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Abstract 

 

This thesis presents a software benchmark tool to benchmark the performance of 

FreeRTOS and its hardware abstractions. The tool helps in gaining insight into the 

performance aspects of FreeRTOS and its hardware abstractions on a given hardware 

platform. The techniques and architecture of the benchmark tool are illustrated. Metrics 

benchmarked in the benchmark tool are discussed. Conditions influencing the 

performance were investigated in the benchmark tool.  
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List of Terminology 

Benchmark: A benchmark is the act of running a computer program, a set of programs, 

or other operations, in order to assess the relative performance of an object, normally by 

running a number of standard tests and trials against it. 

 

Branch: Branch is a point in a computer program where the flow of control can be 

changed. 

 

Condition: In this thesis, condition is termed as values characterizing the environment of 

FreeRTOS and its hardware abstractions, especially parameters of functions, the number 

of tasks etc. 

 

Configuration: In computing, configurations are actions to configure the initial settings 

for computer programs. 

 

Context: In computer science, a task context (process, thread ...) is the minimal set of 

data used by this task that must be saved to allow a task interruption at a given time, and 

a continuation of this task at the point it has been interrupted and at an arbitrary future 

date. 

 

Device: a device is a concrete module linked to the micro-controller, a peripheral or via 

another device. A device can be a sensor or any other chip linked to the micro-controller.  

E.g.: ADC (linked via I2C bus), accelerometer sensor (via internal or external ADC), 

radio chip (via SPI bus), and terminal (via UART bus) . . .  



xii 

Function pair: A couple of functions which are commonly used as a set, with or without 

any code in between, in order to do a specific job. E.g. the beginning function of a given 

timing measurement and the end function of the given timing measurement. 

 

Hardware abstractions: Sets of routines in software that emulate some platform-specific 

details, giving programs direct access to the hardware resources. 

 

Hardware platform: The processor and its peripherals placed on a board. 

 

Interface: An interface is the communication boundary between two layers of the 

peripheral driver architecture. It realizes the abstraction that a layer provides of itself to 

the outside. It has to be understood as in API (Application Programming Interface). An 

interface is defined by a set of functions allowing the upper layer to access the 

functionalities of this lower layer.   

 

Micro-kernel: A microkernel is a minimum computer operating system kernel which, in 

its purest form, provides no operating-system services at all, only the mechanisms needed 

to implement such services, such as low-level address space management, thread 

management, and inter-process communication (IPC). 

 

Mini-kernel: Mini-kernel is termed as the core of a kernel, which provides facilities 

including process management, memory management and system calls.  

 

Peripheral: A peripheral is “constituting an outer boundary” of the microcontroller chip. 

The peripherals are all the hardware interfaces between the processor and external 

devices including buses, GPIO and timers.  

 

Primitive: Primitive is a system of instructions and data executed directly by a 

computer's central processing unit. 



xiii 

 

Software platform: A kernel and its peripheral drivers to provide software developers a 

platform to enable a portable code style. In this report, software platform commonly 

represents the FreeRTOS kernel and its hardware abstractions. 
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Chapter 1  
Introduction 

The idea of ubiquitous computing inspired the scientists at Philips Research to propose 

the vision of Ambient Intelligence in 1999. "It is the vision of a world in which 

technology, in the form of small but powerful silicon chips, will be integrated into 

almost everything around microsecond, from where it will create an environment that is 

sensitive to the presence of people and responsive to their needs."(Philips 2008) 

Ambient intelligence is more than just a vision, though. It forms the basis of a large 

variety of current research programs at Philips Research and also on a European level. 

In 2001, Philips' vision of ambient intelligence was adopted as the leading theme for 

the Sixth Framework on Information Society and Technology (IST) Research in Europe, 

which resulted in a research program with a budget of 3.7 billion Euros over four years 

(Philips 2008). Typical application scenarios are not only seen in home environments, 

but also in health care and security systems. 

 

1.1 FreeRTOS and its Hardware Abstraction 
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To ease field testing of applications for Ambient Intelligence, Philips Research 

Eindhoven came up with a number of sensor node platforms. Common problems arose 

on all those platforms. Application development was hard to achieve. The developers 

faced all the same difficulties: they had to deal with many basic hardware 

functionalities before they could focus on data processing and other high level 

algorithms.  

 

To solve these problems, a kernel-based software environment in Philips Research was 

needed to achieve a common programming platform for a variety of different hardware 

platforms. After a study on available operating systems on the market (Catalano 2006), 

FreeRTOS, a small and very basic RTOS was proposed to form the basis of this 

programming platform and a portable driver architecture was added to it. Later, high-

level operating system services and applications could be implemented on top of this 

including time and task synchronization (Aoun 2007),  802.15.4 MAC Layer (Schoofs 

2006) etc.  

1.2 Motivation and Objectives  

With an available kernel and hardware abstraction, software developers gain great 

advantages. Application code can be developed to be portable and flexible. Software 

developers can focus on application level of programming without studying the low-

level details of hardware. The work focuses on the applications and the burden for high-

level programs is reduced. But at the same time, software overhead of the FreeRTOS 

kernel and its hardware abstraction is not negligible. The FreeRTOS kernel and its 

hardware abstraction create a software layer and a set of system facilities, which 

increases latency and resource overhead. As a result, users of the FreeRTOS kernel and 

its hardware abstraction need information of its overhead and performance, which is at 

the base of the benchmarking initiative.  
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There are a number of aspects affecting the overhead and the performance. After the 

FreeRTOS kernel and its hardware abstraction were developed, it was ported onto three 

sensor node platforms in Philips and demos were made. To better study the demo 

behaviors, two metrics were benchmarked (Catalano 2008) (Preusker 2008). It was 

found that not only individual system calls had their own execution time but conditions 

of functions could also affect the results. Due to the time limitation, only two metrics of 

FreeRTOS were investigated. But it was suspected that more conditions would affect 

the performance. To investigate dependencies between the performance and conditions, 

an investigation of conditions is needed besides a performance benchmark. 

 

In the context of methodology, in the literature (Catalano 2008; Preusker 2008), 

measurement routines were developed and run individually for different metrics. 

Measurement programs were inserted into multiple segments of files which did not 

form a standard suite of programs. In addition, metrics were measured by an 

oscilloscope and results of measurements were shown in a non-intuitive way. 

Measurements were non-reproducible and newcomers had difficulties in carrying out a 

benchmark on a new instance of hardware platform. Inspired by this problem, the idea 

of a configurable benchmark tool was originated. The benchmark tool is configurable to 

different hardware platforms and the measurement of a number of metrics.  

 

Given the problems stated above, this thesis project has following objectives: 

• Identify metrics for benchmark and measure them 

• Develop a configurable benchmark tool for FreeRTOS and its hardware 

abstraction 

• Identify conditions influencing the performance of the FreeRTOS kernel and its 

hardware abstraction by using the benchmark tool 
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1.3 Performance Benchmark 

A benchmark is the act of running a computer program, a set of programs, or other 

operations, in order to assess the performance of an object, normally by running a 

number of standard tests and trials against it. The term 'benchmark' is also utilized for 

the purposes of elaborately-designed benchmarking programs themselves.(Wikipedia 

2008) 

 

Performance benchmarking in this thesis is the act of running a benchmarking program, 

which is call the benchmark tool, to evaluate the performance of the FreeRTOS kernel 

and its hardware abstraction. The performance benchmarking is carried out by running 

the benchmark tool a number of times. 

1.4 Benchmarking scope 

In accordance with the topics of research programs within the ambient intelligence 

vision, FreeRTOS and its hardware abstraction are designed and targeted to different 

application scenarios. FreeRTOS and its hardware abstraction are applied to a number 

of functional fields. The applications built on top of them can vary dramatically. As a 

result, the workload conditions can not be explicitly defined. This does not satisfy the 

fundamental requirements for an application-level benchmark. This made a benchmark 

with a use case an unviable approach in this thesis work. Instead, benchmarking the 

unloaded mini-kernel and hardware abstraction gives clearer perspectives of the 

behavior of the FreeRTOS kernel and its hardware abstraction so it is more attractive to 

developers. Inspired by these specifications, the benchmarking in this thesis 

concentrated on functions in the mini-kernel and hardware abstraction. 
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1.5 Outline of Thesis 

This thesis is structured as follows. In Chapter 2, the real time mini-kernel FreeRTOS 

and its hardware abstraction are described. In Chapter 3, metrics within the benchmark 

scope are outlined. Chapter 4 introduces the benchmark, with its requirements, 

techniques and attributes. In Chapter 5, the proposed benchmark tool is described. In 

Chapter 6, the benchmark tool will be used on two sensor node platforms as case 

studies to benchmark the FreeRTOS and its hardware abstraction. In Chapter 7, 

performance analysis is made as a conclusion. 

1.6 Related work 

To start with, a set of system calls were measured at Philips Research (Catalano 2008) 

(Preusker 2008), which stimulated this thesis work. 

 

Inspired by these exercises and motivated by objectives in section 1.2, related work 

includes the following works: identifying metrics for benchmark, exploring 

methodologies for benchmark and investigating existing tools for measurement. 

 

First, the literature study explored a range of papers published about metrics. 

Performance analysis of real-time operating systems is a hot topic. A number of papers 

discussed kernels with new features and compared metrics with existing kernels. After 

investigation, metrics discussed in these papers could be divided into two categories: 

 

A subset of metrics depends on user-level applications or scenarios (Baynes, Collins et 

al. 2001 ; Douglas C.Schmidt 2002; Cormac Duffy 2006; Olusola 2007). As mentioned 

in the benchmarking scope (section 1.4), applications and scenarios for the FreeRTOS 

kernel and its hardware abstraction are not defined, so none of these metrics are 

discussed in this thesis.  
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The other subset of metrics in the literature focused on application-independent 

measurements. Some of them did experiments on latencies of functions 

(Gopalakrishnan 2005; Park, Kim et al. 2006 ). Others studied relationship between 

metrics and kernel loads (Gopalakrishnan 2005). Because of the application-

independent aspects of this thesis work, these gave desirable references for targeted 

metrics. 

 

Next, methodologies used in the literature were studied. For experimental environments,  

most of them were based on a specific test bed (Douglas C.Schmidt 2002; 

Gopalakrishnan 2005; Cormac Duffy 2006; Park, Kim et al. 2006 ; Olusola 2007) or a 

high-level language model (Baynes, Collins et al. 2001 ). For methods gaining 

measurement results, a number of methods were used, such as estimation (Park, Kim et 

al. 2006 ), an object request broker (Douglas C.Schmidt 2002), compilation (Olusola 

2007), system time stamping (Cormac Duffy 2006), high-level language model (Baynes, 

Collins et al. 2001 ) or kernel-support tools (Gopalakrishnan 2005). In addition, to 

estimate the duration of sequence programs, some literature (Puschner and Koza 1989; 

Mueller 2000; Antoine Colin 2001) provided methods to calculate worst case or 

maximum execution time.  

 

One of the main objectives is to create a configurable benchmark tool for FreeRTOS 

and its hardware abstraction. Existing measurement tools were investigated and their 

possibilities of being integrated to the objective measurement tool were explored. The 

existing measurement tools for profiling fall into following categories:  

 

 Tools supporting widely used kernels, such as Imbench (Larry McVoy 1996), 

Linux trace toolkit  and Oprofile . FreeRTOS is not on the list. 

 General analysis tools for code examinations, such as Gprof  and 

HEPTANE(IRISA 2003). They are only applicable to general purpose computer 
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platforms, so they do not fit in the general embedded systems environment of 

benchmarking scope.  

 Analysis tools existing on their own specific hardware platforms, such as 

SPYDER-CORE-P1 (Weiss, Steckstor et al. 1999 ) and ATOM (Eustace and Srivastava 

1995 ). Most Philips specific sensor nodes in the benchmarking scope are hardware 

which is not included in the hardware list of those analysis tools. 

 Trace utility tool (Barry 2008) supported by FreeRTOS. It provides run-time 

scheduling information and high water mark of the stack of each application task. It 

stays in application level, which is designed for debugging but not for benchmarking. 

 

In conclusion, the literature gives a list of metrics for benchmarking, which is 

developed further in Chapter 3. The literature also provides a set of methodologies for 

measurement. Together with the available programming environment, a set of 

methodologies was selected and proposed in section 4.4. For the profiling tools, 

unfortunately, due to the particularity of FreeRTOS and its hardware abstraction, 

existing tools are not applicable in this thesis work. 
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Chapter 2  
FreeRTOS and its Hardware 

Abstraction 

This chapter deals with FreeRTOS, an open source mini real time kernel, and its 

hardware abstraction developed by Philips Research on top of FreeRTOS. In the first 

part, main features of FreeRTOS are presented after a short introduction. The 

Application Programming Interface (API) is described in Appendix A. In the second 

part, the hardware abstraction is described. Its architecture and individual modules are 

illustrated. Its API is described in Appendix B. The content of this chapter is mainly 

based on the FreeRTOS official site (Barry 2008) and the technical report of Philips 

Research (Catalano 2008). 

2.1 FreeRTOS 

FreeRTOS is a portable, open source, mini Real Time Kernel. It was ported to fourteen 

hardware architectures from 8-bit small micro-controllers to full featured 32-bit 

processors including ARM7, ARM9, MSP430, AVR, PIC and 8051 (Barry 2008). 

 

FreeRTOS is portable. The porting is eased by several factors. First the FreeRTOS code 

base is small. It composes a total of three core files and an additional port file needed 

for the kernel itself. Secondly FreeRTOS is mostly written in standard C. Only a few 

lines of assembly code are necessary to adapt it to a given platform. Finally FreeRTOS 

is heavily documented in the source code as well as on the official website(Barry 2008) 
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with an application-level benchmark (Barry 2008). FreeRTOS is open source. It is 

licensed under a modified GPL and can be used in commercial applications under this 

license. FreeRTOS code is freely available on its website, which makes the kernel easy 

to study and understand.  

 

The following sections describe FreeRTOS main features. More details can be found at 

(Barry 2008). 

2.1.1 Scheduler 

FreeRTOS features a Round Robin, priority-based scheduler. Each task is assigned a 

priority. Tasks with the same priority share the CPU time in a Round Robin fashion.  

 

The FreeRTOS scheduler can be configured as preemptive or collaborative. The real 

time behavior of the system requires preemptive scheduling. For simpler systems, 

collaborative scheduling can be used. 

 

The preemptive scheduler can stop a running task during its execution (preempt the task) 

to give CPU resources to another ready task. This feature is used for CPU time sharing 

between ready tasks with the same priority. It is also used in case of an interrupt which 

may wake up a task waiting for a signal or for some data. The woken task should have a 

higher priority than the current running task to be allocated CPU time directly.  

 

2.1.2 Inter-task Communication  

FreeRTOS provides several methods for inter-task communication, including message 

queues and binary semaphores. FreeRTOS queue mechanism can be used in the 

communications between two tasks and the communication between tasks and Interrupt 

Service Routine. A queue is a structure able to store and restore data.  
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Semaphores in FreeRTOS are actually implemented as a special case of queues. A 

semaphore is a queue of one single element with size zero. Semaphore take operation is 

equivalent to a queue receive, whereas semaphore release (or give) operation is 

equivalent to queue send. Note that on initialization, the semaphore queue is full. 

Semaphores are used for task synchronization and mutual exclusion. A section of the 

application can be protected by a semaphore to enable mutual exclusion. The first task 

executing a section of mutual code takes the semaphore. Any other task willing to 

execute this code will wait on the semaphore until the first task releases it.  

