
 Eindhoven University of Technology

MASTER

Non-crossing paths with fixed endpoints

Verbeek, K.A.B.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/95d689cd-9a09-4f28-ae2d-52bf0515e3cc

Supervisor
dr. B. Speckmann

Eindhoven, October 3, 2008

Master’s Thesis

Non-crossing paths with fixed endpoints

by
Kevin Verbeek

technische universiteit eindhoven
Department of Mathematics and Computer Science

Abstract

Given a collection of n rectilinear paths with fixed endpoints and a total of k links and m
rectangular obstacles, the problem is to find n non-crossing paths that are homotopic to,
and use the same endpoints as, the input paths and have the minimum total number of
links. We present a 2-approximation for this problem that runs in O((m+n)k) time and uses
O((m+n)k) storage. We also consider a variant of the problem where endpoints are restricted
to a region instead of being fixed. We prove that if endpoints are restricted to regions, it is
NP-Complete to decide if every path can be drawn with only one link. We do however drop
the restriction on the homotopy classes for this variant of the problem.

i

Contents

Abstract i

1 Introduction 1
1.1 Problem definitions . 3
1.2 Related work . 9

2 Minimum-link rectilinear homotopic routing 13
2.1 Locally optimal paths . 13
2.2 Intersection regions for y-monotone paths . 14
2.3 A 2-approximation for positive staircase paths 16
2.4 Extension to general rectilinear paths . 23
2.5 Efficient algorithm . 27
2.6 Lower bound . 31

3 Embedding matchings with regions 33
3.1 Vertical Matching is NP-Complete . 33
3.2 Region Matching is NP-Hard . 37

4 Conclusion 39
4.1 Open problems . 40

iii

Chapter 1

Introduction

For a long time maps have been used to convey information to the general public. For example,
maps containing road networks like in Figure 1.1 can be used to find the route between two
locations on the map. But as these maps became more and more complex and tried to convey
more information, the exact geographical shapes of road networks distracted the user from
important information. That is why the concept of schematic maps was created. Although
maps are generally used to convey some sort of geographical information, not all of the exact
details are necessary to provide the required information. So for road networks the exact shape
of the roads is not that important, but the connections are. In a schematic map it is therefore
allowed to simplify the shape of the roads while keeping the connections correct. Harry Beck
was one of the first to use schematic maps or diagrams when he designed the first schematic
representation of London’s tube map (subway) as shown in Figure 1.2. This schematic map did
not use the exact geographical locations of the stations and the railway as this information
was not important for the travelers. Instead it showed a simplified representation of the
connections between the stations. Due to the simplification, this schematic map was much
easier to understand and therefore became very popular.

Nowadays we use more and more schematic maps to convey different kinds of information.
Schematic maps were usually created by cartographers, which was a very laborious task. In
the current digital era, computers can be used to simplify or completely take over the task of

Figure 1.1: Road network near Eindhoven Figure 1.2: Schematic map of London’s subway
by Harry Beck

1

2 Chapter 1. Introduction

(a) (b)

Figure 1.3: A road network (a) and its schematic representation (b).

creating schematic maps. This is part of the field known as automated cartography. The field
of automated cartography is about all tasks regarding designing and drawing different kinds
of maps (tasks usually performed by cartographers) using the computer. It involves tasks like
cartographic generalization, label placement and as mentioned map schematization.

In this thesis we consider a problem which can be encountered when creating such schematic
maps. For schematic maps it is often useful that the relevant locations like stations or cities
are at least close to their real geographical location. Assume the relevant location are cities.
Then the problem that we consider is that of how to create a simplified representation of the
connections between cities with the cities at a fixed position (like their exact geographical
location). For example, we would like to simplify a road network as shown in Figure 1.3(a).
A possible solution for this example is shown in Figure 1.3(b). A road network can have a
complex structure though, so as an initial attempt we might want to simplify the problem
to be on connections with a simpler structure. Therefore we will assume that every city is
connected to exactly one other city and that these connections are not crossing each other
(see Figure 1.4(a)). A valid solution to this problem would be a simplified representation of
the connections without any crossings, because allowing crossings would make the map harder
to understand. Also the simplified connections should pass the other cities on the same side

(a) (b)

Figure 1.4: Cities with non-crossing connections (a) and its schematic representation (b).

1.1. Problem definitions 3

as the original connections to make connections easier to recognize. A valid solution is shown
in Figure 1.4(b).

The problem described above also turns out to be an important problem in the field of
chip design or VLSI design. When designing chips, the modules on these chips need to be
connected to other modules using wires. Obviously these wires should not cross each other.
So the problem considered in this thesis also has an application in the field of VLSI design.

Before we discuss related work, we give formal definitions of the problems considered in this
thesis in the next chapter.

1.1 Problem definitions

In this chapter we give formal problem definitions for the problems considered in this thesis.
Before this can be done, some definitions must be introduced. Although many of these
definitions are common, we include these definitions anyway for the sake of completeness.

Paths. In this chapter we will look at the formal definition of a path and at definitions
relating to paths that are relevant in this thesis. We restrict the discussion to paths in two
dimensions. A path in two dimensions can be formally defined as a function π : [0, 1] → R2.
In this definition the endpoints of the path are π(0) and π(1). We can also separate the
function for the different coordinates resulting in πx : [0, 1] → R and πy : [0, 1] → R. So we
get that π(t) = (πx(t), πy(t)) for 0 6 t 6 1. Now we can define monotone paths (see Figure
1.5(b)).

Definition 1 A path π is called x-monotone (y-monotone) if the function πx (πy) is mono-
tone.

An alternative definition for monotone paths is as follows. A path is called x-monotone (y-
monotone) if every line orthogonal to the x-direction (y-direction) can intersect the path at
most once. This is also exactly the property of monotone paths that we will use.

In a geometric setting, the above formal definition of a path is often too general and hence
we usually consider only polygonal paths (see Figure 1.5(c)). Polygonal paths consist of a
connected series of straight line segments. These paths can be defined by the endpoints of the
straight line segments. We call the straight line segments of a path the links of a path. The
endpoints of the straight line segments of a path are called the bends of a path, except for the

(a) (b) (c) (d) (e)

Figure 1.5: A general path (a), a y-monotone path (b), a polygonal path (c), a rectilinear
path (d) and a positive staircase path (e).

4 Chapter 1. Introduction

(a) (b)

Figure 1.6: Two non-crossing paths (a) and two crossing paths (b).

endpoints of the path itself. Now the complexity of a path can be defined as the number of
links of a path. If a path has the minimum number of links (under some constraints) then we
call this path a minimum-link path. The length of a path can be computed by summing up
the lengths of the links. The path with minimum length (under some constraints) is simply
called the shortest path.

Although it is relatively easy to work with polygonal paths, for some applications it is better
to have paths where the links can have only a limited number of directions. This is for
example the case in VLSI design and cartography (schematic maps). Paths where each link
can have only one of c directions are called c-oriented paths. In particular paths with only
horizontal or vertical links are called rectilinear paths (see Figure 1.5(d)). In the main part of
this thesis we will consider only rectilinear paths. Rectilinear paths that are both x-monotone
and y-monotone are called staircase paths. In general there are four types of staircase paths.
Staircase paths can be of type (+x,+y), (+x,−y), (−x,+y) or (−x,−y), where +x is with
increasing x-coordinate and −x is with decreasing x-coordinate (similar for +y and −y).
However if the direction of the path is irrelevant, we get only two types of staircase paths,
because then (+x,+y) and (−x,−y) are the same and (+x,−y) and (−x,+y) are the same.
We call the staircase paths with increasing x-coordinate positive staircase paths (see Figure
1.5(e)) and the staircase paths with decreasing x-coordinate negative staircase paths.

Finally we define when two paths are considered non-crossing. A common definition is that
of disjoint paths. Two paths π1 and π2 are disjoint if π1(t1) 6= π2(t2) for all 0 6 t1, t2 6 1.
However this definition is too strong in our case. We actually require the following.

Definition 2 Two paths π1 and π2 are non-crossing if for every ε > 0 we can move the bends
of π1 and π2 by at most ε such that the resulting paths are disjoint.

Intuitively this means that the paths are allowed to overlap, but only in such a way that the
parts of the links that overlap can be pushed away from each other to make the paths disjoint
(see Figure 1.6). Note that this definition of non-crossing can also be applied to a single path
in that the path does not cross itself. Also, if we have n paths that are pairwise non-crossing
and every path is non-crossing itself, then we say that these n paths are non-crossing.

Homotopy classes. A homotopic relation is defined with regard to a set B. We call this
set the blocker set. The set B always consists of a collection of obstacles. In this thesis B
also contains the endpoints of the paths. We therefore use the term blockers to denote both
obstacles and endpoints. No path is allowed to contain a point in B, except for its own
endpoints. The homotopic relation among paths w.r.t. B is commonly defined as follows.

1.1. Problem definitions 5

π3

π1
π2

ω1

ω2

Figure 1.7: The path π1 is homotopic to the dashed path π2, but not to the dashed path π3.

Definition 3 Two paths π1, π2 : [0, 1] → R2 with the same endpoints are called homotopic
(notation π1 ∼h π2) w.r.t. B if there exists a continuous function Γ : [0, 1]× [0, 1]→ R2 with
the following properties:

• Γ(0, t) = π1(t) and Γ(1, t) = π2(t) for 0 6 t 6 1.

• Γ(s, 0) = π1(0) = π2(0) and Γ(s, 1) = π1(1) = π2(1) for 0 6 s 6 1.

• Γ(s, t) /∈ B for 0 6 s 6 1 and 0 < t < 1.

Intuitively, the homotopic relation can be thought of as follows. Two paths π1 and π2 are
homotopic if we can deform π1 into π2 without ever pushing π1 through a point in B. For
example, in Figure 1.7 π1 and π2 are homotopic, but π1 and π3 are not, because then we
would need to push π1 through ω1 and ω2. Note that the homotopic relation is an equivalence
relation. This means that there are equivalence classes for the homotopic relation. If a path
π is in the equivalence class C, we call C the homotopy class of path π.

As we can define a path or a pair of paths to be non-crossing, we can do the same for
homotopy classes. A homotopy class C is called non-crossing if there is a path π ∈ C which
is non-crossing. Similarly, two homotopy classes C1 and C2 are called pairwise non-crossing
if there are two paths π1 ∈ C1 and π2 ∈ C2 such that π1 and π2 are pairwise non-crossing
(see Figure 1.8). For paths it is easy to see that if n paths are pairwise non-crossing and

(a) (b)

Figure 1.8: Two paths of crossing homotopy classes (a) and of non-crossing homotopy classes
(b).

6 Chapter 1. Introduction

σ1

σ2

R
σ∗

x1

x2

Figure 1.9: Shortest paths cannot cross.

σ1

σ2

Figure 1.10: Path σ1 is obviously not
the shortest.

non-crossing themselves, then the collection of n paths is non-crossing. For homotopy classes
this is not so trivial. Therefore we need the following lemma. Although this is a known fact,
we include a sketch of the proof here for the sake of completeness.

