
 Eindhoven University of Technology

MASTER

Investigating the usefulness of Domain-Specific Transformation Languages

de Graaf, M.C.J.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a84fcab5-124f-4a15-987d-4659ea35f2d7

Investigating the usefulness of Domain-
Specific Transformation Languages
Master thesis of M.C.J. (Marijn) de Graaf BSc at E indhoven University of Technology. May, 2016.

Keywords: domain-specific transformation language, model transformation language,

domain-specific language, model driven engineering, SLCO.

Abstract
Model-Driven Engineering (MDE) is a software development methodology based

around models and model transformations. In the field of MDE, model

transformations are generally specified using General-Purpose Transformation

Languages (GPTLs). Domain experts can write the models, in Domain-Specific

Languages (DSLs). But they cannot write the model transformations, at least not

without knowing the abstract syntax of the DSL. This is because these languages

describe the transformations in terms of the abstract syntax whereas the domain

experts often only know the concrete syntax. Therefore, some researchers

suggest the use of Domain-Specific Transformation Languages (DSTLs). They allow

domain experts to participate in the development of model transformations by

enabling them to use the concrete syntax to specify the transformations. In other

words, the concrete syntax of the source- and/or target DSL is contained as part

of the DSTL.

Though DSTLs have been applied to simple cases, it has not yet been researched

whether they are also useful for more complicated cases, that are common in

practice. Therefore, we have investigated how useful it is to employ DSTLs in

practice. To do this we performed a case study. We created a DSTL for a DSL called

SLCO. We implemented several transformations in this DSTL, and compared them

with a traditional implementation.

We have found that DSTLs are practical for relatively simple transformations, but

that as the transformations become more complex, the advantages quickly

diminish and it becomes easier to use more traditional paradigms based on the

abstract syntax (i.e. traditional GPTLs) than DSTLs.

Department
Department of Mathematics
and Computer science

Section
Software Engineering
and Technology

Assessment committee

dr.ing. A.J. (Anton) Wijs (Supervisor)

S.M.J. (Sander) de Putter MSc (Supervisor)

dr. R. (Ruurd) Kuiper (Internal)

dr.ir. T.A.C. (Tim) Willemse (External)

2

Table of contents
Abstract ..1

Table of contents ..2

1 Introduction ..4

1.1 Background and concepts ..4

1.1.1 Model-Driven Engineering ...4

1.1.2 Domain-Specific Languages ..4

1.1.3 General-Purpose Transformation Languages ..5

1.1.4 Domain-Specific Transformation Languages ...5

1.1.5 Thesis Statement ...6

1.2 Overview ...6

2 Related work ...8

2.1 DSTLs ...8

2.2 Implementing DSTLs ..8

2.3 SLCO ..9

3 Using a DSTL in practice .. 10

3.1 Exogenous transformations ... 10

3.2 Endogenous transformations ... 10

3.3 Comparing our DSTL to GPTLs .. 11

4 SLCO ... 12

5 Initial design .. 16

5.1 Graph rewriting ... 18

6 Implementation .. 22

6.1 In-depth explanation ... 22

6.1.1 ANT.. 22

6.1.2 EOL .. 23

7 The limitations of our DSTL.. 29

8 Extending the design ... 31

8.1 Adding Delays to Transitions .. 31

8.2 Replacing Strings by Integers ... 34

8.3 Making the Sender of a Signal Explicit .. 36

8.4 Making all Signal Names Equal ... 37

8.5 Removing Unused Classes.. 38

8.6 Replacing a Bidirectional Channel by two Unidirectional Channels 38

8.6.1 Looping templates ... 41

8.7 Cloning Classes .. 43

3

8.8 Reducing the Number of Channels ... 44

8.9 Lossless Communication over a Lossy Channel... 47

8.10 Synchronized Communication over Asynchronous Channels .. 49

8.11 Exclusive Channels for Pairs of State Machines .. 53

8.12 Reducing the Number of Objects ... 58

8.13 Discussion ... 64

9 Conclusions ... 65

10 Future work... 65

10.1 Transformation verification ... 66

11 Acknowledgements ... 66

12 Credits... 66

13 References .. 67

14 Appendices ... 70

14.1 Appendix A: The implementation of SLCOtrans .. 70

4

1 Introduction
A lot of background and concepts have to be introduced before the goal and approach of our

research can be explained. To give the readers, especially those already familiar with (some of)

the concepts, an idea of the goal of this research as soon as possible, we first provide a summary

of the goal and approach of our research. The background and concepts used in this summary

are explained in Section 1.1: ‘Background and concepts’.

In the field of model-driven engineering, model transformations are generally specified using general-

purpose transformation languages. Models are often expressed in a domain-specific language (DSL).

This can be done by domain experts. The model transformations however, cannot be expressed by

the domain experts, at least not without knowing the abstract syntax of the DSL. This is because the

common model transformation languages specify transformations in terms of the abstract syntax of

the source- and target languages, while the domain experts generally only know the concrete syntax.

To help domain experts to also specify model transformations, some researchers suggest the use of

Domain-Specific Transformation Languages (DSTLs). In DSTLs, transformations can be expressed in

terms of the concrete syntax.

Though DSTLs have been applied to simple cases, it has not yet been researched whether they are

also useful for more complicated cases, that are common in practice. Therefore, we have

investigated how useful DSTLs are when used in practice. We performed a case study. We created a

DSTL for SLCO, a simple but nontrivial DSL that is advanced enough to be used for practical

applications. We implemented several transformations in this DSTL, and compared them with a

traditional implementation. This shows in which cases DSTLs are convenient, and in which cases their

limitations are reached.

1.1 Background and concepts

1.1.1 Model-Driven Engineering
Model-Driven Engineering (MDE) [1] is a software development methodology based around models

and model transformations (Figure 1) [2]. MDE raises the level of abstraction in program

specification [3]. This enables higher reusability [4]. It also increases the ability of domain experts to

participate in software development. A domain expert is someone who has high knowledge of the

problem domain, but typically has little knowledge of aspects specific to writing software.

Engineers can express aspects of a system at the appropriate level of abstraction using models [2].

For example, there are the several kinds of diagrams in UML [5], in which models can specify various

aspects of a system at various levels of detail, though models can also be specified in other ways than

by using UML. Model transformations (and chains of them) transform the models into other models

or other artifacts. A model can for example be transformed to be executable on a certain platform, or

into a different model with certain desirable properties (for example by refactoring the model or to

make it formally verifiable by a verification tool, such as SPIN [6, 7]).

