
 Eindhoven University of Technology

MASTER

Designing a high-speed asynchronous 80C51 microcontroller

van Hoek, T.J.H.

Award date:
2010

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/408fa73a-164c-43ba-9680-e00326e7ded1

TUIe technische universiteit eindhoven

Faculty of Electrical Engineering
Section Electronic Systems (ICS/ES)

ICS-ES 902

Master's Thesis

DESIGNING A HIGH-SPEED ASYNCJIIRONOUS

80C51 MICROCONTROLLE~.

T.J.H. van Hoek

Supervisor:
Coach:
Date:

prof.dr.ir. J. Pineda de Gyvezlprof.dr. K. Van Berkel
A. Brink (Handshake Solutions)
December 2008

The Faculty of Electrical Engineering of the Eindhoven University ofTechnology does not
accept any responsibility regarding the contents of Master's Theses

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Document Information

IDocument Information

I Document title I Designing a high-speed asynchronous 80C51 microcontroller - Master's
, Thesis TUle

Date of creation 04/12/2007

Date of last change 09/12/2008

File name HT80C51-HS

Status Release

Version number 1.0

ISteering group Project Owner: Rik van de Wiel (HS)

Project Manager: Ad Peeters (HS)

Project Mentor: Arjan Bink (HS)

Project Supervisors: Kees van Berkel & Jose Pineda de Gyvez (TU/e)

Client I Target audience Eindhoven University of technology

I Faculty of Electrical Engineering

Section of Embedded Systems

Summary This master's thesis presents and explains the performance
improvements made to an asynchronous HT80C51 microcontroller core
and limitations found in the Handshake Technology design flow.
First the synchronous 80C51 and the initial design of the asynchronous

I HT80C51 microcontroller will be described and analyzed. The bottlenecks

I in the design and architecture of the microcontroller will be identified and

I documented.
! Second, this Master's Thesis introduces a new asynchronous architecture
I for the HT80C51. The new design will be explained, verified,

k I benchmarked and documented.-IKeywords Handshake Technology, asynchronous, high-speed, 80C51,
microcontroller

Contact Handshake Solutions phone: +31-40-2746114
High Tech Campus 12 fax: +31-40-2746526
5656 AE Eindhoven info@handshakesolutions.com
The Netherlands www.handshakesolutions.com

© 2008 Koninklijke Philips Electronics N.Y.
All rights reserved. Reproduction in whole or in part in any way, shape or form, is prohibited without
the written consent of the copyright owner. All information in this document is subject to change
without notice.

Page 2 of 98 © Philips Electronics N.V.2008

Designing a high-speed asynchronous 80C51 microcontroller
Foreword

Foreword

Handshake Solutions

This master's thesis describes the speed improvements made to an asynchronous 80C51
microcontroller core, known as the HT80C51 (Handshake Technology 80C51).

The HT80C51 is the Handshake Solutions (refer to A1) implementation of the 80C51 8-bit
microcontroller. As with all Handshake Technology implementations, the HT80C51 boasts ultra low
operational power consumption, zero active stand-by power and immediate wake-up. Furthermore,
very low electromagnetic emission (EM E) levels and current peaks enable easy integration with RF
and analog circuitry.

The HT80C51 delivers unique benefits to any application where a clocked 80C51 core can be used,
particularly when power consumption or electromagnetic interference is an important issue.
Handshake Technology implementations of the 80C51 have been used in numerous ICs across
various markets including wireless, smart cards and automotive.

The motivation for this thesis is that current asynchronous designs using Handshake Technology (e.g.
ARM996HS, HT80C51) are outstanding regarding power and EME, but lag in terms of speed
performance. These asynchronous designs are based on Handshake Solutions' design environment
(refer to chapter 2).

Handshake Solutions provided me the possibility to start a part-time study at Eindhoven University of
Technology. I enjoyed the courses I had at the University. It helped me to develop myself as an
engineer and find a wider and deeper understanding of the fundamentals of computer engineering, the
theory of information and communication systems and the complexity of electronic designs.
The study at Eindhoven University of Technology helped me to solve problems by first dividing them
into clear defined cases and then solving them by abstract and structural methods.

It is my hope that this thesis will be useful to Handshake Solutions and Eindhoven University of
Technology.

© Philips Electronics N.V. 2008 Page 3 of 98

Handshake Solutions

Page 4 of 98

Designing a high-speed asynchronous 80C51 microcontroller -- Graduation project
Table of Contents

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Table of Contents

Table of Contents

Handshake Solutions

Abstract. 7
Acknowledgements 7
Abbreviations and Terminology 8
1. Introduction 9

1.1. Problem description 9
1.2. Problem approach 9
1.3. Document overview 10

2. Handshake Technology 11
2.1. Handshake Technology design flow 11
2.2. Functional design flow 11

2.2.1. Design language Haste 11
2.2.2. Handshake channels 13
2.2.3. Handshake circuits 14
2.2.4. Library connection , 14

2.3. Structural design flow 14
2.3.1. Linking 14
2.3.2. Design for test.. 14
2.3.3. Preparing the netlist... 14

2.4. Physical design flow 15
3. 80C51 17

3.1. Synchronous 80C51 implementation 17
3.1.1. Memory organization 17
3.1.2. Special Function Register 19
3.1.3. Addressing modes , 19
3.1.4. Instruction set 20
3.1.5. CPU timing 20

3.2. Low power HT80C51 21
3.2.1. Datapath 21
3.2.2. Control structure 22

3.3. Low cost HT80C51 24
3.3.1. Datapath 24
3.3.2. Control structure 26

3.4. Comparison high-speed 80C51 microcontrollers 28
3.5. Theoretical performance analysis 33

4. Initial speed up of the HT80C51 37
4.1. Conceptual architecture 37
4.2. Datapath 38
4.3. Control structure 38
4.4. Results 41

5. HT80C51-HS 43
5.1. Conceptual architecture 43
5.2. Pipelining and memory architecture 43
5.3. Choice of pipeline structure 46
5.4. Detailed architecture 49

5.4.1. Fetch stage 50
5.4.2. Predecode stage 53
5.4.3. Decode stage 55
5.4.4. Read/write scheduler 57
5.4.5. Execute stage 59

5.5. Datapath 61
5.6. Control structure 62
5.7. Optimizations 64

5.7.1. Branch instructions 64
5.7.2. MOVC instructions 65
5.7.3. Indirect addressing for the registers 67
5.7.4. Registers in the execute stage 67

© Philips Electronics N.Y. 2008 Page 5 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller -- Graduation project

Table of Contents

5.7.5. The fifth stage: decoupling the write back 68
5.8. Results 69

5.8.1. Implementation of the HT80C51-HS 69
5.8.2. Behaviour of the HT80C51-HS pipeline 70
5.8.3. Analysis of the measurements 72

5.9. Limitations of the Handshake Technology flow 75
\ 5.9.1. Access to the memory 75

5.9.2. Handshake communication channels 76
5.9.3. Slow loops 76

6. Conclusion 79
6.1. Results from the analysis 79
6.2. The HT80C51-SU 79
6.3. The HT80C51-HS 80
6.4. Recommendations 82
6.5. Final conclusion 82

7. References 83
8. List of Tables 85
9. List of Figures 85
Appendix 87

A1 Handshake Solutions 87
A2 80C51 Instruction set 88
A3 Configuration of the HT80C51 90
A4 Instruction execution time and memory specification HT80C51 91
A5 Instruction groups specified for HT80C51-LC and HT80C51-SU 96
A6 Instruction groups specified for HT80C51-HS 97
A7 Document History 98

Page 60f98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Table of Contents

Abstract

Handshake Solutions

This master's thesis describes the speed improvements made to an asynchronous 80C51
microcontroller core known as HT80C51. The motivation for this assignment is that current
asynchronous designs using Handshake Technology (e.g. ARM996HS, HT80C51) are outstanding
with respect to power and electromagnetic emission (EME), but lag in terms of speed performance.

The assignment is to make a high speed version of the HT80C51. With the knowledge of the
HT80C51 in the Handshake Solutions group, the focus is to explore the architecture of the HT80C51
by asynchronous pipelining while staying completely in the Handshake Technology design flow.

First the current 80C51 implementations (both synchronous and asynchronous) are analyzed. The
available HT80C51 microcontroller is benchmarked and the architecture is analyzed. Bottlenecks of
the HT80C51 microcontroller are identified and solutions are found to reach the goal of obtaining
higher performance.

A high-speed asynchronous 80C51 microcontroller is developed and analyzed in the Handshake
Technology design flow. The design is implemented and validated in a CMOS 0.14 11m technology
library. The performance of the high-speed asynchronous 80C51 is 3.2 times faster than the current
asynchronous HT80C51 design and up to par with current high-speed synchronous designs. This
makes it more than plausible that it is possible to not only benefit from typical characteristics of
asynchronous technology like low power, but that it is also possible to make fast digital
implementations with asynchronous technology.

Acknowledgements
It is arguable that this page is the most widely read page from the whole thesis. I would like to think
that is not the case in this thesis, but who I am fooling?

I would like to start thanking my colleague at Handshake Solutions, roommate, friend and mentor in
this thesis, Arjan Bink. If I could not benefit from your experience, knowledge and time, I always could
enjoy your wide and good taste of music.
This certainly also applies for Ad Peeters. I am admiring your patience and willingness to guide me
and this thesis and I am very thankful with all your suggestions and support.
Thank you to Kees van Berkel and Jose Pineda de Gyvez for your help and time for supervising this
thesis work.
Thanks to Rik van de Wiel who always supported my part-time study.
I will not leave out all my colleagues at Handshake Solutions; Bert, Erwin, Frank, Frits, Jur, Klaus,
Marc, Marc, Maria, Mark, Marten, Monique, Nidish, Paul, Rachna, Rene, Rob and Wouter.

Finally yet importantly, thanks to my parents who always gave me the warm and proud feeling good
parents give. No matter what I accomplished, they always supported me and were proud of me. The
same holds for my whole family and grandmother.
Thanks to all my friends who always supported me with laughs, distraction, sports and other ways to
expand the good life I am living.
Finally I want to thank, two very important persons in my life, more personally. My brother Berry, who
is more than just a Big Brother for me! Not only a friend or just an older brother, but someone I would
never want to miss in my life. Thanks to my lovely Miriam for withstanding with me in the hectic finale
of my study. I can not wait to spend more time with you and enjoy your good presence. Thanks that
you are expanding my life!

© Philips Electronics N.V. 2008 Page 7 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller -- Graduation project

Table of Contents

Abbreviations and Terminology

ADD

ALU

Argument

ASIC

Branch

Code Memory

CPU

Data Memory

DPTR

EB

EDA

EME

Haste

Htcomp

Htmap

Htprof

Kbyte

MOV

MIPS

Opcode

PC

PSW

RAM

ROM

SFR

SP

TiDE

VHDL

VLSI

Page 8 of 98

ADDITION instruction, this instruction adds two bytes and write the result
to the destination

Arithmetic and Logic Unit

Instruction extension (address or constant)

Application Specific Integrated Circuit

A Branch is point in a computer program where the flow of control is
altered

Memory space that is accessed for fetching instruction opcodes and their
arguments

Central Processing Unit

Memory space that is accessed for reading and writing SFRs and
temporary data

Data Pointer

Execution Bits (Condition Bits)

Electronic Design Automation

Electromagnetic Emission

Handshake Solutions programming language for designing asynchronous
circuits

Handshake Technology COMPiler

Handshake Technology MAPper

Handshake Technology PROFiler

Kilo Byte - 1024 Bytes

MOVE instruction, this instruction moves one byte from the source to the
destination

Million Instructions Per Second

Instruction identifier (Operation Code)

Program Counter

Program Status Word

Random Access Memory

Read Only Memory

Special Function Register

Stack Pointer

Timeless Design Environment, Handshake Technology design flow to
design asynchronous circuits

VHSIC Hardware Description Language

Very Large Scale Integration.

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Introduction

1. Introduction

Handshake Solutions

This master's thesis presents the results obtained from research at the company Handshake
Solutions. I have carried out the work for this project from December 2007 until December 2008. Kees
van Berkel and Jose Pineda de Gyves were the supervisors at Eindhoven University of Technology
and Ad Peeters and Arjan Bink were the supervisors at Handshake Solutions.

1.1. Problem description
Handshake Solutions has developed the HT80C51: an 80C51 8-bit CISC microcontroller based on
Handshake Technology that is functionally compatible with the original Intel 8051.
Current designs of Handshake Solutions (e.g. ARM996HS, HT80C51) have been developed with
excellent power consumption and EME characteristics, but lag in terms of performance.

The target of this graduation project is:
• Analyze and benchmark the current HT80C51 implementation
• Propose a new architecture which can reach an instruction throughput that is at least a

factor 3 higher compared to the current HT80C51. The new architecture is fully designed
in Handshake Solutions' design flow, and should be identically compiled as the current
HT80C51

• Implement the new HT80C51 architecture
• Measure and analyze the new HT80C51 architecture
• Comment on the new architecture
• Document the approach to the new design

The current HT80C51 architecture is designed with area and power consumption as main design
goals. Performance never was the main design goal. The choice to use the HT80C51 for achieving
performance is justified for this type of microcontroller.

1.2. Problem approach
To design a high-speed HT80C51 microcontroller a high-level programming language, called Haste, is
used. Haste is part of the Handshake Technology design flow. With this design flow it is possible to
generate a Handshake circuit and a netlist for a given standard-cell library (like TSMC, etc).

According to the problem description we aim at optimal results in terms for speed performance.
Naturally the microcontroller should be functionally correct, which means that it executes instructions
without any errors. Low area and power consumption are less important.

First the standard synchronous 80C51 and the current asynchronous HT80C51 implementation are
analyzed. With knowledge of the synchronous 80C51 instruction set and memory management we
determine the maximum possible performance without changing these two main parameters. With the
HT80C51 analysis we evaluate design bottlenecks and find another design approach more suitable for
high-speed operation.
With the knowledge gathered by the previous design analysis we determine a better performing
architecture for a high-speed HT80C51.
After implementing the high-speed HT80C51 architecture steps are needed to improve, tweak and
balance this improved architecture.

© Philips Electronics N.V. 2008 Page 9 of 98

Handshake Solutions

1.3. Document overview

Designing a high-speed asynchronous 80C51 microcontroller

Introduction

This master's thesis describes the functional design and implementation of a high-speed
asynchronous BOC51 compatible microcontroller core.

Chapter 1 defines the problem description, our main target and problem approach. This chapter also
gives an overview of this thesis.

Chapter 2 is an introduction to Handshake Technology (HT). This chapter introduces an overview of
the Handshake Technology design flow TiDE, Handshake Technology programming language Haste
and handshake circuits.

Chapter 3 presents the BOC51 microcontroller in five steps. First of all, the original Intel architecture is
introduced. Second, other synchronous architectures of the BOC51 are discussed. Third, the first
asynchronous implementation by Hans van Gageldonk [2] is presented. Fourth, based on an analysis
of this design, a new design has been created that is known as the HTBOC51-LC (Low Cost). The
HTBOC51-LC design will be discussed and serves as the starting point for this thesis work. Fifth, the
last section of this chapter will be dedicated to the theoretical maximum performance that can be
achieved for an BOC51.

Chapter 4 describes an initial asynchronous speed-up version, the HTBOC51-SU (Speed Up). This
initial design of the high-speed HTBOC51 implements a pre-fetching unit, a multi stage decoder and an
optimized execution phase. The main goal was to increase the performance without a major design
change. This was done by reducing the overhead of control logic in the execute phase.

Chapter 5 introduces a complete new architecture for an asynchronous BOC51 design, the HTBOC51
HS (High Speed). This design introduces a pipelined architecture of the asynchronous BOC51. This
design choice was made to increase the maximum performance with a vast amount. Other techniques
are implemented to boost the performance of the HTBOC51 to the desired level. These techniques are
discussed and evaluated in this chapter. This chapter also outlines some problem areas in the
Handshake Technology design flow. Some of these problems should be addressed to increase speed
performance

Chapter 6 outlines the results obtained from this graduation project. Conclusions are drawn and the
results are qualified. Chapter 6 finalize with a summarization about the work activities that still needs
to be done and recommendations to further improve the high-speed asynchronous 80C51
microcontroller in the future.

Page 10 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Handshake Technology Handshake Solutions

2. Handshake Technology
2.1. Handshake Technology design flow
The Handshake Technology design flow (TiDE) targets at efficiently bringing a design from
specification to a self-timed implementation. This has led to a development of a complete design flow
consisting of compilation, simulation and analysis tools which supports the designer in the design
process. This design flow goes all the way from a high-level design entry down to a circuit-level
realization. The design flow has been set up in such a way that new tools are developed only where
needed. Otherwise, standard Electronic Design Automation (EDA) tools are being used. Additional
tools make it possible to bring the initial design to a final layout.
The Handshake Technology design flow can be seen as an alternative front-end to the standard EDA
flows, complementary and compatible with them.

Handshake Technology
Design Flow

Standard EDA Flow
.. Cadence, Synopsys,

Mentor

[Figure 1] Design flow principle

2.2. Functional design flow
The functional part of the design flow, during which the designer's focus is on the functional
correctness of the design, is shown schematically in [Figure 2]. In this diagram, boxes denote design
representations and test benches, while the oval boxes refer to tools.
The two central tools are htcomp, which compiles a Haste program into a handshake circuit and
htmap, which compiles a handshake circuit into a Verilog netlist.

Haste program { hlCOmp)n. Handshake circutt { hlmap).. Verilog nellis!

[Figure 2] Functional design flow overview

JSlandard Verilog
'"\ simulator

2.2.1. Design language Haste
Ever since the introduction of the relatively new asynchronous VLSI programming paradigm
throughout the world, people consider designing on the level of asynchronous circuits inherently
difficult. To abstract from the properties of asynchronous design (e.g. intricate timing behaviour,
difficult to control delays, etc.), Handshake Solutions has designed a dedicated programming
language called Haste, formerly known as Tangram. Haste is more a behavioural design language
than a structural design language. The programmer has the opportunity to express the most complex
algorithms using powerful constructs (e.g. parallelism and channel communication). Haste has
similarities with C, and is comparable to behavioural level Veri log or VHDL. A complete overview of
the design language Haste can be found in [4]. Below we highlight some key aspects that make Haste
a unique and powerful design language.

© Philips Electronics N.V. 2008 Page 11 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Handshake Technology

[Code Fragment 1] shows the sequential composition command. The semicolon symbol represents
that command Co must execute (and finish) before command Cj executes.

[Code Fragment 1] Sequential composition command

[Code Fragment 2] shows the parallel composition command. The two vertical lines symbol represents
that both commands Co and Cj execute simultaneously.

[Code Fragment 2] Parallel composition command

[Code Fragment 3] and [Code Fragment 4] shows the selection command. The Boolean expressions
Bo through Bn are guards. All guards evaluate simultaneously and the selection command selects the
command to be executed corresponding to the first guard in the list that evaluates to true. There are
two possible selection criteria. First possibility [Code Fragment 3] is that if all guards are false, it
selects then none of the commands and finishes immediately.

if Bo then Co
or B1 then C1

or Bn tben Cn

fi

[Code Fragment 3] Selection command

Second possibility [Code Fragment 4] is that if all guards are false, the command blocks until at least
one of the guards evaluates to true and therefore always selecting one of the commands (Co through
Cn)·

sel Bo then Co
or B1 tben C1

or Bn tben Co
les

[Code Fragment 4] Selection command with wait condition

[Code Fragment 5] shows the infinite repetition command, which executes command C, and
continuously restarts execution of it as soon as C finishes.

forever do
C

od
[Code Fragment 5] Infinite repetition command

[Code Fragment 6] shows the assignment command. The number of bits for variables Va through Vn
must be equal to the number of bits for expressions Eo through Em. Also the types of variables Va
through Vn must be equal to the types of expressions Eo through Em.

« vo, ._, vn » := « Eo, "0' Em »

[Code Fragment 6]

Page 12 of 98

Assignment command

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Handshake Technology Handshake Solutions

Channel communication

[Code Fragment 7] shows the channel communication between two parallel processes. The
exclamation mark symbol denotes a send command, which evaluates expression E and then blocks
until there is a parallel process willing to receive a value over channel X. The question mark symbol
denotes a receive command, which block until there is a parallel process willing to send a value over
channel X. When both commands are executing, variable V becomes equal to the value of E and both
commands finish (see [7]).

(_. X!E ...) II (... X?V .•.)

[Code Fragment 7]

2.2.2. Handshake channels
Handshake channels [5] synchronize two handshake components. The handshake protocol is
implemented using the request and acknowledge signals with or without data transfer between the
handshake components. Handshake components can be either active or passive. This is the
difference between a component which initiates the handshake or which acknowledges the
handshake. Handshake channels can be implemented in various ways. There can be a 2-phase
signalling scheme or a 4-phase signalling scheme. Alternately there can be a single rail
implementation or a double rail implementation.
The differences between the four implementations are show in [Figure 3] and explained below.

Request

Acknowledge

Data

False

True

Acknowledge

2-phase single rail 4-phase single rail

2-phase dual rail 4-phase dual rail

[Figure 3] Handshake protocols

In the 2-phase handshake protocol all transitions are functional, that is, each request followed by an
acknowledgement constitutes a complete handshake. The 4-phase protocol involves four sequential
events.
One 4-phase handshake consists of an up handshake followed by a down handshake and refers to
the number of communications: (1) the sender issues data and sets request high, (2) the receiver
absorbs the data and sets acknowledge high, (3) the sender responds by taking request low (data is
no longer valid) and (4) the receiver acknowledges this by taking acknowledge low.
In the single rail handshake protocol the data will be combined to a bus where the handshake between
the active and passive partner exists of a separate request and acknowledge signals. These request
and acknowledge wires can act in a 2- or 4-phase manner.

© Philips Electronics N.V. 2008 Page 13 of 98

Handshake Solutions
Designing a high-speed asynchronous BOC51 microcontroller

Handshake Technology

The dual rail implementation encodes the request signal into the data signals using two wires per bit of
information that has to be communicated. One wire is for sending a logical "1" (or true), the other wire
is for the logical "0" (or false). There is still an acknowledge wire to complete the handshake.

2.2.3. Handshake circuits
Handshake circuits form the intermediate architecture between Haste and the gate-level
implementation as a VLSI circuit. A handshake circuit has a set of handshake components that
corresponds with the syntax constructs in the Haste design language. These handshake components
abstract from the actual gate-level implementation, and merely provide a specification in the form of a
handshake protocol. There is a library of approximately 40 components, which is sufficient to map the
input from a Haste design to a handshake circuit. Examples of handshake components are the
sequential construct and the parallel construct from [Code Fragment 1] and [Code Fragment 2],
respectively seen in the previous section. For an elaboration on handshake circuits refer to [5].

2.2.4. Library connection
The connection to a specific library is established via a mapping file that specifies how the required
asynchronous elements are composed in terms of cells in a standard-cell library. This is the final step
in the functional design flow and is done by htmap.

2.3. Structural design flow
The structural part of the design flow is where multiple designs can be combined into one, so to
support design reuse and modular design. This part of the flow also prepares a design for placement
and routing and includes the design-for-test transformation. An overview is given in [Figure 4] and the
different steps are discussed next.

r Ve'llog nellist htlink
\ ~ Hierarchical nellisl ,
"I (linked) ~

htscan J Verilog nellisl II .(/----;~.) JI (scan teslable)

I '--__-----.J

[Figure 4] Structural design flow overview

2.3.1. Linking
The Handshake Technology design flow (TiDE) supports modular design. With this modular design it
is possible to link different Haste programs as well as other generated combinational blocks into one
integrated block.

