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Abstract 

In this thesis, the concept of multi-view switchable auto-stereoscopie lenticular­
based 2D/3D displays is discussed. With t he introduetion of a switchable lentic­
ular , it is possible to switch between a 2D mode and a 3D mode. The 2D mode 
images normal content, whereas the 3D mode provides the viewer with a three­
dimensiona.l impression. The performance of the 2D mode and the 3D mode 
is investigated by examining two quality parameters: modulation depth and 
crosstalk Modulation depth is a measure for the angular dependency of the 
total intensity distri bution of the display. Crosstalk is a measure for the overlap 
of the view distributions. In order to imprave the quality parameters , spherical 
lenticulars as well as a-spherical lenticulars are investigated analytically and 
numerically, by using the concept of ray tracing. Based on the obtained results, 
we can draw the following conclusions. 

The 3D performance of a switchable 2D / 3D lenticular based display in the 3D 
mode can be improved with the use of artificially introduced additional lens 
aberrations in a lenticular. The use of this concept can considerably decrease 
the modulation depth keeping the crosstalk at an acceptable level. 
The modulation depth in the 2D mode can be substantially decreased by using 
the concept of birefringent lens plates with a perfect index match between the 
lens material and the lens plate. The concept of birefringent lens plates can be 
used without disturbing the 3D performance of a switchable 2D / 3D display. 
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Introduetion 

By combining its unique multi-view 3D display technology wit h advanced com­
puter grapbics and image analysis techniques, Philips Research developed an in­
novative technique of creating autostereoscopie three-dimensional images . T he 
technology brings a new level of excitement and realism to computer gaming, 
video entertainment and professional imaging applications. In the near future, 
three-dimensional imaging can beseen in for instanee advertisement and mobile 
phone displays. 
In 2004 , Philips Research developed a t echnique for 3D displays tha t makes it 
possible to switch between 2D content , for normal monitor applications, and 
3D content , generating three-dimensional images [1]. This thesis cont ributes to 
the research and development of this technique. 

1.1 Autostereoscopie imaging 

Human depth perception is supported by a range of visual cues. T hese cues are 
generally known as depth cues. Depth cuescan be divided into two categories , 
namely physiological cues and psychological cues. 
P sychological dept h cues include among ot her things linear perspective. shading 
and shadowing, interposition and texture gradient. T hese are all depth cues 
which can be used in ordinary 2D pictures. 
T wo main physiological dept h cues that create a vivid three-dimensional im­
pression are binocular disparity and motion parallax. Binocular disparity is 
the difference in images projected on the left and right eye of the viewer. Mo­
tion parallax provides different views of a scene in response to movement of 
the viewer. These physiological depth cues caim ot be included in normal 2D 
pictures . 

Many people are familiar with t he concept of three-dimensional imaging using 
addit ional appliances, like polarized glasses. When using polarized glasses, dis­
t inet images are projec ted toeach eye of t he viewer. creating binocular dispari ty. 
One pair of distinct. images is called a. stereo pair. 
Another option to create stereo pairs is by imaging different images towards 
different viewing angles. T his method is called autostereoscopie imaging. Each 
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1. Introduetion 

Three-dimensional imaging displa)' 

3 

view 

Figure 1.1 : 3D display imaging 5 different views to 5 different viewing angles. 

individual image is called a view. Views can be generated using a multi-view 
three-dimensional imaging display. The principle is shown in figure 1.1 . 
There are three main methods of autostereoscopie imaging, which differ in the 
way the views are separated for presentation to each eye. Using diffraction , 
retraction and occlusion, respectively, these are holographic , lenticular sheet 
and barrier strip techniques. Lenticular sheet and barrier strip techniques share 
many characteristics and are known as selector sereen methods [2]. 

1.1.1 Parallax harrier 

A parallax ba.rrier consists of an array of fine vert ical slits in an otherwise 
opaque barrier. Such a barrier can be placed a slight di stance in front of a 
display, for example a liquid crystal display (LCD), see figure 1.2. According to 
the situation in figure 1.2, the pixels indicated by 'R ' are the pixels that project 
an image in the right eye of the viewer. The pixels indicted by 'L' project an 
image on the viewer's left eye . The barrier ensures that the strips from each 
image will be visible only from the proper viewing direction so that each of the 
viewer 's eyes is provided with a different image. The main disadvantage to the 
parallax barrier technique is t hat the image is often dim since so much light is 
blocked by the barrier. 

The viewer depicted in figure 1.2 is correctly positioned to see an orthoscopic 
(normal) image. If the viewer moves to the side, the image seen by the left 
eye would be the one intended for the right eye and vice versa. In this case. 
depth relationships are reversed. Then, the viewer sees a pseudoscopic image. 
A normal image is obtained again if the vi .wer moves even fur ther to the side. 

1.1. 2 Lenticular sheet 

A lenticular sheet consistsof an array of cylindrical lenses. T his lenticular sheet 
is placed in front of an LCD (see figure 1.3). T he sheet is designed in such a way, 
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1. Introduetion 

Figure 1.2: A parallax harrier uses acelusion to create views . 

R L 

Figure 1.3: A lenticular sheet uses refra ct ion to create views. 
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1. Introduetion 

Sub-pixels 

Figure 1.4: A multi-view lenticular based 3D display. 

that the images of the 'R ' and 'L' pixels are refracted to the right ancl left eye 
respectively. As a result , a stereo pair is formeel . Lenticular displays have one 
significant aclvantage over harrier methods. Image brightness is superior since 
t he lent icular sheet uses refraction rather than occlusion. T his is an important 
argument to develop lent icular based displays rather than harrier strip displays. 

1.2 Switchable 2D /3D displays based on liquid crys­
tal lenses 

Figure 1.4 shows a 5 views lenticular based 3D display. The sub-pixels of the 
display are numbered , each represent ing one of the 5 views. The sub-pixels are 
imaged by the lenses towards the viewer . T he colledion of sub-pixels numbered 
by 4, for example, is imaged in one particular area at the viewing distance, 
indicatecl by 4. T he resulting image is one of the 5 views . 
The production of a 3D display using a normal 2D display always involves a 
loss of resolut ion. T his is simply because a 3D display containing N views uses 
sets of N sub-pixels to generate the views (see figure 1.4). Hence, the resolution 
of a 3D display is N times lower than the resolution of a normal 2D display. 
If the lenticular is vertically oriented with respect to the display, the resolution 
loss is in the horizontal direction only. T his is shown in the left part of figure 
1.5. It shows a 9 views 3D display having a. vert ically aligned lenticula.r. In 
this example, all the bright red pixels contribute to the formation of 1 of the 
9 views. Apparently. the viewer sees only 1 out of 9 sub-pixels when watching 
1 view. In addition , the loss of informa.tion is in horizontal direction. since the 
sub-pixels corresponding to one view are all placed in successive columns. 
If the lenticular of a 3D display is placecl under a slant angle, the resolut ion loss 
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1. Introduetion 

Figure 1.5: Sub-pixellayout of a 9 views 3D display. The left side shows all the 
sub-pixels that contribute to one view when the lenticular is vertically aligned . 
The right side shows the sub-pixels that contribute to one view when a slant 
angle of arctan( i) is applied . 

is distributed over both the horizontal and vertical direction. The right part of 
figure 1.5 shows the sub-pixel layout of a 9 views 3D display, having a slanted 
lenticular. The bright sub-pixels contribute to the formation of 1 view only. In 
this example, the bright sub-pixels are distributed in both the horizontal and 
vertical direction. The resolution loss is by a factor of 3 in both the vertical 
and horizontal direction. 

Figure 1.6 shows the sub-pixel layout in the lower left corner of the right part 
of fi gure 1.5 in detail. The lenticular , indicated by the diagonallines, is placed 
under a slant angle of arctan(i). The numbers indicated in the sub-pixels 
correspond to the 9 individual views. 

The sub-pixels are symmetrically positi011ed below a cylindrical lens. All the 
sub-pixels with number 5 are symmetrically positioned below the symmetry 
axis of a cylindrical lens. Therefore, these sub-pixels are imaged right in front 
of the display, generating view number 5. All the sub-pixels numbered by 4 are 
positim1ed slightly to the left of the symmetrie axis of a cylindrical lens. All 
these sub-pixels are imaged slightly to the right , generating view number 4. All 
the sub-pixels numbered by 3 are positioned even more to the left with respect 
to the symmetrie axis of a cylindrical lens. All these sub-pixels are imaged 
further to the right , genera ting view number 3. In this way, an angular viewing 
zone is created, containing 9 successive views (see also figure 1.1 for an angular 
viewing zone containing 5 views). 

An LCD imaging 2D content with a lenticular placed in front of the display 
introduces yet another problem. The lens effect created by the lentin llar makes 
text difficult to read and fine textures will not be displayed correctly. As a 
result , a 3D display is not suitable for normalmonitor applications. However , 
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1. Introduetion 

Figure 1.6: Sub-pixel layout of a 9 views 3D display wit h the lenticular under 
a slant angle of arctan( i). 

if the lens effect of a lenticular could somehow be switched on and off, a 3D 
display could be used for both 2D and 3D applications. 

A pragmatic salution is the construction of a lenticular filled with a medium 
that can somehow be switched between two refractive st ates. The material 
t.ha t meets these requirements the most is liquid crystal (LC). In 2004 , Philips 
Research succeeded in producing a switchable 2D / 3D display based on liquid 
crystallenses [3]. These liquid crystallenses eau be electronically switched be­
tween a refracting mode (3D mode) and a non-refracting mode (2D mode). 

Liquid crystal eau be considered as a liquid in which au ordered arrangement of 
molecules exist s. Liquid crystals arise in organic substances having anisotropic 
molecules, that. is, rod-like molecules or disk-like molecules . Rod-like molecules 
are uniaxially symmetrie. The relative dielectric constauts differ in value along 
the preierred axis, the director , ( ~:11 ) and perpendicular to this axis (s.l )· T he 
dielectric anisotropy is defined as 

(1.1 ) 

Because of the st atic dielectric anisotropy, it is possible to cont rol the LC ori­
entation with the help of an electric field . 
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1. Introduetion 
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Figure 1.7: The two modes of a switchable lenticular. T he 2D mode has no 
lens effect, since there is an index match between the lens and the lens plate. 
The 3D mode generates a positive lens effect . 

Also in the optical regime, there is a dielectric anisotropy. The index of refrac­
tion n is related to the relative dielectric constant through 

(1.2) 

The index of refraction conesponding to E 1_ is the ordinary index of refraction 
n 0 . The index of refraction con esponding to Eli is the extraordinary index of 
refraction ne. The ordinary index of refraction applies for light with electric 
fi eld polariza tion perpendicular to the director. The extraordinary index of 
refraction applies for light with electric field polarization parallel to the director. 
A medium having these properties is said to be uniaxially birefringent . The 
birefringence ( or op ti cal anisotropy) is defined as 

6n = ne- no. (1.3) 

If n 0 < ne, the liquid crystal is said to be posit ive birefringent, whereas if 
ne < n 0 , it is said to be negative birefringent. [4][5][6] 

Figure 1.7 shows a lenticular tha t contains liquid crystal. Tlu~ lent icular con­
sists of two glass plates t hat are equipped with a t ransparent conduct ing ITO 
(Indium Tin Oxide) layer . In between is a lens pla te that contains an inverse 
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1. Introduetion 

lens, molded out of a replica materiaL The remaining space is filled with liquid 
crystal. 

On the lens plate and the lower glass plate a monolayer of poly-imide (PI) is 
applied. Rubbing of the PI surface is an effective way of achieving a preferred 
orientation of the PI molecules. The LC molecules orient themselves along the 
rubbing direction of the PI layer, occupying the lowest energy state. 

The lower part of figure 1.7 shows the 2D mode of the switchable lenticular. A 
voltage is applied on the ITO layers creating an electric field in the y-direction. 
The LC molecules will align along the electric field lines, occupying the lowest 
possible energy state. As a result , the director is in the y-direction . The 
polarization direction of t he light coming from the LCD is linearly polarized. If 
the polarization of the display is in the z-direction, the lens can be characterized 
having the ordinary index of refraction n 0 . The light will not be refracted , since 
there is an index match between the lens and the lens plat e. Consequently, there 
is no lens effect . 

The upper part of figure 1.7 shows the 3D mode of the switchable lent icular . 
Here, the rubbing direction of the lens plate, the rubbing direction of the lower 
glass plate and the polarization of the display are in the z-direction. As a re­
sult , the lens , although being optically birefringent , can be approximated as an 
isotropie lens with index of refraction n e. A positive lens effect is generated 
since the LC used in this application is positive birefringent. 

With t he possibility to switch between a 2D mode and a 3D mode, the user 
can choose according to its needs. However, there are some issues concerning 
the image quality in both the 2D mode and 3D mode. These issues will be 
discussed in t he next section . 

1.3 Performance limitations of 2D /3D switchable dis­
plays 

The use of a lenticular introduces some imperfections in the performance of 
2D / 3D switchable displays. These imperfections can be characterized by two 
quality parameters : modulation depth and crosstalk. [7][8][9] 

1.3.1 Modulation depth 

T he non-bright area of the sub-pixels of an LCD is called the black matrix. 
In the 3D mode of a switchable 2D / 3D display, this black matrix is imagecl at 
t he viewing distance. T he viewer experiences this effect as dark bands when 
viewing the display. Figure 1.8 shows the effect of dark bands. This disturb­
ing artifact is enhanced by the fact that the dark banels are moving across the 
screen when the viewer moves from side to side in front of the display. 

A measure for t he variation in intensity output of a display is called the moel-

8 



1. Introduetion 

Figure 1.8: When viewinga 3D display, the viewer can see dark bands. 

Cross talk Modulation depth 
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Viewing angle 

Figure 1.9: Angular distribution of 9 individual views. The total angular in­
tensity distribution is depicted at t he top of the figure. 
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1. Introduetion 

ulation depth. The modulation depth Md is defined as 

Md= SD(Itot)' 
I tot 

(1.4) 

where SD(Itot) is the average Standard Deviation in the total angular intensity 
distribution and Itot the average total angular intensity distribution. 
In the 2D mode of a switchable 2D /3D display, there appears to be a relatively 
large modulation depth at a certain viewing angle. For this specific viewing 
angle, the focal point of the switchable lenses is exactly on the pixel structure 
of the LCD . In the 2D mode, it are t hese residual lens effects that we would 
like to get rid of. 