1.1.2 Domain-Specific Languages

A model is specified in some model notation or modeling language. This modeling language is often a

Domain-Specific Language (DSL) [4]. A DSL is a language tailored to a specific domain [8, 9]. A DSL can

have a graphical (e.g. Figure 2, p. 14) or a textual notation (e.g. Code fragment 1, p. 13). Because

DSLs are tailored to a specific domain, domain experts can use them to participate in the

development of the system that is being designed.

5

Though DSLs allow domain experts to understand programs and models written in these DSLs, DSLs

also have some drawbacks [9]. Each DSL (and toolset) takes time to create [9] and learn [9], while its

applicability is limited to its problem domain [10]. That DSLs are specific to a domain leads to the

existence of many DSLs. Each DSL needs to be learned by the person using it. Some researchers are

opposed to a proliferation of DSLs [11]. They think that the benefits of a domain-specific notation

does not outweigh the cost of creating and learning a DSL. So it is still under debate whether DSLs

should be used1.

DSLs (and languages in general) have a concrete syntax and an abstract syntax. The concrete syntax

(e.g. Code fragment 7, pp. 26-27) is the format that the user has to adhere to while typing. What the

user sees is for example Code fragment 1 (p. 13). The abstract syntax (e.g. Figure 3, p. 14) is the

structure of the language. It can (a.o.) be specified using a UML class diagram. The abstract syntax is

also called domain model or metamodel.

HTML is an example of a DSL in the domain of web page markup, and SQL is a DSL in the domain of

databases. There are also thousands of lesser known DSLs.

One of these languages is SLCO [12, 13] (e.g. Code fragment 1 (p. 13), e.g. Figure 2 (p. 14), Figure 3

(p. 14)). SLCO is short for Simple Language of Communicating Objects. SLCO can specify systems

consisting of objects that operate in parallel and communicate. The behavior of these objects is

specified with state machines with extensions specific to SLCO. SLCO has a graphical and a textual

notation. We have created a transformation language tailored to SLCO.

1.1.3 General-Purpose Transformation Languages

A model transformation is often expressed in a language specifically designed for model

transformations (a model transformation language), although it could also be done in a general-

purpose language (GPL) [14]. Examples of model transformation languages are ATL, QVT, and

languages in the Epsilon family (specifically ETL).

Model transformation languages are also DSLs. They are DSLs in the domain of model

transformations. But they are not specific to performing transformations on a certain domain [14].

Neither the input model(s) nor the output model(s) of the transformation have to be in a specific

DSL. Commonly used model transformation languages that are not specific to performing

transformations on a certain domain, languages such as ATL, are also called general-purpose

transformation languages (GPTLs) [14].

1.1.4 Domain-Specific Transformation Languages

In MDE, domain experts can create the models in DSLs specific to the domain of those models. But

they cannot write the model transformations, at least not without knowing the abstract syntax of the

DSLs. That is why Domain-Specific Transformation Languages (DSTLs) [15] have been invented. DSTLs

(e.g. Code fragment 3, p. 19) can use knowledge specific to the domain that the transformation is

performed on. In DSTLs, domain experts can use the concrete syntax of the source- and target DSLs

[4]. This enables them to write model transformations while using as much of the syntaxes that they

already know as possible.

Additionally to the abstract syntax of the source- and target DSLs, the user of a GPTL also needs to

know the generic part of the transformation language, the part not specifically related to the DSLs.

This is the part needed for the transformation mechanism. Just like the abstract syntax of the DSLs,

1 The same is true for domain-specific transformation languages, explained in Section 1.1.4: ‘Domain-Specific
Transformation Languages’.

6

domain experts often do not know this generic part either. DSTLs do not solve that problem, because

for DSTLs the generic part is still needed, but in DSTLs at least domain experts can use the concrete

syntax of the DSLs, which they know, instead of the abstract syntax, which they do not know. So they

need to learn less.

There are two kinds of DSTLs [14]: DSTLs that are tailored to the domain of their source and target

languages, and DSTLs that are tailored to a specific kind of transformation, for example refactoring,

model merging, migration or aspect weaving. We have investigated the first kind.

Since the DSTLs reuse the concrete syntaxes of DSLs and DSLs are optimized for their domain, DSTLs

inherit their advantages. DSTLs should be easier to read and write for domain experts [2, 4, 15],

closer to the way it looks in the source and target and therefore easier to learn [15], and possibly

more compact. DSTLs can also encapsulate domain knowledge that otherwise needs to be repeatedly

embedded in transformations in the general-purpose transformation language [14].

DSTLs also inherit the drawbacks of DSLs. It is only useful to create a DSTL when it can be used for

enough transformations. The benefits have to be enough to outweigh the cost of creating and

learning the DSTL. Even though DSTLs can provide domain experts and developers with advantages

because of their suitability to the domain, just like for DSLs, it is still under debate whether DSTLs

should be used, because some researchers fear a proliferation of DS(T)Ls, which means a separate

DS(T)L needs to be learned for each application domain. Additionally, we show in this paper that

using the concrete syntax of a DSL in a transformation, has limitations to its convenience in practice.

1.1.5 Thesis Statement

Though DSTLs have been applied to simple cases, it has not yet been researched whether they are

also useful for more complicated cases, that are common in practice. Therefore, we have

investigated whether the theoretical advantages of DSTLs hold up when they are used in practice.

To do this we performed a case study. We created a DSTL for the DSL called SLCO. We used SLCO,

because it is a simple but nontrivial language, that is advanced enough to be used for practical

applications. For example, it can specify the behavior of a LEGO® Mindstorms® [16, 13] robot and be

mapped to a verification language [13] (by a transformation).

We implemented several transformations in the DSTL we created, and compared them with a

traditional implementation. This shows in which cases DSTLs are convenient, and in which cases their

limitations are reached.