Lemma 1 Let C1 and C2 be two non-crossing homotopy classes which are pairwise non-
crossing. Then the shortest paths of these homotopy classes σ1 ∈ C1 and σ2 ∈ C2 are non-
crossing.

Proof sketch. We proof this lemma by contradiction. Assume that σ1 and σ2 are crossing.
Choose one of the endpoints of σ1 as starting endpoint and consider the first crossing x1 from
this endpoint of σ1 with σ2 (see Figure 1.9). Because the homotopy classes C1 and C2 are
non-crossing and because the endpoints of σ1 and σ2 are part of the blocker set B, there must
also be a second crossing x2. The parts of the paths σ1 and σ2 between the crossings x1 and
x2 form a small region R (a simple polygon) with a non-zero area (else the paths would be
non-crossing). The region R cannot contain an element of the blocker set B, because then the
homotopy classes C1 and C2 would be crossing. There are exceptions (see Figure 1.10), but
the paths of such an exception can always be shortened and hence cannot be shortest paths.
Now consider the shortest path σ∗ between x1 and x2 in R. Because the region R has a
non-zero area, either σ1 or σ2 could follow σ∗ to become shorter. Because R does not contain
an element of the blocker set B, this also does not change the homotopy class. Contradiction.
2

From Lemma 1 it easily follows that a collection of n non-crossing homotopy classes is non-
crossing if the homotopy classes are pairwise non-crossing.

Problems considered and results. We are now ready to introduce the problems considered
in this thesis. In the first problem we are given a collection of n pairs of endpoints (ai, bi)
(1 6 i 6 n) in the plane. We denote the set of endpoints by E . Between each pair of endpoints
ai and bi there is a rectilinear path πi. We denote the set of paths by Π =

⋃n
i=1 πi. In addition

to these paths and endpoints, there is a collection of m rectangular obstacles ωi. We denote
the set of rectangular obstacles by Ω =

⋃m
i=1 ωi. The paths πi do not cross any obstacle in

1.1. Problem definitions 7

a2

a1

a3

b1
b2

b3

π3

π1

π2

ω1

ω2

ω3

ω4
ω5

ω6

ω7
ω8

a2

a1

a3

b1
b2

b3

ψ3

ψ1

ψ2

ω1

ω2

ω3

ω4
ω5

ω6

ω7
ω8

(a) (b)

Figure 1.11: A problem instance of the routing problem (a) and its solution (b).

Ω, but they can overlap (part of) the boundary of one or more obstacles. Finally we define
the blocker set B as B = E ∪ Ω. We furthermore require that the homotopy classes of the
πi w.r.t. B are non-crossing. We are looking for a collection of “untangled” rectilinear paths
Ψ =

⋃n
i=1 ψi with the following properties:

• All paths ψi are homotopic to πi, i.e. ψi ∼h πi w.r.t. B for 1 6 i 6 n.

• The collection of paths Ψ is non-crossing.

• The total number of links of all paths in Ψ is minimal.

We formally call the problem described above Minimum-link Rectilinear Homotopic
Routing. For brevity we usually refer to it as the routing problem. An example of a
problem instance and its solution is shown in Figure 1.11. We have already mentioned in
the introduction that we restrict the problem to paths as an initial attempt to tackle the
more general problem on networks. For schematic map construction it is essential to fix
the homotopy classes, because the winding of paths (or roads) around obstacles (cities and
landmarks) is used to identify the paths. For the readability of a schematic map it is also
important to allow no crossings, minimize the number of links, and to restrict the orientations
of the links. Although rectilinear paths might be too restricting, this restriction is a good
first step towards the more general and preferable c-oriented paths.

Note that the requirement of the homotopy classes of πi to be non-crossing is necessary to
find any solution. We show that it is also sufficient. Although the shortest paths of given
homotopy classes are certainly non-crossing, these paths are not rectilinear. We will however
show in Chapter 2 that a rectilinear solution does exists. This solution is a 2-approximation
as it uses no more than twice the total number of links of an optimal solution. We first
solve the problem for staircase paths and then we reduce the problem for general rectilinear
paths to the problem for staircase paths. Our algorithm runs in O((m+ n)k) time and uses
O((m+n)k) storage, where k is the total number of links of the input paths and m and n are
as described above. We also show that a 2-approximation is the best possible when the size of

8 Chapter 1. Introduction

R1

R2

R3

R4

R5

R6

R1

R2

R3

R4

R5

R6

(a) (b)

Figure 1.12: A problem instance of Vertical Matching (a) and a valid solution (b).

the optimal solution is lower bounded by the sum of optimal individual paths. Unfortunately
the complexity status of this problem remains open.

In Chapter 3 we study a different problem. In the routing problem, the endpoints of the paths
were fixed. Here we explore what would happen if the endpoints are not completely fixed, but
are in fact allowed to be in a given region of the plane. If every endpoint can be anywhere in
the plane, then the problem reduces to finding a planar embedding of paths, which is trivial.
However if the regions are more limited, the problem becomes harder. To demonstrate this,
we consider a restricted problem using regions and show that this problem is NP-Complete.
This problem is as follows.

We are given a collection of 2n vertical segments Ri (1 6 i 6 2n) which each consist of
a triplet Ri = (xi,mi,Mi). These vertical segments are the regions and region Ri is the
vertical segment at x-coordinate xi that is between mi and Mi, which are the minimum and
maximum y-coordinates, respectively. We want to connect region R2j−1 with region R2j with
a straight line segment for 1 6 j 6 n. The decision problem becomes the following. Are
there y-coordinates yi for each region Ri satisfying mi 6 yi 6Mi such that the line segments
created by using the coordinates (xi, yi) are non-crossing?

We call this problem Vertical Matching. An example of a problem instance and its
solution is shown in Figure 1.12. Note that this problem would be trivial with fixed endpoints.
It is also important to mention that for Vertical Matching, the homotopy classes of the
line segments are not given and are therefore not fixed, unlike in the routing problem. Finally
we could also generalize this problem to different classes of regions instead of only vertical
segments. Although we can use different names for the problems using different classes of
regions, we just use one name for all these problems which is Region Matching. We will
actually show that for many classes of regions, Region Matching is also NP-Complete.

1.2. Related work 9

1.2 Related work

The routing problem is related to the wire routing problem in VLSI design. The wire routing
problem is that of connecting modules using wires such that these wires do not cross. Usually
the endpoints of these wires are called terminals. Note that in VLSI design the homotopy
classes do not need to be fixed. Unfortunately, as was mentioned in [6] in 1984, many variants
of this problem are NP-hard (this was later also proven for many variants in [1] by Bastert and
Fekete). That is why in [6] Cole and Siegel simplified the problem such that the homotopy
classes are given. They then showed how to check if such a wiring can be satisfied without
crossings. Four years later in 1988 Gao et al. [9] provided an algorithm that can find such a
wiring inO(n3 log n) time usingO(n3) space where n is the complexity of the output paths plus
the number of features (terminals and obstacles). They did however also require a minimum
distance between two wires. A more complete coverage of this and similar problems was finally
given by Miller Malley in [17] (1990). Unfortunately none of these algorithms minimize the
number of links and hence these algorithms cannot be used to solve our problem.

Although simplification by using fixed homotopy classes made the problem more approach-
able, there were also some other variants of the original wiring problem that were solvable
in polynomial time. In 1992 Takahashi et al. [22] presented an algorithm that finds k non-
crossing paths connecting k terminal pairs in an undirected plane graph G with non-negative
edge lengths. Their algorithm minimized the total length of these paths in O(n log n) time,
where n is the number of vertices in G. This algorithm was then used in 1993 [23] by the
same authors to connect k terminal pairs with k rectilinear paths among rectilinear obstacles.
This algorithm also had a running time of O(n log n) time, but in this case n was the number
of terminal pairs k plus the number of rectilinear obstacles. The only restriction for these al-
gorithms was that the terminal pairs had to be on two specified face boundaries. Because the
terminal pairs are restricted to two face boundaries and because only the length is minimized,
this algorithm cannot be used for our problem.

More research was however done for the problem variant using fixed homotopy classes. In
1994 Hershberger and Snoeyink [12] presented algorithms to find shortest paths of a given
homotopy class among a collection of points. They also presented algorithms to find paths
of minimum complexity (minimum-link paths) of a given homotopy class for general paths
and c-oriented paths (see Chapter 1.1). Their algorithm used a triangulation of the point
set and could compute the shortest path of a given homotopy class (represented by a path
α) in O(Cα + ∆α) time, where Cα is the complexity of path α and ∆α is the number of
times α crosses a triangulation edge. Finding the minimum-link path of a given homotopy
class required O(Cα + ∆α + ∆αmin) time where αmin is the minimum-link path. Although the
algorithm for shortest paths could directly be used to find k shortest non-crossing paths, it
turned out that this could be done even more efficiently. This was done independently by
Bespamyatnikh [2] and by Efrat et al. [8]. The result was an algorithm for finding k non-
crossing shortest paths of given homotopy classes in O(n

√
n+ kin log n+ kout) time, where n

is the number of endpoints plus the number of obstacles and kin and kout are the complexities
of the input paths (representing the homotopy classes) and output paths respectively.

In these problems the total length of the paths was often minimized. Relatively little research
had been done to find non-crossing paths of minimum complexity or the minimum number of
links. In 1996 it was already shown by Bastert and Fekete [1] that, among other wiring prob-
lems, finding non-crossing paths with the minimum number of links without given homotopy

10 Chapter 1. Introduction

classes is NP-Hard. In 1997 however the problem was solved by Yang et al.[24] for a pair of
rectilinear paths inside a rectilinear polygon. They provided an O(n) time algorithm, with
n the complexity of the rectilinear polygon, to find a pair of non-crossing rectilinear paths
inside the rectilinear polygon with the minimum number of links and minimum length. Un-
fortunately they were unable to generalize this solution to more than two paths. In [1] Bastert
and Fekete also showed that for n terminal pairs, finding non-crossing paths might require
one path to have at least O(log n) links. This bound was later improved in 1998 by Pach and
Wenger [20]. They showed that for n terminal paths it could happen that at least O(n) paths
require O(n) links to make the paths non-crossing, which makes the total complexity of the
non-crossing paths O(n2). They also presented an algorithm to find a planar embedding of a
graph in O(n2) time with fixed vertices and polygonal curves as edges using O(n) links per
edge. Although this result is asymptotically optimal, they did not really minimize the number
of links. This was however attempted in 2007 by Gupta and Wenger [11]. They presented
a constant factor approximation algorithm for finding non-crossing paths with the minimum
number of links where all terminals are vertices on a simple polygon. Note that when all
terminals are vertices of a simple polygon, the homotopy classes are actually fixed. Their al-
gorithm runs in O(n logm+M logm) time, where n is the complexity of the simple polygon,
m is the number of terminal pairs and M is the total number of links of the optimal solution.
Unfortunately the number of links of their solution can only be bounded by 120M + 127m.

