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ABSTRACT

Wireless sensor networks (WSN’s) are an upcoming technology that integrates miniature computers,
called nodes, into an environment. They are generally used to autonomously monitor an
environment and either report data or take an action. An important challenge in applying WSN’s in
practice is programming them. Current programming models are either on a low abstraction level or
can be used only for homogeneous WSN’s, in which all nodes are the same. Thus, especially
programming heterogeneous WSN'’s, which are required for many applications, is difficult. The
programming model described in this report provides the option of programming heterogeneous
WSN’s on a higher abstraction level without a strong increase in energy usage. When implemented,
more types of WSN-applications can be programmed quicker.

For developing applications for a WSN, we created an event-based language that abstracts over the
network, but offers control over individual nodes. For the crucial deployment phase, in which an
operational system is created from the developed code, a schema was devised that permits different
methods of deployment. This offers additional trade-offs for cost and flexibility. For the run-time
phase, a process was designed that offers concurrent execution of branches instead of a sequential,
instruction-based interpreter. This reduces waiting time and potentially energy usage.
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1. INTRODUCTION

Wireless sensor networks (WSN’s) are an upcoming technology that change the way systems can be
integrated into an environment. They consist of miniature computers called nodes, which have the
ability to measure data from their environment, to wirelessly communicate with other nodes or a
base station, to perform computations and in some cases to influence their environment. When
combined, the WSN that emerges can monitor an environment and autonomously decide to report
certain data to its base station or to take some action.

Drivers

Besides monitoring and possibly controlling an environment, the general idea for WSN’s contains
some other aspects as well. They should be capable of being deployed into environments that are not
easily accessible. Therefore, the network should be able to function without physical human
accessibility for a long time, often years. This puts strict requirements on its energy consumption and
robustness.

Another aspect is that WSN’s should be very well integrated into their environment. A vision is that
they should become ‘smart dust’; nodes should be spread around an environment in large amounts.
This places restrictions on nodes’ size and cost. It also implies that nodes can be scattered into an
environment and made to work quickly. This should be achieved by making WSN’s easily applicable
to a variety of contexts.

These drivers, especially the focus on long lifetime, justify taking an approach that differs from the
established methods from PC- or common embedded technology. By taking into account the type of
applications that WSN’s are developed for, the requirements can be served in a better way.

Current usage

Currently, WSN’s are deployed mostly in a few experimental settings. An example is ZebraNet, where
the WSN consists of zebra tracking collars which are cheaper and can observe more than previous
monitoring systems. Another example is the LOFAR-Agro project that deploys nodes to detect
conditions for a certain potato-disease. In PIPEnet, the WSN is used to detect water levels, flow, leaks
and bursts in water mains.

Focus

Many of the current WSN’s are homogeneous, which means that all nodes have the same hardware
and software. The Wirelessly Accessible Sensor Populations (WASP)-project, where this thesis
contributed to, has a focus on heterogeneous WSN’s. In such networks, nodes can be equipped with
different hardware and perform different tasks. Three cases considered in this project are cow herd
health monitoring, elderly care and assisted road transport. In the cow herd monitoring scenario for
example, a cow can be monitored by a pH-sensor in the stomach, a temperature sensor in the ear, a
movement sensor around the leg and a position detector around the neck.

Challenges

An important challenge in increasing the feasibility of WSN’s is that of increasing their
programmability. This will allow them to be more easily deployable and flexible. To influence this, an
adequate programming model should be created. Currently, multiple programming models exist that
aid in development of applications for WSN’s. Languages that offer the greatest amount of
abstraction are the network-centric programming languages. These allow the programmer to
program the behaviour of the network as a whole, instead of programming the behaviour of single
nodes. However, many of these languages do not support the heterogeneity required by, for example,
the WASP-project. There is also a split between node-independent domain-specific languages, which
offer high abstraction, but little control over execution and more general node-dependent languages,
which offer significant control over execution, but less abstraction. Additionally, many of the useful
concepts and ideas that occur in different languages do not occur in a single language.



Goal

In this thesis, a programming model for heterogeneous WSN’s is described that addresses the
aforementioned gaps. Specifically, the goals of the WASP-project are taken into account. Therefore,
the programming model follows an event-based approach. It is constructed through a design-based
approach with deployability, flexibility and lifetime as main drivers. Besides specifying how to
program a WSN, we also describe how to map such applications to individual node behaviour.
However, the focus is on programming behaviour of the WSN, not its raw functionality. Additionally,
its operation in lower layers, such as those related to networking, is not described.

The programming model will cover the three phases from getting source code to an operational
WSN: development, deployment and run-time. In each of these phases, distinct design choices have to
be made. For the development-phase, the choices are primarily around the programming language
that will be used, with focus on the abstraction level and the type of concepts. The choices for the
deployment-phase revolve around the level of reprogrammability of the node and how this is
achieved. For the run-time phase, we describe how the operational execution can be performed
efficiently.

Contributions

This is an improvement to the status quo in several ways. Currently, the choice is either between
using homogeneous WSN’s or lower-level programming. The programming model described here,
provides the additional choice of high-level programming of heterogeneous WSN’s. Thus, when
implemented and used, more kinds of WSN-applications can be programmed quicker.

For the development phase, a programming language has been developed that offers both high
abstraction and a level of control over execution in heterogeneous WSN’s. For the deployment phase,
a schema was devised that permits the programming model to be used for different methods of
deployment, each with a different trade-off. For the run-time phase, a process was designed that
offers concurrent execution of branches instead of a sequential, instruction-based interpreter.

Overview

In Chapter 2, an analysis is provided of WSN domain. It also includes related work on WSN
programming models and the problem statement. The global design, in which the most important
design choices are discussed, is described in Chapter 3. The following three chapters describe more
detailed aspects of the design. Chapter 7 provides an example of how the programming model can be
applied to a case. Contributions of this thesis and future work are described in Chapter 8.



2. ANALYSIS

This chapter provides an analysis of wireless sensor networks and states the problem that will be
addressed in this thesis.

Wireless sensor networks consist of miniature computers, equipped with sensors, a radio and a
battery. The network also includes base stations or gateways which connect the WSN to another
network (such as the internet). The nodes can perform the following four functions:
e Measuring: Through the sensors, extract data from the environment (such as temperature,
humidity or light intensity).
e Computing: Through a processor and memory, perform computations on data (such as
averaging, FIR’s or other algorithms).
e Communicating: Through the radio, transmit and receive data to and from other nodes or a
gateway.
e Actuating: Through actuators (if available), influence their environment (such as turning on
a light).

As nodes are often deployed in situations in which cabling is difficult, receiving power from a cable is
infeasible as well. Therefore, they are equipped with a battery and sometimes with equipment for
energy scavenging (such as a solar power panel).

Generally, the nodes are intended to be deployed on a variety of scales (from less than ten to
thousands) to monitor an environment. When certain events of interest occur in the network, a
report should be sent to the gateway or an actuator should be activated. Determining whether the
event is of interest and gathering the required data may require data from multiple nodes around the
network. Alternatively, the network may send data to the gateway upon user request.

The key drivers of wireless sensor networks are discussed in the next section. Subsequently, an
overview of the current WSN architecture is provided. This is followed by current real-life examples
of WSN usage and the role of the key drivers in these cases. An analysis follows in which aspects that
still can be improved are highlighted. Then, the focus is set to programming models and the current
state of these in WSN’s. Finally, the problem statement of this thesis is described, which also limits
the scope of this thesis.

2.1 Keydrivers

WSN’s are driven both by a market demand of such applications as well as by a technology push. The
emerging technology is increasing miniaturization of computer technology and the market demands
for it are various. The technology is demanded for usage in military, agricultural, environmental and
industrial applications. As it is an emerging technology, the actual future usage of WSN’s is still
somewhat unclear. However, some general patterns emerge in the projected visions for usage.

In general, the focus of WSN’s is on monitoring their environment and reporting certain interesting
data to one or more base stations or gateways. Additionally, some WSN’s may also perform some
control over their environment instead of purely reporting.

From the projected application areas, a set of key drivers can be derived which appear to form the
most important factors in the research and development of wireless sensor networks.

1. Longlifetime: The WSN should perform its task for a long time; preferably years. Due to its
intended usage in difficultly accessible locations (near volcano’s, on zebra’s, in cow’s stomachs),
the network should be able to operate for a long time without on-site maintenance. This results
in a demand for long life time. For WSN’s, the concept most often used is that of ‘energy’. A node
usually receives its energy from a battery and consumes it by performing any of its four
functions. Energy usage must be minimized for lifetime to be maximized.



2. Low cost: The WSN and especially its elements should be low cost. One of the visions for WSN’s
is that they should be seen as ‘smart dust’; nodes should be able to be distributed in an
environment in large amounts. As WSN’s are projected to become part of daily applications, the
network itself should be low cost as well.

With low cost, both low cost of purchase and low cost of maintenance are meant. The low cost of
purchase implies that both cost of material and cost of development should be kept low.

3. Ubiquitousness: The WSN should be able to gather information from all around the
environment. The projected usage is that of creating ‘intelligent environments’, which implies
that node should be easily integrated in an environment. Another intended usage is that of
monitoring places that are difficult to access.

4. Easily deployable: A WSN should quickly and easily be deployed to solve a problem. In the
concept of ‘smart dust’, the idea is contained that nodes can be scattered in an environment.
Though usually the focus is on deployability of the hardware, the software should be just as
deployable for it to be useful. Deployability would then include the software development time
needed to use the WSN for the application. Thus, we can summarize that the network should be
easily deployable.

5. Flexibility: WSN’s need to address a variety of contexts. The concept of WSN’s is intended as an
‘all-in-one’ solution for different monitoring-and-reporting applications. The same concepts that
apply for a forest fire monitoring application should apply to an elderly people monitoring
application. This results in a demand for flexibility.

6. Robustness: WSN should be able to continue to operate correctly when problems are
experienced. As WSN’s are intended to be embedded in physical environments, various things
can occur which can inhibit communication or the operation of nodes. The network as a whole
should not be impeded. This is a requirement for robustness.

[t may be argued that these goals can be accomplished by using established methods from computer
science. However, the specific configuration of goals and constraints seem to justify new approaches.
In particular, the concept of ‘energy’ is not one that is frequently addressed in established methods.
Though there is a relation with ‘performance’, ‘energy’ gives a focus on lifetime. The combination of
the focus on ‘low cost’, low energy’ with specific attention to monitoring-and-reporting applications
open up the possibility of creating specific methods which serve these requirements.

By considering the specific contexts WSN'’s operate in, the requirements can be adhered to in a much
better way than by using general techniques. This can be achieved by cross-layer optimizations that
take into account the specific application.

The demand for these requirements is currently being addressed by certain technology. The general
structure of this technology is described in the next section.

2.2 WSN architecture

In this section, the general architecture of WSN’s is described by discussing the network structure,
hardware- and software-elements of nodes and the application life-cycle. This knowledge is
necessary for a proper understanding of the rest of the document,

The general structure of a WSN is shown in Figure 1. The basic element of a WSN is the node: a
miniature, resource-constrained computer (explained later in more detail), which can communicate
wirelessly with other nodes and a gateway. This gateway is usually a more powerful computer which
provides the connection between the user and the network of nodes. This connection can be direct
(user operates the gateway) or indirect (the gateway is connected to another network such as the
Internet). Depending on what is required by the user, the gateway can be a full-fledged PC or a PDA.
In some cases, multiple gateways may form part of a WSN.



Wireless sensor nodes

Gateway

User PC User PC

Regular network

Figure 1: A WSN consists of nodes and one or more gateways, connected to a user network

As explained previously, the nodes that form the most important part of the WSN perform mainly
four functions: sensing, processing, communicating (both sending and receiving), and (possibly)
actuating. The sensing function implies that the node captures data from the environment by means
of sensors. This captured data is subsequently processed by the node and depending on the result an
actuation or communication is performed. Additionally, the node can receive communication from
other nodes and respond to that if required. This behaviour is shown in Figure 2.

Actuating
Communication Processing Communication
(in) (out)
Sensing

Figure 2: Behaviour of a node

This behaviour is accomplished by using the hardware of the node shown in Figure 3. The node
comes equipped with a number of sensors and actuators for performing the sensing and actuating.
For processing, the CPU and on-board memory is used. Many current nodes have separate program
and data memory, corresponding to the Harvard architecture (1). This impacts the
reprogrammability of nodes. To perform communication, nodes make use of some type of radio.
Often this radio is relatively short-range, covering in the range of tens to hundreds of meters in good



conditions. As a wireless node is not connected to an electricity grid by means of a cable, it needs to
receive its energy to power itself through either a battery or energy scavenging. This last option
means that the node extracts energy from its environment by using energy sources such as light or
motion. Generally, communication is the most energy-expensive function of a node. (2)
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Data memory
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I I I
| |
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\ . [ 1 | 2 I [
| Energy scavenging | i I |
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b b

Figure 3: Hardware elements of a node

To control that hardware, a software stack is required. The general structure of a WSN software stack
is shown in Figure 4. At the lowest level, the node operating system is located. It provides basic
abstractions over the hardware, such as the sensors and the radio. Usually, the MAC-protocol of the
network communication is implemented on this level as well. Though not occurring always in WSN’s,
a middleware can be run on top of the OS. This middleware can provide some higher-level
abstractions, which may include functions such as routing and aggregation. These higher-level
abstractions allow applications to be developed in less time and make them more maintainable and
portable. A number of WSN middlewares are discussed in 2.3.4. Either on top of the middleware or
directly on top of the OS, the application is run. With some middlewares, this application is not
directly executable code, but consists of instructions in the data memory that are processed by the
middleware.

Application
””””””””””” Middleware
Aggregation
Routing Services
Node operating system
MAC Drivers for hardware

Figure 4: Software elements of a node



To achieve such a fully operational node, an application has to go through the steps shown in Figure
5. Two options for such an application life cycle are shown. In both, the application is first developed
by writing code in a programming language. Subsequently, the code is compiled into some form. In
the left life cycle, it is compiled into code that is placed in a node’s program memory and can be
directly executed. Transferring the code from a PC to the node in this life cycle is usually performed
by flashing the node’s memory. This option is the only possibility when the node’s operating system
does not permit on-the-fly reprogramming and requires a direct, wired connection (e.g. through USB
or serial cable) between the node and the PC. When the node OS is capable of reprogrammability, the
application can be inserted remotely as well.

In the right life-cycle, the compilation step does not produce code that can directly be executed, but
creates some form of bytecode. This bytecode is then transferred wirelessly to the node which runs
an interpreter which is capable of interpreting that code and translating that into node behaviour.
The bytecode is placed into the node’s data memory and therefore does not require the program
memory to be changed.

ﬂser PC \ Gser PC \

Development Development
Compilation Compilation

Node ‘ ‘ @ode | \

Interpretation

<

Execution

- /

Figure 5: Two options for a WSN application life cycle. Left: direct transfer of executable code to a
node. Right: intermediate, not directly executable code is transferred to a node, interpreted and
then executed.

Execution

In both life cycles, the three phases shown in Figure 6 can be distinguished. First is the development-
phase in which the application code is written in a programming language. Secondly, this code is
translated or compiled to some form and is transferred to one or multiple nodes in the deployment-
phase. This phase is especially important for WSN’s as code needs to be distributed over nodes in an
efficient way and choices around reprogrammability are made there. Thirdly, the transferred code is
executed on the node such that it is in an operational state.
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Figure 6: Basic WSN application life cycle

In many WSN’s, the same application is run on all the nodes of the network. For example, the same
temperature sensing and reporting application is executed on all nodes. The hardware platforms of
the nodes are the same as well. Such a network, as shown in Figure 7, is known as a homogeneous
WSN. (3) In extreme cases, the nodes do not even possess a unique ID though this is usually not the
case in practice.

In heterogeneous WSN's, nodes can be different from each other in both hardware and software. In
terms of hardware differences, nodes can for example have different sensors, processors, memory
size, strength of radio, and battery lifetime. In the case of different processors, the software on those
nodes is necessarily different, but in other cases the software can be different as a design choice. For
example, a node with a long lifetime battery and strong radio may be used to collect data from other
nodes in its environment which it transmits to a gateway further away. A WSN can also be
heterogeneous purely on software-level; though the hardware platforms are the same, some nodes
may be easier to recharge then others. In those cases, a design decision could be to run more

resource-intensive software on those nodes than on others.
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Figure 7: A homogeneous WSN and a heterogeneous WSN. The homogeneous WSN contains only
nodes with similar hardware and software. The heterogeneous WSN has nodes different in
hardware (size, power, radio strength, sensors) and software (funactionality and behaviour).

To reduce the necessity of hardware resources and increase the system lifetime in WSN’s, often clear
conceptual strategies and abstractions are sacrificed for increasing the performance. This can occur
through cross-layer optimization in which actions occurring in one layer or protocol take into
account knowledge from other layers. This type of optimization is widely studied and considered
important in WSN’s. (4) (5)

This section introduced some of the basic concepts of wireless sensor networks. In the next section,
the current practice of this technology is described.



2.3 Current state

The pursuit of the drivers has led to a number of hardware- and software solutions that are being
used in real-life applications.

2.3.1 Hardware platforms

Currently, in pursuing these goals, these current hardware platforms are available. These adhere to
the previously described architecture and provide an idea about the scale of hardware resources
generally available on a node.