1.2 Overview
First, we will discuss relevant literature in Section 2: ‘Related work’. Then, we will explain our

methodology in Section 3: ‘Using a DSTL in practice’. After that, we will provide a short introduction

into Section 4: ‘SLCO’, the DSL for which we created a DSTL. In Section 5: ‘Initial design’, we will

present a design for the transformation language. After that, we will explain how we implemented it,

in Section 6: ‘Implementation’. In Section 7: ‘The limitations of our DSTL’, we discuss in what cases

our DSTL is not convenient in practice. Next, we will present extensions and improvements to the

design in Section 8: ‘Extending the design’. Finally, we will present our conclusions in Section 9:

‘Conclusions’, and present possibilities for future work in Section 10: ‘Future work’.

Figures and code fragments can generally be found at the end of the section they most belong to. If a

figures or code fragment is in a different section, the page number is added.

7

Source metamodel
examples:

 a DSL, e.g. SLCO
 a GPML, e.g. UML

Target metamodel
examples:

 a DSL, e.g. SLCO
 a GPML, e.g. UML

Transformation metamodel
examples:

 a DSTL, e.g. SLCOtrans
 a GPTL, e.g. ATL
 a GPL, e.g. Java

Source model Target model
Perform the

transformation

Transformation
specificationInstance of

Instance of

Instance of

Figure 1: Performing a model transformation. The transformation instructions in the transformation specification are
applied to the source model which results in the target model. (GPML is short for General-Purpose Modeling Language).

8

2 Related work
2.1 DSTLs
Bernhard Rumpe and Ingo Weisemöller introduced the concept of DSTLs [15]. They claim DSTLs are

“more comprehensible and easier to learn for domain experts” than GPTLs. We have investigated

whether it is also convenient to use DSTLs in practice.

In their paper, they “present a transformation language [(a DSTL)] that reuses the concrete syntax of

a textual modeling language for hierarchical automata, which allows domain experts to describe

models as well as modifications of models in a convenient, yet precise manner.”

Rumpe and Weisemöller have demonstrated their DSTL on a transformation used in the process of

flattening hierarchical automata. This is a simplified case of the transformations for flattening UML

state machines. This is only a simple transformation though. In this paper, we also implement more

complex transformations and investigate whether DSTLs have limitations that prevent more

complicated transformations from being expressed conveniently.

2.2 Implementing DSTLs
Jerónimo Irazábal, Claudia Pons and Carlos Neil proposed to implement DSTLs using a GPTL [2]. At

the same time, this is also used to define the semantics. We used their approach and implemented

our DSTL using a GPTL too. They used ATL [17] in their demonstration however, whereas we used

EOL [18, 19] (from the Epsilon family [20, 21, 22]).

In their paper, they “[first] present the main features of the proposal to define domain specific

languages using transformation languages. [Then they] illustrate the use of the approach by the

definition of a DSTL for the transformation of extended relational models. [After that, they] show

relevant parts of the ATL-based implementation of such DSTL. [Finally, they] discuss an alternative

implementation approach [(based on generating the ATL code instead of creating an interpreter) and

they] compare this approach with related research.”

It should be noted that Irazábal, Pons and Neil used a different kind of DSTLs than those we are

investigating in this paper. Their example DSTL can combine transformations commonly used for

extended relational models, similar to calling functions from a library. The DSTLs we are investigating

are based on pattern matching, like those from the paper of Rumpe and Weisemöller. Their example

DSTL is not tailored to the source- and target DSLs, but to the transformations common in the field of

extended relational models. Despite this, the technique of using GPTLs to implement DSTLs that they

introduced, could still be used by us.

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara proposed a different way to implement

DSTLs [14]. They created a DSL to describe DSTLs. Their DSL describes how the DSTL is derived from

its corresponding DSL. We did not use their DSL though, because we were already familiar with some

GPTLs and the time span of our project did not allow us to investigate this technique thoroughly

enough.

In their paper, they “propose a framework for the systematic creation of DSTLs. First, [they] look into

the characteristics of domain-specific transformation tools, deriving a categorization which is the

basis of [their] framework. Then, [they] propose a domain-specific language to describe DSTLs, from

which [they] derive a ready-to-run workbench which includes the abstract syntax, concrete syntax

and translational semantics of the DSTL.”

9

2.3 SLCO
To investigate whether DSTLs are useful in practice, we created a DSTL tailored to SLCO. SLCO is

described in the PhD Thesis of Luc Engelen [13] to investigate several ideas about MDE and DSLs, and

to demonstrate the usefulness of DSLs in practice. To do this, Engelen investigated whether it is

possible to develop the software of a conveyor belt created with LEGO® Mindstorms® [16], using

SLCO, including verifying and simulating it.

To verify and simulate the SLCO model, and execute it on a LEGO® Mindstorms® robot, Engelen

investigated transforming SLCO into other languages that could be used for these purposes. To

prepare SLCO models for transforming them into these other languages, he first performed several

transformations on the models from SLCO to itself. We implemented these transformations in our

DSTL and we compare them with implementations in GPTLs to answer our research question.

10

3 Using a DSTL in practice
To investigate when DSTLs are useful in practice, we developed a DSTL for SLCO as a case study. We

call this DSTL SLCOtrans. To validate the expressiveness of SLCOtrans, we implemented the

transformations from Section 3.5.1: ‘Endogenous Transformations’ in the PhD Thesis of Luc

Engelen [13]. By implementing the transformation in SLCOtrans and comparing them with

implementations in GPTLs2, we show in which cases DSTLs are convenient, and in which cases their

limitations are reached.

3.1 Exogenous transformations
An exogenous transformation is a transformation between two different languages. In his thesis, Luc

Engelen presents several exogenous transformations from SLCO to other languages, for simulation,

execution, and verification.

For simulation of SLCO models, SLCO can be transformed to POOSL: “a formal modeling language for

simulation and performance analysis” [13, 23].

For execution on a LEGO® Mindstorms® [16] robot, SLCO can be transformed to NQC [24]. “NQC is a

restricted version of C, combined with an API that provides access to the various capabilities of the

LEGO® Mindstorms® platform, such as sensors, outputs, timers, and communication via the infrared

ports” [13].

For verification, SLCO can be transformed to Promela. Promela is a language used for a model

checker called SPIN [6, 7]. “[SPIN] can, among others, check a model for deadlocks, unreachable

code, and determine whether it satisfies a Linear Temporal Logic (LTL) property [25]” [13].

Often, the languages to which we want to transform SLCO do not support all the concepts available in

SLCO. For example NQC only supports asynchronous communication and POOSL only supports

synchronous communication, whereas SLCO supports both.