2.3.2. Design for test
The main roadblock toward successful widespread use of asynchronous circuits has long been the
lack of a design-for-test solution of industrial quality. Handshake Technology makes the handshake
circuit scan-testable by adding a synChronous-style scan chain to the netlist. This way the design can
be tested in large systems in which only a part might be asynchronous.

2.3.3. Preparing the netlist
The last step in the structural design flow is preparing and generating the netlist, scripts and additional
files in formats which can be used by third-party tools for layout and optimization process,

Page 14 of9B © Philips Electronics N.V. 200B

Designing a high-speed asynchronous 80C51 microcontroller
Handshake Technology Handshake Solutions

2.4. Physical design flow
In this phase of the design, all tools are standard third-party EDA tools. The operation of these tools is
partly controlled by scripting that, based on previous Handshake Technology files, instructs the tools
how to handle the clockless circuitry correctly. Below [Figure 5] gives a schematic overview of the
physical design flow.

• Verilog netiist
(optimized)

Layout
.. (Verilog, DEF,

SPEF)

[Figure 5] Physical design flow overview

Parameters which are being quantified, measured, set and fine tuned in this phase are for example
timing constraints and delay elements.

© Philips Electronics N.V. 2008 Page 15 of 98

Handshake Solutions

Page 16 of 98

Designing a high-speed asynchronous 80C51 microcontroller
80C51

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
80C51

3. 80C51

Handshake Solutions

The 80C51 is an 8-bit microcontroller from Intel with a so-called CISC (Complex Instruction Set
Computer, refer [1]) instruction set. It is one of the most popular 8-bit microcontrollers. Handshake
Solutions in 1995 therefore decided to also make an asynchronous implementation, which has since
then been used in many applications, especially in the smartcard domain.

This chapter introduces the 80C51 in four steps.
1. The original Intel architecture is introduced, which basically defines the instruction set

architecture and memory interfaces.
2. The asynchronous implementation by Hans van Gageldonk [2] is presented, the HT80C51-LP

(Low Power). This design was optimized for low power, but did not take scan-test and speed
into consideration.

3. Based on an analysis of the HT80C51 design, a new design has been created that is known
as the HT80C51-LC, which is optimized for a lower-cost introduction of scan-test. This design
will be discussed and serves as the starting point for this thesis work, where the goal is to
improve on speed.

4. A detailed comparison is made to available high-speed 80C51s on the market today. Also
other asynchronous implementations are included in the comparison.

The last section of this chapter will be dedicated to performance analysis for an 80C51 microcontroller
core.

3.1. Synchronous 80C51 implementation
The 80C51 microcontroller system consists of several parts; the CPU, its memories and different
peripheral blocks. The CPU runs in parallel and communicates with the memories and peripheral
blocks where and when necessary. The focus in this master thesis is on the CPU only, as shown in
[Figure 6].

The major microcontroller features are:
• An 8-bit central processing unit
• 64k Byte address space for the code/program memory
• 64k Byte address space for the external data memory

3.1.1. Memory organization
The 80C51 has separate address spaces for the code memory and data memory, known as the
Harvard [1] architecture. The code memory can be up to 64 Kbyte long and may (partially) reside on
chip. A 16-bit program counter (PC) is the addressing mechanism.
The interrupt service routines occupy the ROM locations 03H through 32H. The start address after
reset is OOH.

The data memory can consist of up to 64 Kbyte of off-chip RAM and is only accessed when an
external move instruction is executed. The internal data memory is divided into three physically
separate and distinct blocks: the lower 128 bytes of the RAM; the upper 128 bytes of the RAM; and
the 128 byte special function register (SFR) area (see [Figure 7] and [Figure 8]). While the upper RAM
area and the special function register area share the same address locations, they are accessed
through different addressing modes.

Four 8-register banks occupy locations OOH through 1FH in the lower RAM area. Only one of these
banks is enabled at a time through a two-bit field in the program status word (PSW). The next sixteen
bytes, locations 20H through 2FH, contain 128 bit addressable locations. The special function register
area also has bit-addressable locations.

© Philips Electronics N.V. 2008 Page 17 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

80C51

PO.O-PO.7 P2.0-P2.7

I

PortO
Drivers

~1
~

I
I Program

I~Address
Realster

uEuBuffern n

] [
I

EPROM! I'
ROM 11'---

J [
I Stack Pointer

_ L

] [

I Port 0 Latch II

I

I IJ L

,

I
RAM Address

Register

~J r
- ,-

,
_ L

'I BRegister--
SCON

THO
TMOD

TLO
TeON

TH1

I PC I:u
incrementer II

PO;:
A';i

ElL

RS.!

Timing
and

Control

Instruction
Register

Interrupt, Senal Port, and
Timer Blocks

] [] [
1 Port 1 Latch I Poo 3 Latch I!

- ,-] [I)J L

I~
II

Port 3
I Drivers Drivers

I 11II11 III 11II
P1.o-P1.7 P3.o-P3.7

I Program \ u
Counter II

[Figure 6] Block diagram 80C51

Page 18 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
80C51 Handshake Solutions

1- OFFFH

EA=O II

Extemal I

ooaoH

.."1-
-,

-~,

:

Data Memory
(ReadlWrile)

Internal

OOFFH II

,.,"IT-
I

EA=1
External

Program Memory
(Read Only)

[
FFFFH

't 't ~

I I I

PSEN RD ~

[Figure 7] 80C51 memory structure

Bit·addressBble SpI!lce
(Bit addresses D-7F)

FFH

Upper
12B

Accessible
by indired
addressing

only

'---'FFH
Accessible
by direct

addressing

Bank
&eleel
bits in
PSW

11

1~1~17HI
oFH 4 B8nksR~~;-gistelll

0'

07H~5etvalue of
00 stack pointer

~~~ '1----1---...-------' BOH
Accessible

LO\WT by direct and Special
128 I indirect Function

I
addressing RegistBIli

OOH ' (like:
ports.
timer

registelll,
.tad<

pointer,
etc.)

[Figure 8] Internal data memory

3.1.2. Special Function Register
The 80C51 microcontroller core can address 128 Special Function Registers (SFR). Five of them are
related to the core. Some others are related to the peripherals of the core (like timers, watchdog, etc.),
but not all addresses are occupied.
The five SFRs related to the core are the accumulator (ACC), B register, Program Status Word (PSW),
Stack Pointer (SP) and the Data Pointer (DPL and DPH).

3.1.3. Addressing modes
The 80C51 incorporates several addressing mechanisms which each can access a part of the
memory space. The five addressing modes and the associated memory spaces are the following:

1. Register addressing; has access to the eight working registers of the selected register bank.
The accumulator, the B register, the data pointer, and the carry flag can also be addressed as
registers.

2. Direct addressing; is the only method of accessing the special function registers. The lower
128 bytes of the internal RAM are also directly addressable.

© Philips Electronics NV. 2008 Page 19 of 98



Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

80C51

3. Register-indirect addressing; uses the addressing contents as a pointer to a location in the
internal RAM or the lower 256 bytes of the external data memory.

4. Immediate addressing; allows constants to be a part of the opcode instruction in the code
memory.

5. Base-register pius index-register indirect addressing; allows a byte to be accessed from the
data memory.

3.1.4. Instruction set
The 80C51 instruction set includes 255 instructions, 140 of which are single-byte, 91 two-byte, and 24
three-byte. The instruction opcode format consists of a function mnemonic followed by a "destination,
source" operand field. This field specifies the data type and addressing method(s) to be used. The
complete instruction set of the 80C51 family can be seen in Appendix A2. The instruction set is divided
into five functional groups:

1. Data transfer; these operations perform the internal and external data byte movements.
2. Arithmetic operations; the 80C51 has four basic mathematical operations. Only 8-bit

operations using unsigned arithmetic are supported directly.
3. Logical operations; the 80C51 performs basic logic operations on both bit and byte operands.
4. Boolean variable manipulation; operations on individual bits of registers.
5. Conditional program branching; all control transfer operations, some upon a specific condition,

which disrupt the sequential program execution to continue at a non-sequential location in the
code memory.

3.1.5. CPU timing
The synchronous architecture that implements the instruction set is shown in [Figure 6]. In this figure
we see the registers, an ALU, the 8FR-space and the four bidirectional ports. This is all designed
around an internal data bus (lOB), from which all registers can read and some registers can write to.
All communications between the registers use the lOB-bus, except for modifying the program counter
(PC) which has a separate data bus. Having one bus for all these communications allows for only
sequential execution of instructions. These executions take place in a number of steps, each of which
communicates values from one register to another or do some calculations in the ALU. As the 80C51
has two data buses (the lOB-bus and PC bus) it is possible to do two steps in parallel in the instruction
execution. It is, for example, possible to fetch a byte from the code memory while incrementing the
PC.
The 80C51 instructions require a number of steps to execute. The instructions are executed with
respect to a clocking scheme. Each instruction takes one, two or four machine cycles. Each machine
cycle consists of six slots and each slot takes two clock cycles. Appendix A2 and A3 shows how many
clock cycles each instruction needs to complete. The divide (DIV) and the multiply (MUL) are the only
instructions that take four machine cycles to complete (due to the complexity of the execution of the
instruction), the other ones take one or two machine cycles. A way to describe a general 80C51
instruction execution scheme is introduced in [2]. [Table 1] shows the executions steps which take
place in each slot during a general instruction.

One machine cycle

",,"'.'''', (81~II< $2" 83 " ~4 2i'" 55 S6 "","

C1 ROM ACC -> T2 RAM ROM OP -> T11T2 ALU ->
access access access destination

One machine cycle
,I', ~1<,),2 .52 2:"! IS3 " 84"" 85

,

86

C2 ROM calculate jump address PC incr. OP -> T11T2 ALU ->
access destination

[Table 1] General 80C51 instruction execution scheme

Page 20 of 98 © Philips Electronics N.V. 2008



Designing a high-speed asynchronous 80C51 microcontroller
80C51 Handshake Solutions

An instruction consists of one, two or three bytes; an opcode and two, one or zero arguments
(operand addresses or immediate data). These bytes are read during the first and fourth slot of the
first machine cycle and the first slot in the second machine cycle. Slot 2 of the first machine cycle
copies the contents of the accumulator (ACC) into resister T2. For many instructions this action is
redundant and this behaviour may be skipped. Slot 3 does a RAM access (which also includes access
to one of the four register banks). Slot 5 and 6 of the first machine cycle take care of the ALU
operation to be performed and the write-back to the destination register. Machine cycle 2 starts with
another memory access, after which the jump instructions calculates their offset (slot 2 and 3). For two
cycle non-jump instructions these actions are redundant. The fourth slot increments the program
counter, and the 5th and 6th slot take care of an ALU operation. Approximately 30% of all slots contain
redundant actions.

3.2. Low power HT80C51
The goal of the 80C51 microcontroller designed by Hans van Gageldonk (HT80C51-LP) [2] was to'
save power wherever possible. The second challenge was to keep the area of the circuit small.
Therefore he decided to assume sequential execution of the instruction (fetch an instruction only after
the execution of the previous instruction has finished), which makes it possible to reuse pieces of the
datapath and logic blocks.

3.2.1. Datapath
An asynchronous implementation of the 80C51 (like the HT80C51-LP) is not much different from the
implementation of a synchronous 80C51. Especially the datapath shows many similarities. There is
still the need for registers, communication paths and arithmetic circuitry to perform the actual
operations. However, the control of an asynchronous circuit is different from the centralized control
(clock) of a synchronous circuit, see [Figure 9]. In an asynchronous design the clock does not
determine when and where data is propagated through the datapath. Instead this is determined by
control logic.r---------------------------___

FFI

I
I ~~
I
I Dalapalh

[Figure 9] Structure of a Handshake circuit

The 80C51 instruction code is analyzed to find overlap in the datapath, so that logic and
communication paths can be shared where possible. The datapath of the HT80C51-LP
implementation is based on a hybrid of point-to-point and bus communication. This means that a
general bus is implemented for general communication between registers and arithmetic circuitry, like
the lOB-bus (see 3.1.5) in the synchronous design.
The main advantage of the bus communication is that the circuitry is small. Every communication can
be sent through this bus. Disadvantages are that it is slow, consumes more energy and limits
parallelism.

© Philips Electronics N.V. 2008 Page 21 of 98



Handshake Solutions
Designing a high-speed asynchronous BOC51 microcontroller

BOC51

In the datapath, communication between two registers always takes place in two steps via the bus:
first the source register is copied to the bus; then the value of the bus is transferred to the destination
register. Due to the latter disadvantage HT80C51-LP's implementation is a hybrid; a point-to-point
communication is added for the most frequently used communications paths. These direct point-to
point communication paths bypass the IDB-bus. A few bypasses are introduced on the most frequently
used paths, resulting in a circuit which is only marginal larger than a full bus implementation. But
because of the frequency with which these bypasses are used, it also results in a fast and energy
efficient circuit.

3.2.2. Control structure
The control structure controls the communication and sequence in the datapath. The HT80C51-LP
asynchronous implementation follows a sequential execution of instructions; first fetching an
instruction from the code memory and then executing it. The execution of an instruction consist of two
major steps: decoding of the instruction and executing the decoded instruction. The decoding of the
execution also takes place in a hybrid way. First the instructions are separated in regular and irregular
instructions according [Table 2]. The regular part is as large as possible to exploit the regularity in
instruction execution as much as possible. The regular part itself is further being decoded in a
distributed way. A lot of overlap in regular instructions demand the same actions and can use the
same logic. The unique part of the regular instructions is then being executed individually. The
irregular instructions are being decoded in a centralized way. First the complete irregular instructions
are being decoded and then the appropriate action is being taken for each instruction. Also an overlap
in the irregular part of the instruction set with similar irregular instructions is being clustered.
The disadvantage is that this design is constructed such that, after the instruction fetch, the control
flow is highly dependant on the actual instruction, see [Figure 10].

o
1
2
3

4

5
6

7 Irregular Regular
8
9
A

B
C

D
E
FL- ...L- ----'

[Table 2] Regular and irregular part of the SOCS1 instruction set

[Figure 10j shows that almost every instruction (with its sequence of tasks) receives its own control
flow. Because these different control flows contain quite some overlap in tasks (accessing code
memory, accessing data memory, ALU operations, updating registers, updating the PC, etc.), the
functions, procedures and variables that are responsible for these tasks are shared. This immediately
creates another problem; sharing functions and procedures introduces an amount of glue logic. A logic
block which is shared needs to be driven by the according tasks. Hereby mixers, multiplexers,
demultiplexers and other logic are introduced to "glue" this together.
All this glue logic needs to be controlled by extra control logic. Also Design for Test (DFT) is very
expensive due to the high control overhead.

Page 22 of9B © Philips Electronics N.V. 200B



Designing a high-speed asynchronous 80C51 microcontroller
80C51 Handshake Solutions

Datapalh

Picture a handshake circuit that repeatedly executes a sequence of operations that consist of first
fetching the instruction opcode and then splitting the flow of control into a large number of alternatives.
All alternatives which merge back together and split up again several times in order to share a number
of tasks, before the final merge that will eventually bring us back to the start of the repetition. This
problem is called "The Sharing Pitfall" by [6]. Note that high control overhead is not only bad for area,
but also for speed and energy.

I: ; )
I •

Felch~~ I Execute

J ~- ]
iROMj--{ -+ 't--{' irr--( f ~ -+ /~

,I '-------i'·· ...... ---..-,
I', High level split
\ case ) (partial decoder)

_____I~I__-

.----1-- ,------1---
regUla, irregularIITl ~' -+ ')1---~I

rt j 000__' J
-".<~) 1-".<:l'-I =' l "'::::.:,:~' (~! I

.~.. J. J, 1 _, i

~~~J
[Figure 10] Handshake circuit for BOC51 control: hybrid decoding scheme

© Philips Electronics N.V. 2008 Page 23 of 98

Handshake Solutions

3.3. Low cost HT80C51

Designing a high-speed asynchronous 80C51 microcontroller
80C51

The low cost HT80C51 (also know as HT80C51-LC) consists of a single process. It leads through five
sequential phases of executing instructions: fetch phase, decode phase, read phase, execute phase
and the write phase. After the write phase it will start again with the fetch phase.

In the fetch phase the opcode is fetched from the ROM. First the code memory is addressed by the
PC. After the ROM is addressed the instruction is being fetched from the ROM. Finally the PC is
incremented.

The opcode (instruction) fetched by the previous phase is being decoded into proper condition signals,
called EB (Execution Bits). This task is used to enable and configure the remaining tasks that are
needed for the execution of the instruction.

The read phase makes sure that all arguments, if needed (denoted by the EB), are being fetched. This
can be a single or double code memory fetch and/or a single or double data memory fetch.
The instructions are now ready to be executed by the next phase. The execute phase must be able to
perform the operations specified in section 3.1.4 .

The last phase, write back, writes the executed data back to the data memory (SFR, internal memory,
external memory). Also in the case of a branch the new PC is being calculated and stored.

The phases specified above are conditionally executed in this order, which allows a correct mapping
of instructions. Based on data dependencies (a task must produce certain data before a second task
is able to process that data), some tasks have to be sequenced in time, while others can be
parallelized. For the HT80C51-LC the resulting ordering is as follows:

..(Felch Opcode ..(Decode Opcode)

Read

..: Fetch argument 1) ..(Felch argument 2)

..,/ Execute

Write

/ ""
.."Write RAM/Stack! I

, SFR)

~otnteror'

.-(Stacl<)
Update Stacl< .

.-i. Read dala or
Stacl< . ..~~

[Figure 11] HT80C51·LC data flow chart

Each of these phases takes a certain period of time. The total amount of time spent in all five phases
is the instruction time. In order to increase the performance of the HT80C51-LC the instruction time
needs to be decreased. The HT80C51-LC will be analyzed in such a way that the structure of the
design is clear and ideas are being developed to decrease the instruction time of the HT80C51-LC.

3.3.1. Datapath
Again, the first step of the instruction is straightforward: fetching the instruction from the code memory
at the correct address (PC). Then the instruction is decoded in a number of Execution Bits (EB). Some
instructions contain overlap, e.g. the Execution Bits for an INC or a DEC instruction are more or less
the same. So these two instructions share most of the datapath and the control structure. Although the
vision of the HT80C51-LC design is not to share logic, for some specific blocks it is much cheaper to
share and it will not reflect on speed.

Although the HT80C51-LC has a Harvard structure like the synchronous 80C51 , an access to the
external data memory never occurs during an access to the code memory. This allows for an un-

Page 24 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
80C51 Handshake Solutions

arbitrated wrapper around the code and data memory bus that repartitions these buses into one code
and external data memory bus.

As seen in the Appendix A2. the instructions of the HT80C51-LC are one, two or three bytes in length.
These bytes are all sequentially being read from the ROM. Also the RAM can be accessed three
times, two read accesses and a write access as seen in Appendix A3.

A typical HT80C51 instruction will follow the next execution scheme:

Fetch Decode Read Execute Write

ROM access Decode the ROM access ROM access Mul/Div RAM access
opcode opcode arg1 arg2 ALU write

RAM access RAM access

[Table 3] General HT80C51 instruction execution scheme

Some of the steps in [Table 3] are redundant for some instructions. As example; instruction RR A will
only need the Fetch phase (for the Opcode), Decode phase and the Execute phase. The complete
instruction execution time and memory utilization are specified in Appendix A3.

Fetch Decode Read Execute Write

ROM access Decode the Skip ALU Skip
opcode opcode

[Table 4] RR A execution scheme

As seen a double RAM read is possible in the HT80C51, because the design choice was made to
have the RO-R7 registers in the addressable RAM and not in internal registers. The advantage of this
implementation is a more transparent control flow and a smaller area.
When the instruction MOV @Ri, direct will be executed, it will follow the next execution scheme:

Fetch Decode Read Execute Write

ROM access Decode the ROM access RAM access ALU RAM access
opcode opcode arg1 write

RAM access

[Table 5] MOV @Ri, direct execution scheme

The first ROM access is the opcode fetch, after this the opcode is being decoded. Then the first
argument of the instruction is loaded (direct address), and parallel to this the address of @Ri is being
determined from the data memory. After this the direct address is available to load the data from the
data memory. When everything is gathered the ALU will be started and eventually the data is written
back into the data memory.

The disadvantage of having the register bank (RO-R7) in the data memory becomes more clear with
the instruction INC @Ri , which will take an extra RAM read access. The extra RAM access is needed
for loading the Ri register and compute the address for the RAM.

Fetch Decode Read Execute Write

ROM access Decode the RAM access I RAM access ALU RAM access
opcode opcode write

[Table 6] INC @Ri execution scheme

It is clear from these three examples that the 80C51 has a complex instruction set. The different (255)
instructions all take different ways through the execution scheme with different effects or skipping for
each stage.

© Philips Electronics N.V. 2008 Page 25 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

80C51

3.3.2. Control structure
The HT80C51-LC implementation of the control structure is designed to prevent the extensive amount
of glue logic which would increase the complexity of the control structure. To prevent glue logic there
should be no additional resource invocation beyond the first one. This is only possible when the
control structure is not split up when several of the resulting paths invocate a common resource. The
tasks in a sequence of tasks are executed conditionally in case not all sequences contain those tasks.
In other words, the executions of an instruction amounts to decoding what tasks correspond with this
instruction and skipping the execution of the other tasks in the sequence of tasks the design contains.
This way the control structure is not split up like the HT80C51-LP implementation (see 3.2) but is
organised as shown in [Figure 12].

(;)

Fetch '~~te

I -
~ ~ J

(ROM;~ --+)-----.(ir:~ f)--: --+)--(f)--(ESj--1
~- .~--' -, "
1

1

/ skip
1\ case ,~

i
y

T

1
1

EB......

,---------------{f-'-'--------------,
,.-Y...

I ;)1--------
1I J

~...:.r-I E~ :.~

~ !
(II) (II)

r-LJ.. -1-l-,
EB i ' EB. \ EB' L EB'~'l-,~1~ -'1~]-:/ ..

, , skip I .. skip , \ skip' \ skip
i, case~ \ case ,~ : case .~ ! case ~

Datapalh

[Figure 12] HT80C51-LC handshake circuit for control structure

Page 26 of98 © Philips Electronics N.Y. 2008

Designing a high-speed asynchronous 80C51 microcontroller
80C51

Decode =
[

Handshake Solutions

"'''' EBO, EBl, EB2, , EBX » := "'''' EBAdd, EBCallll, EBDecSP, , EBIncPC »

[Code Fragment 8] The Execution bits decoded by the decoder

After the decode phase it is clear what the other phases need to do because all the proper execution
signals, the EB, are decoded (see [Code Fragment 8]). So tasks after the decode phase execute a
sequence of conditional tasks. The read phase will conditionally read the other arguments (instruction
arguments) and will conditionally perform RAM accesses.

ReadData =
[
If EB_Fetchl
If EB AuxRead
If EB Fetch2
If EB_OpRead

then handleFetchl()
then handleAuxRead()
then handleFetch2()
then handleOpRead()

fi II
fi,
fi II
fi

[Code Fragment 9] The Execution bits used in the read phase

The same procedure holds for the other phases that the decoder already decoded the Execution Bits
and therefore it will be straightforward which part of the CPU will do the execution. For example the
DivideMultiply part, or the ALU which can Add, Rotate, Compare, Move, etc. bits or bytes.