Although we have simplified the problem to be on paths instead of networks, not everyone has
done so. There is some related work on drawing schematized networks and metro maps. In
2005 Cabello et al. [4] worked on drawing schematized networks with fixed endpoints. Their
algorithm computes a schematized map topologically equivalent to an input map in O(n log n)
time, where n is the total number of links in the input map. Every path of the schematized
map has two or three links with restricted orientations. They could also add additional
constraints like a minimum vertical separation between paths. Unfortunately if no map
existed with these restrictions, the algorithm would simply report that. This and other related
problems are studied in Cabello’s PhD thesis [3]. For drawing metro maps, the endpoints are
usually not entirely fixed. In 2005 Nöllenburg and Wolff [19] used a mixed-integer program
to draw metro maps using only horizontal, vertical and diagonal links. They distinguished
between hard and soft constraints and used the mixed-integer program to enforce the hard
constraints and optimize the soft constraints. Although the results were good and they used
heuristics to improve the running time, mixed-integer programming is NP-Hard and hence
their algorithm is infeasible for larger instances. In 2006 Merrick and Gudmundsson [18] used
a different approach using path simplification. They provided an algorithm to simplify a path
such that the resulting links conform with a restricted set of directions C. This algorithm
runs in O(|C|3n2) time, where n is the number of vertices of the original path. The authors
then described how to use this for a network. Unfortunately their algorithm does not keep
the input topology intact.

These problems are usually considered with paths that are infinitely thin, but in practice
these paths always have a certain thickness. The thickness of the paths can also be used to
convey extra information in schematic maps. So it might be useful to consider the thickness
of a path as part of the problem. This was done in 2002 by Duncan et al. [7]. They presented
an algorithm to maximize the distance between paths with given homotopy classes, which can
be seen as finding paths with maximum thickness. Their algorithm runs in O(kn+ n3) time
where n is the number of paths and k is the maximum of the input and output complexities.

1.2. Related work 11

They also showed how to extend this algorithm to work for general planar graphs. In 2007
Polishchuk and Mitchell [21] did the same for paths inside a simple polygon. However their
algorithm computes a representation of the thick paths in O(n + K) time, where n is the
number of vertices of the polygon andK is the number of paths. Using this representation they
can output a thick path in time proportional to the complexity of the path. Unfortunately only
the lengths of the paths are optimized in [7] and [21]. No work has been done in minimizing
the number of links of non-crossing thick paths.

In most problems discussed above, all the endpoints of the paths are fixed. In some appli-
cations however (like for metro maps) it is enough to restrict the endpoints to some region.
Relatively little research has been done in this direction. In 2005 Abellanas et al. [16] de-
scribed a heuristic method to draw a graph for which the vertices are restricted to regions.
They use a force-directed algorithm to optimize some aesthetic criteria, like the the number
of edge crossings and the location of a vertex in its region w.r.t. the center of the region. Un-
fortunately this is only a heuristic method. In 2007 Löffler [14] proved the NP-Completeness
of a problem involving regions. Although his problem involved imprecise points, this is essen-
tially the same as restricting points to regions. Given an ordered set of regions representing
a polygon, the problem was to decide whether it is possible to place the points inside their
regions in such a way that the resulting polygon is simple. He also showed it is NP-hard to
minimize the length of a simple tour visiting the regions in order. A more complete version of
this paper is given in [15]. Note that the problem proven to be NP-Complete by Löffler is very
similar to Vertical Matching. In fact, both problems are about embedding a graph in the
plane without crossings with the vertices restricted to a region, but for Vertical Matching
the graph is a matching and in [14] the graph is a cycle.

Chapter 2

Minimum-link rectilinear homotopic
routing

In this chapter we study the problem Minimum-link Rectilinear Homotopic Routing.

We are given a collection of n pairs of endpoints (ai, bi) (1 6 i 6 n) in the plane with
E =

⋃n
i=1{ai}∪{bi}, a collection of n rectilinear paths Π =

⋃n
i=1 πi connecting ai to bi, and a

collection of m rectangular obstacles Ω =
⋃m
i=1 ωi. The blocker set B is defined by B = E ∪Ω.

Assuming that the homotopy classes of Π w.r.t. B are non-crossing, we would like to untangle
the paths in Π, that is, to find a collection of n paths Ψ =

⋃n
i=1 ψi such that ψi ∼h πi w.r.t.

B for 1 6 i 6 n, Ψ is non-crossing, and the total number of links in Ψ is minimal.

We present an algorithm that calculates a 2-approximation for this problem.

This chapter is organized as follows. First we look at locally optimal paths and their role as
lower bound for the optimal solution in Chapter 2.1. Then we restrict the problem to staircase
paths and describe a 2-approximation for that in Chapter 2.3. After that we extend the
result to general rectilinear paths in Chapter 2.4. Then we discuss how to do this efficiently
in Chapter 2.5. Finally we show in Chapter 2.6 that the factor 2 of the approximation is
optimal when using locally optimal paths as lower bound for the optimal solution.

2.1 Locally optimal paths

We approach the problem in the following way. We choose a collection of paths that is almost
a solution and then we change this collection of paths until it is a valid solution. The initial
paths that we use are the rectilinear minimum-link paths of the given homotopy classes. We
call these paths the locally optimal paths. Locally optimal paths (i) are not unique (see Figure
2.1(a)) and (ii) can have crossings (see Figure 2.1(b)). While one locally optimal path might
be a better starting point for our algorithm than another, any locally optimal path is sufficient
for an approximation ratio of 2. Also there are configuration where any collection of locally
optimal paths has crossings (see, again, Figure 2.1(b)). Since the locally optimal paths are
the optimal solution if crossings are allowed, the total number of links of the locally optimal
paths are a lower bound for the optimal solution of the routing problem.

Finding these locally optimal paths is not trivial. Fortunately this problem has been solved
before. An algorithm for finding a rectilinear minimum-link path of a given homotopy class
is given in [12]. We discuss this more in depth in Chapter 2.5.

13

14 Chapter 2. Minimum-link rectilinear homotopic routing

(a) (b)

Figure 2.1: Locally optimal paths are not unique (a) and can have crossings (b).

We now have a collection of paths for which the number of links is a lower bound for the
solution of the routing problem, but there can be crossings between these paths. These
crossings need to be removed in order to get a valid solution. We need to do this in such a
way that the number of links does not increase too much. In fact, to find a 2-approximation,
we need to remove the crossings by no more than doubling the number of links. How to do
this will be discussed in Chapter 2.3 and 2.4. But before we do that, we need to introduce
some additional concepts.

2.2 Intersection regions for y-monotone paths

To remove the crossings of the locally optimal paths, we need to move the links of the paths.
Before this can be done, we need to make sure that these links are not moved through
endpoints or obstacles as this would change the homotopy class. Of course we can easily
check this, but it would be better if we would just know where we can safely move the links
without changing the homotopy class. For that we use intersection regions.

To give a definition of intersection regions for y-monotone paths, we first restrict the routing
problem to have only y-monotone paths. So the input paths πi and the output paths ψi are
y-monotone (and rectilinear). With this restriction we can prove the following lemma.

π1 π2

π3

ω1
ω2

ω3

ω4 ω5

π1

π2

π3

ω1

ω2

ω3

ω4
ω5

Figure 2.2: The partial order on a collection of shortest paths and obstacles.

2.2. Intersection regions for y-monotone paths 15

Lemma 2 Given a problem instance of the routing problem with only y-monotone paths and
non-crossing homotopy classes, the homotopy classes of all paths can be characterized by a
total order O on the paths and the obstacles.

Proof. Because the homotopy classes are non-crossing, we can consider the shortest paths
which are non-crossing. These shortest paths must be y-monotone as well. Consider the
relation “to the left of” for these paths and obstacles. This relation is clearly defined between
two paths/obstacles as long as they share a y-coordinate (see Figure 2.2). Because the paths
are y-monotone and non-crossing, this relation defines a partial order on the paths and obsta-
cles, which can easily be extended to a total order O. For y-monotone paths the homotopy
class dictates only on which side (left or right) a path passes an obstacle or endpoint. This
information is now completely given by the total order O. �

Using Lemma 2, the homotopy classes of the y-monotone paths can be characterized by a
total order O on the paths and obstacles. Note that the paths include the endpoints, so the
positions of the endpoints in the order is also defined. We use O(πi) and O(ωi) for the position
in the order of paths and obstacles, respectively. Now we can give the following definition for
intersection regions.

Definition 4 Assume that πi and πj are two y-monotone paths with O(πi) < O(πj). An
intersection region of πi and πj is a region enclosed by πi and πj at y-coordinates where the
paths are out of order, i.e. where πj is to the left of πi.

Consider Figure 2.3. Two paths can be out of order multiple times, but we do not con-
sider these regions as one intersection region, but rather as multiple intersection regions. So
intersection regions are y-monotone rectilinear polygons. Also, intersection regions are al-
ways defined between only two paths. In this way we have more control over the shape of
intersection regions.

Intersection regions have one convenient property: They cannot contain blockers. This is
shown by the following lemma.

R1

R2

intersection regions

πi πj

Figure 2.3: Two paths πi and πj and their in-
tersection regions R1 and R2.

ω

R

πi πj

Figure 2.4: Intersection regions can-
not contain any blocker.

16 Chapter 2. Minimum-link rectilinear homotopic routing

Lemma 3 Let πi and πj be two y-monotone paths with O(πi) < O(πj) and assume they
have an intersection region R. Then there can be no blocker in R.

Proof. We proof this lemma by contradiction. Because the paths are y-monotone, we know
that there is a total order O on the paths and blockers. Assume there is a blocker ω in R (see
Figure 2.4). We know that O(πi) < O(πj). Because πi passes ω on the right, we also know
that O(ω) < O(πi). And because πj passes ω on the left, we also know that O(πj) < O(ω).
These together imply that O(πj) < O(πi). Contradiction. �

Lemma 3 proves that every intersection region is free of blockers. Hence we can move links
of paths through intersection regions without changing the homotopy class of a path.

2.3 A 2-approximation for positive staircase paths

In this chapter we describe how the crossings of locally optimal paths can be removed while
no more than doubling the number of links. We first consider positive staircase paths and
then extend our method to general rectilinear paths. Note that the case where all paths are
negative staircase paths is symmetrical. As the staircase paths are y-monotone, we can use
Lemma 2 which implies an order on the paths. We assume that the paths are numbered
accordingly, so O(πi) < O(πj) iff i < j.

Rectangular intersection regions. To simplify the following discussion we first ensure that
all intersection regions are rectangular without adding additional links to the locally optimal
paths. We can simply do this by pushing the horizontal links of all paths as much down as
possible and the vertical links as much to the right as possible. We call these paths downmost
rightmost.

Lemma 4 Positive staircase paths of given non-crossing homotopy classes that are downmost
rightmost have only rectangular intersection regions.