Also, there sometimes are practical limitations on the target platform that do not exist in SLCO. For

example, the number of concurrent objects in NQC are limited by the number of Mindstorms®

microprocessors available, because each concurrent object has to run on a separate microprocessor.

For a more extensive overview of the limitations of the languages we want to transform SLCO to, see

Section 3.4: ‘Semantic Gaps and Platform Gaps’ of the PhD Thesis of Luc Engelen [13].

3.2 Endogenous transformations
Before transforming an SLCO model into a different language, it is useful to transform the SLCO

model to a different SLCO model that abides by the limitations of the eventual target language or

platform. It increases modularity and reusability. A transformation where the source and target

languages are the same is called an endogenous transformation.

Several endogenous transformations are helpful to make SLCO models suitable for the eventual

target languages. We now present an overview of the endogenous transformations presented in

Section 3.5 of the PhD Thesis of Luc Engelen [13], with short annotations.

We have implemented these transformations in our DSTL, SLCOtrans, and compared the

implementations with implementations in GPTLs2. This is discussed in Section 8: ‘Extending the

design’. Short explanations of the transformations are also given there. Longer explanations and

2 Though the implementations are available in Xtend [38], we present them in this paper using pseudocode, so
they are more readable and the reader does not require knowledge of Xtend.

11

more information can be found in the PhD Thesis of Luc Engelen [13]. Concepts in SLCO that are used

in the following overview (such as objects and channels) are explained in Section 4: ‘SLCO’.

We implemented the following endogenous transformations:

 Synchronized Communication over Asynchronous Channels.

o Simple. With acknowledgment signals for synchronization. Only for restricted

models.

o General. For states with multiple outgoing transitions.

 Lossless Communication over a Lossy Channel.

(with Concurrent Alternating Bit Protocol (CABP).)

 Adding Delays to Transitions.

 Replacing Strings by Integers.

 Making the Sender of a Signal Explicit.

(By adding channel index to signal names. For broadcast in LEGO® Mindstorms®.)

 Reducing the Number of Objects: merging.

(Replace unidirectional synchronous channels with shared vars.)

 Making all Signal Names Equal: rename signals.

(For use with CABP. Include original name as argument.)

 Replacing a Bidirectional Channel by two Unidirectional Channels.

 Exclusive Channels for Pairs of State Machines.

(2 x 2 state machines gives 4 channels: each state machine to each state machine.)

 Reducing the Number of Channels: merging.

 Cloning Classes. (auxiliary.)

 Removing Unused Classes. (auxiliary.)

This list is presented here to give an early, short overview of the transformations we implemented. It

gives an idea of the kinds of transformations we implemented. It is not necessary yet to understand

exactly what they do yet. This will be explained in Section 8: ‘Extending the design’.

3.3 Comparing our DSTL to GPTLs
We use the following methodology to investigate whether DSTLs are useful in practice.

First, in Section 7: ‘The limitations of our DSTL’, we explain some cases in which the use of SLCOtrans

(and DSTLs in general) is limited, and we discuss a general problem with DSTLs.

Then, in Section 8: ‘Extending the design’, we compare implementations of the transformations in

SLCOtrans with implementations in (a notation that is representative of) traditional model

transformation languages. We compare the conciseness of the implementations, how difficult it is to

implement the transformations, and how easy to understand the implementations are. We explain

for each transformation which aspect of feature of SLCOtrans makes them more or less concise. We

then discuss for which transformations using SLCOtrans provides benefits, and explain the specific

advantages that SLCOtrans provides in these cases.

12

4 SLCO
We created our DSTL for SLCO, because it is a simple but nontrivial language, that is advanced

enough to be used for practical applications. In Section 3.1: ‘Exogenous transformations’ we have

mentioned that SLCO can be simulated, executed, and verified, by transforming it to other languages.

In this section, we will give a short introduction into SLCO. A more extensive explanation can be

found in the documentation of SLCO [12, 13].

SLCO is short for Simple Language of Communicating Objects. SLCO can specify systems consisting of

objects that operate in parallel and communicate. The behavior of these objects is specified with

state machines with extensions specific to SLCO. SLCO has a graphical (e.g. Figure 2) and a textual

notation (e.g. Code fragment 1, e.g. Code fragment 2). Part of the abstract syntax of SLCO can be

seen in Figure 3.

An SLCO model consists of objects, classes, and channels. Objects are instances of classes. Objects

contain ports, variables, and state machines. Objects communicate through their ports over

channels. Channels can be unidirectional or bidirectional. Channels can support synchronous or

asynchronous communication. Asynchronous channels can be lossless or lossy. State machines within

an object can communicate with each other through shared variables. The transitions of state

machines can contain statements. Statements can assign a value to a variable, send a signal to a

port, wait until a certain signal is received from a port, wait for a condition to occur, and wait for a

specified amount of time. Signals can have a number of arguments, with values of type boolean,

integer, or string.

Figure 2 shows the graphical notation of SLCO. The top left shows an object p of class P and an object

q of class Q. Object p has ports In1, In2, and InOut. Object q has ports Out1, Out2, and InOut.

Between them are channels c1, c2, and c3. c1 has an argument of type Boolean, c2 has an

argument of type Integer, and c3 has an argument of type String. c1 is a unidirectional asynchronous

lossless channel, c2 is a unidirectional asynchronous lossy channel, and c3 is a bidirectional

synchronous channel.

The top right of Figure 2 shows that class P contains a variable m of type Integer with initial value 0

and state machines Rec1, Rec2, and SendRec3 which contains a variable s of type String, and that

class Q contains state machine Com, which also contains a variable s of type String.

The bottom of Figure 2 shows the states and transitions in the state machines, and statements in the

transitions. The statement receive P([[false]]) from In1 means: ‘receive signal P from port

In1 if its (only) argument equals false’.

The statement receive Q(m | m >= 0) from In2; m := m + 1 means: ‘receive signal Q from

port In2 if its argument is higher than or equal to 0, and then increase variable m by 1’.

The statement m == 6 continues only when variable m equals 6. The statement send S(“a”) to

InOut means: ‘send signal S with string value “a” as argument to port InOut’. The statement

after 5 ms means the transition waits 5 milliseconds. The rest of the statements is similar to those

already mentioned.

Code fragment 2 shows the same model as Figure 2, but in the textual notation, with some parts left

out. Code fragment 1 shows a different model, in which two objects send signals back and forth.