 

A task willing to receive a byte from an empty queue, to send a byte to a full queue or 

to take an already taken semaphore will be blocked by the kernel. A task decides the 

maximum time it allows the kernel to block it in the inter task communication system 

call parameter. When the semaphore or the queue becomes available again, the kernel 

will ready the task. It will be allowed to run if it has the highest priority. In the case the 

semaphore or the queue stays busy and the waiting time has elapsed, the kernel will 

ready the task again, and return an error to it. It is the task’s responsibility to check this 

return value.  

2.1.3 Memory Management 

The RTOS kernel has to allocate RAM each time a task, queue or semaphore is created. 

Three RAM allocation schemes are included in the FreeRTOS.(Barry 2008) 
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Figure 1  Memory management 

 

The first scheme reserves a huge table in the memory called the heap. Every time the 

memory allocation system call is used (malloc), the pointer for free space is 

incremented with the allocation size and a pointer is returned to the application. The 

memory freeing (free) simply does nothing.  

 

FreeRTOS provides nevertheless a more complex scheme for memory allocation. The 

second scheme uses the best fit algorithm to re-allocate memory blocks which have 

been freed. This allocation scheme is not deterministic and the real time behavior of the 

system can be affected.  

 

Finally, a third scheme is provided which uses the standard library malloc() and free() 

functions. It is not deterministic as well, needs support from the compiler and might 

induce a lot of memory overhead.  

 

In the benchmarking scope (section 1.4), a number of applications is loaded with 

periodic tasks and has restrictions on power consumption. The first memory 

management scheme was chosen. It is used to avoid the hassle of the garbage collection 

algorithm and to keep things simple. The rationale is that most of the applications 
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targeted to such small devices will never use memory freeing anyway and that garbage 

collection affects the real-time behavior of the system. Thus the first scheme achieves a 

low power consumption and real time behavior. 

2.1.4 FreeRTOS data structures 

A set of structures defined by FreeRTOS are discussed in the section. The data 

structures of tasks, queues and lists are illustrated. 

 

The Task Control Block (TCB) of tasks includes various members to keep track of the 

stack state, the task status and information about the task. The stack state is controlled 

by two pointers, one pointing to the top of the stack and one pointing to the beginning 

of the stack. Task information is kept in the TCB. Task name, priority, TCB number are 

all stored as integer or characters values in the TCB. Task status is stored in the TCB in 

the form of two list items (lists are described further in this section). A task can 

therefore be part of two lists, a generic list when the task is ready or delayed and an 

event list when the task is blocked. For example, when a task is blocked on a 

semaphore, the task’s event list item will be inserted in the semaphore waiting-to-take 

list and the generic list item will be removed from the ready list and inserted in the 

delayed task list with the delay value as specified in the semaphore take function call. 

 

A queue is materialized in the heap by a control structure and a data storage space. Four 

pointers manage the queue state, pointing respectively at the beginning, the end of the 

queue, at the next byte to write to and the next byte to read from the queue data. The 

queue’s status is kept into five integer values at the end of the queue control block, the 

number of messages waiting to be read, the total queue length in number of items, the 

item size, the number of items read and wrote while the queue is locked. Finally, the 

queue structure holds two lists, one for tasks waiting to send items to the queue and the 

other for tasks waiting to receive items from the queue while the queue is respectively 

full or empty. 
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A semaphore is, in FreeRTOS, a special case of a queue. As explained earlier, taking a 

semaphore is equivalent to receive from a queue, thus a task waiting to take a 

semaphore will be stored in the task waiting to receive list, renamed here task waiting 

to take list. A semaphore being a queue of one element of size zero, the item size will 

be zero, the total queue length will be one and the number of messages waiting will be 

binary, either 1 if the queue is full i.e. the semaphore is free, or 0 when the queue is 

empty i.e. the semaphore is taken.   

  

The last FreeRTOS structure is the list structure. A list is composed of a list structure 

and list items. The list structure holds the number of items in the list as an integer value 

and two pointers. One is pointing to the list-end item containing the maximum possible 

item value, meaning it is always at the end of the list. The other is pointing to the latest 

item accessed. A list item has an item value which is an integer used to sort the items in 

the list. It contains a number of pointers, pointing to the next and previous items which 

can be the list-end item if the item is at the end or at the beginning of the list. Another 

member of the structure points to the owner of the item, for instance a TCB and a last 

one points to the container of the item, namely the list structure.   

2.2 Hardware abstraction 

 

This section introduces the hardware abstraction developed on top of FreeRTOS. The 

purpose of the architecture is to define a standard hardware abstraction architecture to 

access hardware from applications. The benefits are numerous. Defining a standard 

hardware abstraction architecture allows faster application development, as the 

programmer does not have to deal with the hardware architecture, but can focus only on 

a well defined interface. It is optimized for the underlying hardware. All the hardware 

options are optimized and taken into account. It also enables a lot of code re-use 

between different project applications. It is developed for FreeRTOS and uses all the 

mechanisms available in the OS. Hardware interaction with the OS is then optimized.    
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The goal of this hardware abstraction architecture is to abstract completely the 

hardware mechanisms to the application. Application only reads and writes data from 

operating system structures, like queues and semaphores. The underlying software 

provides complete functions to deal with the hardware buses (such as I2C, SPI or 

UART) to physically send and receive data. This architecture should allow applications 

and device drivers to be stacked on top of it, and provide all the necessary functions in 

order to communicate fully with the different hardware blocks. 

2.2.1 Multi-layer abstraction architecture 

The multi-layer abstraction architecture was designed as shown in Figure 2. The 

different layers have very specific tasks to do, and provide a clear interface to the upper 

layer. The arrows connecting different layers illustrate the dependency of function 

calling. To be complete, this section will describe those interfaces. The layers are: basic 

functions layer, interrupt subroutines layer, hardware presentation layer and peripheral 

driver layer.  
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Figure 2  Hardware Abstraction Architecture 

 

 

Basic Functions Layer 

 

The basic functions layer is a very thin layer enabling a way to read and write to the 

input and output registers of the micro-controller and to redirect hardware interrupt to 

the interrupt subroutine layer.   

 

These functions are used a lot in every peripheral driver, as they are the only means to 

communicate with the underlying hardware. Making standard functions allows the 

upper layers to use a fixed interface for every hardware transaction, which makes the 

code more readable and easier to debug.   
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In general, this layer is implemented as macros or inline functions. Instead of using the 

register addresses to address a certain peripheral register, the symbolic name (taken 

from the data-sheet) is used. It makes the code more readable, easier to port and to 

maintain.   

 

Interrupt Subroutines Layer 

 

The interrupt subroutines layer handles the interrupt working on the peripheral driver 

structures, like freeing a semaphore or posting to a queue, using the operating system 

interface, and operating on the hardware, such as acknowledging the interrupt or 

sending an extra byte.   

 

The goal is to make standard interrupt subroutines, which will deal with the drivers for 

the peripherals. As micro-controllers have a finite number of peripherals and of 

interrupts linked to those peripherals, the ISR layer is closely connected with the 

peripheral driver layer. The interrupt subroutines layer have a subscription mechanism 

which allow application or device drivers to perform custom actions within the 

interrupt, in addition to standard interrupt actions predefined by the peripheral driver.    

 

Hardware Presentation Layer 

 

The hardware presentation layer (HPL) provides a complete and dense interface of all 

the hardware peripherals to the upper layer, while using only the thin basic functions 

layer.  

 

The goal is to provide an easy to use interface, with explicit names and standard 

functionalities to the upper layers. This layer is stateless, meaning that it will not keep 

information about the status of a peripheral. It will execute straightforward the order 

from upper layers.  

 

Peripheral Driver Layer 
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Finally, the peripheral driver layer provides to the application or to the upper device 

drivers a set of functions to use the hardware safely and in interaction with the OS. In 

this layer, the state of the interface is kept in an OS structure and the data and/or the 

events related to a bus or a timer are also recorded in OS queues or semaphores. 
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Figure 3  The hardware connection of peripherals  

 

Figure 3 illustrates the hardware connection of peripherals for the microcontroller and 

the peripheral devices. A microcontroller contains three hardware components: a 

processing unit, a space of peripheral memory and hardware peripherals. The peripheral 

memory consists of the peripheral registers and the peripheral sending and receiving 

queues, created by the peripheral driver layer. The hardware peripheral consists of a 

sending module and a receiving module. Two channels are present in the hardware 

connection: a sending channel and a receiving channel. Both channels are maintained 

by the hardware abstraction. When a peripheral sending function is called, the hardware 

abstraction checks the status of the peripheral sending module. If the peripheral sending 

module is free, the data to be sent are pushed into the peripheral sending register. 

Otherwise, the data are pushed into the peripheral sending queue, where the data are 

transferred into the peripheral sending register by the interrupt subroutines. In the 

receiving channel, the data sent from the peripheral devices are received and transferred 
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to the peripheral receiving register by the peripheral receiving module. Then the data 

are pushed into the peripheral receiving queue by the interrupt subroutines. 
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Chapter 3  
Metrics for Benchmark 

This section outlines the metrics that are identified for benchmarking.  

 

First, as the benchmark scope in section 1.4, the benchmark of the FreeRTOS kernel 

and its hardware abstraction in this thesis concentrates on the mini-kernel and the 

hardware abstraction. The related work in section 1.6 has listed the application-

independent metrics within the benchmarking scope. These metrics consist of memory 

read/write time and task creation latency, context switch time, scheduling latency, 

system call overhead and average duration of interrupt disable time. All these metrics 

form the latencies of system calls of FreeRTOS and the peripheral functions. Second, 

communications between the processor and its peripherals are evaluated. The speed of 

data transmission is one of the metrics for the hardware abstraction, known as 

throughput. At last, as discussed in section 1.2, the resource overhead of the FreeRTOS 

kernel and its hardware abstraction needs to be benchmarked, which is included in the 

metrics list. The three sets of metrics, given above, form the list of metrics for this 

thesis work.  

3.1 Latencies 

The latency of an operation is termed as the amount of delay encountered when a given 

operating system function is executed. The latencies encountered are a good indication 

of the temporal behavior of the kernel. The temporal performance is one of the key 

aspects of the motivation section (section 1.2). 
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3.1.1 System calls latency 

System call latency is defined as the amount of time lapsed between the moment a 

system call is made (to use some kernel facilities), and the moment the execution 

returns. This has to be collected for different widely-used system calls, like task 

handling, kernel control, queue management and semaphores management, etc. As 

illustrated in the hardware abstraction structure (Figure 2), system calls are the 

interfaces by which most of the functionalities of the operating system are exposed to 

application level. Their durations directly influence applications. 

3.1.2 Latency of peripheral functions  

As the definition of latency of system calls, the latency of peripheral functions is 

defined as the amount of time lapsed between the moment a peripheral function is 

invoked (to use some peripheral devices), and the moment the execution returns. This 

has to be collected for a number of peripheral functions within the hardware abstraction 

architecture, such as General Purpose Input/Output (GPIO), Universal Asynchronous 

Receiver-Transmitter (UART), Serial Peripheral Interface (SPI) and Inter-Integrated 

Circuits (I2C). As illustrated in the hardware abstraction architecture (Figure 2), 

peripheral functions are the interface by which the facilities of the peripheral drivers are 

exposed to application level. Hence, it is important that this delay is benchmarked.  

 

As listed in Appendix B, the latencies might depend on the values of the parameters 

passed to the functions. A minimum set of parameters was involved in the measurement. 

3.1.3 Context switch overhead 

The context switch overhead is defined as the amount of time taken by the operating 

system to switch from one task to another, without any other task or interrupt 

subroutine being executed in between (Larry McVoy 1996).  In FreeRTOS, the 
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procedure of context switch is visible in the code of tick timer interrupt, which consists 

of two parts excluding the context saving and restoring:  

 

 Increase the tick count and check if any task that is blocked for a finite period, 

requires its removal from a blocked list and placing on a ready list 

 Set the pointer to the current Task Control Block (TCB) to the TCB of the 

highest priority task that is ready to run.  

 

3.2 Throughput  

Throughput of a system is the rate at which a particular system can move (or process) 

data. Quick data movement is a fundamental requirement of the kernel and its 

abstraction because applications that get data from peripherals will run on them. Within 

the benchmarking scope in section 1.4, communication between the processor and its 

peripheral modules are one of the main tasks of applications.  

3.3 Resource utilization 

3.3.1 Memory usage 

The memory usage is termed as the space in the memory expressed in bytes assigned to 

a data structure of the FreeRTOS kernel and its hardware abstraction or an application. 

As mentioned in section 2.1.3, the memory management is implemented by 

maintaining a heap structure. The RTOS kernel has to allocate RAM each time a task, 

queue or semaphore is created. The malloc() and free() functions are be used for the 

memory allocation. The memory usage of a given data structure is the amount of heap 

used in the malloc() function when the given data structure is created. 
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3.3.2 Program memory usage 

The usage of program memory is termed as the space in the memory consumed to store 

the program code after compilation. Normally it consists of application code and the 

code of the FreeRTOS kernel and its hardware abstraction. As the benchmark scope 

describes in section 1.4, the measurement of program memory usage only benchmarks 

the memory usage of the FreeRTOS kernel and its hardware abstraction. 
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Chapter 4  

 

Benchmark of FreeRTOS and its 

hardware abstraction 

Issues related to the benchmark of FreeRTOS and hardware abstraction are illustrated 

in this chapter. Requirements, techniques and benchmark attributes are discussed, 

which are the fundamental knowledge for the development of the benchmark tool.  

4.1 Requirements 

When techniques are developed and adapted to a given hardware platform, the 

following requirements should be followed: 

 

• The measurements should be as accurate as possible. As mentioned in 

section 4.3.1, in this thesis work, a timer of a given processor is used to read the clock 

of the processor and to make timestamps. It is used as the time stamp in the 

benchmark tool, which has a granularity of microseconds.  

• The solutions developed should be as non-intrusive as possible. The 

measurement functions should not interfere with other applications or parts of the 

system. For example, actions like overwriting the memory space of other applications 

or the kernel should not be performed.  
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• The measurement should give average results. This is to ensure that if the 

same measurements are repeated the same values should be gained as time stamped 

before. For any set of values, taking a large number of measurements, over a 

sufficiently large period of time, is the way to achieve this. For example, in this thesis 

work, each metric is measured typically a hundred of times. This is to ensure that 

instantaneous effects (like a kernel initialization) will be averaged out.  

• The measurements should illustrate the value distribution for a given metric. 

The distribution is caused by instantaneous effects, the ramp-up time and branch 

executions, which represents the jitter of the execution of a function. The distribution 

is gained by time stamping both the maximum and minimum values in a benchmark 

exercise and calculating their variations.  

4.2 Assumptions 

In a benchmark exercise, restrictions have to be made in order to get analyzable 

programs. These restrictions consist of:  

 

• Peripheral and CPU resources are assumed to be available. 

• Communications between the processor and its external devices are valid, 

e.g. acknowledgements and data between the processor and its peripheral devices are 

available according to protocols.  