1.3.2 Crosstalk 

Figure 1.9 shows the angular distribution of 9 individual views. Note that for 
one particular viewing angle, the viewer can see three different views. One 
of these views is more visible than the others . ince each view has a different 
intensity. 
In addition , the total angular intensity distribution depicted at the top of the 
figure is angular dependent. 

A measure for the overlap between the views is called the crosstalk. T he 
crosstalk 0 is defined as 

(1.5) 

where F and G are the angular intensity distributions of individual neighboring 
views . For symmetrie intensity distributions, the crosstalk reaches its maximum 
precisely between two neighboring views. 
If the crosstalk is too large, there are no stereo pairs since the angular distri­
bution of the views is too narrow . Then, no three-dimensional image can be 
perceived by t he viewer. 

1.4 Thesis outline 

In chapter 2, we introduce an analytica! model fortheideal design of a lenticular 
for which there is no crosstalk and modulation depth. 
Next, the 3D mode of a 9 views switchable 2D /3D displaybasedon liquid crystal 
lenses [3] is investigated using a ray tracing program, developed by Philips 
Research . With this tracing program, the opt ima! design fora cylindrical (or 
spherical) lenticular is examined [7][8][9]. 
In order to decrease crosstalk and modulation depth in a 2.2 inch 5 views switch­
able 2D /3D display, we introduce the concept of a-spherically shaped lenses. 
With the tracing program. we investigate the optimal design of an a-spherica l 
lenticular. 
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1. Introduetion 

Figure 1.10: 9 views 20 inch swi tchable 2D / 3D lenti cular based display. 

To investigate the 2D mode of a switchable display, it is necessary to introduce 
some theory descrihing the birefringent properties of liquid crystal [10]. 
Using this theory as a basis, we derive the refraction and reflection at liquid 
crystal interfaces in chapter 3. 

In chapter 4, we analyze the 2D mode of a 9 views 20 inch switchable 2D / 3D 
display by introducing a model that describes the angular dependency of the 
modulation depth in the 2D mode. 
Figure 1.10 shows a 9 views 20 inch demonstrator , developed by Philips Re­
search and presented at the International Display Workshop (IDW) in Japan 
in 2004 [1]. 
We introduce the idea of a birefringent lens plate as a possible solution to shift 
large modulation depths towards larger viewing angles. 
We propose possible birefringent properties of the lens plate that are needed 
for this idea to work successfully. 

Finally, in chapter 5, we investigate the 2D mode of a 9 views 20 inch switchable 
2D /3D display using ray tracing . 
\Ve transfarm the t.heory described in chapt.er 3 int.o an algorithm and impie­
ment this in existing ray tracing software. 
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1. Int roduetion 

We analyze the tracing results and compare these to the analytic results of 
chapter 4. We also compare tracing results of the birefringent lens plate with 
the results of chapter 4. 

In the last chapter, we formulate the main conclusions on the subj ect of a­
spherical lenses and birefringent lens plates . In addit ion , we evaluate the the­
ory int roduced in chapter 3 that is used for t he model in chapter 4 and the 
ray t racing in chapter 5 and examine the opposed conditions. Finally, we make 
some suggestions for future research. 

In this thesis work, we have extended the state of the art with the concept of 
a-sphericallenticulars in chapter 2 and birefringent lens plates in chapter 4 and 
chapter 5. For the investigation of these subjects, we developed a ray tracing 
algorithm, based on the derived theory in chapter 3. 
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2 

Analytica! model and 
numerical ray tracing of 3D 
mode 

In the previous chapter , two quality parameters of a 2D/3D switchable display 
have been introduced , namely modulation depth and crosstalk Both the mod­
ulation depth and the crosstalk should be small in order to have a good image 
quality. T he modula tion depth and crosst alk depend on the optical design of 
the lenticular . T his chapter concentrates on the opt ical design of a switchable 
lent icular in the 3D mode. 

First , we determine the optimal design of an ideal cylindricallenticular analyt­
ically. For this optimal design , there exists no modulation depth and crosst alk 
Subsequently, the optimal design of a cylindrical lenticular is examined using 
a ray tracing program, developed by Philips Research . Obviously, there is a 
modulation depth and crosstalk for non-ideal spherical lenses. In order to re­
duce modulation depth and crosst alk , we examine the modulation depth and 
crosstalk of an a-spherical lenticular. We propose the design of an a-spherical 
lenticular to imprave the 3D performance of a 2. 2 inch 5 views switchable 2D/3D 
display. 

2.1 Optical design of lenticular based display 

Figure 2.1 shows the main parameters that need to be considered when con­
structing a lenticular based display. L is the viewing distance . The sub-pixel 
pitch is indicated by p and q is the distance between the viewer 's eyes. T he 
distance d/ n is the optical distance between the sub-pixels and t he lent icular , 
where it is assumed t hat p « d. Here, n is the index of refraction of the medium 
involved . B is the pitch of the cylindrical lenses. 
For a correct angular distribut ion of the views of a lent icular based display, the 
pitch B of the lenses should be chosen carefully. 
T he lenticular should be designed in such a way, that all the conesponding 
views are depicted in the same area at the viewing distanc:e. For example, the 

13 



2. Analytica! model and numerical ray tracing of 3D mode 

1 2 3 4 5 1 2 3 4 5 1 2 

I..CD 

L 

Figure 2.1: A 5 view lenticular based display wit h viewpoint correction. 

images of the sub-pixels indicated by 1 in figure 2.1 must overlap each other 
completely in the viewing area. T his is called a viewpoint correction. 

A viewpoint correction can be realized by adjusting the lens pitch B. Given 
the geometry in figure 2.1 , it is possible to derive an expression for the correct 
lens pitch B. 
Consiclering equally shaped triangles , depicted in blue in figure 2.1 , the relation 
between p , q. L and dis given by 

L 
q ]J 

(2.1) 

Next, consider the red triangle indicated in figure 2.1. Fora system containing 
N views, B is given by 

B 
1:. 
n 

Using equation 2.1, B can be written as 

B = N__!!J_. 
p + q 

(2.2) 

(2.3) 

One would expect the lenses to have a focal distance Jo for which the image 
of a point souree at the pixel structure is exactly in focus with the viewing 
distance. However, this is not desirable, since the black matrix would also be 
imaged exactly at the viewing distance , generating a high modulation depth. 
The intensity distribution would be non-uniform, creating dark bands in the 
display. 
Rather than designing an i deal focal distance Jo, the focal distance is designed 
in such a way that the images of point sourees at the pixel structure are blurred 
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2. Analytica! modeland numerical ray tracing of 3D mode 

-L 
1 2 3 4 5 1 2 3 4 5 1 2 

Figure 2.2: Relevant geometries concerning the optimal focal distance f. 

at the viewing distance. If the focal distance of the lenses is chosen properly, 
the intensity distribution of the imaged point sourees at the viewing area is 
uniform. In this case, we get rid of the dark bands. 

Figure 2.2 shows a situation for which this is exactly the case. Consider two 
point sourees with a mutual distance p , shown in figure 2.2. The images of these 
point sourees are positim1ed exactly side by side, creating a uniform intensity 
distribution. 
Using the geometries indicated in figure 2.2 , it is possible to derive an expression 
for the focal distance f. To begin with, it is easily derived that 

q 

z 
B 

L -z 
(2.4) 

Using the thin lens equation, the focal distance f is related to d, L and z by 

1 1 1 
- = - + --! si L - z. 

n 

(2 .5) 

Substituting equation 2.3 and 2.4 in equation 2.5 , eliminating zand rearranging 
terms results in an expression for the focal distance 

with 

1 
f = fo 1 + l , 

N 

d 
r _ -:nq 
JO - -- . 

p + q 

(2 .6) 

(2.7) 
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2. Analytical model and numerical ray tracing of 3D mode 

Obviously, if z = 0, the focal distance Jo is the ideal focal distance for which 
the point sourees are exactly in focus with the viewing distance. For z i= 0, the 
images of the point sourees at the viewing distance are blurred . 

The focal distance stated in equation 2.6 is not the only focal distance for which 
a uniform intensity distribution exists. Other focal distauces can b e derived in 
the same way equation 2.6 is derived . 
Consicier two point sourees with a mutual distance of mp, with 1n an integer. 
It can be derived that the focal distance Jm is now given by 

1 
J = Jo 1 + !!3:, 

N 

(2.8) 

Values for m < 0 and m > 0 indicate focal distauces that correspond to over 
and under focus respectively. 

The derivation described above, is valid for all pairs of point sourees having a 
mutual distance mp. If we would integrate over all these pair contributions, the 
total intensity output would still be uniform. 

The actual design parameter is the radius of curvature R of a lens, which 
determines the focal distance f. The focal distance of a thin lens with a spherical 
surface and a flat surface is related to the radius of curvature according to [4] 

1 1 J = ( 1l{ens - 1) R , (2.9) 

where it is assumed that the lens is used in air. Using 2.9, equation 2.8 can also 
be written as 

with 

1 
R = Ro--~-n' 

1 + N 

Ro = ~q(ntens - 1) . 
p+q 

(2.10) 

(2. 11) 

If m = 0, the radius of curvature R would betheideal radius of curvature Ro, 
COlTesponding to the focal distance Jo , for which the dark bands are visible. 

If the pitch B of the ideal lenses is given by equation 2.3, there is no crosstalk 
between the views. If the radius of curvature R is given by equation 2.10 , 
there is no modulation depth in the total angular intensity distribution of a 
3D display. This is achieved by de-focussing of the lenticular. Under these 
conditions, the 3D performance of a 3D display is perfect. 

2.2 Modulation depthand crosstalk of sphericallentic­
ular 

In reality, a 2D / 3D switchable display in the 3D mode does have a modula­
tion depth and crosstalk. If we want to investigate the modulation depth and 
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2. Analytica! model and numerical ray tracing of 3D mode 

Polarization direction 
display = mbbing 
direction glass plate 

1\visted l.C molecules 

y 

Rubbing direction lens 
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Figure 2.3: Cell containing twisted LC material (3D mode). If the cell is thick 
enough, the polarization direction of the light travelling in the y-direction is 
rotated clockwise. Since the polarization direction is aligned with the director 
at any point in the LC cell , the CUlTent index of refraction is ne. 

crosstalk in detail , it is helpful to use ray tracing. Ray tracing is a technique to 
determine the actual path of individual rays of light through an optical system. 
Each ray can be traced , independently, using only the laws of refraction and 
refiection together with geometry. 

With the help of a ray tracing program , the necessary calculations yielding the 
changes in position and direction of a ray is done more easily and quickly and 
without approximations concerning lens aberrations. The tracing program that 
is used in this chapter requires a well defined optical geometry. Additionally, 
the program has to be modified tosome extent in line with the required output. 

The tracing program for the lenticular in the 3D mode not necessarily requires 
the implementation of birefringent properties. In order to tmderstand this, 
consider the following argumentation. 

In general, the switchable lenticular contains twisted LC materiaL This can 
be explained as follows. Consider figure 1.7. The rubbing direction of the PI 
layer of the lens plate is parallel to the long axis of the cylindrical lenses. The 
rubbing direction of the PI layer of the lower glass plate should match the 
polarization direction of the light coming from the LCD, which in general is not 
parallel to the rubbing direction of the lens plate. The LC molecules will orient 
themselves along the rubbing directions, creating a rotation in the direction of 
the directors. This rotation is also known as twist. Figure 2.3 shows a cell that 
contains twisted LC molecules. 
The polarization direction of the light coming from the display will be rotated 
along with the twist of the LC molecules when travelling through the LC ma­
terial. T his effect is called strong guiding [10]. T he polarization direction of 
the light coming from the display is parallel to the director at any position in 
the LC cell . As a result, the light travelling in the y-direction will experience 
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Figure 2.4: Geometry of a 9 views 20 inch switchable lenticular based display. 

an extraordinary index of refraction ne. 
It is concluded that the switchable lenticular in the 3D mode can be approxi­
mated by an isotropie lens with index of refraction ne. Here, it is assumed that 
the light is travelling in the y-direction ( see figure 2.3). N ote that the op ti cal 
properties become totally different if the light is propagating under oblique an­
gles. 

We use the geometry of a 9 views 20 inch switchable 2D / 3D lenticular based 
display as an example. The geometry which is placed in front of the LCD is 
depicted in figure 2.4. 
The horizontal and vertical sub-pixel pitches p are 0.085 millimeter and 0.255 
millimeter , respectively. The non-bright fraction in horizontal direction is 43% 
and 31% in vertical direction. The slant angle of the lenticular is arctan( i) . 
The type of liquid crystal used in this system is TL213 with an ordinary index of 
refraction of 1.527 and an extraordinary index of refraction 1. 766. The index of 
refraction of glass is 1.500 and the index of refraction of the lens plate material 
(polymer) is 1.550. 
We determine the modulation depth and the crosstalk as a function of the 
radius of curvature R of the sphericallenticular using the ray tracing program. 
In figure 2.5a, the crosstalk for two neighboring views is depicted. The crosstalk 
of two next neighboring views and two next next neighboring views are depicted 
in figure 2.5b and 2.5c, respectively. As one would expect, the crosstalk of two 
next neighboring views is lower than the crosstalk of two neighboring views. 
Figure 2.5d shows the resulting modulation depth. 

If we examine figure 2.5, we find out that the interval for which the crosstalk 
is low appears to have a large modulation depth. In addition, the interval for 
which the modulation depth is relatively small appears to have a high crosstalk. 
Somehow, a radius of curvature R has tobechosen for which an acceptable bal­
ance between crosstalk and modulation depth exists. For example. R = 0.422 
millimeter results in a cross talk of 0.386 and a modulation depth of 0.013 and 
R = 0.519 millimeter results in a cross talk of 0.373 and a modulation depth of 
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Figure 2.5: a) Ray tracing results for crosstalk of two first neighboring views. 
b) crosstalk of two next neighboring views. c) crosstalk of two next next neigh­
boring views. d ) modulation depth . 

0.008. These are typical values for R, the crosstalk and the modulation depth 
when consiclering the design for a 9 views 20 inch switchable 2D / 3D display. 

Consicier figure 2.5d. The high peak corresponds to a radius of curvature, 
for which the image of the black matrix is in focus with the viewing area, 
generating a large modulation depth . The radii of curvature with a relatively 
low modulation depth are indicated by the blue dots. These radii of curvature 
correspond to m = - 1, m = - 2 etc . in equation 2.10. The radii of curvature 
for nî = - 1 and m = - 2 according to equation 2.10 are R = 0.482 millimeter 
and R = 0.551 millimeter , respectively. 
If we compare the tracing results in figure 2.5d with these analytica! results , we 
find out that they do not match . 
Most likely, the miss match between ray tracing results and analytica! results 
is due to lens aberrations. The analytica.! descript ion of the lenticular assumes 
an ideal thin lens, having no lens aberrations, whereas the lenticular defined in 
the ray tracing program does include lens aberrations. 

lt eau be concluded that by slightly de-focussing of thc lenticular, slightly mor , 
crosstalk is permitted , result ing in a less intense modulation depth. 