Table 1: Available hardware nodes (Source: (1))

Mote type Mica Mica2Dot Mica2 Telos ANTS Imote uPart
Year 2001 2002 2002 2004 2007 2004 N/A
Microcontroller
Type ATmegal28 TI AT ARM7DTMI | rfPIC12F675
MSP430 megal28
Program memory 128 KB 48 KB 128 KB 512KB 1.4 KB
RAM 4 KB 10 KB 4 KB 64 KB 64 Byte
Frequency 8-16 MHz 16 MHz 8-16 MHz 12 MHz 4 MHz
Storage
Chip AT45DB041B ST N/A
M25P80
Size 512 KB 1024 KB N/A
Communication
Radio TR1000 CC1000 CC2420 (Bluetooth) (rfPIC)
Data rate 40 kbps 38.4 kbps 250 kbps | 20 kbps 1 Mbps 40 kbps
Power
Minimum supply 2.7V 1.8V N/A 3.6V 3V
Total power 27 mW | 44 mW | 89 mW 41 mW N/A 21 mW 35 mW

It can be seen from Table 1 that nodes can have between 1.4 and 512KB of program memory and
between 64B and 64KB of RAM. The clock speed of their CPU’s is between 4 and 16 MHz.
Communication is performed at a rate between 20kbps and 1Mbps.

There is a large difference between different types of nodes and each is suited
for a different type of application. The tiny pPart-nodes for example may be
more suitable to ‘smart dust’-type of applications than the Mica2’s, which may
be more suited for more intensive computation and communication. In the
future, different types of nodes may be in one network to form a WSN that is
heterogeneous in hardware.

These and other nodes are currently in usage in the applications discussed in
the next section.

Figure 8: pPart
node

2.3.2 Current applications

| i _ Though the technology is not in wide use yet, there are a
Tekk KS-960 Data Radio . . . a7
| few applications which already utilize the technology. For

more information on these examples and others, we refer
to (1). An area which has already seen a number of
examples is the tracking of wildlife. Princeton University
T : has developed such a WSN for tracking of zebra’s called

Short Range Radio ZebraNet. (6) With this WSN, a number of zebra’s are
outfitted with custom tracking collars with a weight of
1.2kg containing a custom-made node with a GPS-device.
J The position of the zebra is being tracked continuously by
I8 the node and is irregularly offloaded to a mobile base
Figure 9: Tracking node for ZebraNet station.
(39)
10

PicoPacket
Packet Modem




Currently, the number of zebra’s being tracked at the same time is around ten. The system is
powered by a battery and a solar panel, providing a lifetime of multiple months (5 days without
recharge by solar panel). For tracking of wildlife, the alternatives of flying over the area and detecting
ping signals and GPS with satellite uploads were considered and judged infeasible. A WSN was
chosen for this application as these systems would miss interesting events and are much more
expensive.

A different
area which is a
popular
research area
for WSN’s as
well is
agriculture
monitoring. An
example of
this is the

|

Figure 11: Node of the Automated Automated

Agriculture System (7) Agriculture (6)
System of the Information and Communications University in

Korea.(7) This WSN is used for monitoring the light, temperature and humidity of a greenhouse and
controlling the intensity of the lighting.

Another WSN is the LOFAR-Agro project by TU Delft which focuses on detecting conditions for the
occurrence of the potato-disease Phytophtora.(8) This allows the farmer to only start treating the
field with pesticide when there is a risk of the disease occurring. One hundred nodes were installed
for the deployment. The project mainly had problems around the reliability of the nodes. (9) A
wireless network is required for such a situation as cabling is expensive and can be damaged by
vermin and machinery.

A different class of WSN’s is the monitoring of the ) mmv
structural integrity of objects. There are some i @ Mote
applications which, for example, monitor buildings. Pressure
PIPEnet is a WSN which monitors the flow of water in
pipelines to detect water levels, flow, leaks and bursts.
(10) A challenge in this project is the complexity of the
calculations involved. The battery lifetime is currently
limited to 50-62 days. To ease the programming of the
signal processing calculations, a software toolkit was
constructed through which a data flow can be given as .
input and which is executed on the WSN gateway. = =

Figure 12: PIPEnet sensor and node (10)
In these projects, the key drivers mentioned in 2.1 can be recognized, though with different priorities
in each project. For the ZebraNet-project, lifetime, ubiquitousness and robustness are of primary
importance resulting in effort spent on decreasing the size and weight of the node and energy
conservation and scavenging. For the PipeNet-project, deployability and flexibility had a higher
priority as the calculations are still being developed and need to be easily adaptable.

|

2.3.3 Keydrivers in current WSN’s

To increase the lifetime, in most projects attention has been paid to improving battery technology,
introducing energy scavenging techniques and especially to introducing energy-saving protocols. In
WSN’s, communication requires the most energy. Therefore, most effort is spent to reducing the
energy spent there by lowering the radio output power and transmitting only when useful, Secondly,
processing takes energy as well, so the algorithms which perform calculations are optimized for
resource efficiency. In WSN’s there is always a trade-off between calculating locally and executing the

11



calculation on a different node or gateway. Which option is most energy-efficient depends on the
specific situation.

To decrease the cost of the system, the main focus has been on decreasing the cost of nodes. This has
been achieved by e.g. using cheap radios and limiting memory.

One of the most important ways of increasing ubiquitousness is making the communication between
nodes wireless. Especially in situations where the nodes are mobile this is a primary requirement.
Secondly, the size and weight of the nodes are limited. In ZebraNet for example, the node could only
be deployed on zebras if the nodes would not hinder the zebras. This factor is also dependent on the
cost and robustness of the nodes.

Physical deployability is another important factor with attention paid to properly attaching the
nodes to zebras in ZebraNet and adequately burying them into a potato field in the LOFAR-argo
project. To develop the software quickly, most projects use existing operating systems (like TinyOS)
and libraries. Though several middleware’s exist for WSN’s, their usage in research projects appears
to be quite low.

To increase the ease of flexibility of the WSN, attention has been paid to programming models. In
PIPEnet, a custom-made programming model for the gateways was introduced to facilitate signal
processing calculations.

The robustness of a WSN depends on the proper functioning of nodes and on functioning
communication between nodes. To prevent nodes from breaking down, they are often packaged well.
The robustness of communication is increased by using protocols which take the uncertainty of
wireless communication in the environment into account.

There are still several factors which limit the applicability of WSN’s to solve real-life problems. Those
problems can be expressed in terms of the previously mentioned key drivers.

1. Long lifetime: Currently, the lifetime of WSN’s is still limited. WSN’s operating for years without
maintenance is only possible with energy scavenging from solar power. Operating only on
battery power or using other means of energy scavenging has not yet been developed sufficiently
to support years of WSN lifetime.

2. Low cost: As WSN nodes are not yet mass-produced, the cost per node is still relatively high.
Current nodes are in the order of hundreds of euros per node.

3. Ubiquitousness: The vision of WSN nodes as ‘smart dust’ has not yet materialized. Increased
miniaturization is required to accomplish this.

4. Easily deployable: WSN’s are not yet easily deployed. One of the causes is that they are still very
difficult to program. Though there are many algorithms, protocols and middlewares available,
there is little integration of these as of yet. WSN programming also currently requires a lot of
specialist knowledge about specific hardware platforms, algorithms and protocols that is not
easily available.

5. Flexibility: Once a WSN is programmed for a certain task, it becomes difficult to make
modifications. The code is often programmed with much regards to very context-specific
performance and not towards flexibility. Often, the code is not easily transferred to different
hardware platforms as well.

6. Robustness: Currently operating WSN’s face difficulties around reliability. The difficulties of
wireless communication and nodes operating in harsh environments are still hard to overcome.

A number of these issues are related to programmability. Programmability is the degree of effort

required to program a system to perform a certain task. From the key drivers, especially the drivers
‘easily deployable’ and ‘flexibility’ are related to programmability.
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2.3.4 Programming models

Every system is programmed by using a programming model. A programming model is a set of
concepts, primitives and combinators to express a computation. (11) A programming language will
form part of the programming model, but ‘programming model’ is more general. They can operate on
different levels of abstraction. A programming model can for example be made to facilitate
programming a single processor, a single system or an entire network. For a programming model to
be usable, it should include a programming language and a mapping of a program to operation.

To improve the programmability (and thus deployability and flexibility) of a WSN, effort should be
spent on improving its programming model. Programming models used in other types of systems
(such as PC’s) are less suited for WSN’s as though in conventional distributed programming
individual machines are by themselves powerful systems, this is not true for wireless sensor nodes.
Additionally, much more than in regular computer systems the value of a sensor network comes from
collaboration among the nodes.(12) For optimal programmability and performance of WSN’s it is
necessary to match the concepts of the programming model with those required for a WSN
application.

There already exists work on programming models on wireless sensor networks. These have
differing goals, methods and levels of abstraction. Some programming models can work on top of
each other. A taxonomy of WSN programming models has been shown in Figure 13, which has been
cited in part from (13). Some aspects from the literature review are more explicitly described in (12).
For additional survey papers on current WSN programming models, we refer to (14).

WSN
programming
models

. Distribution &
Network-centric Node-centric ‘ Composition ‘ ‘ .
Safe execution

system

Automatic

L ‘ Thread-based ‘ ‘ Event-based ‘
optimization
[ [ [ [ [
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Figure 13: Taxonomy of wireless sensor network programming models (source (in part): (13))

Operating system

On the lowest level of abstraction, there are the programming models associated with node operating
systems. The popular TinyOS-operating system is associated with the nesC-programming language
(15), which is based on event-based concurrency. In nesC, the programmer builds components along
with their interfaces, Applications are built by composition of these components. The operating
system is kept simple and does not provide the programmer with features such as memory
management or a scheduler. The level of abstraction is sufficient enough to be generally portable to
other hardware platforms.

FreeRTOS (16) is a more traditional operating system that features multithreading, memory
management and synchronization. Programming applications on top of this operating system is done
in C. Both these operating systems do not permit remote modification of running code. The SOS
embedded operating system (17) is designed for remote reprogrammability. By using a modular
structure, parts of the code in the program memory can be replaced remotely. It is programmed
using C.
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Support

The supporting programming models are built on top of an operating system to provide the
developer with some extra facilities and generally do not contain any major additional abstractions
over nodes or their sensor data. The programming languages specified under Composition,
Sensorware (18) and SNACK (19), provide the programmer with libraries through which
applications can be built on a higher level. Under distribution & safe execution, there are solutions
which provide solutions to remotely reprogram a node and to wirelessly distribute code over a WSN.

Maté (20), for example, contains a virtual machine running on TinyOS that executes code consisting
of special instructions. This allows for very compact applications and reprogrammability. It forms the
basis for the ASVM-approach (2), which proposes application-specific virtual machines, where
functionality available on a node is dependent on the specific application. Their studies indicate that
though their interpreter provides significant overhead, its effect on total system lifetime in common
applications is neglible due to the cost of other factors such as communication.

Impala (21) is a middleware which provides automatic run-time adaption to optimize performance,
energy efficiency and reliability. It is used in Zebranet. SwissQM (22) is able to provide methods for
compact code and reprogrammability using a virtual machine as well, but provides some additional
abstractions for communication and data acquisition. However, it is not intended that the developer
immediately develops for this virtual machine; the application is developed in a different language
such as TinySQL which is compiled into bytecode at the gateway.

Abstraction

The category Abstraction contains the higher-level programming models which provide abstractions
over nodes or their sensor data. The most important distinction here is of that between network-
centric and node-centric programming models. Network-centric programming, also known as
macroprogramming, allows “application designers to write code in a high-level language that captures
the operation of the sensor network as a whole.” (23), Thus, an application is specified as a task that
the entire network should perform. In contrast, node-centric programming means that the
application is specified in terms of behaviour of a single node. Additional information about this
distinction can be found in 3.1.1.

Within the node-centric languages, in which programming takes place on node-level, a distinction
can be made between data-centric and geometric languages. The geometric-centric languages
provide abstractions over nodes based on their location, while the data-centric languages abstract
over other types of data. A data-centric language, EnviroSuite (24), provides the programmer with an
abstraction over physical entities which the nodes track. This is performed by creating objects, to
which sensors can be linked through certain algorithms. It is en extension that can be added to
existing languages; it has currently been implemented on top of nesC. Hood (25), a geometric-centric
language, creates abstractions of neighbourhoods of nodes. Such a neighbourhood is defined by hop-
range from a node along with the data that should be shared in that neighbourhood. The
communication and synchronization is then abstracted over.

Within the network-centric programming languages, the node-independent and the node-dependent
languages can be distinguished. The node-independent languages abstract wholly over nodes; they
do not occur as a primitive in the language. In TinyDB (26) for example, the network is presented as
one database on which a user can perform SQL-like queries to retrieve information. Most of the logic
of the system is performed at the gateway, while the nodes themselves run very simple interpreters.
To make the abstraction towards a database, the assumption is made that each node has equivalent
capabilities (homogeneous network). Cougar (27) uses a similar approach.

On the other hand, we have the network-centric, but node-dependent programming languages. In
these languages, applications are programmed at network-level, but in which nodes occur as
primitives. In Kairos (13) for example, nodes are identified with an integer and operations can be
performed on lists of nodes. Some of the mechanisms offered are the identification of one-hop
neighbours, accessing a variable on a remote node and synchronization. The language itself uses a C-
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like syntax. Regiment (28) is a node-dependent language as well, but uses a functional programming
syntax. Nodes are represented using region streams, which are “spatially distributed, time-varying
collections of node state.” In the database-approaches such as TinyDB, the goal was to provide an
abstraction to the programmer to express sensing/monitoring-type of applications in. In contrast,
the goal of Kairos and Regiment is to provide a language to express a wide range of applications in,
including building routing trees or general parallel computations.

Conclusion

Concluding, it can be observed that there is a wide variety of available programming models for
WSN’s available. Differences between them can occur on purpose, level of abstraction,
implementation, restrictions and a variety of other points. In general, important trends appear to be
abstraction over the communication layer and offering reprogrammability through an interpreter.
However, even with this number of available programming models there are several aspects still
missing in the field.

For example, many of the macroprogramming languages treat the WSN as a homogeneous entity and
do not support WSN’s in which nodes with different sensors and different functionality occur
(heterogeneity). Additionally, on one hand there are the node-independent languages which offer
high abstraction and focus on monitoring applications, but offer little control over execution. On the
other hand, there are the node-dependent languages which offer significant control over execution
but offer less abstraction in order to support more general applications. There do not appear to be
programming languages with combine the ease of node-independent programming with the control
offered by the node-dependent languages.

Even though a union of all these programming models would offer quite an encompassing
programming model, the field suffers from a lack of integration. Important features such as data-
based addressing, reprogrammability, support for heterogeneity and macroprogramming do not
occur together. There appears to be room for a programming model which has flexibility in
reprogrammability and usage for different monitoring type of applications, can quickly be used to
assemble applications for easy deployment through high abstraction and which offers long lifetime
and low cost through low overhead. Addressing this gap is the goal of this thesis.

2.4 Problem statement

In this report, the goal is to develop a programming model for heterogeneous wireless sensor
networks with a mapping to individual node behaviour. This programming model focuses on
increasing the capability of WSN’s to be used for its purpose. To accomplish this, it should be
congruent with the WSN’s purpose and key drivers. Specifically, the programming model should
address the goals of the WASP project. As part of this project, an event-based approach should be
followed.

For the WSN’s purpose, the focus remains on the monitoring-and-reporting type of applications. The
WSN takes its input from sensing the environment, processing this data, and reporting it to a base
station or performing some actuation.

The programming model should contribute to the domain by addressing the previously discussed
key drivers. This can be achieved by adding little overhead and using energy-saving techniques to
keep the lifetime long. Low overhead should also result in keeping the nodes’ hardware resources
low and thus low cost. The deployability should be addressed by making the development time of the
software of the WSN as low as possible. Therefore, it is necessary to focus on easy programmability.
The programming model should also be flexible enough to fit into the variety of contexts WSN’s can
operate in. Additionally, it should incorporate trade-offs surrounding robustness and reliability.

Constraints

The programming model in this report will focus on programming the behaviour of a WSN on
application-level. The raw functionality, such as the sampling of a temperature sensor on a node, is
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assumed to be pre-programmed and usable by the programming model. Additionally, the layers
below the programming model (such as operating system and network stack, see 2.2) are assumed to
be in place. Additionally, routing or other network issues will not be addressed in this report.
Therefore, issues surrounding cross-layer optimization for this programming model will not be
discussed in-depth as well.

To construct this programming model, a design-based approach is taken. First, we determine what
needs to be designed for a WSN programming model. Subsequently, for each identified phase a
solution is presented with argumentation derived from the key drivers.

Description

As discussed in 2.2, a WSN consists of sensor nodes connected with user-systems through a gateway.
For a programming model, an application can be considered to go through three phases to go from
source code to working system. The common sequence of development is that of writing the code on
a user-system, compiling this to some form, transferring it to the nodes and executing it there. In this
process, we distinguished the three phases:

1. Development: The code is written.
2. Deployment: The code is transferred to the nodes in some form (can be compiled first).
3. Run-time: The code is executed on the nodes such that the node is in an operational state.

In each of these phases, distinct design choices have to be made. For the development-phase, the
choices are primarily around the programming language that will be used, with focus on the
abstraction level and the type of concepts. The choices for the deployment-phase revolve around the
level of reprogrammability of the node and how this is achieved. For the run-time phase, we describe
how the operational execution can be performed efficiently. In the next chapter, a global overview of
the design is provided. The design is described in more detail in the three chapters after.