• Tasks are assumed to never block on events or resources. 
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4.3 Measurement tools 

4.3.1 On-chip timer based software tool 

c 
Figure 4  On-chip timer based software tool 

 

To ease benchmark exercises, a software measurement tool is required in the 

benchmark tool. The software measurement tool measures metrics by using the 

facilities on the hardware platform. Inside the benchmark tool, a measurement timer, 

besides the tick timer for the FreeRTOS kernel, is required for the timing 

measurement. The measurement timer captures time points with timestamps, as 

shown in Figure 4. Using such a timer has more advantages than using a tick timer. 

The counter of the tick increases when a tick interrupt is issued. If the program enters 

the segment of code with interrupts disabled, tick interrupts will be delayed. This 

results a miscounting of the tick and leads to a major error in measurements. 

Choosing a secondary timer solves this problem. The secondary timer is independent 
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of the tick scheduling and does not need interrupts to increase its value. Another 

advantage is that a measurement tool with the independent measurement timer is able 

to give timestamps before the system scheduler begins. These two factors give a 

measurement tool with the measurement timer a larger range in measurement.  

4.3.2 Oscilloscope based hardware tool 

 
Figure 5  Oscilloscope based hardware tool 

 

An oscilloscope based hardware tool is used to examine the accuracy of the software 

measurement tool, shown in Figure 5. The oscilloscope has the nature of both the 

higher resolution and reliability, which is suitable for identifying the accuracy of the 

software measurement tool. The software measurement programs generate external 

signals (e.g. GPIO signals) when timestamps are created and these signals are 

captured by the oscilloscope. The timing measurements are shown in the oscilloscope 

and compared to the timing measurements from the software measurement tool.  

 

Errors of the oscilloscope based hardware tool are calculated: One part of the error is 

generated by the resolution of the oscilloscope which is 3103.3 −× µs and the other 

part is created by the latency of generating an external signal by the processor, which 

is specific for a given processor.   
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4.4 Measurement techniques  

In section 1.6, a number of tools and methodologies in the related work are listed. 

With the system utilities available and the measurement tool designed in section 4.3.1, 

the method of system time stamping is chosen. For the benchmark of program 

memory usage, due to a wide range of compilers for different hardware platforms, 

another specific method is used. In the following sections, the proposed methods of 

the benchmark are detailed. 

4.4.1 Latency  

The latencies of functions can be examined by measuring the execution time. The on-

chip timer based software tool gives timestamps at both the beginning and the end of 

a given function. Their timing difference denotes the duration of executing a given 

function, which is the latency of the given function. Two methods of latency 

measurement are concerned. One is to execute a given function with a number of 

iterations. The latency is gained by dividing the total execution time by the number of 

iterations. This method gets the average latency without the value distribution. 

Because of the value distribution requirement in section 4.1, an alternative method is 

used. The given function is executed a number of times and each latency value is 

measured. The value distribution of the latency is used to identify conditions 

influencing the performance.  The process of latency measurement is illustrated in 

Figure 6. The flow arrows indicate the process of the software program while the 

arrowed connectors indicate the flow of latency calculation.  
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T1 := ReadTimer

-T2 := ReadTimer Latency

Measured 
Function

 
Figure 6  Measurement technique of latency 

 
The pseudo code is shown below: 

 
 

To increase the accuracy, two effects are excluded. One is the influence of the context 

switch. The context switch is issued with a fixed period and has the possibility of 

taking place during a latency measurement, which will spoil the measurement with 

the execution time of a context switch. To exclude this overhead, the latency 

measurement is carried out while interrupts are disabled.  

 

The other factor is the overhead of measurement programs. The software programs 

introduce the overhead of program jumps and memory write/read. To exclude these 

effects, the latencies of measurement programs were identified in the benchmark tool 

by calculating the timing difference of two successive timestamp functions. The 

method of identifying the latency of measurement programs is the same as shown in 

Figure 6. The benchmark results are shown excluding this overhead. After these two 

effects are excluded, the process of latency measurement is illustrated in Figure 7. 

for(){ 

T1:= ReadTimer; 

 Function call 

 T2:=ReadTimer; 

 Latency:=T2-T1; 

} 
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The flow arrows indicate the process of the software program while the arrowed 

connectors indicate the flow of latency calculation.  

 

 

 
Figure 7  Measurement technique of latency (exclude overhead) 

 

The pseudo code for latency measurement excluding the overhead is: 

 
for(){ 

 Interrupts disabled;  

 T1 := ReadTimer; 

 T2 := ReadTimer; 

 Interrupts enabled; 

 Overhead := T2-T1; 

 } 

 … 

for(){ 

 Interrupt disabled; 

 T1 := ReadTimer; 

 Function call 

 T2 := ReadTimer; 

 Latency := T2-T1-Overhead; 

 } 



Chapter 4. Benchmark of FreeRTOS and Its Hardware Abstraction 

30 

Because each measurement exercise is competed within a single iteration, the 

measurement results exclude the overhead of the for loop. 

4.4.2 Memory Usage 

As mentioned in section 3.3.1, the memory usage of a given data structure can be 

measured by calculating the amount of heap used in the malloc() function when the 

given data structure is created. Because the index of the heap can not be read directly, 

an alternative method is used. The pointer in the C language is used as a mark to 

stamp the address of the heap. Because the heap structure is a continuous space of 

memory, the difference between the two marks is the amount of heap used, denoted 

by the address unit. After dividing by the size of the data type of the heap, the result is 

converted to heap usage, denoted by byte. The address of the heap can be accessed by 

calling the memory function malloc(). The process of memory usage measurement is 

illustrated in Figure 8.The flow arrows indicate the process of the software program 

while the arrowed connectors indicate the flow of latency calculation. 

 

 
Figure 8  Measurement technique of memory usage 

 

The pseudo code of measuring the memory usage is: 
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Using the memory allocation function to get the heap pointer has overhead. Every call 

to the memory allocation function uses at least one byte of the heap. This overhead is 

excluded in the results of memory usage measurement. The process of memory usage 

measurement is illustrated in Figure 9.The flow arrows indicate the process of the 

software program while the arrowed connectors indicate the flow of latency 

calculation. 

 
Figure 9  Measurement technique of memory usage (exclude overhead) 

 

 Beginning heap pointer := malloc(); 

 Function call 

 Ending heap pointer := malloc(); 

 Memory usage := (Ending heap pointer - Beginning heap 

pointer) / sizeof (heap data type); 
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The pseudo code of measuring the memory usage exclusive of the overhead is 

illustrated above: 

 

A subset of functions with memory usage can not be measured with sequential 

measurement functions, like the scheduler function. To be non-intrusive to the 

FreeRTOS kernel and its hardware abstraction code, the measurement functions pair 

for scheduler memory usage is placed close to the beginning of the scheduler function 

and the ending point of the execution of the scheduler function. 

4.4.3 Program code size 

The program code size is shown by a map file created by the compiler. During the 

compilation time, functions and static variables are assigned to a segment of the 

program memory, whose allocations are indicated by the map file. By examining the 

map file, the usage of program memory of each function can be calculated.  

 

Due to various compilers, the appearance of the map file varies. Most of the map files 

are created by adding a map flag in the compiler programs. 

 

 Beginning heap pointer := malloc(); 

 Ending heap pointer := malloc(); 

 Overhead := (Ending heap pointer - Beginning heap pointer) / 

sizeof (heap data type); 

 … 

 Beginning heap pointer := malloc(); 

 Function call 

 Ending heap pointer := malloc(); 

 Memory usage := (Ending heap pointer - Beginning heap 

pointer) / sizeof (heap data type) -Overhead; 
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4.4.4 Adaption to the benchmark tool 

In the stage of the benchmark tool development, the benchmark tool was adapted to 

the new conditions found influencing the performance. Because results from the 

benchmarking exercise should be reproducible and consistent, required in section 4.1, 

a large value distribution in the results of one metric may indicate a new condition 

influencing the performance. Investigation was carried out during the development 

stage of the benchmark tool. The same metrics under different conditions were sorted 

and the metrics were benchmarked separately by conditions. If the output results 

agree with the consistency requirement, the identification work is finished. Otherwise, 

a further separation work was carried out or a new way of separation was proposed. A 

maximum deviation rate is set. Deviations below this rate indicate consistent results. 

 

The process of re-designing the benchmark tool to identify a given metric is 

illustrated in Figure 10. 
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Figure 10  The process of re-designing the benchmark tool for identification 

4.5 Benchmark Attributes 

 

In Chapter 3, various metrics important for the benchmark are listed within the 

benchmarking scope. The values of these metrics vary with the selected hardware, 

and the tailoring the FreeRTOS kernel and its hardware abstraction. When 
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development is carried out in a wide range of functional fields and scenarios, different 

customizations of the software and hardware platform lead to different behaviors of 

the system. 

 

This section discusses the various important factors, which cause variation in the 

observed performance. These factors consist of the attributes of the hardware and the 

favors of the kernel, which are listed in Figure 11. 

 

 
Figure 11   Benchmark attributes 

  

A set of attributes is predefined in the tool when the benchmark tool is executed on a 

given sensor node. The attributes are selected according to the most common usage 

by projects. These parameters are also illustrated in this section, which establish the 

configurational environment of the benchmark.  

4.5.1 Hardware attributes 

The attributes of the hardware consists of the processor, its peripheral modules and 

peripheral devices attached. 
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The clock and the architecture of the processor are important parameters that affect 

the performance of FreeRTOS and its hardware abstraction, especially the latencies of 

functions. When the system clock of the processor is running, the program has a 

sequential execution, so the latency is related to the clock frequency. The computer 

architecture of the processor (MIPS, RISC and CISC etc.) defines the structure of a 

processor and permanently affects the performance. 

 

As discussed in section 4.3.1, the measurement timer is used to capture time points 

and gives timestamps. The period of this timer defines the latency measurement range 

of the benchmark tool, as the timestamps are represented by the snapshot values of 

the timer count. A latency measurement exceeding the period of the timer is 

ambiguous and not interpretable. The period of the measurement timer is suggested to 

be configured to its maximum value. 

4.5.2 Mini-Kernel configuration options 

FreeRTOS is designed to be portable and configurable. A number of configurable 

parameters exist that allow the FreeRTOS kernel to be tailored to particular 

applications. This section lists representative configuration options influencing 

characterizations of FreeRTOS. 

 

The minimal stack size of the FreeRTOS kernel is defined by users. When a 

scheduler function runs, it creates an idle task with the scheduler. The value of the 

minimal stack size is used to define the depth of the idle task. Thus, the value of 

minimal stack size influences the amount of memory usage of the scheduler. 

 

As mentioned in section 2.1.1, FreeRTOS scheduler can be configured as preemptive 

or collaborative. The real time behavior of the system requires preemptive scheduling. 

For simpler systems, collaborative scheduling can be used. In the collaborative 

scheduling, a ready task can not be preempted and runs until it releases the CPU. In 
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the benchmarking scope of section 1.4, the preemptive scheduling is used in the 

benchmark tool. 

 

As mentioned in section 2.1.3, FreeRTOS provides three different schemes for 

memory management. In the benchmarking scope (section 1.4), a set of applications 

is loaded with periodic tasks and has restrictions on power consumption. The first 

memory management scheme was chosen to achieve a low power consumption and 

real time behavior in the benchmark tool. 
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Chapter 5  

The Benchmark Tool  

This section discusses the issues of the benchmark tool. The hardware requirements 

for benchmark are introduced first. Design issues in the development stage are 

discussed, such as the selection of primitives to be benchmarked, testing applications 

design in the benchmark tool and the process of identification of conditions and 

adaption.  Then the benchmark tool is introduced. The system architecture, 

configurable architecture and software insight of the benchmark tool are described. At 

last, the software monitoring facilities in the benchmark tool is introduced.  

5.1 Hardware requirements for benchmark 

As discussed in section 4.3, the measurement tools are involved with a set of 

hardware. The benchmark tool has a set of hardware requirements for the hardware 

platforms.  First, the hardware requirements for the benchmark tool contain the 

minimum hardware requirements of the FreeRTOS.  These include a processing unit, 

memory and a tick timer. Secondly, the hardware requirements also include the 

minimum hardware requirements of the measurement tools, as discussed in section 

4.3, which include a measurement timer, a UART peripheral module, a GPIO 

peripheral module and an oscilloscope (as discussed in section 4.3). At last, additional 

hardware is required in accordance with the benchmarking specifications (discussed 

in section 5.3.4).  

 

To benchmark a subset of peripheral functions of the hardware abstraction, their 

corresponding peripheral modules (GPIO, UART, SPI or I2C modules) on the 
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microcontroller and some external peripheral devices are required. An I2C external 

device is required if the I2C peripheral module is benchmarked. The I2C external 

device generates acknowledgements in accordance with the I2C protocol, which is 

required by the benchmark tool.  

 

Accessorial hardware is required in benchmark exercises. To identify the error of the 

ported software measurement tool, as discussed in 4.3.2, an oscilloscope is required. 

After the metrics are measured by the benchmark tool, one UART port on the 

microcontroller is selected to output the benchmarking data to a desktop computer. 

The results are displayed in the HyperTerminal program (TechNet 2005) on the 

desktop computer. This proposed method requires that at least one UART peripheral 

should be available as a peripheral module of the hardware, a desktop computer. 

 

5.2 Benchmark tool design 

5.2.1 Benchmarked Primitives  

In accordance with the metrics for benchmark listed in Chapter 3, a number of 

primitives are selected in the benchmark tool. These primitives are introduced in this 

section.  

 

Task delay is a common system utility. It is used to delay a task for a given number of 

ticks. It is useful in synchronization and task control. Programmers dimension the 

delay time units with a number of ticks. 

 

Task create function creates a new task and adds it to the list of tasks that are ready to 

run. 
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Task Enter/Exit critical functions pair marks the start of a critical code region, where 

preemptive context switches cannot occur. The benchmarking program measures the 

functions pair without any code in between.  

 

A queue is a particular kind of component in which the entities are kept in order. The 

principal (or only) operations on the collection are the addition of entities to the rear 

terminal position and removal of entities from the front terminal position. Queue 

create function creates a new queue instance. It allocates the storage required by the 

new queue and returns a handle to the queue. Queue send and Queue receive 

functions are used to send an item to and get an item from the specific queue.  

 

A semaphore, in computer science, is a protected variable (an entity storing a value) 

or abstract data type (an entity grouping several variables that may or may not be 

numerical) which constitutes the classic method for restricting access to shared 

resources, such as shared memory, in a multiprogramming environment.(Wikipedia 

2008)  Semaphore create function creates a semaphore by using the existing queue 

mechanism. The queue length is one as this is a binary semaphore. The data is a null 

type as no data is stored. Semaphore Give and Take functions are used to release and 

obtain a semaphore. 

 

General Purpose Input/Output (GPIO) can act as input, to read digital signals from 

other parts of a circuit, or output, to control or signal to other devices. GPIO creation 

function reserves and configures the GPIO lines. xGpioPeripheralReceive and 

vGpioPeripheralSend set the GPIO lines used in the PeripheralHandle.  

 

A Universal Asynchronous Receiver/Transmitter (UART) is a type of "asynchronous 

receiver/transmitter", a piece of computer hardware that translates data between 

parallel and serial forms. UARTs are commonly used in conjunction with other 

communication standards such as EIA RS-232. A UART is usually an individual (or 

part of an) integrated circuit used for serial communications over a computer or 

peripheral device serial port. UARTs are now commonly included in microcontrollers. 
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A dual UART or DUART combines two UARTs into a single chip. Many modern 

ICs now come with a UART that can also communicate synchronously; these devices 

are called USARTs. xUartPeripheralInit reserves and configures the UART interface. 

xUartPeripheralSend and xUartPeripheralReceive sends and receives a byte through 

the UART interface. 