Execute =
[

If EB_DivMul
If EB_ALU
If EB_Stack

then handleDivMul()
then handleAlu ()
then handleStack()

fi II
fi II
fi

[Code Fragment 10] The Execution bits used in the execute phase

The last part is the write back phase. This phase will write back the calculated data from the ALU to
the SFR register, data memory or internal registers. Also a branch address which is calculated in the
executed phase can stored in the PC.

Write Data =
[

If EB Write
If EB_Jump

then handleWrite
then handleJump

fi II
fi

[Code Fragment 11]

© Philips Electronics N.V. 2008

The Execution bits used in the write phase

Page 27 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

80C51

3.4. Comparison high-speed 80C51 microcontrollers
This section describes in more detail the existing synchronous and asynchronous 80C51
microcontroller cores. To make an adequate comparison between 80C51 designs we need to examine
the current synchronous and asynchronous implementations.

The 80C51 is the world's most famous and most used microcontroller. Many IP builders and IC
manufacturers have implemented their version of the 80C51 microcontroller.
Because of the limited documentation available in public (e.g. datasheets, user guides, websites,
papers, etc.) it is difficult to determine the architecture of the different microcontrollers.

There are thousands of different 80C51 's made and sold by more than 60 different manufacturers. A
lot of these manufacturers still implement the original architecture of the 80C51 designed by Intel. This
means 12 clock cycles per machine cycle and some instructions use more than one machine cycle
(refer [3]). Some implementations of the 80C51 microcontroller use higher clock speeds than the
original 12 MHz. A lot of the IC manufactures implement high-speed versions of the 80C51
microcontroller. Most of the time this means that the original 12 clock cycles per machine cycles
needed is reduced to 6 clock cycles per machine cycle. This means a two times higher instruction rate
(MIPS) than the original core with the more or less the original architecture. The original80C51 design
was based on latches which needed to be clocked at a double clock speed. When replacing these
latches by flip-flops there is no need for 12 clock cycles per machine cycle, but only 6. This is a
common speed up by many manufacturers.

Several synchronous and asynchronous implementations (which are considered the top of the line
regarding speed performance) are described below.
To make an adequate comparison with different 80C51 microcontrollers implemented with both
synchronous and asynchronous techniques the performance will be give in Million Instructions Per
Second (MIPS). This measurement is good for comparing the same instruction set in the same
technology. Some instruction sets make it possible to express a program in fewer instructions than
other instruction sets. On the other hand, some instruction sets contain more powerful instructions
than others. This makes it difficult to compare the MIPS metric for one type of microcontroller to
another with a different instruction set.

The standard 80C51 runs at a frequency of 12 MHz and uses 12, 24 or 48 clock cycles for one
instruction. The performance will be somewhere between 0.25 and 1 MIPS depending on the program
being executed, but never better.
It is often not clear in which environment, conditions, libraries and technologies these implementations
are benchmarked, so the numbers gives are mostly a guide and not exact figures. However the
architecture and the general performance can give us a good guiding map for the decisions that need
to be made.

Manu-
Type

Asyncl
Pipeline

Techno-
Power Area

Through
facturer Sync logy put

~m mW # trans MIPS

1 NXP [13] H8051 Sync No 0.35 40 - 4

3.3V (peak)

P89xxx Sync - - - - 33

(peak)

2 Intel [14] MCS51 Sync 3 stages - - - 12

(peak)

3 Cast [15] R8051XC Sync - 0.13 - 188.640 256
(peak)

4 Dolphin [16] Flip8051- Sync Yes - - - 3.75
Cyclone (average)

Page 28 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
80C51 Handshake Solutions

5 Silicon Labs CIP51 Sync Yes 0.35 - - 23
[17] (peak)

6 Dallas - DS89C4xx Sync Yes 0.35 55 - 33
Maxim [18] 1.1V (peak)

7 Atmel [19] AT89 Sync No - - - 3.3
(peak)

8 Chipcon Texas Sync - 3.6V - - 8
[20] (peak)

9 Digital Core DP805x Sync Yes - - - 85
Design [21] (peak)

10 CalTech Lutonium Async Yes 0.18 100 - 200
[11]

,
(peak)1.8V

11 Chungbuk A8051 Async 5 stages 0.35 46 104.000 76
University 3.3V (average)
[9]

No 0.35 - - 36

3.3V (average)

12 Philips [10] HT80C51 Async No 0.50 9 39.174 4
- LP 3.3V (average)

13 Handshake HT80C51 Async No 0.14 0.7 30.820 8.9
Solutions [8] -LC 1.8V (worst

case)
Note. All the numbers found on the references mentioned

[Table 7] Detailed comparison 80C51's

1. NXP semiconductors (founded by Philips) offers a wide range of 80C51 microcontrollers
including the original 80C51 with Intel specification. This original version has a machine cycle
of 12 clock cycles like previously discussed in section 3.1. This version of the NXP
microcontroller is often the benchmark for other manufactures.
NXP also designed high-speed versions of the 80C51. They execute single-cycle instructions
with an input clock of 33 MHz. Not all instructions are single-cycle, so the maximum
throughput is 33 MIPS.

2. Intel the original inventor offers the 80C51 microcontroller with the same basic functionality as
the original, but with improved performance regarding speed and power. Intel offers 24 MHz
input clock frequency 80C51 based microcontrollers with two clock cycles per instruction. The
microcontroller is implemented using typical pipelining techniques, and is built around a three
stage pipeline. The pipeline stages are instruction fetch or decode, address generation or data
fetch and execution or write back. The three-stage pipelined implementation offers the best
trade-off between performance and design complexity, according to Intel (refer to [14]). The
code memory bus is 16 bits wide while the data memory bus remains 8 bit like the original
80C51 microcontroller.

3. CAST's version of the 80C51 microcontroller executes operations on an average of eight
times faster than Intel's original design at the same clock speed due to the single clock cycle
per machine cycle implementation. Some single byte instructions can execute in one clock
cycle. CAST's architecture is strictly synchronously designed. Evatronix uses this core in their
single-chip applications of the 80C51. At Evatronix the core has a performance of 45 MHz on
a 0.5-micron process. [Table 8] illustrates the speed advantages of the R8051 over the
standard 80C51. A speed advantage of 12 means that the R8051 performs the same
instruction 12 times faster than the original 80C51. The average of speed advantage is 8x,
however, the actual speed improvement observed in any system will depend on the instruction
mix.

© Philips Electronics N.V. 2008 Page 29 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

80C51

The internal and external data memory interfaces are 8 bits wide as well as the external code
memory interface.

Speed advantage Number of instructions Number of opcodes

24 1 1

12 27 83

9.3 2 2

8 16 38

6 44 89

4.8 1 2

4 18 31

3 2 9

Average: 8.0 Sum: 111 Sum: 255

[Table 8] CAST's R8051 speed advantages

4. Dolphin's implementation of the 80C51 microcontroller runs at a 50 MHz clock input on a
Dhrystone testbench at 3.75 MIPS. This 80C51 implementation is a pipelined architecture that
reduces the number of clocks per instruction. The advanced version of Dolphin's 80C51 (with
the enriched C51 instruction set) features a 4-stage pipeline.

5. CIP51 designed by Silicon Laboratories (Cygnal) in the range of C8051 FOxx has several
enhancements inside and outside the CIP51 core to improve its overall performance. The
CIP51 is fully compatible with the MCS-51 instruction set (comparable to the 80C51). The
CIP51 employs a pipelined architecture that increases its instruction throughput. The CIP51
executes more than 70% of its instructions in one or two clock cycles instead of the twelve
clock cycles of the standard 80C51 (refer [17]). With the CIP51 's maximum system clock at 25
MHz, it has a peak throughput of 25 MIPS.
Due to the pipelined architecture of the CIP51, most instructions execute in the same number
of clock cycles as there are program bytes in the instruction. Conditional branch instructions
take one less clock cycle to complete when the branch is not taken as opposed to when the
branch is taken.

jlnstructions 26 50 5 14 7 3 1 2 1

I Clocks to Execute 1 2 2/3 3 3/4 4 4/5 5 8

[Table 9] Number of instructions with clocks to execute, CIP51

6. The Dallas/Maxim DS89C4xx family also features a pipelined architecture. The DS89C4xx is
100% functionally compatible with the original Intel 80C51 microcontroller, but allows
operation at a higher clock frequency. This core does not have the wasted memory cycles that
are present in a standard 80C51. A conventional 80C51 generates machine cycles using the
clock frequency divided by 12. The same machine cycle takes one clock cycle in the
DS89C4xx. Thus, the fastest instructions execute 12 times faster for the same crystal
frequency. At one cycle machine instruction this core has a peak throughput of 33 MIPS at a
system clock of 33 MHz.

7. Atmel AT89, Atmel offers an 80C51 family which runs at 20 MHz with 6 clock cycles per
machine cycle. This microcontroller offers the same functionality as the original 80C51 by
Intel. The architecture of the AT69 is a non-pipelined version with a maximum performance of
3.3 MIPS. The code and data memory are accessed through a dedicated 8 bit wide bus.

8. Chipcon uses cores from Texas Instruments. These high-speed 80C51 cores use a 32 MHz
clock input to achieve a maximum throughput of 8 MIPS. They achieve this by a 4 clock cycle
per machine cycle rate. Not all instructions execute in a single machine cycle. As can see in

Page 30 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
80C51 Handshake Solutions

the table below, for every byte fetch there is a need for an extra instruction cycle. A single byte
instruction can be read from the code memory, read the appropriate byte from the data
memory, being calculated and written back to the data memory all within the same machine
cycle (see instruction INC @RI).
It seems that this architecture executes several processes (ROM fetch, decoding, RAM fetch,
Execution and Write back) in sequence before the instruction is completed. It is likely that the
RO..R7 reside locally instead of in the data memory. This can be concluded because of the
single cycle with multi data memory accesses instruction like the INC @Ri.

Mnemonic Description Code Bytes Cycles

ADDA,Rn Add register to accumulator 0x28- Ox2F 1 1

ADD A,direct Add direct byte to accumulator 0x25 2 2

ADDA,@Ri Add indirect RAM to accumulator 0x26 - Ox27 1 1

INCRn Increment register Ox08 - OxOF 1 1

INC direct Increment direct RAM Ox05 2 2

INC@Ri Increment indirect RAM Ox06 - Ox07 1 1

[Table 10] Chipcon's Texas Instruction Set

9. Digital Core Design DP805x pipelined microcontroller is fully compatible with the original
80C51 instruction set. Every machine cycle is equal to one clock cycle. But not all single byte
instructions execute in a single clock cycle. This depends on which operands are needed to
execute the instruction; reading from the data memory interface automatically adds an extra
clock cycle to the instruction time. Some instructions need up to 5 clock cycles. It is not clear
what kind of architecture the DP805x has, but from [Table 11] some architecture choices can
be derived.
The INC Rn and the INC @Ri need just the opcode. But the INC @Ritakes three cycles to
execute. This is because the additional access to the memory space takes an extra cycle.
Similarly for the extra byte fetch from the opcode takes place in the second cycle as can be
derived from instructions ADD A,direct and INC direct. Each access to the memory takes
place in a separate cycle.
From this it is clear that the RO..R7 registers are resided in the memory space and that the
code and data memory are separately fetched in a single byte access.

Mnemonic . Descriptiem Code Bytes Cycles

ADD A,Rn Add register to accumulator 0x28- Ox2F 1 1

ADD A,direct Add direct byte to accumulator 0x25 2 2

ADDA,@Ri Add indirect RAM to accumulator 0x26 - Ox27 1 2

INC Rn Increment register Ox08 - OxOF 1 2

INC direct Increment direct RAM Ox05 2 3

INC@Ri Increment indirect RAM Ox06- Ox07 1 3

[Table 11] Digital Core Design DP805x Instruction Set

10. The Lutonium is CalTech's (California Institute of Technology) design for an asynchronous
80C51 architecture microcontroller. This is a pipelined asynchronous 80C51 microcontroller
designed for low energy and high performance. In 0.18 IJm CMOS, at nominaI1.8V, the
expected performance is an impressive 200 MIPS.
The Lutonium includes a multi-stage pipeline and a fetch unit which fetches 16 bit of code from
the code memory. To decrease the power consumption, the fetch unit is nonspeculative: the
fetch unit only keeps filling the pipeline as long as it is known at the instructions are going to
be executed.
Activity is localized as much as possible: special registers (SP, PSW, B, DPTR) have their
own channels and function units instead of using the main buses and units.

© Philips Electronics N.Y. 2008 Page 31 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

80C51

Not all instructions run in one cycle, the CALL and RET instructions need two cycles to
complete.
There are only estimated results known of the Lutonium, the designer of this microcontroller
claims a 25x better performance regarding speed than the asynchronous design described at
point 12, the HT80C51-LP in the same technology with similar conditions.

11. Chungbuk microcontroller A8051 is an asynchronous version of the 80C51 microcontroller.
This microcontroller introduces a well-tuned 5 stage pipelined architecture. This
microcontroller has some enhanced features to improve the system performance, like an
instruction register to fetch a complete word from the code memory, branch prediction and
other features.
The instructions are regrouped in seven groups. These seven groups are divided by the
execution scheme of the 80C51 instructions. Some instructions only need parts of the
execution scheme (e.g. NOP instruction only needs to be fetched and decoded). This way the
regrouped instructions (regrouped for the same machine cycles) use the same set of pipelined
stages. Thus, each group acts like RISC instruction sets. Some instruction groups need to run
a pipeline iteration multiple times (see [Table 12]) to fully complete the execution (e.g. RET,
CALL instructions). The RO..R7 registers residing in the data memory.
The designer of the A8051 microcontroller claims a 5x faster microcontroller than the
asynchronous design described at point 12, the HT80C51-LP in the same technology with
similar conditions.

Group 1 2 3 4 5 6 7

of instruction 22 13 93 89 4 6 28

of reduced stage 4 2 1 0 3 2 6

of needed iteration 0 1 2

[Table 12] Chungbuk reduced execution stages of each group

12. The HT80C51-LP (Low Power) microcontroller designed (and discussed in [12]) by Philips is
the first 80C51 microcontroller designed in an asynchronous architecture. This design was
important to demonstrate the feasibility and the advantages of the low-power Tangram
asynchronous design flow. The architecture of the microcontroller is described in detail in
section 3.2. It is a non-pipelined sequential architecture, due to the low-power implementation
the microcontroller is mainly designed to reuse pieces of datapath and logic blocks. This is a
disadvantage because there is a need for glue logic to combine the mixers, multiplexers and
other blocks which are necessary together.
The HT80C51-LP is designed with low-power as main design goal and therefore this design is
not optimized for speed. The HT80C51-LP runs at an average 4 MIPS rate in a CMOS 0.5 ~m
technology at 3.3V. If this number is scaled to our current technology (CMOS 0.14 at 1.8V in
worst case scenario) it would run approximately 6 MIPS.

13. Handshake Solutions HT80C51-LC (Low Cost) microcontroller is based on the HT80C51-LP
microcontroller. This design is discussed more in detail in section 3.3. The design goal of this
microcontroller is low cost, but also performance and power are important. With an area of
7700 gates the performance is 8.9 MIPS (CMOS 0.14 at 1.8V worst case). The power
consumption is below 70pJ/lnstruction. This implementation of the 80C51 microcontroller is
completely asynchronous and sequential. The RO..R7 registers are placed in the data memory
to decrease the area overhead. The code and data memory are accessed by separate 8 bit
buses.

It is complicated to compare all the designs previously described in this section. There are a lot of
different types of architectures, not all public and known. Every design is tested and benchmarked with
different types of programs, in different technology modes and processing corners with different
technology libraries and performance grades. Therefore a huge difference in power consumption, area
costs and speed performance between designs mapped onto CMOS 0.18 ~m versus CMOS 0.35 ~m,

or designs run at 3.3V versus 1.8V, or worst case scenarios versus typical case scenarios, type of

Page 32 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
80C51 Handshake Solutions

memories, etc is possible. These kinds of differences between compilation and test conditions can
easily make 500% difference in performance, area and power between mutual designs. So unless all
the test, memories and benchmark variables are available it is complicated to make a fair comparison.

The two references we have in detail are the HT80C51-LP and the HT80C51-LC. The latter is where
we are going to base our further analysis and numbers on for this graduation project. The first,
HT80C51-LP is the core where some other microcontrollers reflect to. The Lutonium and Chungbuk
80C51 microcontroller are benchmarked to the HT80C51-LP. According to these benchmarks the
Lutonium runs approximately 25x faster (refer to [22]) and the A8051 5x faster than the HT80C51-LP
microcontroller (refer to [23]), but once more, the Lutonium performance is an estimate and both the
Lutonium as the Chungbuk implementations are scientific developments. This means that the
technology libraries and other test conditions can be more optimized and not comparable to the
conditions and variables for which the HT80C51 microcontrollers are benchmarked.

3.5. Theoretical performance analysis
As the HT80C51-LC (analyzed in section 3.3) is a sequential design, although some tasks are done in
parallel, it is this design we take as starting point for this thesis work. Therefore the design is not only
analyzed but also measured in terms of speed, area and power. For reference this design is also
compared to synchronous 80C51 architectures and the original HT80C51-LP design. The HT80C51
LC is designed in Haste and completely compiled with the Handshake Technology design flow into a
standard-cell CMOS 0.14 ~m netlist.
The maximum speed of the asynchronous microcontroller depends on which instruction is being
executed. E.g. an ADD (addition) instruction executes faster than a MUL (multiply) instruction. Not
because of the amount of memory accesses, but because of the control and data logic of the MUL
instruction is far more complicated than the logic of an ADD instruction.

To determine the execution speed we take the average of a benchmark program, which executes
every instruction at least once. The total time of the benchmark program divided by the number of
instructions is the average time it takes to execute an instruction. Additionally every single instruction
is analyzed with a benchmark program to see what tasks of execution it takes and in what amount of
time. [Table 13] shows the total execution time of every single instruction, number of memory
accesses and percentage it takes of the total execution time to do a specific memory access. All 255
instructions of the 80C51 instruction set are divided in 18 groups (for division of the groups see
Appendix A5) by their number of code memory accesses and number of data memory accesses.

The memory delay is set at 5 ns for both the data as code memory in simulation mode. This is a fast,
but realistic delay for on-chip memories in a CMOS 0.14 ~m process.
Unfortunately a memory access has overhead in the form of address calculation, overhead by control
logic and others. This overhead is taken into account with the ROM/RAM times + OH (overhead). The
ROM/RAM times are calculated with 5 ns memory delay.

© Philips Electronics N.V. 2008 Page 33 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

80C51

Instr. ROM RAM RAM Total ROM time RAM time
ROM time RAM time

Group fetch read write instr +OH +OH
time

ns % % % 0/0

1 1 0 0 66-202 10 - 32 0 2-7 0

2 1 0 1 87 24 24 5 5

3 1 1 0 104 20 20 4 4

4 1 1 1 104-123 17 -20 34-40 4-5 8 -10

5 1 2 0 120 17 35 4 8

6 1 2 1 134-139 15 -16 45-47 4 10 - 11

7 1 3 0 158 13 39 3 9

8 2 0 0 88-93 45-47 0 10 - 11 0

9 2 0 1 107 39 19 9 4

10 2 0 2 137 30 30 7 7

11 2 1 0 120-123 34-35 17 - 18 8 4

12 2 1 1 107-145 29-39 29- 39 6-9 6-9

13 3 0 0 107-132 47-59 0 11 - 14 0

14 3 0 1 130 48 16 11 3

15 3 0 2 156 40 26 9 6

16 3 1 0 115-120 52-55 17 -18 12 -13 4

17 3 1 1 137 46 30 10 7

18 3 2 0 120 52 35 12 8
Note: OH: Overhead

[Table 13] HT80C51-LC memory usage

As shown in [Table 14]. the HT80C51-LC processor is about the same speed as other non-pipelined
designs. when compared after compensation for technology differences using a scaling factor (all
speeds are scaled to worst-case CMOS 0.14 IJm process).
From the analysis in section 3.3. [Table 13] and [Table 14]. it is clear that accesses to both data and
code memories and the actual execution phase of an instruction are the bottleneck. The code memory
and the data memory only have one addressing port and therefore can only be addressed
sequentially. For example (see Instruction Group 18 from [Table 13]) when an instruction is executed
which needs the Opcode. 2 ROM accesses and 2 RAM accesses before the instruction itself can be
executed. 87.5% of the total instruction time is spent on memory accesses.
This time includes the total overhead by control and logic which is needed to do an actual memory
access.

Version 8051 [3] CIP51 [17] HT80C51 [2] HT80C51·LC

Type Sync@48 MHz Sync@50MHz Async Async

Architecture Non-pipelined Pipelined Non-pipelined Non-pipelined

MIPS 5 26 8 8.9

[Table 14] Speed comparison with other versions

Page 34 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous BOC51 microcontroller
BOC51 Handshake Solutions

The access to the memory is done in two steps: addressing and receiving (or writing) the data. Before
an operand can be fetched its address should be calculated. For fetching an operand the Program
Counter (PC) will hold the memory address. A more detailed description of the memory access is
described in chapter 5.9.1.
The goal will be to keep the code memory occupied as close to 100% as possible. The other tasks in
the instruction scheme, like decoding, data accesses, instruction executing, will be done in parallel
and therefore pipelining [1] needs to be introduced. It is not possible to get a full 100% memory usage,
because of jump and other branch instructions. Conditional branches require being decoded and
executed before the correct branch can be taken.

When executing a dedicated testbench with all possible 80C51 instructions with a total of 297 code
memory accesses. This means that when the code memory is 100% occupied the minimum time
needed to execute this testbench will be 6237 ns (160 instructions with a total of 297 memory
accesses x 21 ns for each memory access). The time it takes to run this testbench on the HT80C51 is
17800 ns. So the theoretical maximum speed improvement in this technology (CMOS 0.14 ~m library)
will be 2.8 times faster.

When the total instruction scheme will improve (e.g. optimizing the Haste code, optimizing the
architecture of the HT80C51, etc.) and the accesses to the memory will get occupied for 100%, we
need to improve the memory access process described in 5.9.1. At the moment a total memory
access will take 21 ns (CMOS 0.14 ~m technology), while the actual access to the memory takes a
total of 5 ns. The overhead of 16 ns is due to: calculation of the memory address, the addressing of
the memory, the actual data transfer and control overhead. Theoretically it is possible to optimize the
memory access such that it only takes the time to do the actual access of 5 ns plus a minimal setup
time required by the logic and control. Here it is possible to find an improvement for speed by a factor
of 4.2 (21/5 ns).

Code Program Redundant
Instruction memory execution execution

access time time

ns %

HT80C51 160 297 17800 91,6

Optimal High Speed HT80C51 160 297 6237 76,2

Optimal memory access HT80C51 160 297 1485 0

[Table 15] Optimizing memory accesses in the HTBOC51

When optimizing the Haste code or the HT80C51 architecture it is important that all tasks will fit in the
time slot it takes to do a memory access. We need to split up all the tasks to small enough subtasks;
this can be done by structures like pipelining. Pipelining will make the control structure and datapath
structure more complex and therefore introduce more area.
Other types of optimization are remapping different parts of the architecture (like residing parts in the
memory or locally in the core), optimizing executions of instructions (faster adders, shifters, etc.),
using mechanisms like data forwarding, etc.

The next chapters will describe such mechanisms to speed up the HT80C51 microcontroller.