2.3 Modulation depth and crosstalk of a-spherical 
lenticular 

At the beginning of the thesis project, in December 2004, a 5 views switchable 
display was a possible application for mobile phone displays [3]. The occmTence 
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of dark bands was one of the big issues. In order to reduce the dark bands, 
we suggested the use of an a-spherically shaped lenticular in order to improve 
the 3D performance. We investigated the concept with the help of the tracing 
program of section 2.2 in which we defined a-spherically shaped lenticulars. 

In this section, we investigate the lenticular design for a 2.2 inch 5 views 2D / 3D 
switchable display. The horizontal and vertical sub-pixel pitches p are 0.046 
millimeter and 0.138 millimeter, respectively. The non-bright fraction in hor­
izontal direction is 32% and 59% in vertical direction. The slant angle of the 
lenticular is arctan (~). The type of liquid crystal used in this system is TL213 
with n0 = 1.527 and ne = 1. 766. The index of refraction of glass is 1.500 and 
the index of refraction of the lens plate material is 1.527. the optical thickness 
between the sub-pixels and the lenticular is 1.187 millimeter and the pitch B 
of the lenses is 0.218 millimeter. 
We performed the same ray tracing calculations as in section 2.2 , concerning 
the modulation depth and crosstalk This time, we present the crosstalk as a 
function of the modulation depth , depicted by the blue dots in figure 2.6 . Each 
blue dot represents a radius of curvature R. The values for R are between 0.2 
and 0.9 millimeter. 

We prefer the blue dots to be as close to the origin as possible since in this 
region, they represent a low crosstalk and small modulation depth . The blue 
dot representing a radius of curvature of 0.25 millimeter is pointed out in figure 
2.6 . This dot is relatively close to the origin and has a crosstalk of 0.14 7 and a 
modulation depth of 0.028. 
We hope to improve the modulation depth and crosstalk for R = 0.25 millime­
ter by introducing a-spherically shaped lenticulars. 

In order to describe an a-spherical lens, we first expand a function describing 
spherical lenses in a Taylor series. A spherical lens with radius of curvature R 
and lens pitch B is described by 

F( x) = JR2 - x2 _ JR2 _ ( ~ )2. (2. 12) 

with - ~ :S x :S ~ and ~ :S R . T his equa tion can also be written as 

(2. 13) 

If lJt < 1, equation 2.13 can be expanded in a series. Then. the lens shape is 
given by 

F (x) = R - J R2 - ( ~ ) 2 + R I) - 1) i er (er - 1) .. ~ ~ o - i + 1) ( ~) 2i l a =~ . ( 2.14) 
i= l 

The first four terms of this series are given by 

(2. 15) 
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Figure 2.6: Ray tracing results of crosstalk and modulation depth of a 2.2 
inch 5 views switchable display. The blue dots represent results for spherical 
lenticulars, whereas the green dots represent results for a-spherical lenticulars. 

Note that the coefficients of the polynomial function depend on the radius of 
curvature. 

Using a radius of curvature of 0.25 millimeter , equation 2.15 yields 

(2.16) 

with a = 0.025, b = 2.000, c = 8.000 and d = 64 .000. By varying the coefficients 
a, b, c and d around their initia! values, we hope to create a lenticular having 
lower modulation depth and crosst alk. Each unique combination of coefficients 
will produce a new dot in figure 2.6. These dots are depicted in green. 
Keeping c and d constant and varying b arom1d the value 2, we determine a 
value for b for which the corresponding green dot is closer to the origin of figure 
2.6. T hen , by varying c arom1d 8 and keeping b and d constant . we t ry to find 
a dot even closer to the origin. This can also be done for d. though variation 
of t his parameter does not provide us with significantly better results . The 

21 



2. Analytical model and numerical ray tracing of 3D mode 

3.0x1o·' 

2.0x1o·' 

_...._ 
e 

..§, 1.5x1o·' 

~ 

~ 1.0x10 ' 

5.0x1o·' 

0.0 -+--.,....--.--------.----r---.---r--..-----,----.---.---..,_----, 
0.00 0.02 0.04 0.06 0.08 0.10 0.1 2 

x (mm) 

Figure 2.7: Cross-section (0 ::; x ::; ~ ) of the sphericallenticular (blue) and the 
a-spherical lenticular (red ). 

green dot that we found to be as close to the origin as possible represents an 
a-spherical shape given by 

F (x) = 0.027 - 1.320x 2 - 82.000x4 - O.OOOx 6
. (2.17) 

An a-sphericallenticular given by equation 2.17 has a crosstalk of 0.146 and a 
modulation depth of 0.014 . If this result is compared with the spherical lens 
with radius of curvature R = 0.25 millimeter , it appears that the modulation 
depth can be reduced by a factor of two, keeping the crosst alk nearly constant . 

F igure 2. 7 shows the cross-section of t he lenticulars invol ved . T he spherical 
lenticular with R = 0.25 millimeter is depicted in blue and the a-spherical 
lenticular with the shape given by equation 2.17 is depicted in red. 

The shape of the a-spherical lens in figure 2. 7 has steeper slopes at the edges 
than the spherical lens with R = 0.25 millimeter. As a consequence, optical 
aberrations of the a-spherical lens are increased with respect to the spherically 
shaped lenticular . With the presence of optical aberra tions in a lenticular , it is 
possible to blur the images of a 3D display, reducing the modulation depth. 
This can be explained by giving an example. Consicier figure 2.8. The figure 
shows a lens with au incident beam of parallel rays. Depending on the aperture 
h of the lens, the rays are focussed to different points behind the lens. As a 
consequence, the image of the incident beam at a distance l from the lens is a 
blurred spot rather than au infinitely small spot. T his effect is called spherical 
aberration. 
Note that blurring eau also be achieved by de-focussing the lenses, as discussed 
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h 

Figure 2.8: Spherical aberration of a lens, producing different focal lengths. 

insection 2.1 and 2.2. 

Based on the results described in this section, the idea of a-spherically shaped 
lenticulars proved to be one of the possible solutions for reducing the effect of 
dark bands. Therefore, we tried to claim the idea writing an invention disclo­
sure. However , the request was rejected, since it would be extremely difficult to 
formulate a genericclaim without covering arrangements which may have been 
disclosed before. As a result. the subj ect of a-spherically shaped lenticulars is 
best kept as knowhow. 

We conclude this chapter with the following statements. The modulation depth 
of a 2D / 3D switchable lenticular based display can be reduced by de-focussing 
of the spherically shaped lenticular. In order to reduce the rnodulation depth 
even more, the concept of a-spherically shaped lenticulars proved to be a pos­
sible solut ion. It appears that the use of a-spherically shaped lenticulars is 
equivalent to an increase in lens aberrations. Therefore .. it can be concluded 
that additionallens aberrations eau improve the 3D performance of a switchable 
2D/ 3D lenticular based display. 
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3 

Refraction and reflection of 
light at birefringent media 

Unlike the 3D mode, described in chapter 2, the 2D mode of a switchable lentic­
ular cannot be regarcled as a lens which is optically isotropic. The birefringent 
optica! properties of the 2D mode depend on the direction of propagation and 
the polarization direction of the light relative to the orientation of the LC 
molecules inside the switchable lenticular. Before we can actually investigate 
the 2D mode of a 2D/3D switchable lenticular based display, weneed to intro­
ducesome theory concerning birefringent media. 
First, the optica! properties of birefringent media are deduced from Max.well 's 
equations [10]. Then, we work out these properties for refraction and reflection 
of light at plane liquid crystal interfaces. In addition, we explain how this can 
be used for the investigation of the 2D mode of a 2D / 3D switchable lenticular 
based display. 

3.1 Light propagation in birefringent media 

The most fundamental equations in electrodynamics are Maxwell 's equations. 
These are given by [11]: 

aB 
\7 x E +at= 0, (3. 1) 

an 
(3.2) V' x H --= J at ' 

\7. D = p, (3.3) 

and 
\7 · B = 0. (3.4) 

In these equations, E and H are the electric field vector (V / m) and the mag­
netic field vector (A/m) . respectively. The quantities D and B are the electric 
displacement (C/m2 ) and the magnetic induction (Wb/m 2 ). respectively. The 
quantities p and J are the electric charge density ( C j m3 ) and the current den­
sity (A/ m 2 ). respectively, and may be considered as the sourees of the fields E 
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and H . 

In opt ies of birefringent media, the propagation of electromagnetic waves are 
described in regions of space where both the electric charge density and current 
density are zero. Therefore, it is allowed to set p=O and J = 0. 

Maxwell 's equations are completed with the material equations: 

D =~E (3.5) 

B = l:!:.H (3.6) 

T he parameters~ and!:!:. are the electric tensor and the permeability tensor , re­

spectively. If the medium is optically isotropic, both ~ and!:!:. reduce to scalars. 

T he wave propagation is determined by the dielectric tensor Eij given by 

(3.7) 

In nonmagnet ic and transparent materials, this tensor is real and symmetrie, 
which implies Eij = Eji· 

It is always possible to find three orthogonal axes in such a way that the off­
diagonal elements are zero. Therefore, the dielectric tensor is given by 

(3.8) 

where Ex , Ey , and Ez are t he relative principal dielectric constants. T he x, y and 
z axes are t he principal dielectric axes of t he crystal structure of the birefrin­
gent medium. T hese axes form the principal coordinate system. The principal 
relative dielectric constauts are related to the principal indices of refraction nx, 
ny and n z by 

i = :r , y ,z . (3.9) 

To study the propagation of light along a general direction , a monochromatic 
plane wave is assumed with an electric field vector given by 

E exp(i (wt - k · r )) . (3 .10) 

and a magnet ic field vector given by 

H exp(i (wt - k · r )) , (3 .11) 

with w the frequency of the plane wave. The wave vector k can be written as 
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Optie al . ~ axzs 

Figure 3.1: Octant of normal surface in k space with kx, ky and kz in units of 
w j c. 

where s is a unit vector in the direction of the propagation, and c the speed of 
light . Substituting E and H in the Maxwell equations yields 

k x E = Wj'L H (3.13) 

and 

k x H =-wD . (3.14) 

Eliminating H from equations 3. 13 and 3.14 yields 

k x (k x E ) +w2cJ1E = 0. (3 .15) 

This equation will be used to solve for the eigenveetors E and the corresponding 
eigenvalues n . 

Using equation 3.8, equation 3.15 can be written as 

(3. 16) 
This equation has only nontrivial solutions for the eigenvector E if the deter­
minant of the matrix equals zero. This demand leads to a relation between w 

and k. 
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Fora given frequency w, the relation betweenwand k represents a three dimen­
sional surface in k space. This surface is known as the normal surface and it 
consists of two shells. In general, these two shells have four points in common. 
The two lines that go through the origin and these points are known as the op­
tical axes or the c axes. Figure 3.1 shows one octant of a general normal surface. 

For each direction of propagation, there are two k values that are the intersec­
tions of the direction of propagation s and the normal surface. These two k 

val u es correspond to two different phase veloei ties (wIk) of the waves propa­
gating along the chosen direction. For propagation along the optical axis, there 
is only one value of k and therefore only one phase velocity. 

Generally speaking, the two different phase veloeities correspond to two normal 
modes of polarization. The directionsof the electric field vector associated with 
these normal modes can be obtained from equations 3.16 and 3.12. This yields 

( ~: ) ( ~ ) 
n2 -n~ 

(3.17) 

given that the denominators do not vanish. It is important to realize that in 
a non-absorbing medium, the normal modes are linearly polarized since all the 
componentsin equation 3.17 are real. 
In addition, the determinant of the matrix in equation 3.16 must vanish and 
this yields 

(3. 18) 

Equation 3.18 is known as Fresnel's equation of wave normals and can be solved 
for the eigenvalues of index of refraction. For each direction of propagation, two 
solutions can be obtained. Each salution determines an electric field vector. 

In order to derive the solutions for the eigenvalnes of index of refraction for 
birefringent media, it is necessary to determine the corresponding normal sur­
face. 

If k is in units of w I c, the normal surface is determined by the principal indices 
of refraction. When these are all different, there are two optical axes. In this 
case, the medium is biaxial (see figure 3.1). 
A medium is uniaxially birefringent if two of the principal indices of refraction 
are equal. The index of refraction that corresponds to the two equal elements is 
called the ordinary index of refraction, for which nx = ny = n 0 . The remaining 
index of refraction is called the extraordinary index of refraction, for which 
nz = ne. 
If all three principal indices are equal , the two shells degenerate to a single 
sphere and the medium is optically isotropic. 
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Figure 3.2: Octant of normal surface for a uniaxially birefringent medium in k 
space with kx, ky and k z in units of w j c and with n x = n y = n 0 and n z = n e. 

For uniaxially birefringent media, the normal surface is given by 

k2 + k2 k2 2 k k 2 
( x y + 2. - ~ )( - · - - ~) = 0. 

n~ n; c2 n; c2 
(3 .19) 

The normal surface is depicted in figure 3.2. The figure shows that the normal 
surface consists of a sphere and an ellipsoid of revolution. Both surfaces touch 
a t two points on the z-axis. The z-axis is therefore the only optical axis. The 
sphere gives the relation between w and k of the ordinary (0) wave. The ellip­
soid of revolution gives the relation between w and k for the extraordinary (E ) 
wave. 

By transforming the components of the unit vector s in sphere coordinates 
and by substituting equation 3.12 in equation 3.19, the eigen refractive indices 
associated with the E and 0 waves can be deduced . 
The eigen refractive index for the E wave is given by 

(3.20) 

where e is the angle between the direction of propagation and the optie a.xis. 
T he eigen refractive index for the 0 wave is given by 

(3 .21 ) 
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The direction of the electric field vector E e of the E wave can be obtained from 
equation 3.17 and is given by 

(3.22) 

where n is as given by equation 3.20. E e is not exactly perpendicular to the 
direction of propagation (s x, sy, Sz). 
The direction of the electric field vector E0 for the 0 wave cannot be obtained 
from equa tion 3. 17, because the denominators vanish when nis given by equa­
tion 3.21. Consequently, it must be obtained from equation 3.16. By using 
k 0 = (wjc )n0 s, equa tion 3.16 can be writ ten as 

(3.23) 

T he direction of polarization for the 0 wave leading from this equation is given 
by 

(3.24) 

T he electric field vector for the 0 wave is perpendicular t o the plane formed 
by the wave vector k 0 and the optical axis c , since E 0 · s and E0 · c both equal 
zero. 