13

model PingPongModel {

 classes

 Ping {

 ports

 P

 state machines

 Ping {

 initial

 SendState

 state

 ReceiveState

 transitions

 SentToReceive from SendState to ReceiveState {

 send Ping() to P

 }

 ReceiveToSend from ReceiveState to SendState {

 receive Pong() from P

 }

 }

 }

 Pong {

 ports

 P

 state machines

 Pong {

 initial

 ReceiveState

 state

 SendState

 transitions

 ReceiveToSend from ReceiveState to SendState {

 receive Ping() from P

 }

 SentToReceive from SendState to ReceiveState {

 send Pong() to P

 }

 }

 }

 objects

 Pi : Ping

 Po : Pong

 channels

 Producer_To_Consumer() sync between Pi.P and Po.P

}
Code fragment 1: A model in the textual form of the DSL called SLCO. Object Pi of class Ping sends signal Ping() to object Po
of class Pong over channel Producer_To_Consumer. When the signal is received, Po can send signal Pong() back to Pi. After
Pi receives Pong(), it can send Ping() again to Po, and the cycle continues.

14

Figure 2: Elements from the graphical notation of SLCO. This notation is explained in Section 4: ‘SLCO’. Upper left: objects,
ports, and channels. Upper right: classes, state machines, and variables. Bottom: state machines.

Figure 3: Part of the abstract syntax/metamodel of SLCO containing the main constructs of the language. See the
documentation of SLCO [12, 13] for the rest of the metamodel.

15

model CoreWithTime {

 classes

 Q {

 variables

 Integer m = 0

 ports

 Out1 Out2 InOut

 state machines

 Com {

 variables

 String s

 initial Com0

 state Com1 Com3 Com4

 final Com2

 transitions

 InitialToState from Com0 to Com1 {

 send P(true) to Out1

 }

 ...

 }

 }

 ...

 objects

 p : P

 q : Q

 channels

 c1(Boolean) async lossless from q.Out1 to p.In1

 c2(Integer) async lossy from q.Out2 to p.In2

 c3(String) sync between p.InOut and q.InOut

}
Code fragment 2: Part of a textual SLCO model.

16

5 Initial design
We now present the initial design of SLCOtrans. In Section 6: ‘Implementation’, we explain how we

implemented it. In Section 8: ‘Extending the design’, we improve and extend the design.

The Xtext [26, 27] grammar of SLCOtrans is shown in Code fragment 7 (pp. 26-27). We will explain

SLCOtrans however based on an example transformation, shown in Code fragment 3. The

transformation is one of those presented in the PhD thesis of Luc Engelen [13]. The transformation

converts bidirectional channels to two unidirectional channels: one in each direction. Furthermore, it

splits the ports that the bidirectional channels were connected to into two ports, one to send signals

over the outgoing unidirectional channel and one to receive signals from the incoming unidirectional

channel. It also makes sure signals are sent to and received from the new ports. We will call this

transformation ‘Bi2Uni’.

Code fragment 4 shows a model in SLCO. Code fragment 5 shows what the SLCO model in Code

fragment 4 looks like after the transformation.

The initial design of SLCOtrans does not support all transformations presented in the PhD thesis of

Luc Engelen [13]. It is designed to at least support (all parts required for) the Bi2Uni transformation.

Therefore, it can transform ports, channels, and transitions and the statements associated with

them.

The transformation in Code fragment 3 starts with a list of ports, containing the old ports and the

new ports. The old ports are automatically removed if they are not used anymore after the

transformation. This is not always the case, for example when in the input model, there is also a

unidirectional channel connected to the same port as the bidirectional channel being transformed. In

that case, the unidirectional channel remains connected to the port after the transformation.

Then, the transformations on the channels are specified. The channels in the ‘match’-block are

replaced by the channels in the ‘add’-block. The block is called ‘add’ because the old channels are

only removed when they are not used anymore at the end of the transformation. This means they

can still be referred to during the transformation.

The ‘match’- and ‘add’-blocks work by pattern matching. The ‘match’-block matches a synchronous,

bidirectional channel. It stores the names of the ports it is connected to in transformation variables3

Pi and Po during the transformation. Each matched channel is replaced by two unidirectional

channels. Each occurrence of a transformation variable is replaced by the name in the source SLCO

model that it was matched with. If the transformation variable is part of a longer string, the name

used in the output SLCO model is the name used in the transformation file, with the transformation

variable in it replaced by the name in the source SLCO model.

This is just a convenience though. For the name of the channel no advanced name matching between

the match and replacement is used, but instead it is just suffixed by a number. Most important is that

elements (such as ports) with the same transformation variable in the SLCOtrans transformation

match the same element (such as a port) in the source- (and target) SLCO file, regardless of their

name there.

3 To give a concise definition: a transformation variable is a name in an SLCOtrans file that can match
something in the SLCO model on which the transformation is performed. Multiple occurrences of the
transformation variable refer to the same matched element in the SLCO model.

17

In channels, it is important though which replacement port results from which matched port,

because the object to which the resulting channel is connected is the same one as the one in which

the original matched port was contained.

We will now show how the rules so far apply to our example. When the transformation in Code

fragment 3 is applied to Code fragment 4, resulting in Code fragment 5, then PingPong() sync

between Pi and Po matches Producer_To_Consumer() sync between Pi.P and Po.P. It is

replaced by PingToPong() sync from Pi_send to Po_receive and PongToPing() sync from

Po_send to Pi_receive in the SLCOtrans file, which means it is replaced by

Producer_To_Consumer1() sync from Pi.P_send to Po.P_receive and

Producer_To_Consumer2() sync from Po.P_send to Pi.P_receive in the SLCO file.

For example, Pi_send in the SLCOtrans file is derived from Pi in PingPong() sync between Pi and

Po in the SLCOtrans file. Because that Pi matches port P in object Pi 4 in the input SLCO model,

Pi_send in the SLCOtrans file becomes port P_send in object Pi in the output SLCO model, denoted

as Pi.P_send. So Pi in Pi_send is replaced by P, which results in P_send. And also the object that it

belongs to is made the same.

Pi_receive too is derived from Pi in PingPong() sync between Pi and Po. Therefore Pi_receive

in the SLCOtrans file becomes P_receive in the output SLCO model.