 

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link 

standard named by Motorola that operates in full duplex mode. Devices communicate 

in master/slave mode where the master device initiates the data frame. Multiple slave 

devices are allowed with individual slave select (chip select) lines. Sometimes SPI is 

called a "four wire" serial bus, contrasting with three, two, and one wire serial buses.  

xSpiPeripheralInit configures the SPI interface and create driver structure. 

xSpiPeripheralTransfer makes a transfer through the SPI interface . 

xSpiPeripheralReceive receives one byte of data from the receive queue. 

 

I²C (Inter-Integrated Circuit) is a multi-master serial computer bus invented by NXP 

that is used to attach low-speed peripherals to a motherboard, embedded system, or 

cell phone.  xI2cPeripheralInit reserves and configures the I2C interface. 

xI2cInitQueueReceive initiates receiving bytes from the I2C interface into the 

receiving queue.  xI2cPeripheralReceive receives a byte from the I2C receiving queue. 

xI2cPeripheralSend sends a byte through the I2C interface. 

5.2.2 Testing applications in the benchmark tool 

A number of testing applications are used in the benchmark tool for benchmark the 

hardware abstraction. Testing applications were designed to match the 

communication protocols of the external devices. Testing applications were also 

designed to be less hardware-demanding and non-influencing to the benchmarking 

results. Special design issues are discussed in this section. 
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In the measurement of the UART, SPI and I2C data receiving functions, items are 

supposed to be received from external devices. To ease the testing applications, these 

items are created by the software. The testing applications do not influence the 

latency measurements, as in the peripheral data receiving functions is the time to 

fetch an item from the peripheral data receiving queue. The process of interrupt 

service routines is excluded. An item is created by the benchmark tool and pushed 

into the peripheral queuing system in advance. The latency of data receiving function 

is measured using the technique in section 4.4.1 on the process of fetching the item 

from the peripheral queuing system. 

 

In the measurement of the UART, SPI and I2C data sending functions, the item to be 

sent is selected to be non-intrusive. The item to be sent by the UART peripheral 

function is a NULL item, which is not shown in the results. The item to be sent by the 

SPI peripheral function is a NULL command, which does not affect the status of the 

SPI external device. In the I2C part, to successfully receive the acknowledgement 

from the I2C external device, the item to be sent is the address value of the I2C 

external device. According to the I2C protocol, such an item targets at the selected 

I2C external device and acknowledged by the I2C device. 

5.2.3 The process of identification of conditions and adaption 

As discussed in section 1.2, one of the objectives is to identify conditions influencing 

the performance of the FreeRTOS kernel and its hardware abstraction by using the 

benchmark tool. The identification work was carried out by adaption to the 

benchmark tool in the development stage. The techniques of adaption are discussed in 

section 4.4.4. The maximum value of results distribution is set to 10%. The rate of 

deviation exceeding this value indicates that one or more non-identified conditions 

exist. Further sorting work was carried out to investigate conditions.  

 

A number of measurements were carried out to get the results distribution. A subset 

of functions is executed a hundred times in a benchmark exercise, which are termed 
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as multiple-executable functions. For other functions, termed as single-executable 

functions, the number of executions within a benchmark exercise is limited by the 

resource of the hardware platform. Some executions of functions are limited by the 

amount of memory due to the memory management theme selection in section 2.1.3. 

The memory space does not allow a memory consuming function to be executed one 

hundred times. Others executions are limited by the peripheral resources.  Each 

peripheral module is allowed to be registered only once. For single-executable 

functions, multiple benchmark exercises are required to get the value distribution. 

These two ways of identification can be illustrated in Figure 12. 

 

 
Figure 12  The process of identification of conditions 
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5.3 Insight of the benchmark tool 

5.3.1 System architecture of benchmark tool 

The benchmark tool is designed as an application running on the FreeRTOS kernel 

and its hardware abstraction. As stated in section 4.1, the benchmark tool is designed 

to be non-intrusive to the FreeRTOS kernel and its hardware abstraction. The 

benchmark does not make changes to the source code of the FreeRTOS kernel and the 

peripheral drivers. It does not add facilities to the FreeRTOS kernel and its hardware 

abstraction and it runs in the application layer of the system. The system structure of 

the benchmark, the hardware and the FreeRTOS kernel and its hardware abstraction 

is illustrated in Figure 13. 

 

 
Figure 13  System Architecture of Benchmark 

 

The lowest layer is the hardware layer. As the hardware requirements in section 5.1, 

this layer contains peripheral devices and a processor with peripheral modules. The 

layer in the middle is the FreeRTOS kernel and its hardware abstraction, including the 

FreeRTOS kernel and the hardware abstraction, illustrated in Figure 2. The top layer 
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is the application layer. During a benchmarking period, the benchmark tool is the 

only application running in it.  

5.3.2 Configurable architecture of the benchmark tool 

The benchmark is designed to be configurable. With the presentation of a port of the 

given hardware platform, the benchmark tool is used to benchmark a new hardware 

platform after configuration. Both the FreeRTOS kernel and its hardware abstraction 

and the benchmark tool consist of common parts and configurable parts. For a given 

hardware, the software architecture for the benchmark process is illustrated in Figure 

14. 

 
Figure 14  Software Architecture for a given hardware 

(X denotes a given hardware) 

 

The FreeRTOS kernel and its peripheral drivers are consistent, with interfaces to 

hardware.  The ports for FreeRTOS and its hardware abstraction are specific to 
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hardware. On top of the FreeRTOS kernel and its hardware abstraction, the 

benchmark tool is present. It consists of a fixed part and two configurable parts.  

 

The fixed part is the main part of the benchmark tool. In the stage of identifying 

conditions, metrics were investigated with individual condition as discussed in 

section 5.2.3. The code of the benchmark tool was adapted to examine these 

conditions. The conditions, which are not dimensioned by parameters, were adapted 

to the benchmark tool. For the parameter dimensioned conditions, users can 

investigate these conditions by changing parameters in the attributes configuration 

part. The hardware specific configuration part of the benchmark tool is adapted to the 

hardware specific structure of a given hardware platform. The detailed configuration 

method is illustrated in section 5.3.4. 

5.3.3 Software insight of the benchmark tool 
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Figure 15  Run-time multi-task structure 

 

The source files of the benchmark tool consist of three files: benchmarkMain.h, 

benchmarkMain.c and measureTool.c. benchmarkMain.h is the configuration file, 

which consists of a benchmark configuration part and a hardware specific part. 
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benchmarkMain.c is the fixed part of the benchmark tool in Figure 14. measureTool.c 

is used to port the measurement tool to the benchmark tool.  

 

When a benchmark exercise is carried out, the run-time multi-task structure is as 

illustrated in Figure 15. The benchmark application creates a benchmark task and a 

number of sample tasks. The main benchmark work is assigned to the benchmark task. 

According to the metrics for benchmark in Chapter 3, the benchmark tool has six 

benchmark modules: the system call benchmark module, the GPIO peripheral 

benchmark module, the UART peripheral benchmark module, the SPI peripheral 

benchmark module, the I2C peripheral benchmark module and the system behavior 

benchmark module. The sample tasks are created to benchmark the system calls and 

investigate the multi-task feature of the FreeRTOS kernel.  The sample tasks are also 

used as indication of the status of the system in the run-time. This feature is discussed 

in section 5.4. 

5.3.4 The use of the benchmark tool 

In this section, the process of using the benchmark tool is introduced. After a given 

hardware is selected, there are five steps to utilize the benchmark tool, which are 

illustrated in Figure 16. 
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Figure 16  The process of using the benchmark tool 

 

In the first step, as the pre-requirement of a benchmark exercise, a FreeRTOS port 

with the hardware abstraction is required. Software development is carried out in 

advance to port the FreeRTOS kernel and its hardware abstraction onto the hardware. 

Before the benchmark stage, both the software and the hardware platform should be 

available. 

 

In the second step, the software measurement tool, discussed in section 4.3.1, is 

configured to the hardware. This step consists of the following work: 

 

• Configure the measurement timer in the measureTools.c file and 

benchmarkMain.h file. The measurement timer for benchmarking is 

configured using the timer peripheral functions with the Interrupt & Continue 

& Capture mode(Philips 2006; TexasInstruments 2006). The period (Philips 

2006; TexasInstruments 2006) of the timer is set to its maximum value. The 
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values of the period and the divider of the measurement timer are declared by 

re-defining the string identifiers in benchmarkMain.h file. 

 

• Select the indexes of the UART and GPIO peripheral modules in accordance 

with the hardware connection by re-defining string identifiers in 

benchmarkMain.h file. As required in section 5.1, one of the UART 

peripherals and one of the GPIO peripherals are selected in accordance with 

the hardware connection.  

 

• Indicate the clock frequency. The value of the clock frequency is re-defined as 

a string identifier in benchmarkMain.h file. 

 

• Set the value for the stack size of the benchmark task. Because of the large 

amount of measurement work loaded in the benchmark task, the stack size of 

the benchmark task is set large enough to keep the benchmark task running. 

Acquiring the value in advance is not possible, but it can be got in the 

debugging stage using the monitoring facilities in section 5.4. 

 

• Evaluate the resolution of the software measurement tool. An external signal 

is selected and configured to be output in the measurement tool.  Then the 

error of the measurement tool is identified by using the oscilloscope based 

hardware tool, discussed in section 4.3.2. The duration time of a test function 

is measured both by the measurement tool and the oscilloscope. The 

difference in results illustrates the error of the measurement tool. 

 

In the third step, benchmark specifications are made. The benchmark specifications 

include three parts. The first part is to choose modules for the benchmark. String 

identifiers in the benchmarkMain.h (Demonstrated in Appendix D) file are re-defined. 

The second part is defining the hardware attributes of the benchmark tool, such as the 

data type of results, the address of the external peripheral devices, the GPIO, UART, 

SPI and I2C modules if selected in the first part. The third part is defining the 
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measurement attributes of the benchmark tool, such as the software resolution, 

number of iterations and data type. 

 

The following three steps are iterative exercises of benchmarking. The fourth step 

changes the parameters of functions. The fifth step compiles the program and 

downloads it. The process of compiling and downloading is the same as a user 

application. The last step is to run the program and collect the results. The benchmark 

results are outputted to the serial port of the host computer, where the HyperTerminal 

program is used to receive the data and to capture them into a text file for offline 

investigation. 

 

5.4 Software monitoring facilities in the benchmark tool 

The benchmark tool benchmarks the commonly used system calls and peripheral 

functions. It is an application with heavy workload. It consumes quite a lot of the 

resources of the hardware. Special care should be taken to avoid the resources to be 

overused. Tracing facilities are provided in run-time to ease the porting work of the 

benchmark tool.  The benchmark tool has two facilities for examination: a monitoring 

task and an indicator of heap usage. 

 

The monitoring task is used to show the stability of the system. It is a LED blinking 

task beside the benchmark task. The blinking LED indicates that the system is stable 

and the program is still running. This facility is useful to detect stack overflow. As 

stated in (Barry 2008), stack overflow is the most common source of support requests 

and is not easy to detect. The monitoring task gives an intuitive way to show the 

application instability. If the benchmark task stops while the monitoring task, with a 

higher priority in the debug stage, is still running, this may be the result of a failure of 

creation of the benchmark task or a placement of a busy loop within the benchmark 
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task. If both the benchmark task and the monitoring task with higher priority stop, the 

program may have encountered an overflow. 

 

The indicator of heap usage is used to show the current usage of the heap in the run-

time via the serial port. A subset of functions consumes an amount of heap. For some 

hardware, the amount of heap defined is not enough for benchmarking all the metrics. 

The indicator of heap usage illustrates the current usage of heap by percentage. If 

some data structures are not created and the percentage of usage is high at the same 

time, this may indicate that heap space is not large enough for creating a new data 

structure. 
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Chapter 6  

Case studies  

In this chapter, the benchmarking exercises are carried out using the benchmark tool 

introduced in Chapter 5. Two hardware platforms were used as test beds. One is the 

Body Sensor Network node (BSN), a hardware platform developed by Imperial 

College London, designed for the ease of the development of pervasive health care 

system. The other one is the CoolFlux development board, a development board for 

Small Autonomous Network Devices (SAND). Both hardware platforms consist of a 

processor and peripheral hardware.  

 

First the development environments and experimental setup are introduced in 6.1. As 

the first step of the benchmark, the error is identified in section 6.2. Results and the 

performance analysis are given in section 6.3. 
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6.1 Benchmarking environments 

6.1.1 BSN node  

 
Figure 17  View of a BSN node 

 

BSN node is a hardware platform with an MSP430 microcontroller, a CC2420 radio 

chip and a stackable design. The BSN node provides a low-powered, miniaturised, 

and intelligent platform for the development of pervasive physiological and context 

aware sensors. 

 

The microcontroller on the BSN node is a MSP430F149. It is a microcontroller 

configured with two built-in 16-bit timers, a fast 12-bit A/D converter, two universal 

serial synchronous/asynchronous communication interfaces (USART), and 48 I/O 

pins. Peripheral modules on the microcontroller consist of a UART, a SPI but without 

an I2C peripheral. Two GPIO lines are used to simulate the I2C protocol, controlled 

by software.  

 

The source code FreeRTOS kernel is compiled by MSPGCC compiler. MSPGCC is a 

port of the GNU C and assembly language tool chain to the Texas Instruments 

MSP430 family of low-power microcontrollers(Underwood 2003). The MSPGCC 

port of the GNU C compiler is currently based on version 3.2.3 of GNU GCC. It 

supports all the current variants of the MSP430 processor, and comes with a full set 
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of header files for the processors. Signed and unsigned integers of 8, 16, 32, and 64 

bit lengths are supported. 

 

To meet the hardware requirements in section 5.1, a BSN board was connected to an 

I2C device LIS3LV02DQ, a three axis digital output linear accelerometer with an I2C 

serial interface. The hardware configuration for benchmarking is illustrated in Figure 

18. 

 
Figure 18  Hardware for benchmarking BSN board 

 

The port for FreeRTOS on the BSN node is supported by FreeRTOS.org. Both the 

system clock and peripheral clocks are generated from an on-board DCO clock which 

has the frequency of 4.5 MHz. Timer 0 is selected as the system timer to generate 

ticks. The context of the BSN node includes all the general purpose MSP430 registers.  

 

For the peripheral hardware, GPIO, UART and SPI hardware modules are present on 

the BSN node, but the I2C hardware is missing. A software implementation of I2C is 

present in the hardware abstraction. In the hardware presentation layer and the basic 

functions layer of Figure 2, two GPIO modules on the BSN node are used to simulate 

the behavior of an I2C hardware module. The levels of these GPIO lines are 

controlled by the processor to simulate the I2C protocol. 
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6.1.2 CoolFlux development board environment 

The CoolFlux DSP is an ultra low-power, embedded DSP core, developed originally 

for audio applications in systems with ultra low power requirements. The CoolFlux 

DSP features a dual Harvard architecture.(Catalano 2005) It has a 24-bit data path, 

two 24 × 24 bit multipliers, and three ALUs and 56-bits accumulators. The CoolFlux 

DSP is fully interruptible, with three interrupt vectors available. Finally, the CoolFlux 

DSP is a fixed point processor. 

 

The CoolFlux development board is an easy board for programming, debugging and 

testing. All the I/O pins are available and an oscilloscope can be plugged to those pins. 