In this detailed design, a programming language for a WSN will be provided with formal descriptions
of its syntax and informal descriptions of its semantics. A mapping will be provided by describing the

translation steps that are required to translate a program down to individual node behaviour.

A prototype x86-implementation of the compilers and interpreters are constructed as well to verify
the functional correctness of the model.
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3. GLOBAL DESIGN

In this chapter, the global design of the WSN programming model is discussed. For all the three
phases identified in 2.2 that bring an application from idea to operational system, the major design
choices of the programming model are described. First is the development phase, in which the
program code is written. When this is completed, deployment takes place. In this phase, the program
code is deployed onto the nodes and the nodes are deployed in the field. After deployment, the WSN
is fully operational in the run-time phase. All of these phases form part of the programming model.
More detailed design decisions made for the programming model are further discussed in chapters 4,
5 and 6.

3.1 Development

During the development phase, the applications are programmed by the developer. This requires
those applications to be in a human-readable form. Therefore, at this stage, they exist as program
code written in a human-readable programming language on a user-system. Therefore, the main

choices in this phase are around the design of the programming language.

Designing a programming language requires many choices to be made; our focus will primarily be on
the choices that are peculiar to WSN’s and less to the issues that are common to all programming
languages (such as typing). The most important choices are discussed in this chapter, while more
detailed choices are discussed in Chapter 4.

The first design decision that is discussed is around the level of abstraction of the programming
language.

3.1.1 Level of abstraction

As discussed in 2.3.4, there are several ways that a WSN can be viewed from a programming
language-perspective. When a WSN is viewed as a monolithic entity, as shown in Figure 14, this may
give rise to a node-independent macroprogramming language. Thus, the network is viewed as one
system without explicit distinctions between nodes. This generally provides a high level of
abstraction, as the nodes themselves are abstracted over.
Macroprogram The network becomes abstraction layer.

Such an abstraction may convenience developers who do
not wish to concern themselves with specific information
Gateway of nodes, but who are more interested in information
about the network. However, abstracting over nodes can

create difficulties when the developer requires insight
Compiled into the nodes to assign specific tasks to nodes with
WSN output macroprogram certain capabilities. Thus, for heterogeneous WSN’s, this

solution offers some difficulties. When an application is
written without regards to nodes and their capabilities, a
complex distribution algorithm for application parts to
(" wireless Sensor Network network is required. Especially for a dynamic network, in
which nodes can move, appear and disappear, this will
most likely cause significant overhead. To reduce the

i_» Node 41 need for such a complex algorithm, which will probably

have a significant negative effect on lifetime and cost, a
programming model with more control over nodes is
Node » Node considered.

. J

Figure 14: Macroprogramming
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Such a programming model could be achieved by
Gateway viewing the WSN as a collection of nodes. This vision
can be developed towards a node-based programming
model that is illustrated in Figure 15. This model offers
alower level of abstraction than macroprogramming,
but is advantageous when more insight into nodes is
WSN output required. It also offers more control over where
applications are executed. However, performing
functions over the entire network is difficult as every
action is viewed from the perspective of a single node.
Node . s

This does not have such a positive effect on the ease of
l—» 41 programmability of the network as

Compiled macroprogramming. Especially in a heterogeneous
”%‘:g;g?ﬂed’ Node < Node | \SN, where one conceptual application for the
network needs to be written as multiple applications

for different nodes, large difficulties for
programmability remain.

Figure 15: Node-based programming

A compromise is node-dependent macroprogramming. In this model, programming still takes place
on a network-level, but the programmer has a level of control over what happens on which nodes.
Therefore, an application can still be developed as one application, easing the programmability.
Additionally, giving some control over nodes to the developer reduces the need for complex
distribution, thereby keeping the overhead limited. For these reasons, we choose the network-
centric, node-dependent option for the programming model. However, we consider the option of a
node-independent model to be preferable if the problem of distribution can be solved with low
overhead.

3.1.2 Concepts

As discussed before, a programming model is a set of concepts, primitives and combinators to
express a computation. In this section, we describe the decisions around the most important
concepts and primitives of the programming model.

Events

First, we determine what the actual function of an application in the programming model is. An
application we will consider to be a task that the user wishes to perform. We distinguish the two
basic options for initiating an action in the network. (29) In the demand-driven approach, an actor
external to the WSN submits a query to the system. The WSN responds to this query by performing
some actions and returning the result. In this case, the query can be considered as an application.
However, with WSN’s we are often only interested in data when something of interest occurs in the
network.

For such cases, there is the event-driven approach in which the WSN detects events of interest and
acts appropriately to it. Originally demand-driven systems such as TinyDB have also included an
option for an event-based approach. Due to the importance of events in WSN’s and the goals of
WASP, we shall focus on this approach.

Often in event-based approaches, the applications are specified using Event-Condition-Action (ECA)
rules. The event-part specifies the event that triggers the rule, the condition specifies the state the
system should be in for the rule to fire and the action-part specifies the action that should be
performed when the rule fires. However, in WSN’s, the actual event-part is usually a timer-event that
triggers an update of sensor values (there are very few other actual events occurring in the system).
The associated condition is then a predicate on those sensor values which indicate whether it has
been an event of interest and if action should be taken. As this pattern is so common, we can
combine the event and the condition into a single event condition. This event condition is triggered
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when its condition becomes true. The action-part should trigger the sending of a certain message or
an actuation.

Though we considered the event-part of the ECA-rule as an event of the system, it can also be
considered as an event in the physical environment that the WSN is monitoring (e.g. “explosion
occurs”). Such an approach is considered in (30). However, this still requires a definition in terms of
system events and conditions of how the physical event is actually detected by the WSN. Though the
additional layer of abstraction becomes useful when complex events (for more information see: (31))
in the physical world are considered, we currently disregard this within this report. This abstraction
layer can be accomplished by creating physical event abstractions from system event conditions.

Subscriptions and services

In a monitoring application, an event occurring in the WSN usually results in a message being sent to
the user. However, there can be multiple users of a system behind different gateways. Additionally,
the occurrence of an event may have to be communicated to a different node. Therefore, a node has
to be aware of who is interested in the event. This can be accomplished by maintaining a list of
subscribers: nodes or other systems that should receive notification when the event occurs. This
introduces the publish/subscribe paradigm into the programming model, which is suited for loosely
coupled systems.

Such a subscription should be attached to some entity; it could for example be attached to a node, an
event or an application. A node, however, could detect multiple events of which only one may be of
interest to a subscriber. The application is too large of an entity as well; nodes should be able to
subscribe to events that form part of an application. Therefore, a subscription should be attached to
an event in a way. However, the event is not the only part of interest to the subscriber; the action
(often a message) is important as well. Therefore, we introduce the concept of a service which
combines the event condition and the action.

A service is defined by (32) as such: “a mechanism to enable access to one or more capabilities, where
the access is provided using a prescribed interface and is exercised consistent with constraints and
policies as specified by the service description.” This is congruent with the concept of service that we
use: the event with the action is the capability that is accessed and the interface is the subscription
and other messages sent by the triggering of an event. Additionally, the service can be linked to the
node which should be responsible for executing the service.

The part about constraints and policies was not addressed yet. For a WSN service, such policies and
constraints relate to the extra-functional aspects of the service, which are the properties related to
sampling and communication. For sampling, the period by which it samples is of prime importance.
Often, the user does not require a very accurate sampling period. Therefore, to allow some freedom
for optimization by the application, a minimum and a maximum sample period should be specified.
For communication, the user is interested in when he receives the message after an event has
occurred. This can be specified as a deadline, which is the maximum time a message is permitted to
take. Additionally, to aid the system in making trade-offs between assigning resources to
applications, priorities may be specified over the execution and the communication. These
parameters can be used as well to influence the robustness of the system by specifying, for example,
the drop policy for packets. By specifying such extra-functional properties, no decision is made by the
developer here on which protocols and algorithms to use to accomplish this. These decisions are to
be taken on a different level. How this can be performed is out of the scope of this report.

These extra-functional properties of the service could be specified as properties of the service itself.
In that case, a subscription is always for that service with the same extra-functional properties.
However, in many cases a user is interested in an event, but with slightly modified parameters. When
these parameters are fixed as part of a service, a new service needs to be defined with those modified
parameters, causing inefficiency. To prevent this, these parameters can be made specifiable through
the subscription. In such a way, the subscriber can get different extra-functional demands of the
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same service without reprogramming. This increases flexibility and further abstracts the concept of a
service without expressiveness being lost.

Functions and remote services

Within the service, an event condition and action is specified. A question arises on how to express
these. What should be expressed is some composition of the basic functionality of the WSN. In the
event condition, this functionality should be composed in a way that it implies a condition and in the
action-part it should be composed in such a way that an action is undertaken. Thus, what is required
is an appropriate abstraction of functionality. In our problem statement described in 2.4, we assumed
that the programming model is intended for programming behaviour on top of in-built functionality.
For this in-built functionality, we will consider functionality such as sampling a sensor and sending
data to subscribers as this will be common to most applications. These can be abstracted over by
means of a function, which takes parameters as input and which possibly returns a value.

Subsequently, it has to be decided what else should be abstracted as a function and what should arise
as behaviour from a composite of functions. For example, functionality such as averaging of data over
multiple nodes or over time is both complex and common. For ease of programmability, it would be
advantageous if functionality that is commonly used in applications is expressed in terms of a
function. However, this has a negative effect on cost (when the WSN itself has to contain a large
number of pre-programmed functions, this requires memory) and flexibility (when only a limited
number of functions is offered, not all computations will be expressible).

As our main focus is on monitoring applications, we choose to sacrifice flexibility by offering only
functions related to this domain. Additionally, the functions available in the WSN can even be limited
to the functions related to that sub-domain. The concept that emerges then is rather similar to that of
ASVM (2) discussed in 2.3.4. Furthermore, in a heterogeneous WSN not all functions have to be
available on all nodes. This is shown in Figure 16, where we have nodes with different functions
available to them. A node which has very few resources available due to a required low size for
example, can be equipped with only basic functions and a sensing function (such as pH). Other nodes,
which have less stringent resource requirements, can be equipped with more functions. Such a node
with sufficient memory and battery available can for example contain an aggregation function and
algorithmically more costly functions such as FIR filters or Fast Fourier Transforms. Distributing
functions in such a way help increasing the total system lifetime and keep the required resources per
node low.

Temperature;
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Position
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Figure 16: Nodes with different functions on each node
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The alternative is to use more general functions than the domain-specific ones we propose by for
example permitting C-style programming. Then, more complex computations would be codified in
the programming language. Looking ahead at implementation, this would most likely imply that
larger messages need to be sent to the nodes and that a possible interpreter has more instructions to
process. (2) advises against generalized operations to express complex computations for this reason.
Therefore, we choose to use domain-specific functions as building blocks. Though, when kept simple
and used limited, it would be an appropriate way to increase the flexibility without enduring too
much additional cost. However, we would propose this only as an extension of the original domain-
specific functions and not as a replacement. This addition will not be discussed within this thesis.

As indicated, in some cases a service is executed on a node which does not contain a particular
function, as for example an aggregation function. In other cases, a service may require a sensor value
(also a function) from another node. To accomplish this, a service should be created that offers this
function so it can be subscribed to. Accessing the values that the remote service delivers could be
accomplished through manually defining a service and subscription for the remote node. However,
this would be more similar to the node-based programming approach that was decided against.
Therefore, we introduce the option of accessing a remote function within a service that automatically
generates a service and subscription for that remote function. With such a mechanism, the entire
application is still kept together in one developer-defined service.

As the language will be based on functions, with preferably avoidance of too many operations of a
general nature, it naturally lends itself to a primarily functional language. As the functions we
propose to use are relatively complex, they should be sufficiently configurable. Thus, functions might
require a large number of parameters. As often default parameters suffice for a function call, a
method to only enter non-default parameters would be preferable. To accomplish this, each
parameter is labelled such that the system can check which parameters have been entered and for
which parameters default values should be used. For example, a temperature sensing function may
have several optional parameters for format and accuracy:

Command Meaning

Temperature(format:’Kelvin”, accuracy:4) Format and accuracy of temperature
sensing specified.

Temperature() Default values for format and
accuracy (e.g. “Celsius”, 2).

Temperature(format:”Kelvin™) Format specified, accuracy default.

Temperature(accuracy:5) Accuracy specified, format default.

Addresses

Previously, accessing remote functions through a service definition was discussed. To determine of
which node the remote function should be accessed, there is a need for addressing nodes.
Additionally, specifying nodes on which a service should be executed requires some form of
addressing. Methods on how to address nodes in WSN'’s are a popular research topic. The methods of
Hood and Regions, discussed in 2.3.4, address the topic as well as for example Directed Diffusion
(33). A common thread in these approaches is that nodes on the application-level should not be
addressed by an arbitrary number (like an [P-address), but should be addressed based on their
attributes (a content-based address).

In a heterogeneous WSN, the developer is primarily interested in other nodes if they offer certain
functionality or have specific sensor readings that are interesting to the service. Thus, addressing
should contain an option for selecting nodes based on their capabilities. Additionally, often nodes
may only be of interest if some of their values (such as sensor readings or in-built values) satisfy
certain conditions. Therefore, addressing should also involve setting such criteria for node selection.

Besides these features, there are several other aspects of interest in addressing nodes. One may need

to specify how many of the nodes that fit the criteria should be selected. One could for example
specify that only one, all or fifty percent of those nodes should run a certain service. As the most
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significant decision revolves around either one node or all nodes fitting the criteria, we offer these
two choices in the current programming language. However, the option of specifying a percentage is
relatively easy to implement as well and should be considered a future extension. Other possible
additions, such as selection based on position or hop-distance, are discussed in 4.3.1.

When such an address is mapped to an operational system, it would currently have to apply the
criteria to all nodes of the system to come to a selection. In a WSN, which can often be large, this is
highly undesirable as this can lead to a very high cost of communication, thereby reducing system
lifetime significantly. Therefore, it would be advantageous to limit the scope of an address, thereby
limiting the number of nodes that are queried. To define such a scope, we could use the hop count
(number of connections away from node). However, especially in heterogeneous WSN’s, it can be
advantageous to limit the scope to a logical selection of nodes. In such a way, knowledge of which
information could be logically interesting to which nodes can be embedded into such a scope.
Therefore, such a scope could also be specified by a content-based address, with the difference that
such a ‘scope address’ needs to be defined beforehand.

To gain a performance advantage out of using scope in addressing, the scope should form part of a
pre-defined logical topology. Otherwise, the scope is just an extra criterion for an address which will
still traverse the network. A popular topology for WSN’s, which uses groups of nodes selected based
on some criteria, is the cluster-based topology. Using clusters often leads to a cost-advantage in
WSN’s when applied to the communication protocols (such as flooding, routing). (34) Therefore, we
include it as an option in the programming language to define such a cluster based on content-based
addresses. The cluster name can subsequently be used to limit the scope of an address. As the cluster
can also be used by the lower-level network layers, this should lead to a decrease in communication,
thereby increasing the lifetime of the network.

In Figure 17, such usage of clusters is demonstrated. In a WSN where nodes are divided over several
rooms in a building, one could consider taking all the nodes in a room as cluster based on their logical
and spatial properties. In the figure, this is indicated by the “Location”-function of each node.
Logically, many services will be defined based on the sensors in one room and spatially as these
nodes are located close together. Thus, when the light-node requires data from the occupational
sensor node, its address scope can be limited by referring to the “roomCluster”. This makes the
service both easier to program and it can optimize the communication required, thereby increasing

system lifetime.
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Figure 17: Clusters

Concluding, the programming language is focussed around the concepts of events, services,
subscriptions, functions, remote services, content-based addresses and clusters. A global overview of

22



these concepts and their interrelation is shown in Figure 18. Through these concepts, a network-
centric, node-dependent programming model is defined. The main focus was on easy
programmability and maintaining a low cost and long lifetime. To accomplish this, the flexibility of
the programming model was sacrificed and limited to the monitor-and-respond type of applications.
In Chapter 4, the language around these concepts is described. First, the major design decisions
around the deployment phase are discussed.

Service
1 -SubscribedTo
1
* -Has *
EventCondition -Triggers Action Subscription
*
1 1 ]
1 * .
*
-HasFunction Function
1
-Executes
1
*
-HasValue 0.1
* -HasParam
Parameter
0.1 -OnNode i
1 1 -Subscriber
-RunsOn Address
-Subscribee
1
1
*
-Scope 1
Cluster

Figure 18: Global concept overview for the programming language

3.2 Deployment

During the deployment phase, the code produced during development is transferred to nodes to
produce a WSN that executes the programmed application. This can be dissected into three steps: the
compilation of code to a transferrable form, the transfer of it to nodes and the transformation of it to
an executable form. As the compilation is relatively straightforward once the transferrable form has
been chosen, the main choices in this phase are design choices around the method of transfer and
around the method of transformation into an executable form.

The most important choices are discussed in this chapter, while more detailed choices are discussed
in Chapter 5. This phase also includes the physical deployment of nodes, but this is beyond the scope
of this report.

3.2.1 Transfer to nodes

As discussed in 2.2 and 2.3.4, there are several ways in which a WSN application can be transferred
from a user system to nodes. For example, when programming an application directly in nesC for
TinyOS, the directly executable application code has to be ‘flashed’ in its entirety in order to be
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transferred due to its static linking. (17) With the SOS-operating system, such code can be updated by
only replacing modules that have been changed. When Maté or TinyDB is used, a user application is
compiled into bytecode, which can be sent wirelessly. As this code is not directly executable, an
interpreter runs on the node to process the bytecode.