Proof. We proof this lemma by contradiction. Assume we have an intersection region be-
tween two paths πi and πj with i < j (see Figure 2.5). Because both paths are positive
staircase paths, the boundary of this intersection region consists of two parts: the lower-left

`
`

(a) (b)

πi
πj πi

πj

Figure 2.5: Vertical (a) or horizontal (b) link ` is not rightmost or downmost.

2.3. A 2-approximation for positive staircase paths 17

part formed by πj and the upper-right part formed by πi. By definition this intersection
region is simply connected, so these two parts cannot cross. Assume that the lower-left part
does not consist of only two links. In that case, as shown in Figure 2.5(a), there must be
a vertical link ` that is completely part of the boundary of the intersection region. Because
of Lemma 3, the intersection region is free of blockers. But that means that the link ` can
be moved to the right, which contradicts the fact that πj is rightmost. Assume that the
upper-right part does not consist of only two links as is shown in Figure 2.5(b). Then there
must be a horizontal link that is completely part of the boundary of the intersection region.
Following the above argumentation, this contradicts the fact that πi is downmost. So both
parts must consist of only two links and therefore the intersection region is rectangular. �

We either directly find locally optimal paths that are downmost rightmost or we use any
collection of locally optimal paths and push the links to be downmost rightmost. Note that
this works only for positive staircase paths. An example is shown in Figure 2.6. We have to
make negative staircase paths downmost leftmost to get rectangular intersection regions.

Figure 2.6: Making intersection regions rectangular.

Positive staircase paths have only two types of bends. A bend where the direction changes
from down to right is called a lower-left bend. A bend where the direction changes from right
to down is called an upper-right bend (see Figure 2.7).

Lemma 5 Let πi and πj be two positive staircase paths with rectangular intersection regions
(i < j). An upper-right bend of πj can never be to the left of πi.

upper-right bend

lower-left bend

Figure 2.7: Bends of posi-
tive staircase paths.

πi

πj

πi

πj

(a) (b)

Figure 2.8: Upper-right bend of πj to the left of πi (a) and
the intersection region of πi and πj (b).

18 Chapter 2. Minimum-link rectilinear homotopic routing

Proof. We proof this lemma by contradiction. Assume that an upper-right bend of πj is to
the left of πi (see Figure 2.8(a)). Because i < j, this means that at this upper-right bend the
paths πi and πj are out of order and must therefore have an intersection region at this bend.
But the path πj forms the lower-left part of the boundary of this intersection region and the
upper-right bend has only links extending to the left and down. So this intersection region is
not rectangular (Figure 2.8(b)). Contradiction. �

Untangling paths. We now have an ordered collection of locally optimal paths that are
positive staircase paths and that have only rectangular intersection regions. We want to
remove the crossings between these paths – untangle the paths – or equivalently remove the
intersection regions.

Untangling the paths works as follows. We use an incremental algorithm, adding the paths
from left to right. When adding a new path we remove the crossings with the previously
added paths. We do this in such a way that we do not need more than twice the number of
links we started with. We call this algorithm Untangle.

To keep it simple, we first look at the first two paths π1 and π2 (the first path can be added
without problems). These two paths can of course have crossings and therefore intersection
regions (see Figure 2.9). Since we made all paths downmost rightmost, these intersection
regions are nicely rectangular. We essentially have two choices now. Either we reroute π1

along π2 or we reroute π2 along π1. As we are adding π2 at this time, we decide to reroute
π2 along π1, removing the crossings between π1 and π2. It is easy to see that in doing so we
no more than doubled the number of links of π2.

Unfortunately we cannot continue doing this for all paths. Rerouting π2 might have changed
the shape of the intersection regions with any path πk (k > 2). If the intersection regions
are no longer rectangular, then rerouting costs more links. We hence need to keep track of
where the paths have been rerouted. For π2 the difference between the rerouted path and the
original locally optimal path is exactly the (rectangular) intersection region. To keep track
of where the paths are rerouted, we introduce the reroute box (see Figure 2.9).

Definition 5 A reroute box of a path denotes the difference between the original (locally
optimal) path and the rerouted path. The lower-left part of the reroute box follows the
original path, whereas the upper-right part of the reroute box follows the rerouted path.

π1 π2 π1 π2

reroute box

Figure 2.9: Untangling the first two paths.

2.3. A 2-approximation for positive staircase paths 19

π
′
i πk+1

Figure 2.10: All possible cases for crossings between πk+1 and a path πi.

The algorithm Untangle changes the locally optimal paths πi to make them non-crossing.
The changed paths are denoted by π

′
i. Note that a path is only changed after it is added.

Before we discuss adding a path πk+1 with k > 1, we first give the invariants that must be
maintained by Untangle. These invariants are the following after adding a path πk.

Invariant 1 (NonCross) The paths π
′
1 to π

′
k are non-crossing.

Invariant 2 (Reroute) The paths π1 to πk have at most one reroute box per lower-left
bend.

Invariant 3 (UpperRightBend) An upper-right bend of a path πj can never be to the left
of a path π

′
i with 1 6 i < j 6 n.

It is clear that Invariant NonCross and Invariant Reroute are initially true. Lemma 5 proves
that also Invariant UpperRightBend is initially true.

Now we discuss the algorithm when adding a path πk+1. We go through all the links of πk+1

from top to bottom. This is done until a crossing is encountered. Note that the first crossing
must always be with a vertical link of πk+1, because the horizontal links move to the right and
therefore away from the other paths. This link can have crossings with multiple other paths.
Before we can find a way to remove these crossings, we first need to consider which shapes of
intersection regions we can get. We know that πk+1 is still unchanged and the other paths π

′
i

for 1 6 i 6 k are just the original paths πi plus the reroute boxes. We can still use the fact
that the intersection regions between the original paths πi are rectangular. All possible cases
that we can get are shown in Figure 2.10. We can get only cases with 1, 2 or 3 upper-right
bends in the upper-right part of the boundary of the intersection region. Also for all cases,
the lower-left part of the boundary of the intersection region consists of only two links. Note
however that we have ignored one case that would be theoretically possible as that case would
also result in a rectangular intersection region for the original paths. That is the case where
the following upper-right bend of path πk+1 is in a reroute box. This is however not possible
due to Invariant UpperRightBend.

To reroute we cannot simply follow the rightmost path that is crossed, because this can
cost more than two links. To change this, we need to make the intersection region of the
rightmost crossed path with πk+1 rectangular. We use an incremental algorithm to achieve
this. We call this subroutine GrowRectangle. Assume the crossing paths are paths π

′
a to

π
′
b. These paths are not crossing each other due to Invariant NonCross. Now assume that

the intersection region R of π
′
i with πk+1 is rectangular and we want to make the intersection

region of π
′
i+1 with πk+1 rectangular. We can achieve this by moving the links of π

′
i+1. We

do not want to move the links through R, because that would introduce crossings. The cases
of Figure 2.10 for π

′
i+1 can be handled as follows (Figure 2.11).

20 Chapter 2. Minimum-link rectilinear homotopic routing

(a) (b) (c) (d)

R R R R

R R R R

(e)

R

R

πk+1

π
′
i

Figure 2.11: Handling all different cases.

One upper-right bend: It is already rectangular, so we leave it unchanged (Figure 2.11(a)).

Two upper-right bends: Due to Invariant NonCross of the untangling algorithm, the path
π

′
i+1 cannot cross R. To make the intersection region rectangular, we need to move the

first vertical link to the left or the last horizontal link down (see Figure 2.11(b)-(c)).
Because R is a rectangle, we can always do one of these moves without moving a link
through R.

Three upper-right bends: Again π
′
i+1 cannot cross R. There are two cases. The first

case is that R is in the middle corner (Figure 2.11(d)). Then we can safely move the
first vertical link to the left and the last horizontal link down to form a rectangular
intersection region. The second case is that R is in one of the other corners (Figure
2.11(e)). In that case we can simplify the middle corner and handle it as a case with
two upper-right bends.

Initially we can use R = ∅ for π
′
a. Following the algorithm GrowRectangle results in a

rectangular intersection region between π
′
b and πk+1. We can now create a reroute box like

we did with π2. An example of this is shown in Figure 2.12. This concludes the algorithm.

There is one more thing that must be mentioned. When performing the subroutine GrowRect-
angle we allowed the links to be moved. The key is however that all moves are to the left
or down. So moving the links of a path π

′
i does (i) not change the cases (Figure 2.10) and

(ii) does not introduce crossings with a path π
′
j (j > i). Because we make sure that R is not

crossed in the subroutine GrowRectangle and because adding the reroute box removes the
crossings with πk+1, Invariant NonCross is maintained. Invariant Reroute is also maintained,
because we only add reroute boxes when a path is added and only at lower-left bends of the
locally optimal paths. Finally Invariant UpperRightBend is also maintained. Paths are only
changed by moving links or by adding reroute boxes. A reroute box of πk+1 cannot contain an
upper-right bend of πj (j > k+1), because then this bend must be to the left of the rightmost
crossed path π

′
b, which cannot happen according to Invariant UpperRightBend. Moving links

left or down also cannot violate this invariant.

2.3. A 2-approximation for positive staircase paths 21

R R

R

R

Figure 2.12: Growing a rectangle using the GrowRectangle subroutine.

Theorem 6 Algorithm Untangle correctly computes a 2-approximation for the routing
problem for positive staircase paths.

Proof. To prove that the solution is valid, we need to prove two things: The resulting paths
must be non-crossing and the resulting paths must be homotopic to the original paths. We
have argued above that the invariants NonCross, Reroute and UpperRightBend are maintained
by Untangle. Invariant NonCross ensures that the resulting paths are non-crossing. Paths
are only changed by moving links or by adding reroute boxes. Reroute boxes are also intersec-
tion regions which are free of blockers due to Lemma 3. In the subroutine GrowRectangle
the links are only moved through intersection regions (see Figure 2.11). So adding reroute
boxes or moving links does not change the homotopy class of a path. Finally we need to prove
that this algorithm is a 2-approximation. The original paths were locally optimal. We have
only added links at the reroute boxes. In fact, for each reroute box we have added only two
links. It follows from Invariant Reroute that there is at most one reroute box per lower-left
bend. Note that the endpoints can never have a reroute box. The number of lower-left bends
of a positive staircase path is at most x/2 if x is the number of links of a positive staircase
path. If the total number of links of the original (locally optimal) paths is L, then the total
number of links of the resulting paths is at most L

′
6 L+ 2L/2 = 2L. Because L is a lower

bound for the optimal solution, this proves that Untangle computes a 2-approximation for
the routing problem for positive staircase paths. �

An example of this algorithm (after adding the first two paths in Figure 2.9) is shown in
Figure 2.13. This algorithm can easily be adapted to work for negative staircase paths, but
it cannot easily be adapted to work for general rectilinear paths. This will be discussed in
the next chapter.