A JTAG connector is also available which can be used to run the on-chip debugger 

and debug step by step a program on your computer. Programs are compiled by 

CHESS Retargetable Compiler developed by Target Compiler Technologies 

N.V.(N.V. 2008). A specific script is used to converts the produced ELF image file 

into an ASCII file, which can be downloaded into the board. 

 

The port of FreeRTOS for the CoolFlux development board is available in Philips 

Research. Both the system clock and peripheral clocks are generated from an on-

board DSP clock which has the frequency of 12 MHz. Timer 1 is selected as the 

system timer to generate ticks. The context of the CoolFlux development board 

includes the data path registers, the pointer registers, the stack pointer, the status 

register and its copy within interrupt, and finally the link register and its interrupt 

counterpart. (Catalano 2008) For the peripheral hardware, GPIO, UART, SPI and I2C 

hardware modules are present on the CoolFlux development board. The hardware 

configuration for benchmarking the CoolFlux development board is illustrated in 

Figure 19. 
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Figure 19 Hardware for benchmarking CoolFlux development board 

 

6.2 Configuration and Error identification  

As the second step of the process of the benchmark in Figure 16, individual 

benchmark configuration for both hardware platforms is discussed in this section and 

the error of the measurement tools is identified.  The CoolFlux development board 

uses an external clock, which has the frequency of 12 MHz. The measurement timer 

gets the clock signal from this clock and has a granularity of 8.3 × 10-8 second. The 

BSN node uses the on-board DCO clock which has the frequency of 4.5 MHz. Due 

the timer divider of 8, the granularity of the measurement timer on the BSN node is 

1.78 × 10-6 second. 

 

The techniques of error identification are illustrated in section 5.3.4. GPIO 0 was 

selected as the external signal for identification for the CoolFlux development board 

while P5.4 port was selected as the external signal for identification for the BSN node. 

The error of both measurement tools are shown in Table 1 and Table 2. The error for 
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the measurement tool on the BSN node is 4.66% while on the CoolFlux development 

board it is 2.15%.  

 
Table 1  Error of the measurement tool on the BSN node 

 Average (ms) Max (ms) Min (ms) 

Oscilloscope 0.01524 0.01528 0.01520 

Software Measurement Tool 0.01453 0.01635 0.01453 

Difference (%) 4.66 7.00 4.41 

 
Table 2  Error of the measurement tool on the CoolFlux development board 

  Average (ms) Max (ms) Min (ms) 

Oscilloscope 0.00279 0.00280 0.00279 

Software Measurement Tool 0.00273 0.00282 0.00265 

Difference (%) 2.15 0.71 5.02 

 

The error of the measurement tools originates from two aspects. One part of the error 

comes from the LED blinking functions. The LED blinking functions read and write 

the registers of GPIOs to generate signals for the oscilloscope. These read/write 

actions cause delays. The other source of errors is at the measurement functions side. 

The executions of the measurement functions and reading the count value of the timer 

take time. 

6.3 Benchmarking results 

A number of exercises were carried out on these two test beds. Results were collected 

offline by examining the text files as discussed in section 5.3.4. The individual 

method of benchmarking each function is illustrated first. The results of the 

measurements are shown in figures. Conditions are identified and performance 

analysis is discussed. Complete tables of results can be found in Appendix C. In this 

section, without any specific statement, both the single and multiple tasks 

environments are examined and results are illustrated with both cases.  
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6.3.1 Task Delay 
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Figure 20 Task Delay duration time 

 

Task delay function is used to delay a task for a given number of ticks. The duration 

time of the task delay of 10 milliseconds was measured. As illustrated in Figure 20, 

the output delay duration is not exact as indicated in the parameter of the function. 

The timing difference can not be explained as the error of the tick system, which is 

supposed to make the output duration around the specified delay time. Duration larger 

than 10 milliseconds is expected. But as illustrated in Figure 20, all the duration are 

below the specified duration, between 10 milliseconds and 9 milliseconds.  

 

The scheduling mechanism of the FreeRTOS kernel accounts for this phenomenon. 

The scheduler checks the delayed tasks every tick period. Tasks delayed by the task 

delay function can only be checked at the tick point while the task delay function can 

be called at any place in the program. This makes the resulting delay duration shorter 

than the specified delay time. This effect is illustrated in Figure 21. 
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Figure 21 Time line of Function call: vTaskDelay(TickValue) 

 

6.3.2 Latencies 

 

Latency of Task creation  

 

For a given application in the benchmarking scope in section 1.4, a number of tasks 

are created. The latency of task creation was examined. As discussed in section 5.3.3, 

the benchmark tool creates more than one task. The duration time for each created 

task is measured. Because the task creation function is single-executable function, 

discussed in Figure 12, multiple experiments were carried out. Due to the limited 

memory resource on the hardware, at most three tasks are created. The latency results 

are illustrated in Figure 22. 
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Latency of Task Creation (BSN)
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Figure 22 Latency of Task Creation 

 

The figure shows that the latency of task creation increases as the stack size of a 

specific task increases. When a task is created, the system performs two memory 

allocations as discussed in section 2.1.4. The time for allocating the memory space of 

Task Control Block (TCB) is fixed. The time for initializing the task stack by filling 

with the fixed value increases with the depth of the task.  

 

Figure 22 shows that the latency for task creation function depends on the number of 

ready tasks. The latency for a task creation gets reduced after the first task is created. 

Created with equal stack size, the first task creation takes longer while the following 

task creations take an equal amount of time. The timing difference, around 0.11 ms in 

the BSN node and 0.00045 ms in the CoolFlux development board, is too large to be 

explained as a result of the cold cache effect (Westwood 2006). Alterative 

explanation is used. In FreeRTOS, when the first task is created, a preliminary 

initialization is carried out.  A function to ready all the lists used by the scheduler is 

called, which takes time to execute. The extra execution time causes the timing 

difference.  
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Latency of system calls 

System call overhead (BSN)
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Figure 23 System call overhead 

 

The benchmark tool measures the system call overhead in the benchmarking task, 

which is set with the highest priority (Figure 15). The system calls are measured 

sequentially. The individual system call is introduced in section 5.2.1.  

 

Enter/Exit critical functions pair was measured without any code executed in between. 

This function is a multiple-executable function which is executed one hundred of time 

to get the value distribution as discussed in section 5.2.3.The pseudo code is shown 

below: 

 

In the FreeRTOS kernel, queues are dimensioned by types: char type, short type and 

long type. The creation time of queues and semaphores were measured by the single-

for {  

T1:=The measurement function; 

 Enter critical function; 

 Exit critical function; 

 T2:=The measurement function; 

 Latency (Enter/Exit critical functions pair):=T2-T1; 

 } 
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executable method. Latencies of queue/semaphore sending/receiving functions were 

benchmarked by measuring the duration of sending or receiving one item into a queue 

or a semaphore. The duration time of queue sending and receiving are also 

dimensioned by three types. For individual queue/semaphore type, the multiple-

executable method is used. In Figure 23, it is observed that, with different types of 

items, variations of their execution time are low.  
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Figure 24 Latencies of GPIO peripheral functions 

 

Because the similar functionalities of different GPIOs on the board, GPIO 

benchmarking is carried out by benchmarking a specific GPIO port. An accessible 

port by the oscilloscope is selected. GPIO 0 was selected for BSN board. GPIO 9 was 

selected for CoolFlux development board. The latencies of GPIO sending functions 

were benchmarked by measuring the duration time of setting the benchmarked port to 

be high level. The latencies of GPIO receiving functions were benchmarked by 

measuring the duration time of reading the level at a specific GPIO. The single-

executable method is used in the GPIO creation function.  The multiple-executable 

method is used in the GPIO sending and receiving functions. In Figure 24, it is 
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observed that, with different number of tasks, variations of their execution time are 

low. 

 

Latency of UART peripheral functions 

 
Figure 25 Latencies of UART peripheral functions 

 

UART peripheral functions include a UART creation function, a sending function and 

a receiving function. The latency for the execution of a sending function is the time 

for the processing unit sending one byte into the peripheral memory, illustrated in 

Figure 3. The latency for the execution of a receiving function is the time for the 
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processing unit receiving one byte from the peripheral memory, illustrated in Figure 3. 

The single-executable measurement method is used in the UART creation function 

and the multiple-executable measurement method is used in sending and receiving 

functions. UART modules for benchmarking are selected in the favor of hardware 

connections. For the BSN board, UART 1 was selected. For the CoolFlux 

development board, UART 0 is selected.  

 

As discussed in section 2.2.1, two conditions of the sending function are present, 

featured by the status of the peripheral module. Figure 25 shows that the latency of 

the sending function varies in these two conditions, an empty sending queue and a 

non-empty sending queue. It takes more time for an item sent to the peripheral 

sending queue than to the peripheral sending register. Another two conditions were 

concerned. One is the length of the sending queue. The other one is the baud rate of 

peripheral hardware. To investigate the relationship between the latencies and the two 

conditions, benchmarking exercises were carried out where one of conditions varies, 

while at the same time, the other one was kept constant.  

 

From Figure 25, it is observed that the length of the sending queue does not influence 

the latencies of peripheral functions. The peripheral sending queue is implemented as 

an instance of the queue. As discussed in section 2.1.4, the sending and receiving 

actions of the queue are involved with the changes of the pointers to the next byte and 

the status values of the queue. The length of the queue does not influence the 

latencies of sending and receiving a byte. From Figure 25, it is also observed that the 

baud rate does not influence the latencies of peripheral functions. As illustrated in 

Figure 3, the latencies of the sending and receiving functions are the communication 

time between the processing unit and the peripheral memory. The baud rate of the 

peripheral module influences the communication between the peripheral module and 

the peripheral devices, but not the communication between the processing unit and 

the peripheral memory. 
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Figure 26 Latencies of SPI peripheral functions 
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Latency of SPI peripheral functions 

 

SPI peripheral functions include a SPI creation function, a sending function and a 

receiving function. The latency for the execution of a sending function is the time for 

the processing unit sending one byte into the peripheral memory, illustrated in Figure 

3. The latency for the execution of a receiving function is the time for the processing 

unit receiving one byte from the peripheral memory, illustrated in Figure 3. The 

single-executable measurement method is used in the SPI creation function and the 

multiple-executable measurement method is used in sending and receiving functions. 

SPI modules for benchmarking are selected in the favor of hardware connections. For 

the BSN board, SPI 0 was selected. For the CoolFlux development board, SPI 1 is 

selected. 

 

As discussed in section 2.2.1, two conditions of the sending function are present, 

featured by the status of the peripheral module, an empty sending queue and a non-

empty sending queue. Figure 26 shows that the latency of the sending function varies 

in these two conditions. It takes more time for an item sent to the peripheral sending 

queue than to the peripheral sending register. Another two conditions were concerned. 

One is the length of the sending queue. The other one is the baud rate of peripheral 

hardware. To investigate the relationship between the latencies and the two conditions, 

benchmarking exercises were carried out where one of conditions varies, while at the 

same time, the other one was kept constant.  

 

From Figure 26, it is observed that neither the length of the sending queue nor the 

baud rate influences the latencies of peripheral functions. The reason of this 

phenomenon can be referred in the UART section, as the SPI peripheral shares the 

same structure of hardware connection of peripherals with the UART peripheral. 

 

 

Latency of I2C peripheral functions 
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Figure 27 Latencies of I2C peripheral functions 

 

I2C peripheral functions include an I2C creation function and a sending function. The 

latency for the execution of a sending function is the time for the processing unit 

sending one byte into the peripheral memory, illustrated in Figure 3. The single-

executable measurement method is used in the I2C creation function and the multiple-

executable measurement method is used in the sending function. I2C modules for 
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benchmarking are selected in the favor of hardware connections. For the BSN board, 

I2C 0 was selected. For the CoolFlux development board, I2C 0 is selected. 

 

As discussed in section 2.2.1, two conditions of the sending function are present, 

featured by the status of the peripheral module, an empty sending queue and a non-

empty sending queue. Figure 26 shows that the latency of the sending function varies 

in these two conditions for the CoolFlux development board. It takes more time for an 

item sent to the peripheral sending queue than to the peripheral sending register. For 

the BSN node, the hardware connection of peripherals is not applicable. As described 

in section 6.1.2, the BSN node does not have any I2C hardware.  A simulation using 

two GPIO lines is used, which is illustrated in Figure 28. Compared to Figure 3, the 

hardware connection of the I2C peripheral on the BSN node does not use peripheral 

memory. The condition of the peripheral module status does not influence the latency 

of the I2C sending function.  

 

 
Figure 28 The hardware connection of the I2C peripheral on the BSN node 

 

 

Another two conditions were concerned. One is the length of the sending queue. The 

other one is the baud rate of peripheral hardware. To investigate the relationship 

between the latencies and the two conditions, benchmarking exercises were carried 
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out where one of conditions varies, while at the same time, the other one was kept 

constant.  

 

From Figure 26, it is observed that neither the length of the sending queue nor the 

baud rate influences the latency of peripheral function. The reason of this 

phenomenon on the CoolFlux development board can be referred in the UART 

section, as its I2C peripheral shares the same structure of hardware connection of 

peripherals with the UART peripheral. For the BSN node, the processing unit 

executes an I2C sending function, including an execution of GPIO sending functions 

eight times, to generate one I2C data byte. The range of the baud rate is limited, 

between 0 bps to 10 bps. The testing baud rate in the measurement, from 10 bps to 50 

bps, does not influence the latency of the I2C sending function.  
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Figure 29 Latencies of context switch 

 

The latencies of context switch are benchmarked by measuring 

 vTaskIncrementTick, vTaskSwitchContext and taskYIELD functions. 

vTaskIncrementTick and vTaskSwitchContext functions are the main components of a 

context switch. taskYIELD is a macro for forcing a context switch. Measurements of 



Chapter 6. Case Studies 

70 

context switch were carried out when the scheduler generates a tick and schedules 

back to the same task. This is implemented by measuring those three context switch 

functions in the benchmarking task which has the highest priority. The multiple-

executable measurement is used in context switch functions. From Figure 29, it is 

observed that the context switch time is constant if no other tasks are preempted.  

6.3.3 Throughput 

For applications of the benchmarking scope in section 1.4, communication among 

nodes and the communication between the node and its external devices are main 

tasks. The throughput of peripheral is one of the main metrics. A number of 

conditions for throughput were examined.  
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Figure 30 The process of throughput measurement 

 

Peripherals with sending queues of specific length are created. The benchmarking 

task sends the same number of items to the sending queue as the length of the sending 

queue and waits until all the items are sent. The whole process is carried out when the 

sending task is given the highest priority.  The duration time of the process of sending 

divided by the number of items sent is the throughput. The process can be illustrated 

in Figure 30. 
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Relation between Baud Rate and Throughput 
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Figure 31 Throughput of UART sending 

Relation between Baud Rate and Throughput 
(SPI, BSN)
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Figure 32 Throughput of SPI sending 
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Relation between Baud Rate and Throughput 
(I2C, BSN)
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Relation betw een Baud Rate and 
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Figure 33 Throughput of I2C sending 

 

As shown in Figure 31, Figure 32 and Figure 33, the throughput is dependent on the 

baud rate for a given peripheral on a given hardware platform. The throughput 

increases when the baud rate increases. The relationship between them is linear 

except the I2C peripheral on the BSN board.  The linear relationship is expected, as 

the baud rate increases, the time for the hardware module sending one item decreases. 