The programming models reviewed for this thesis are strongly associated with a single method for
transfer: nesC always requires complete executable application code to be transferred, TinyDB
always requires wirelessly transferred query bytecode and Maté requires wirelessly transferred
bytecode as well. The three options are shown in Figure 19. Such a choice in deployment method
always impacts the systems costs” in a certain way.

Transfer methods

Directly

executable code | | Bytecode

Whole image Modules

Transfer of

Transfer of Transfer of

|mage of mo.dules of i
directly directly S
executable executable P

nodes

code

code

Figure 19: Different methods of transferring application code

Relevant costs for this decision are shown in Table 2. Choosing to use an interpreter or not has an
effect on the amount of run-time processing a node has to perform. Additionally, the memory
requirement depends on this decision as well. This memory requirement is related to the ‘cost’ key
driver, as it influences the resources a node requires. The cost of communication depends on the size
of the application code that is transferred. Larger application code size results in more
communication, which results in reducing system lifetime. The amount of run-time processing affects
lifetime as well. Reprogrammability is about how easy the node can be reprogrammed with a new
application.

Node autonomy is concerned with how much a node is an independent entity in the network. Node
autonomy has long been considered an important aspect in distributed systems (35), butitis
increasingly important in WSN’s. In our understanding, a high autonomy indicates that the node can
easily be programmed independently and that has a low dependency on other entities in the
network. When its autonomy is low, the node has dependencies on other entities in the network and
can not easily be programmed independently. Especially when the WSN is heterogeneous, node
autonomy is required to make changes in certain nodes without having to depend on other entities.
Both reprogrammability and node autonomy are important for the flexibility of the network.
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Table 2: Comparison of transfer methods (+’s have desired effect on cost, -‘s have undesired effect)

Memory | Run-time Communication | Reprogrammability | Node
cost processing | cost autonomy
cost

Transfer of
image of
directly + + - + -
executable
code

Transfer of
modules of
directly + + 0 + 0
executable
code

Transfer of
bytecode;

interpreter 0 0
on nodes

Comparing the run-time processing costs of the solutions, it can be concluded that the solutions
which transfer directly executable code have an advantage. When bytecode is transferred, some
cycles have to be spent on overhead for interpreting. However, as discussed earlier in 2.3.4 and
concluded in (2), this overhead can be neglible when compared to the cost of communication.

For memory requirements, the difference is not very strong either. As directly executable code incurs
no memory overhead, these solutions score best. For bytecode, the interpreter will always take up a
significant part of memory. However, the applications themselves will be smaller. Additionally, when
an interpreter is used, the application will reside in RAM instead of ROM. This may be advantageous
in cases where ROM is scarce and disadvantageous the other way around.

For the cost of communication, the bytecode-solution has the advantage. As bytecode is generally on
a higher abstraction level than executable code, it can be made smaller. This results in smaller
messages when an application is transferred. The solution with transfer of modules is second-best,
while transferring an entire image is worst.

For reprogrammability, the solutions of transferring directly executable code are best. As this allows
the change of nearly all code on the node, applications on a node as well as lower-level code can be
changed. The bytecode solution allows for reprogrammability of the node, but only within the limits
of the interpreter running on the node.

For node autonomy, the directly executable-solutions are less good. In the image-solution, it is not
easy to add or remove an application from a single node. Every time, a new complete image has to be
created for that node. This requires knowledge of the applications running on the node to be outside
the node itself. In the interpreter solution, applications can easily be added or removed without
knowledge of what runs on the node at that time. In the modular solution, it appears that there is a
form of node autonomy in that a node can decide for itself whether it requires a change of module.
However, this solution requires all of these nodes to run the same OS, which limits its node
autonomy, especially for a heterogeneous WSN.

It can be concluded that each solution offers certain advantages. Cost-wise, the solutions with
directly executable code score best. When flexibility in a heterogeneous WSN is considered, the
bytecode solution is considered best. However, we consider that a programming model should not
have to be associated with only one method of transfer. For extremely resource-constrained nodes, a
directly executable-solution can be used and for more flexible WSN’s, the interpreter solution can be
used. To accomplish this, we design a deployment scheme in which all these methods are possible. As

25



the SOS-operating system with its dynamic modules was not researched at the time of making this
design decision, it is not considered further. A future solution could integrate this into our scheme as
well.

3.2.2 Configuration

As mentioned previously, a trade-off between flexibility and node resource requirements (cost) can
be made in the deployment phase. This involves deciding on how much a node should be made
reprogrammable and how much software is to run on a node. Based on the publish/subscribe-based
language designed in 3.1 and a bytecode-based transfer, the original three-phase deployment can be
extended to form a four-stage deployment.

The addition of subscriptions in the language causes the occurrence of four types of application
representation in and outside the WSN. Such a representation is the form in which the idea of the
application is expressed in the system. The application is first represented as a human-readable
service definition language. After a compilation-step, the application exists as bytecode in the system.
For the application to start operating on a node, it requires a subscription that contains timing and
additional parameters. Thus, as an application is only executable after the addition of a subscription,
some change has to occur in the way the application is represented in the WSN. These stages in
application representation are shown in Figure 20. The arrows on the left represent the form in
which changes can occur at that level.

Human-readable
programs

Service definition
— ioe defi
%Optimization &
Service Compilation
bytecode

Binary instructions

{}Interpretation
Subscriptions

Pre-subscription
— "

representation
Timing and configuration of
variables

Operational service

Figure 20: Application representations in WSN during deployment

As can be seen in Figure 20, an interpretation step is required in getting the service to an operational
state. There are two methods for performing this interpretation. The instructions in the bytecode can
continuously be processed or the bytecode can be processed and be transformed into another form
which is better suitable for interpretation. The second case can be considered since configuration as
a large part of the interpretation occurs only once at the beginning.

We consider configuration to have several advantages over run-time interpretation of bytecode. An
important argument is that bytecode is designed to be small and efficiently transferrable, not to be
efficiently executable. If there is a more efficient form to encode the behaviour of the bytecode for
execution, this will benefit the lifetime of the node in the long run. An additional advantage is that
additional node-based optimizations can be performed. For example, the service can be integrated
with the other services running on the node. If duplicate instructions and calls occur among services,
the results of these can be shared amongst each other, thereby further increasing lifetime. A
disadvantage to configuration is a higher initial cost in reprogramming. This, however, should be
compensated for in the long run. In the programming models researched, none was found to have
been using configuration. Thus the question is if there are representations which can exploit these
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possible advantages. To answer this question, first the bytecode that is generated should be
considered.

Generated bytecode should be small to be able to be transferred efficiently and it should be relatively
low-cost in interpretation. The original development language is function-based. Sending the written
code directly would require parsing of the code and sending large strings. A more efficient way is to
take a postorder traversal-based representation of the parse tree, compress the strings and send this
over. This allows a simple stack-based interpreter to interpret the code. The postorder traversal
(traverse left sub-tree, right-subtree, then root node) causes the system to first execute parameters
of a function before executing the function itself. Through this, the function can work with the results.

An issue with this type of bytecode is that it represents a very sequential view of the application.
Especially when a function has to wait for the result of multiple remote functions, one would prefer
to have this wait occur in parallel rather than sequentially. Thus, a more graph-like representation
may be preferred for execution. This issue is further explored in 3.3.

When the bytecode has been interpreted into the graph-like structure (hereafter referred to as
‘execution tables’), a subscription can be added into the structure to add timing and parameters.
Thus in terms of application representation, it is as shown in Figure 21.
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Figure 21: Application representations with execution tables

The different application representations having been decided upon, we explore the possibilities for
making the trade-off between resource requirements (cost) and flexibility in deployment.

3.2.3 Deployment scheme

We identified the four application representations and the steps between them. Earlier, we described
in 3.2.1 that directly executable code is best for cost, but that interpretation is best for flexibility.
Though usually only one deployment method is associated with one programming model, we
propose that the different methods of deployment can be used with the same programming model.

The key decision that must be made variable to accomplish this is that of deciding at which point in
the deployment (as shown in Figure 21) the transfer between user system/gateway and node takes
place. Thus, at one point, an application representation must be transferred from gateway to node.
Which application representation is chosen for this point determines the trade-off between cost and
flexibility.
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Figure 22: Deployment options

In Figure 22, an illustration of the various possibilities is shown. We first look at how the cost and
flexibility is affected when the node and its OS do not support remote reprogrammability by itself.
The first option entails the transfer of the human readable source code to the nodes. Naturally, this
takes the heaviest toll on system resources as strings are sent over and the code needs to be parsed
and compiled on the nodes. However, for node autonomy this is best as there is no need for storage
of string conversion tables or other type of indexes at the gateway.

The second option is the basic bytecode interpreter option. With this option, we send over bytecode
containing the stack-based service instructions that is interpreted by an interpreter on the node. This
requires less energy usage in communication as strings can be compressed into string conversion
tables (shown in Figure 23) before being sent over the nodes. Processing is also reduced as the
difficulty of interpreting the stack-based instructions is lower than that of human-readable source
code. Additionally, memory usage will most likely be reduced as the interpreter is simpler. There is
only a slight diminishment in node autonomy as it requires some storage of strings on the gateway;
reprogrammability is unaffected.

Gateway

String conversion:

SERVICE ... “Temperature” = 0x0 0x00089
FOR ... “oH” = Ox1
ON EVENT Temperature ... “pH Alert” = 0x2

0x00000
User
PC

Regular network

User
PC

Wireless sensor nodes

Figure 23: String conversion on the gateway

The third option contains only a subscription interpreter. With this option, we reduce the service
bytecode interpreter to one that can only process subscriptions, thereby decreasing the memory
usage required by the interpreter. This decision affects reprogrammability of the node as only some
variables and the service’s subscribers can be modified; no behaviour can be added or modified.
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The fourth option does not contain an interpreter at all. Its complete behaviour is programmed
beforehand and statically set in the node. Thus, thorough optimizations can be made on the gateway
before it is sent to the node. This should positively affect the cost, but eliminates reprogrammability.

When the node and its OS do support remote reprogrammability, the level of reprogrammability is
equal in all four options. However, node autonomy is affected negatively when continuing
downwards. Though in the fourth option the node can be totally reprogrammed now, the gateway
requires knowledge of what services run on each of those nodes in order to add, modify or remove
services as a new image for that node has to be generated (shown in Figure 24). Additionally, the cost
of communicating the services is increased as explained in 3.2.1. The effect of the usage of a remote
modular reprogrammable OS (such as SOS) on node autonomy was not researched for this report.
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Figure 24: Services and subscriptions stored per node on gateway

In conclusion, the method of deployment is an important decision for a WSN which affects cost and
flexibility of the network. For this purpose, this programming model permits different methods to be
used while using the same programming model. The most prominent options require the usage of an
interpreter on the node which processes instructions generated out of the source code. The decision
was made to use configuration to convert incoming bytecode into a different graph-like form. The
basic design decisions in achieving an efficiently running node with this are discussed in the next
section.

3.3 Run-time

During the run-time phase, code transferred to the nodes in the deployment-phase is executed such
that the system performs the programmed. In the deployment-phase, the application went through
multiple representations before arriving at the run-time phase. Design decisions for the run-time
phase are primarily about the executable representation and how it is executed. The decisions
discussed in this chapter will remain on the conceptual level. A more detailed description for a
prototype implementation is provided in Chapter 6. However, that is not the focus of this report.

3.3.1 Execution method

In 3.2.2, it was suggested that the application representation used to transfer the application may not
be the most suitable for execution. While it is most important for the transferrable representation to
be of small size, other factors may be given more importance for the executable representation.
Though the application should remain small enough to run on nodes with low memory, keeping the
energy usage as low as possible is a more pressing priority for the run-time phase.

Figure 25 shows the relationships between the interpreter, the execution process and the executable
representation of applications. As discussed in 3.2, there is an interpreter separate from the
execution process for configuration actions. A node can receive messages containing a topology, a
service, a subscription or the result of a remote service. These messages are processed by the
execution process. If the message is a topology, service or a subscription, the message is processed by
the interpreter. The topologies, services and subscriptions are fitted into the data structure that
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holds the executable representation of these. This process is allowed to be energy-intensive. Once the
structure is in place, the execution process reads it and performs the required actions: executing the
functions in the right order at the right time and generating outgoing messages.
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Figure 25: Processes during execution

To be efficiently executable, the representation should have certain properties that can be derived
from the demands by the language and the system. A significant aspect of the language is its support
for accessing remote services within a service. As these results are used by the service, its execution
might have to be suspended until the result has been received. For locally executed functions, a
significant waiting time may occur as well. However, a certain function may be dependent on more
results, which could be received earlier. An example of this is shown in Figure 26. Here, a function is
executed with two parameters, each a local function call with a remote service as parameter. If the
execution proceeds as a linear execution of single instructions, it will lead to sequential waiting. For
the example, the result of [Node1l].Func() will be awaited until [Node2].Func() is executed. This
causes loss of valuable time and most likely energy.

Func( param7. Func2( param:[Node1].Func()

), paramZ. Func3( paranr[Node2].Func() )
)
e.g. [Node1].Temperature() > 40 && [Node2].PH()
<5
equential postorder
s ial der
Func < traversal-based
representation:
rparam1—‘—param27 “ P
‘ 1. [Node1].Func()
Func2 Func3 2. Func2(...)
| y ‘ 3. [Node2].Func()
param ( \ :: param 4, Func3(...)
\ [ \ \_ 5 Func(., .) Y,
[Node1].Func() [Node2].Func()

Figure 26: A function dependent on two functions that uses a remote service with the sequential
postorder traversal-based representation
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To prevent sequential waiting, functions that can be executed concurrently, should be executed
concurrently without waiting for results. To achieve this efficiently, a step-by-step execution of a
postorder traversal-representation of the parse tree does not suffice as concurrently executable
parts are not immediately clear from such a representation. In the example from Figure 26 for
example, it will take significant processing to discover that 1, 2 and 3, 4 can be executed concurrently.
Conversion to a different representation, which captures concurrency better, is preferred to achieve
concurrent waiting. This is illustrated in Figure 27, where the functions that can be executed
concurrently are represented concurrently. To realize such a concurrent representation, a method is
necessary to model concurrency relationships and to track the execution.

Func( paraml: Func2( param:[Nodel].Func() ),

param2: Func3( param:[Node2].Func() ) )

e.g. [Nodel].Temperature() > 40 && [Node2].PH() < 5

Func
> -

' param l—‘—paramZ

il

1)

Concurrent representation:
Func2 Func3
4 1. [Node1].Func() § [Node2].Func()
param t param * 2. Func2(...) + Func3(...)
| | 3. Func(..., ...)
[Nodel].Func() [Node2].Func()

Figure 27: Concurrent representation

The demands made for such modelling and tracking closely match the properties of Petri-nets. (36) A
Petri-net is a type of graph used to model concurrent discrete-event systems with non-deterministic
timing, which matches closely what is required. Thus, the method of execution will be specified with
as such.

A Petri-net consists of the 3-tuple (S, T, F), in which

e Sisasetof spaces (or places) that can hold 0 or more tokens

e Tis aset of transitions or processors

e Fisasetofdirected edges (flows) between spaces and transitions and vice versa
When all spaces that have a flow to a certain transition have a token, the transition is allowed to fire.
This means that those tokens are removed and a token is added at each of the spaces to which the
transition has a flow. This firing is atomic and nondeterministic. (36)

To track the progress of the execution, a function call is split between an execution and a reception
phase. Tokens can be used to indicate to which part the execution has progressed. Thus, a graph
emerges that has ExecuteFunction (EF)-spaces, ReceiveFunction (RF)-spaces and a possible token at
those spaces. Between those spaces are processors that signify the execution of functions or
reception of a result. Relations between the nodes are constructed to determine the execution-order.
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For Figure 27, the Petri-net would look like Figure 28. This diagram only shows the execution order
of the functions within a service, not the interaction with the rest of the system. When an exec-
processor moves a token to an EF-node, the function is executed. This can mean executing a local
function, calling a function on a remote node or waiting for the reception of a result of a remote
subscription. When an appropriate result is received, the recv-processor fires and moves the token to
the next RF-node. Events and services can be integrated into this execution order. In this figure, EF1
and EF2 have finished and the system waits for EF3 and EF4 to finish before it can continue with EF5.

EF1 RF1 EF2 RF2
[Nodel].Func() recv [Nodel].Func() exec Func2(RF1) recv  Func2(RF1)

EF5 RF5
Func(RF2,RF4) recv Func(RF2,RF4)

EF3 recv RF3 exec EF4 recv RF4
[Node2].Func() [Node2].Func() Func3(RF3) Func3(RF3)

Figure 28: Concurrent execution order (does not include interaction with rest of the system)

As this only models the way in which the current state of execution of a single subscription is tracked,
there is still a need to model how this can work within a system. A timer based on the subscription
causes the initial token to be placed. This graph is linked to all the other data as well, such as
addresses, variables and values. These data sets can for example be implemented using arrays or
linked lists and connections between the elements can be made with pointers.