Note that the polarization directions E 0 and E e are or t hogonal, since the inner 
product of E 0 with E e is zero. 

3.2 Refraction and refiection at liquid crystal inter­
faces 

In order to examine the birefringent properties of t he 2D mode, it is sufficient 
to investigate the refraction and reflection of light at plane liquid crystal in­
terfaces. This is because refraction or reflection of light at a curved surface is 
determined by the tangent plane at the point of intersection . 

Consider the plane boundary depicted in figure 3.3. The upper part of the figure 
is a medium which is optically isotropie with index of refraction n i . T he lower 
part is a positive birefringent medium. We consider a linearly polarized incident 
plane wave. T he incident wave vector k i will be refracted at the boundary. The 
boundary condit ion for reflection and refraction at a plane boundary requires 
that the magni tude of the tangential component of the wave vector along the 
boundary is conserved. In addition , all wave veetors lie in the plane of incidence. 
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Figure 3.3: Double refraction at a plane birefringent boundary. 

Figure 3.3 shows the cross-section of the plane of incidence with the normal 
surfaces of both media . 
The cross-section of the normal surface depicted in red is circular , since the 
upper medium is optically isotropic. The circle has a radius of curvature ni. 

We first consider the case that the optical axis of the birefringent medium is 
in the z-direction . As a result , the cross-sect ion of the normal surface consists 
of two axisymmetric circles, depicted in blue. T he inner circle is the normal 
surface of the ordinary wave with radius of curvature n 0 . T he outer circle is 
the normal surface for the extraordinary wave with radius of curvature ne. 

The ordinary wave (with a component of the polarization direction in the x y­
plane) and the extraordinary wave ( with a component of the polarization direc­
tion perpendicular to the polarization direction of the 0 wave) will be refracted 
in different directions. This effect is called double refraction. 
The incident angle of the incoming wave vector ki is ei. The angle B0 is the 
angle of the refracted ordinary wave vector k 0 . The angle Be is the angle of the 
refract ed extraordinary wave vector ke. T he boundary condition for the wave 
veetors requires that 

(3 .25) 

Equation 3.25 is called Snell 's law . 

Next. we consider the situation for which the optical axis lies in the plan e of 
incidence. In addition , we assume that the incident light is linearly polarized in 

31 



3. Refraction and refl.ection of light at birefringent media 

Linearly olarized ligh 

/ 

/ 

/ 
/ 

Isotropie 
medium 

Birefringent 
medium 

Optica/ axis 

Figure 3.4: Refraction at a boundary of a birefringent medium. Both the optica! 
axis and the direction of polarization lie in the plane of incidence. 

the plane of incidence. This situation is depicted in figure 3.4. The birefringent 
medium has an optica! axis tmder an angl cp with the normal of the boundary. 
The magni tudes n 0 and ne of the normal surfaces arealso indicated. 
There is no double refraction, since the linear polarization direction has no z­
component . Therefore, according to the theory described in section 3. 1, the 
refracted wave vector can be described by an extraordinary wave. Equation 
3.25 reduces to 

ni sin Bi= n (B) sin Be. (3 .26) 

where n(B) is the index of refraction given by equation 3.20. 

The refracted wave vector can be described by an ordinary wave if the polar­
ization direction is in the z-direction. Then. equation 3.25 reduces to 

(3.27) 

As a consequence, it is relatively easy to deduce the angle of refraction 80 . 

The case for which ni > ne can result in tot al interaal refl.ection of the incident 
wave vector. For this situation, the incident angle Bi equals the angle of refrac­
tion. 

The angle of refraction Be in equation 3.26 can be solveel using equation 3.20. 
This is rather laborious, since n is a functi on of the angle B". 
If we parameterize the sine and eosine in eqnation 3.26 . the terms are trans­
formeel to a polynomial function of degree four . This polynomial function has 
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• 

Figure 3.5: The directions of the veetors ke, E e, Se and H e with respect to the 
normal surface of an extraordinary wave in the principal coordinate system. 

four roots, which provide us with four possible angles of refraction. This is not 
surprising, since we are able to draw four possible wave veetors inside the ellipse 
for which the magnitude of the tangential components are exactly the same. 
A more pragmatic metbod todetermine the angle of refraction Be is to solve the 
problem numerically rather than analytically. This is because the birefringent 
properties described in this chapter need to be implemented in the tracing pro­
gram that has already been used in chapter 2. The numerical implementation 
of these birefringent properties will be discussed in chapter 5. 

When using the concept of ray tracing, we are interested in the energy flow of 
the individual rays. This energy flow is determined by the Poynting vector. The 
Poynting vector describes the flow of energy per unit area of an electromagnetic 
wave in terms of electric and magnetic properties. The Poynting vector S is 
given by 

S = E x H . (3.28) 

According to equation 3.28, the Poynting vector is always perpendicular to the 
electric field vector E and the magnetic field vector H. 

For optically isotropie media , the Poynting vector has the same direction as 
the direction of propagation. This is because the magnetic field vector H 0 , the 
electric field vector E 0 and the direction of propagation s form an orthogonal 
triad . 
However , for birefringent media , the Poynting vector not necessarily has a di­
rection that is perpendicular to the direction of propagation. This is because 
the electric field vector Ee is not perpendicular to the direction of propagation s. 
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3. Refraction and reflection of light at birefringent media 

The directions of the relevant veetors of an extraordinary wave with respect 
to the normal surface are shown in figure 3.5. The electric field vector E e is 
tangent to the normal surface and the Poynting vector Se is perpendicular to 
the normal surface. The wave vector ke is in line with the center of the ellipse, 
indicated by the dot. The magnetic field vector He is perpendicular to the 
xy-plane and points away from the reader. 

We conclude this theoretica! discussion with the following statements. Consider 
the normal surface in figure 3.4 again. This case involves a refraction of the 
incident wave vector ki· The incident wave has a Poynting vector with a negative 
y-component. It would be in contradiction with the law of conservation of 
energy if the refracted Poynting vector would have a positive y-component . 
In case of refraction, the sign of the y-component of the Poynting vector is 
conserved . In case of reflection, the sign of the y-component of the Poynting 
vector is changed. 
Consider the case of refraction. If the incident Poynting vector has a nega­
tive y-component, only that part of the normal surface for which the refracted 
Poynting vector has a negative y-component is valid. As a consequence , the 
part of the normal surface valid for the refracted Poynting vector is limited 
by the points on the ellipse where the Poynting vector is parallel to the plane 
boundary (i.e. the points where the derivative of the ellipse is infinite). These 
points are indicated in figure 3.4, depicted in yellow. The part of the ellipse 
below these points are accessible for refraction. A similar reasoning applies for 
the case of reflection. 

The main condusion is that we have all the theory available to be able to trace 
rays in birefringent media, given the following conditions. 
The incident electromagnetic plane wave is linearly polarized and the cone­
sponding polarization direction can be split into two independent modes. In 
addition, we assumed the wave either to be refracted or reflected . Here, one 
can discriminate between two situations. 
Case 1: The optical axis is perpendicular to the plane of incidence (see figure 
3.3). One independent mode is the ordinary wave with a polarization direction 
perpendicular to the optical axis and index of refraction n 0 • The other mode is 
the extraordinary wave with polarization direction perpendicular to the polar­
ization direction of the ordinary wave with index of refraction given by equation 
3.20. 
Case 2: The optical axis is in the plane of incidence (see figure 3.4). One mode 
is the extraordinary wave with polarization direction in the plane of incidence 
and index of refraction given by equation 3.20. The ordinary wave has a polar­
ization direction perpendicular to the optical axis and index of refraction n 0 . 

T he secoud case is sufficient for the basic tmderstanding of the birefringent 
properties of the 2D mode of a switchable lenticular. In order to explain this 
statement, consider the upper part of figure 3.6. For the investigation of the 
2D mode, we assume the optical axis to be in the plane of incidence, i.e. the 
xz-plane. In addition, by assuming the plane of incidence to be the :rz-plane, 
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3. Refraction and reileetion of light at birefringent media 

Figure 3.6: The upper part shows a sketch of the LC molecules in a simplified 
model of the 2D mode of a switchable lenticular. The lower part of the figure 
shows a sketch of the real situation. 

we reduce the birefringent properties of the 2D mode to two dimensions. Note 
that the orientation of the optical axis is assumed to be independent of the 
position in the LC material of the lenticular. 
In reality, the direction of the director varies throughout the LC material, espe­
cially close to the edges of the lens plate, as sketched in the lower part of figure 
3.6. The LC molecules have many interactions resulting in different kinds of 
orientations . better known as twist , bend and splay [10]. In addition , the plane 
of incidence is not in general in the xz-plane, but can be anywhere in space. 
If these effects are taken into account , the optical birefringent properties of the 
2D mode become more complicated. Then, other methods are needed for the 
ray tracing of the 2D mode and 3D mode , for example a finite element method. 

35 



3. Refraction and reflection of light at birefringent media 

36 



4 

Analytica! model of 
birefringent 2D mode 

Before the 2D mode of a switchable lenticular is submitted to the concept of 
ray tracing, we investigate the 2D mode analytically. This is clone in order to 
provide us with a qualitative understanding of the birefringent optica] proper­
ties of a switchable lenticular. How do we expect the qualitative behavior of 
the 2D mode to be, given the theory of chapter 3? 

In this chapter , the 2D mode of a switchable lenticular is analyzed by creating 
a model that prediets the optical properties of the lenticular under large angles. 

For a certa in ray, we can discriminate between the propagation of the 0 wave 
and the propagation of the E wave. For the 0 wave. the indices of refraction 
of the LC and the lens plate do not depend on the viewing angle and remain 
constant . However, for the E wave, there is a variation in index of refra.ction , 
generating a large modulation depth at one particular viewing angle. For this 
reason, it is the E wave that is investigated in this chapter. 

We derive the transfer matrices of a spherical surface and a plane surface under 
large incident angles. A transfer matrix describes the changes in height and 
angle of a ray as it makes it way through an optica] system . 

Using the derived transfer matrices, we deduce the system matrix of a 20 inch 
switchable 2D /3D display in the 2D mode, applying the birefringent properties 
described in chapter 3. With this system matrix, we derive the viewing angle 
under which the focal point of the lenticular is exactly at the pixel structure of 
the LCD . For this viewing angle, a large modulation depth is generated, since 
the black matrix is imaged at infinity. 

Finally, we introduce the idea of a birefringent lens plate to shift the large 
modulation depth towards a larger viewing angle. 'Ve work out an example 
and determine the required birefringent properties of the lens plate. 

Vle use the theory in this chapter to investigate the optica] properties of a 9 
views 20 inch switchable 2D/3D lenticular based display (see also figure 1.10 in 
chapter 1). 
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4. Analytica! model of birefringent 2D mode 

y 

x 

Optica! axis 

Figure 4.1: Refraction of a paraxial ray at a spherical surface. 

4.1 Paraxial model 

Consicier figure 4.1. The figure shows a spherical surface with radius of curva­
ture R. We define the optical axis of the system by the ray propagating through 
the origin of the coordinate system. This ray is also known as a finite ray. The 
medium at the left has an index of refraction nL and the medium at the right 
has an index of refraction n. 

We investigate a ray ( depicted in red) that propagates through the system, 
having a small deviation from the optical axis. The relations that result from 
this consideration lead to a 2 x 2 transfer matrix. The derivation of such a 
transfer matrix is called a paraxial approximation. A paraxial approximation 
of a spherical lens can be found in any ordinary book on the subject of geo­
metrical opties [4][5 ][6]. However, a paraxial approach of a sphericallens under 
large incident augles is not so standard. 

According to figure 4.1, applying Snell 's law, a ray propagating exactly along 
the optical axis is given by 

1lL sin Bo = n sin el . ( 4.1) 

In addition, we apply Snell 's law for the ray, depicted in red, at the position 
indicated by the black dot, at y = YO · In order to do this, we have to parame­
terize the normal n8 of the spherical surface, the incident wave vector k3 and 
the refracted wave vector k 2. These veetors are given by 

lls = (cos es' sin es' 0) 0 
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and 
( 4.4) 

In vector notation, Snell's law is given by 

(4.5) 

Substituting k3, k2 and n 8 in equation 4.5 yields 

(4.6) 

T his equation can be parameterized and solved for fh We expand the result in 
a Taylor series around Bo. Then, the angle B2 is given by 

(4.7) 

ignoring higher order terms. 

T he transfer matrix is determined by the coordinates ( ao , ho) and ( a1, hl) with 
respect to the optical axis. If Yo « 1, the heights ho and h1 are given by 
Yo cos Bo and Yo cos B1, respectively. With 

( 4.8) 

and 
(4.9) 

we determine the 2 x 2 transfer matrix T defined by 

(4 .10) 

with 

T=( (4.11) 

Using equations 4.7 and 4.10 , we can deduce the matrixelementsof the transfer 
matrix T . 
Consider the heights ho and h1 at y = YO · In a first order approximation, 
these heights are linearly related. This implies ho = Ch1, with C a constant , 
independent of the incident angle a1 . If this is the case , B = 0 and therefore , 
ho = Ah1. The height h1 of any paraxial ray is magnified by a factor A , 
independent of the incident angle a1 . It eau be concluded that B = 0 and A is 
given by 

A = cosBo . 
cos ()l 

(4 .12) 
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a b 

Figure 4.2: Figure a shows the refraction of a ray at a spherical interface, for 
which the transfer matrix T 8 applies. Figure b shows the refraction of a ray at 
a plane interface, for which the transfer matrix T P applies. 

According to equation 4.10, a1 and ao are related by 

(4 .13) 

For Yo « 1, the angle es is given by approximately 

(4. 14) 

Then, equation 4. 7 is given by 

( 
n cos el ) Yo n cos el 

ao = 1 - - + n 1 
nL cos eo R 11L cos eo (4. 15) 

From equations 4.13 and 4.15, it can be derived that the remaining elements C 
and D are given by respectively 

and 

C = _ 2_( n _ _ 1_) 
R 1îL cos eo cos el 

D = ncos e1 
n L cos eo 

( 4.16) 

( 4.17) 

Substituting these results in equation 4.11 , the transfer matrix T 8 for a spherical 
surface with radius of curvature R is given by 

( ~ 
T _ cosli1 

s - 1 n 1 
R ( nL cos 11o - cos el) 

0 ) 
This is the transfer matrix we are looking for. 
In the case that Bo and e1 are both close to zero , T s is given by 
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Figure 4.3: Geometry of a 9 views switchable 2D /3D display. For the viewing 
angel </;, the incident parallel rays are exactly focussed at the pixel structure of 
the LCD. 