In the Figure 32, the deviation of throughput to the linear function is large. This can 

be explained as the error of integer calculation. The values of peripheral registers are 

calculated by integers. As the baud rate increases, the values for baud rate registers 

decrease. When the baud rate reaches a certain value, the error of integer calculation 

is not negligible.  

 

In Figure 33, there is an exception of linear relationship in the I2C module on the 

BSN board. This can be explained by follows. As discussed in section 1.1, the I2C 

module on the BSN board is implemented by using GPIO lines on the board to 

simulate the I2C protocol. As shown in Figure 24, the latencies of GPIO functions are 

not negligible. The latencies of GPIO functions dominate the throughput of the I2C 

peripheral of the BSN board. 
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6.3.4 Memory usage  

A number of functions request heap spaces. Conditions and calculation equations are 

listed in this section. As discussed in section 4.4.2, measurement of memory usage is 

implemented by marking locations of heap space. The amount of memory usage is 

indicated by the difference of the starting heap mark and the ending heap mark of the 

heap.  
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Figure 34 Relationship between stack size and memory usage 

 

Task creation function requests a space for task handler and a space for the task 

content. The memory usage of the task handler is constant for a given processor. The 

memory usage of the task content is dependent on the stack size. The relationship 

between the stack size and memory usage is expected to be linear. In the benchmark 

stage, benchmark exercises were carried 13 times on the BSN node and 6 times on the 

CoolFlux development board. Figure 34 shows the linear relationship between stack 

size and memory usage for the BSN board and the CoolFlux development board.  
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It is also observed in Figure 34 that the amount of memory usage of the task creation 

function in the CoolFlux development board is a factor of two than in the BSN node. 

The BSN node and the CoolFlux development board have different memory 

organizations. The stack type is implemented as the integer type in both the BSN 

node and the CoolFlux development board. An integer datum occupies two memory 

bytes in the BSN node while in the CoolFlux development board it occupies one 

memory byte. For a given stack item, the BSN node allocates twice the number of 

memory bytes as the in the CoolFlux development board. 

 

Semaphore and Queue 
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Figure 35 Relation between Item* Queue Length and memory usage 

 

A semaphore is implemented by a queue structure. Both the semaphore and queue 

creation functions request space for semaphore/queue handlers and space for the 

semaphore/queue content. The memory usage of the semaphore/queue handler is 

constant. The memory usage of the semaphore/queue content is dependent on the 

length of the queue and the size of items. The relationship between the stack size and 

memory usage is expected to be linear. In the benchmark stage, benchmark exercises 

were carried 10 times on the BSN node and 7 times on the CoolFlux development 
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board. Memory usage of semaphores and queues is illustrated in Figure 35. Figure 35 

shows the linear relationship between Item × Queue Length and memory usage. 
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Figure 36 Relationship between length of sending and receiving queues and memory usage 

 

Peripheral creation function requests a space for Peripheral handler and a space for 

the peripheral content. The memory usage of the Peripheral handler is constant. The 

memory usage of the Peripheral content is dependent on the stack size. The 

relationship between the stack size and memory usage is expected to be linear. In the 

benchmark stage, benchmark exercises were carried 4 times on the BSN node and 3 

times on the CoolFlux development board for individual hardware module. Figure 36 
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shows the linear relationship between the length of the sending queue and memory 

usage for BSN board and CoolFlux development board.  

 

It is also observed in Figure 36 that the amount of memory usage of the peripheral 

creation function in the CoolFlux development board is a factor of two larger than in 

the BSN node. The BSN node and the CoolFlux development board have different 

memory organizations. The stack type is implemented as the integer type in both the 

BSN node and the CoolFlux development board. An integer datum occupies two 

memory bytes in the BSN node while in the CoolFlux development board it occupies 

one memory byte. For a given item of peripheral content, the BSN node allocates 

twice the number of memory bytes as in the CoolFlux development board. 
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Figure 37 Code size (FreeRTOS + Peripheral drivers + An idle task) 

 

Beside the RAM usage of the FreeRTOS and its hardware abstraction, their code size 

takes space. Figure 37 shows the code size of the FreeRTOS kernel, peripheral 
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drivers and an idle task. The amount of code size of the CoolFlux development board 

is less than the BSN node, which can be explained by the compiling technology of the 

CHESS compiler.  
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Chapter 7  

Conclusion 

The FreeRTOS kernel is a light kernel supporting a number of commonly used system 

functions. Its hardware abstraction contains popular peripheral drivers in the 

benchmarking scope (Section 1.4). As mentioned in section 1.2, this thesis consists of 

three objectives. As the first objective, metrics for benchmark are examined and 

identified in Chapter 3 and the measurement results are listed in Appendix C.  

 

As the second objective of the thesis, a benchmark tool for benchmark was developed. 

The design issues, structure and the use of the tool are discussed in Chapter 5. As 

evidences of the configurability, the benchmark tool was configured individually to the 

BSN node and the CoolFlux development board as case studies. Hardware specific 

configuration and benchmark configuration were carried out. The configuration process 

is illustrated in 5.3.4. Take a look at the source code of the benchmark tool, the 

hardware specific configuration has 9 lines in the measureTool.c file for the BSN node 

while 21 lines for the CoolFlux development board, and 6 lines in the 

benchmarkMain.h file for both the BSN node and CoolFlux development board. The 

benchmarkMain.c file does not contain any configuration code. To sum up, the 

hardware specific configuration part accounts for 1.11% in the source code of the 

benchmark tool for the BSN node and 2.00% for the CoolFlux development board. The 

benchmark configuration only exists in the benchmarkMain.h file. It has 39 lines for 
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both the BSN node and the CoolFlux development board, which accounts for 2.89% in 

the source code of the benchmark tool. 

 

As the third objective of the thesis, conditions influencing the performance of the 

FreeRTOS kernel and its hardware abstraction are investigated. The number of tasks 

does not influence the latency measurements in the benchmark tool. As illustrated in 

section 5.3.3, the metrics are benchmarked in the benchmark task with the highest 

priority. The benchmark task is not preempted by other tasks. The execution of 

functions in the benchmark tool is not influenced. The duration time of executing these 

functions is the same as if only one task is running in the kernel.  

 

The latencies of a subset of functions are small, such as the Enter/Exit critical functions 

pair and peripheral sending functions with the condition of the sending queue is empty. 

These functions do not operate complex data structure and are executed sequentially 

which makes them easy to analyze from a static point of view. The execution of other 

functions takes relatively longer time, such as queues related functions, task handling 

functions and peripheral sending functions with the condition of the sending queue is 

not empty. These functions communicate with the task structure and queue structure, as 

discussed in 2.1.4, which are made suitable for event handling. 

 

As discussed in section 6.1.1, the BSN node uses two GPIO modules to simulate an I2C 

module while the CoolFlux development board has dedicated I2C hardware. From 

Figure 33, the advantages of dedicated peripheral hardware are shown. The throughput 

of the I2C module of the BSN node is dominated by the latencies of the GPIO functions 

and is slower compared to the UART and SPI modules. During the whole course of I2C 

communication, the processor on the BSN node is occupied by the I2C simulation task, 

while for the CoolFlux development board, the processor can concentrate on another 

task when the I2C module is generating signals. 

 



Chapter 7. Conclusion 

81 

In the benchmarking exercises, the compiling technologies and computer architectures 

influence the performance. Both the BSN node and the CoolFlux development board 

share the similar source code for the system functions. From Figure 22 and Figure 23, it 

is shown that the scales among system calls latencies for the BSN node is different 

from the ones for the CoolFlux development board. E.g. the latency of queue sending 

function is 50.3 times larger than the latency of critical function pair in the BSN node, 

while in the CoolFlux development board, the scale is 23.3. This is because different 

compiling technologies compile the same source code into different machine code and 

processors, with different computer architectures, execute the same machine code with 

different duration. 
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Appendix A 

FreeRTOS API 

This description corresponds to the metrics of system functions in section 4.4, 

providing fundamental introduction of these functions. This section briefly introduces 

the FreeRTOS API. The interested reader can refer to FreeRTOS website (Barry 2008) 

and to the source code itself for more details. This section is intended as a reference for 

benchmarking system functions. 

A.1 Task Creation 

xTaskCreate() 

 

This function creates a new task and adds it to the list of tasks that are ready to run. 

Parameters: 

pvTaskCode Pointer to the task entry function. Tasks must be implemented to never 

return (i.e. continuous loop).  

pcName A descriptive name for the task. This is mainly used to facilitate debugging.  

usStackDepth The size of the task stack specified as the number of data of a given 

depth - not the number of bytes. For example, if the stack is 16 bits wide and 

usStackDepth is defined as 100, 200 bytes will be allocated for stack storage. The stack 

depth multiplied by the stack width must not exceed the maximum value that can be 

contained in a variable of type size_t.  

pvParameters Pointer that will be used as the parameter for the task being created.  

uxPriority The priority at which the task should run.  

pvCreatedTask Used to pass back a handle by which the created task can be referenced. 
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A.2 Task Control 

vTaskDelay() 

 

This function delays a task for a given number of ticks. The actual time that the task 

remains blocked depends on the tick rate.  

vTaskDelay() specifies a time at which the task wishes to unblock relative to the time at 

which vTaskDelay() is called. For example, specifying a block period of 100 ticks will 

cause the task to unblock 100 ticks after vTaskDelay() is called.  

Parameters: 

xTicksToDelay The amount of time, in tick periods, that the calling task should block. 

A.3 Kernel Control 

taskYIELD() 

This is a macro for forcing a context switch. 

 

 

taskENTER_CRITICAL()/taskEXIT_CRITICAL() 

 

This is a macro to mark the start/end of a critical code region. Preemptive context 

switches cannot occur when in a critical region. 

 

taskDISABLE_INTERRUPTS() / taskENABLE_INTERRUPTS() 

 

This is a macro to disable/enable all maskable interrupts. 
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A.4 Queue Management 

xQueueCreate() 

  

This function creates a new queue instance. This allocates the storage required by the 

new queue and returns a handle for the queue. 

Parameters: 

uxQueueLength The maximum number of items that the queue can contain.  

uxItemSize The number of bytes each item in the queue will require. Items are queued 

by copy, not by reference, so this is the number of bytes that will be copied for each 

posted item. Each item on the queue must be the same size. 

 

xQueueSend()  

 

This function posts an item on a queue. The item is queued by copy, not by reference. 

This function must not be called from an interrupt service routine. 

Parameters: 

xQueue The handle to the queue on which the item is to be posted.  

pvItemToQueue A pointer to the item that is to be placed on the queue. The size of the 

items the queue will hold was defined when the queue was created, so the 

corresponding number of bytes will be copied from pvItemToQueue into the queue 

storage area.  

xTicksToWait The maximum amount of time the task should block waiting for space to 

become available on the queue, should it already be full. The call will return 

immediately if this is set to zero.  

 

 

xQueueReceive() 
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This function receives an item from a queue. The item is received by copy so a buffer 

of adequate size must be provided. The number of bytes copied into the buffer was 

defined when the queue was created. 

Parameters: 

pxQueue The handle to the queue from which the item is to be received.  

pvBuffer Pointer to the buffer into which the received item will be copied.  

xTicksToWait The maximum amount of time the task should block waiting for an item 

to receive should the queue be empty at the time of the call.  

A.5 Semaphores 

vSemaphoreCreateBinary()  

This function is a macro that creates a semaphore by using the existing queue 

mechanism. The queue length is 1 as this is a binary semaphore. The data size is 0 as 

we don't want to actually store any data - we just want to know if the queue is empty or 

full. 

Parameters: 

xSemaphore Handle to the created semaphore.  

 

xSemaphoreGive()  

 

This function is a macro to release a semaphore. The semaphore must have previously 

been created with a call to vSemaphoreCreateBinary(), and obtained using 

sSemaphoreTake(). 

Parameters: 

xSemaphore  A handle to the semaphore being released. This is the handle returned 

when the semaphore was created. 

 

xSemaphoreTake()  
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This function is a macro to obtain a semaphore. The semaphore must have previously 

been created with a call to vSemaphoreCreateBinary(),. 

Parameters: 

xSemaphore A handle to the semaphore being taken - obtained when the semaphore 

was created.  

xBlockTime The time in ticks to wait for the semaphore to become available. A block 

time of zero can be used to poll the semaphore.   



Appendix B. Hardware Abstraction API 

89 

Appendix B 

Hardware abstraction API 

This description corresponds to the metrics of peripheral functions in section 4.5, 

providing the introduction of these functions. 

B.1 GPIO (General Purpose Input Output) 

xGpioPeripheralInit  

This function reserves and configures the GPIO lines. 

Parameters: 

ePortMask A mask of the GPIO ports  to include in this peripheral handle 

pcPeripheralName The name of the GPIO peripheral 

eDirectionMask The direction of the masked eGPIOLines  

eInterruptEnableMask The mask for the GPIO ports to be initialized with interrupt 

enabled 

ePolarityMask The mask for the settings of the interrupt polarity of the GPIO ports  

 

 

vGpioPeripheralSend  

This function sets the GPIO lines used in the PeripheralHandle. 

Parameters: 

pxPort The PeripheralHandle of the GPIOLines used in this handle 

xData Every bit position represents an eGPIOLine, which will be set to the bit value if  

et to output and if included in the PeripheralHandle 
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xGpioPeripheralReceive  

This function sets the GPIO lines used in the PeripheralHandle.  

Parameters: 

pxPort The PeripheralHandle of the GPIOLines used in this handle 

B.2 UART (Universal Asynchronous Receiver-Transmitter) 

xUartPeripheralInit 

This function reserves and configures the UART interface. 

Parameters: 

pxPort The UART port 

pcPeripheralName The name of the UART peripheral 

eBaudrate The requested baud rate, selected in the eUartBaudrate enumeration 

eParity The parity settings, selected in the eUartParity enumeration 

eDirection The direction of the port, selected in the eUartDirection enumeration 

uxTxQueueLength The Tx queue length 

uxRxQueueLength The Rx queue length 

 

xUartPeripheralReceive 

This function receives a byte through the UART interface. 

Parameters: 

pxPort The UART port, initialized by xUartPeripheralInit() 

pcRxChar Points to the memory space where the received character will be written 

xBlockTime The time in ticks to wait if the queue is empty.  

 

xUartPeripheralSend 

This function sends a byte through the UART interface. 

Parameters: 

pxPort The UART port, initialized by xUartPeripheralInit()  

cTxChar The character to transmit 
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xBlockTime The time in ticks to wait if the queue is full.  

 

vUARTTXISR 

This ISR Handles the UART Tx interrupt. 

Parameters: 

ePort The peripheral port initialized by xUartPeripheralInit() 

 

 

vUARTRXISR 

This ISR Handles the UART Rx interrupt 

Parameters: 

ePort The peripheral port initialized by xUartPeripheralInit() 

B.3 SPI (Serial Peripheral Interface) 

xSpiPeripheralInit 

This function configures the SPI interface and creates driver structure. 

Parameters: 

ePort The SPI port 

pcPeripheralName The name of the SPI peripheral 

xKiloBitRate The bit rate, in kilo bits /sec. 

xSpiMode The SPI mode 

uxTxQueueLength The Tx queue length 

uxRxQueueLength The Rx queue length 

 

xSpiPeripheralReceive 

This function receives one byte of data from the Rx queue. 