Now we will continue explaining the rest of the SLCOtrans example. After the ports and channels, the

transformations on state machines are specified. There are two in this example: one to replace the

port matched by transformation variable Pi by the new ports in send and receive statements

(Pi.P_send in send statements and Pi.P_receive in receive statements), and one to do the same

for the port matched by transformation variable Po.(for which the new ports are Po.P_send and

Po.P_receive).

We will now look closer at the first state machine transformation. The transformation matches two

transitions: one from the state matched by transformation variable SendState to the state matched

by transformation variable ReceiveState, and one between the same states but in the reverse

direction. The first one contains a send statement to the port matched by transformation variable Pi.

The second one contains a receive statement from the same port. The names of the sent and

received signals are matched by transformation variables Ping and Pong. This is relevant again in the

replacement.

The two matched transitions are replaced by two transitions between the same two states as those

in the original match (because the same transformation variables SendState and ReceiveState are

used). The send or receive statement in them also stays the same as well as the name of the signal

involved (because the same transformation variables Ping and Pong are used). The port over which

the signals are communicated however are replaced by the new ports that replace the port matched

by transformation variable Pi: the ports indicated by transformation variables Pi_send and

Pi_receive, which refer to Pi.P_send (port P_send in object Pi) and Pi.P_receive in the (output)

SLCO model.

The other state machine transformation is similar.

4 NB: Pi in the SLCO model is not the same as Pi in the SLCOtrans file: Pi in the SLCOtrans file is a
transformation variable, which matches a port (and its object) in this case, while Pi in the SLCO model is the
name of an object.

18

5.1 Graph rewriting
The technique behind the transformations in SLCOtrans that we just mentioned, is called graph

rewriting [28]. The terminology comes from category theory. Two common approaches to graph

rewriting are double-pushout and single-pushout [29].

Both replace all occurrences of a pattern graph in a host graph with a replacement graph. In other

words, the pattern graph is ‘cut out’ and the replacement graph is ‘glued back in’. For double-

pushout though, an extra graph, called interface graph or gluing graph, is used as an interface. The

gluing graph indicates nodes and edges that have to be preserved during a replacement. For double-

pushout an extra condition has to hold for executing a replacement: the gluing condition [30]. The

gluing condition consists of two parts: the dangling condition and the identification condition.

The dangling condition [31] states that an occurrence of the pattern graph in the host graph can only

be replaced if no edges are left ‘dangling’ without source or target node after ‘cutting out’ the

pattern graph.

The identification condition [31], for which the gluing graph is used, states that a match is only valid if

the matched nodes also appear in the gluing graph (and are thus preserved).

Single-pushout is more powerful than double-pushout, but also more dangerous, as it can leave an

invalid graph after the transformation (with dangling edges). We opted for double-pushout in our

design.

The glue block indicates which states are in the gluing graph.

19

model transformation {

 ports

 // Old ports (if the ports are no longer in use after the transformation the transformation tool

 // should remove the unused ports)

 Pi

 Po

 // New ports (the transformation tool should introduce these in the right places)

 Pi_send

 Pi_receive

 Po_send

 Po_receive

 channels

 // Channels that are no longer used after transformation should be removed by the transformation

 // tool.

 match {

 PingPong() sync between Pi and Po

 }

 add {

 PingToPong() sync from Pi_send to Po_receive

 PongToPing() sync from Po_send to Pi_receive

 }

 transformations

 state machine transformation {

 glue

 SendState

 ReceiveState

 match {

 transitions

 from SendState to ReceiveState {

 send Ping() to Pi

 }

 from ReceiveState to SendState {

 receive Pong() from Pi

 }

 }

 replace with {

 transitions

 from SendState to ReceiveState {

 send Ping() to Pi_send

 }

 from ReceiveState to SendState {

 receive Pong() from Pi_receive

 }

 }

 }

 state machine transformation {

 glue

 SendState

 ReceiveState

 match {

 transitions

 from ReceiveState to SendState {

 receive Ping() from Po

 }

 from SendState to ReceiveState {

 send Pong() to Po

 }

 }

 replace with {

 transitions

 from ReceiveState to SendState {

 receive Ping() from Po_receive

 }

 from SendState to ReceiveState {

 send Pong() to Po_send

 }

 }

 }

}
Code fragment 3: A transformation in our DSTL, SLCOtrans. It converts bidirectional channels to two unidirectional
channels: one in each direction. (It also splits the ports the channel is connected to).

20

model PingPongModel {

 classes

 Ping {

 ports

 P

 state machines

 Ping {

 initial

 SendState

 state

 ReceiveState

 transitions

 SentToReceive from SendState to ReceiveState {

 send Ping() to P

 }

 ReceiveToSend from ReceiveState to SendState {

 receive Pong() from P

 }

 }

 }

 Pong {

 ports

 P

 state machines

 Pong {

 initial

 ReceiveState

 state

 SendState

 transitions

 ReceiveToSend from ReceiveState to SendState {

 receive Ping() from P

 }

 SentToReceive from SendState to ReceiveState {

 send Pong() to P

 }

 }

 }

 objects

 Pi : Ping

 Po : Pong

 channels

 Producer_To_Consumer() sync between Pi.P and Po.P

}
Code fragment 4: A model in SLCO before the Bi2Uni transformation.

21

model PingPongModel {

 classes

 Ping {

 ports

 P_send

 P_receive

 state machines

 Ping {

 initial

 SendState

 state

 ReceiveState

 transitions

 SentToReceive from SendState to ReceiveState {

 send Ping() to P_send

 }

 ReceiveToSend from ReceiveState to SendState {

 receive Pong() from P_receive

 }

 }

 }

 Pong {

 ports

 P_receive

 P_send

 state machines

 Pong {

 initial

 ReceiveState

 state

 SendState

 transitions

 ReceiveToSend from ReceiveState to SendState {

 receive Ping() from P_receive

 }

 SentToReceive from SendState to ReceiveState {

 send Pong() to P_send

 }

 }

 }

 objects

 Pi : Ping

 Po : Pong

 channels

 Producer_To_Consumer1() sync from Pi.P_send to Po.P_receive

 Producer_To_Consumer2() sync from Po.P_send to Pi.P_receive

}
Code fragment 5: The SLCO model of Code fragment 4 after the Bi2Uni transformation. Changes have been marked yellow.