22 Chapter 2. Minimum-link rectilinear homotopic routing

π1 π2 π3 π1 π2 π3

π1 π2 π3 π1 π2 π3 π4

π1 π2 π3 π4 π1 π2 π3 π4

(a) (b)

(c) (d)

(e) (f)

Figure 2.13: Example of untangling positive staircase paths.

2.4. Extension to general rectilinear paths 23

2.4 Extension to general rectilinear paths

In this chapter we extend the result of Chapter 2.3 to general rectilinear paths. Note however
that simply extending Untangle to work for general rectilinear paths is problematic, because
the monotonicity of the paths has been used throughout the entire algorithm. Our approach
is therefore not to directly solve the problem for general rectilinear paths, but instead to
reduce the problem for general rectilinear paths to the problem for staircase paths. After
that we can use the algorithm of Chapter 2.3 to solve the routing problem. We call this entire
algorithm Routing.

The way to reduce the routing problem to the problem for staircase paths is to manipulate
the locally optimal paths. However, doing this requires us to first calculate the locally optimal
paths. We can compute the locally optimal paths using the algorithm of Hershberger and
Snoeyink in [12], but we can also manipulate the input paths directly.

The first step is to reduce the routing problem to the problem on y-monotone paths. The
way this can be done is by making the “U-turns tight”.

Definition 6 A horizontal U-turn (see Figure 2.14) consists of a horizontal link with on both
ends a vertical link extending in the same direction (both up or both down). The side from
the horizontal link in the direction of the vertical links is called the inside of the U-turn. If
instead the middle link is a vertical link and the other links are horizontal, then this is a
vertical U-turn.

Using this definition of U-turns, we can define tight U-turns (see Figure 2.14).

Definition 7 A U-turn is called tight if there is a blocker on the inside of the U-turn touching
the middle link.

The first thing we must do for reducing the problem to y-monotone paths is to make all
horizontal U-turns tight. This can be done separately for each path. We just consider a
horizontal U-turn and move the horizontal link towards the inside of the U-turn. Then two
things can happen (see Figure 2.15). Either the horizontal link can hit a blocker in which
case the U-turn is tight or the horizontal link reaches the end of a neighboring vertical link
in which case the path can be simplified to form a new U-turn. This simplification cannot
happen forever, because this reduces the number of links in the path, which is finite. So after
following this procedure all horizontal U-turns are tight. How this can be done efficiently is
discussed in Chapter 2.5.

inside

inside

horizontal U-turns vertical U-turns tight U-turns

Figure 2.14: Different types of U-turns and tight U-turns.

24 Chapter 2. Minimum-link rectilinear homotopic routing

chains

Figure 2.15: Making the horizontal U-turns tight and splitting up the path into y-monotone
chains.

We now have a path with only tight horizontal U-turns. Note that while making the horizontal
U-turns tight, no links were added. So if we would have started this with a locally optimal
path, the path would still be locally optimal. Because the horizontal U-turns are tight, all
U-turns have a blocker on the inside. The middle link at a tight U-turn is split up at the
edges of the blocker (Figure 2.15). We ignore the middle part of a split following the border
of a rectangular obstacle. Note that all the parts of the path are now y-monotone. We call
these parts of the paths chains. The split points form the endpoints of the chains. These
endpoints have an important property.

Lemma 7 The endpoints of the y-monotone chains of a path π are always part of the shortest
path σ with π ∼h σ.

Proof. We proof this lemma by contradiction. Let e be the first endpoint of a y-monotone
chain of π which is not on σ (Figure 2.16). Assume without loss of generality that this is a
lower endpoint of a chain. This means that σ must pass e along the bottom, because else
π �h σ. Consider the horizontal line ` through e. Because the previous endpoint before e
is on σ and not below `, σ must cross ` once. But σ must also cross ` a second time to go
around the blocker inside the next tight U-turn (or to go to the endpoint of π). But then
following ` is shorter. Contradiction. �

By splitting the paths up into y-monotone chains we have reduced the routing problem to
the problem on y-monotone chains. Note that we can also order the y-monotone chains now.
How to do this efficiently will be discussed in Chapter 2.5. Some of these y-monotone chains

e

`

σ

π

e

`

σ

π

Figure 2.16: The endpoints of the y-monotone chains are always on the shortest path.

2.4. Extension to general rectilinear paths 25

are homotopic. Chains that are homotopic can be bundled and routed together. Therefore
we replace groups of homotopic chains by a single chain.

The next step is to reduce the routing problem on y-monotone chains to the problem on
staircase chains (chains that are staircase paths). Luckily we can perform the same trick
for the vertical U-turns. We first make the vertical U-turns tight and then we split the y-
monotone chains up at the blockers inside the vertical U-turns. This results in a collection of
staircase chains. Lemma 7 can easily be extended to hold for the endpoints of the staircase
chains.

Corollary 8 The endpoints of the staircase chains of a path π are always part of the shortest
path σ with π ∼h σ.

We do however get a mix of positive and negative staircase chains. Note that the algorithm
Untangle of Chapter 2.3 can handle only staircase paths of one type and not a mix. Luckily
the following lemma holds.

Lemma 9 For a collection of rectilinear paths with non-crossing homotopy classes and tight
U-turns, a positive staircase chain cannot cross a negative staircase chain.

Proof. We proof this lemma by contradiction. Assume a positive staircase chain c1 of a
path π1 is crossing a negative staircase chain c2 of a path π2 (see Figure 2.17(a)). Note that
due to the monotonicity there can only be one crossing. Because the homotopy classes are
non-crossing, the shortest paths are non-crossing according to Lemma 1. Corollary 8 states
that the endpoints of the staircase chains are part of the shortest paths. This means that the
shortest paths between the endpoints of the staircase chains must be non-crossing. Assume
without loss of generality that the shortest path σ1 (σ1 ∼h π1) passes σ2 (σ2 ∼h π2) on
the side of the top endpoint e3 (see Figure 2.17(a)). Now there are three cases: There is a
horizontal U-turn at e3, there is a vertical U-turn at e3, or e3 is an endpoint of π2. If e3 is an
endpoint of π2, then σ1 �h π1, because e3 is a blocker. If there is a horizontal U-turn at e3,
then there must be a blocker ω1 below σ2 (see Figure 2.17(b)). Because σ1 ∼h π1, σ1 must
pass ω1 on the left side. But we assumed that σ1 passes e3 on the right side. This means
that σ1 must cross the horizontal part of σ2 above ω1. If there is a vertical U-turn at e3, then
there must be a blocker ω2 to the left of σ2 (see Figure 2.17(c)). Because σ1 ∼h π1, σ1 must

e3
c1

c2

σ1

σ1

σ2

σ1

σ2

(a) (b) (c)

e1

e2e4

e3

e1

e2e4

e3

e1

e2e4

ω1

ω2

σ1 σ1

Figure 2.17: Positive and negative staircase chains with tight U-turns cannot cross.

26 Chapter 2. Minimum-link rectilinear homotopic routing

pass ω2 along the bottom. But we assumed that σ1 passes e3 along the top. This means that
σ1 must cross the vertical part of σ2 to the right of ω2. So the paths σ1 and σ2 are crossing.
Contradiction. �

Using Lemma 9 we can simply split the staircase chains up into two sets: the positive staircase
chains and the negative staircase chains. Then we can just use the algorithm Untangle of
Chapter 2.3 to solve the problem for these two collections of staircase chains independently.
After that we can reconnect the chains to form the intended rectilinear paths, which are then
non-crossing. Note however that the (crossing) staircase chains obtained by this method are
in general not locally optimal unless we started with locally optimal paths. This is not a
problem though, because it is relatively easy to find locally optimal paths that are homotopic
to the staircase chains of the paths. This will be further discussed in Chapter 2.5.

Unfortunately the algorithm Routing as described above does not compute a 2-approximation.
To make the algorithm Routing compute a 2-approximation, we need to consider the num-
ber of reroute boxes of all paths. In Theorem 6 we used the fact that a positive staircase
path with x links can have at most x/2 reroute boxes, one for each lower-left bend. We
can do better when we consider all cases (see Figure 2.18). The number of lower-left bends
depends on the type of the first and last bend. For each of these bends that is not a lower-left
bend, we can reduce the number of lower-left bends (and hence reroute boxes) by 1/2. We
can do the same analysis for negative staircase chains. If these chains are also added from
left to right using the algorithm of Chapter 2.3, then the reroute boxes are at the upper-left
bends. Now consider all possible U-turns (see Figure 2.19). Note that for the horizontal
U-turns there is always one neighboring chain starting/ending with a type of bend without
a reroute box. Unfortunately this is not true for a left U-turn. However for right U-turns
both neighboring chains start/end with a type of bend without a reroute box. So the right
U-turns could compensate for the left U-turns, but then there should be more right U-turns
than left U-turns. Unfortunately this is not always the case. We can however add the paths
from right to left instead of from left to right. In that case the reroute boxes would be at the
upper-right and lower-right bends. This swaps the roles of the right and left U-turns. So by
making the right choice on the order of how the paths are added, the vertical U-turns can
compensate each other. This means that on average for every U-turn the number of reroute
boxes can be reduced by 1/2 (from the normal bound for reroute boxes).

(x− 1)/2 (x− 2)/2x/2 (x− 1)/2

Figure 2.18: Positive staircase paths with different first/last bends. The number of lower-left
bends with respect to the number of links x is shown.

2.5. Efficient algorithm 27

upper-left bend

lower-left bend

upper-right bend

lower-left bend

upper-right bend

lower-right bend

left U-turn top U-turn bottom U-turn right U-turn

Figure 2.19: Different types of U-turns and their neighboring types of bends.

Theorem 10 The algorithm Routing correctly computes a 2-approximation for the routing
problem.

Proof. We first need to prove that the resulting paths are non-crossing and homotopic to
the original paths. First of all the resulting staircase chains of the paths are non-crossing
and have the same homotopy class due to theorem 6. Making the U-turns tight also did
not change the homotopy classes of the paths. So the resulting paths are homotopic to the
original paths. Although the staircase chains are non-crossing, there could in theory still be
a crossing at a U-turn. This is not the case, because there is a clear order on the y-monotone
chains (homotopic chains are bundled) and the homotopy classes are non-crossing. So the
resulting paths are non-crossing. Finally we must prove that this algorithm computes a 2-
approximation. We know that two links must be added for each reroute box. Let L be the
total number of links for all paths and let U be the total number of U-turns. Note that the
total number of links for all staircase chains is L + U due to the splitting (the middle link
is not used). Like in Theorem 6, we can bound the number of reroute boxes by (L + U)/2,
but as mentioned above this bound can be reduced by U/2 so we get L/2. Untangling the
staircase paths using the algorithm Untangle results in at most L + U + 2L/2 = 2L + U
links. Afterwards we can reconnect the links at the U-turns which reduces the number of
links by U . So the resulting number of links is L

′
6 2L + U − U = 2L. Because L can

be the number of links of locally optimal paths, this means that the algorithm Routing
computes a 2-approximation if the initial paths are locally optimal. Note however that the
tight U-turns are always locally optimal so that we need to make only the staircase chains
locally optimal. �

2.5 Efficient algorithm

In this chapter we give an indication of how to make an efficient implementation of the
algorithm Routing presented in chapters 2.3 and 2.4. The focus of our research was however
not on finding an efficient implementation for this algorithm, so in this chapter we just give
some ideas on how the algorithm can be implemented efficiently.