Parameters: 

pxPort The SPI port, initialized by xSpiPeripheralInit()  

pxRxWord The data send from the Rx queue. 
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pxContinue The status of the continue bit during the receive. 

xBlockTime The time in ticks to wait if the queue is empty / Rx queue contains data.  

 

xSpiPeripheralTransfer 

This function makes a transfer through the SPI interface (The Rx data will be written 

directly in the RxQueue by the SPI ISR if xReceive is set pdTRUE). 

Parameters: 

pxPort The SPI port, initialized by xSpiPeripheralInit()  

xTxWord The word to send over the SPI, to request data from a slave. 

xContinue Set to one if more data has to be transferred in the same bunch. Otherwise, 

zero. 

xReceive If set to ’0’ then received data will be ignored otherwise received data goes to 

rxQueue. 

xBlockTime The time in ticks to wait if the queue is empty / Rx queue contains data.  

 

vSPIISR 

This ISR Handles the SPI interrupt 

Parameters: 

ePort The peripheral port initialized by xSpiPeripheralInit () 

B.4 I2C (Inter-Integrated Circuits) 

xI2cInitQueueReceive 

This function initiates receiving bytes from the I2C interface into the Rx queue. 

Parameters: 

pxPort The I2C port, initialized by xI2CPeripheralInit() 

xSlaveAddress The I2C address of the sending slave 

xBytesToReceive The number of bytes to receive into the RxQueue  

xRestart if pdTRUE, a restart condition is sent on the bus before starting this receiving. 

xStop if pdTRUE, a stop condition is sent on the bus after this receiving. 
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xBlockTime The time in ticks to wait if the queue is full.  

 

 

xI2cPeripheralInit 

This function reserves and configures the I2C interface. 

Parameters: 

ePort The I2C port 

pcPeripheralName The name of the I2C peripheral 

xKiloBitRate The bit rate, in kilo bits /sec. 

xPeripheralEnable Status of the I2C bus (pdTRUE for enabled, pdFALSE for disabled). 

uxTxQueueLength The Tx queue length 

uxRxQueueLength The Rx queue length 

 

 

xI2cPeripheralReceive 

This function receives a byte from the I2C Rx queue. 

Parameters: 

pxPort The I2C port, initialized by xI2CPeripheralInit() 

pxSlaveAddress Points to the memory space where the I2C address of the sending slave 

will be written 

pxRxByte Points to the memory space where the received word will be written 

xBlockTime The time in ticks to wait if the queue is empty.  

 

 

xI2cPeripheralSend 

This function sends a byte through the I2C interface. 

Parameters: 

pxPort The I2C port, initialized by xI2CPeripheralInit() 

xSlaveAddress The I2C address of the receiving slave 

xTxByte The byte to transmit 

xRestart If pdTRUE, a (re)-start condition will be issued on the bus before sending 
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xSlaveAddress (again) 

xStop If pdTRUE, a stop condition will be issued on the bus after sending xTxByte 

xBlockTime The time in ticks to wait if the queue is full.  

 

vI2CISR 

This ISR Handles the I2C interrupt. 

Parameters: 

ePort The peripheral port initialized by xI2CPeripheralInit () 
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Appendix C 

Tables of Results 

 
Table 3  Latency of Task Creation (1st call, BSN node) 

1stTaskCreation Depth Execution Time (ms) Expected Time (ms) Deviation (%) 

Sample1 250 0.77368 0.77369 0.00 

Sample2 257 0.78640 0.78635 0.01 

Sample3 50 0.41368 0.41189 0.43 

Sample4 55 0.42089 0.42094 0.01 

Sample5 60 0.42998 0.42998 0 

Sample6 66 0.44089 0.44083 0.01 

 
Table 4  Latency of Task Creation (1st call, CoolFlux development board) 

1stTaskCreation Depth Execution Time (ms) Expected Time (ms) Deviation (%) 

Sample1 500 0.02608 0.02610 0.08 

Sample2 520 0.02660 0.02650 0.37 

Sample3 580 0.02785 0.02770 0.54 

Sample4 590 0.02790 0.02790 0 

Sample5 3950 0.09782 0.09510 2.78 

 
Table 5  Latency of Task Creation (2nd call, BSN node) 

2ndTaskCreation Depth Execution Time (ms) Expected Time (ms) Deviation (%) 

Sample1 260 0.68640 0.68824 0.27 

Sample2 57 0.32089 0.32101 0.04 

Sample3 64 0.33362 0.33368 0.02 

Sample4 70 0.34453 0.34453 0 
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Table 6  Latency of Task Creation (2nd call, CoolFlux development board) 

2ndTaskCreation Depth 

Execution 

Time (ms) 

Expected Time 

(ms) Deviation (%) 

Sample1 540 0.02191 0.02190 0.04 

Sample2 560 0.02235 0.02230 0.22 

Sample3 600 0.02318 0.02310 0.35 

Sample4 620 0.02349 0.02350 0.04 

 

 
Table 7  Latency of Task Creation (3rd call, BSN node) 

3rdTaskCreation Depth 

Execution 

Time (ms) 

Expected 

Time 

(ms) Deviation (%) 

Sample1 263 0.69362 0.69367 0.01 

Sample2 268 0.70271 0.70271 0.00 

Sample3 270 0.70634 0.70633 0.00 

 
Table 8  Latency of Task Creation (3rd call, CoolFlux development board) 

3rdTaskCreation Depth 

Execution 

Time (ms) 

Expected Time 

(ms) Deviation (%) 

Sample1 3600 0.08541 0.08560 0.22 

Sample2 3650 0.08652 0.08660 0.09 

Sample3 3800 0.08968 0.08960 0.08 

Sample4 3850 0.09065 0.09060 0.06 

 
Table 9 System call overhead (BSN node) 

 

Average 

(ms) 

Max 

(ms) Min (ms) 

Deviation 

(%) 

Critical 0.00289 0.00459 0.00277 58.8 

Semaphore 

Create 0.21488 0.21549 0.21368 0.56 

Queue Create 0.13186 0.13186 0.13186 0 

Semaphore Give 0.08656 0.08822 0.08640 1.92 

Semaphore Take 0.08480 0.08640 0.08459 1.89 

Queue Send 0.14538 0.14822 0.14277 1.95 
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Queue Receive 0.14256 0.14640 0.13913 2.69 

 
Table 10 System call overhead (CoolFlux development board) 

 

Average 

(ms) 

Max 

(ms) Min (ms) Deviation (%) 

Critical 0.00025 0.00033 0.00025 32.0 

Semaphore Create 0.01154 0.01158 0.01149 0.78 

Queue Create 0.00627 0.00633 0.00625 0.96 

Semaphore Give 0.00539 0.00541 0.00533 1.11 

Semaphore Take 0.00525 0.00533 0.00525 1.52 

Queue Send 0.00582 0.00616 0.00575 5.84 

Queue Receive 0.00574 0.00608 0.00566 5.92 

 
Table 11 Latency of Gpio peripheral functions (BSN node) 

 

Average 

(ms) Max (ms) Min (ms) 

Deviation 

(%) 

Gpio Create 32.44640 32.44640 32.44640 0 

Gpio Send 0.01612 0.01731 0.01549 7.38 

Gpio 

Receive 0.00580 0.00640 0.00459 20.9 

 
Table 12 Latency of Gpio peripheral functions (CoolFlux development board) 

 

Average 

(ms) 

Max 

(ms) Min (ms) Deviation (%) 

Gpio 

Create 0.03033 0.03035 0.03032 0.10 

Gpio 

Send 0.00041 0.00050 0.00041 21.9 

Gpio 

Receive 0.00039 0.00050 0.00033 28.2 

 

Table 13 Latency of I2c peripheral functions (BSN node) 

#Tasks 

Send Queue 

Length 

Baud 

Rate 

Send 

(Send 

Queue 

Empty) 

Send (Send 

Queue Not 

Empty 

Throughput 

Latency 
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1 7 10 0.73637 0.73825 5.21186 

1 11 10 0.73614 0.73819 8.17913 

1 13 10 0.73590 0.73818 9.66095 

1 16 10 0.73598 0.73821 11.88640 

1 16 20 0.73605 0.73816 11.88458 

1 16 30 0.73609 0.73818 11.88459 

1 16 50 0.73612 0.73816 11.88640 

1 16 40 0.73616 0.73809 11.88641 

 
Table 14 Latency of I2c peripheral functions (CoolFlux development board) 

I2C 

Send 

Queue 

Length Baud Rate 

Send (Send 

Queue Empty) 

Send (Send 

Queue Not 

Empty 

Throughput 

Latency 

3Tasks 100 9 0.00750 0.00658 1.90041 

3Tasks 100 11 0.00752 0.00657 2.31952 

3Tasks 100 7 0.00752 0.00659 1.47943 

3Tasks 100 3 0.00749 0.00657 0.64015 

1Task 100 17 0.00749 0.00656 3.58357 

1Task 200 40 0.00749 0.00657 5.83474 

1Task 300 30 0.00752 0.00657 2.48585 

1Task 400 20 0.0075 0.00657 1.01741 

1Task 500 10 0.0075 0.00657 0.51258 

 
Table 15 Latency of Spi peripheral functions (BSN node) 

#Tasks 

Send Queue 

Length 

Baud 

Rate 

Send 

(Send 

Queue 

Empty) 

Send (Send 

Queue Not 

Empty 

Throughput 

Latency 

1 5 400 0.06221 0.11407 0.52095 

1 8 400 0.06210 0.11399 0.81731 

1 11 400 0.06221 0.11410 1.11549 

1 15 400 0.06224 0.11378 1.51368 

1 15 500 0.05548 0.11381 1.41185 

1 15 700 0.05004 0.11385 1.33004 

1 15 900 0.04459 0.11408 1.24822 
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1 15 800 0.04731 0.11398 1.28823 

 

 
Table 16 Latency of Spi peripheral functions (CoolFlux development board) 

SPI 

Send 

Queue 

Length Baud Rate 

Send (Send 

Queue Empty) 

Send (Send 

Queue Not 

Empty 

Throughput 

Latency 

3Tasks 4000 9 0.00200 0.00639 0.12916 

3Tasks 4000 10 0.00202 0.00643 0.14385 

3Tasks 4000 12 0.00202 0.00643 0.17393 

3Tasks 4000 14 0.00199 0.00640 0.20365 

1Task 4000 45 0.00199 0.00640 0.66682 

1Task 1000 60 0.00199 0.00637 1.1539 

1Task 2000 50 0.00202 0.00643 0.7486 

1Task 3000 40 0.002 0.00641 0.59083 

1Task 5000 30 0.002 0.00641 0.35175 

 
Table 17 Latency of Uart peripheral functions (BSN node) 

#Tasks 

Send Queue 

Length 

Baud 

Rate 

Send 

(Send 

Queue 

Empty) 

Send (Send 

Queue Not 

Empty 

Throughput 

Latency 

1 60 57600 0.01933 0.10727 10.59186 

1 65 57600 0.01934 0.10729 11.47913 

1 73 57600 0.01939 0.10728 12.89913 

1 80 57600 0.01937 0.10732 14.13731 

1 80 9600 0.01937 0.10727 84.50276 

1 80 19200 0.01922 0.10730 42.32095 

1 80 38400 0.01932 0.10732 21.21186 

1 80 115200 0.01952 0.10739 9.76096 

 
Table 18 Latency of Uart peripheral functions (CoolFlux development board) 

UART 

Send 

Queue 

Length Baud Rate 

Send (Send 

Queue Empty) 

Send (Send 

Queue Not 

Empty 

Throughput 

Latency 
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3Tasks 57600 60 0.00125 0.00608 11.21375 

3Tasks 57600 80 0.00127 0.00610 14.95302 

3Tasks 57600 100 0.00127 0.00610 18.68635 

3Tasks 57600 120 0.00124 0.00607 22.42532 

1Task 57600 89 0.00124 0.00607 16.63282 

1Task 9600 90 0.00124 0.00607 99.83632 

1Task 19200 95 0.00127 0.00610 52.6896 

1Task 38400 110 0.00125 0.00608 30.51150 

1Task 115200 120 0.00125 0.00608 11.25016 

 
Table 19 Context switch time (BSN node) 

 

Average 

(ms) 

Max 

(ms) Min (ms) Deviation (%) 

Context 

Switch 0.03753 0.03913 0.03731 4.26 

Task Yield 0.04940 0.05004 0.04822 2.39 

 
Table 20 Context switch time (CoolFlux development board) 

 #Tasks 

Average 

(ms) 

Max 

(ms) Min (ms) Deviation (%) 

Context Switch 1 0.00182 0.00190 0.00182 4.39 

Task Yield 1 0.00407 0.00407 0.00407 0 

Context Switch 3 0.00183 0.00191 0.00183 4.37 

Task Yield 3 0.00408 0.00408 0.00408 0 

 

Table 21 Task Delay duration time 

 

Average 

(ms) Max (ms) Min (ms) Deviation (%) 

Task Delay(BSN) 9.77590 9.92277 9.45368 3.29 

Task 

Delay(COOLFLUX 

DEVELOPEMENT 

BOARD) 9.98583 9.99416 9.53075 4.56 
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Table 22 Memory usage of Task creation (BSN board) 

Stack 

Size Memory 

50 138 

55 148 

57 152 

60 158 

64 167 

66 170 

70 178 

250 538 

257 552 

260 558 

263 564 

268 574 

270 578 

 
Table 23 Memory usage of Task creation (CoolFlux development board) 

Depth 

Memory 

Usage 

400 423 

405 428 

410 433 

420 443 

3200 3223 

3400 3423 

 
Table 24 Memory usage of Semaphore/Queue creation (BSN board) 

Item 

Type Item Size Length 

Heap 

Usage 

NULL 0 1 52 

char 1 2 54 

char 1 4 56 

char 1 3 54 

short 2 3 58 
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short 2 6 64 

short 2 7 66 

long 4 4 68 

long 4 2 60 

long 4 3 64 

BSN The item sizes of data types can be found in the C language manual of 

BSN(Underwood 2003) 

 
Table 25 Memory usage of Semaphore/Queue creation (CoolFlux development board) 

Item 

Type Item Size Queue Length Memory Usage 

NULL 0 1 26 

Char 1 3 29 

Char 1 4 30 

Short 1 2 28 

Short 1 5 31 

Long 2 1 28 

Long 2 3 32 

 

The item sizes of data types can be found in the C language manual of CoolFlux 

(Philips 2005). 