This is the well-known transfer matrix resulting from a paraxial approximation 
of a spherical interface, with the x-axis as the optical axis. 
If R goes to infinity, we get the transfer matrix T P of a plane interface given by 

(4.20) 

The transfer matrix for paraxial translation over a length L is given by 

(4.21) 

Figure 4.2a shows the situation where equation 4.18 applies. Figure 4.2b shows 
the situation where equation 4.20 applies. 
With these transfer matrices we can deduce the system matrix of the geometry 
of a 20 inch switchable 2D /3D display depicted in figure 2.4 in chapter 2. 

4.2 Modulation depth in 2D mode 

With the derived transfer matrices T 8 , Tp and TL we can determine the system 
matrix T system of the geometry depicted in figure 4.3. This geometry is the 
geometry of the 9 views 20 inch switchable 2D / 3D display. as definecl in section 
2.2. The figure shows the relevant thicknesses of the successive layers and 
defines the relevant transfer matrices. 
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4. Analytical model of birefringent 2D mode 

Wedefine the system matrix as 

(4 .22) 

If the matrix element A of T system equals zero , the rays depicted in figure 4.3 
are entering the system parallel with respect to each other and converge to a 
point somewhere behind the system . If this point is exactly on the pixel struc­
ture of the LCD, such as indicated in figure 4.3, we find the viewing angle 1; for 
which the the black matrix is imaged at infinity. 

With the help of equations 4.18, 4.20 and 4.21 , we can derive a system matrix 
with matrix element A given by 

cos e6 ( h t2 t3 ) nL cos e4 cos e6 1 ( ntp 1 ) ( ) -- + -- +-- +--- - - -- 4.23 
cos q; cos el cos e 2 cos e3 ng cos e3 cos q; R 11L cos e4 cos e3 

T he angles e1, ... , e6 and 1; are the angles with respect to the normal of the 
surfaces 1, ... , 6. The index of refraction nL of the LC material is given by 

1 cos2e4 sin2e4 
- = --+--
112 n2 n2 ' L o e 

(4.24) 

according to equation 3.20 in section 3.1. T he indices ng and ntp are the indices 
of refraction of the glass and the lens plate respectively. 

We require that A = 0. In addition, we use Snell 's law at all interfaces. T his 
yields el = e3 , since a glass-air-glass transition involves no changes in the 
direction of propagation of a ray. T hese considerations lead to the following 
equation 

____!:j_ + ~ + ~ = ngcose? R. (4.25) 
COS el COS e 2 COS el n L COS ecl - 11tp COS e5 

The right part of equation 4.25 is an expression for the focal distance of the 
lenticular. The left part in equation 4.25 is exact ly the distance for which the 
focal point is on the pixel structure of the LCD. 
Here, we can distinguish between three functions. T hese are all functions of the 
angle el and are given by 

(4.26) 

(4.27) 

and 
(4.28) 

The most efficient way to solve equation 4.25 is by using numerical methods . 
This can be clone by using Newton's method. Newton 's method is a root-finding 
algorithm. We transform this method into a numerical program. written in c. 
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Figure 4.4: The functions H1 and H2 as a function of the viewing angle qy. 
The point of intersection indicates the viewing angle for which there exists a 
large modulation depth. The point of intersection is located at approximately 
q; = 61°. 
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Figure 4.5: H1 and H2 as a function of qy for ntp 

intersection is located at approximately qy = 76° . 
1.550. T he point of 
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If we take an arbitrary angle B1 , we can solve the remaining angles, including 
the viewing angle c/J, using Snell 's law together with Newton's method. Subse­
quently, we can determine the con esponding functions H1 and H2. 

By assuming A = 0, we also assume a positive lens effect, since the incident 
parallel rays converge. As a consequence, we have to choose ntp ~ n 0 . For 
example, we take ntp = 1.500, knowing that n 0 = 1.527 and n e = 1.766. 
Figure 4.4 shows H1(B1) and H2( B1 ) as a function of cjJ( B1). Wedetermine the 
point of intersecbon of the functions H 1 and H 2 . This point of intersecbon 
indicates the viewing angle cjJ for which equation 4.25 is valid . 
It appears that , according to the paraxial model, a 9 views 20 inch switchable 
2D / 3D display with ntp = 1.500 has a viewing angle of about 61 o for which a 
large modulation depth exists. 
Note that these results are true if we consider the birefringent properties of the 
E wave. The results does not apply for the 0 wave, since the index of refraction 
of the 0 wave is not angular dependent. 

In reality, the index of refraction of the lens plate equals 1.550. T his means 
that for small viewing angles, there is a negative lens effect. However , above 
a certain viewing angle, the effective index of refraction of the lens nL exceeds 
the index of refraction of the lens plate ntp· T his happens at approximately 
cjJ = 32°. For viewing augles above this value , a positive lens effect exists. 
Figure 4.5 shows the result for ntp = 1.550 for viewing augles larger than 32°. 
It appears that, according to the paraxial model , a 9 views 20 inch switchable 
2D / 3D display with ntp = 1.550 has a viewing angle of a bout 76° for which a 
large modula tion depth exists. 

Vve would like to compare the results with observations h·om a real 20 inch 
switchable 2D / 3D display. When looking at such a display under an angle, we 
see a mixture of many display effects. In order to test the results which have 
been derived in this section , we need a well defined and smart experimental 
setup . \ Vith this setup , we investigate the light output of one sub-pixel using 
polarizers to examine the 0 wave and the E wave separately. Unfortunately, 
such an experimental setup is not yet available. 

4.3 Birefringent lens plate 

We would like to increase the viewing angle for which the black matrix is imaged 
at infinity towards larger viewing angles. In this section, we suggest a metbod 
for which this viewing angle can be transforn1ed to viewing angles over 80°. 

Suppose that the lens plate is optically birefringent , having the same birefrin­
gent properties as the 2D mode of the switchable lenticular. T his is shown in 
figure 4.6. By changing the n 0 1P and Tl e1P of the LC of the lens plate, we change 
the refractive power of the lens plate. However. we have to be careful choosing 
the right n 0 1]J and n e1v. This is because we would like to change the refractive 
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Figure 4.6: Switchable lenticular with optically birefringent lens plate. 

power for large viewing angles, keeping optica! properties of the lenticular for 
small viewing angles the same. 
Consider equation 3.20 in section 3.1. For small angles B, n can be approximated 
by n 0 . For larger angles B, n e becomes more important. As a consequence, we 
have to change n e1P, keeping n 01v unchanged wi th respect to the birefringent 
properties of the switchable lens. 

What happens to the 3D performance when changing the refractive power of 
the lens plate, given the considerations mentioned above? 
In the 3D mode, the optica! axis of the switchable lens is in the xy-plane and 
the optica! axis of the lens plate is unchanged with respect to the 2D mode , 
pointing in the z-direction (see tigure 4.6). 
Light with a polarization direction parallel to the optica! axis of the switch­
able lens in the 3D mode is described by an E wave. It experiences an index 
of refraction n e and after refraction an index of refraction n 01 v in the birefrin­
gent lens plate. As a result, the E wave is transformed to an 0 wave, with 
polarization direction perpendicular to the optica! axis of the birefringent lens 
plate. Almost nothing bas changed with respecttoa non-birefringent lens plate. 

For example, we take n 01 P = 1.527 and n e1v = 1.700. The index of refraction 
ntp is gi ven by 

( 4 .29) 

In this case, there is a perfect index match between n 0 and 11 011'. since for LC 
material TL213, n0 = 1.527. This is desirable, since for 71 0 = n 01 P, there are 
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Figure 4.7: The functions H1 and H2 as a function of the viewing angle c/J. This 
time, the lens plate is also birefringent with n 01 = 1.527 and n e1 = 1. 700. The 
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point of intersection is located at approximately cjJ = 87°. 

no residual lens effect s of the switchable lenticular in the 2D mode for small 
viewing angles for both the 0 wave and the E wave . 
Figure 4. 7 shows the results for the defined birefringeut lens plate. lt can be 
clearly seen tha t the viewing angle for which there is a large modulation depth 
is now approximately 87°. 

When n 0 = n 01 P and n e = n e1v, there is a perfect index match for both the E 
wave and the 0 wave. In this case, there are no residual lens effect s at all . 

lt can be concluded that it is possible to increase the viewing angle for which 
a large modulation depth exists in the 2D mode using a birefringent lens plate. 
In addition , if we apply a perfect index match between the LC material and 
the lens plate, there are no substantial residual lens effects. If we assume the 
lens plate to have the birefringent properties as depicted in figure 4.6, the 3D 
performance of a switchable 2D / 3D display in the 3D mode is not likely to be 
changed . 
In chapter 5, we investigate the large modulation depth in the 2D mode with 
the help of a ray tracing program . 
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5 

Numerical ray tracing of 
birefringent 2D mode 

In this chapter, we examine the 2D mode of a switchable lenticular using ray 
tracing. We can not direct ly use existing ray tracing software , but we have to 
implement the birefringent properties of the 2D mode. We can do this with 
the help of the theory described in chapter 3. We construct an algorithm that 
determines the changes in direction of a ray when refracted or reflected at a 
birefringent interface. 

We use the ray tracing of the 2D mode for a 9 views 20 inch switchable 2D /3D 
display. We trace the rays that originate from one sub-pixel. From the tracing 
results, an angular intensity distribution is determined. The angular intensity 
distributions of the 0 wave and the E wave are treated separately. 
In addition, we trace the design of a 9 views 20 inch switchable 2D / 3D dis­
play with a birefringent lens plate and campare the results with the theoretica] 
results of chapter 4. 

5.1 Birefringent tracing algorithm 

In this section, we define a methad to determine the changes in direction of a ray 
when refracted or reflected at a birefringent interface . A methad to determine 
the changes in position are already implemented in the existing ray tracing 
software. 
We define the incident medium as the medium in which an incident ray prop­
agates. T he final medium is the medium in which a refracted or reflected ray 
propagates . 

Consider figure 5.1. The figure shows a possible cross-section of the normal 
surface for an E wave in the incident medium. Vve define a propagat ing wave 
vector k in a coordinate system (kx ,ky ,kz). The coordinates are in units of w/ c. 
The rotation angle <p is the angle under which the optica] axis of the incident 
medium is rotated. l\ote that the optical axis is in the plane of incidence. 

In the principal coordinate system , an ellipse with major axis n e and minor axis 
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Figure 5.1: Example of a cross-section of the normal surface for an E wave in 
an incident medium in which an incident wave vector k i propagates . 

n 0 is gi ven by 
nx2 n y2 
- + - = 1. 
ne na 

(5. 1) 

T he coordinates n x and ny can be written as a function of an angle a (conformal 
mapping), shown in figure 5.1. These coorclinates are ellipt ical coordinates and 
are given by 

( 
nx ) ( ne cos( et) ) 
ny n 0 sin( et) ' 

(5. 2) 

with 
0 ::; a < 21r. (5.3) 

The rotation matrix ~ for a positive counterclockwise rotation over an angle r.p 
is given by 

~ = ( cos(r.p) 
sin( r.p) 

- sin (r.p ) ) 
cos( <p) · (5.4) 

An ellipse rotateel under an angle r.p can be determined from the product of the 
rotation matrix with the elliptical coordinates. This yields 

~ ( nx ) = ( ne cos(r.p) cos( a)- n 0 sin( r.p) sin( a) ) (5.5) 
ny ne sin ( <p ) cos( 0') + n 0 cos( <p) sin( a) · 

T he vector in equation 5.5 corresponds to an incident wave vector k i, depicted 
in figure 5 .1. 

T he normal vector and tangent vector of the ellipse can be deduced from equa­
tion 5.5. T he tangent vector is given by 

t = ~~ ( 11 .r ) 
11 Bet ny · 

(5.6) 
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This yields 
t = ( - necos(r.p)sin(a) - n 0 sin(r.p) cos(a)) 

11 - ne sin( r.p ) sin( a) + n 0 cos( r.p ) cos( a ) · 
(5 .7) 

The normal vector t .l is perpendicular to the tangent vector. This yields 

(5.8) 

We normalize these veetors with a normalization factor given by 

(5 .9) 

The normalized veetors t .l and t 11 are depicted in figure 5 .1. 

Given an arbitrary incident normalized Poynting vector Si, we have to deter­
mine the point of intersection where si is exactly perpendicular to the ellipse . 
In vector notation , we have to determine the position on the ellipse were 

(5 .10) 

and 
(5 .11 ) 

From these condi tions, we can deduce the corresponding angle a and the eer­
responding wave vector k i, using equation 5.5. 

Snell 's law says that the ta.ngential component of a refracted or reflected wave 
vector is conserved . Therefore, we have to determine the tangent ial component 
of k i along the surface. This vector is given by 

(5 .12) 

with ii a normalized vector perpendicular to the surface of refraction, depicted 
in figure 5 .1. 

Consicier figure 5.2. The figure shows the properties of a possible final medium . 
Again, t he opt ical axis is assumed to be in the plane of incidence. 
Given the tangential component kt of the incident wave vector , we have to 
determine a possible refracted or reflected wave vector k, .. 
We define the scalar k t ,max as the maximum magnitude of the tangential wave 
vector given the birefringent properties of the final medium. If lktl 'S kt ,max, 

the ray is refracted. If lktl > k t ,max, there are no graphical solutions for k,. in 
figure 5.2. Then , t he ray is assumed to be reflected . 

Consicier the case of refraction , depicted in figure 5.2. Given the the wave vector 
k 1• we have to determine the colTesponding angle a in the final medium. Th is 
angle is determined by the condition 

(5 .13) 
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Figure 5.2: Example of the properties of a medium in which a refracted wave 
vector kr propagates. 

From this equation, we find two solutions for a:. The correct salution fora: can 
be determined using the following condition. For refracted Poynting vectors , 
the sign of the inner product given by 

ii. s,. (5 .14) 

is conserved. In the case of reflection, the sign of this inner product is changed. 

With tbe correct angle a:, wedetermine the corresponding refracted wave vector 
k r using equation 5.5 and tbe normalizeel refracted Poynting vector S,. using 
equation 5.8. 

