u
(x)
t−1

peq
6 ((x1, yj−1), t− 1) j = 2, . . . , m,

∂

∂u
(x)
t−1

p5((xi, y1), t) =
1

τ

∂

∂u
(x)
t−1

peq
7 ((xi, y1), t− 1) i = 1, . . . , n,

∂

∂u
(x)
t−1

p7((xn, yj), t) =
1

τ

∂

∂u
(x)
t−1

peq
7 ((x1, yj+1), t− 1) j = 1, . . . , m− 1,

∂

∂u
(x)
t−1

p6((xi, y1), t) =
1

τ

∂

∂u
(x)
t−1

peq
8 ((xi, y1), t− 1) i = 1, . . . , n,

∂

∂u
(x)
t−1

p8((x1, yj), t) =
1

τ

∂

∂u
(x)
t−1

peq
8 ((xn, yj+1), t− 1) j = 1, . . . , m− 1,

(A.9)

and for the equilibrium distributions for the 9 velocity directions, with respect to u(x)
t−1,

∂

∂u
(x)
t−1

peq
1 ((xi, yj), t− 1) = 1

9

[
3 + 9u(x)((xi, yj), t− 1)− 3u(x)((xi, yj), t− 1)

]
∂

∂u
(x)
t−1

peq
2 ((xi, yj), t− 1) = 1

9

[
−3u(x)((xi, yj), t− 1)

]
∂

∂u
(x)
t−1

peq
3 ((xi, yj), t− 1) = 1

9

[
−3 + 9u(x)((xi, yj), t− 1)− 3u(x)((xi, yj), t− 1)

]
∂

∂u
(x)
t−1

peq
4 ((xi, yj), t− 1) = 1

9

[
−3u(x)((xi, yj), t− 1)

]
∂

∂u
(x)
t−1

peq
5 ((xi, yj), t− 1) = 1

36

[
3 + 9(u(x)((xi, yj), t− 1) + u(y)((xi, yj), t− 1))− 3u(x)((xi, yj), t− 1)

]
∂

∂u
(x)
t−1

peq
6 ((xi, yj), t− 1) = 1

36

[
−3− 9(−u(x)((xi, yj), t− 1) + u(y)((xi, yj), t− 1))− 3u(x)((xi, yj), t− 1)

]
∂

∂u
(x)
t−1

peq
7 ((xi, yj), t− 1) = 1

36

[
−3− 9(−u(x)((xi, yj), t− 1)− u(y)((xi, yj), t− 1))− 3u(x)((xi, yj), t− 1)

]
∂

∂u
(x)
t−1

peq
8 ((xi, yj), t− 1) = 1

36

[
3 + 9(u(x)((xi, yj), t− 1)− u(y)((xi, yj), t− 1))− 3u(x)((xi, yj), t− 1)

]
∂

∂u
(x)
t−1

peq
9 ((xi, yj), t− 1) = 4

9

[
−3u(x)((xi, yj), t− 1)

]
.

(A.10)

To sum up what has been done, from wt = Qt(wt−1, αt−1), differentiating (A.1) to (A.4) with respect to u(x)
t−1, (A.7) gives us the expressions for the entries

in the second row of Gt illustrated in (A.6) and the terms found in the said expressions can be traced along (A.7) to (A.10). The rest of the columns of Gt

can be computed similarly by differentiating (A.1) to (A.4) with respect to u(y)
t−1 and pt−1, respectively. Ultimately, follows the adjoint equation given by

pt︸︷︷︸ = Gt+1︸ ︷︷ ︸ pt+1︸︷︷︸ + γt︸︷︷︸, t = T − 1, . . . , 1.

∈ R3×1 ∈ R3×3 ∈ R3×1 ∈ R3×1
(A.11)

Further, we take note that the adjoint states pt are solved backward in time and pT = γT = w
(x)
T − w

(x)d

T .

We also need Ht =
∂Qt

∂αt−1
(wt−1, αt−1). Following the breakdown of Qt given by (A.5), we have

Ht =
∂Qt

∂αt−1
=

∂Q1
t

∂α
(x)
t−1

∂Q1
t

∂α
(y)
t−1

∂Q2
t

∂α
(x)
t−1

∂Q2
t

∂α
(y)
t−1

∂Q3
t

∂α
(x)
t−1

∂Q3
t

∂α
(y)
t−1

. (A.12)

Differentiating the system (A.1) to (A.4) with respect to αt−1 = (α(x)
t−1, α

(y)
t−1) (i.e. to each component of αt−1), we obtain Ht ∈ R3×2. Let us take for

example α(x)
t−1, the control force term along the x-direction. We differentiate wt = Qt(wt−1, αt) with respect to α(x)

t−1. We have for the macroscopic properties

∂

∂α
(x)
t−1

u(x)((xi, yj), t) =
∂

∂α
(x)
t−1

p1((xi, yj), t)−
∂

∂α
(x)
t−1

p3((xi, yj), t) +
∂

∂α
(x)
t−1

p5((xi, yj), t)−
∂

∂α
(x)
t−1

p6((xi, yj), t)−
∂

∂α
(x)
t−1

p7((xi, yj), t) +
∂

∂α
(x)
t−1

p8((xi, yj), t)