To show how this concurrent execution order can be used within the system, a Petri-net specification
of the execution process during the run-time state is shown in figures Figure 29 to Figure 31. As the
system shown is in run-time operation, an example of current services and subscriptions are shown
as well. The method of specification is a modified Petri-net notation as the overview would be lost
using regular Petri-nets. The meaning of the new symbols is specified in Table 3.
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Table 3: Legend of system model

Symbol Meaning

The multi-select symbol indicates that an incoming token can be distributed
over an undetermined number of outgoing spaces. Thus, when all incoming
MULTI spaces have a token, the multi-select is able to fire. Upon firing, the tokens
SELECT are removed from the incoming spaces and in every one of its outgoing
spaces, a single token could be added. It is possible to express this with a
Petri-net, but covering every option will make it unreasonably large. The
basis on which the choice is made is not explained in the diagram. Except for
the fact that a token is not necessarily placed in all outgoing spaces, the
behaviour is similar to a regular processor.

The sub-system symbol indicates that another Petri-net is contained in there.
SUB Some of these sub-systems are shown in-depth later. This is introduced to
SYSTEM prevent overly large Petri-nets.

The overview of the system is shown in Figure 29. There are two events that can occur that trigger
further action. The first is a timer event. This timer event occurs with a period that is the greatest
common divisor of the subscription periods. After such an event occurs, the system selects the
subscriptions that are due to run at that time. Then, for those subscriptions, the service is started.

The second type of event that triggers the system is the reception of a message. If the message is a
service, subscription or topology, the interpreter is invoked. If the message is a function result (from
a remote service), it is sent to the subscriptions that require the result.

SERVICE 1
SIIDCADIDTIAN D
timerEvent timerEvent
SERVICE 1
SUBSCRIPTION 1
SUBSCRIP
TION-
SELECT SERVICE 2 <
SUBSCRIPTION 1

recvMsg  recvMsgEvent

sv/su/to

INTERPRETER

Figure 29: Executing process overview

In Figure 30, a subscription is displayed in more detail. As there cannot be more than one instance of
a subscription running at the same time, it waits until the iteration has been completed. In this case,
the service starts by immediately executing the two functions EF1 and EF3. As is explained in Figure
31, the execution of functions can take place in the background or even remotely. When a function
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result is received (either from local or remote execution), the execution can continue. Thus, when
SV1 receives a token and the sulnit-space has a token, both EF1 and EF3 can be executed. This moves
the tokens to the EF1 and EF3-spaces. When, for example, EF1 finishes executing, it returns an RF-
message that results in a token in msgRF1. This allows the processor to fire, which results in a token
in RF1. If, in the meanwhile, RF3 has not been received yet, EF2 can already be executed. When the
event trigger ET1 is encountered, the system bases its decision on whether to continue or abort the
execution on the value of RF5.
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In Figure 31, the execution of a function (the exec-processor from Figure 30) is examined. This is
what occurs before a token is moved to an EF-space in the previous figure. If the EF is a remote
subscription, then nothing needs to be executed at that time as the subscription is in place already
(set during deployment) and the results will come in through a message event. When a function is
called on a dynamic address, a message is sent that contains the call (by e.g. a temporary service). For
local functions, the correct function is selected and its execution is deferred. After the execution has
been completed, the result is returned through the RF-select.

doNothing

FN1 continue

>
continue
- S— -
/
continue —

FNixec FNixecFN xXec
exelFN3 exelFN2exedFN1

ki,

O

Remote Stati
/ Static
FN2
execFunc

O

SEND MSG

RF-SELECT

Figure 31: Function execution part of the executing process (exec-processor in Figure 30)

On the basis of these models, an implementation can be created. The choices and selections used in
the models are made using data on the services and subscriptions. Thus, a data structure needs to be
created to hold this. It can be created on the basis of Figure 18. During the deployment phase, the
data is entered into the structure through configuration instructions. In the run-time phase, the
system’s operation is equivalent with the movement of tokens in the models. A more detailed
description of a prototype implementation that implements this system can be found in 6.1. It also
describes the interaction with the data structure.

The disadvantages of this method, compared to a sequential bytecode interpreter, lie mostly in a
more resource-intensive execution process. The current prototype implementation has a relatively
high complexity. However, when optimized, the execution should be much more efficient than
currently. Hardware optimization may make it even more resource-efficient than regular
interpreters. Unfortunately, we cannot determine yet how much energy is lost or gained using this
method.

This method of expressing concurrency makes it especially suited for an event-based operating
system such as TinyOS. That operating system uses split-phase operations, in which the execution of
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a function and reception of its result are separated. (37) This could be mapped onto the same
operations in the Petri-net.

Direct transfer of the graph representation instead of the postorder traversal-representation of the
parse tree is a possibility as well. There are some disadvantages to this however. The Petri-net
representation is intended to be as efficiently executable as possible and therefore will most likely
contain optimizations that cannot be easily transferred. For example, direct pointers may be used or
there can be reuse of addresses or values used in other services on the node. The configuration-step,
which occurs after the interpreter is invoked to process a new service, is used to effect these
optimizations. Transferring this optimized representation directly is the intention in the deployment-
option in which nodes cannot add individual services. Transferring an unoptimized form of the
graph-like form to the nodes and maintaining the option to add individual services per node is an
option as well. We did not research this option however.

In conclusion, the way of storing the executable form of the application on a node is a significant
choice. Using an executing process that executes a concurrent application instead of sequentially
interpreting instructions has advantages in the event-oriented environment of WSN’s. However, due
to more intensive processing per instruction, it is currently unknown whether this will result in less
energy cost.
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4. DEVELOPMENT

In the following three chapters, an overview is provided of a detailed design for the programming
model and its mapping. This chapter focuses on the syntax of the event-based language used to
express services (applications), which determine the behaviour of nodes. It is based on the concepts
described in 3.1. First, a simple use case is described in the service definition language to get an
overview of the language. We continue by discussing in more detail some of the aspects of that
language. Finally, some of the other use cases are described. More information about the
implementation of the programming model is provided in chapters 5 and 6.

4.1 Example

The following use case is programmed: when the pH value for any cow shows an acute disorder (pH
drops below 5), the manager receives an alarm within 2 minutes. The resulting service definition is
shown below.

SERVICE
PHAlarm
FOR
[Network | * | isNodeType=""cowPHNode’]
ON EVENT
PH() < $PHVariable
DO
SendToSubscribers(content: cowlD() )

The first line specifies the name of the service. The FOR-line specifies that this service will be
executed by every “cowPHNode”-node. In the next line, a trigger is set. In this case, the triggering will
occur when the PH-attribute of the cow drops below the variable $PHVariable. When this event
condition becomes true, the DO-part of the service is executed. The PH-value is regularly sampled.
Sample rate and deadline are implicit variables of the trigger clause. The values of the variables are
determined by subscriptions to the services.

When the DO-part is executed again after a first execution is left implicit as well in this definition. By
default, the occurrence of the negation of the event condition (PH() = $PHVariable. in this case) is
treated as the end of the event. This ‘event-end’ condition can be modified.

When the event is triggered (becomes true), the DO part of the service definition is executed. This
determines the cowID, which is sent to all subscribers of the service.

After the service has been defined, it is necessary to send a subscription-message to start receiving
events from the service. The subscription message contains most of the extra-functional
requirements such as deadline, sample periods and priorities. It can also contain variables, specified
in the service.

SUBSCRIPTION
PHAlarmToGateway

FOR
[Network | * |1

( service: PHAlarm,
subscriber: [Network | 1 | isNodeType=""gateway’’]
deadline: 120,
minimumSamplePeriod: 25,
maximumSamplePeriod: 30,
sendPriority: “Critical”,
executePriority: “Critical”,
$PHvVariable: 5
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Multiple subscriptions can be taken from one service. Besides stating which node subscribes to
which service, the message specifies the extra-functional properties shown in Table 4:

deadline: The maximum amount of time that is allowed to pass between the
generation of a message by the service and its reception by the
destination.

minimumSamplePeriod: The minimum amount of time between two subsequent readings of
the sensor values.

maximumSamplePeriod: The maximum amount of time between two subsequent readings of
the sensor values.

sendPriority: The priority by which a message is sent over the network.

executePriority: The priority by which a service is executed.

Table 4: Extra-functional properties in a subscription message

A mapping of this use case onto the WSN is shown in 5.2.3.

4.2 General service definition structure

The general structure of a service definition has the following format:

SERVICE

<Name>
FOR

<Destination>
ON EVENT

<Event Condition>
DO

<Action>
ON EVENTEND

<Event End Condition>
DO

<Action>

4.2.1 Name

The first parameter of a service definition is the service’s name. The name is a unique identifier for a
service. It allows a developer to subscribe to that particular service using its name.

4.2.2 Destination

The second parameter, destination, determines on which nodes the service will run. The addressing
takes place through a content-based address, discussed more in-depth in 4.3.

Another option would have been to not specify a destination, but let the WSN decide on the best
nodes to run this application. This could be accomplished by determining the services and functions
required in the event conditions and in the action-part and using these to determine the nodes best
suited for this task. As explained in 3.1, due to the difficulty with distributing tasks, we did not
further pursue this option.

4.2.3 Event condition

The event condition contains a condition, which upon becoming true, triggers the action part.
Responding to an event is often useful in WSN’s. Often this event is not a ‘real event’ as an event
triggered by an interrupt, but is a change in values occurring after a reading of the sensors.

In this programming language, the event condition is in essence a Boolean function, which can
consist of several sub-functions. A future possibility is to add real events into it.
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4.2.4 Event end condition

Though we are interested in occurrences of events, we are detecting whether a certain condition is
true at a certain time. The conversion from condition to event can take place by considering it an
event only when the value of the condition becomes true. This means that the system will execute the
action when the condition goes from false to true. The next event occurs when the condition goes
from false to true again. However, one may want to perform an action when the condition goes from
true to false as well. For this an event end action can be defined.

Defining only actions for when a single condition becomes either false or true is too simple for many
relevant applications. For example, in a temperature-monitoring application one can define that a
message should be sent after the temperature becomes over 40 degrees. Using only an event
condition temperature > 40, it would occur that a message would be sent when the temperature
goes from 41 to 40 and back to 41. In many cases, a margin is desired for when the system considers
it a new event. By defining an event end condition, one can set this. For example, by setting the event
end condition to temperature < 39, the system would only send a new message after the
temperature dropped below 39 and raised up to 41 again.

In effect, the state machine of the application is modified using the event end condition. While
previously, it was as shown in Figure 32, it becomes like that as shown in Figure 33. In Figure 32, the
event action is executed when the event condition becomes true. The event condition first has to
become false before it can be executed again. The difference with Figure 33 occurs on the transition
from when the system goes from the ‘event occurred’-state to the ‘event not occurred’-state. When

the event end condition is specified, the trueness of this condition is considered instead of the
falseness of the event condition.

EventNotOccurred

when: Event condition becomes false when: Event condition becomes true/ EventAction

EventOccurred

Figure 32: State diagram when only an event condition is defined

EventNotOccurred

when: Eventend condition becomes true/ EventEndAction ~ when: Event condition becomes true/ EventAction

EventOccurred

Figure 33: State diagram for when both an event and an event end condition are defined

4.2.5 Action

The action-part contains a function that is executed when the event is triggered. Functions are
explained more in-depth in 4.4.
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4.3 Addressing of nodes

As the network is not abstracted over in our approach, a method is needed to address them. As
explained in 3.1.2, methods such as IP can be used to address the nodes, but from a service-
development point-of-view a semantically more meaningful method of addressing may be desired. In
general, when one wants to address a node, one wants to address that nodes based on the properties
that node has. For nodes, there are several attributes that could be considered interesting from a
development-point of view: functionality, sensor values, position and energy.

Addressing has the purpose of selecting a subset of nodes from a set of nodes. It is needed for cases in
which only a subset of nodes needs to respond to certain information. This serves both a functional
and a performance goal. It is functional in the sense that nodes may respond to the information in a
way that does not conform to the desired functionality. The performance goal is served by preventing
work to be carried out which is not required in the end (efficiency). Thus, any method of addressing
should serve these goals.

We use a predicate-like form of addressing. The predicate can be applied to a node to find out if it is
part of the selection or not. In practice, a node does not always have to evaluate for itself whether the
predicate is true for itself or not.

4.3.1 Address notation
In our programming model, the following notation for addressing nodes was chosen:

[ <Scope> | <Number> | <Properties> ]

To address a node or a set of nodes, these three values have to be entered within the square bracket
notation. For example: to address all nodes of the entire network which are of the type
“CowNeckNode”, one would use the following notation:

[ Network | * | nodeType="CowNeckNode” ]
To go more in-depth into what constitutes an address in this language, first the scope is considered.

Scope

The scope indicates a subset of nodes of a network, previously defined based on logical and
performance-related characteristics. How exactly such subsets can be defined is explained in the
chapter on clustering.

Examples of such clusters can be all sensors attached to a single cow or all sensors in a single house.
For example, when a node attached to a cow wishes to address the temperature node sensor of the
same cow, it can utilize the following notation:

[ Cow | 1 | nodeType="CowTemperatureNode” 7]

Number

By addressing nodes in such a manner, it is possible for an address not to be unique. In some cases, it
is meant to address all nodes which conform to the address. For example, when specifying that a
certain alert service should run on all temperature nodes it is necessary to indicate that all selected
nodes should perform the service. In other situations, only a single node which conforms to the
address should be selected. This could occur when, for example, a room has multiple temperature
sensors, but for energy efficiency a measurement from a single node is sufficient.

For many applications, the choice between selecting a single node and selecting all nodes conforming
to the address is sufficient. In this language, it is noted in this manner:
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1 | Select a single node conforming to the address specification.

Select all nodes conforming to the address specification.

Properties
The last part of addressing in this language has similarity to predicate logic. It is a conjunction of the

comparison of properties to certain values the addressed nodes should satisfy. A property is a
function that exists locally on a node. More on these functions is explained in 4.4.

The notation used for such a property is as follows:

<Property><Parameters> <Operator> <Value>

The <Value> in this address can indicate anything which delivers a value, namely a constant, local
function or even a remote service.

To specify multiple properties within an address, the && is used to connect them. This occurs as
follows:

<AddressProperty> && <AddressProperty>

Currently, the language only allows conjunction of properties. This is done for reasons of
performance. Allowing disjunction as well as conjunction would make the processing of such an
address significantly more complicated. Allowing disjunction instead of conjunction would be less
feasible as most applications appear to require conjunction more.

As an example we address all temperature nodes located in the living room, which have a
temperature of less than 20 degrees:

[Network ] * | location="LivingRoom” && Temperature < 20]

Possible additions

The currently specified features cover only a part of the addressing functionality that can be desired
for a WSN. For the applications that were considered for this language, these were considered to be
the most important. There are some other properties which could be added into this notation to
make it more complete.

One possible extension might be to make the number-possibilities more thorough by allowing more
possibilities than selecting either one or all nodes. Possibilities would include other absolute
numbers or percentages.

Currently, the language allows for selecting one node out of several which satisfy the address. Often,
this is used for utilizing a service on such a node. The language currently does not allow any
specification on how that node is selected out of several which conform. It could be possible to allow
specification of whether this selection should take place on the basis of hop-distance, position-
distance, energy level or some sort of combination of these values, After specifying such a selection, it
might even be specified after how long the selection should be re-evaluated.

4.3.2 Conclusion

To make addressing within WSN'’s feasible for programmers, important decisions should be easily
implementable for programmers. In designing an address system, this should be considered as well
as performance aspects.
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4.4 Functions

Functions in this language can accept parameters and can produce output. It is the basic building
block to operations such as getting values from sensors, sending messages and aggregation. These
functions are not programmed using this language, only used.

This specific method was chosen to accommodate most functionality into a single generalized
language construct. This allows for a variety of functionality to be accessed in the same way. It also
allows flexibility in the sense that functions can be added or replaced to allow for different
functionality, though performing this at run-time is currently not considered.

4.4.1 Function notation
Functions have the following general syntax (for formal grammar, see Appendix A:):

Function(parameterl:valuel, parameter2:value2)

The function name is specified, with between the brackets the parameters of the function. These are
passed to the function by including a label with each passed parameter. This allows the programmer
to specify only non-default or relevant parameters.

4.4.2 Special functions

The language includes some functions with pre-defined functionality. These are functions that are
common to the applications for which the language is designed for and therefore a simple way to
access these is desirable. Additionally, these functions can contain implementations which can
include lower-level or cross-layer optimization. As this is not the focus of this report, the descriptions
are on a global level.

Temporal functions

There is no special element in the language to address values in the temporal dimension. Instead, this
requirement is satisfied by a History-function. The History-function stores a specified value for a
specified time and with a specified sample rate. To use the average temperature over the last 30
minutes, one would write the following:

History(method:“Average”, value:Temperature(), fromNow:30m)

By default, the sample rate specified in the subscription is used, though it is possible to pass a
different sample rate through a parameter. Spatial aggregate functions are featured as functions as
well.

Aggregation functions

An important function in WSN’s is aggregation of data over several nodes. For example, one might be
interested in the average temperature of all nodes. In terms of implementation, such aggregation is
often carried out in specific ways for reasons of efficiency. The method used can be different for each
type of network. To accommodate this aggregation, a function exists to perform it. In general, the
function is of the form:

Aggregate(type:Average”,

service: [Network]*] nodeType="TemperatureNode’].
CurrentTemperature()
)

This specifies that the average temperature of all temperature nodes in the network is received and
calculated. Use is made of the remote service-access mechanism described in 4.5.
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SendToSubscribers

The common action to be taken after an event has been triggered is to send a message to the service’s
subscribers. To accomplish this, the function SendToSubscribers is used. This function sends a value
to the nodes that have subscribed to the service. The general form is:

SendToSubscribers(content:Temperature())

This specifies that the current temperature from the Temperature()-function should be sent to the
subscribers.