© Philips Electronics N.V. 200B Page 35 of 98

Handshake Solutions

Page 36 of 98

Designing a high-speed asynchronous 80C51 microcontroller
Initial speed up of the HT80C51

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Initial speed up of the HT80C51

4. Initial speed up of the HT80C51

Handshake Solutions

This chapter presents an initial speed up of the HT80C51 microcontroller, the HT80C51-SU (Speed
Up). Section 4.1 starts by introducing the main architecture. It discusses the objects that make up the
design, as well as their interaction with each other. After this, sections 4.2 and 4.3 discuss the
datapath and the control structure of the HT80C51-SU, respectively. Finally section 4.4 concludes with
some benchmark results and an approach to achieve better results.

4.1. Conceptual architecture
The goal of this design is to improve the HT80C51 performance without a major architecture change.
Therefore no extreme form of pipelining is introduced, but there is a pre-fetch unit. Some non-branch
instructions can already, after their last read access to the code memory, fetch a new instruction
opcode while the current instruction is being executed. This form of pipelining, pre-fetching, does not
require a lot of additional control logic.

In the HT80C51-SU the instructions are divided into four different categories by the decoder.
The first category contains the regular instructions and allows instructions to perform pre-fetching.
The second category contains the branch instructions with or without computation.
The third category contains instructions which deal with the external memory.
The fourth and last category handles special ALU instructions as the multiply and divide instructions.

These categories are each divided into several sub categories. Only the first main category can
perform a pre-fetch of a new instruction while it is executing its current instruction. The other
categories have shared resources with the fetch unit and will first finish the execution of the instruction
before fetching a new instruction. The pre-fetch unit is not an autonomous process, it only starts
fetching upon request and will be a regular fetch after the completion of an instruction in case of the
three latter categories. The global architecture ofthe initial HT80C51-SU is shown in [Figure 13].

.. Fetch Opcode

....\ Fetch arguments) ...(Execute

~ Fetch arguments :) ~ Execute

/" "

~ Decode Opcode 'I
, /
''-------

~: Fetch arguments) ...(Execute

.r Executa I
;

[Figure 13] HT80C51-SU data flow chart

~i Write arguments)

...(Jump

.' \
~, Write arguments)

The HT80C51-SU consists of two processes, operating in parallel. The first is the fetch process, which
can fetch the instruction opcode after a request of the second process, the decode/execute process.

© Philips Electronics N.V. 2008 Page 37 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Initial speed up of the HT80C51

Start Fetch

Fetch Process DecodelExecute Process

Opcode
~

'f--...r Data t
Address & Control

Code memory

[Figure 14] HTSOC51-8U communication between Fetch and Decode/Execute

The address (PC) for fetching the opcode from the code memory is calculated in the execute process.
Only here it is guaranteed that the PC and the code memory have no other dependencies. When the
PC is calculated and there are no more dependencies. the execute phase will communicate this to the
fetch process through a dedicated channel. This channel (Start Fetch in [Figure 14]) is the wake up
call for the fetch process. Normally this is done after the completion of the instruction execution,
although the execution process can request the pre-fetch process to fetch the next opcode in some of
the categorized instructions. The fetch process itself will ultimately return the opcode to the execute
phase through a dedicated channel ("opcode" in [Figure 14]). Thanks to these two dedicated channels
the fetch and the execute processes are synchronized in a correct and intuitive manner. The
categorization of the instructions is done by the decoder. The opcode is decoded into proper condition
signals (similar to the Execution Bits (EB) in the low cost HT80C51 design, refer to 3.3). Each of the
four categories sequentially executes a set of conditional sub categories. like the HT80C51-LC.

4.2. Datapath
The 80C51 instruction code is analyzed to find an efficient overlap in the datapath, so that logic and
communication paths can be shared where possible without suffering in performance. The use of glue
logic is avoided whenever possible and data is copied as little as possible in the processes to prevent
the increase of complexity of the datapath and control structure. Although the datapath of the
HT80C51-SU implementation is comparable with the low cost HT80C51, there are some small
differences. Because of the control structure differences the datapath has to be adapted. The data has
to be latched at more places, e.g. between the pre-fetch process and the decode/execute processes.

4.3. Control structure
The HT80C51-SU implementation of the control structure is designed to partially split the control flow
into four categories. The problem with the HT80C51-LC design is that every case for execution should
be evaluated before the next step could be taken. This design decision prevents glue logic because
there are no additional invocations to a common or shared resource. The strength of the HT80C51-LC
design is that the control structure is very transparent. This saves area, but it prevents speeding up
the design. With the HT80C51-SU an initial high-speed step is taken to split up the control flow by a
high level decoder. This is necessary when adding pre-fetching to the design.

Page 38 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous BOC51 microcontroller
Initial speed up of the HTBOC51 Handshake Solutions

Only one category allows starting up the pre-fetch unit while it is still executing its instruction, as
shown in [Figure 13]. Therefore this category contains as many instructions as possible to exploit the
benefits of pre-fetching. The tasks which remain are decoded in the category itself like it is decoded in
the HT80C51-LC. This prevents glue logic and therefore the control logic is kept more transparent.
The HT80C51-SU design is constructed such that, after the instruction fetch, the control flow partially
depends on the actual instruction. The control structure is organized as shown in [Figure 15]. The high
level decoder splits up the control flow which makes the control path smaller and different for each
instruction group, therefore dependent on the actual instruction.

II
Fetch Decode/Execute

Low level
decoders

Datapath

[Figure 15] HTSOC51-5U handshake circuit

© Philips Electronics N.V. 200B Page 39 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Initial speed up of the HT80C51

The decoder will assign the proper execution signals, the EB. These EB are computed in one large
assignment. The decoder will split up instructions in four categories and assign execution signals (EB)
such that the proper category and the proper tasks in the categories are being executed.

Decode =
[

« EBO, EBI. EB2, ... , EBX » := « EBCatO, EBCatl. EBCat2, ... , EBCat3mul »

[Code Fragment 12] The Execution bits decoded by the decoder

After the decode phase it is clear which path must be followed by the control structure, to execute the
correct tasks of the instructions. The right category and the proper tasks in this category are chosen
after the decode phase. Every category consists of a sequence of conditional tasks, each of these
conditional tasks contains more sequential and parallel tasks.

EB_CategoryO =
[

If EB_CatO_Read then doReadO(} fi
If EB_CatO_Execute then doExecuteO(} fi
If EB_CatO_Write then doWriteO() fi

[Code Fragment 13] The Execution bits used in category 0

The same procedure holds for the other categories. Category 1 is for branch instructions. It evaluates
the arguments and calculates or assigns the branch address. It is decided that this category will not
allow pre-fetching, since the pre-fetch results may have to be discarded as the PC can be changed
during execution of the instruction.

If EB_Catl_Read then doReadl() fi
If EB_Catl_Execute then doExecutel() fi
If EB_Catl_Jump then doJump() fi

[Code Fragment 14] The Execution bits used in category 1

Category 2 is for the special MOV instructions as the MOVe and the MOVX instructions. These are
special MOV instructions which move bytes from the external data memory or the code memory. As
this category also has access to the code memory it is prevented to initiate pre-fetching, which would
lead to memory access conflicts.

EB_category2 =
[

If EB_Cat2_Read then doRead2() fi
If EB_Cat2_Execute then doExecute2() fi
IF EB_Cat2_Write then doWrite2(} fi

Page 40 of98

[Code Fragment 15] The Execution bits used in category 2

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Initial speed up of the HT80C51 Handshake Solutions

The last category 3 executes only the DIVIDE, MUL T1PL Yand NOP instructions. These instructions
are relatively transparent for the control structure as can been seen in [Code Fragment 16]. Only one
IF construct is used to execute the proper logic. Pre-fetching is possible with these instructions, but it
is not implemented. The control overhead for implementing another category would lead to a slower
average circuit while the gain in performance is small for these rarely used instructions.

If EB Cat3 Div- -
or EB_Cat3_Mul
else
fi

then doDivide ()
then doMultiply()

skip

[Code Fragment 16]

4.4. Results

The Execution Bits used in category 3

The HT80C51-SU is designed in Haste and completely compiled with the Handshake Technology
design flow into a standard-cell CMOS 0.14 ~m nellist. The same testbench, previously used for
benchmarking the low cost HT80C51-LC in section 3.5, is used to analyse the HT80C51-SU.
Again to determine the execution speed we take the average time it takes to run the benchmark
program. The total amount of time it takes to execute the testbench on the HT80C51-SU is 12800 ns.
This is a substantial gain in comparison with the HT80C51-LC described in 3.3 which takes 17800 ns.
On average it is 40% faster.

lnstr. ROM RAM RAM Total ROM time RAM time Cate- Profit
Group fetch read write instr +OH +OH gory prefetch

time time

#
"'c ecCe

cccccijL "":".c ns % % os

1 1 0 0 42-128 16-50 0 0-3 19

2 1 0 1 71-87 24-30 24-30 0-2 20

3 1 1 0 77-88 24-27 24-27 0-2 19

4 1 1 1 85-90 23-25 46-50 0-2 20

5 1 2 0 85-106 20-25 39-50 0-2 19

6 1 2 1 110 19 57 0 20

7 1 3 0 115 18 55 1 -
8 2 0 0 74-100 42-56 0 0-1 19

9 2 0 1 86 49 24 0 20

10 2 0 2 121 35 35 1 -
11 2 1 0 94-108 39-45 19-22 0 19

12 2 1 1 86-112 38-49 18-24 0 20

13 3 0 0 107-118 53-59 0 0-1 -
14 3 0 1 119 53 18 0 -
15 3 0 2 122 52 34 1 -
16 3 1 0 110 57 19 0 -
17 3 1 1 106-113 56-59 18-20 0 20

18 3 2 0 112 56 37 0 -
Note: OH: Overhead

[Table 16] HTBOC51·SU memory usage

© Philips Electronics N.V. 2008 Page 41 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Initial speed up of the HT80C51

Regardless of the fact that the HT80C51-SU implementation uses a pre-fetch unit, the fetch and
decode phase did not changed much. The main transformation is in the control structure. After the
opcode fetch the control path is split up into one of the four main categories. Each of these categories
then follows a fixed control path with executions of a part of the instruction or skipping the execution of
the other tasks in the sequence of tasks the category contains.

The increase in performance is largely due to better control structure in the execute phase and that a
lot of instructions support pre-fetching. The major part of the 160 different instructions, 113, uses the
possibility of pre-fetching. For these instructions the increase in performance can go up to 20 ns per
instruction (profit in time with pre-fetch, seen in [Table 16]), that is a profit of 15% up to 48% for some
instructions. The other instructions have shared resources between the fetch phase and the execute
phase and follow the traditional execution scheme. The total gain of pre-fetching alone is 20% in this
testbench.

The increase in performance due the better realization of the control structure is 19%. The instructions
do not need to follow the complete execution scheme and execute or skip every task like in the
HT80C51-LC.

There is still room for a major improvement in terms of performance, but this requires a more radical
approach. Still the main part of an instruction is fetching data from the code or data memory, see
[Table 16] column memory time with overhead. In the HT80C51-SU design a memory access takes
also a complete 21 ns to complete. Some data memory read accesses can be done in parallel with the
argument read accesses from the code memory, but five memory accesses will take in general 105 ns
to complete. See for example instruction group 15 in [Table 16]. In which 86% of the total instruction
time is spent on memory accesses! There are possibilities to reduce the amount of memory accesses
and to speed up the entire instruction scheme. This is treated more specifically in chapter 5.

Page 42 of 98 © Philips Electronics NV. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS

5. HT80C51·HS

Handshake Solutions

The speed up design of the HT80C51-SU, as introduced in chapter 4, is a truly better design with
respect to speed than the HT80C51-LC, the starting point. Nevertheless the HT80C51-SU is still
lagging improvement in terms of speed as targeted in the problem description (section 1.1). Therefore
a more rigorous approach has to be taken. For this we have identified the well-know principle of
pipelining, refer to [1].

5.1. Conceptual architecture
The two main problems in the previous HT80C51 designs are:

1. The logic adds much control delay which increases throughput time;
2. There are many sequential memory accesses (both code and data memory) for an instruction.

The solution for the first problem is to increase the instruction throughput by pipelining the HT80C51
architecture (HT80C51-HS, High Speed). To eliminate the second problem we propose two solutions.
First a central fetching unit which fetches 32 bits instead of the traditional 8 bits for the code memory
(refer [23]). This reduces the number of accesses to the code memory. Second, declare the frequently
used RAM space as internal registers. So besides the DPTR, SP, Accumulator and B registers, the
RO..R7 become internal registers, which are directly accessible. This way there is no need to address
the data memory for accessing these frequently used registers. RO..R7 are accessible via two ways.
First approach is through a dedicated bus when calling an instruction like ADD RD. Second approach
is that the decoder will check the address when the data memory will be accessed and reroute this
address to the registers when RO..R7 is supposed to be accessed, for example the ADD address
instruction where the address is the RO..R7 address.

5.2. Pipelining and memory architecture
When going for a pipelined design of a microcontroller many issues have to be taken into
consideration. It is not only important to identify the most balanced way of pipelining, but also
problems like data dependencies between different stages of the pipeline have to be taken into
account.
Pipelining is an implementation technique where instructions can be executed simultaneously. As
seen before, an instruction consists of several parts of execution. When splitting these execution parts
into independent tasks by dedicated hardware, it is possible to execute multiple instructions at the
same time. The individual times of executing a single instruction will most likely increase (latency),
because of the increased complexity of the control structure and the increased length of the datapath
(extra registers). However, due to the simultaneous execution of multiple instructions in parallel the
total throughput of instructions increases. The increase in instruction throughput means that a program
run on the processor executes faster and has a lower total execution time, even when no single
instruction executes faster on its own.

As mUltiple instructions are being executed simultaneously, it is possible that instructions in the
pipeline depend on each other. These situations are called hazards and they will prevent the next
instruction from being executed while other instructions are still in the pipeline. Hazards reduce the
performance from the ideal speedUp gained by pipelining and therefore should be prevented as much
as possible. There are three types of hazards:

• The first is Structural hazards, these happen for example when separate parts of the pipeline
want to use one shared resource. E.g. the fetch phase fetches the opcode from the code
memory and the execute phase needs to access the code memory for its operands.
Consider the next code sequence:

MOV dir, dir
ADD A

[Code Fragment 17]

© Philips Electronics N.Y. 2008

Example of a structural hazard

Page 43 of 98

Handshake Solutions
Designing a high-speed asynchronous BOC51 microcontroller

HTBOC51-HS

The MOV instruction is still reading its arguments from the code memory when the first stage
wants to fetch the next instruction from code memory.

The 80C51 architecture can exhibit different structural hazards that we need to address. The
following shared parts of hardware have been found and need to be addressed.

1. Sharing of the code memory
2. Sharing of the data memory
3. Sharing of the extended data memory
4. Sharing of the SFR memory
5. Sharing of the ALU

• The second type of hazards is Control hazards. Control hazards, also called branching
hazards, occur when the controller is told to branch. E.g. when an instruction modifies the
code memory address (PC), while the next instruction is already being fetched.
Consider the next code sequence:

JMP label
MOV dir, A

label:
INC A

[Code Fragment 18] Example of a control hazard

The JMP instruction will cause a control hazard because the PC is changed while the next
instruction is already being read from the code memory and possible partially being executed.

The 80C51 architecture can exhibit different control hazards that we need to address. The
following different types of branches are been found in the 80C51 instruction set.

6. Conditional branches
7. Unconditional branches

• The third and last type of hazards is Data hazards. Data hazards are created when an
instruction depends on the result of a previous instruction which is still being executed.
Consider the next code sequence:

MOV A, #data
INC A
ADD A, #data
ORL A, #data

[Code Fragment 19] Example of a data hazard

The MOV instruction will write back data to the Accumulator, but it is possible that the INC
instruction already read the Accumulator before the write of the MOV instruction is finished.

The 80C51 architecture can exhibit three different types of data hazards
Read After Write (RAW), a RAW hazard exists if an instruction wants to read a data
object but the previous instruction still has to write the same data object. In [Code
Fragment 19] this happens between the move and the increment instruction. If the
increment instruction read the accumulator before the move instruction has written the
accumulator, it will be incrementing the wrong value.
Write After Read (WAR), a WAR hazard exists if an instruction wants to write a data
object before the previous instruction has read to the same data object. In [Code
Fragment 19] this is the case between the increment and the add instruction. If the
add instruction writes the value to the accumulator before the increment instruction is
able to read, it will also be incrementing the wrong value.
Write After Write (WAW), a WAW hazard exists if two instructions write to the same
data object in the wrong order. In [Code Fragment 19] this can be the case between
the increment and the addition instruction. If the increment instruction writes later to

Page 44 of9B © Philips Electronics N.V. 200B

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

the accumulator than the addition instruction, the memory location will contain the
incorrect value afterwards.

There is also a Read After Read (RAR) dependency but this never causes a hazard.

The 80C51 architecture can exhibit three different types of data hazards that we need to
address. In the 80C51 instruction set the following data objects are found which can introduce
data hazards.

8. Accumulator
9. B-register
10. RO..R7
11. DPTR
12. PC
13. PSW-register (ACC flags)
14. SP
15. Memory location

All these hazards should be tackled in a systematic way. Hazards can be eliminated in different ways,
in a dynamic or in a static way. As we want to use existing code compilers and existing code the static
elimination is not an option. The dynamic solution is to find an architectural solution to every possible
hazard. Throughout the remainder of chapter 5, every possible hazard is addressed.

In order to get the maximum performance out of the pipeline architecture while maintaining correct
behaviour, mechanisms are needed to control the data flow, accesses to the memory and the use of
shared hardware. Structures as data forwarding and local communications could be used to solve
these dependencies without suffering in performance.

Structural hazards like dependencies to the code memory (refer to dependency 1 on page 44) are
eliminated by having only one place to access the code memory. This is done by the second
architecture choice: fetching a complete word (32 bits) access instead of a byte.

FetDh

Instruction X

Decode

Instruction X-1

Instruction X-2

'----------'

Exeoute

Instruction X-3

Write

Instruction X-4

Fetoh

Instruction X....1

Deoode

Instruction X

Read

Instruction X-1

Exeoute

Instruction X~2

Write

Instruction X-3

Fetoh

Instruction X+2

Deoode

Instruction X+1

Reed

Instruction X

I Exeoullt

Ltruction X-1

Write

Instruction X-2

Fetoh

Instruction X+3

Decode

Instruction X+2

l
Read

Instruction X+1

l__ln_:_rueo_ct~_n_x_---!
I ,__..W_
LtructiOnX-1

---------------Time-e---------------+~

[Figure 16] HT80C51-HS pipelined operation

© Philips Electronics N.V. 2008 Page 45 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

Only the fetch phase will use the code memory such that dependencies (structural hazards) do not
exist in case of code memory. When there are branches, some of the memory accesses can be
redundant because the pipeline can be filled with unwanted instructions; this is a disadvantage for
power consumption. The data fetched from the code memory contains both the opcode of the
instructions and the arguments for some of the instructions.

Other shared memory resources as the frequently used Rn registers which are normally addressed in
the data memory range can be declared as internal registers. This will speed up the design
significantly, as the registers are accessible in a direct way instead via an addressable bus, but
decoding is still needed. There are much less code memory accesses (on average less than 1 for
each instruction) due to using a 32-bit memory accesses, and with the Rn registers in the internal
registers the amount of data memory accesses will be greatly reduced. [Table 12] and the table in
appendix A5 will be changed dramatically as the instruction groups will change. [Table 17] shows the
new partition of instruction groups for the HT80C51-HS. The structural hazards with data dependency
for these registers and data memories remains, but there are effective solutions for this problem.
These are discussed in the following sections.

5.3. Choice of pipeline structure
The HT80C51-HS (High Speed) will be a fully pipelined architecture with a 32 bits wide access to the
code memory. This 32 bits access to the code memory eliminates the need to fetch operands from the
code memory after the decoding operation of the instruction. The 32 bits access to the code memory
also simplifies the pipelined architecture and reduces hazards (e.g. structural hazards) and stalls in
the pipeline which can happen otherwise.

The instruction scheme will change significantly compared to the HT80C51-SU due to the 32 bits fetch
unit. When residing the RO..R7 (Rn) register locally in variables instead of in the data memory address
space the result of instruction regrouping is [Table 17].
There are only 6 instruction groups left in comparison to the 18 instruction groups of the HT80C51-SU
[Table 16]. These instruction groups are now divided by the amount of data memory accesses (RAM
Read and RAM Write).
There are only a maximum of two RAM reads or two RAM writes memory accesses compared to the
three of HT80C51-SU. And there are much fewer memory accesses than before, only 103 instructions
of the 255 (40%) need a data memory access instead of 203 (80%) of the HT80C51-SU.

Example of Instructions

0 0 152 NOP, Function A, Rn

(Un)conditional branches

2 0 18 Unconditional branches (CALL)

3 0 46 Function dir, A (dir, Rn)

Conditional branches

4 28 Function dir, dir

PUSH, POP

5 2 0 2 Unconditional branches (RET)

6 0 2 9 Unconditional branches (CALL)

[Table 17] HT80C51·HS instruction groups

Page 46 of98 © Philips Electronics N.Y. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

Each of these six instruction groups take different times and steps to execute. Pipeline structures,
based on the instruction regrouping [Table 17], reflect the characteristics of each group, defining a
specific stage configuration as shown in [Figure 17].
A typical instruction scheme and pipeline configuration applies to instruction group 4. Instruction group
1, 2 and 3 pass through some unnecessary parts of the instruction scheme (like reading and writing to
the data memory for instruction group 1). Instruction group 5 and 6 pass through some unnecessary
parts, but also loops multiple times through parts of the instruction scheme.

[Figure 17] shows the six instruction groups with the time it takes to execute the tasks of which they
exist. These times are derived from the HT80C51-SU microcontroller. All the times, but two, are a
precise time. The time of the fetch and the execute task is not fixed and can be variable depending on
the type or length of the instruction.

Instr. Group 1

Instr. Group 2

Instr.
Fetch

42-65ns

Instr.
Fetch

42-65ns

R
~

~
~

Execute

6-58ns

Execute

6-40n8

Write
Result 1

21n8

Instr. Group 3

Instr. Group 4

Instr.
Fetch

42-65ns

Instr.
Fetch

42-65ns

E Read Op1

6ns 21n8

~
Read Op1

6ns 21ns

Execute

6-40ns

Execute

6-40n8

Write
Result 1

21ns

Instr. Group 5

Instr. Group 6

Instr.
Fetch
65ns

Instr.
Fetch
42ns

Decode

6ns

Decode

6ns

Read Op1

21n8

Execute

30n8

Read Op2

21ns

Write
Result 1

21n8

Execute

30n8

Write
Result 2

21ns

[Figure 17] HTBOC51·HS instruction groups scheme

To balance the pipeline in well-tuned stages we need to know which parts will be separate blocks and
which processes can be combined. Due to the overhead asynchronous designs give for controlling
parallel processes and potential hazards, the need exists to not introduce an architecture with a
pipeline which has too many stages and therefore is control heavy.

© Philips Electronics N.Y. 2008 Page 47 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

The first task, Instruction Fetch, is a relatively slow task. This task needs to fetch 32 bits at once from
the code memory and calculate complete instructions. Complete instructions will be a single, two or
three byte instructions. Experiments show that it is possible to execute this task in about 65 ns for a
three byte instruction. It is recommendable to split up this task into two separate tasks to increase the
throughput. Therefore this task will be split into a separate fetch task and a separate predecode task.
This split will change the complete overview for a pipelined 80C51 microcontroller. [Figure 18] shows a
pipelined architecture for the 80C51. This architecture is an extreme variant and all tasks (or stages
from now on) should be evaluated if they are necessary to increase the total throughput of the 80C51
microcontroller.