∂

∂α
(x)
t−1

u(y)((xi, yj), t) =
∂

∂α
(x)
t−1

p2((xi, yj), t)−
∂

∂α
(x)
t−1

p4((xi, yj), t) +
∂

∂α
(x)
t−1

p5((xi, yj), t) +
∂

∂α
(x)
t−1

p6((xi, yj), t)−
∂

∂α
(x)
t−1

p7((xi, yj), t)−
∂

∂α
(x)
t−1

p8((xi, yj), t)

∂

∂α
(x)
t−1

p((xi, yj), t) =
9∑

i=1

∂

∂α
(x)
t−1

pi((xi, yj), t),

(A.13)

for the distribution functions

∂

∂α
(1)
t−1

f1((xi, yj), t) = 1
3 i = 2, . . . , n, j = 1, . . . ,m,

∂

∂α
(1)
t−1

f2((xi, yj), t) = 0 i = 1, . . . , n, j = 2, . . . ,m,

∂

∂α
(1)
t−1

f3((xi, yj), t) = − 1
3 i = 1, . . . , n− 1, j = 1, . . . ,m,

∂

∂α
(1)
t−1

f4((xi, yj), t) = 0 i = 1, . . . , n, j = 1, . . . ,m− 1,

∂

∂α
(1)
t−1

f5((xi, yj), t) = 1
3 i = 2, . . . , n, j = 2, . . . ,m,

∂

∂α
(1)
t−1

f6((xi, yj), t) = − 1
3 i = 1, . . . , n− 1, j = 2, . . . ,m,

∂

∂α
(1)
t−1

f7((xi, yj), t) = − 1
3 i = 1, . . . , n− 1, j = 1, . . . ,m− 1,

∂

∂α
(1)
t−1

f8((xi, yj), t) = 1
3 i = 2, . . . , n, j = 1, . . . ,m− 1,

∂

∂α
(1)
t−1

f9((xi, yj), t) = 0 i = 1, . . . , n, j = 1, . . . ,m,

(A.14)

for the periodic and the bounce back boundary conditions we have
∂

∂α
(x)
t−1

f1((x1, yj), t) = 1
3

j = 1, . . . , m,

∂

∂α
(x)
t−1

f4((xi, ym), t) = 0 i = 1, . . . , n,

∂

∂α
(x)
t−1

f3((xn, yj), t) = 1
3

j = 1, . . . , m,

∂

∂α
(x)
t−1

f2((xi, y1), t) = 0 i = 1, . . . , n,

∂

∂α
(x)
t−1

f7((xi, ym), t) = 1
3

i = 1, . . . , n,

∂

∂α
(x)
t−1

f5((x1, yj), t) = 1
3

j = 2, . . . , m,

∂

∂α
(x)
t−1

f8((xi, ym), t) = − 1
3

i = 1, . . . , n,

∂

∂α
(x)
t−1

f6((xn, yj), t) = − 1
3

j = 2, . . . , m,

∂

∂α
(x)
t−1

f5((xi, y1), t) = − 1
3

i = 1, . . . , n,

∂

∂α
(x)
t−1

f7((xn, yj), t) = − 1
3

j = 1, . . . , m− 1,

∂

∂α
(x)
t−1

f6((xi, y1), t) = 1
3

i = 1, . . . , n,

∂

∂α
(x)
t−1

f8((x1, yj), t) = 1
3

j = 1, . . . , m− 1,

(A.15)

for the equilibrium distributions for the 9 velocity directions,

∂

∂α
(x)
t−1

f eq
1 ((xi, yj), t) =

∂

∂α
(x)
t−1

f eq
2 ((xi, yj), t) =

∂

∂α
(x)
t−1

f eq
3 ((xi, yj), t) =

∂

∂α
(x)
t−1

f eq
4 ((xi, yj), t) =

∂

∂α
(x)
t−1

f eq
5 ((xi, yj), t) =

∂

∂α
(x)
t−1

f eq
6 ((xi, yj), t) =

∂

∂α
(x)
t−1

f eq
7 ((xi, yj), t) =

∂

∂α
(x)
t−1

f eq
8 ((xi, yj), t) =

∂

∂α
(x)
t−1

f eq
9 ((xi, yj), t) = 0.

(A.16)

Thus, (A.13) gives us the expressions for the entries in the first row of Ht illustrated in (A.12) and the terms appearing on the said expressions can be
traced along (A.13) to (A.16). The second column of Ht can be computed similarly by differentiating (A.1) to (A.4) with respect to α(y)

t−1.

Finally, the gradient gt ∈ R2 of ϕt with respect to control αt ∈ R2 is given by the gradient equation

gt︸︷︷︸ =
dϕt

dαt
= HT

t︸︷︷︸ pt︸︷︷︸ + ht︸︷︷︸, t = T − 1, . . . , 1.

∈ R2×1 ∈ R2×3 ∈ R3×1 ∈ R2×1
(A.17)

Declaration

I hereby declare that I have done this thesis on my own and that no other sources than
those listed have been used.

August 11, 2008, Kaiserslautern, Germany Vryan Gil S. Palma

79

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter 1Introduction
	Chapter 2The Lattice Boltzmann Method
	Chapter 3Optimization using the discreteadjoint method
	Chapter 4Method of steepest descent
	Chapter 5Conclusion
	Bibliography
	Declaration