22

6 Implementation
SLCOtrans consists of two parts: the syntax and the semantics. We have defined the syntax in Xtext

[26, 27]. The syntax is shown in Code fragment 7. We have explained it in Section 5: ‘Initial design’.

The semantics have been implemented by writing an interpreter in EOL [18, 19] (from the Epsilon

family [20, 21, 22]). The code of the interpreter is shown in Code fragment 41 in ‘Appendix A: The

implementation of SLCOtrans’. We will explain this in Section 6.1: ‘In-depth explanation’.

The interpreter uses an SLCO model and an SLCOtrans file as input, and outputs an SLCO model on

which the transformations in the SLCOtrans file have been performed. This process is shown in

Figure 6.

Another option would be to create a program generator. The program generator would then input

the SLCOtrans file and output a transformation in a GPTL (or other language). The generated

transformation in the GPTL could then be applied to the SLCO model. The generated transformation

would then input the SLCO model and output the transformed SLCO model.

We chose to create an interpreter, because for a program generator, additionally to the metamodel

for SLCO and SLCOtrans, the metamodel of the language to generate to (the GPTL) would need to be

constructed, in case of a model-to-model transformation [32].

We initially tried to implement our interpreter in the general-purpose transformation language ETL

(the Epsilon Transformation Language [33, 34]) instead of EOL, which is a model-oriented language,

but not specific to transformations. EOL is a subset of ETL. We switched from ETL to EOL because

some main features of ETL that are specific to transformations, do not support transformations on

multiple input objects at the same time. This was something we often needed (as we combine two

input models -a SLCO model and a SLCOtrans model- into one output model: the transformed SLCO

model).

We used Eclipse Modeling Tools [35], with Xtext [26, 27] and Epsilon [20, 22]. Eclipse Modeling Tools

is based on the Eclipse Modeling Framework [36, 37] (a framework to support using models in

Eclipse).

6.1 In-depth explanation

6.1.1 ANT
In addition to the interpreter in EOL, an ANT-script [38] is needed, to indicate the parameters with

which the interpreter is executed and the location of the SLCOtrans and SLCO models used. An

example of an ANT-script that can be used is shown in Code fragment 8. The values of the attributes

modelFile have to be changed to the location of respectively the SLCO model to perform the

transformation on and the SLCOtrans model. This script is used for an in-place transformation. An in-

place transformation is a transformation where the input model is replaced by the output model.

The filename extension of the ANT-script should be ‘.ant’ or ‘.xml’. The ANT-script can be executed as

follows: right click on it. Then click ‘Run as’->’(2) ANT build…’. In the tab ‘JRE’ select ‘Run in the same

JRE as the workspace’. Then click ‘Run’. From then on it can also be executed by using ‘Run as’->’(1)

ANT build’ in the context menu of the ANT-file.

The ANT-script lets the interpreter perform the transformation in the file indicated in the ANT-script

on the SLCO model in the file indicated in the ANT-script.

23

6.1.2 EOL

The implementation of the interpreter in EOL consists of two main parts. The first part (lines 19-249,

in Code fragment 41 in ‘Appendix A: The implementation of SLCOtrans’) transforms the channels

and the second part (lines 249-358) transforms the state machines.

In these parts the ports that are still used, and therefore need to be kept, are stored in the

OrderedSet portsKeep. At the end of the transformation (lines 359-363) all ports that are not used

anymore (and therefore are not in portsKeep) are removed.

At the beginning (lines 5-16), some abbreviations are introduced for the models used as input and

output to the transformation, that is: the SLCO model(s) and the SLCOtrans model. Some other

abbreviations for commonly used constructs are also introduced.

In the part about transforming channels, the following happens. It is checked whether a pattern of

channels in the SLCO input model matches a pattern of channels in the ‘match’-block of the

SLCOtrans model. This happens when for a selection of channels from the SLCO model two things are

true. It should hold that for every channel in that selection there is a corresponding channel in the

‘match’-block of the SLCOtrans model with the same channel type and number and types of

arguments. And it should hold as well for every channel in that selection, that if a port is the same

one (so also in the same class) as a port in another one of those channels, that then the same holds

for the corresponding channels in the ‘match’-block of the SLCOtrans model.

Then, if a match is found, it is replaced by a structure5 of channels corresponding to the structure of

channels in the ‘add’-block of the SLCOtrans model. This means that ports in the structure of

channels in the SLCO output model are replaced by the ports in the SLCO input model that

correspond to the transformation variables at the same place in the structure of channels in the

‘add’-block of the SLCOtrans model. So the replacement in the SLCO output model is the SLCOtrans

model with the transformation variables replaced by their values, (ports in this case). And these

values are determined by which transformation variables in the ‘match’-block of the SLCOtrans

model match which ports in the SLCO input model.

An example of how elements in the SLCO output model follow from the elements in the SLCO input

model and the transformation in the SLCOtrans file is shown in Figure 4.

SLCO input ChannelA() sync between objA.portA and objB.portB

ChannelB() async lossless between objA.portC and objB.portD

SLCOtrans match ChannelX() sync between portX and portY

SLCOtrans replacement ChannelY() sync from portY to portX

SLCO output ChannelA1() sync from objA.portB to objB.portA

ChannelB() async lossless between objA.portC and objB.portD

Figure 4: An example of matching and replacing with exact name matches in the SLCOtrans file.

We will now provide more detail. First (line 40), the new name of each channel is assigned: the name

of the corresponding input channel (if possible), followed by a number. Then (lines 42-56), the

argument types and channel type are copied from the replacement in the SLCOtrans model to the

replacement in the SLCO output model.

5 By a structure of channels we mean a collection of channels that might be connected to the same port(s) as
other channels in the collection. These other channels might be connected to the same port(s) as even other
channels in the collection, etcetera.

24

After that (lines 70-236), for each transformation variable (for a port) in the ‘replace’-block it is

checked whether it matches a transformation variable (for a port) in the ‘match’-block. If it is an

exact match (e.g lines 76-81), the port entered into the SLCO output model is the one in the SLCO

input model corresponding to the transformation variable.

If it is not an exact match, but the name of the transformation variable in the ‘match’-block is part of

the name of the transformation variable in the ‘replace’-block (e.g. lines 82-107), then a new port is

created (if it does not yet exist), where the name of the transformation variable in the ‘match’-block

in the name of the transformation variable in the ‘replace’-block is replaced by the name of the

corresponding port in the SLCO input model.