4.4.3 Conclusion

Functions are an abstraction used to accommodate a variety of core functionality of the system.
These can only be accessed locally.

Currently, the language does not allow functions to return multiple values. In many situations, this
can lead to difficulty. A possible solution would be to include support for tuples.

The access to aggregation-functionality is rather troublesome. In the implementation, the
“Aggregate”-function should take care of gathering the values of the remote services and processing
them in a way. This could be complicated and include the setting up of dynamic trees in the WSN.

4.5 Remote services

A key possibility in WSN’s is the ability to use the results from multiple nodes for a single application.
This is supported in this language by allowing a service to use values produced by services running
on other nodes. Such a remote service can be used in a similar way as local functions, but requires
specification of the address and of subscription parameters. If subscription parameters are not
entered, the service’s own subscription parameters are used.

4.5.1 Remote service notation
The general form of a remote service call is as follows:

<Address>._<ServiceName><SubscriptionParameters>

If, for example, one wishes to access a cow’s temperature service “Temperature” from a node in the
same “Cow”-cluster to obtain the current temperature of the cow, the desired subscription
parameters should be determined. In this case, we consider that the non-functional parameters can
always be less stringent than the subscription parameters of the service itself. To enter this, we can
specify it as follows:

[Cow]1]nodeType="CowTemperatureNode”] .Temperature(
minimumSamplePeriod:
CurrentSubscription(param:“minimumSamplePeriod”)*2,
maximumSamplePeriod:
CurrentSubscription(param: “maximumSamplePeriod”)*2,
sendPriority: “Low”

)

This indicates that the service should access a node within the “Cow”-cluster which is of the type
“CowTemperatureNode” to obtain the values produced by the Temperature service. Extra-
functionally, the sample period of the remote service can be double of that of the subscription of the
local service and its “sendPriority” can always be “Low”. The “deadline” and “executePriority” are
taken from the previous subscription by default.
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4.5.2 Conclusion

The concept of ‘remote service calls’ is utilized to gain access to data from other nodes. A
disadvantage of this method is that the coupling between several services can become quite great. An
interesting advantage of this method is that the abstraction level allows for easy usability of this
method; a remote service can intuitively be used where it is required.

Another possibility would be to communicate with other nodes on the level of ‘messages’ or
‘handlers’. This sacrifices abstraction for lower coupling.

This part of the language is also one where it becomes very important to take into account how the
system will work in practice. The response to exceptions, such as communication failure, should be
considered in this as well.

4.6 Subscriptions

A subscriber can take out a subscription on a service running on a node. This will enable the
subscriber to receive messages generated by the service. This method, similar to the
publish/subscribe-mechanism, enables loose coupling between the subscriber- and the service-node,
an important feature in relatively unreliable WSN’s.

4.6.1 Subscription notation
A subscription is specified as follows:

SUBSCRIPTION
<SubscriptionName>

FOR
<ServiceNodeAddress>

( <Parameter>: <Value>

)

The subscription has a unique name, used to remove it when necessary. The address to which the
subscription should be delivered is specified after FOR. Subsequently, the following subscription
parameters are defined:

Table 5: Subscription parameters

Parameter Description

service The name of the service that should be subscribed to.

subscriber The address of the node which should become a subscriber to this
service.

deadline The maximum amount of time that is allowed to pass between the
generation of a message by the service and its reception by the
destination.

minimumSamplePeriod The minimum amount of time between two subsequent readings of
the sensor values.

maximumSamplePeriod The maximum amount of time between two subsequent readings of
the sensor values.

sendPriority The priority by which a message is sent over the network.

executePriority The priority by which a service is executed.

$variable Subscription variables are declared in service definitions. The value
that the variable should become for this subscription can be set here.

4.6.2 Conclusion

Subscriptions are used to add flexibility into the programming model while keeping the resource
usage low. An additional choice can be made in the deployment-phase on whether to include this
flexibility or not.
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4.7 Clustering

Energy-conserving routing methods are one of the main challenges involving WSN’s. Determining an
appropriate routing algorithm and parameters is infeasible without information about the WSN. The
logical, application-related aspect of the WSN forms a part of this. Thus, to save energy in routing,
one could specify this information in the application layer itself. This would be a cross-layer
optimization which would decrease abstraction, but improve energy usage.

To mitigate the loss of abstraction, it would be preferable to use concepts which can both be used for
routing and have logical function in the development of services. As explained in 3.1.2, an example of
such a concept is that of a ‘cluster’ of nodes. The cluster includes nodes which have a strong logical
relation to each other. In a service definition, this cluster may be used in a logical way to specify the
scope of remote service access.

For performance-purposes, the limited scope may be exploited to decrease communication. The
cluster may contain nodes which can fulfil special roles in routing. A clusterhead, for example, can act
as a central server for intra-cluster communication and a gateway can be responsible for inter-
cluster communication. The role-assignment could be based on specific properties of the nodes. For
example, a relatively powerful node with an easily replaceable battery can be set as clusterhead,
while weaker nodes only communicate directly with the clusterhead.

4.7.1 Cluster notation

Before a service is deployed, a topology for the network can be configured. This might be a default
topology for all services, a topology configured only for a specific service (e.g. a tree structure for
aggregation functions) or a topology set for a specific time (e.g. a star topology in a milking station) .
Currently, we only discuss how to establish a single topology.

In the herd control scenario, a cluster topology is preferred in which all nodes attached to the same
cow form a cluster. The node attached to the cow’s neck should always perform the function of
clusterhead and gateway. To configure the network for this topology, the following command is
issued:

TOPOLOGY CLUSTER CowCluster
FOR
[Network]*|] isNodeType="“cowNeckNode’"]
( CLUSTERHEAD: [Network]*|]isNodeType=“cowNeckNode” &&
cowlD=<<cowlD()>>],
GATEWAY: CLUSTERHEAD,
MEMBER: [Network]*]cowlD=CLUSTERHEAD.cowlD]

)

This defines a topology of type CLUSTER, with the name “CowCluster”. CLUSTERHEAD, GATEWAY
and MEMBER are parameters of this type CLUSTER. The CLUSTERHEAD is the node which receives
and resends all intra-cluster communication, the GATEWAY is responsible for inter-cluster
communication and MEMBER is a member of a cluster. These are all keywords of the language.

The meaning of this command is that a cluster’s clusterhead is the node located on the cow’s neck.
For each clusterhead, the cluster’s gateway is the same as its clusterhead and its members are those
nodes that have the same cowlID as the clusterhead.

The square brackets are used to address nodes, based on their functions/attributes. In its first use (in
the FOR), all nodes are addressed that have “cowNeckNode” as their “isNodeType”. The
“isNodeType”-attribute must be predefined on the nodes. The node currently executing the command
is addressed as ‘node’. This results in the command being received by the neckstrap nodes. These
nodes will further process the command to establish the cluster (including the non-neckstrap nodes).
The gateway is specified to be equivalent to the earlier specified clusterhead. For members, the
nodes are addressed that have the same cowID as the clusterhead’s cowID.
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The operational details of this statement are left undiscussed. Currently, some more research is
required in how to express other topologies. Research on description and self-configuration of
topologies in homogeneous WSN’s has been performed in (34). We are focusing more on configuring
topologies in heterogeneous WSN’s based on node functionality.

4.8 Conclusion

The language was designed around the concepts discussed in 3.1. A potential way of improving the
usability of the language is by providing a graphical user interface (like UML). This would increase
the clarity of aspects of the language.
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5. DEPLOYMENT

After the development of the service in the macroprogramming language, the code goes through the
deployment phase. Deployment is the process of getting developed code into a run-time condition.
This phase includes some trade-offs that will be discussed.

As explained in 3.2, a major trade-off that should be made in the deployment phase is that between
resource usage and flexibility. The method of implementing this trade-off is not discussed in detail.
The primary difference between the options is whether a deployment step will be executed on the
gateway or on nodes. Here, the focus is on the deployment option in which nodes run an interpreter
that can receive new services.

This chapter discusses the various processes involved in the deployment. First, the translation from
source code to bytecode is described and subsequently the translation of bytecode to a system that
can be executed.

5.1 Translation to bytecode

Translating a program written in the macroprogramming language to bytecode involves several
steps, namely: parsing code, translation to the stack-based instruction language and a conversion of
strings to compressed form.

A compiler for this language was created. Its grammar, an older version of the language, is shown in
Appendix A:.

5.2 Bytecode interpreter

The bytecode interpreter converts bytecode into a form that can be easily executed by the node. In
Figure 21, it is the step from configuration instructions to the configuration. This conversion takes
place due to the necessity of bytecode being of small size and the executable form being executable
with low use of system resources. It was considered that the translation phase can be relatively
resource-intensive, as it should not occur often in the lifetime of a node.

The interpreter which performs the translation is a stack-based interpreter. The bytecode contains
several “PUSH”-instructions which push values onto the stack. The other instructions cause the
interpreter to take values off the stack and place them into tables. There are, for example, tables for
storing addresses, parameters and functions. Because the system is intended to work in an event-
based manner, the elements should quickly be random accessible. Processing the ‘linear’ bytecode
before its execution and storing it in tables provide such a method. The tables will most likely be
implemented as linked lists to accommodate variable sizes of services, subscriptions and their
components.

The essential part of the table structure, which contains the order of execution of functions, is
encoded as a graph as discussed in 3.3 The other tables serve to store specifics on what needs to be
executed.

5.2.1 Stack types

The interpreter utilizes several stacks for processing the bytecode. Possibly they could be combined
into a single stack, but this has not been considered. The stacks are:
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Table 6: Stacks used by bytecode interpreter

Stack type Use

General stack The general stack contains the values that belong to PUSH-instructions in
(GS) the bytecode.

Value stack The value stack contains a reference to the last value that has been

(VS) processed and put in a table. This can be a either a constant or a function

result.

Execution stack
(ES)

The execution stack contains a reference to the last executed function. This
is used to determine the order of execution.

5.2.2 Execution tables

After the bytecode has been interpreted, its interpreted contents will be placed into the execution

tables. At the core of the structure is the execution order, as explained in 3.3. Around it are the
various concepts described in 3.1.

The structure of these tables is displayed in Figure 34.
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Below, the use of these tables is explained. For each variable of a table, the ‘refers’-column indicates
whether it the variable points to another table. If multiple tables are mentioned, the variable can
refer to one of these.

Service (SV)

The SV-table contains the services running on the node. The name is stored along with the original
destination address. It is connected to the TE-table to trigger the first functions to be executed of a
service.

Variable Refers | Use
name The name of the service.
address AD A reference to the address

Receive Function (RF)

The RF-table contains reception of function results. For each function call, there is an RF-entry. This
reception can be from a local function as well as a remote service. It corresponds to the RF described
in 3.3.

Variable Refers | Use
execfunc EF Is function result from this function.
validity Indicates if the function result is:
e (Constant: Function result never changes (e.g. an identifier).
e Dynamic: Function result can change every time the function is called.
e Dependent: Function result can only change if the parameter values of
the function change.
Used for reducing the number of function calls as much as possible (as they
can be remote).
val[] Stores the latest result. Value is stored per subscription.

Execute Function (EF)

The EF-table contains pointers to the actual function calls. This table is linked with RF through TE to
form a graph to determine execution order. It corresponds to the EF described in 3.3.

Variable Refers | Use
func NF Points to the function call with its parameters.
recvfunc RF Result of the function will be sent there.

Triggers Execution (TE)

The TE-table contains the connections between the reception of a function result and the execution
of the next. In essence, it contains the order of execution as it specifies which functions should have
been executed before a certain function will be executed. Together with EF and RF forms a Petri-net
as shown in Figure 28.

Variable Refers Use

recvtype recvfunc points to either a service, an event or a function.

recvfunc RF,ET,SV | A reception of a result here triggers the execution of execfunc.

exectype execfunc points to either an event or a function.

execfunc EF, ET This is executed after recvfunc has been received.

token(] Set to true if a result has been received at recvfunc. Set to false after the
execfunc has been executed. Value is stored per subscription.

Node Function (NF)

The NF-table contains the actual function calls with their parameters. It points to the function that
should be called and the parameters that should be passed.
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Variable Refers | Use

address AD The address on which the node should be executed (if remote).
func FN The function that should be executed.

params PA The parameters that should be passed.

nrparams The number of parameters that should be passed.

Parameter (PA)

The PA-table contains the parameters of an NF, AP or SU-entry. These contain the label of the
parameter along with a pointer to a value, which can be a pointer to an RF-entry, a variable, or a
constant.

Variable Refers Use

label Label of parameter.

constant Whether val is a function, a constant or a variable.
val RF,CO,VAR | Points to the parameter value.

Function (FN)

The FN-table contains the functions located on the node along with information on their validity. This
indicates whether the function result is always the same (static), always changing (dynamic) or
dependent on the parameters (dependent). It also indicates its return type. In the current
implementation, data on the parameters of the function are stored here as well.

Variable Refers | Use

funcpar Whether the entry is a function or a function parameter.
func The name of the function.

functype The type of the function: void, int, string or Bool.
funcvalid Indicates if the function’s result is:

e  (onstant: Function result never changes (e.g. an identifier).
e Dynamic: Function result can change every time the function is
called.
e Dependent: Function result can only change if the parameter values
of the function change.
Used for reducing the number of function calls as much as possible (as they
can be remote).

Constant (CO)
The CO-table contains the constants that are used in services.

Variable Refers | Use
val Value of the constant.
Variable (VAR)

The VAR-table contains the variables that are specified through subscriptions.

Variable Refers | Use

name Name of the variable.

val[] Contains the value of the variable. Value is stored per subscription.
Address (AD)

The AD-table contains the addresses used in services and subscriptions. An entry includes the scope
and the amount and references the AP-table for its address properties.
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Variable Refers | Use

scope The scope of the address.

amount The amount of the address.

props AP The properties of the address.

nrprops The number of properties of the address.
Address Property (AP)

The AP-table contains address properties belong to an address. It references a local function, an
operator to use for comparing and a value to compare the function with.

Variable Refers Use

func FN Points to the local function.

funcpar PA Points to the parameters that are passed to that function.
funcparnr The number of parameters passed.

op The operator used for comparison.

constant Whether val is a function, a constant or a variable.

val RF,CO,VAR Points to the value for comparison.

Event Trigger (ET)

The ET-table contains the events and the eventends specified in services. It contains indication on
whether it is an event or an event end, an evaluated condition (true or false) per subscription and
references the RF-table for its condition.

Variable Refers | Use

ee Whether the event is an event condition or an event-end condition.
trigger RF The event condition.

val[] The evaluated condition value. Value is stored per subscription.

Subscription (SU)

The SU-table contains subscriptions belonging to a service. For its parameters it references the PA-
table.

Variable Refers | Use

name Name of the subscription.

service SV Is a subscription to this service.
params PA The subscription parameters.
nrparams Number of subscription parameters.
Timer Queue (TQ)

The TQ-table contains the various timers that come into existence due to the subscriptions. It is used
to start the appropriate services at the appropriate times.

Variable Refers | Use
su SU Belongs to this subscription.
timer Its period.

5.2.3 Processing bytecode

The bytecode interpreter translates the bytecode to the previously defined tables using the stacks. It
is the process that forms the service and subscription Petri-nets as shown in Figure 30. To describe
this process, we use pseudo-code to prevent getting in too much detail. Per instruction, we indicate
the operations that occur on the stacks and tables when this instruction is interpreted. For example:
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VAR: Add <Val>, Receive <VARPtr>
This indicates that the value <Val> is added to the Variable-table and a pointer its entry in the table is
returned as <VarPtr>. Other operations than Push, Pull, Add and Receive may be used, but will be

explained afterwards.

Processing constants and variables

Instruction Stack & Table Behaviour
PUSH <Val> GS: Push <Val>
CONSTANT GS: Pull <Val>

CO: Add <Val>, Receive <COPtr>
VS: Push <COPtr>

VARIABLE GS: Pull <Val>
VAR: Add <Val>, Receive <VARPtr>
VS: Push <VARPtr>

Algorithm 1: Processing constants and variables

The CONSTANT and VARIABLE instructions operate by pulling the value from the General Stack and
adding it to the respective tables. Subsequently, a reference to the table entry is pushed onto the
Value Stack.

Processing functions

Functions and remote service calls constitute the core of the execution pattern. To appropriately
facilitate this, the functions from bytecode need to be converted into the Petri-net-like form that
appropriately expresses both the order of execution and the event-based way of operation.

The table below specifies the actions with respect to the stacks and tables the interpreter should take
when encountering an instruction:

Instruction Stack & Table Behaviour

FUNCTION GS: Pull <Function>
GS: Pull <NrParams>

For every parameter (<NrParams>):
GS: Pull <ParamName>
VS: Pull <ParamVal>
PA: Add <ParamName>, <ParamVal>, Receive <PAPtr>
If ParamVal is a function:
ES: Pull <ParamRFPtr>
TE: AddRF <ParamRFPtr>

NF: Add <Function>, <PAPtr>, <NrParams>, Receive <NFPtr>
EF: Add <NFPtr>, Receive <EFPtr>

RF: Add <NFPtr>, Receive <RFPtr>

TE: AddEF <EFPtr>

ES: Push <RFPtr>

If none of the <ParamVal>’s was a function:
TE: AddPhase <EFPtr>, <CurrPhase>

If FU:getFuncType(<Function>) indicates a return of value:
VS: Push <EFPtr>

Algorithm 2: Processing functions

The FUNCTION instruction causes the function name and the number of parameters to be pulled

from the stack. Subsequently, each parameter will be read. First, the label of the parameter is pulled
from the general stack. This is followed by pulling of the parameter value from the value stack. This
value can be a constant, variable or other function. The parameters are placed in the PA-table. If the

54




value was a function, it has to be executed before the present function can be executed. For this
purpose, a reference to the RF will be put into the TE-table.