The algorithm Routing mainly consists of the following parts.

1. Making the U-turns tight and splitting up the paths into staircase chains.
2. Ordering and bundling the y-monotone chains.
3. Finding locally optimal paths for staircase chains.
4. Untangling the staircase chains (the algorithm Untangle).

28 Chapter 2. Minimum-link rectilinear homotopic routing

Figure 2.20: Segment dragging.

We discuss efficient implementations for these parts separately. In this chapter we assume
that the input consists of n paths with a total of k links (for all paths) and m rectangular
obstacles. So the number of blockers is 2n+m. We also assume that the paths are stored as
a linked list of bends.

Tight U-turns. In Chapter 2.4 we discussed the algorithm for making the U-turns tight.
This involves moving the middle link of a U-turn to the inside until it hits a blocker or it
simplifies the path. Now we want to do this efficiently. This can be solved using segment
dragging. The segment dragging problem is defined as follows. Given a collection of points in
the plane, pick an arbitrary horizontal line segment and move it vertically down until it hits
one of the points if any. So an algorithm for segment dragging reports the first point hit by
any horizontal line segment (see Figure 2.20). An efficient data structure for segment dragging
is given by Chazelle in [5]. The algorithm uses O(n) storage and O(n log n) preprocessing
time and can answer queries in O(log n) time, where n is the number of points. Although the
problem is defined for moving horizontal line segments down, this could easily be adapted
to work for horizontal line segments moving up or for vertical line segments moving left and
right (we just use multiple data structures).

The point set for segment dragging must be formed by our blockers. For endpoints this is
simple, but for the rectangular obstacles we have to use the four corner points. Note that
it is impossible to “miss” the rectangular obstacles by dragging a segment in between these
points, because in that case the path would be crossing the rectangular obstacle. We look for
all U-turns by searching linearly through the paths and make the U-turns tight using segment
dragging. This can require simplifying the path, but this can be done locally. Also, this can
add new U-turns only locally. Because the point set has size O(m+ n) (the blockers) and we
need to do at most O(k) queries, making the U-turns tight can be done in O(k log(n + m))
time plus O((m+ n) log(n+m)) time for preprocessing. Note however that this can also be
done in O((m + n)k) time if we do not use a specialized data structure (by simply checking
all points). Finally, splitting up the paths into staircase chains afterwards is trivial (at least
if we store the tight blockers with the U-turns).

Ordering and bundling y-monotone chains. The first step is to order the y-monotone chains.
The idea is to order the chains along with the obstacles. This makes bundling homotopic
chains easy, because we just have to check chains that are next to each other in the order. So
the only problem that remains is to order the chains.

2.5. Efficient algorithm 29

To order the chains, we need the following observation. If two y-monotone chains are not
homotopic, then there is at least one blocker that is in between the two chains or the endpoints
of the chains are different. We know that there are only O(m+n) blockers, but also the number
of different endpoints of the chains is O(m+ n), because these endpoints can be only at the
endpoint of a path or at the corner of a rectangular obstacle. The number of y-monotone
chains can be bounded by O(k). We can build a graph representing the partial order of the
paths and obstacles. The nodes of this graph are the paths and the blockers. We add a
directed edge from a blocker node to a path node if the blocker is left from the path and a
directed edge from a path node to a blocker node if the blocker is right from the path. Note
that we can form this graph by simply checking every link with every blocker in O((m+n)k)
time. This also means that the graph has only O((m + n)k) edges. With this graph we can
use topological sorting to find an order on the paths and obstacles in O((m + n)k) time.
Unfortunately this algorithm also uses O((m + n)k) storage. Although this algorithm can
probably be more efficient (especially its storage use), we settle for this algorithm and we
leave any improvements as an open problem.

We should note that bundling these y-monotone chains is actually very convenient. That is
because it is proven by Efrat et al. in [8] that there are only O(m + n) y-monotone chains
with different homotopy classes. So bundling has reduced the number of y-monotone chains
from O(k) to O(m+ n).

Locally optimal staircase paths. Now we describe how to efficiently compute the locally
optimal staircase paths. Note that in Chapter 2.3 it was mentioned that for positive staircase
paths, the locally optimal paths must be downmost rightmost. It turns out that making
a path downmost rightmost makes the path locally optimal. To be precise, a downmost
rightmost positive staircase path is locally optimal if the first link is correct (horizontal or
vertical). Note that for chains starting at U-turns, the first link is already dictated by the
U-turn. So this choice is only relevant for endpoints of a path in which case we can just try
both possibilities.

Lemma 11 A positive staircase path that is downmost rightmost is locally optimal depend-
ing on the first link.

Proof. Without loss of generality we assume that the first link is optimal and is vertical.
Consider the next horizontal link. For a downmost rightmost path π this next horizontal link
is at the height of the highest blocker the path needs to pass along the top (or the endpoint)

π

π∗

Figure 2.21: The downmost rightmost positive staircase path is locally optimal.

30 Chapter 2. Minimum-link rectilinear homotopic routing

that is to the right of the first vertical link (else the path would not be a staircase path).
Assume this choice does not lead to a locally optimal path. Then a locally optimal path
π∗ must have the horizontal link higher, because it cannot be lower (see Figure 2.21). Now
consider the next vertical link of π∗ (there must be one). Note that this link is crossed by the
horizontal link of π, because else the next vertical link is not rightmost (there must be a next
link or π∗ is not locally optimal). At that crossing, path π can follow π∗ and then π would
be locally optimal. This is a contradiction. We can continue this argumentation for all links
of π. This means that π must be locally optimal. �

To make the positive staircase paths downmost rightmost, we can use segment dragging
again. This works the same as for making U-turns tight. Either the link becomes downmost
or rightmost or we can simplify the path. Using segment dragging we get the downmost
rightmost locally optimal paths. So the time required for this is the same as the time required
to make the U-turns tight.

Untangling chains. The only problem for performing the algorithm Untangle efficiently is
to determine (efficiently) which links are involved in a crossing. The algorithm is as follows.
The chains are added incrementally from left to right as is described in Chapter 2.3. Let the
next chain to be added be chain i. The links of chain i are added incrementally from top to
bottom. Note that we do not have to sort the links, because they are stored in a linked list
for each chain and the chains are y-monotone. We know that a crossing can occur only with
a vertical link of chain i. The only thing we need to check for a vertical link is which of the
links of the previously added chains cross this link. So for each vertical link ` of chain i, we
follow the links of the paths j (1 6 j < i) until they pass the next horizontal link of chain
i. Now we can easily deduce which links cross ` and then it is straightforward to remove the
crossings using the subroutine GrowRectangle as is described in Chapter 2.3.

Note that as we add links incrementally from top to bottom, we can handle the different
staircase chains of the same y-monotone chain consecutively. So basically we can perform
the algorithm on y-monotone chains directly. We need only to keep track of which type of
staircase path we are currently handling. This means we need to move from top to bottom
only as often as there are y-monotone chains. As mentioned before, there are only O(m+ n)
different y-monotone chains.

Lemma 12 The algorithm Untangle runs in O((m+ n)k) time.

Proof. As mentioned above, we need to add O(m + n) y-monotone chains incrementally.
For each y-monotone chain we need to move from top to bottom to remove the crossings.
Assume we have to add chain i and let ki be the number of vertical links of chain i. For
each vertical link `j , we need to follow the links of the previously added paths until they pass
the horizontal link after `j . This costs O(i+ xj) time, where xj is the total number of links
followed. Then we must remove the crossings using the subroutine GrowRectangle. As
is shown in Chapter 2.3, only a constant number of links is involved in this calculation for
each chain. So GrowRectangle runs in O(i) time. Because

∑ki
j=1O(xj) = O(k), adding

chain i costs
∑ki

j=1O(i + xj) = O(iki + k) time. Summing this up for all chains results in∑O(m+n)
i=1 O(iki+k) 6

∑O(m+n)
i=1 O((m+n)ki+k) = O((m+n)k). So the algorithm Untangle

runs in O((m+ n)k) time. �

2.6. Lower bound 31

Total algorithm.

Theorem 13 The algorithm Routing runs in O((m + n)k) time and uses O((m + n)k)
storage.

Proof. According to Lemma 12 untangling the paths takes O((m + n)k) time. The same
holds for ordering and bundling the y-monotone chains. Although making the U-turns tight
and finding the locally optimal staircase paths can be done more efficiently, we can do this
in O((m + n)k) time without using a specialized data structure. Finally note that we need
more than linear storage only for ordering the y-monotone chains, which requires O((m +
n)k) storage. So the presented algorithm runs in O((m + n)k) time and uses O((m + n)k)
storage. �

2.6 Lower bound

In Chapter 2.3 we presented the algorithm Untangle that computes a 2-approximation for
the routing problem on positive staircase paths. In this chapter we show that we cannot
improve the approximation factor 2 if we use the locally optimal paths as lower bound. In
other words, we show that untangling positive staircase paths might double the number of
links.

Consider the example shown in Figure 2.22 with n paths. Note that every path is locally
optimal and uses exactly 3 links. The drawn paths are also the only locally optimal paths.

Lemma 14 The example in Figure 2.22 requires at least 5n−2 links to remove all crossings.

Proof. First note that if we want to add links to a path, then we have to add at least 2 links.
So if we add links to all paths, then that would result in a total of at least 5n links, which is
more than 5n − 2. So we leave at least one path as it is. Every other path must cross this
path. To remove these crossings we need to add links to all other paths. This results in a
total number of links of at least 3 + 5(n− 1) = 5n− 2 links. �

Unfortunately Lemma 14 does not show that we sometimes need to double the number of
links. But we can repeat the construction of Figure 2.22 x times like is shown in Figure 2.23.

π1 π2 π3 πn

Figure 2.22: An example with fixed locally optimal paths.

32 Chapter 2. Minimum-link rectilinear homotopic routing

The endpoints can be replaced by two obstacles next to each other. Using two obstacles next
to each other and forcing the path to go in between two obstacles, we can ensure that the
path passes through a specific point.

Theorem 15 Untangling paths can require doubling the total number of links.

Proof. Consider the construction of Figure 2.23. Note that the total number of links is
(2x+ 1)n. Using Lemma 14 it is easy to see that removing the crossings requires at least
2x+ 1 + (4x+ 1)(n− 1) = (4x+ 1)n− 2x links. Dividing the total number of links without
crossings by the total number of links of the locally optimal paths, we get the following.