Tbis metbod bas been translated to c code. Tbe code contains a function whose 
input is given by the birefringent properties of tbe incident and final medium , 
wbich are the n0 , ne, the optical axis c , tbe normal of the surface ii and tbe 
incident Poynting vector Si. Tbe output is tbe refracted or reflected Poynting 
vector Sr. The code is given in Appendix A. 

The code also contains a function which collects all the relevant information 
from which an image of the present situation can be formeel using Matlab. An 
example can beseen in figure 5.3. The figure shows an example of refraction. In 
the upper part of tbe figure tbe birefringent properties of an incident medium 
are depicted including the incident Poynting vector Si. depicted in yellow. The 
lower part of the figure shows tbe properties of tbe final medium and tbe re­
fracted P oynting vector S,.. Tbe used parameters are listeel below the figure. 
An example of reflection is given in Appendix B. 
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5. Numerical ray tracing of birefringent 2D mode 

3 

2 

Incident medium 
0 

-1 -\--~ . l • ..,. . . . ••• : : I : : : ..... . . . 
-2 -'4:.----î::.o~---- .... . .. .. .................... a ......... . . . . . . . . . . . . . . . . . . 
-3 

. . . . . . 
Plane intel'face .................. ~ ............ .. .......... .. ...... ..... ........ ~- .. .. ...... .. .... .. .. . . . . . . . . . . . . . . . . . . . . . . 
Wave vectol' -3 -2 -1 0 2 3 

- ----- - Optical axis 

P oynting vector 

• Endpoint kt; 

• Point of 3 

intel'sectio n 

Final medium 
0 
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-2 

-3 
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Figure 5.3: Example of refraction, plotted in Matlab. The incident medium is 
defined by n 0 = 1.500, ne = 4.000 , c = ( - 0.5 , 1.0, 0.0) and the final medium 
by 11 0 = 2.000 , ne = 4.000 , c = (1.0, 1.0, 0.0). The normal of the interface 
is given by ii = (0.5, 1.0, 0.0). The incident nonnalized Poynting vector is 
Si = (0 .55 , 0.83 , 0.00) and the refracted normalized Poynting vector is S,. = 

(0.84 , 0.54, 0.0) . 
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5. Numerical ray tracing of bireh·ingent 2D mode 

Figure 5.4: Switchable lenticular with orientation of the LC molecules in the 
z-direction. 

With the implementation of this code in the existing ray tracing software, we 
are able to define birefringent interfaces in the definition of the geometry that 
is to be traeed and calculate the changes in the direction of propagation of 
individual rays. 

5.2 Modulation depth in 2D mode 

With the implementation of the tracing algorithm in the existing ray tracing 
software, it is possible to apply ray tracing for a geometry which contains bire­
fringent interfaces . 
For the ray tracing of the 2D mode of a 20 inch switchable 2D / 3D display, we 
use the properties as defined in section 2.2. Figure 5.4 shows the orientations 
of the LC molecules of the 2D mode of a switchable lenticular. It is assumed 
that the polarization direction of the light coming from the LCD can be divided 
in two components. One component is the 0 wave with polarization direction 
in the y-direction, having an index of refraction of n0 . The other component 
is the E wave with polarization direction in the xz-plane, having an index of 
refraction of n given by equation 3.20. These two components are traeed sepa­
rately. 

Figure 5.5 shows the randomly starting positions of a 1000 rays per sub-pixel, 
indicated by the blue dots. The positions of the dots indicate the defined light­
emitting part of a sub-pixel. In between is the black matrix. The black lines 
indicate the position of a cylindrical lens. It eau be seen that the pitch of the 
lens is approximately 0.38 millimeter, as defincd in figure 2.4 in section 2.2. 
The angle between the sub-pixels and the lent icular eqnals arctan i. In order 
to verify the correct pixellayout , we compare the sub-pixels of figure 5.5 with 
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y 

0.05 0.1 0.3 0.35 

x 

Figure 5.5: Pixel dimensions of a 9 views 20 inch switchable 2D/ 3D display. 
The blue dots indicate the start ing positions of a 1000 rays per sub-pixel. T he 
area in between the blue dots corresponds to the black matrix. 

the sub-pixels numbered by 1, 3, 5, 7 and 9 in figure 1.6 in chapter 1. 

In general, we trace 2 million rays per sub-pixel. All these rays are defined in 
a plane that is perpendicular to the long axis of the lenticular. Subsequently, 
these rays are projected to the plane defined by y = 0. T his is clone in order to 
simplify the processing of all da ta that are produced during the ray tracing. 
At a distance above the display, the traeed rays are collected in a series of in­
tervals. Each interval of x collects a number of rays. This number of rays is a 
measure for the intensity of the light coming from the display at this particular 
interval. All the intervals correspond to a certain viewing angle with respect to 
the display. As a resul t , we can determine the angular intensity distribution of 
a display. 

With the tracing program , we trace the light coming from one sub-pixel of a 9 
views 20 inch swi tchable 2D/ 3D display. The sub-pixel is positioned symmetri­
cally below one of t he cylindricallenses of t he lenticular , such as t he sub-pixel 
depicted in figure 5.5 at approximately x = 0.19 millimeter. We examine only 
one sub-pixel , because we want to investigate the qualitative properties of the 
switchable lenticular in the 2D mode rather than the total intensity distribution 
resulting from all the sub-pixels of a switchable 2D /3D display. 
Figure 5.6 shows the angular intensity distribution of both the 0 wave (indi­
cated in blue) and theE wave (indicated in red). 

For smal! viewing angles, the intensity distribution of the 0 wave and the E 
wave are the same. T his is because for small viewing angles, t he angle e be­
tween the direction of propagation and the optica] axis is small. Then , equation 
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Figure 5.6: Intensity distribution of a 20 inch 9 views switchable 2D/ 3D display. 
The blue curve indicates the intensity distribution of the 0 wave. The red curve 
indicates the intensity distribution of the E wave. 

3.20 reduces ton = n 0 . This means that both the 0 wave and the E wave have 
an index of refraction n 0 . As a result , the angular intensity distributions are 
approximately the sa.me. 

For the 0 wave, there is always a residual negative lens effect, regardless of the 
viewing angle rj;. This is because, the index of refraction of the lens pla te is 
1.550 and the ordinary index of refraction of the LC is 1.527. This residuallens 
effect can be noticed by the blue peaks in figure 5.6. 

For the E wave, there is a negative lens effect for small viewing angles and 
a positive lens effect for larger viewing angles . Somewhere, there must b e a 
transition from negative to positive lens effect . This transition can be seen in 
figure 5.6. From the figure , we notice that the red peaks transfarm to 'grooves' 
in the intensity distribution . This happens at approximately rj; = 30°. This 
corresponds to the result derived in section 4.2. There , it is found that the 
index of refraction of the lens TIL exceeds the index of refract ion of the lens 
plate n1p at approxirnately rj; = 32°. 

As discussed in chapter 4, there is a viewing angle for which the focal distance 
is exactly a t the pixel structure of the LCD . As a consequence, the black matrix 
is imaged a t infinity. 

Figure 5.6 shows tha.t there is a large peak for the E wave at a viewing angle 
of approximately 60°. Alongside this peak. t here is an interval of zero inten­
sity. The interval containing the zero and peak intensities indicates the viewing 
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Figure 5.7: lntensity distribution of a 9 views switchable 2D/ 3D display, with 
n 01P = 1.527 and ne

1
P = 1.700. The blue curve indicates the intensity distribu­

tion of the 0 wave. The red curve indicates the intensity distribution of the E 
wave. 

angles for which the black matrix and the sub-pixels are imaged at infinity. 
The viewing angle of approximately 60° i s not consistent with the theoretica! 
results of section 4.3, which predict a viewing angle of a bout 76° . 

lt can be concluded that there is a discrepancy between the theoretica! results 
of chap ter 4 and the numerical results presented in this section. Most likely, 
this is because the paraxial model does not include lens aberra tions. This is 
due to the fact that in the Taylor series, from which equation 4.7 in chapter 4 
is deduced , higher order t erms are ignored . In contrast to the paraxial model, 
the numerical results include lens aberrations. 
However , the numerical tracing results comply with the quali tative properties 
of a birefringent switchable lenticular . T his gives confidence in t he use of the 
implemented tracing algorithm derived in section 5. 1. 

5.3 Birefringent lens plate 

In this section, we determine the intensity distributions of the 0 wave and 
the E wave, coming from one sub-pixel, given t hat the lens pla te is optically 
birefringent , as defined in section 4.3 (see figure 4.6) . T he ordinary index of re­
fraction of the lens plate n 01P = 1.527 and t he extraordinary index of refraction 
ne1P = 1.700. The resulting intensity distribution is depicted in figure 5. 7. 

For small viewing angles r/J , n tp >::::: n L, since n 01 P = n 0 • T his means there 
is an index match between t he lens plat e and the LC of the switchable lens. 
Consequently, there is no residual lens effect for viewing angles close to zero 
degrees for both the 0 wave and the E wave, as eau beseen in figure 5.7. 
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5. Numerical ray tracing of birefringent 2D mode 

The intensity distribution of the 0 wave has no residual lens effect s, since 
na1P = na . This can be seen in figure 5.7 , where the blue curve has neither 
peaks nor grooves. 
The E wave, however , shows an increasing positive lens effect for increasing 
viewing angle cp. This is as expected , since the effective index of refraction nL 

exceeds the effective index of refraction ntp for any viewing angle cp . 

Figure 5. 7 shows that for approximately 70°, the focal point of the lenticular is 
at the pixel structure, generating a large modulation depth. 

Wh en n a = na1P and n e = n e1P , there is a perfect index match for the E wave 
and the 0 wave. Then, the red curve in figure 5.7 will transfarm to the shape 
of the blue one, resulting in a smooth angular intensity distribution . 

We conclude that the theoretica! results of section 4.3 do not comply with the 
numerical tracing results presented in figure 5. 7. The reason for this discrepancy 
is the same as mentioned in section 5.2. Most likely, the discrepancy can be 
ascribed to the fact that the paraxial model does not include lens aberrations , 
whereas the numerical results do include lens aberrations . 
However , we have been able to increase the viewing angle for which a large 
modulation depth exists towards larger viewing angles, as can be noticed from 
figures 5.6 and 5.7. 

Based on the findings in this chapter we can draw a very important conclusion. 
We suc.c.essfully implemented the developed tracing algorithm of section 5.1 , 
based on the theory we derived in section 3.2, in existing ray tracing software. 
Subsequently, we have been able to investigate the 2D mode of a switchable 
lenticular with the help of this tracing program. We achieved this by examin­
ing the output intensity distribution of the 0 wave and the E wave result ing 
from one sub-pixel. It appears that the tracing results agree with expectations 
concerning the qualita tive behavior of a switchable lenticular in the 2D mode, 
described in chapter 4. 
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Conclusions 

In this thesis, we discuss the concept of multi-view switchable 2D /3D lenticular 
based displays. We try to improve the 2D and 3D performance by investigating 
modulation depth and crosstalk This is clone by investigating spherical lentic­
ulars as well as a-spherical lenticulars. 

De-focussing of the sphericallenticular can be applied to reduce the modulation 
depth in the angular intensity distri bution of a switchable 2D /3D lenticular 
based display in the 3D mode. 

In order to reduce the modulation depth in the 3D mode even more, the concept 
of a-spherically shaped lenticulars proves to be an appropriate solution. For a 5 
views 2.2 inch switchable 2D/3D display, the modulation depth can be reduced 
by a factor of two when using an a-spherically shaped lenticular. 

It appears that the concept of a-spherically shaped lenticulars is equivalent to 
an increase in lens aberrations. Consequently, artificially introduced additional 
lens aberrations eau improve the 3D performance of a switchable 2D / 3D lentic­
ular based display. 

In 2005, Philips Research introduced the concept of fractional views . Here, a 
shift is introduced in vertical direction between pixels that correspond to one 
view. With the use of fractional views, the modulation depth of a 4 inch 5 
views switchable 2D / 3D display can be reduced by two orders of magnitude. 

Using Maxwell's equations as a fundamental basis, wedevelopeda theory which 
describes the refraction and reflection of monochromatic plane waves at plane 
interfaces between birefringent media. With the help of this theory, we are able 
to investigate the 2D mode of a switchable lenticular, given a number of con­
ditions. The three-dimensional optical properties of the 2D mode are reduced 
to two dimensions by assuming the optical axis of the LC material to be in the 
plane of incidence. Furthermore, we assume the orientation of the optical axis 
to be position independent, and a plane wave to be either refracted or reflected 
at a plane interface . 

With the use of the developed theory, we investigated the 2D modP of a 20 inch 
9 views switchable 2D / 3D display analytically. This bas been done in order to 
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provide a better understanding of the qualitative birefringent properties of a 
switchable lenticular in the 2D mode. 
We determined the angular dependency of the modulation depth of the 2D 
mode. This was achieved by deriving a paraxial model of the lenticular under 
large viewing angles. With the help of this model, we predicted a viewing 
angle for which a large modulation depth exists. In order to shift the resulting 
viewing angle out of the angular viewing zone, we introduced the concept of a 
birefringent lens plate. 
Based on the obtained results, it appears to be feasible to use a birefringent 
lens plate without disturbing the 3D performance of a switchable 2D / 3D display. 

In order to use ray tracing to investigate the 2D mode of a 20 inch 9 views 
switchable 2D /3D display, we developed a tracing algorithm, based on the the­
ory of refraction and reileetion of monochromatic plane waves at interfaces be­
tween birefringent media. We successfully implemented this tracing algorithm 
in existing ray tracing software. Subsequently, we have been able to investigate 
the 2D mode of a switchable lenticular with the help of this tracing program. 
This was achieved by examining the angular intensity distribution resulting 
from one sub-pixel. 
It appeared that the tracing results agree with the analyzed qualitative behav­
ior of a switchable lenticular in the 2D mode. 

It can be concluded that we gained a better understanding on the subject of 
switchable lenticulars in the 2D mode. Unfortunately, we have not been able 
to compare the obtained results with a real 20 inch 9 views switchable 2D / 3D 
display. This is because an appropriate experimental setup is not yet available. 

Standm·d ray tracing programs, for instanee ASAP or ZEMAX, can trace rays 
in birefringent geometries only to a certain extent. For example, when there is 
a gradient in the orientation of the LC molecules, as in GRIN-lenses (graded­
index) , ray tracing programs show difficulties simulating the birefringent prop­
erties. 
The ray tracing algorithm developed in this thesis is very well suited to illus­
trate the behavior of monochromatic plane waves in birefringent media. In 
the near future , the ray tracing algorithm can be improved and extended to 
three dimensions. Tagether with the ray tracing program developed by Philips 
Research, the ray tracing algorithm can be a useful tool for the simulation of 
many birefringent geometries. 