 
Table 26 Memory usage of UART creation (BSN node) 

Send 

Queue 

Length 

Receive 

Queue Length Heap Usage 

60 2 316 

65 3 320 

73 5 330 

80 7 340 

 

 
Table 27 Memory usage of UART creation (CoolFlux development board) 

Send Receive Memory Usage 
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Queue 

Length 

Queue 

Length 

120 5 255 

155 9 294 

160 11 301 

 

Table 28 Memory usage of SPI creation (BSN node) 

Send 

Queue 

Length 

Receive 

Queue Length Heap Usage 

5 3 270 

8 4 278 

11 5 286 

15 7 298 

 

 
Table 29 Memory usage of SPI creation (CoolFlux development board) 

Send 

Queue 

Length 

Receive 

Queue 

Length Memory Usage 

2 2 135 

5 7 143 

9 11 151 

 

 
Table 30 Memory usage of I2C creation (BSN node) 

Send 

Queue 

Length 

Receive 

Queue Length Heap Usage 

7 2 276 

11 3 286 

13 5 294 

16 9 308 
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Table 31 Memory usage of I2C creation (CoolFlux development board) 

Send 

Queue 

Length 

Receive 

Queue 

Length Memory Usage 

2 3 138 

5 7 145 

9 13 155 

 
Table 32 Memory usage of GPIO creation (BSN node and CoolFlux development board) 

Hardware 

platform 

Memory 

usage 

BSN node 88 

CoolFlux 

development 

board 48 
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Appendix D 

Configurable file of the benchmark 

tool (benchmarkMain.h) 

 

#include "FreeRTOS.h" 
#include "peripheral.h" 
#include "task.h" 
#include "drv_i2c.h" 
#include "drv_uart.h" 
#include "drv_gpio.h" 
#include "drv_spi.h" 
#include "drv_timer.h" 
#include "clockshop.h" 
#include <stdlib.h> 
#include <string.h> 
#include "list.h" 
#include "queue.h" 
 
#define STARTDEBUG   0 
 
/* Benchmark Module Selection */ 
#define BENCHMARK_BSN   
  1 
#define BENCHMARK_COOLFLUX  
  0 
 
#define BENCHMARK_GPIO_MODULE_SWITCH  0 
#define BENCHMARK_SYS_MODULE_SWITCH 
 0 
#define BENCHMARK_BEH_MODULE_SWITCH 
 0 
#define BENCHMARK_ISR_MODULE_SWITCH 
 1 
#define BENCHMARK_THR_MODULE_SWITCH 
 1 
 
#define BENCHMARK_SPI_MODULE_SWITCH  1 
#define BENCHMARK_I2C_MODULE_SWITCH  0 
 

#define LENGTH_UART_TXBUF   80 
#define LENGTH_SPI_TXBUF   15 
#define LENGTH_I2C_TXBUF   16 
 
#define LENGTH_UART_RXBUF   7 
#define LENGTH_SPI_RXBUF   7 
#define LENGTH_I2C_RXBUF   9 
 
#define TEST_BAUD_RATE ( eUartBaudrate ) 
( ( unsigned portLONG ) 57600 ) 
#define SPI_BAUD_RATE 800 
#define I2C_BAUD_RATE 40 
 
/* BSN configuration */ 
#if BENCHMARK_BSN == 1 
#define BINARY_DIGIT_SIZEOF_portHEAP_UNIT 
 1 /* sizeof (portHEAP_UNIT) = 0B00..001, note 
shift operation @ CoolFlux is a signed shift */ 
#define UART_TEST    
   UART1 
#define TIMERCOUNTUP   
   1 /* The timer of MSP430 
is in count up mode */ 
/* Hardware Configuration for Measurement */ 
#define SPI_TEST  SPI0 
#define I2C_TEST  I2C0 
 
#define TIMERPERIOD    0xFFFF 
#define TIMERDIVIDER   8 
 
 
#define portMEASURE_TIMER_CLOCK_HZ
 portCPU_CLOCK_HZ 
#define portMEASURE_RESULT  
 unsigned portLONG 
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#define portMEASURE_TIMER  
 unsigned portSHORT 
#define portHEAP_UNIT   unsigned 
portCHAR  /* Defined by FreeRTOS in Heap_1.c */ 
#define portPOINTER    
 unsigned portBASE_TYPE 
 
#define LENGTH_PRINT_BUF   50 
 
/* Debug options */ 
#define SHOW_EACH_DIGIT   0 
 
/* Measurement Factors */ 
#define configBenchmark_STACK_SIZE  
configMINIMAL_STACK_SIZE * 5 
#define MAXMEASUREVALUE 
 ( portMEASURE_RESULT )( 0x7FFFFFFF )  
#define MINMEASUREVALUE 
 ( portMEASURE_RESULT ) 0 
 
#endif 
/* COOLFLUX configuration */ 
#if  BENCHMARK_COOLFLUX == 1  
#define BINARY_DIGIT_SIZEOF_portHEAP_UNIT 
 1 /* sizeof (portHEAP_UNIT) = 0B00..001, note 
shift operation @ CoolFlux is a signed shift */ 
#define UART_TEST    
   UART0 
#define TIMERCOUNTUP   
   0 /* The timer of Coolflux 
is in count down mode */ 
/* Hardware Configuration for Measurement */ 
#define SPI_TEST  SPI1 
#define I2C_TEST  I2C0 
 
#define TIMERPERIOD    0x7FFFFF 
#define TIMERDIVIDER   1 
#define LED_RED        0 /* Red 
LED, GPIO 0 */ 
#define LED_GREEN    5 /* GreenLED, 
GPIO 5 */ 
#define TEST_GPIO    9/* Used for 
testing*/ 
#define PWR_GPIO14  14 
#define PWR_GPIO15  15 
 
#ifndef portCPU_CLOCK_HZ /* Clock frequency of the 
processor */ 
#define portCPU_CLOCK_HZ
 ( DeviceMainClock_kHz[Oscillator0] * 1000 ) 
#endif 
#define portMEASURE_TIMER_CLOCK_HZ
 portCPU_CLOCK_HZ 

#define portMEASURE_RESULT  
 unsigned portLONG 
#define portMEASURE_TIMER  
 unsigned portSHORT 
#define portHEAP_UNIT   unsigned 
portCHAR  /* Defined by FreeRTOS in Heap_1.c */ 
#define portPOINTER    
 unsigned portBASE_TYPE 
 
/* Debug options */ 
#define SHOW_EACH_DIGIT   0 
/* Measurement Factors */ 
#define configBenchmark_STACK_SIZE   3950 
#define MAXMEASUREVALUE 
 ( portMEASURE_RESULT )( 0x7FFFFF )  
#define MINMEASUREVALUE 
 ( portMEASURE_RESULT ) 0 
 
#endif 
 
/* Measurement Factors */ 
#define NUM_SAMP    
 100 /* For a full test, it should be > 100*/ 
 
#define NUM_TEST_TASKS_STACKSIZEDEM 
 0/* Number of Sample Tasks with various 
Depth*/ 
#define SAMPLETASK_PRIORITY  
  0 
#define BENCHMARK_PRIORITY  
  2 
#define NUM_TESTITERATION_QUEUECREATE 
 3 /* For a full test, the number should be 7 */ 
#define NUM_TEST_TASKS_COND  
 
 NUM_TEST_TASKS_STACKSIZEDEM + 1 /* 
Several Sample Tasks + A measurement Task,  For a full 
test, it should be 5*/ 
#define NUM_TEST_TASKYIELD_COND 5 
 
#define NUM_TEST_QUEUE_LENGTH 5 
 
#define NUM_TEST_QUEUE_TYPE  3 /* 
Type =  Char, Short, Long */ 
 
 
/* Measurement tools */ 
#define DEBUGFLAG 1 
#define TESTCHAR '$' 
#define TESTSHORT 11 
#define TESTLONG 22 
#define TESTBASE 33 
 
#define DIGIT_RESOLUTION_AF_SEC  8 
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#define DEC_RESOLUTION_AF_SEC 
 100000000 /* The resolution by Second is 10^(-
DIGIT_RESOLUTION_AF_SEC)*/ 
#define DIGIT_RESOLUTION_AF_MS 
 ( DIGIT_RESOLUTION_AF_SEC - 3 ) 
#define DEC_RESOLUTION_AF_MS 
 100000 /* The resolution by Mini-Second is 
10^(-DIGIT_RESOLUTION_AF_MS)*/ 
#define LENGTH_PRINTRESULTBUF  11 
/* The max length of results */ 
#define PrintMeasureResult_LARGEST_ONE   1000000000 
/* 10^9, Max decimal denoted by 'unsigned long' with max 
value of 2^32 = 4.3 * 10^9 */ 
#define PrintMeasureResult_SMALLEST_ONE   0 
 
#define tick_BLOCK    
 portMAX_DELAY  
#define INDEXNULL     
 ('#' - '0') /* '#' =  '0' -13 */ 
#define NUM_DIR    
  2 
 
/* Fixed data of Connected devices*/ 
 
#define WHOAMI 
#define LIS3L_ADDR      0x3A 
 
/* Define data structures */ 
 
 
 
 
 typedef enum 
 { 
  ItemType_Ref = 0, 
  ItemType_Tmp = 1, 
 } ItemRefTmp; 
 
  
  typedef enum 
  { 
   DirSend = 0, 
   DirRecv = 1, 
   QueuInit = 2 
  } DirComm; 
  
 typedef enum 
 { 
  IndexArr_HeapPoint_StartPoint   = 0, 
  IndexArr_HeapPoint_LastSampleTask = 
NUM_TEST_TASKS_STACKSIZEDEM, 
  IndexArr_HeapPoint_BenchmarkTask  = 
NUM_TEST_TASKS_STACKSIZEDEM + 1, 

  IndexArr_HeapPoint_Scheduler      =
 NUM_TEST_TASKS_STACKSIZEDEM + 2, 
  IndexArr_HeapPoint_Tmp  
   = NUM_TEST_TASKS_STACKSIZEDEM + 3, 
  IndexArr_HeapPoint_LastIndex   = 
IndexArr_HeapPoint_Tmp 
 } IndexArr_HeapPoint_RecordArray;/* Format of 
HeapRecordArray: [StartPoint, 
1stSampleTask,...,LastSampleTask,BenchmarkTask, 
Scheduler,Tmp]*/ 
  
   typedef enum 
  { 
   StartFlag = 0, 
   StopFlag = 1 
  } MeasureRecordPoints; 
  
   typedef struct TypeMeasureValues 
 {     
    portMEASURE_TIMER TestPoint[NUM_DIR]; 
    portMEASURE_RESULT  CurrentResult; 
    portMEASURE_RESULT  MaxResult; 
    portMEASURE_RESULT  MinResult; 
    portMEASURE_RESULT  AvgResult; 
    portMEASURE_RESULT  IterationCounter; 
 } MeasureValues; 
 
 
 
/* Define Macro and functions */ 
#define CURRENT_HEAP_POINT 
 ( portHEAP_UNIT * ) pvPortMalloc(1) 
#if BENCHMARK_COOLFLUX == 1 
#define WAIT_UART_SEND_DONE() PortBusyFlag = 
(( xUARTConfig * ) xTerm->pxConfig)->pxPortBusy;  
while(PortBusyFlag==pdTRUE) 
#define WAIT_SPI_SEND_DONE()  PortBusyFlag = 
(( xSPIConfig * ) xTestSpi->pxConfig)-
>pxPortBusy;while(PortBusyFlag==pdTRUE){ PortBusyFl
ag = (( xSPIConfig * ) xTestSpi->pxConfig)-
>pxPortBusy;}//while ( (xTestSpi_Config->pxPortBusy) == 
pdTRUE )  
#define WAIT_I2C_SEND_DONE()  PortBusyFlag = 
(( xI2CConfig * ) xTestI2c->pxConfig)-
>pxPortBusy;while(PortBusyFlag==pdTRUE){ PortBusyFl
ag = (( xI2CConfig * ) xTestI2c->pxConfig)-
>pxPortBusy;}//while ( (xTestI2c_Config->pxPortBusy) == 
pdTRUE )  
#endif 
#if BENCHMARK_BSN == 1 
#define WAIT_UART_SEND_DONE()  while 
( ((xUARTConfig *)(xTerm->pxConfig))->pxPortBusy == 
pdTRUE )  



Appendix D. Configurable file of the benchmark tool 

108 

#define WAIT_SPI_SEND_DONE()  while ( ((xSPIConfig 
*)(xTestSpi->pxConfig))->pxPortBusy == pdTRUE )  
#define WAIT_I2C_SEND_DONE()  while ( ((xI2CConfig 
*)(xTestI2c->pxConfig))->pxPortBusy == pdTRUE )  
#endif 
#if BENCHMARK_BSN == 1  
#define DISABLE_CONTEXT_SWITCH(Flag) if(Flag == 
StartFlag) TACCTL0 &=~CCIE; else TACCTL0 |= CCIE; 
#endif 
#if BENCHMARK_COOLFLUX == 1 
#define DISABLE_CONTEXT_SWITCH(Flag) 
#endif 
#define 
SHOW_HEAP_USAGE_BY_PERCENT( Point_Heap_Usage, 
CharString, FlagChar )
 {vPrintMeasureResult(  ( 100 * ( portLONG ) 
Point_Heap_Usage * DEC_RESOLUTION_AF_MS )/  
configTOTAL_HEAP_SIZE,(char *) CharString,FlagChar + 
'0');WAIT_UART_SEND_DONE();} 
#define SHOW_HEAP_USAGE_BY_UNIT( val, CharString, 
FlagChar ) {vPrintMeasureResult( ( portLONG ) ( val - 
Overhead_HeapMeasureFun) * 
DEC_RESOLUTION_AF_MS ,(char *) CharString,FlagChar 
+ '0');WAIT_UART_SEND_DONE();} 
#define POINT_HEAP_xNextFreeByte
 (( size_t )( CURRENT_HEAP_POINT - 
( portHEAP_UNIT * ) pvHeapStartPoint ) >> 
( BINARY_DIGIT_SIZEOF_portHEAP_UNIT - 1 ))/* Divided 
by sizeof(portHEAP_UNIT) */ 
/* Declaim functions */ 
 
void vBenchmarkProject(unsigned portSHORT uxPriority); 
void vStartBenchmark( void *pvParameters ); 
void vSampleTask( void *pvParameters ); 
void vBenchmark_SysFun(); 
void vBenchmark_Drivers(); 
void vBenchmark_SysBehavior(); 
void vBenchmark_OtherFeatures(); 
void vBenchmark_Done(); 
void vInitMeasureValuables(); 
void INIT_RESULT_0D(MeasureValues *pMetrics_sample); 
void INIT_RESULT_1D(MeasureValues * pMetrics_sample, 
portSHORT num_para);          
void INIT_RESULT_2D(); 
void vTestOverheadMesureFun(); 
void vProcToResultStrcture(MeasureValues 
*pMyMeasureValues); 
portMEASURE_RESULT 
vCalcTimerCount2MS( portMEASURE_TIMER 
TimerCountStart,  portMEASURE_TIMER TimerCountEnd); 
void vBenchmark_SysBehavior(); 
void vPrintFullResults (MeasureValues myMeasureValues, 
char * NameMetricsString, portCHAR indexNumber); 
void vShowHeapUsageListBfBenchmarkModule(void); 

void vRecordShowHeapUsage( char * CharString,char 
indexValueChar, portSHORT TestEntryFlag ); 
void vRecordTimerCountLED_NoCritical(MeasureValues 
*pMyMeasureValues, portSHORT TestEntryFlag ); 
 void vTurnOnRedLED(portCHAR LedCtrl); 
void vTurnOnGreenLED(portCHAR LedCtrl); 
void vTurnOnYellowLED(portCHAR LedCtrl); 
portMEASURE_TIMER vGetTimerSnopShot(void); 
void vMeasureToolInitAndBenchmarkUartCreate(char * 
CharString); 
void vRecordTimerCountLED(MeasureValues 
*pMyMeasureValues, portSHORT TestEntryFlag ); 
void vRecordTimerCountLED_NoCritical(MeasureValues 
*pMyMeasureValues, portSHORT TestEntryFlag ); 
void vPrintMeasureResult( portMEASURE_RESULT 
MeasureResultScaled,char * CharString1,char 
indexValueChar); 
void vSetupMeasureTimerLEDs(void); 
void vBenchmark_ISR(void); 
void vBenchmark_Throughput(void); 
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