(4x+ 1)n− 2x
(2x+ 1)n

=
4x+ 1
2x+ 1

− 2x
(2x+ 1)n

= 2− (
1

2x+ 1
+

2x
(2x+ 1)n

)

= 2− (
1
n

+
n− 1
n
· 1

2x+ 1
)

> 2− (
1
n

+
1

2x+ 1
)

We can let n and x grow to infinity, which results in limn,x→∞ 2− (1
n + 1

2x+1) = 2. �

π1 π2 π3 πn

connect x boxes

Figure 2.23: An example which requires to double the number of links. Instead of 2 boxes, x
boxes should be connected.

Chapter 3

Embedding matchings with regions

For some problems it is not necessary to restrict the endpoints to a fixed location in the
plane. Sometimes it is good enough if the endpoints are in some region. For example in a
schematic map about connections between countries, it is sufficient that the endpoints are
within the country they represent. That is why in this chapter we consider problems where
the endpoints are not restricted to a fixed location, but instead to a region. We demonstrate
that this extra freedom provided by the regions makes the problems more complicated. We
do this by showing that Vertical Matching is NP-Complete. For convenience we repeat
the problem definition here.

We are given a collection of 2n vertical segments Ri (1 6 i 6 2n) which each consist of
a triplet Ri = (xi,mi,Mi) and represent the vertical segments at x-coordinate xi that is
between mi and Mi, which are the minimum and maximum y-coordinates respectively. We
want to connect region R2j−1 with region R2j with a straight line segment for 1 6 j 6 n.
The decision problem becomes the following. Are there y-coordinates yi for each region Ri
satisfying mi 6 yi 6Mi such that the line segments created by using the coordinates (xi, yi)
are non-crossing?

Note that this problem is trivial when the endpoints are restricted to a fixed location. After
proving the NP-Completeness of Vertical Matching, the result is extended to classes
of regions other than vertical segments as well. We call this class of problems Region
Matching.

3.1 Vertical Matching is NP-Complete

In this chapter we prove that Vertical Matching is NP-Complete. We do this using a
reduction from the problem Planar 3-SAT to Vertical Matching. The problem Planar
3-SAT is a variant of the problem 3-SAT. These problems are defined as follows.

Definition 8 An instance of the problem 3-SAT consists of n variables xi and m clauses
cj . A variable xi or its negation xi is called a literal. Each clause consists of 3 literals. The
problem is to decide if we can assign truth values to the variables xi such that for each clause
there is at least one true literal.

33

34 Chapter 3. Embedding matchings with regions

xi

xi x
′
i x

′′
i

Figure 3.1: Splitting variable nodes.

false

true

R1 R2

e1

e2

e3

Figure 3.2: An edge gadget.

Definition 9 The Planar 3-SAT problem is like the ordinary 3-SAT problem, except that
the variables X = {x1, . . . , xn} and clauses C = {c1, . . . , cm} have the added restriction that
the graph G = (V,E) with V = X ∪ C and E = {(x, c) | x ∈ X ∧ c ∈ C ∧ “x occurs in c”} is
planar.

We should note that Planar 3-SAT is often defined differently, but to prove the NP-
Completeness of Vertical Matching, this definition is sufficient. Using this definition
we also get the following result from [13].

Lemma 16 Planar 3-SAT is NP-Complete.

The reduction of Planar 3-SAT to Vertical Matching is roughly as follows. We take
the planar embedding of an instance of Planar 3-SAT and transform this to an orthog-
onal drawing. Then we use this orthogonal drawing to construct an instance of Vertical
Matching, which can be drawn without crossings iff the original Planar 3-SAT problem
instance is satisfiable.

The planar embedding can be transformed into an orthogonal drawing using the algorithm
given in [10]. This requires the graph to have a maximum degree of 4, because else an
orthogonal drawing is not possible. All clause nodes have degree 3 (or less), but this is not
the case for the variable nodes. We can however split these nodes xi into a collection of nodes
xi, x

′
i, x

′′
i , . . . as shown in Figure 3.1, until all nodes have a degree of at most 4. After that we

can construct an orthogonal drawing.

Now we need to construct a problem instance of Vertical Matching using this orthogonal
drawing. This consists of variable gadgets and clause gadgets. To construct the variable
gadget of variable xi, we use the variable nodes xi, x

′
i, x

′′
i , . . . and the neighboring edges of the

orthogonal drawing. To construct the clause gadget of clause cj , we use the clause node of cj
and the neighboring edges.

Variable gadgets. To construct the variable gadgets, we need to build part of an orthogonal
drawing as an instance of Vertical Matching such that it has exactly two valid configu-
rations. These two configurations represent the two possible truth values true and false. We
first do this for a single edge. Consider the construction shown in Figure 3.2. It consists
of 3 edges e1, e2, and e3 that are fixed (using regions with mi = Mi) and two regions R1

and R2 that need to be connected. Note that the fixed edges e1 and e2 touch in the middle.
Because edges are allowed to touch, the edge connecting R1 and R2 can go (only) through
the point where e1 and e2 touch. This in combination with the fixed edge e3 makes that

3.1. Vertical Matching is NP-Complete 35

Figure 3.3: A connection gadget.

z1

z2

z3

R1 R2

e1 e2

e3 e4

Figure 3.4: Construction for
clauses.

there are only two possibilities to connect R1 and R2. The only two possibilities are an edge
from the bottom of R1 to the top of R2 (which is associated with true) and an edge from the
top of R1 to the bottom of R2 (which is associated with false). Using this edge gadget we
can build a variable gadget. We need only to connect the edge gadgets at variable nodes or
bends. This can be done using the construction shown in Figure 3.3. This construction has
one edge gadget in the middle and four edge gadgets extending in four different directions
(up, down, left and right). It is easy to see that this construction is crossing unless all edge
gadgets use true edges or all edge gadgets use false edges. Finally note that the edge gadgets
can be arbitrarily scaled. So the construction shown in Figure 3.3 can be used to construct
the variable gadgets such that it has only two valid configurations.

Clause gadgets. For the clause gadgets we use the construction shown in Figure 3.4. It
consists of 2 regions R1 and R2 that need to be connected and 4 fixed edges e1, e2, e3 and
e4 in between. The only possible ways to connect R1 and R2 are a horizontal line above e1

Figure 3.5: Correcting clause node.

c1 x1

x2

x3

c1 = x1 ∨ x2 ∨ x3

Figure 3.6: Combining clause and variable gad-
gets.

36 Chapter 3. Embedding matchings with regions

and e2 (z1), a horizontal line below e3 and e4 (z3), or a horizontal line below e1 and e2 and
above e3 and e4 (z2). So this construction has exactly 3 valid configurations. To complete
the clause gadget for a clause cj , we need to connect the construction shown in Figure 3.4 to
the variable gadgets of the variables involved in cj . We do this as shown in Figure 3.6. If xi
occurs in the clause, then one of the horizontal edges must have a crossing with the false edge
of xi. If xi occurs in the clause, then one of the horizontal edges must have a crossing with
the true edge of xi. Note that for the construction shown in Figure 3.4, the y-coordinates for
all possible horizontal edges z1, z2 and z3 can be chosen to align with the proper true or false
edges. The clause gadget shown in Figure 3.6 requires that a clause node has two vertical
incident edges and one horizontal incident edge. If this is not the case, then this can easily
be changed as shown in Figure 3.5.

Lemma 17 Vertical Matching is NP-Hard.

Proof. Consider an instance of Planar 3-SAT. Take the corresponding planar graph and
split the variable nodes as shown in Figure 3.1. Next construct an orthogonal drawing from
this graph using the algorithm given in [10]. Then for every boolean variable xi (1 6 i 6 n),
construct the corresponding variable gadget as described above. For every clause cj (1 6
j 6 m), construct the corresponding clause gadget and connect it to the variable gadgets as
described above. If the original Planar 3-SAT instance is satisfiable, then we can use this
satisfiable assignment to set the true or false edges. Because it is a satisfiable assignment,
every clause contains at least one true literal. The horizontal edge of the clause gadget (z1,
z2 or z3) can be chosen to be at the true literal. Because the literal is true, this does not
result in a crossing. If the original Planar 3-SAT instance is not satisfiable, then for every
valuation of the boolean variables there is at least one clause where all literals are false. This
means that every horizontal edge for that clause gadget (z1, z2 and z3) results in a crossing,
which means that the Vertical Matching instance cannot be drawn without crossings.
Because of Lemma 16 and because the reduction can be done in polynomial time, Vertical
Matching is NP-Hard. �

To show that Vertical Matching is also NP-Complete, we need to show that Vertical
Matching is in NP. Note that it is very easy to check whether there is a crossing or not,
given the y-coordinates yi (1 6 i 6 2n). But we also need to show that these y-coordinates
yi can be represented by a polynomial number of bits. In order to show this, we look at the
problem differently.

Vertical Matching requires some constraints on the y-coordinates yi. First consider the
constraint that the line segments must be non-crossing. Assume we have two line segments,
one between a1 and b1 and one between a2 and b2. Let the infinite line through a1 and b1 be
`1 and the infinite line through a2 and b2 be `2. Note that if both a2 and b2 are on the same
side of `1, then the line segments are non-crossing (Figure 3.7(a)). This also holds if both
a1 and b1 are on the same side of `2 (Figure 3.7(b)). It is important to see that if both of
these properties do not hold, then the two line segments are crossing (Figure 3.7(c)). So the
constraint of being non-crossing can be satisfied if either a2 and b2 are on the same side of `1
or a1 and b1 are on the same side of `2. Note that the constraint of a point being on one side
of a line is a linear constraint. So checking if two line segments are non-crossing is a boolean
formula on linear constraints. The constraint that mi 6 yi 6Mi is also clearly linear.

3.2. Region Matching is NP-Hard 37

a1

b1

a2

b2

`1

a1

b1

a2 b2

`2

a1
b1

a2

b2

`1
`2

(a) (b) (c)

Figure 3.7: The line segments intersect iff `1 separates a2 and b2 and `2 separates a1 and b1.

Theorem 18 Vertical Matching is NP-Complete.

Proof. As described above the problem consists of finding a vector (y1, y2, . . . , y2n) satisfying
a boolean formula on linear constraints. Assume the problem has a solution (y1, y2, . . . , y2n).
This solution must be in a 2n-dimensional cell bounded by the hyperplanes representing the
linear constraints (or it is on an intersection of hyperplanes). These cells are bounded due
to the constraints mi 6 yi 6 Mi. We can just choose a solution that is on one of the corner
points of the cell. Note that this solution is on an intersection of hyperplanes. Because the
intersection of a collection of 2n hyperplanes can be represented by a polynomial number of
bits, the solution of a problem instance of Vertical Matching can be as well. Because
given the vector (y1, y2, . . . , y2n) the linear constraints can easily be checked, the problem is
in NP. Due to Lemma 17 the problem is also NP-Hard. So Vertical Matching is NP-
Complete. �

3.2 Region Matching is NP-Hard

We now extend the result of Chapter 3.1 to show that Region Matching is NP-Hard. We
will not prove that Region Matching is also NP-Complete, because this is not as relevant.
We show that Region Matching is NP-hard in many cases by adapting the proof in Chapter
3.1 to work for other classes of regions. Before we can do this, we need the following lemma.