Read
Operand 1

-Read I

Operand 2 EJ· I w:l
ExecuteL::SUlj

I

Wrtte I
I Result2 I
I__--------.J

-------------Stagess---------------+~

[Figure 18] Extreme pipeline

[Figure 18] shows B stages. The first two have already been mentioned; the actual Instruction Fetch
and the Predecode which calculates the complete instruction. The following stage is the actual
Decode stage which decodes the instruction into executable tasks. The following two stages are the
Read Operand stages. These will gather the operands from the data memory if needed. The next
stage is the Execute stage. Everything gathered and decoded by previous stages is being executed in
this stage. The last two stages are the Write Result stages. The Write Result stages will write the
calculated result back to the data memory.

It is difficult to determine how often and in which order instructions occur in a normal program code,
because every program code is different in operation. As it remains unknown which code will be run
on the microcontroller it is not possible to determine the most optimal architecture.

[Table 17] anq [Figure 17] show that there are a few instructions with double read or write accesses to
the code memory.
Only 9 instructions of the 255 have double write accesses to the data memory. All of the double write
backs are CALL instructions. These write backs do not need to be calculated, so they do not need any
execution (ALU) time. Only an internal register (PC) needs to be transferred to the memory interface.
There is no need for complicated calculations. Complicated calculations like the MUUDIV instructions
will write back the calculated data to the fast internal registers A and B.
Only 2 of the 255 opcodes are double read accesses to the data memory. We conclude that the need
to introduce two separate pipeline stages for these 4% of total instructions is not very high.

There are 55 (28+18+9) instructions with write accesses to the data memory. This is 22% of the total
amount of instructions. There are 76 (28+46+2) instructions with read accesses to the data memory.
This is 30% of the total amount of instructions. If there will be separate stages for the read and write
accesses there will be the need for extra control logic (aside from the extra registers and channels
between the stages) to arbitrate and schedule the read and write accesses between mutual
instructions.

The decision is made to go for a four stage pipeline. This does not imply this is the best solution to
execute a given program the fastest as possible, but this is the trade off made.
The first stage (IF) will decouple the pipeline stages from the code memory. The task of this stage is to
fill the internal buffers with code memory fetches and handle the interrupts correctly. This stage will
forward the fetched data through a dedicated handshake channel to the second stage, the predecode
stage which gather the complete instruction. The third stage will decode the instruction completely and
handle all the necessary reads of operands. This is mostly done from the already available fetched
operands or the internal registers. Otherwise (30%) the read is done to the slower data memory. Since

Page 48 of 98 © Philips Electronics N.Y. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

the actual decoding of an instruction is done faster than the fetching or executing of the data, the
access to these internal registers and data memory is also done in the decode stage. This way the
pipeline is more balanced

The fourth and last stage will be the execution stage which also will write back the calculated data.
Only 22% of the instructions will write back the calculated result to the slow data memory. The other
instructions use the fast internal registers. 50 the main part of the data written back can be done in 6
ns (time to assignment to an internal variable) instead of 21 ns (single data memory access) or 42 ns
(double data memory access) needed for a write back to a data memory.

When there is no conflict between the read and write process it is possible to execute these stages
simultaneously without any stalls in the pipeline. In the last section of this chapter you can see an
example of this parallel behaviour. Two wave forms, one from an execution of an instruction with a
parallel read and write [Figure 32]. The other waveform shows a conflict between the two processes
and will first finish the write back of the result by stalling the read phase of the other instruction [Figure
33].

5.4. Detailed architecture
The HT80C51-H5 architecture will be divided into four pipeline stages: fetch stage, predecode stage,
decode stage and execute stage. A simplified diagram of the operation of a pipeline is presented in
[Figure 16]. The fetch stage addresses the ROM and collects 4 bytes (word) at once from the code
memory and communicates it to the predecoder which will form a complete instruction. The complete
instruction with its arguments is then passed through to the decode stage. The decode stage decodes
the instruction into different Execution Bits (EB) and will gather all the operands needed for the
execution of the instruction by reading the data memory or the internal registers. The decode stage
will also calculate the destination addresses for the result of the execute stage. The execute stage
processes all the information gathered by the previous stages, executes the instruction and writes
back the result to the address calculated by decode stage. The global architecture of the HT80C51-H5
is shown in [Figure 19].

Data memory

A, a-reg, RO.R7
DPTR, psw, SP

Readlwrite scheduler

----------------,----------.----'t write back

Branch exe_to fetch

.. I -1 _
m mary predecode

-~ Fetch ~
"" I bytes

I

PreDecode

~redecode

~
Opcode.

Arg1, I
I Arg2
, Instr.Addr

I

Branch information

Decode/Read
decode_to

execute

~
EB

Ope",nd1
Operand2
Instr.Addr

Execute/
Writeback

I
[Figure 19] HT80C51·HS global architecture

© Philips Electronics N.Y. 2008 Page 49 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

[Code Fragment 20] presents the top-level pseudo code. There is no feedback from the decode stage
and execute stage to the fetch stage except on branches or interrupts for which it is possible to write
the new branch conditions to the fetch stage. All stages remain operating normally in case of a branch.
The decoder stage marks an instruction as a branch, when this occurs the execute stage will calculate
the branch address and perform a channel communication to the fetch stage with the newly calculated
address if needed (only when the branch is taken). The branch_exe_to_fetch channel which indicates
the branch is sampled and buffered in the fetch stage to prevent deadlock. The next fetch to the code
memory will then be with the code address previously calculated by the execute phase. The new data
fetched by the fetch stage will be marked as a branch packet. The data processed by the fetch,
predecode, decode and execute stage between the initial decode of the branch and actual new
execution of the new instruction on the branch address is flushed and not used in the execute stage.
All data written back from the execute stage to the decoder stage is discarded, so the registers and
RAM data are remaining valid.

A more detailed explanation of the HT80C51-HS is given in the following sections.

cpu.ht =
[

forever do
fetch (fetch_to-predecode!

& branch_exe_to_fetch?
)

od

II
forever do

predecode(fetch_to-predecode?
& predecode_to_decode!
)

od

II
forever do

decode

od
II
forever do

execute

od

(predecode_to_decode?
& decode_to_execute!
& write_back?
)

(decode to execute?
& branch_exe_to_fetch!
& write back!
)

[Code Fragment 20] HT80C51-HS The execution of the execute stage

5.4.1. Fetch stage
The fetch stage of the pipelined HT80C51-HS follows a completely different approach compared to
previous designs. It is not a remote procedure call like the previously described pre-fetch process of
the HT80C51-SU in chapter 4, but a completely autonomous stage.

The most important design decision was to allow a complete word (4 bytes) to be fetched each time
from the instruction memory instead of a single byte. This scheme reduces the average instruction
memory overhead by a factor four, since only once an address needs to be calculated for a ROM
access which fetches a complete word instead of a single byte.
Another beneficial point of this approach is the reduction of control hazards in this part of the design,
since the fetch stage is the only place which accesses the code memory (refer to dependency 1 on

Page 50 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

page 44). The execute stage will not have to address the instruction memory and gather the operands
needed for an instruction.

Reg_l

i
Reg_l.a n f---

t

i
Reg_l.l ;r--

r--+ i
Re9-1.2 n_

t

i

V
Re9-1.3 ;-

32/ ... Code_address-

III
fetch to predecode

Cod rdala ~

Re9-2

3{
i

Re(L2.a fi_

t

i
Reg_2.1 n-

t

-~ i

I I
Re9-2.2 ~I-- PC

i
Re(L2.3 n f---

*
t

~ Code_address'---

14

f+-PC Unit Branch Unit
Cod _address 16

Branch_exe_to
_fetch

[Figure 20] HT80C51-HS fetch stage block diagram

The fetch stage consists of two 4 bytes registers (Reg_1 and Reg_2) to store two complete words that
are fetched. The two registers are used as wagging buffers. This way the flow of instructions to the
decode stage is never interrupted. The principle of wagging buffers will be explained later in this
section.

There is no branch prediction in the HT80C51-HS, but it can be implemented in the fetch stage.
[Figure 20] shows the block diagram of the fetch stage of the HT80C51-HS.

[Code Fragment 21] presents in pseudo code the implementation of the fetch stage. The main task of
the fetch stage consists of a process to fill and empty the two 32-bits buffers. The two buffers are set
up in a wagging way (refer [12]). When one of the buffers is written, the other buffer can
simultaneously be read from. The two buffers are read and written through handshake channels. After
this the processes are reversed; the other buffer is then filled while the full one is emptied. The filling
of the buffer is done by a process which accesses the code memory.

© Philips Electronics N.V. 2008 Page 51 of 98

Handshake Solutions

fetch
[

Designing a high-speed asynchronous BOC51 microcontroller
HTBOC51-HS

load_reg_l() I I empty_reg_2()
load_reg_2() I I empty_reg_l()

)

II
buf_branch_channel()

buf branch channel =- -
branch_exe_to_fetch?buf
internal branchlbuf

set codemem_addr_access()
Reg_l:=code_rdata
calculate_next-pc()

set codemem_addr_access()
Reg_2:=code_rdata
calculate_next-pc()

fetch_to-predecode!«reg_l. 0, instructionaddress, branch> >
fetch_to-predecode!«reg_l.l,instructionaddress,branch>>
fetch_to-predecodel«reg_l.2, instructionaddress, branch> >
fetch_to-predecode!«reg_l.3,instructionaddress,branch>>

fetch_to-predecode!«reg_2.0, instructionaddress, branch> >
fetch_to-predecodel«reg_2.1,instructionaddress,branch»
fetch_to-predecodel«reg_2.2, instructionaddress, branch> >
fetch_to-predecodel«reg_2.3,instructionaddress,branch>>

calculate_next-pc
[

if sample(internal_branch) then
internal_branch?PC

else
PC:=PC+4

fi

Page 52 of9B

[Code Fragment 21] HTBOC51·HS fetch stage pseudo code

© Philips Electronics N.V. 200B

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

First it will setup the address and control and will initiate the handshake to the memory. After this the
data is ready to be read from the code memory. When this is finished the PC is adapted by the PC
Unit. It is possible to execute this in parallel with the reading of data from the code memory, but this is
not done at the moment because it is not time critical. The PC Unit will supply the correct address for
the code memory.
The PC Unit will be driven from the Branch Unit, and can change the PC (i.e. whether or not the
previous instruction is a branch, jump or MOVC. Refer to dependency 12 on page 45) in case of a
branch taken. Normally the 16-bit PC is incremented by four during every read cycle of the code
memory by the fetch stage (because of a complete word fetch, four bytes). In case of a branch the
but_branch procedure will decouple the execute stage to prevent deadlock in the execute stage. A
sample is needed to safely detect that the branch buffer is filled. When a code address is taken which
is the branch address the branch flag in Reg_1 or Reg_2 is such that the predecode stage can
correctly find the start of the instruction fetched form the branch target address.

The address incrementing takes place independent of whether the next sequential address is needed
or not (speculatively). The PC Unit uses its own adder to increment the address. This prevents sharing
of the ALU adder and it is an advantage regarding speed while it also avoids a structural hazard (refer
to dependency 5 on page 44). The disadvantage is that it cost more area. Some instructions
(branches and some moves) need the PC in the decode stage or execute stage; the PC is stored
together with the Reg_1 and Reg_2 so it can be sent with the instruction to the decode stage and
execute stage. Instructions which need the PC in the decode stage or execute stage are for example
the SJMP REL. When the last byte out of Reg_1 or Reg_2 is sent to the predecoder the register will
be filled with a new word from the code memory.
The fetch stage can be seen as a parallel to serial converter. Four bytes enter the converter and will
be sequentially transferred to the predecoder. This stage therefore runs at a lower rate than the
predecoder.

5.4.2. Predecode stage
Because the 80C51 instructions have variable length (one, two or three bytes), there is a need for a
predecode step to send the opcode with the correct amount of arguments to the decode stage. This is
done by the predecode stage. The predecode stage collects its data from the fetch stage via a
dedicated channel called fetch_to_predecode as show in [Figure 21].

predecoder

Opcode

Arg1
fetch to predecode

PreDecoder
B/ ~

predecode to_decode
r /

Arg2

Instruction
address

[Figure 21] HT80C51-HS predecode stage block diagram

The predecode stage gets the first byte which is the opcode and calculates how long the complete
instruction is. It will store the opcode and receive its arguments (if any) and store them to the correct
arguments (Arg1 and Arg2). Together with the bytes being gathered from the fetch stage, the
instruction address is sent to the predecoder. The gathered information is sent to the decode stage via
a channel called predecode_to_decode.

© Philips Electronics N.V. 2008 Page 53 of 98

Handshake Solutions

predecode =
[

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS

fetch_t0-Fredecode?«byte,instructionaddress,branch»
if branch_guard() + opcode_guard() then

Opcode:=byte
I I calculate_guards()

or argl_guard() then
Argl:=byte

or arg2_guard() then
Arg2:=byte

fi
if sent_to_decoder_guard() then

predecode_to_decode!«Opcode,Argl,Arg2,instructionaddress»
I I calculate_guards()

fi

[Code Fragment 22] HT80C51-HS predecode stage pseudo code

The decode stage receives the complete instruction: opcode, if needed its operands and the
instruction address. It is therefore possible that the decoder receives a single byte instruction with
arguments from the previous instruction, but this is disregarded in the decoder. [Code Fragment 22]
shows the pseudo code of the predecode stage.

The predecode stage can be seen as a serial to parallel converter. The bytes will enter one at the time
from the fetch stage and will be gathered until a complete instruction is formed.
The rate of the predecode stage is data dependent and will be multi rate. [Figure 22] shows the multi
rate behaviour of the HT80C51-HS predecode stage.
Circle 1. shows the input byte from the fetch stage.
Circle 2. shows a three byte instruction being fetched from the fetch stage before the complete
instruction will be sent to the decode stage.
Circle 3. shows a two byte instruction being fetched from the fetch stage before the complete
instruction will be sent to the decode stage.
Circle 4. shows a single byte instruction being fetched from the fetch stage before the complete
instruction will be sent to the decode stage.

[Figure 22] HT80C51-HS multi rate behaviour predecode stage

Page 54 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

5.4.3. Decode stage
The 80C51 has a complex and irregular instruction set, which makes the decoder complex. The
decode stage (see [Figure 23]) always receives the opcode, two arguments and the instruction
address (original PC) from the predecode stage. Even in case of a single byte instruction the decoder
receives two arguments and the instruction address from the predecode stage. This will keep the
control clear and simple as only one channel, with a fixed width between the predecode stage and the
decode stage, is used. The decode stage will determine the usage of the arguments. For some
instructions there is a need for a source or destination argument but that can be locally decoded from
the opcode. The decode stage will decode the opcode (the first byte) of every instruction into a
number of Execution Bits (EB). Some instructions need access to the data memory and/or to the local
registers (e.g. RO..R7, data pointer, etc). This makes it possible to speed up the access to these
commonly used registers as there is no access to the data memory needed. Since the actual decoding
of an instruction is done faster than the fetching or executing of the data, the access to these internal
registers and data memory is also done in the decode stage. This way the pipeline is more balanced.
ReadBits and WriteBits are decoded to identify which data needs to be read from or, after the
execution of the instruction, written to.

It is possible that the execute stage will write data back to the destination from the current instruction
while also data is being read for the next instruction. This can be handled in parallel by the remote
procedure call read/write scheduler as long as there is no reading and writing to the same source. If
this is the case the read/write scheduler will wait until the data of the current instruction is written
before it will read the data (operands) of the next instruction.

For example, when first the instruction MOV A,#data and then instruction INC dir is being executed,
the write back data from the first instruction (MOV) to the Accumulator (A) is being written while the
second instruction (INC) will perform a read access to the data memory. This is permitted because
there are no data dependencies between the write and read data.

When there are data dependencies between the sources, e.g. the first instruction is a MOV A,#data
and the next instruction to be executed is MUL AB then the decoder needs to wait until the write back
data is received from the execute stage via channel execute_to_decode. How often these
dependencies occur depends fully on the program which is executed by the HT80C51-HS
microcontroller.

© Philips Electronics N.V. 2008 Page 55 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

ReadBits, operand1,
Prev_WrileBils operand2

~ EB
II rn r,

I
I

I

I

----. ReadBits

Op<Xlde

fete 10 I
\ de<Xld 10

de< ~de-
Argl f---

Operands]
tole -----. exe

WrileBils

Arg2 f---

! ~.----'

Instruction ~ ~
address I Prey

Wri1eShs

I

[Figure 23] HTSOC51-HS decode stage block diagram

There are methods as data forwarding that make these dependencies redundant, but they are not
implemented (yet) in the HT80C51-HS. Some more research needs to be done to see how effective
methods as data forwarding are in the HT80C51-HS architecture.

The next code fragment presents the decode stage in pseudo code. The decoder first receives the
complete instruction (opcode and arguments) with the corresponding instruction address.
After this the ExecutionBits, ReadBits and WriteBits are decoded and sent to the remote procedure
call readlwrite scheduler. The ExecutionBits are control bits for the execute stage. The ReadBits and
WriteBits are the control bits for the read and write processes to the registers and memories. The
read/write scheduler will collect the correct operands needed by the instruction in the execution stage.
Finally the execution stage will be driven with all the necessary information (Execution Bits, all
operands and the instruction address) to execute the instruction.

Decode =
[

predecode to decode?« Opcode, Argl, Arg2, instructionaddress»
EB(Opcode) IT ReadBits(Opcode) I I WriteBits(Opcode)
read/write_scheduler (ReadBits, WriteBits, Prev WriteBits)
decode_to_execute!«EB, operandI, operand2, instructionaddress»
Prev_WriteBits(WriteBits)

[Code Fragment 23]

Page 56 of 98

HTSOC51-HS decode stage pseudo code

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

5.4.4. Readlwrite scheduler
The remote procedure call read/write scheduler controls the accesses to the data memory, external
data memory, SFR-registers and the internal registers (e.g. RO..R7, data pointer, etc) and is part of the
decode stage. On consecutive instructions, structural dependencies (refer to dependency 2, 3 and 4
on page 44) and data dependencies (refer to dependency 8, 9, 10, 11, 13, 14 and 15 on page 45)
need to be addressed by the scheduler to guarantee a correct behaviour in a pipelined architecture.

The readlwrite scheduler will check if the previous WriteBits (the WriteBits from the current execution
which is being executed by the execute stage) conflict with the ReadBits of the next instruction. In
case of a conflict first a write access to the corresponding destination will be done, when the write
access is finished the read access will be initiated and finished. If there is no conflict the read and
write process will be done in parallel. When both the write process and the read process are finished
the results will be sent to the execute stage and the WriteBits will be copied to the Prev_WriteBits.
[Figure 24] shows the block diagram of the read/write scheduler.

Data
memory

Intemal registers RAM Unit

.1

I •

• I
I

~I
Read Compare Write

"-
operand1, operand2 ReadBils, .~

Prev_WriteBits

Writeback
_data

[Figure 24] HT80C51-HS read/write scheduler block diagram

© Philips Electronics N.V. 2008 Page 57 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

[Code Fragment 24] shows the read/write scheduler pseudo code. When there is a conflict (between
the ReadBits and the Prev_WriteBits) the code will first execute the write process and sequential to
that the read process. If not, the read and write process will execute simultaneously.

read/write_scheduler
[
if conflict () then

wri te () read ()
else

write() 1I read()
fi

write
[

writeback_data?«Writeback_data»
if Prev_WriteBits.A then

Write_A (Writeback_data)
or Prev_WriteBits.RAM

Write_RAM (Writeback_data)
or Prev WriteBits.Rn

Write_Rn(Writeback_data)
or ...

fi

read
[

«operandl,operand2»:=
«if ReadBits.opl_A then

Read_A ()
or ReadBits.opl_RAM then

Read_RAMO
or ReadBits.opl_Rn then

Read_RN ()
or

fi
, if ReadBits.op2_A then

Read_A()
or ReadBits.op2_RAM then

Read_RAM()
or ReadBits.op2_Rn then

Read_RN ()
or

fi
»

[Code Fragment 24]

Page 58 of98

HTBOC51-HS readlwrite scheduler pseudo code

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

5.4.5. Execute stage
The execute stage of the HT80C51-HS is set up more or less the same as in the HT80C51-SU design.
There is one high level decoder which splits different instruction groups. Because the instructions
which need to be executed are delivered complete to the execute stage, with its operands, there is
only a need for calculation. The high level decoder splits up the design in different categories e.g. ALU
instructions, MOV instructions, BIT instructions and branch instructions. For some instructions the only
executing task in the execute stage is moving some data and writing this back to the decode stage.
While other tasks are multiplying two bytes and setting or resetting some flags. All the results are sent
back to the decoder stage to be stored in the correct destination. [Figure 25] shows the block diagram
of the execute stage.

Writeback_dala

i

II

BIT Operations
~

I
EB AlU

decod 10 Operandl
I Iexe ule -

Operand2
I ~eba~ I

I
Instruction MOV
address

I J

Branch

Branch_exe_to_felch
Ir

[Figure 25] HT80C51-HS execute stage block diagram

As shown in [Code Fragment 25] the execute stage will first perform a communication with the
read/write scheduler to write back data previously calculated by the execute stage. This is done
because the write back in the read/write scheduler can be done in parallel with the read process. This
needs to be finished before the communication with the decode stage to receive the next execution
bits, operands and instruction address. If this sequence is not obtained a deadlock may occur. Finally
it will execute the actual execution of the instruction. In case of a branch instruction it is possible that
there is a communication to the fetch stage to take the branch. The execute stage will flush every
instruction it will receive from then until it receives the instruction from the branch target address
previously sent.

© Philips Electronics N.V. 2008 Page 59 of 98

Handshake Solutions

Execute =
[

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS

writeback data!write data- -
decode_to_execute?«EB, operandI, operand2, instructionaddress»
do_execute ()

if flush then
skip

else
if EB .bit then

write_data: =function_bit (operandI)
or EB.ALU then

write_data:=function_alu(operandl, operand2)
or EB.mov then

write_data: =function_mov (operandI , operand2)
or EB.branch then

execute_to_fetchl«function_branch(instructionaddress, operandI»>
fi

fi

[Code Fragment 25] HT80C51-HS execute stage pseudo code

Branch Operations
A branch operation will calculate a new instruction address for accesses to the code memory if a
branch is taken (conditional and unconditional branches). The branch part of the execute stage can
flush the complete pipeline in case a branch is taken. The flushes take care of the control hazards
mentioned as dependency 6 and 7 on page 44.
The decode stage will decode the instruction and the relative or fixed offset for the branch address.
The execute stage will determine if a branch needs to be taken (unconditional branches) and calculate
the complete branch address. This branch address is communicated through a dedicated handshake
channel to the fetch stage.
The fetch stage will change the pe (code memory address) and the next word read from the code
memory will be fetched with the branch target address. The correct byte in the word gathered from the
code memory will be marked with a branch flag. This byte will be sent throughout the pipeline
including the branch flag and will therefore not be flushed in the execute stage. Normal operation
resumes when the instruction with the branch flag enters the execute stage.

Interrupts can be addressed the same as branches, but are not implemented (yet).

MOV Operations
The move (MOV) operations are relatively easy. The decode stage is largely responsible for a correct
behaviour of the MOV instructions, because this stage will read the operand which needs to be moved
and address the register to which the data needs to be written. The MOV operations are therefore
nothing more than a move from one memory address or register to another memory address or
register. It is possible to move 16 bit data (e.g. move to the DPTR). but most data that is moved is 8 bit
wide.
The same holds for extended move (MOVX) operations. The addressing of memory or registers is
done the same as for regular moves.
The move instruction exists in the first four categories refer to [Table 17].