Subsequently, the function with a reference to the parameters will be stored in the NF-table. RF- en
EF-entries are created for the present function. To place the function into the order of operation, the
EF-entry is linked into the TE-table. In practical terms, this means that the previously added
references to the RF’s will be linked with the current function. This implies that any functions in the
present function’s parameter need to have finished executing before the present function can
continue.

However, when the function does not depend on any other function it should be executed as well. To
accomplish this, either the service entry or the event entry is set to trigger the function, depending on
the place where the function occurs. If the function returns a type (this is looked up in the FN-table),
areference to the function’s RF is pushed onto the Value Stack.

Instruction Stack & Table Behaviour

REMOTEFUNCTION | GS: Pull <Address>

GS: Pull <Service>

RS: Add <Address>, <Service>, Receive <RemoteServicePtr>
GS: Pull <NrParams>

For every parameter (<NrParams>):
GS: Pull <ParamName>
VS: Pull <ParamVal>
PA: Add <ParamName>, <ParamVal>, Receive <PAPtr>

If ParamVal is a function:
ES: Pull <ParamRFPtr>
TE: AddRF <ParamRFPtr>

NF: Add <RemoteServicePtr>, <PAPtr>, <NrParams>, Receive <NFPtr>
EF: Add <NFPtr>, Receive <EFPtr>

RF: Add <NFPtr>, Receive <RFPtr>

TE: AddEF <EFPtr>

ES: Push <RFPtr>

If none of the <ParamVal>’s was a function:
TE: AddPhase <EFPtr>, <CurrPhase>

If FU:getFuncType(<Function>) indicates a return of value:
VS: Push <EFPtr>

Algorithm 3: Processing remote functions

The interpretation of the REMOTEFUNCTION-instruction is similar to that of the FUNCTION-
instruction. It differs in the sense that first the address reference is pulled from the General Stack and
an entry is created in the RemoteService-table.

Processing addresses
Below we describe the interpretation of the ADDRESS-instruction.

Instruction Stack & Table Behaviour

ADDRESS GS: Pull <Scope>
GS: Pull <Amount>
GS: Pull <NrProps>
For every property (<NrProps>):
GS: Pull <Function>
GS: Pull <NrParams>
For every parameter (<NrParams>):
GS: Pull <ParamName>
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VS: Pull <ParamVal>
PA: Add <ParamName>, <ParamVal>, Receive <PAPtr>

GS: Pull <Operator>

GS: Pull <NrOpParams>

VS: Pull <Value>

AP: Add <Function>, <PAPtr>, <Operator>, <Value>,
Receive <APPtr>

AD: Add <Scope>, <Amount>, <APPtr>, Receive <ADPtr>
GS: Push <ADPtr>

Algorithm 4: Processing addresses

The ADDRESS instruction pulls the scope and amount of the general stack. Subsequently, it will start
to read the properties of the address. It starts by reading the amount of properties that it should
read, then for each property the function which will be compared along with its parameters, the
operator which does the comparison and the value it is compared to. Afterwards these are entered
into the address properties (AP) and address (AD) tables. As an optimization, the AD and AP-tables
can be checked to see if the same address already occurs in the table; if it occurs, a pointer to the
existing address is returned.

Processing other instructions
Other instructions shall not be covered in-depth.

Example

To provide an idea about how such a service will be represented in the run-time memory of a node,
an example shall be provided. Below we specify the service that shall run on the nodes:

SERVICE
TemperaturePHAlert
FOR
[Network]*|nodeType="CowTemperatureNode’]
ON EVENT
(Temperature() > $MaxTemperatureAlert) &&
[Cow]1]nodeType="CowPHNode] -PH($MaxPH: $MaxPHAlert)
DO
SendToSubscribers(content: cowlD())

The compiler will translate this to bytecode. Bytecode will be in binary form, with strings in
compressed form, but is represented here in a readable format.

PUSH “TemperaturePHAlert”
SERVICE

PUSH ““CowTemperatureNode”
CONSTANT

PUSH 2

PUSH ="

PUSH O

PUSH ““nodeType”’
PUSH 1

PUSH ““*”

PUSH “Network”
ADDRESS

FOR
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PUSH O

PUSH “Temperature”
FUNCTION

PUSH ““one”

PUSH “$MaxTemperatureAlert”
VARIABLE
PUSH “two™

PUSH 2
PUSH *>”
FUNCTION
PUSH ““one™

PUSH “$MaxPHAlert”
VARIABLE

PUSH ““$MaxPH”
PUSH 1

PUSH “PH”

PUSH ““CowPHNode™
CONSTANT

PUSH 2

PUSH “=”

PUSH O

PUSH ““nodeType”
PUSH 1

PUSH 1

PUSH “Cow”
ADDRESS
REMOTEFUNCTION
PUSH “two”

PUSH 2
PUSH “&&”
FUNCTION

ONEVENT

PUSH O
PUSH “cowlD”
FUNCTION

PUSH “content”

PUSH 1

PUSH “SendToSubscribers”
FUNCTION

DO

END

Processing this bytecode will lead to the following entries contained in the execution tables. These
may be implemented using arrays or linked lists. A reference to another entry is indicated by the

letters of the table followed by the ‘index’ number of the entry. Constants are indicated in capital
letters and strings will be in compressed form in the implementation.



SV | Name

1 “TemperatureAlert”

FN | Name Validity ReturnType
1 “>” DEPENDENT BOOL

2 ‘&&” DEPENDENT BOOL

3 nodeType STATIC INT

4 cowID STATIC INT

5 SendToSubscribers STATIC NONE

6 Temperature DYNAMIC INT

CO | Value

1 “CowTemperatureNode”

2 “CowPHNode”

VAR | Name Value[0] Value[1] Value[...]
1 $MaxTemperatureAlert

2 $MaxPHAlert

NF | Address Function Parameter
1 NULL FN6 NULL
2 NULL FN1 PA1l

3 “PH” PA3
4 NULL FN2 PA4

5 NULL FN4 NULL
6 NULL FN5 PA6
PA | Label Value

1 “two” VAR1

2 “one” RF1

3 “$MaxPH” VAR2

4 “two” RF3

5 “one” RF2

6 “content”

EF | NodeFunction ReceiveFunction

1 NF1 RF1

2 NF2 RF2

3 NF3 RF3

4 NF4 RF4

5 NF5 RF5

6 NF6 NULL

RF | Validity Value[0] Value[1] Value[...]
1 DYNAMIC

2 DEPENDENT

3 DYNAMIC

4 DEPENDENT

5 STATIC
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TE | Receive Triggers Token[0] | Token[1] | Token]...]
1 Svi EF1

2 RF1 EF2

3 Svi EF3

4 RF3 EF4

5 RF2 EF4

6 RF4 ET1

7 ET1 EF5

8 RF5 EF6

ET | Condition EventEnd Value[0] Value[1] Value[...]
1 RF4 FALSE

AD | Scope Amount Properties

1 “Network” *

2 “Cow” 1

AP | Function Parameters Operator Value

1 FN3 NULL “=" Cco1

2 FN3 NULL “=" Cco2

This table still requires a subscription to finally run. The actual execution of these tables is discussed

in chapter 6.

5.3 Conclusion

This chapter provided further detail on the deployment discussed in 3.2, with focus on the bytecode
interpreter. The description is based on a prototype x86-implementation that performs the
translation to bytecode and the interpretation of bytecode, which ascertains the functional
correctness. Further improvements can be made by increasing the efficiency of the execution tables.

Possibilities for accomplishing this include sorting and generalizing the current tables.
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6. RUN-TIME

The run-time phase is the phase in which the WSN performs the assigned tasks. This occurs after the
deployment has been completed. The approach discussed in 3.3 is described in terms of algorithms
that use the execution tables from 5.2.

6.1 Execution method

The Interpreter-process has been described in 5.2. Discussion of the handling of incoming and
outgoing messages will not be discussed in this report. For this paragraph, the focus will be on the
Execution-process.

The Execution-process reads the tables produced by the Interpreter-process as described previously
in 5.2.3. Its operation is described below. It should be noted that these algorithms are based on a

prototype implementation and are not optimized.

For ease of understanding, the notation of the algorithm has been converted to pseudo-code. A short
explanation of the notation is shown in Table 7.

Table 7: Pseudo-code notation

Notation Meaning

tee TE te is an entry from the “Triggers Execution”-table. In C-code, this would be
represented as: te_table[te]. The abbreviations for the tables and their
content can be looked up in 5.2.2.

For all te e TE: Iterate through all entries of TE.
te.recvtype The variable ‘recvtype’ of the entry te.
RF|[te.recvfunc] The entry of the RF table which is referred to by te.recvfunc.

6.1.1 Initiate service

The general program loop is executed after a timer-event. It generates the timerEvent from Figure
29.

Function Behaviour
Run() /* time is a variable which expresses the current time as a value between 0
and the least common multiple of all subscription times. This function is
called on a timer event which occurs on the greatest common divider of all
subscription times. */
For all tq € TQ:
If (time % tq.timer == 0)
For all te € TE:
If (te.recvtype == SV &&
te.recvfunc == SU[tq.su].service):
te.token[tq.su] = TRUE;
For all su € SU:
performStep(su);

Algorithm 5: General execution loop

The algorithm determines if it is time for a subscription to a service to be scheduled for execution by
checking the TQ-table against the timer. If it is, the TE-table will be searched to find the first functions
which should be executed of the subscription’s service. These occurrences will be marked by setting
its token to TRUE.

Subsequently, an iteration step is performed for each subscription.
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6.1.2 Iteration step

In the iteration step, the channels from Figure 30 are checked for tokens and the appropriate
processors are fired. This step proceeds as follows:

Function

Behaviour

performStep(su)

For all ef € EF:
tokens = TRUE
token_occurs = FALSE

/* If EF has an incoming RF without a token, do not execute the EF
(tokens = FALSE) */

For all te € TE:
If (te.exectype == EF && ef == te.execfunc):
token_occurs = TRUE

If (te.token[su] == FALSE):
tokens = FALSE

/* 1T all the EF"s incoming RFs have a token, execute the EF */
If (tokens && token_occurs):
execEF (ef, su)

/* Remove tokens from the EF */
For all te € TE:
If (te.exectype == EF && ef == te.execfunc):
te.token[su] = FALSE

/* For every ET-entry, see whether the condition holds. If yes, execute the
DO. If no, do not continue.*/

Forall et e ET:
For all te € TE:
If (te.exectype == ET && ef == te.execfunc &&

te.token|[su]):
/* Remove token and place result value in ET-value */

te.token[su] = FALSE
/* 1T the event condition was not previously the same
as now, continue */

val = RF[te.recvfunc].val[su]]
If (et.val[su] !=val):
et.val[su] = val

/* 1T the event condition is true, place
tokens in the execution tables */

If (val):
/* Place tokens in upcoming places */
For all te2 € TE:
If (te2.recvtype == ET &&
teZ.recvfunc == et):
teZ.token[su] = TRUE

Algorithm 6: Execution iteration step

This iteration step is responsible for executing the functions which should be executed and for
updating the tokens. It accomplishes this by checking for all EF’s whether all required tokens for it to
execute are there in the TE-table. If so, the function is executed. After execution, the tokens are

removed.

Besides executing the relevant EF’s, the Event Triggers are evaluated as well. To accomplish this, for
all ET’s the RF-table is checked on whether its condition has been evaluated to TRUE or FALSE. As
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this is about events, not just conditions, it will only proceed by placing tokens at upcoming functions
when the condition is currently TRUE while it was previously FALSE.

This algorithm could be optimized by sorting the tables beforehand. Currently, the complexity is O(
EF * (TE + nrTokens(O(execEF) + TE)) + ET * (TE * nrTokens(TE)) ). The nrTokens is the number of
TE-entries which have a token. Its complexity can be greatly reduced by sorting the TE table by EF
and ET. This at minimum eliminates the need for the EF and ET terms. As this is essentially an
algorithm for an uncoloured Petri-net, better performance can most likely be achieved by looking at
efficient algorithms for Petri-nets, but this will not be studied in this report.

6.1.3 Receive function result
To execute an EF, as shown in Figure 31, the following function is called:

Function Behaviour

execEF(ef, su) nf = ef-func

/* Case distinction on address */
If (not( isRemote(ef) )):
val = execFunc(nf.-func, nf.params, nfnrparams, su)

/* If the return type of the function is not void, place the result
in its RF */
If (getFuncType(nf.func != VOID)):

recvRF(ef.recvfunc, su, val)

Algorithm 7: EF execution

The “execEF”-function is responsible for executing the required EF. It first determines if the function
is local, then executes the function and passes along its parameters. Subsequently, if the function has
a return-value, this value is sent to “recvRF”.

Function Behaviour

recvRF(rf, su,
val)

/* Place the received value in the RF table */
rfval[su] = val

/* Place tokens in TE where this RF occurs */
For all te € TE:

If (te.recvtype == RF && te.recvfunc == rf):
/* Placing token */

te.token[su] = TRUE

Algorithm 8: Receiving a function result

The “recvRF”-function is responsible for receiving a value returned by a function and placing it in the
right place in the RF-table. Subsequently, tokens are added in the TE-table on places where the RF
triggers another function. Currently, its complexity is O(TE).

6.2 Conclusion

This chapter provided a more detailed description of the run-time process discussed globally in 3.2.
The algorithm was provided to gain a better understanding on how the execution-process works. The
description is based on a functional x86-prototype. However, the efficiency of the current version can
be vastly improved.
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7. EXAMPLE

To show how the programming model can be applied, we describe an example.

7.1 Cow scenario

One of the use cases for WASP is using a WSN for monitoring the health of a herd of cows. This
example will expand upon this idea.

7.1.1 Setting
The environment that the WSN will operate in is a dairy farm in the Netherlands. It has 200 cows,
which is larger than the national average of 70(38), but not yet a so-called ‘mega-farm’. The farm is a
family company run mostly by one person. The number of cows and the number of farmers
necessitate automation of the farming process. The farm currently has the following elements:

e A pasture with grass on which the cows can graze
A barn that houses the cows at night and that contains the milking machine
A house where the farmer lives
A farmer that operates the farm
A herd of 200 cows that graze and provide milk

This is displayed in Figure 35.

Figure 35: Overview of the farm

In the last few years, livestock health has increasingly been receiving attention. Mad cow disease,
foot-and-mouth disease and blue tongue are just a few of the diseases that were featured
prominently in the media. To more effectively monitor the health of his herd, the farmer wants to use
a WSN. This data should be used both for registration, such that the farmer can observe long-term
patterns and for alerts, such that the farmer can respond quickly to a cow becoming ill. The most
important data required for this are a cow’s temperature, stomach pH-level and leg movement
patterns.

7.1.2 Nodes

To fulfil these needs, the following sensor nodes will be attached to the cow:
1. A cow temperature node will be attached in the ear to measure the cow’s temperature
2. A pH node will be planted in the cow’s stomach to measure its pH-level
3. An acceleration node will be attached to a cow’s leg to detect anomalies in its movement
4. A position node will be attached to a cow’s neck to determine its position
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Additionally, the barn will contain the following nodes:
5. Barn temperature nodes are placed in the barn to measure its temperature
6. Barn luminosity nodes are placed in the barn to measure its light level

Furthermore, the farm contains a station for relaying information to the gateway.

As each node will be used differently, there are different hardware requirements for each node. The
cow temperature node will be placed in-ear. Most likely it needs to be rather small. It will be possible
to recharge it, but not easily. As the pH-sensor is placed in the stomach, its battery can not be
replaced. Thus, a very long lifetime is required for it. Therefore, different types of node are used in

the WSN.

These requirements are as follows:

Table 8: Size and lifetime requirements for cow nodes

Size Lifetime
Cow temperature | - 0
pH - ++
Acceleration - -
Position + -

The capabilities of these nodes must be available as functions. These are programmed at a lower
level and made available to the interpreter for a node. These functions are:

Table 9: Specific functions available on the nodes

Function Parameter

Description

Temperature

Returns the current temperature.

Unit

The unit of the temperature value. Either:
o “Celsius” (default)
o “Kelvin”
e ‘“Fahrenheit”

pH

Returns the current pH-level

Position

Returns the current position.

Luminosity

Returns the current luminosity.

Crippleness

Returns the degree to which the cow’s movement
appears to be crippled. Is calculated by applying
a complex algorithm over acceleration data for a
specified period of time. Returns an integer
between 0 (heavily crippled movement) and 100
(very normal movement).

SampleTime

The time in ms during which the acceleration is
sampled and the algorithm is applied. Greater
values result in greater accuracy and energy
usage.

SetLight

Turns the light attached the node on or off.

Level

Either:
o “Off”
e “On”
o “Toggle” (default)

cowlD

Gets or sets a ‘cowID’-value that identifies to
which cow the node belongs.