\i\Te conclude this chapter with the following statements. The 3D performance 
of a switchable 2D / 3D lentictllar based display in the 3D mode eau be improved 
with the use of artificially introduced additional lens abe1Tations in a lenticular. 
The use of this concept can considerably decrease the modulation depth keeping 
the crosstalk at an acceptable level. 
Based on the obtained results , the modulation depth in the 2D mode eau be 
shifted towards larger viewing augles by using the concept of birefringent lens 
plates. In addition, residuallens effects can be decreased substantially by ap-
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6. Conclusions 

plying a perfect index match between the LC material and the lens plate. The 
concept of birefringent lens plates can be used without disturbing the 3D per­
formance of a switchable 2D /3D display. 
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Appendix A 

Algorithm code 

#include <iostream.h> 
#include "vector.h" 
#include "vector.c" 

• 
lll c 

IIAuthor : Maarten Sluijter July 2005 

I* Required input : no1, ne1, c-axis1, no2, ne2, c-axis2 , S_i, and 
n_opp 
Output: k_ref, S_ref Note : always choose a positive uniaxial 
medium - > ne >no 

This program contains six functions : 

-birefringe_snellius: applies all functions stated below and 
returns a new Poynting vector S_i 

-medium! : calculates tangential wave vector in medium 1 
corresponding to incoming Poynting vector S_i 

-refr_refl: calculates maximum tangential wave vector in medium 2 
and compares the result in birefringe_snellius to 
the tangential wave vector of S_i found in medium! 
to determine the case of refraction or reileetion 

-refract : determines k ref and S ref in medium 2 in the case of 
refraction 

-reflect : determines k ref and S ref in medium 1 in the case of 
reileetion 

-plot : write s all ne cessary information to text files that can 
be read in Matlab to create a plot of the 
normal surface and all relevant veetors 

The main program defines the input parameters and applies 
birefringe_snellius. 

*I 
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A. Algorithm code in c 

const double pie=3.14159265358979; 
const double eps=le-10; 

struct ior 
{ 

double 
double 
vect c· 

' 

x· 
' 

y; 
// ordinary index of refraction 
// extra-ordinary index of refraction 
11 c-axis 

}; 

//#define DEBUG_MEDIUM1 
int medium1(struct ior *n1, struct vect *S_i, struct vect *n_opp, 

struct vect *k_t, struct vect *k_i) 
{ 

double alfa_a, alfa_b, alfa_O, phi1; 
double length_k, length_k_t, ctrl, inproduct; 
vect *tauloodrecht; 
tauloodrecht = new vect; 

phi1=-atan2((n1->c) .x,(n1->c) .z); 

//calculate angle alfa_a where S_i intersects the ellipse 
alfa_a=atan2( (n1->x)*(S_i->z)*cos(phi1) -1.0*(n1->x)*(S_i->x)*sin(phi1), 

(n1->y)*(S_i->x)*cos(phi1) + (n1->y)*(S_i->z)*sin(phi1) ); 
alfa_b=alfa_a+pie; 

//control: inproduct of tauloodrecht with S_i has to be -1 
tauloodrecht->x -1.0*(n1->y)*sin(phi1)*sin(alfa_a) + 

(n1->x)*cos(phi1)*cos(alfa_a); 
tauloodrecht->y 
tauloodrecht->z 

0.0; 
(n1->y)*cos(phi1)*sin(alfa_a)+(n1->x)*sin(phi1)*cos(alfa_a); 

normalize(tauloodrecht); 

inproduct=inprod(tauloodrecht,S_i); 
ctrl=fabs(inproduct+1.0); 

if (ctrl>eps) 
{ 

alfa_a=alfa_b; 
#ifdef DEBUG_MEDIUM1 
tauloodrecht->x 

tauloodrecht->y 
tauloodrecht->z 

-1.0*(n1->y)*sin(phi1)*sin(alfa_a)+ 
(n1->x)*cos(phi1)*cos(alfa_a); 

0.0; 
(n1->y)*cos(phi1)*sin(alfa_a)+(n1->x)*sin(phi1)*cos(alfa_a) 

normalize(tauloodrecht); 
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inproduct=inprod(tauloodrecht,S_i); 
ctrl=fabs(inproduct+1.0); 
if (ctrl>eps) 

A. Algorithm code in c 

{ printf("ERROR! in medium1, inproduct does not equal -1\n"); } 
#endif 
} 

//calculate tangential component k_t 
k_i->x= -1.0*(n1->y)*cos(phi1)*cos(alfa_a) + (n1->x)*sin(phi 1)*sin(alfa_a); 
k_i->y= 0.0; 
k_i->z= -1.0*(n1->y)*sin(phi1)*cos(alfa_a) - 1 .0*(n1->x)*cos(phi1)*sin(alfa_a); 
//printf("k_i_x: %18.12f\n", k_i->x); 
//printf("k_i_y: %18.12f\n", k_i->y); 
//printf("k_i_z: %18.12f\n\n", k_i->z); 

inproduct=-1 . 0*inprod(k_i,n_opp); 
sumprodv(k_i,n_opp,inproduct,k_t); 
//printf("k_t_x : %18.12f\n", k_t->x); 
//printf("k_t_y: %18.12f\n", k_t->y); 
//printf("k_t_z: %18.12f\n\n", k_t->z); 

//control: k*sin(alfa_O)-k_t=O 
length_k=length(k_i); 
length_k_t=length(k_t); 
alfa_O=acos((-1 .0)* inproduct/length_k) ; 
ctrl=length_k*fabs(sin(alfa_O))-length_k_t; 
if (ctrl>eps) 
{ printf("ERROR! in medium1\n"); } 

return(O); 
} 

int refr_refl(struct ior *n2, struct vect *n_opp, struct vect 
*k_tang) 
{ 

double alfa_1, alfa_2, inproduct, ctrl, phi2; 
vect *tauevenwijdig; vect *k_1; 
tauevenwijdig = new vect; k_1 = new vect; 

phi2=-atan2((n2->c) .x,(n2->c) .z); 

//calculate alfa_1 and alfa_2 where tauevenwijdig and n_opp are parallel 
alfa_1=atan2(((n2->x)*(n_opp->x)*cos(phi2)+ (n2->x)*(n_opp->z)*sin(phi2)), 

((n2->y)*(n_opp->x)*sin(phi2)-1.0*(n2->y)*(n_opp->z)*cos(phi2)) ); 
alfa_2=alfa_1+pie; 

//controle: modulus of i nproduct of tauevenwijdig with n_opp has to be 1 
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A. Algorithm code in c 

tauevenwijdig->x =-(n2->y)*cos(phi2)*sin(alfa_1)-(n2->x)*sin(phi2)*cos(alfa_1); 
tauevenwijdig->y = 0.0; 
tauevenwijdig->z =-(n2->y)*sin(phi2)*sin(alfa_1)+(n2->x)*cos(phi2)*cos(alfa_1); 

normalize(tauevenwijdig); 
inproduct=inprod(tauevenwijdig,n_opp); 
ctrl=fabs(inproduct)-1.0; 

if (ctrl>eps) 
{ printf("ERROR! in refr_refl\n"); } 

//tangential k-vector belonging to angle alfa_1 -> k_tang 
k_1->x (n2->y)*cos(phi2)*cos(alfa_1) - (n2->x)*sin(phi2)*sin(alfa_1); 
k_1->y = 0.0; 
k_1->z = (n2->y)*sin(phi2)*cos(alfa_1) + (n2->x)*cos(phi2)*sin(alfa_1); 
//printf("k_1_x: %18.12f\n", k_1->x); 
//printf("k_1_y: %18.12f\n", k_1->y); 
//printf("k_1_z: %18.12f\n\n", k_1->z); 

inproduct=-1 . 0*inprod(k_1,n_opp); 
sumprodv(k_1,n_opp,inproduct,k_tang); 

return(O); 
} 

//#define DEBUG_REFR 
int refract(struct ior *n2, struct vect *k_t, struct vect *n_opp, 

struct vect *S_i, struct vect *S_ref, struct vect *k_ref) 
{ 

int signi, signr; 
double alfa_1, alfa_2, inproduct, ctrl, length_k_t, A, B, C, phi2; 

phi2=-atan2((n2->c) .x,(n2->c) .z); 

//determine k belonging to k_t in medium 2 
length_k_t=length(k_t); 
A -1 . 0*(k_t->x)*(n2->y)*cos(phi2) -1.0*(k_t->z)*(n2->y)*sin(phi2); 
B = -1 . 0*(k_t->z)*(n2->x)*cos(phi2) + (k_t->x)*(n2->x)*sin(phi2); 
C = length_k_t*length_k_t; 
alfa 1 2*atan2((-2*B+sqrt(4*B*B-4*(C-A)*(C+A)))/(2*(C-A)),1.0); 
alfa_2 = 2*atan2((-2*B-sqrt(4*B*B-4*(C-A)*(C+A)))/(2*(C-A)),1.0); 

#ifdef DEBUG_REFR 
printf ( "alfa_1: %18.12f\n", 
printf ( "alfa_2: %18.12f\n", 

#endif 

(180/pie ) *alfa_1); 
(180/pie) *alfa_2); 
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k ref->x 
k_ref->y 
k ref->z 

(n2->y)*cos(phi2)*cos(alfa_1) -1.0*(n2->x)*sin(phi2)*sin(alfa_1); 
0.0; 
(n2->y)*sin(phi2)*cos(alfa_1) + (n2->x)*cos(phi2)*sin(alfa_1); 

//S_ref=tauloodrecht 
S_ref->x 
S_ref->y 
S ref->z 

-1 . 0*(n2->y)*sin(phi2)*sin(alfa_1) + (n2->x)*cos(phi2)*cos(alfa_1); 
0.0; 
(n2->y)*cos(phi2)*sin(alfa_1) + (n2->x)*sin(phi2)*cos(alfa_1); 

normalize(S_ref); 

/I lk_t.k_tl-k_ref.k_t=O & sign of n_opp.S_ .. has to be conserved 
inproduct=inprod(n_opp,S_i); 
if ( inproduct<O.O ) { signi=-1; } else { signi=1; } 
inproduct=inprod(n_opp,S_ref); 
if ( inproduct<O.O ) { signr=-1; } else { signr=1; } 
signi=signi*signr; 

switch(signi) 
{ 

} 

case 1: ctrl=inprod(k_ref,k_t); break; 
case -1: alfa_1=alfa_2; 

k ref->x (n2->y)*cos(phi2)*cos(alfa_1) 
- (n2->x)*sin(phi2)*sin(alfa_1); 

k_ref->y 0.0; 
k ref->z (n2->y)*sin(phi2)*cos(alfa_1) 

+ (n2->x)*cos(phi2)*sin(alfa_1); 
S ref->x -(n2->y)*sin(phi2)*sin(alfa_1) 

+ (n2->x)*cos(phi2)*cos(alfa_1); 
S_ref->y 0.0; 
S ref->z (n2->y)*cos(phi2)*sin(alfa_1) 

+ (n2->x)*sin(phi2)*cos(alfa_1); 
normalize(S_ref); 
ctrl=inprod(k_ref,k_t); break; 

default: printf("ERROR!!! in refract\n"); break; 

ctrl=C-ctrl; 
if(ctrl>eps) 
{ printf("ERROR!!! in refract\n"); } 

return(O); 
} 

int reflect(struct ior *n1, struct vect *k_t, struct vect *n_opp, 
struct vect *S_i, struct vect *S_ref, struct vect *k_ref) 

{ 
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int signi, signr; 
double alfa_1, alfa_2, inproduct, ctrl, length_k_t, A, B, C, phi1; 

phi1=-atan2((n1->c) .x,(n1->c) . z); 

//determine k belonging to k_t in medium 1 
length_k_t=length(k_t); 
A=-1 .0*(k_t->x)*n1->y*cos(phi1) -1 . 0* (k_t->z)*n1->y*sin(phi1); 
B=-1.0*(k_t->z)*n1->x*cos(phi1) + (k_t->x)*n1->x*sin(phi1); 
C=length_k_t*length_k_t; 
alfa_1=2*atan2((-2*B+sqrt(4*B*B-4*(C-A)*(C+A)))/(2*(C-A)),1.0); 
alfa_2=2*atan2((-2*B-sqrt(4*B*B-4*(C-A)*(C+A)))/(2*(C-A)),1.0); 

#ifdef DEBUG_REFR 
printf("alfa_1 : %18.12f\n", 
printf("alfa_2 : %18.12f\n", 

#endif 

(180/pie)*alfa_1); 
(180/pie)*alfa_2); 

k_ref->x 
k_ref->y 
k ref->z 

(n1->y)*cos(phi1)*cos(alfa_1) -1.0*(n1->x)*sin(phi1)*sin(alfa_1); 
0.0; 
(n1->y)*sin(phi1)*cos(alfa_1) + (n1->x)*cos(phi1)*sin(alfa_1); 

//S_ref=tauloodrecht 
S_ref->x -1 . 0*(n1->y)*sin(phi1)*sin(alfa_1) + (n1->x)*cos(phi1)*cos(alfa_1); 
S_ref->y 0 . 0; 
S ref->z (n1->y)*cos(phi1)*sin(alfa_1) + (n1->x)*sin(phi1)*cos(alfa_1); 

normalize(S_ref); 

I/ lk_t .k_tl-k_ref.k_t=O & sign of n_opp . S_ .. has to 
inproduct=inprod(n_opp,S_i); 
if ( inproduct<O . O ) { signi=-1; } el se { signi=1; 
inproduct=inprod(n_opp,S_ref); 
if ( inproduct<O . O ) { signr=-1; } el se { signr=1; 
signi=signi*signr; 

switch (signi) 
{ 
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case -1 : ctrl=inprod(k_ref,k_t); break ; 
case 1 : alfa_1=alfa_2 ; 

k ref->x (n1->y)*cos(phi1)*cos(alfa_1) 
- (n1->x)*sin(phi1)*sin(alfa_1); 

k_ref->y 0.0; 
k ref->z (n1->y)*sin(phi1)*cos(alfa_1) 

+ (n1->x)*cos(phi1)*sin(alfa_1); 
S ref->x -(n1->y)*sin(phi1 )*sin(alfa_1 ) 

+ (n1->x)*cos(phi1)*cos(alfa_1); 

} 

} 

flip 
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S_ref->y 
S ref->z 

0.0; 
(n1->y)*cos(phi1)*sin(alfa_1) 