Lemma 19 For any construction of Lemma 17 with a crossing, there is an ε > 0 such that
allowing every endpoint to move a distance of ε cannot remove a crossing.

Proof. Let δ be the shortest distance between an edge e and an endpoint of another edge
e

′
which crosses e (see Figure 3.8). In order to remove the crossing between e and e

′
, the

endpoint of e needs to move to the other side of the line through e
′
. This can only happen

e

e
′

δ

Figure 3.8: Minimum distance of node to edge.

38 Chapter 3. Embedding matchings with regions

if the endpoints are allowed to move a distance of at least δ/2 (see Figure 3.8). Let δmin be
the minimum of all δ. Then no crossing can be removed if ε < δmin/2. Now it is enough to
show that δmin > 0, but this is obviously true, because edges that touch are allowed and are
not considered crossing. �

Using Lemma 19 it is easy to adapt the proof of Chapter 3.1 to work for other classes of
regions.

Theorem 20 Region Matching for classes of regions that can be arbitrarily sized and are
connected is NP-hard.

Proof. Note that if the class of regions is connected and can have arbitrary width and
height, then vertical segments belong to this class and the problem is clearly NP-Complete
by Lemma 17. Now assume that the width to height ratio is constant (for example with
squares or discs). Consider the construction of Lemma 17. Because the regions can have
arbitrary size, the fixed edges of Figure 3.2 and Figure 3.4 can still be constructed. Replace
the vertical line segments by very thin versions of the given class of regions. This does not
remove any crossings due to Lemma 19. Now we can simply scale the entire construction
horizontally until the regions have the correct width to height ratio. Scaling does not remove
or introduce any crossings. Using this construction and following the proof of Lemma 17, we
can conclude that Region Matching for the mentioned classes of regions is also NP-Hard.
Finally note that the regions need to be connected, because the thin versions of the regions
must resemble vertical line segments. �

The proof in Chapter 3.1 can be adapted to more classes of regions than is proven in Theorem
20 (for example regions that are not connected). We do however think that the result of
Theorem 20 is sufficient to demonstrate that Region Matching for many classes of regions
is NP-Hard. It is however required that these classes of regions contain point sized regions
for the proof to work.

Chapter 4

Conclusion

In this thesis we have considered the problem of drawing non-crossing paths with fixed end-
points in the plane. This problem can also be seen as that of embedding graphs in the plane
without crossings in the case that the positions of the nodes are fixed. To keep it simple we
considered only matchings though, but this can be seen as a first step towards embedding
general graphs with fixed nodes.

The problem of finding non-crossing paths with fixed endpoints is a very important problem
in the field of VLSI design. A lot of research has been done on many different variants of
this problem. More recently these kinds of problems have also been considered in the field of
cartography. For example when drawing schematic maps, the nodes are often fixed or almost
fixed and the edges should not be crossing. So the problem considered in this thesis is relevant
for both VLSI design and cartography.

The research done in the field of VLSI design has indicated that many variants of finding
non-crossing paths with fixed endpoints are intractable and also hard to approximate. That
is why the problem is often simplified to use given homotopy classes. This simplification also
makes sense in the field of cartography, because the way a connection winds around interesting
features of a map is important to understand the map and should therefore not be changed.
That is why in Chapter 2 we considered the problem of finding non-crossing rectilinear paths
of given homotopy class. Note that the choice of using rectilinear paths also makes sense for
both application fields, but it also simplifies the problem. We have also chosen to minimize
the number of links, because this variant has not been considered very often and the number
of links is directly connected to the complexity of the paths.

In Chapter 2 we have presented an approximation algorithm for the problem of finding non-
crossing rectilinear paths of given homotopy class minimizing the total number of links. We
first gave a 2-approximation for positive (or negative) staircase paths and then we reduced
the problem for general rectilinear paths to the problem for staircase paths. This also resulted
in a 2-approximation. After that we presented some ideas on how to calculate this efficiently
and presented an algorithm that runs in O((m + n)k) time and uses O((m + n)k) storage,
where n is the number of paths, m is the number of obstacles and k is the total number of
links. Finally we have shown that the factor 2 of the approximation algorithm is the best we
can achieve using the locally optimal paths as a lower bound.

39

40 Chapter 4. Conclusion

In Chapter 3 we have considered the problem of finding non-crossing paths with the endpoints
restricted to a region instead of being fixed. We have shown that the additional freedom
provided by the regions usually makes the problems only harder. We demonstrated this
by proving that a problem that is trivial for fixed endpoints is actually NP-Complete for
endpoints restricted to regions.

4.1 Open problems

We have presented an approximation algorithm for the routing problem. Unfortunately we
do not know if this problem is NP-Hard or not. If the problem turns out to be NP-Hard, then
we can also consider if the approximation factor of 2 is the best we can do in polynomial time
(note that we have shown the factor 2 only to be optimal w.r.t. the locally optimal paths).
Another open problem is that of finding a more efficient algorithm than the one presented in
Chapter 2.5. We think that ordering the y-monotone chains can be done more efficiently and
can especially use less storage.

In the routing problem the paths are allowed to overlap. In many applications it is better to
have some distance in between the paths. This is equivalent to finding thick disjoint paths.
We would like to extend our algorithm for the routing problem to also work for thick paths
or paths with a given distance in between.

It has been mentioned that the problem considered in this thesis is relevant for cartography,
for example when drawing schematic maps. Schematic maps do not contain only paths, but
usually form a network or graph. So we would like to extend the algorithm for the routing
problem given in Chapter 2 to work for general graphs instead of just for a collection of
paths. Furthermore it might sometimes be too much a restriction to require the paths to be
rectilinear. Sometimes we would like to use the more general c-oriented paths. So we would
like to adapt the algorithm for the routing problem to work for c-oriented paths instead of
rectilinear paths.

Although we have demonstrated in Chapter 3 that restricting endpoints to regions instead
of using fixed endpoints makes problems harder, we only demonstrated this using a problem
for which the homotopy classes are not fixed. We could also consider the routing problem
with regions. Note that this does not matter for untangling the paths, because untangling
no more than doubles the number of links regardless of where the endpoints are. Finding the
locally optimal paths with the endpoints restricted to regions is more problematic though.
We predict this problem is NP-Hard, but we leave it as an open problem.

Bibliography

[1] O. Bastert and S. P. Fekete. Geometrische Verdrahtungsprobleme. Technical Report
247, Mathematisches Institut, Universität zu Köln, 1996.

[2] S. Bespamyatnikh. Computing homotopic shortest paths in the plane. Journal of Algo-
rithms, 49(2):284–303, 2003.

[3] S. Cabello. Geometric problems in cartographic networks. PhD thesis, Universiteit
Utrecht, 2004.

[4] S. Cabello, M. de Berg, and M. van Kreveld. Schematization of networks. Computational
Geometry, 30(3):223–238, 2005.

[5] B. Chazelle. An algorithm for segment-dragging and its implementation. Algorithmica,
11(1):205–221, 1988.

[6] R. Cole and A. Siegel. River routing every which way, but loose. In Proc. 25th Annual
Symposium on Foundations of Computer Science, pages 65–73, 1984.

[7] C. A. Duncan, A. Efrat, S. G. Kobourov, and C. Wenk. Drawing with fat edges. In Proc.
9th International Symposium on Graph Drawing (GD ’01), LNCS 2265, pages 162–177.
Springer, 2002.

[8] A. Efrat, S. G. Kobourov, and A. Lubiw. Computing homotopic shortest paths efficiently.
Computational Geometry: Theory and Applications, 35(3):162–172, 2006.

[9] S. Gao, M. Jerrum, M. Kaufman, K. Mehlhorn, and W. Rülling. On continuous ho-
motopic one layer routing. In Proc. 4th Symposium on Computational Geometry, pages
392–402, 1988.

[10] A. Garg and R. Tamassia. A new minimum cost flow algorithm with applications to
graph drawing. In Proc. 4th International Symposium on Graph Drawing (GD ’96),
LNCS 1190, pages 193–200. Springer, 1996.

[11] H. Gupta and R. Wenger. Constructing pairwise disjoint paths with few links. ACM
Transactions on Algorithms, 3(3):26, 2007.

[12] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy
class. Computational Geometry: Theory and Applications, 4(2):63–97, 1994.

[13] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–
343, 1982.

41

42 Bibliography

[14] M. Löffler. Existence of simple tours of imprecise points. In Proc. 23rd European Work-
shop on Computational Geometry, pages 22–25, 2007.

[15] M. Löffler. Existence of simple tours of imprecise points. Technical Report UU-CS-2007-
003, Department of Information and Computing Sciences, Utrecht University, 2007.

[16] G. H. M. Abellanas, A. Aiello and R. I. Silveira. Network drawing with geographical
constraints on vertices. In Actas XI Encuentros de Geometra Computacional, pages
111–118, 2005.

[17] F. M. Malley. Single-layer wire routing and compaction. MIT Press, Cambridge, MA,
USA, 1990.

[18] D. Merrick and J. Gudmundsson. Path simplification for metro map layout. In Proc.
14th International Symposium on Graph Drawing (GD’06), LNCS 4372, pages 258–269.
Springer, 2006.

[19] M. Nöllenburg and A. Wolff. A mixed-integer program for drawing high-quality metro
maps. In Proc. 13th International Symposium on Graph Drawing (GD’05), LNCS 3843,
pages 321–333. Springer, 2005.

[20] J. Pach and R. Wenger. Embedding planar graphs at fixed vertex locations. In Proc.
6th International Symposium on Graph Drawing (GD’98), LNCS 1547, pages 263–274,
1998.

[21] V. Polishchuk and J. S. Mitchell. Thick non-crossing paths and minimum-cost flows in
polygonal domains. In Proc. 23rd Symposium on Computational Geometry, pages 56–65,
2007.

[22] J. Takahashi, H. Suzuki, and T. Nishizeki. Algorithms for finding non-crossing paths
with minimum total length in plane graphs. In Proc. 3rd International Symposium on
Algorithms and Computation, LNCS 650, pages 400–409. Springer, 1992.

[23] J. Takahashi, H. Suzuki, and T. Nishizeki. Finding shortest non-crossing rectilinear paths
in plane regions. In Proc. 4th International Symposium on Algorithms and Computation,
LNCS 762, pages 98–107. Springer, 1993.

[24] C. D. Yang, D. T. Lee, and C. K. Wong. The smallest pair of noncrossing paths in a
rectilinear polygon. IEEE Transactions on Computers, 46(8):930–941, 1997.

	Abstract
	Contents
	Chapter 1Introduction
	Chapter 2Minimum-link rectilinear homotopicrouting
	Chapter 3Embedding matchings with regions
	Chapter 4Conclusion
	Bibliography