A special move instruction is the MOVe operation (move code byte). To eliminate some structural
hazards the decision was made to communicate from only one place to the code memory. This need
still exists and therefore we need to make an awkward mechanism for the MOVe instruction. The
decode stage will detect the MOVe instruction and will store the current instruction address. The

Page 60 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

execute stage will perform a branch to the MOVC address and the pipeline will be flushed (as is done
for a normal branch) until the according byte is received. When the MOVC instruction is executed the
execute stage will perform a second branch to the instruction address after the original MOVC
instruction address, again everything will be flushed until the instruction after the MOVC instruction
enters the execute stage. Normal program execution is resumed.

ALU Operations
The ALU performs arithmetic and logical operations. The ALU is a logic block that is spilt up in several
separate blocks. Every separate block can perform an individual task, e.g. add, increment, swap of
bits, etc. The correct task is indicated by the EB previously decoded by the decoder. It is possible to
calculate 16 bit data (e.g. increment the DPTR), but most data that is calculated is 8 bit wide. Some
ALU operations affect the condition flags in the PCON register (Carry, Overflow and Auxiliary carry
flag).
The ALU is further split up in the following units:

• Shifting unit
• Logical unit
• Add unit (also for incrementing, decrementing and subtracting)
• MUltiply unit

The fetch stage holds a separate adder for the program counter (PC). This avoids sharing of the ALU
adder and eliminates the ALU hazard (refer to dependency 5 on page 44).

BIT Operations
A bit operation is only possible for a small part of the data memory (refer to [Figure 8]). It works, as a
read-modify-write, on byte level which means that the read phase fetches a complete byte from the
data memory and extracts the bit from this byte. After the bit manipulation it will write back the
complete byte with the changed bit.
The bit manipulation can be several different things like comparison, logical OR function, logical AND
function, logical Exclusive OR function, clearing and setting the bit.

Flush Mechanism
The flush mechanism is introduced to correctly deal with branch and MOVC instructions. After a
branch the complete pipeline is filled with redundant instructions. These instructions needs to be
cleared and will therefore be flushed in the execute stage (refer to dependencies 6 and 7 on page 44).
The execute stage will not perform any writes to any register or memory at this point. This way the
data remain valid in these registers and memory. The flush mechanism is stopped when the correct
flag is read in the execute stage transferred from the previous stages.

5.5. Datapath
The datapath of a pipelined microcontroller is more complex than the datapath of a sequential design.
Not only because of the need of extra registers between the pipeline stages, but also because of extra
communication between frequently used registers RO..R7.
The need for extra registers is inevitable due the pipelined architecture. The extra registers hold
temporarily variables between the stages of each instruction in the pipeline. These registers not only
carry instruction data from one stage the next stage, but also control data. Any value needed in a later
pipeline stage must be placed in such a register and copied from one pipeline stage to another until it
is no longer needed. Some auxiliary registers used in other designs (HT80C51-LC and HT80C51-SU)
will otherwise be overwritten before all uses of the registers are completed.
The HT80C51-HS will be fetching 32-bits from the code memory. This 32-bits information needs to be
decoded in a correct way to maintain a correct behaviour for an 8-bit microcontroller. The HT80C51
HS does not have an internal data bus (the lOB like described in section 3.1), instead it uses
dedicated channels which communicate between the independent stages and transfer the data from
one register to another register in another stage.

© Philips Electronics N.V. 2008 Page 61 of 98

Handshake Solutions

5.6. Control structure

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS

The control logic of a pipelined design will be completely different compared to a non-pipelined design.
Not only because the control logic will drive the independent pipeline stages and controls the logic
function of these pipelined stages, but also because the control logic has to detect possible hazard
situations that were not present in non-pipelined designs of the HT80C51.
The handshake channels between all four stages, memories, registers as well as the feedback
channel to the fetch stage in case of a branch take care of a correct behaviour through the pipeline
stages. Due to the control overhead each channel generates, it does not mean that every extra stage
and therefore extra channel generates a boost in performance.

The control in the fetch stage is relatively straightforward. The main task of the fetch stage is to fetch
instructions with its arguments at a rate that is fast enough for the decode stage and execute stage.
While the fetch stage fetches 32-bits at once, it still decodes in the pre-decoder one byte at a time. It is
imaginable that the 32-bits buffer in the fetch stage runs out of bytes and that the fetch stage first
needs to access the slow code memory for new data. Until this time the fetch stage can not send a
new instruction to the decode stage and everything can stall. Therefore, the fetch stage consists of
two 32-bits registers which are controlled in a wagging way (refer 5.4.1). This process is completely
independent of the second process in the fetch stage. the pre-decoding of an instruction and the
channel communication to the decoder. The pre-decoder collects all data needed for the instruction
and communicates all data to the decoder.

The decode stage will run in a sequential mode. It will decode the read and write bits needed to
access the memories or registers. After that it will calculate if there is a conflict between the current
instruction which is being executed and the next instruction in the pipeline. This scheduler controls the
way the pipeline is executed. It is possible that the execute stage writes back calculated data to
memories or registers while simultaneously the decode stage will read from other memories or
registers. The decode stage will control the execute stage through the dedicated handshake channel
called fetch_to_decoder.

The execute stage consists of one input channel from the decoder and two output channels for
controlling the correct behaviour for the data. Data needs to be written back to the memories or
registers by a channel. The conditional channel which only works when the execute stage calculates a
branch address.
The control structure of the HT80C51-HS is organized as shown in [Figure 26]. The high level decoder
splits up the control flow like the HT80C51-SU.

Page 62 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

(*

_________~ _i: II if---------------

! T IJl 11
(*\
, '

(*

T T,-I -.·1 --1
~~, ~ ~ /', ,- ~"

"B \-.r,' I---.i f \ ,lope/, (\ / f" ;' EBI \ ~(\
,i---.r\ ytej \ -+) " ,~ arg ,~\ -+ ~\ ~\Operr~p\ -+ '!'!

~ ~' '~ '~ ~' --'-,'" '-, I

--- 1

,--------------------------:H-:cig-:chc-le-vec-lsc-pUC-t----~--------
~ (partial decoder)

~::1

1
Datapath

l
I

___________________________--ll'

I

[Figure 26] HT80C51·HS handshake circuit

© Philips Electronics N.V. 2008 Page 63 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

5.7. Optimizations
The complete 80C51 instruction set is implemented in the HT80C51-HS microcontroller. Some
measurements are being done and the architecture will be analyzed to find bottlenecks. Some
optimizations can be made to the design. These can be transformations for one goal only (obtaining
higher performance, lower power consumption or a smaller area), but also so called macho
transformations (term introduced by Andrew Bailey). Macho transformations are beneficial to the
complete design in respect to power, speed and area.

5.7.1. Branch instructions
Some typical instructions are being executed which test the natural dependencies in a pipelined
microcontroller design (previously discussed in 5.2). One of the structural and control hazards which
can occur happen in a regular branch operation.
In [Figure 27] a LJMP is executed from address 0 (code_addr_o, see number 1). As can be seen 4
bytes are being fetched simultaneously (code_rdataJ, see number 2) 02010000h. The first byte; 02h
is the opcode (LJMP which is a three byte instruction). The next 2 bytes are the arguments 0100h.
The complete instruction LJMP 0100h will perform a long jump to code address 100h.

-

, ,It ILl 11
I I I
I I I

1,-----_ ..

[Figure 27] HT80C51-HS branch operation

The total instruction sequence is as follows:
• Bytes are stored in the internal buffers in the fetch stage (see number 3);
• One byte each time is communicated to the predecode stage (see number 4);
• For a single byte instruction the byte gathered in the predecode stage is automatically the

complete instruction. For the LJMP instruction the successive bytes are also gathered (see
number 5) before the instruction is send to the decode stage;

• The decode stage will decode the EB, read and write bits. Then the read process will gather
all operands needed (in case of the LJMP the operands are the arguments in the instruction)
before they are communicated to the execute stage;

• The execute stage will perform the jump communication to the fetch stage (see number 6)
• This communication will be buffered in the fetch stage to clear the communication with the

execute stage. The execute stage will flush every new instruction until it receives the branch
target instruction;

Page 64 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous BOCS1 microcontroller
HTBOCS1-HS Handshake Solutions

• The fetch stage will change the PC (and therefore the cOde_addr_o, see number 7) fetch the
word with the correct byte. The predecoder will extract the correct opcode from this word and
collect the complete instruction which will be coloured for the execution stage (the execution
stage will detect the correct colour corresponding with the correct branch). This will be
communicated to the decoder;

• The decoder will decode all necessary bits and read the correct operands. This information is
communicated to the execute stage;

• The execute stage will detect the colour in the instruction and stops flushing and start
executing normal behaviour.

5.7.2. MOVe instructions
As can been seen in the total sequence a branch is long. However we need the complete flush
mechanism to prevent hazards and we choose only one mechanism for branching (e.g. no branch
prediction). Otherwise it is already possible for the predecoder or decoder to perform a branch in case
of unconditional branches. This choice was made to keep the control overhead as small as possible.
The MOVe instruction is also executed as a branch condition (as explained in 5.4), but with an even
less optimized implementation. The MOVe will perform a double branch. To increase throughput, the
branch and MOVe instruction should be optimized.

This is done by adjusting the flushing mechanism. The instructions need to be flushed in an earlier
stage of the pipeline. It is not necessary that the instructions ripple through the complete pipeline, are
decoded, and possibly access the memory for reading the operands.
When the conditional channel communication from the execute stage to the fetch stage finishes, the
fetch stage marks that data can be flushed in the predecode stage. The predecode stage will flush all
data from the fetch stage until it receives the branch target. This will be communicated to the decode
stage. The advantage of this approach is that the predecode stage can flush faster than the execute
stage. The fetch stage itself will flush as much as possible, without introducing any hazards. These
two mechanisms also have a power consumption bonus.

j

Data memory...,
A. Ekeg. RO..R7
DPTR. PSW. SP

Read/write scheduler

---------------- t Write back

III I
I

-_o-

j I
(ode fetch_to_ predecode

Decode/Readm mary predecode to decode exeaJte Execute/
-~ Fetch PreDecode r-=--. r---+

~re~~Jbits bytes Opcode, EB
Arg1, Operandi
Arg2 Operand2

- Instr,Addr Instr.AcIdr

~ tfetch_lo_decod8_movc

Branch_8xe_to_fetch

Branch information

[Figure 28] HT80C51-HS global architecture with MOVC addition

© Philips Electronics N.V. 200B Page 65 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

The MOVC instruction also benefits from the improved flushing mechanism of the branch instructions,
but it could benefit even more from some other architectural improvements. This section describes
these architectural improvements.
The current implementation of the MOVC instruction executes like a double branch operation. First it
will branch to the code address calculated in the MOVC instruction itself. Second it will branch to the
original code address after the MOVC instruction. The second branch is when the instruction finishes
and the byte from the code memory is successfully moved to the accumulator.

The architecture of the HT80C51-HS is set up such that all the operands of the instructions are known
at the beginning of the fetch stage. The idea is to split up the MOVC instruction into 2 instructions.
The first part executes a JMP instruction which is executed normally, but without the flush mechanism
through the pipeline.
The second part executes a regular MOV instruction which gathers the code memory operand at the
normal place in the pipeline; the decode/read stage. This can be seen as simplification of a complex
instruction or implementing a multi-cycle instruction.

The disadvantage is that the architecture needs to be expanded by a channel communication and
some added control logic in the fetch stage (see [Figure 28]). The implementation of the multi-cycle
instruction is done in the predecode stage. This stage can now output more instructions than it
receives from the fetch stage (see [Figure 29]).

[Figure 29] HT80C51-HS MOVC instruction as a multi-cycle instruction

First the predecoder outputs a MOVC instruction with an additional flag. This indicates that the
execute stage should do a branch to the fetch stage. This branch will be marked as a special MOVC
branch. The PC will not be changed and continue following the normal program execution flow. The
branch buffer (see [Code Fragment 26]) is expanded with control logic to access the code memory
and to communicate the result gathered from the code memory to the decode/read stage by the new
dedicated channel. The new access to the code memory is arbitrated by a special arbitration structure
in Haste (see [4]). Therefore it will not create a new hazard or dependency.

Second the predecoder communicates a MOVC instruction without the additional flag to the decode
stage. This indicates that the decode stage should wait until it receives the byte communicated by the
new dedicated channel from the fetch stage. When this communication ends, the result is sent to the
execute stage and stored (by a MOV instruction) in the accumulator.

After the MOVC instruction the program executes regularly. No flushes are being executed.

Page 66 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS

fetch
[

load_reg_l() I I empty_reg_2()
load_reg_2() I I empty_reg_l()

)

II
buf_branch channel()

branch_exe_to_fetch?buf
if buf.movc then

set_codemem_addr_access()
; fetch_to_decode_movcJcode_rdata

else
internal_branchlbuf

fi

Handshake Solutions

[Code Fragment 26] HT80C51-HS Pseudo code of the fetch stage with MOVC addition

5.7.3. Indirect addressing for the registers
Some of the special registers (the accumulator or RO..R7) are accessible in a direct way (e.g. INC A or
MOV A, RO). These frequently used registers are residing locally in the decode/read stage instead of
the data memory. For communications to these frequently used registers we do not need to access
the data memory bus by complicated procedures, but we can address them locally through their own
channels.
The special registers are also accessible through an indirect addressing mode, e.g. INC EOh. Address
EOh is the address of the accumulator and performs the same operation as INC A. The disadvantage
is that the indirect addressing modes will start up the shared memory access routine. This complicated
routine will eventually notice that the addressing is not meant for the data memory but for the internal
register. The access will be rerouted to the internal registers. This structure will share a complicated
memory access routine and share the access to the heavily used internal registers.

The solution for this problem is to decode the addressing already in the decode stage and let it
communicate with the correct procedure. With this structure there is less sharing on the
communication channels to the internal registers and the memory access routine.

5.7.4. Registers in the execute stage
The frequently used registers (e.g. A, S, RO..R7, DPTR, etc) are now residing in the decode/read
stage. This has many advantages when reading the registers but in case of writing back, a channel
communication will be needed to write back the data to the registers. Also to avoid hazards the
registers should be scheduled by a specific scheduler in case of reading and writing the registers.

The control and scheduling is relatively slow and complicated. It could be done easier if the execute
stage is in control of the registers. The decodelread stage will only decode which register needs to be
read and which register needs to be written. The execute stage can control the data in the registers
and the validity of the registers.

The combined decodelread stage will be a normal decode stage with a possible memory read process
(code memory, data memory, extended data memory, SFR memory) to gather the memory operands
for the execute stage.

© Philips Electronics N.V. 2008 Page 67 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

5.7.5. The fifth stage: decoupling the write back
Section 5.7.4 explains that the frequently used registers are shifted from the decode stage to the
execute stage for a simplified arbitration scheme (no arbitration needed for the registers because they
are read and written in the same stage) and to avoid communication. The only write back which is
special and needs to be taken into account is the relatively slow memory write back. This remains a
special task (like memory read in the decode stage) with a dedicated memory access routine.
When memory conflicts (structural hazards or data hazards) are absent it is logical to make the
memory write back a separate process which takes care of the memory access. A memory conflict is
dependent on the program code executed on the microcontroller. The instruction following the
instruction which writes to the memory is responsible for the memory conflict.

The advantage of decoupling the write back from the execute stage is that the write is a fully
autonomous process which can be independent of the execute stage. Now the decode stage and the
execute stage will wait until the write back (see [Figure 30] number 1) is finished before they continue
operation (see [Figure 30] number 2). This is because the write back process is in sequence with the
actual execution of the instruction. And the decode stage waits in all cases on the feedback of the
channel communication from the execute stage. When decoupling this fixed structure the decode
stage (with the scheduler) will only wait on the write back if there is write back being planned to be
executed or actually being executed.
The decode stage and execute stage will become more free running when decoupling the write back.

[Figure 30] HT80C51-HS write to the data memory

The scheduler in the decode stage prevents the control of structural and data hazards (refer to
dependency 2, 3, 4 and 15 on page 44-45).
The memory write back will be a separate stage running independent and in parallel with the other
four stages. The write back to the memories will be started by the execute stage. The correct
scheduling of the instructions and memories is done by the read/write scheduler. The scheduler can
insert stalls to the execute stage until the write back stage is finished with its communication to the
memories.
There is no data forwarding implemented yet, but it is possible.

[Figure 31] shows the overview of the optimized HT80C51-HS architecture.

Page 68 of98 © Philips Electronics N.Y. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

Dllbtmemory

I

.~

Ir
I

I
ReadlWrite scheduler

I- I

t Write back

-..n-.. ! A, Sng, RO..R7

I

I

I DPTR, PstJ, SP

I I

ExeCUle_..I
I

ode ~ecode_to

m:;.. ~ ~'
execute 'll\lriteback

- " Fetch

-1~Jo'-
Decode/Read i~l Execute ~ Write back..

"'gl Operand1

"'g2 Operand2
I-- Instr Addr I Ins'lr.Addr

I I
fetctl_to_decode_moyc t
Branctl_exe to_fetch

Br8nch information

[Figure 31] HT80C51-HS global 5-stage architecture

5.8. Results
This section focuses on the measurements and results for the HT80C51-HS microcontroller after
optimisation.

5.8.1. Implementation of the HT80C51-HS
The complete 80C51 instruction set is implemented in the HT80C51-HS and is fully compatible to the
original 80C51 instruction set. The HT80C51-HS is validated with several testbenches which execute
together more than 5000 instructions. All the numbers (power, speed, area) can be determined, but
the numbers of power and speed are testbench dependable.
If a programmer or the assembler is familiar with the design of the microcontroller, a great increase in
performance can be realised. In spite of this dependency, an analysis of the performance and power
consumption will be made in the next paragraphs.

The HT80C51-HS is fully designed in Haste and executes at an average of 28.3 MIPS (for 5 ns
memory access times). This is more than three times faster than the original HT80C51-LC design!

All previously mentioned suggestions as 32 bits fetching of instructions, pipelining and internal
registers for RO..R7 are implemented successfully in the HT80C51-HS design.
After the optimization process the pipeline is split into five separate stages: fetch, predecode, decode,
execute and write. These five stages communicate with dedicated handshake channels for save
operation and correct synchronization between the stages.
The internal registers RO..R7, accumulator, DPTR, etc. can be accessed directly and indirectly through
address recognition in the decode stage. Also different types of memories (SFR, internal data
memory, external data memory) can be addressed in the correct manner.

Dependencies are recognised, analysed and dealt with correctly. Many dependencies are excluded
due to the architecture of the HT80C51-HS, but also dedicated techniques are used to exclude

© Philips Electronics N.V. 2008 Page 69 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

dependencies. The main solution to many of the data dependencies and structural dependencies is
the arbitration obtained by the read/write scheduler in the decode stage.

The interrupt functionality still needs to be designed and implemented in the HT80C51-HS.
Implementing it in the predecoder stage like a new CALL instruction should not give any problems.
The predecoder stage is already prepared for multi-cycle instructions (like the implementation of the
MOVC instruction) and can be extended for the interrupt functionality.

[Table 18] shows the results of the HT80C51-HS compared to the HT80C51-LC and the HT80C51-SU
microcontroller. The 28.3 MIPS result is calculated from the same testbenches as used the HT80C51
LC and HT80C51-SU. All these measurement are done with 5.0 ns memories and a CMOS 0.14 IJm
technology.

Performance Area Power

HT80C51-LC 8.9 MIPS 100% 7705 gates 100% 68,9 pJllnstr 100%

HT80C51-SU 12.5 MIPS +40% 8230 gates +7% 84,7 pJllntr +23%

HT80C51-HS 28.3 MIPS +218% 16840 gates +119% 119,2 pJllnstr +73%

[Table 18] Performance, area and power results

5.8.2. Behaviour of the HTBOC51·HS pipeline
The HT80C51-HS consists offive pipeline stages. The blue lines in [Figure 32] separate the five
stages.
The five stages run in parallel as can be seen in [Figure 32]. The fetch and predecode stage executes
the processes previously described in 5.4.1 and 5.4.2. The decode stage receives the data from the
predecode unit and calculates the EB, write and read bits. The execute stage receives the operands
from the decode stage and will execute the instruction. In case of a branch instruction the execute
stage will communicate the new PC to the fetch stage (see circle 1 in [Figure 32]). In case of ALU or
MOV instructions the execute stage will execute the instruction and write back the result to the internal
registers or to the write stage (see circle 2 and circle 3 in [Figure 32]).

3.

11, ••• I ••• I •••• a
1 ••• 1 •••"J 1,_;.'.

I •••• ,. I. ,.'
• I I I J I I I I • I I I • I I I • I 1 I I I

2.

• •• •-,- -• ••• •- 1- __
',. <II

I I I I "11 I I

_ _.....11 •••1 ••• __1 .' __ ••_1 _

[Figure 32] HT80C51-HS instruction execution

Page 70 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

In case there is not a conflict between the instruction currently being executed or written back and the
instruction in the decode stage, the read process is being executed.

When there is a conflict between the instructions; the write back stage wants to write to the data
memory which the next instruction wants to read from in the decode stage, the read access is
postponed until the write access is finished by the read/write scheduler discussed in 5.4.4. The write
back stage needs to communicate to the decode stage when the actual write to the data memory is
finished.
This can be seen in [Figure 33] where the readlwrite scheduler indicates there is a conflict (see circle
1) and the actual reading of the memory is postponed (see circle 3) until the write stage communicates
to the decode stage (see circle 2). This prevents hazards to the data memory (refer to dependency 2,
3,4 and 15 on page 44). As can be seen in circle 4 the read access is much faster without the conflict.

•
......ll)--------~d~::::::;:;-==-:

[Figure 33] HT80C51·HS instruction execution with dependent read/write

The branch executions are a bit different from the regular instructions. The decoder detects if an
instruction is a branch or regular instruction. The execute stage determines if a branch should be
taken or not (conditional branches). If a branch needs to be taken, the new PC is being calculated by
the execute stage and this information is sent to the fetch stage by a dedicated channel. This is shown
in circle 1 in [Figure 34]. This will flush the pipeline and bytes in the internal registers in the fetch stage
and prevents further communication to the decoder stage (see circle 2). Because the PC is already
updated before the fetch stage is aware of the branch (see circle 3), the fetch stage will once more
fetch a redundant byte (see circle 4). As seen in circle 5 the PC (code_address) is changed into the
correct address for the code memory. Correct program behaviour continues.

© Philips Electronics N.V. 2008 Page 71 of 98

Designing a high-speed asynchronous 80C51 microcontroller
Handshake Solutions HT80C51-HS

u u

- -
•

-

 ••

o

-I
I--

-

- -

[Figure 34] HT80C51·HS instruction execution with branch

5.8.3. Analysis of the measurements
Section 5.8.1 includes the measurements for HT80C51-HS. The core is completely implemented and
all instructions are executed for the measurements.
To analyse the pipeline stages of the HT80C51-HS, each stage is simulated separately to measure
the speed and analyse the behaviour of each stage.
The speed of each stage is described below. Dot the stages a minimum and a maximum value is
presented. Due to different instructions different speeds can be obtained, the stages are so-called
multi-rate.

The performance of the HT80C51-HS is analyzed by the interactive performance analysis tool:
Handshake Technology Profiler (htprof). This tool finds and reports the slowest timing path between
two signal transitions at a given time. It is based on simulation and the found paths can be different
from instruction to instruction. Therefore it is important to use the correct testbench and analyse the
correct timing interval.