+ (n1->x)*sin(phi1)*cos(alfa_1); 
normalize(S_ref); 
ctrl=inprod(k_ref,k_t); break; 

default: printf( 11 ERROR!!! in reflect\n 11
); break; 

} 

ctrl=C-ctrl; 
if(ctrl>eps) 
{ printf( 11 ERROR!!! in reflect\n 11

); } 

return(O); 
} 

int plot(struct ior *n1, struct ior *n2, struct vect *k, struct 
vect *k_t, struct vect *k_ref, struct vect *n_opp, struct vect 
*S_i, struct vect *S_ref, int refraction, FILE *fp, FILE *fp2) 
//plot ellipse, global coordinate system, plane n_opp, k_i, k_t, k_ref, S_i 
//and S_ref for medium 1 and 2 in matlab using ellipsplot .m 
{ 

double alfa, phi1, phi2; 
int i, j, nalfa=200; 

phi1=-atan2((n1->c) .x ,(n1->c) .z); 
phi2=-atan2((n2->c) .x,(n2->c) .z); 

vect *n_alfa; 
n_alfa = new vect; 

for(i=O;i<nalfa+1;i++) 
{ 

alfa=i*(pie*2.0)/nalfa; 
fprintf(fp, 11 %12.10f 11 ,0.0); 
fprintf(fp, 11 %12 . 10f 11 ,alfa); 

//ellipse medium 1 

n_alfa->x=(n1->y)*cos(phi1)*cos(alfa) - (n1->x)*sin(phi1)*sin(alfa); 
fprintf (fp, 11 %12 . 10f 11 ,n_alfa->x); 
n_alfa->y=O . 0; 
n_alfa->z=(n1->y)*sin(phi1)*cos(alfa) + (n1->x)*cos(phi1)*sin(alfa); 
fprintf (fp, 11 %12 .10f 11 ,n_alfa->z); 
fprintf(fp, 11 \n 11

); 

} 

for(j=O;j<nalfa+1;j++) //ellipse medium 2 
{ 

alfa=j*(pie*2 .0) /nalfa; 
fprintf (fp2, 11 %12 . 10f 11 ,0. 0); 
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fprintf (fp2, 11 %12 . 10f 11
, alfa); 

n_alfa->x=(n2->y)*cos(phi2)*cos(alfa) - (n2->x)*sin(phi2)*sin(alfa); 
fprintf (fp2, 11 %12. 10f 11

, n_alfa->x) ; 
n_alfa->y=O. 0; 
n_alfa->z=(n2->y)*sin(phi2)*cos(alfa) + (n2->x)*cos(phi2)*sin(alfa); 
fprintf (fp2, 11 %12. 10f 11

, n_alfa->z) ; 
fprintf(fp2, 11 \n 11

); 

} 

fprintf(fp, 11 %12 . 10f 11 ,0 .0); fprintf (fp2, 11 %12. 10f 11 ,0.0); 
fprintf(fp, 11 %12.10f 11 ,1.0*(k->y)); fprintf(fp2, 11 %12.10f 11 '0. 0); 
fprintf(fp, 11 %12.10f 11 ,1.0*(k->x)); fprintf(fp2, 11 %12.10f 11 '0. 0); 
fprintf (fp, 11 %12 . 10f 11 ,1 . 0*(k->z)); fprintf(fp2, 11 %12 . 10f 11 ,0. 0); 
fprintf(fp, 11 \n 11

); fprintf(fp2, 11 \n 11
); 

fprintf(fp, 11 %12.10f 11 ,0 .0); fprintf(fp2, 11 %12.10f 11 ,0. 0); 
fprintf (fp, 11 %12 . 10f 11

, 1. 0* (k_ t->y)) ; fprintf (fp2, 11 %12. 10f 11 ,k_t->y); 
fprintf (fp, 11 %12 . 10f 11 ,1.0*(k_t->x));fprintf(fp2, 11 %12.10f 11 ,k_t->x); 
fprintf(fp, 11 %12.10f 11

, 1. 0* (k_ t->z)); fprintf(fp2, 11 %12. 10f 11 ,k_t->z); 
fprintf(fp, 11 \n 11

); fprintf(fp2, 11 \n 11
); 

fprintf(fp, 11 %12.10f 11 ,0.0); fprintf(fp2, 11 %12.10f 11 '0. 0); 
fprintf(fp, 11 %12.10f 11 ,k_ref->y); fprintf (fp2, 11 %12 . 10f 11 ,k_ref->y); 
fprintf(fp, 11 %12.10f 11 ,k_ref->x); fprintf(fp2, 11 %12 . 10f 11 ,k_ref->x); 
fprintf (fp, 11 %12. 10f 11 ,k_ref->z); fprintf(fp2, 11 %12.10f 11 ,k_ref->z); 
fprintf(fp, 11 \n 11

); fprintf(fp2, 11 \n 11
); 

fprintf(fp, 11 %12 . 10f 11 ,0. 0); fprintf(fp2, 11 %12.10f 11 ,0. 0); 
fprintf (fp, 11 %12 . 10f 11 ,n_opp->y); fprintf (fp2, 11 %12. 10f 11 ,n_opp->y); 
fprintf(fp, 11 %12 . 10f 11 ,-(n_opp->z)); fprintf(fp2, 11 %12 . 10f 11 ,-(n_opp->z)) 
fprintf(fp, 11 %12 . 10f 11 ,n_opp->x); fprintf(fp2, 11 %12 . 10f 11

, n_opp->x) ; 
fprintf(fp, 11 \n 11

); fprintf(fp2, 11 \n 11
) ; 

fprintf(fp, 11 %12 . 10f 11 ,0 . 0); fprintf(fp2, 11 %12 .10f 11 ,0. 0); 
fprintf(fp, 11 %12 . 10f 11 ,S_i->y); fprintf (fp2, 11 %12 .10f 11 ,0. 0); 
fprintf (fp, 11 %12 .10f 11 ,S_i->x); fprintf (fp2, 11 %12. 10f 11 ,0.0); 
fprintf(fp, 11 %12.10f 11 ,S_i->z); fprintf(fp2, 11 %12 . 10f 11 '0. 0); 
fprintf(fp, 11 \n 11

); fprintf(fp2, 11 \n 11
); 

fprintf(fp, 11 %12 . 10f 11 ,0 . 0); fprintf (fp2, 11 %12. 10f 11 ,0. 0); 
fprintf (fp, 11 %12 . 10f 11 ,S_ref->y); fprintf (fp2, 11 %12 .10f 11 ,S_ref->y); 
fprintf(fp, 11 %12 . 10f 11 ,S_ref->x); fprintf(fp2, 11 %12 . 10f 11 ,S_ref->x); 
fprintf(fp, 11 %12.10f 11 ,S_ref->z); fprintf(fp2, 11 %12.10f 11 ,S_ref->z); 
fprintf(fp, 11 \n 11

); fprintf(fp2, 11 \n 11
) ; 

fprintf (fp, 11 %12. 10d 11 ,refraction); fprintf(fp2, 11 %12 . 10d 11 ,refraction); 
fprintf(fp, 11 %12 . 10f 11 ,n1->x); fprintf(fp2, 11 %12.10f 11 ,n2->x); 
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fprintf(fp,"%12.10f 
fprintf(fp,"%12.10f 

return(O); 
} 

#define DEBUG_BIR_SNEL 

",n1->y); 
",0. 0); 

fprintf(fp2,"%12 . 10f 
fprintf (fp2, "%12 . 10f 

int birefringe_snellius(struct vect *n_opp, 
struct vect *S_i, struct ior *n1, struct ior *n2, FILE *fp, FILE 
*fp2) 
{ 

int refraction; 
double length_k_tang, length_k_t; 
vect *k_t; k _t = new vect; 
vect *k; k = new vect; 
vect *k_tang; k_tang 
vect *k_ref; k ref 
vect *S_ref; S_ref 

normalize(S_i); 
normalize(n_opp); 

= new vect; 
new vect; 

= new vect; 

//calculate tangential component of incoming wave vector 
medium1(n1, S_i, n_opp, k_t, k); 

%18 . 12f %18.12f\n", k->x, k->y, k->z); 

",n2->y); 

"' 0. 0); 

#ifdef DEBUG_BIR_SNEL 
printf("k : %18.12f 
printf("k_t: %18.12f 
printf("n_opp: %18.12f 
printf("S_i : %18.12f 

%18 . 12f %18.12f\n", k_t ->x, k_t->y, k_t->z); 
%18.12f %18 . 12f\n'', n_opp- >x, n_opp->y, n_opp->z); 

%18 . 12f %18 . 12f\n", S_i->x, S_i->y, S_i->z); 
#endif 

//determine case refraction or reileetion 
refr_refl(n2, n_opp, k_tang); 
length_k_tang=length(k_tang); 
length_k_t=length(k_t); 

if (length_k_t<=length_k_tang) { refraction 1; } 
if (length_k_t>length_k_tang) { refraction 0; } 

//calculate refracted/reflected Poynting vector and wave vector 
switch(refraction) 
{ 

case 1: printf("refraction: %1.1d\n\n", refraction); 
refract(n2, k_t, n_opp, S_i, S_ref, k_ref); break; 
//refraction 

case 0: printf("reflection: %1.1d\n\n", refraction); 
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} 

reflect(n1, k_t, n_opp, S_i, S_ref, k_ref); break; 
//reflection 

default: printf( 11 ERROR! in birefringe_snellius\n 11
); break; 

//plot cross section normal surface and Poynting vector for 
//medium 1 and 2 in 2 different figures in Matlab using ellipsplot.m 

plot(n1, n2, k, k_t, k_ref, n_opp, S_i, S_ref, refraction, fp, fp2); 

#ifdef DEBUG_BIR_SNEL 
printf( 11 k_ref_x: 
printf( 11 k_ref_y: 
printf( 11 k_ref_z: 
printf( 11 S_ref_x: 
printf( 11 S_ref_y: 
printf( 11 S_ref_z: 
#endif 

%18.12f\n 11
, k_ref->x); 

%18.12f\n 11
, k_ref->y); 

%18.12f\n\n 11
, k_ref->z); 

%18.12f\n 11
, S_ref->x); 

%18.12f\n 11
, S_ref->y); 

%18 . 12f\n\n 11
, S_ref->z); 

//copy new direction into old one 
copyv(S_ref,S_i); 

return(O); 
} 

void main() 
{ 

FILE *fp; FILE *fp2; 
fp=fopen ( 11 ellips. txt 11

, 
11 W 11

); 

fp2=fopen( 11 ellips2.txt 11
,

11 W11
); 

//Input: 

//definition medium 1 en 2 

ior *n1; 
n1 = new ior; 
n1->x = 1. 5000; 
n1->y = 4 . 0000; 

(n1->c).x -1.0; 
(n1->c).y 0.0; 
(n1->c) .z 1.0; 

ior *n2; 
n2 = new ior; 
n2->x = 2.0000; 
n2->y = 5.0000; 

(n2->c) . x 1. 0; 
(n2->c) .y 0 . 0; 
(n2->c) . z 1.0; 

if (n1->x==n1->y) {(n1->c) . z=O.O; (n1->c) . x=O . O;} 
if (n2->x==n2->y) {(n2->c).z=O.O; (n2- >c ) . x=O . O;} 

//define incoming Poynting vector and normal of plane 
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I/no 
I/ne 
//c-axis 



} 

A. Algorithm code in c 

vect *S_i; 
S_i = new vect; 
S i->x -1. 000 ; 
S_i->y 0.0; 
S i->z 0.8800; 

//Tracing routine: 

vect *n_opp; 
n_opp = new vect; 
n_opp->x 0.0000; 
n_opp->y 0.00; 
n_opp->z 1.00000; 

printf("Author: Maarten Sluijter July 2005.\n\n"); 
birefringe_snellius(n_opp, S_i, n1, n2, fp, fp2); 

//Output: S_i (ellipsplot.m) 

fclose(fp); 
fclose(fp2); 
getcharO ; 
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Appendix B 

Reflection 

In this appendix, an example of refl.ection at a birefringent interface will be 
given . In addition, a special case of refraction is examined . 

Figure B.1 shows a situation where an incident Poynting vector is refl.ected . The 
figure shows a cross-secbon of the normal surface with the plane of incidence 
for the incident medium. The incident Poynting vector is depicted in the upper 
part of the figure and the refl.ected Poynting vector is depicted in the lower part 
of the figure. T he relevant parameters are listed below the figure . Note that for 
the refl.ected Poynting vector , the sign of the inner product given by equation 
5. 14 in section 5. 1 is changed. 

Figure B.2 shows a situation where an incident Poynting vector is refracted . 
T he upper part of the figure shows a cross-section of the normal surface with 
the plane of incidence for the incident medium. T he lower part of the figure 
shows a cross-section of the normal surface with the plane of incidence for the 
final medium. The incident Poynting vector is depicted in the upper part of 
the figure and the refracted Poynting vector is depicted in the lower part of the 
figure. The relevant parameters are listed below the figure. 
In this case, the sign of the inner product given by equation 5. 14 is conserved, 
as expected. However, the sign of the x-component of the refi:acted Poynting 
vector is changed. This result is rather counter intuitive, since we would expect 
the sign of the x-component of the refract ed Poynting vector to be conserved. 
However , given the present situation of figure B.2, the result seems perfectly 
leg al. 
This situation is merely given to indicate the diversity of situations that can be 
created using the derived algorithm of section 5. 1. 
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Figure B.l: Example of reflection, plotted in Matlab. The incident medium 
is defined by n 0 = 1.500, ne = 3.000, c = (0.2 , 1.0, 0.0) and the final medium 
by n 0 = 1.000, ne = 1.000, c = (1.0.1.0, 0.0) . The normal of the interface 
is given by îi = (1.0, 4.0, 0.0). The incident normalized Poynting vector is 
S; = (0.71, 0.71, 0.00) and the reflected normalized Poynting vector is S,. = 
(0.34, - 0.94, 0.0). 
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B. Reileetion 
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Figure B.2: Example of refraction , plotted in Matlab. The incident medium is 
defined by n a = 1.500, n e = 4.000, c = ( - 1.0, 1.0, 0.0) and the final medium 
by na = 2.000, n e = 5.000, c = (1.0, 1.0, 0.0). The normal of the interface 
is given by îi = (0.0 , 1.0, 0.0) . The incident normalized Poynting vector is 
Si = ( - 0.75 , 0.66, 0.00) and the refraeted normalized Poynting vector is S,. = 
(0.39. 0.92, 0.0). 
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