Action

Whether to write or read the ID:
e “Get” (default)
. "Set"
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ID

When writing an ID, the integer value that should
be set.

Table 10 shows the mapping of these functions to the nodes. Additionally, default functions such as
“isNodeType” and “History” are present on the nodes.

Table 10: Mapping of functions to nodes

Node Contains
cowTempNode e cowlD

e Temperature
cowPHNode e cowlD

e pH
cowAccelNode e cowlD

e C(Crippleness
cowPosNode e cowlD

e Position
barnTempNode e Temperature
barnLightNode e Luminosity

o SetLight

7.1.3 Development

After the capabilities of the nodes have been determined, the services can be written. Each use case
should result in a service. To ease development, we start by defining a cluster topology on the
network. As the position node will be the most powerful node on a cow, it will be made clusterhead.
To be able to group the nodes per cow, the cowID will be used.

Use case | Set cluster topology for a cow

Code TOPOLOGY CLUSTER Cow

FOR

)

GATEWAY: CLUSTERHEAD,
MEMBER: [Network|*]cowlD=CLUSTERHEAD.cowID()]

[Network]*] isNodeType="“cowPosNode’"]
( CLUSTERHEAD: [Network]*]isNodeType=*“cowPosNode” &&
cowlD=<<cowlD>>],

Subsequently, the following services are defined:

Use case | Receive a regular report on the cows’ temperatures

Code SERVICE

FOR

DO

TempReport

[Network | * |

isNodeType="cowTempNode’]

SendToSubscribers(content: Temperature() )

Use case | Receive an alert when the temperature of a cow crosses a certain temperature

Code SERVICE

FOR

DO

TempAlert

[Network | * |
ON EVENT
Temperature() > $TempVar

isNodeType=""cowTempNode’]
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SendToSubscribers(content: [Cow]1|] isNodeType="cowPosNode] .Pos())

Use case | Receive an alert when both the temperature and the pH of a cow cross certain values

Code SERVICE

TempPHAlert
FOR

[Network | * | isNodeType="cowTempNode™]
ON EVENT

Temperature() > $TempVar &&

[Cow | 1 | isNodeType="cowPHNode”].PH() < $PHVar

DO

SendToSubscribers(content: cowlD() )

Use case | Receive an alert when a cow appears to be crippled by detecting if the average of
crippleness values over a period of time crosses a threshold

Code SERVICE

CrippleAlert
FOR

[Network | * | isNodeType="cowAccelNode’ ]
ON EVENT

History(method:’Average”,
value:Crippleness(SampleTime: $CrippleSampleTime),
fromNow:$AvgTime)

> $Cripplevar

DO
SendToSubscribers(content: cowlD() )

Use case | Turn on the light in the barn when the light drops below a certain level and turn it off
when the light rises above a certain level

Code SERVICE
LightSwitch
FOR
[Network | 1 | isNodeType="barnLightNode’]
ON EVENT
Average(func:
[Network | * | isNodeType="barnLightNode”].Luminosity() )
< $LightOnLuminosity
DO
SetLight(Level :70n™)
ON EVENTEND
Average(func:
[Network | * | isNodeType="barnLightNode”].Luminosity() )
> $LightOffLuminosity
DO
SetLight(Level :”0ff)

As discussed in 3.1 and 4, a variety of extensions of the language is possible. Especially the
addressing can be improved by selecting nodes not only by cluster, but also by physical- and hop
distance. When these language concepts are introduced, services such as the following become
possible:

Use case | Send an alert when there is no other cow within a 50m distance of a certain cow

Code SERVICE
LonelyCow
FOR
[Network | * | isNodeType="cowPosNode’]

66




ON EVENT
Exist(node:[Distance(50) | * | isNodeType="cowPosNode”]) =
FALSE
DO
SendToSubscriber(content: cowlD() )

Use case | Turn on the light in the barn when the light drops below a certain level and there is a cow
near or in the barn and turn it off when the light rises above a certain level or there is no
cow nearby

Code SERVICE
LightSwitchProximity
FOR
[Network | 1 | isNodeType="barnLightNode’’]
ON EVENT
Average(func:
[Network | * | isNodeType="barnLightNode”].Luminosity() )
< $LightOnLuminosity &&
Exists(node:[Hop(1) | 1 | isNodeType="cowNeckNode™]) = TRUE
DO
SetLight(Level:’0n™)
ON EVENTEND
Average(func:
[Network | * | isNodeType="barnLightNode”].Luminosity() )
> $LightOffLuminosity ||
Exists(node:[Hop(1) | 1 | isNodeType="cowNeckNode]) = FALSE
DO
SetLight(Level :”0ff)

7.1.4 Deployment

As the farmer wants to be able to install new services on the nodes, he chooses the deployment-
option in which there is a bytecode-interpreter on the nodes. The farmer buys the appropriate nodes
that have the interpreter installed on them. Then, the system can be deployed by first setting a cowID
on each sensor. This could be accomplished by holding a node close to a short-range transmitter that
sends the command. Subsequently, the nodes can be attached to the cows. From that point onwards,
the nodes can be completely controlled remotely. The farmer then uses the graphical user interface
on the gateway system to install the desired services and to configure subscriptions.

7.2 Conclusion

A description was given on how to apply the programming model to a specific case. With existing
programming models, implementing the use cases would be much more difficult. The more abstract,
node-independent models cannot be applied to this heterogeneous WSN. If such a way of
programming is required, all nodes need to be made similar, resulting in many difficulties. The only
option left is to use the lower-level programming models. This, however, will make programming
more complex. The programmer would directly have to take care of aspects such as communication,
configurability, reprogrammability, standard functions, and distribution of the application over the
nodes. This can be simplified by re-use of existing libraries and middlewares, but the integration of
these would then be difficult. The programming model described in this thesis simplifies many of
these aspects.
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8. CONCLUSION

The goal of this report was to describe a programming model for heterogeneous wireless sensor
networks that addresses the needs for long lifetime, low cost, easy deployability, flexibility and
robustness. The model also addresses the gaps existing in the current state-of-the-art WSN
programming models. A design-based, constructive approach was taken to make decisions for the
development, deployment and run-time phases of the system.

Contributions

The programming model simplifies the development of applications for heterogeneous WSN’s in
particular, without greatly increasing energy usage. Existing programming models that provide high
abstraction require homogeneous WSN’s, thus automatically excluding the advantages that
heterogeneous WSN'’s offer. The only other option is to use lower-level programming models in
which the programmer directly needs to spend significant effort on aspects such as communication,
reprogrammability, and standard functions. Our programming model provides low-effort control
over such aspects.

For the development phase, a network-centric, node-dependent programming language was created.
Contrary to current programming models, it is specifically designed to support heterogeneous WSN’s.
To accomplish the goals of easy programmability, low cost, and long lifetime, the flexibility of the
programming model was restricted to monitor-and-response type of applications. Thereby, the
language addresses the current gap between domain-specific, node-independent languages and
generalized, node-dependent languages. A number of concepts from different existing programming
models were integrated to form a language focussed around the concepts of events, services,
subscriptions, functions, remote service, content-based addresses and clusters.

For the deployment phase, instead of supporting only a single method as is the case in most current
programming models, this programming model permits different methods to be used. These allow a
designer to make additional trade-offs regarding cost and flexibility of the WSN. The most prominent
options require the use of an interpreter on the node that processes bytecode generated from the
source code. To support the various methods and to increase efficiency, a number of application
representations is used throughout the deployment.

For the run-time phase, a concurrent execution model for the application is used. To accomplish this
efficiently, a graph-like representation of the application is executed instead of purely sequential
processing of instructions from a traversal of the parse tree. This eliminates redundant waiting times,
thus potentially improving performance.

Besides the description in this paper, a prototype x86-version of the compiler, interpreter and
execution process for the programming model has been developed as well. This prototype ascertains
the functional feasibility of the programming model, though no definite conclusion on non-functional
properties can be drawn from it yet.

The project that resulted in this thesis was conducted from the System Architecture and Networking
(SAN)-group of the Eindhoven University of Technology as part of the Wirelessly Accessible Sensor
Populations (WASP)-project, which involves 19 European partners and is funded by the European
Union. Elements from this work have been included in WASP deliverables. The SAN-group has
continued with this work and will integrate part of it into WASP’s programming model. This work is
also included in the paper (12).

Future work

To produce a fully functional WSN based on this programming mode], it is necessary to focus on parts
left uncovered in this report. In particular, an efficient message-level operation forms an important
part of a well-working WSN. The method of connecting the programming model to lower-level
functionality and protocols is yet to be determined as well. This last aspect is of interest not only for
this programming model, but for WSN programming models in general. The wide variety of
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underlying protocols, algorithms and cross-layer optimizations existing for WSN’s are yet to be
integrated into a single programming model. Future research on this aspect should pave the way for
programming models which truly accomplish the vision for wireless sensor networks.
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Appendix A: GRAMMAR

This appendix provides a grammar for the language described in Chapter 4.
<Start> -> <Commands>

<Commands> -> epsilon |
<ServiceDef> <Command> |
<SubscriptionDef> <Command> |
<TopologyDef> <Command>

<ServiceDef> ->
<ServiceNameDef>
<DestinationDef>
<DefinitionsDef>
<EventDef>

<SubscriptionDef> ->
<SubscriptionNameDef>
<DestinationDef>
<SubscriptionParameters>

<TopologyDef> ->

<TopologyTypeNameDef>

<DestinationDef>

<TopologyParameters>
<ServiceNameDef> -> "SERVICE" <ServiceName>
<DestinationDef> -> "FOR" <Address>

<DefinitionsDef> -> epsilon |
"DEFINE" <NodeDefinitionsDef> <ValueDefinitionsDef>

<NodeDefinitionsDef> -> epsilon |
<NodeDefName> '":=" <Address> <NodeDefinitionsDef>

<ValueDefinitionsDef> -> epsilon |
<NodeFunctionDefName> "':=" <NodeFunction>
<ValueDefinitionsDef>

<EventDef> -> <ActionDef> |

""ON EVENT"™ <Value> <ActionDef> <EventEndDef>

<EventEndDef> -> epsilon |
"ON EVENTEND®" <Value> <ActionDef>

<ActionDef> -> "DO" <NodeFunction>

<Address> ->

"["" <AddressScope> | <AddressAmount> *'|*
<AddressProperties> "]" |
<NodeDefName>
<AddressScope> -> "Network'™ | <ClusterName> | *'Local”
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<AddressAmount> -> "1 | '*¢

<AddressProperties> -> epsilon | <AddressPropertiesNE>
<AddressPropertiesNE> -> <AddressProperty><AddressPropertiesR>
<AddressPropertiesR> -> epsilon | "," <AddressPropertiesNE>
<AddressProperty> -> <Function> <AddressPropertyR>
<AddressPropertyR> -> epsilon | <Operator> <AddressPropertyRR>

<AddressPropertyRR> -> <Value> | <Function>

<NodeFunction> -> <Address>"_"'<Function> |
<NodeFunctionDefName>

<Function> -> <FunctionName><FunctionParameters>

<FunctionParameters> -> epsilon |
"("" <Parameters> '")"

<Parameters> -> epsilon | <ParametersNE>
<ParametersNE> -> <Parameter> <ParametersR>
<ParametersR> -> epsilon | "," <ParametersNE>
<Parameter> -> <ParameterName> *:' <Value>
<Value> -> <NodeFunction> <ValueOp> |

<Constant> <ValueOp> |

<VariableName> <ValueOp> |

"(" <value> ") <ValueOp>"
<ValueOp> -> epsilon | <Operator> <Value>
<Constant> -> <Int> | <Real> | String | @<Address>
<Variable> -> <VariableName>
<TopologyParameters> -> "WITH(" <Parameters> )"
<SubscriptionParameters> -> "WITH(" <Parameters> )"
<ServiceName> -> <Name>
<ClusterName> -> <Name>
<NodeDefName> -> <Name>
<FunctionName> -> <Name>
<NodeFunctionDefName> -> #<Name>

<ParameterName> -> <Name>

<VariableName> -> ""$" <Name>
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<SubscriptionNameDef> -> <Name>
<TopologyTypeNameDef> -> "CLUSTER"™ <Name>

<Operator> _> II<II I ll<:Il I Il:Il I ll>:Il I
LLIRL I w_ I g I n/n

<Name> -> String

ll>ll I ll&&ll I llI Ill I
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Appendix B: CONVERSION TO BYTECODE

This appendix provides a grammar for the bytecode described in 5.
<Start> -> <Command>

<Command> -> epsilon |
<ServiceDef> <Command> |
<SubscriptionDef> <Command> |
<TopologyDef> <Command>

<ServiceDef> ->
<ServiceNameDef>
<DestinationDef>
<DefinitionsDef>
<EventDef>
<ActionDef>
<EventEndDef>

<SubscriptionDef> ->
<SubscriptionNameDef>
<DestinationDef>
<SubscriptionParameters>

<TopologyDef> ->
<TopologyTypeNameDef>
<DestinationDef>
<TopologyParameters>

<ServiceNameDef> -> "Push \'""'<ServiceName>"\"""
"Service"

<DestinationDef> -> <Address>
"For"

<DefinitionsDef> -> epsilon |
<NodeDefinitionsDef>
<ValueDefinitionsDef>

<NodeDefinitionsDef> -> epsilon |
<Address>
<NodeDefName>
"DefineNode""
<NodeDefinitionsDef>

<ValueDefinitionsDef> -> epsilon |
<NodeFunction>
<NodeFunctionDefName>
"DefineNodeFunction"
<ValueDefinitionsDef>

<EventDef> -> <ActionDef> |
<Value>
"OnEvent"'
<ActionDef>
<EventEndDef>
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<EventEndDef> -> epsilon |
<Value>
<ActionDef>
""OnEventEnd"

<ActionDef> -> <NodeFunction>

"Do"
<Address> -> <AddressProperties>
<AddressAmount>
<AddressScope>
"Address" |
<NodeDefName>
"NodeVariable™
<AddressScope> -> "Push Network™ |
<ClusterName> |
""Push Local™
<AddressAmount> -> "Push 1" |
'lPuSh Hcrr
<AddressProperties> -> epsilon |
<AddressPropertiesNE>
"Push " [nrProperties]
<AddressPropertiesNE> -> <AddressPropertiesR>
<AddressProperty>
<AddressPropertiesR> -> epsilon |

<AddressPropertiesNE>

<AddressProperty> -> <AddressPropertyR>
<Function>

<AddressPropertyR> -> epsilon |
<AddressPropertyRR>
<Operator>

<AddressPropertyRR> -> <Value> |
<Function>

<NodeFunction> -> <Function>
<Address>
"Execute" |
<NodeFunctionDefName>
"NodeFunctionVariable™

<Function> -> <FunctionParameters>
<FunctionName>
<FunctionParameters> -> epsilon |
"Push 0"
<Parameters>

"Push " [nrParameters]

<Parameters> -> epsilon |
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<ParametersNE>

<ParametersNE> -> <ParametersR>
<Parameter>

<ParametersR> -> epsilon |
<ParametersNE>

<Parameter> -> <Value>
<ParameterName>

<Value> -> <NodeFunction>

<ValueOp> |
<Constant>
<ValueOp> |
<Variable>
<ValueOp>
<ValueOp> -> epsilon |
<Value>
<Operator>
"Execute"
<Variable> -> <VariableName>
"Variable"
<Operator> -> "Push 2"

"Push " \"[Operator]\"
<ServiceName> -> "Push " <Name>
<ClusterName> -> "Push <Name>
<NodeDefName> -> ""Push " <Name>
<NodeFunctionDefName> -> "Push #"<Name>

<ParameterName> -> "Push <Name>

<Constant> -> "Push " <Int> |
"Push " <Real> |
"Push " String |
<Address>

<VariableName> -> ""Push $" <Name>

<SubscriptionNameDef> -> "'Subscription”
<Name>

<TopologyTypeNameDef> -> "Topology"
<Name>

<Name> -> String

[Operator] -> "< | "<=v | = >=v | > ] vesr | U]

Sl B Bl B2
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Appendix C: BYTECODE INSTRUCTIONS

This table provides an overview of the instructions of the bytecode described in Chapter 5.

Instruction Meaning

PUSH <Vvalue> Pushes a value onto the general stack.

SERVICE Starts the definition of a service.

SUBSCRIPTION Starts the definition of a subscription.

TOPOLOGY Starts the definition of a topology.

FOR Indicates the address the command should be processed by.
ADDRESS Indicates an address.

DEFINENODE Sets an address as a node variable.

DEFINENODEFUNC Sets a function executed on a node as a node function variable.
ONEVENT Indicates an event condition.

ONEVENTEND Indicates an event end condition.

DO Indicates an action.

VARIABLE Indicates a variable.

NODEVARIABLE Indicates a node variable.

NODEFUNCVARIABLE Indicates a node function variable.

EXECUTE Indicates a function that should be executed.

CONSTANT Indicates a constant.

END Indicates the end of a command.

Table 11: Overview of bytecode instructions

79




	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1. INTRODUCTION
	2. ANALYSIS
	3. GLOBAL DESIGN
	4. DEVELOPMENT
	5. DEPLOYMENT
	6. RUNTIME
	7. EXAMPLE
	8. CONCLUSION
	9. REFERENCES
	Appendix A: GRAMMAR
	Appendix B: CONVERSION TO BYTECODE
	Appendix C: BYTECODE INSTRUCTIONS