[Table 19) shows a summarised table of the individual average speed of the stages.

The fetch stage is a very small and fast stage. The setup with wagging buffers reaches a speed of 125
MHz stand-alone. This is without interrupts by the MOVC or branch instructions.

The predecode stage can operate between the 24 MIPS for a three byte instruction and 98 MIPS for a
single byte instruction. This all depends on how many bytes the predecode stage should collect from
the fetch stage to gather a complete instruction with its arguments. An average of 63 MIPS is achieved
by benchmarking it with the regular testbenches.

The decode stage operates at 15 MIPS, 22 or 41 MIPS. This time is variable because it is instruction
depending on the number of data memories reads. It is possible that the decode stage should read
twice, once or even not from the data memory.

The execute stage will also execute instructions at a variable rate. Not every instruction needs the
same time to be calculated. The MOV instructions are relatively fast compared to an ADD or a
complicated MUL instruction. The MOV only needs to move a byte from the correct input to the correct
output which are already decoded and assigned by the decoder. The ADD or MUL (but also other

Page 72 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

ALU) instructions need a real execution before the results are moved (or transferred) to the correct
output. The branch instructions not only need the ALU, but also a communication to the fetch stage by
a dedicated handshake channel. The fastest instructions operate around 45 MIPS (like MOV) while
the slowest (like MUL) executes at 11 MIPS. The average is 28.3 MIPS.

The write back stage is fairly easy. It is a stage which is not always being executed. When it executes
it will do only two things: receive from the execute stage and write to the data memory. It is possible
that the write back stage sequentially writes two times to the data memory. This is necessary for the
CALL instruction which needs to write two bytes to the memory (indicated by the SP). In this case the
throughput of the write back stage will be 19 MIPS. For a single write back it will be 34 MIPS and
when write backs are absent this stage is not being executed.

It is difficult to pinpoint a single bottleneck in an asynchronous pipelined design. For some instructions
the pipeline can be truly balanced, while for other instructions a single stage in the pipeline can be a
bottleneck. In general the most occupied stages are the decode stage (with the memory read
accesses) and the execute stage.

Fetch stage
Predecode

Decode stage
Execute Write back

stage stage stage

MIPS MIPS MIPS MIPS MIPS

HT80C51-HS 125 63 31 28.3 34

[Table 19] HT80C51-HS individual average performance of the stages

There are three major changes in the HT80C51-HS architecture:
1. Pipe lining
2. 4 Bytes fetch for code memory
3. Reside frequently used RAM space in locally accessible registers

The influence of fetching four bytes at once for the code memory can have bigger influence with a
slower code memory. Until now all the measurements are done with 5 ns code memory and data
memory. Three experiments are done:

1. Variable memory speeds for both the code and data memory for the HT80C51-LC, HT80C51
SU and HT80C51-HS (see [Figure 35]).

2. Variable data memory speed with a fixed code memory speed for the HT80C51-SU and the
HT80C51-HS (see [Figure 36]).

3. Variable code memory speed with a fixed data memory speed for the HT80C51-SU and the
HT80C51-HS (see [Figure 36]).

As expected the slower memory speeds have less influence on the HT80C51-HS than on the
HT80C51-LC or HT80C51-HS. Comparison between the HT80C51-HS and HT80C51-LC (see [Figure
35]) shows that the performance factor can easily increase to almost 8 times. This gain in factor is not
only due to the four bytes fetching, but also due to fewer data memory accesses. This decrease in
data memory accesses is due to the third design decision (reside frequently used RAM space locally
inside registers).

To measure the influence of the design choice to fetch four bytes parallel from the code memory
another experiment is done. [Figure 36] shows the result of this experiment. The first part of the
experiment is that the data memory has a variable speed and the code memory is fixed speed at 5 ns.
The second part of the experiment is that the data memory has a fixed speed at 5 ns and the code
memory has a variable speed.
The red line shows almost the same graph as [Figure 35], while the blue line shows a different path.
The advantages of the multiple bytes fetch in the code memory of the HT80C51-HS and the fewer
data memory accesses will become clearer when only changing the data memory speeds. The blue
line inclines steeper than the variable memory speeds (see [Figure 35]). The data memory from 1ns to
250 ns makes almost no difference in speed performance of the HT80C51-HS and causes the steeper
incline of the blue line. The performance of the HT80C51-SU will decrease much more due to more

© Philips Electronics NV. 2008 Page 73 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

data memory accesses than the HT80C51-HS. In the case of a fast data memory (red line) and slow
code memory the advantages are still there, but smaller.

,--

I 9-,---,------------,-------,---

I
8~-------------------------

-----_p.----"
7 +---------------_-:.---=---=-'--'----------------...-----6 +-----y--:;O?~-----------

E //
U)5+-----,f--------------------------------I

D. Ii

~4L--+~-__:;;_====±::::================----~
i ~j /

3 v
2 +-------------------------------

300250200150

Mem speed Ins]

10050

i
i
1

1

I

l"---------------------------------'

[Figure 35] Comparing HT80C51s performing with variable memory speeds

10 ,----------~-------------

I

9r-
8 +----------------------------,.L-------i

7 +-1 ,£- _

.....~.----...•
E 6 +----------------,.L -~-.....,----=-----------, ,--------_1

I -+-code mem 5 ns,
~ I I data mem loanable
i 5 ! HS/SUU5 I-----...... I
D...--" ! ----data mem 5 ns,
i 4 i, code mem Ioanabl

HS/SU

o 50 100 150

Mem speed Ins]

200 250 300

[Figure 36] Comparing HTBOC51s performing with fixed and variable memory speeds

Page 74 of98 © Philips Electronics N.Y. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS Handshake Solutions

5.9. Limitations of the Handshake Technology flow
As remarked in this thesis before, some parts in the Handshake Solutions design environment (TiDE)
can be improved. This chapter presents a few of these improvement areas.

5.9.1. Access to the memory
The standard routine to access the memory as mentioned in chapter 3.5 uses the following steps:
assign the calculated address to the memory address, do the actual memory access and finally read
(or write) the data (see [Figure 38]).
The total process takes 19 ns to complete for the write (see [Figure 38] circle 1.) and 23 ns to
complete for the read (see [Figure 38] circle 2.), while the actual memory access takes only 5 ns to
complete.

The complete routine to access the data memory becomes so slow due to the sharing overhead (the
cpu_anymem_access can be accessed twice on two different places; two times in the decodelread
stage and two times in the write stage).

[Figure 37] shows the timing diagram of the data memory access. This total access access
(cpu_anymem_access) exists of:

1. Control overhead
2. Setup time of control and data
3. Actual access memory access (of 5 ns)
4. Storage of the data (for a read access)
5. Control overhead

When there are many accesses to the data memory, the penalty for a memory access is too high. This
problem is smaller with slower memories.

Control o....rhead

Setup control and data

Access!

Store read

-
Control o....rhead

L 0
5 10 15

Time (ns)

20
•

[Figure 37] HTBOC51-HS timing diagram for data memory access

© Philips Electronics N.V. 2008 Page 75 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

[Figure 38] HTBOC51-HS read and write data memory access

5.9.2. Handshake communication channels
One way to communicate safely between pipeline stages is to use handshake channels (refer to
section 2.2.2). Handshake channels in Handshake Technology feature a four phase protocol and a
single rail implementation. The advantages of using this type of implementation are that a single rail
implementation is smaller, faster and uses less energy than the double rail counterpart.
Two phase handshake protocols have the same advantages; being faster and more power efficient
(due to fewer gate transitions). The advantage of the four phase protocol implementation is robustness
and mostly being smaller (two phase protocols can be more complex to implement and therefore
larger).
It is not only necessary to implement faster handshake channels for communications throughout the
pipelined stages, but also in processes inside the stages itself.
At this time experiments are ongoing to really test and measure the benefits of a two phase protocol
instead of a four phase protocol.

5.9.3. Slow loops
A good example that some parts in asynchronous technology are slow is shown in the predecoder
stage. Analysis shows that the predecoder stage shown in [Figure 21] and [Code Fragment 22] can be
the bottleneck for several instructions.
This process is an autonomous process, which communicates through two dedicated channels with its
predecessor and successor, respectively.
The predecoder stage is a free running multi-rate stage procedure and consists of three sequential
tasks as can be seen in [Code Fragment 27],

• First the input handshake channel communication, load_predecoder?«byte,
instructionaddress, branch», collects the input variables;

• Second task is an if-construct which places the byte which is sent by the inpuCregisters into
the correct register (opcode, arg1, arg2 or instructionaddress). If the first selection is taken the
guards are calculated;

• Third task is the conditional handshake communication to the decode stage by the
predecodeUo_decoder channel. This only applies when all registers are filled with the correct
data.

This total sequence takes 51 ns when fetching 3 bytes which are immediate available from the two
internal 32 bits registers. Three input handshake communications are necessary to collect the three
bytes. One output handshake communication is necessary to send the fetched data to the decoder.
The if-construct is executed three times: once for setting the opcode and performing the guard
calculation, one for setting arg1, and one last time for setting arg2.

Page 76 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
HT80C51-HS

drive_the_decoder =
[

Handshake Solutions

fetch_to-predecoder?«byte, instructionaddress, branch»
if branch_guard() + opcode_guard() then

Opcode:=byte
1I calculate_guards(}

or argl_guard() then
Argl:=byte

or arg2_guard(} then
Arg2:=byte

fi
if sent_to_decoder_guard() then

predecoder_to_decoder!«Opcode,Argl,Arg2,instructionaddress»
II calculate_guards ()

fi

[Code Fragment 27]

fetch_to.Jlredecoder

opcode assignment

fetch_to.Jlredecoder

arg1 assignment

arg2 assignment

predecodeUo_decoder

The execution of drive_the_decoder process

I

J.
I.... I

I -J
I

o 10 20 30

Time (ns)

40 50 60

[Figure 39] HT80C51-HS timing diagram drive_the_decoder process in the predecoder stage

[Figure 39] shows the timing diagram of the drive_the_decoder process in the predecoder stage. This
clearly shows that the channel communications from the registers (Ioad_predecoder) takes 7 ns. That
is twice as much as the channel communication to the decode stage (predecoder_to_decoder), which
takes 3 ns. This is because the load_predecoder channel first leads through an eight selection
multiplexer for the reg_1.0 ..3 and reg_2.0..3 bytes. Also the guard calculation takes much time in the
opcode assignment.

© Philips Electronics N.V. 2008 Page 77 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

HT80C51-HS

A small experiment is done to view the extra added logic introduced by this eight selection multiplexer.
The wagging buffers (refer 5.4.1) are replaced by two 4-byte buffers in series as can be seen in
[Figure 40]. This adds an extra channel between these buffers (Reg1_to_reg2), but it reduces the logic
on the fetch_to_predecoder channel.
Although there is a need for an extra channel communication this is a faster approach than the two 4
bytes buffers in a wagging setup. The reduced multiplexing hardware saves 3 ns for each
load_predecoder call. When there is no extra communication needed between the two buffers this will
be a 17% (9 ns) total profit.

Reg_1 Reg_2

, i
Reg_1.0 n Reg_2.0 n

t I

i i
Reg_1.1 n Reg_2.1 n

Cod rdata /
I t fetch to_predecode

32 i i
Reg_1.2 n Reg_2.2 n

t t

i I

Reg_1.3 n Reg_2.3 n
I I

Code address Code_address

+
PC I

~
"Cod - address

/ / I+-/14 /16
PC Unit Branch Unit

/

Branch_exe_to
_fetch

[Figure 40] HTSOC51-HS local experiment with load_inputJegisters process

Page 78 of 98 © Philips Electronics N.Y. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Conclusion

6. Conclusion

Handshake Solutions

This chapter is divided in the following sections:
Section 6.1 presents a summary of the results of the analysis of the synchronous 80C51, HT80C51
LP and the HT80C51-LC.
Section 6.2 outlines the results of the transformations presented in chapter 4 for the improved
HS80C51-SU.
Section 6.3 describes the results from the new architecture HT80C51-HS in chapter 5, compared to
the HT80C51-SU and the HT80C51-LC.
Section 6.4 presents recommendations for future work.

6.1. Results from the analysis
To gain proper insight in the 80C51 functionality the specifications of the synchronous standard
80C51 s are analyzed as well as some synchronous high-speed versions of this architecture. The
standard 80C51 has a machine cycle which takes twelve clock cycles. Instructions can take one, two
or four machine cycles to execute. Some synchronous high-speed implementations consist of a better
control structure where clock cycles in a complete machine cycles are reduced from twelve to six or
even two and one clock cycle (e.g. NXP P89xx, CAST R8051XC, etc.). Other high-speed versions
apply pipelining to the control structure and datapath (e.g. INTEL MCS51, Dolphin Flip8051-Cyclone,
etc). The analysed synchronous, pipelined architectures consist of two, three or five stages and
included multi-looped pipelines (complete or parts of the pipeline stages which need to be taken more
than once to execute a single instruction).

The HT80C51-LP by Hans van Gageldonk is the first microcontroller designed in Haste. This
architecture is designed to save power wherever possible. The second objective of this design was to
keep the circuit area as small as possible. This was done to reuse as much of the datapath as
possible. This applies to registers, communication paths and arithmetic logic.

The H80C51-LC is the second generation of the HT80C51. This design is the starting point for this
thesis. The HT80C51-LC is a fully sequential 80C51 architecture which leads through the five phases
of executing an instruction: fetch, decode, read, execute and write. The analysis of this design
identified several speed bottlenecks. For example, the usage of memory was high (some instruction
accessed the code and data memory more than five times) and every memory access shows a high
performance overhead. The latter was partially caused by multiplexing the different memories on
multiple locations in the architecture. Also the architecture was sequential and the actual execution of
some complex instructions had significant overhead in the control structure.

6.2. The HT80C51-SU
The HT80C51-SU presents an initial speed up of the HT80C51 microcontroller. The goal of this design
is to improve the HT80C51 performance without a major architectural change. The control structure
was changed to tackle the control overhead problem in the HT80C51-LC design. Instructions are
divided in four main parts by a high-level decoder (MUUDIV instructions, branch instruction, MOV
instructions and the other instructions).

This approach also allows the introduction of a pre-fetch unit. Some instructions which do not need the
result of the current instruction can already start the pre-fetch of the next instruction.
Another change is that some individual instructions are optimised, e.g. the execution of the divide and
multiply instruction became much faster due to a different implementation of the calculation.

The combined changes resulted in a speed up of 40%, area increase of 7% and an increase in power
of 23% (refer to [Table 18]).

© Philips Electronics N.V. 2008 Page 79 of 98

Handshake Solutions

6.3. The HT80C51·HS

Designing a high-speed asynchronous 80C51 mierocontroller
Conclusion

The thesis work presented in this report is a positive step forward in the search for more speed in
asynchronous designs made by the Handshake Solutions design flow. The HT80C51-HS is designed
fully in the Handshake Solutions' design language, Haste. The complete functionality of the original
80C51 is implemented in the HT80C51-HS. All 255 instructions are implemented and validated.

The HT80C51-HS is now performing at an average speed of 28.3 MIPS (worst-case conditions). This
improvement of a factor 3.2 is mainly due to the three major changes:

1. Pipelining
2. 4 Bytes fetch for code memory
3. Reside frequently used registers locally

These three changes are implemented in a single iteration, therefore it is difficult to say which change
has the most impact. Despite of the five stage pipeline the performance improvement is not a factor 5
(at least not with these fast memories). This is due to complicated control, control overhead due to
more channel communications between the stages, longer combinational paths and arbitration for the
different type of dependencies (see page 44).

[Figure 41] is showing a graphical overview of the different asynchronous 80C51 implementations
made by Handshake Solutions. [Figure 41] shows that the HT80C51-HS outperforms in speed every
other HT80C51 made earlier. The HT80C51-HS shows a performance boost of a factor 3.2. This
performance increase comes with a penalty for area. This penalty is a factor 2.2 times, but the
HT80C51-LC is designed with low cost as main design goal.

[Figure 42] shows the second disadvantage of the HT80C51-HS architecture. This is the increase in
power consumption. The power penalty is a factor 1.7.

The memory time experiment (variable memory speeds) shows that fetching four bytes in parallel
works at fast memory speeds (5 ns). The main advantage of this design choice is with slower
memories. The parallel fetching of the bytes offers an internal buffer without accessing the code
memory multiple times.

The pipeline is not perfectly balanced at this point. It is possible to merge the fetch stage and the
predecode stage to reduce the control overhead. It is not sure that this architecture change will
increase the instruction throughput, but it will reduce the area overhead.
To increase the instruction throughput the execute stage and the decode stage needs an optimization.
The most critical stage is the execute stage, but this is instruction (code) dependable.

Page 80 of98 © Philips Electronics NV. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Conclusion Handshake Solutions

• HTBOC51-LP

• HTBOC51-LC
,

I "HTBOC51-SU
xHTB0C51-HS

30 ----------------------------~-----------------------~~~C51-HS

:+-------------------------------l
o i

~ 15 I
! .. HTBOC51-SU I

': :~~~~~~~~~~~~_-_-_-__- -_-_.-_-H-TB-_0-C-5-1_.--L-~-TB-_0-C-5-1_--L-P-~~~-_-_-_-_-_-_-_-_-_-_-_-_-_I

18000160001400012000100008000600040002000

O+------,----~--~--________,_-----,---------,----__,_----i

o
Area [gates]

[Figure 41] Graphical overview of the HT80C51 microcontrollers in terms of speed and area

30 ------------------------------------

x

25 +---------------------------
20 +---------- ---------------------------j

iii'
l1.

!. 15 +-----------------------------------1

I
VI

i. HTBOC51-LP

i. HTBOC51-LC

"HTB0C51-SU ,

xHTBOC51-HS i

10 +------------------------------

••
5

!

i ,
I i
i I

0-l-0~~~~~~~_2~0~~~----_4~0~~~~~~~~6_0-_-_-_-_-_-_---,8_0--__- _-_----1_0~0-------1_2-0------.....j_,~ _'
_ Power [pJllnstr]

[Figure 42] Graphical overview of the HT80C51 microcontrollers in terms of speed and power

© Philips Electronics N.V. 2008 Page 81 of 98

Handshake Solutions

6.4. Recommendations

Designing a high-speed asynchronous 80C51 microcontroller
Conclusion

In this section a few suggestions are given to extend the system and possible increase system
performance. These ideas arose while designing the HT80C51-HS, but were not implemented due to
limited time available for this thesis. These ideas may be interesting to investigate in more detail or
could be implemented in the future.
The improvements, which can be made to the architecture, do not always result in an increase of the
performance. These are all suggestions which, when implemented, should be carefully measured in
terms of speed, area and power.

• The execute stage is setup in a way allowing introduction a superscalar way of executing. This
means that the execute stage can perform multiple executions of instructions when they use
different resources of the execute stage. It is therefore possible that the execute stage
calculates an ADD instruction while in parallel executing a MOV instruction.

• Performance can be increased in a relatively easy way by introducing a write buffer in the
write back process. With this write buffer it is possible to forward data to the next instruction in
the execution scheme. In some cases write back to memories will be done less often, because
a next instruction reads from the write buffer and writes back to the original place. E.g. MOV
@RO,#data followed by the instruction INC @RO. When a write buffer is being used, one read
and one write access to the memory is saved.

• Data sent to the write stage can also be forwarded to the decode/read stage. Mostly data
which is sent to the write stage is needed for the next instruction as an argument. This will
save a read access to the memory.

• The fetch stage does not use branch prediction. It is not likely that this principle will give a lot
of increase in performance due to the high control overhead, but effective implementations of
this principle are possible. The advantage is that branch delays will be minimized.

• Sequential buffers instead of using wagging buffers in the fetch stage. Preliminary tests
already show that this will improve 17% average performance of the fetch stage and
predecode stage.

• The code memory is now accessible through a 4 bytes wide channel, but it is possible that the
data memory can also benefit from a parallel access to the memory for instructions like the
CALL and RET.

6.5. Final conclusion
The HT80C51-HS now operates at an average speed of 28.3 MIPS in worst case conditions. This is
more than three times the performance and the target previously described is reached!
Speeds above 30 MIPS should be achievable when more time is spent on fine tuning and peepholing
the microcontroller.
Some bottlenecks and limitations are found in the Handshake Technology design flow such as the
handshaking overhead for the memory accesses. They are addressed, and solutions should be
developed in a later stage.

As can be concluded from this thesis, high-speed pipelined asynchronous designs are feasible. The
Handshake Solutions design environment can deliver high-speed designs. For more complex
structures than the 80C51 architecture some other bottlenecks can arise to prevent high-speed
designs. The downside of self-timed circuits is; without the use of a centralized clock there is the need
for more control logic to assure correct behaviour. The more complex designs are going to be, the
more complex the control logic will be. The need exists for smaller control structures, faster
assignments to variables and faster channel communications. This could be a complete new study on
how to design these new structures.

Page 82 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
References

7. References
[1] Hennessy J.L. & Patterson D.A.

Computer Architecture, A Quantitative Approach, Third Edition
Morgan Kaufmann Publishers 2003

[2] Gageldonk J.S.H.
An Asynchronous Low-Power 80C51 Microcontroller
PhD thesis, Faculty of Mathematics and Computing Science, TUE 1998

[3] 80C51-Based 8-bit Microcontrollers
Data Handbook IC20.
Philips Semiconductors 1997

Handshake Solutions

[4] Peeters A. and de Wit M.
Haste language reference manual. Technical report 2006
http://www.handshakesolutions.com/More_information/Downloadsllndex.htmI

[5] Peeters AM.G.
Single rail handshake circuits
PhD thesis, Faculty of Mathematics and Computing Science, TUE 1996

[6] Timmermans D.
The design of a Micro-controller, a Transformational Approach
Master thesis, Faculty of Mathematics and Computing Science, TUE 2002

[7] Hoare CAR.
Communication Sequential processes
Prentice Hall International Series in Computer Science, 1985

[8] HT80C51 microcontroller
Datasheet on website, 25 Aug 2008
http://www.handshakesolutions.com/products_services/HT-80C51I1ndex.html

[9] J-H Lee, YH Kim,
Design of a Fast Asynchronous Embedded CISC Microcontroller A8051
IEICE Transaction on Electronics, VOI.,E87-C NO.4, pages 527-534,2004

[10] H.v. Gageldonk, K.v. Berkel,
An Asynchronous low-power 80C51 Microcontroller
Proc. 4th Int'I Symp. On Advanced Research in Asynchronous Circuits and Systems,
pages 96-107, 1998

[11] AJ. Martin, M. Nystrom, K. Papadantonakis, P. Penzes, P. Prakash, C. Wong, J. Chang, K.
Ko, B. Lee, E, Ou, J. Pugh, E. Talvala, J. Tong, A Tura
The Lutonium: Sub-nanojoule asynchronous 8051 microcontroller
Proc. International Symposium on advanced Research in Asynchronous Circuits and Systems,
pages 14-23, IEEE Computer Society Press, May 2003

[12] K. v. Berkel & M. Rem
VLSI programming of asynchronous circuits for low power
Asynchronous Digital Circuit Design, Workshops in Computing, pages 152-210. Springer
Verlag, 1995

[13] 80C51 microcontroller product overview
Datasheet on website, 25 Aug 2008
www.nxp.com/#/homepage/cb=[t=p.p=/50809/45995]lpp=[t=pfp,i=45995]

© Philips Electronics N.V. 2008 Page 83 of 98

Handshake Solutions

[14] MCS 251 Architecture overview
Datasheet on website, 25 Aug 2008
www.intel.com/design/mcs51

Designing a high-speed asynchronous 80C51 microcontroller
References

[15] R8051XC-B 80515-Compatible Microcontroller core
Datasheet on website, 25 Aug 2008
http://www.cast-inc.com/cores/r8051 xciindex.shtml

[16] Dolphin Microcontrollers Flip 8050 Cyclone 8-bit microcontroller
Datasheet on website, 25 Aug 2008
http://www.dolphin.fr/flip/logicl8051/1ogic_8050_cyclone.html

[17] Silicon Labs CT8051T63 product overview
Datasheet on website, 25 Aug 2008
https:/Iwww.silabs.com/products/mcu/otp-eprom/Pages/C8051 T63x.aspx

[18] Maxim - Product Table DS80Cxxx
Datasheet on website, 25 Aug 2008
http://para.maxim-ic.com/en/search.mvp?fam=hsuc&tree=ucontroller

[19] Atmel Microcontroller 8051 architecture
Datasheet on website, 25 Aug 2008
http://www.atmel.com/products/8051/default.asp

[20] Texas Instruments 8051-based MCUs
Datasheet on website, 25 Aug 2008
http://focus.ti .com/mcu/docs/mcugeneralcontent.tsp?section Id=98&tabld=1515

[21] DP805X Pipelined High Performance Microcontroller
Datasheet on website, 25 Aug 2008
http://www.dcd.pl/acore.php?idcore=43

[22] J-H Lee, Y.H Kim and K-R Cho
A low-power implementation of asynchronous 8051 employing adaptive pipeline structure
IEEE Transactions on Circuits and Systems, vol. 55 no.7, pages 673-677,2008

Page 84 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
List ofTables

8. List of Tables

Handshake Solutions

[Table 1]
[Table 2]
[Table 3]
[Table 4]
[Table 5]
[Table 6]
[Table 7]
[Table 8]
[Table 9]
[Table 10]
[Table 11]
[Table 12]
[Table 13]
[Table 14]
[Table 15]
[Table 16]
[Table 17]
[Table 18]
[Table 19]
[Table 20]
[Table 21]
[Table 22]
[Table 23]
[Table 24]
[Table 25]
[Table 26]

General 80C51 instruction execution scheme 20
Regular and irregular part of the 80C51 instruction set.. 22
General HT80C51 instruction execution scheme 25
RR A execution scheme 25
MOV @Ri, direct execution scheme 25
INC @Ri execution scheme 25
Detailed comparison 80C51 's 29
CAST's R8051 speed advantages 30
Number of instructions with clocks to execute, CIP51 30
Chipcon's Texas Instruction Set 31
Digital Core Design DP805x Instruction Set. 31
Chungbuk reduced execution stages of each group 32
HT80C51-LC memory usage 34
Speed comparison with other versions 34
Optimizing memory accesses in the HT80C51 35
HT80C51-SU memory usage 41
HT80C51-HS instruction groups 46
Performance, area and power results 70
HT80C51-HS individual average performance of the stages 73
Arithmetic operation execution time and memory specification HT80C51 91
Logical operation execution time and memory specification HT80C51 92
Data transfer execution time and memory specification HT80C51 93
Boolean variable manipulation execution time and memory specification HT80C51 94
Program branching execution time and memory specification HT80C51 95
HT80C51-LC and HT80C51-SU instruction groups 96
HT80C51-HS instruction groups 97

9. List of Figures

[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]

Design flow principle 11
Functional design flow overview 11
Handshake protocols 13
Structural design flow overview 14
Physical design flow overview 15
Block diagram 80C51 18
80C51 memory structure 19
Internal data memory 19
Structure of a Handshake circuit.. 21
Handshake circuit for 80C51 control: hybrid decoding scheme 23
HT80C51-LC data flow chart 24
HT80C51-LC handshake circuit for control structure 26
HT80C51-SU data flow chart 37
HT80C51-SU communication between Fetch and Decode/Execute 38
HT80C51-SU handshake circuit 39
HT80C51-HS pipelined operation 45
HT80C51-HS instruction groups scheme 47
Extreme pipeline 48
HT80C51-HS global architecture 49
HT80C51-HS fetch stage block diagram 51
HT80C51-HS predecode stage block diagram 53
HT80C51-HS multi rate behaviour predecode stage 54
HT80C51-HS decode stage block diagram 56
HT80C51-HS read/write scheduler block diagram 57

© Philips Electronics N.V. 2008 Page 85 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

List of Figures

[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]

Page 86 of98

HT80C51-HS execute stage block diagram 59
HT80C51-HS handshake circuit 63
HT80C51-HS branch operation 64
HT80C51-HS global architecture with MOVC addition 65
HT80C51-HS MOVC instruction as a multi-cycle instruction 66
HT80C51-HS write to the data memory 68
HT80C51-HS global5-stage architecture 69
HT80C51-HS instruction execution 70
HT80C51-HS instruction execution with dependent read/write 71
HT80C51-HS instruction execution with branch 72
Comparing HT80C51s performing with variable memory speeds 74
Comparing HT80C51s performing with fixed and variable memory speeds 74
HT80C51-HS timing diagram for data memory access 75
HT80C51-HS read and write data memory access 76
HT80C51-HS timing diagram drive_the_decoder process in the predecoder stage 77
HT80C51-HS local experiment with 10adJnput_registers process 78
Graphical overview of the HT80C51 microcontrollers in terms of speed and area 81
Graphical overview of the HT80C51 microcontrollers in terms of speed and power 81

© Philips Electronics N.V. 2008

Designing a high-speed asynchronous BOC51 microcontroller
Handshake Solutions

Appendix
A1 Handshake Solutions

Handshake Solutions

Handshake Solutions is a Line of Business within the Philips Technology Incubator, a program
committed to turning promising technologies into successful business entities. As a dynamic
organization, Handshake Solutions is dedicated to developing innovative IC design solutions that meet
changing market needs. Handshake Solutions is the first to offer a highly disciplined methodology for
designing self-timed circuitry that allows commercial exploitation of some of the key benefits of
clockless technology - low power consumption, low electromagnetic emissions and low ground
bounce. These self-timed designs by Handshake Solutions are easily integrated into complete
systems.

A brief history
Handshake Solutions started life as a Philips Research project in 1986. Once the project reached
maturity, Handshake Solutions was set up as an internal department to offer the design technology
and a full design service to customers within Philips. Over the last ten years Handshake Solutions has
worked with Philips Semiconductors (now NXP Semiconductors) to solve difficult yet important issues
such as Design-for-Test and prototyping, tailoring the methodology to a commerciallC design
environment and bringing numerous successful products to market. Now, with the launch of the
Handshake Solutions as a dedicated Line of Business this technology, expertise and services is
offered to the wider IC design community.

Philips Technology Incubator
The Philips Technology Incubator creates new businesses based on world-class technologies
invented by Philips Corporate Research & Development. It identifies opportunities and helps research
teams transform their projects into successful businesses. The formation of business structures
around these promising technologies allows a faster take-up by customers and strategic partners. It
also creates an excellent opportunity to establish strategic partnerships with leading companies in
relevant markets.

Handshake Technology
Handshake Technology is a rigorous design methodology and associated toolset for clockless, self
timed circuits. The familiar global clock used in traditional VLSI design is replaced with a system of
request and acknowledgement signals or handshakes.

This means that only those parts of a system actively involved in task executions draw power,
reducing standby power consumptions to zero and extending battery lifetimes. What's more, individual
functions don't have to wait for the next clock pulse, enabling immediate response to exceptional
events.

The handshake signalling approach also allows a truly plug-and-play method of integrating
(Intellectual Property (IP) from various sources. Because they exhibit no ground bounce, Handshake
Technology functions can be quickly and easily combined with clocked logic, analog, RF or memory
blocks to meet the exact requirements of your system.

© Philips Electronics N.V. 200B Page 87 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

80C51 Instruction set

A2 80C51 Instruction set

Note. Key. [2B]- 2 Byte, [3B]- 3 Byte, [2C] - 2 Cycle, [4C] - 4 Cycle, Blank - 1 byte/1 cycle

0 1 2 3
NOP AJMP LJMP RR

0 (PO) addr16 A
[28,2C1 [38,2C1

J8C ACALL LCALL RRC
1 bit, rei (PO) addr16 A

[38,2C1 [28,2C1 [38,2C1
J8 AJMP RET RL

2 bit, rei (P1) A
[38,2C] [28,2C] [2C]

JN8 ACALL RETI RLC
3 bit, rei (P1) A

[38,2C] [28,2C] [2C1
JC AJMP ORL ORL

.4 rei (P2) dir, A dir, #data
[28,2C1 [28,2C1 [281 [38,2C1 I

JNC ACALL ANL ANL
5 rei (P2) dir, A dir, #data

[28,2C1 [28,2C] [281 [38,2C]
JZ AJMP XRL XRL

6 rei (P3) dir, A dir, #data
··.f'" [28,2C1 [28,2C] [28] [38,2C]

. ~1

/,J' JNZ ACALL ORL JMP

it .J:, rei (P3) C, bit @A+DPTR
U. [28,2C] [28,2C] [28,2C] [2C]

•• ,Iy! SJMP A,IMP ANL MOVC
rei (P4) C, bit A,@A+ PC

"
[28,2C] [28,2C] [28,2C] [2C]

MOV ACALL MOV MOVC
9 DPTR, #data16 (P4) bit, C A,@A+DPTR

[38,2C1 [28,2C1 r28,2C] [2C1
ORL A,IMP MOV INC

A C, -bit (P5) C, bit DPTR
[28,2C] [28,2C1 [28] [2C]. ,

ANL ACALL CPL CPL
8 C, -bit (P5) bit C

[28,2C1 [28,2C1 r281
PUSH AJMP CLR CLR

C dir (P5) bit C
[28,2C1 [28,2C1 [281

POP ACALL SET8 SETS
0 dir (P6) bit C

[28,2C1 [28,2C1 [28]
MOVX AJMP MOVX MOVX

E A,@DPTR (P7) A,@RO A,@R1
[2C] [28,2C] [2C] [2C]

MOVX ACALL MOVX MOVX
F @DPTR,A (P7) @RO,A @R1,A

[2C] [28,2C] [2C] [2C]
-

Page 88 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
80C51 Instruction set Handshake Solutions

Note. Key. [2B]- 2 Byte, [3B]- 3 Byte, [2C] - 2 Cycle, [4C] - 4 Cycle, Blank - 1 byte/1 cycle

4 5 67 8f

INC INC INC INC
0 A dir @R; Rj

,', [28]
DEC DEC DEC DEC

1 A dir @Rj Rj

[281
ADD ADD ADD ADD

2 A, #data A, dir A,@Rj A, Rj
[281 [281

ADDC ADDC ADDC ADDC
3 A, #data A, dir A,@Rj A, Rj

[28] [28]
, ORL ORL ORL ORL

4 A, #data A, dir A,@Rj A,Rj
[28] [281

.' '", ANL ANL ANL ANL

,"', "",
A, #data A, dir A,@Rj A, Rj

[281 [28]
,

XRL XRL XRL XRL
6 A, #data A, dir A,@Rj A, Rj

" [281 [28]

:;;t:•./" MOV MOV MOV MOV

""", A, #data dir, #data @Rj,#data Rj, #data
[28] [38,2C1 [28] [28]

>~"!\'" DIV MOV MOV MOV
A8 dir, dir dir,@Rj dir, R;

: "", [4C] [38,2C1 [28,2C] [28,2C]
""ci ;,'" SU88 SU88 SUBB SU88

I,;, • A, #data A, dir A,@Rj A,Rj

'.'.'
[281 [281

" MUL MOV MOV
'" A8 @Ri,dir Ri, dir

,,{" [4C1 r28,2C1 r28,2C1
.""; CJNE CJNE CJNE CJNE

B A, #data, rei A, dir, rei @R;, #data, rei Rj, #data, rei
, [38,2C] [38,2C1 [38,2C] [38,2C]

..
SWAP XCH XCH XCH

C A A, dir A,@Rj A, Rj

", r281
DA DJNZ XCHD DJNZ

0
'(

A dir, rei A,@Rj Rj, rei
[38,2C] [28,2C1

"
CLR MOV MOV MOV

E A A, dir A,@Rj A,Rj

" [28]
CPL MOV MOV MOV

F A dir, A @Rj,A Rj,A
[281

- - - -

© Philips Electronics N.V. 2008 Page 89 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Configuration of the HT80C51

A3 Configuration of the HT80C51

All the HT80C51s are configured the same way, used the same tools, testbenches and technologies
to guarantee the most reliable comparisons between the different microcontrollers.
The library used to map every microcontroller on is CMOS 0.14 I.Im technology. Third party tools are
all tools by Cadence like RTL compiler. Every HT80C51 measurement is done with memories aceess
speed of 5 ns and the RTL compiler has optimized twice (double run). All measurements are in worst
case scenario. Power is measured by Diesel.

The speed and area numbers of the HT80C51 s are without peripherals (timers, interrupt controller,
CPU extensions (MX), debug units (OCI, memory map). No scan-chain is inserted.

The following testbenches are used to validate the HT80C51-SU and HT80C51-HS cores:
• ceore_O.asm
• ccore_1.asm
• ccore_2.asm
• ccore_3.asm
• ccore_4.asm
• testbench_short.asm
• main65.asm
• instr.asm
• Some own written testbenches

Page 90of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Instruction execution time and memory specification HT80C51 Handshake Solutions

A4 Instruction execution time and memory specification HT80C51

Mnemonic Opcode
Execution cycles Instruction

RAM Read RAM Write
standard 80C51 bytes (ROM)

ADD A, Rn 28-2F 12 1 1

ADD A, direct 25 12 2 1

ADD A, @Ri 26-27 12 1 2

ADD A, #data 24 12 2

ADDC A, Rn 38-3F 12 1 1

ADDC A, direct 35 12 2 1

ADDCA,@Ri 36-37 12 1 2

ADDC A, #data 34 12 2

SUB A, Rn 98-9F 12 1 1

SUB A, direct 95 12 2 1

SUBA,@Ri 96-97 12 1 2

SUB A, #data 94 12 2

INCA 4 12 1

INC Rn 8-F 12 1 1 1

INC direct 5 12 2 1 1

INC@Ri 6-7 12 1 2 1

DECA 14 12 1

DEC Rn 18-1 F 12 1 1 1

DEC direct 15 12 2 1 1

DEC@Ri 16-17 12 1 2 1

INC DPTR A3 24 1

MULAB A4 48 1

DIVAB 84 48 1

DAA 04 12 1

[Table 20] Arithmetic operation execution time and memory specification HTSOC51

© Philips Electronics N.V. 2008 Page 91 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Instruction execution time and memory specification HT80C51

Mnemonic Opcode
Execution cycles Instruction

RAM Read RAM Writestandard 80C51 bytes (ROM)

ANLA, Rn 58-SF 12 1 1

ANL A, direct 55 12 2 1

ANLA,@Ri 56-57 12 1 2

ANL A, #data 54 12 2

ANL direct, A 52 12 2 1 1

ANL direct, #data 53 24 3 1 1

ORLA, Rn 48-4F 12 1 1

ORL A, direct 45 12 2 1

ORLA,@Ri 46-47 12 1 2

ORLA, #data 44 12 2

ORL direct, A 42 12 2 1 1

ORL direct, #data 43 24 3 1 1

XRLA, Rn 68-6F 12 1 1
I

XRL A, direct 65 12 2 1

XRLA,@Ri 66-67 12 1 2

XRL A, #data 64 12 2

XRL direct, A 62 12 2 1 1

XRL direct, #data 63 24 3 1 1

CLRA E4 12 1

CPLA F4 12 1

RLA 23 12 1

RLCA 33 12 1

RRA 3 12 1

RRCA 13 12 1

SWAP A C4 12 1

[Table 21] Logical operation execution time and memory specification HTBOC51

Page 92 of98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Instruction execution time and memory specification HT80C51 Handshake Solutions

Mnemonic Opcode
Execution cycles Instruction

RAM Read RAM Write
standard 80C51 bytes (ROM)

MOVA, Rn E8-EF 12 1 1

MOV A, direct E5 12 2 1

MOVA,@Ri E6-E7 12 1 2

MOV A, #data 74 12 2

MOV Rn, A F8-FF 12 1 1

MOV Rn, direct A8-AF 24 2 1 1

MOV Rn, #data 78-7F 12 2 1

MOV direct, A F5 12 2 1

MOV direct, Rn 88-8F 24 2 1 1

MOV direct, direct 85 24 3 1 1

MOV direct, @Ri 86-87 24 2 2 1

MOV direct, #data 75 24 3 1

MOV@Ri,A F6-F7 12 1 1 1

MOV @Ri, direct A6-A7 24 2 2 1

MOV @Ri, #data 76-77 12 2 1 1

MOV DPTR, #data16 90 24 3

MOVC A, @A+DPTR 93 24 1

MOVC A, @A+PC 83 24 1

MOVXA,@Ri E2-E3 24 1 2

MOVX A, @DPTR EO 24 1 1

MOVX@Ri,A F2-F3 24 1 1 1

MOVX @DPTR, A FO 24 1 1 1

PUSH direct CO 24 2 1 1

POP direct DO 24 2 1 1

XCH A, Rn C8 12 1 1 1

XCH A, direct C5 12 2 1 1

XCHA, @Ri C6-C7 12 1 2 1

XCHDA,@Ri D6-D7 12 1 2 1

[Table 22] Data transfer execution time and memory specification HT80C51

© Philips Electronics N.V. 2008 Page 93 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Instruction execution lime and memory specification HT80C51

Mnemonic Opcode Execution cycles Instruction
RAM Read RAM Writestandard 80C51 bytes (ROM)

CLRC C3 12 1

CLR bit C2 12 2 1 1

SET8C D3 12 1

SET8 bit D2 12 2 1 1

CPLC 83 12 1

CPL bit 82 12 2 1 1

ANL C, bit 82 24 2 1

ANL C, -bit 80 24 2 1

ORL C, bit 72 24 2 1

ORL C, -bit AO 24 2 1

MOV C, bit A2 12 2 1

MOV C, -bit 92 24 2 1

[Table 23] Boolean variable manipulation execution time and memory specification HT80C51

Page 94 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous BOC51 microcontroller
Instruction execution time and memory specification HTBOC51 Handshake Solutions

Mnemonic Opcode
Execution cycles Instruction RAM Read RAM Write
standard 80C51 bytes (ROM)

JC rei 40 24 2

JNC rei 50 24 2

J8 bit, rei 20 24 3 1

JN8 bit, rei 30 24 3 1

J8C, bit, rei 10 24 3 1 1

ACALL PO-P7 11-F1 24 2 2

LCALL addr16 12 24 3 2

RET 22 24 1 3

RETI 32 24 1 3

A.IMP PO-P7 01-E1 24 2 2

LJMP addr16 2 24 3

SJMP rei 80 24 2

JMP@A+DPTR 73 24 1

JZ rei 60 24 2

JNZ rei 70 24 2 1

CJNE A, direct, rei 85 24 3 1

CJNE A, #data, rei 84 24 3

CJNE Rn, #data, rei 88-8F 24 3 1

CJNE @Ri, #data, rei 86-87 24 3 2

DJNZ Rn, rei D8-DF 24 2 1 1

DJNZ direct, rei 05 24 2 1 1

NOP 0 12 1

[Table 24] Program branching execution time and memory specification HT80C51

© Philips Electronics N.V. 200B Page 95 of 98

Handshake Solutions
Designing a high-speed asynchronous 80C51 microcontroller

Instruction groups specified for HT80C51-LC and HT80C51-SU

A5 Instruction groups specified for HT80C51·LC and HT80C51·SU

HT80C51 instruction grouped to 18 categories.

Instruction group Instruction number (hex)

1 00 - 03 - 04 - 13 - 14 - 23 - 33 - 84 - a3 - a4 - b3 - c3 - c4 - d3 - d4 - e4 -
f4

2 to-fa

3 28 - 38 - 48 - 58 - 68 - 98 - eO - e8

4 08 - 18 - c8 - f3 - f7

5 27 - 37 - 47 - 57 - 67 - 97 - e3 - e7

6 07-17-c7-d7

7 22- 32

8 21 - 24 - 34 - 44 - 54 - 64 - 74 - 94 - 40 - 50 - 60 - 70 -80

9 78 - f5

10 31

11 25 - 35 - 45 - 55 - 65 - 95 - e5 - 72 - 82 - aO - a2 -bO

12 05 - 15 - 42 - 52 - 62 - 92 - 88 - a8 - b2 - c2 - c5 - d2 - d8 - cO - dO - 77 -
87- a7

13 02 - 90 - b4

14 75

15 12

16 20 - 30 - b5 - b8

17 10- 43 - 53 - 63 - 85 - d5

18 b7
Note. Instructions x8h to xFh are taken together. The last three bits of the Instruction code specify a register (0..7) In a register
bank. The same holds for instructions x6h and x7h that involve the instructions using indirect addressing: the last bit represents
the register (0 or 1) that contains the address of the register to be operated on.

[Table 25] HT80C51-LC and HT80C51-SU instruction groups

Page 96 of 98 © Philips Electronics N.V. 2008

Designing a high-speed asynchronous 80C51 microcontroller
Instruction groups specified for HT80C51-HS

A6 Instruction groups specified for HT80C51-HS

Handshake Solutions

Instruction group Instruction number (hex)

1 00 - 01 - 02 - 03 - 04 - 08 - 13 - 14 - 18 - 23 - 24 - 28 - 33 - 34 - 38 - 40 -
«-~-W-~-~-M-M-~-m-~-~-n-M-OO-~-OO-

a3 - a4 - b3 - b4 - b8 - c3 - c4 - c8 - d3 - d4 - d8 - e4 - e8 - f4 - f8

2 75 - 76 - 88 - 92 - to - f2 - f3 - f5 - f6

3 10 - 20 - 30 - 25 - 26 - 35 - 36 - 45 - 46 - 55 - 56 - 65 - 66 - 72 - 73 - 82 -
83 - 93 - 95 - 96 - aO - a2 - a8 - bO - b5 - b6 - eO - e2 - e3 - e5 - e6

4 05 - 06 - 15 - 16 - 42 - 43 - 52 - 53 - 62 - 63 - 85 - 86 - a6 - b2 - cO - c2 -
c5 - c6 - dO - d2 - d5 - d6

5 11 - 12 - 31 - 51 - 71 - 91 - b1 - d1 - f1

6 22-32
Note: Instructions x8h to xFh are taken together. The last three bits of the instruction code specify a register (0..7) In a register
bank. The same holds for instructions x6h and x7h that involve the instructions using indirect addressing: the last bit represents
the register (0 or 1) that contains the address of the register to be operated on.

[Table 26] HTBOC51·HS instruction groups

© Philips Electronics N.V. 2008 Page 97 of 98

Handshake Solutions

A7 Document History

Designing a high-speed asynchronous 80C51 microcontroller
Document History

I Document History

I Date Author I Version-No i Change Report
Ir-

L94-12-07 T.J.H. van Hoek 0.1 I Initial draft
i 09-12-08 T.J.H. van Hoek 1.0 ! Final version Master Thesis

I I I
I I
I i

Page 98 of 98 © Philips Electronics NV. 2008

	Voorblad
	Foreword
	Table of contents
	Abstract
	Acknowledgements
	Abbreviations and terminology
	1 Introduction
	2 Handshake technology
	3 80C51
	4 Initial speed up of the HT80C51
	5 HT80C51-HS
	6 Conclusion
	7 References
	8 List of tables
	9 List of figures
	Appendix