An example of how elements in the SLCO output model follow from the elements in the SLCO input

model and the transformation in the SLCOtrans file in the case the replacement names in the

SLCOtrans file are not exact matches to the match names is shown in Figure 5.

SLCO input ChannelA() sync between objA.portA and objB.portB

ChannelB() async lossless between objA.portC and objB.portD

SLCOtrans match ChannelX() sync between portX and portY

SLCOtrans replacement ChannelY() sync from pre_portY__Post to PREportX_post

SLCO output ChannelA1() sync from objA.pre_portB__Post to objB.PREportA_post

ChannelB() async lossless between objA.portC and objB.portD

Figure 5: An example of matching and replacing with inexact name matches in the SLCOtrans file.

Approximately the same thing as for channels happens for state machines (lines 249-358). But

instead of channels, transitions and states are matched and replaced, and the statements associated

with transitions.

We have not yet implemented all parts of fully generic transformations. So not everything that can

be expressed in SLCOtrans can be executed by the interpreter. For example, channels can only be

replaced by unidirectional channels for now. Otherwise, there are no further restrictions on the

replacement channels. The amount of replacement channels is unrestricted. Also, the channels can

have any communication type (synchronous, synchronous lossy, and synchronous lossless) and they

can support any amount of arguments of any type specified in the Xtext grammar.

The implementation is still quite limited for transforming state machines. It can do little more than

execute the transformations for state machines in Code fragment 6 (p. 19). An example of something

it can do however, is connecting the signal communication statements to ports with arbitrary names.

25

SLCO SLCOSLCOtrans

Source SLCO model
Target SLCO model

(transformed)
Generator

Interpreter in EOL

Transformation
specification
In SLCOtrans

Instance of

Instance of

Instance of

Figure 6: How our implementation of SLCOtrans is executed. A transformation written in SLCOtrans is read by an
interpreter written in EOL. The transformation instructions read from the SLCOtrans file are applied to the source model
which results in the target model.

26

grammar org.xtext.textualslcotrans.TextualSlcoTrans with org.eclipse.xtext.common.Terminals

generate textualSlcoTrans "http://www.xtext.org/textualslcotrans/TextualSlcoTrans"

ModelTransformation returns ModelTransformation:

 {ModelTransformation}

 'model transformation'

 '{'

 ('ports' (ports+=Port)*)?

 ('channels'

 ('match' '{' (channelsL+=Channel)* '}')?

 ('add' '{' (channelsR+=Channel)* '}')?

)?

 ('transformations' (transformations+=Transformation)*)?

 '}';

Transformation returns Transformation:

 StateMachineTransformation;

StateMachineTransformation :

 'state machine transformation' '{'

 'glue' glueStates+=Glue (glueStates+=Glue)* // Glue states

 'match' stateMachineL=StateMachine // Left SM pattern

 'replace with' stateMachineR=StateMachine // Right SM pattern

 '}';

Channel :

 BidirectionalChannel | UnidirectionalChannel;

BidirectionalChannel :

 name = ID '(' (argumentTypes += ArgumentType (',' argumentTypes += ArgumentType)*)? ')'

 channelType = ChannelTypeEnum 'between'

 /*object1 = [Object] '.'*/ port1 = [Port] 'and' /*object2 = [Object] '.'*/ port2 = [Port];

UnidirectionalChannel :

 name = ID '(' (argumentTypes += ArgumentType (',' argumentTypes += ArgumentType)*)? ')'

 channelType = ChannelTypeEnum 'from' /*sourceObject = [Object] '.'*/ sourcePort = [Port] 'to'

/*targetObject = [Object] '.'*/ targetPort = [Port];

StateMachine :

 {StateMachine}

 '{'

 ('variables' (variables+=Variable)*)?

 ('glue' (vertices+=Glue)*)?

 ('state' (vertices+=State)*)?

 ('final' (vertices+=Final)*)?

 ('transitions' (transitions+=Transition)*)?

 '}';

Vertex :

 Final | Glue | State;

Final :

 name=ID;

Glue :

 name=ID;

State :

 name=ID;

Transition :

 'from' source=[Vertex] 'to' target=[Vertex] '{'

 (statements += Statement (';' statements += Statement)*)?

 '}';

Variable :

 type=PrimitiveTypeEnum name=ID ('=' initialValue=Expression)?;

Statement :

 Assignment

 | Expression

 | Delay

 | SendSignal

 | SignalReception;

Expression :

 TerminalExpression ({BinaryOperatorExpression.operand1 = current} operator = OperatorEnum operand2 =

Expression)?;

TerminalExpression returns Expression:

 BooleanConstantExpression

 | IntegerConstantExpression

 | VariableExpression

 | BracketExpression;

BracketExpression returns Expression:

 "(" Expression ")";

27

SignalArgument :

 SignalArgumentExpression | SignalArgumentVariable;

Assignment :

 variable=[Variable] ':=' expression=Expression;

Delay returns Delay:

 'after' value=INT 'ms';

BooleanConstantExpression :

 value = BOOLEAN;

IntegerConstantExpression :

 value=INT;

SendSignal :

 'send' signalName=ID '(' (arguments+=Expression (',' arguments+=Expression)*)? ')' 'to' port =

[Port];

SignalReception :

 'receive' signalName = ID '(' (arguments += SignalArgument (',' arguments += SignalArgument)*)? ('|'

condition = Expression)? ')' 'from' port = [Port];

VariableExpression :

 variable=[Variable];

SignalArgumentExpression :

 {SignalArgumentExpression}

 '[[' expression = Expression ']]';

SignalArgumentVariable :

 {SignalArgumentVariable}

 variable=[Variable];

ArgumentType :

 type=PrimitiveTypeEnum;

Object :

 name = ID ':' class = [Class];

Class :

 {Class}

 name = ID '{'

 ('variables' (variables += Variable)*)?

 ('ports' (ports += Port)*)?

 ('state machines' (stateMachines += StateMachine)*)?

 '}';

enum ChannelTypeEnum :

 async_lossless = 'async lossless' | async_lossy = 'async lossy' | sync = 'sync';

enum PrimitiveTypeEnum:

 Integer | Boolean; // | String;

Port :

 name=ID;

enum OperatorEnum :

 atLeast = '>=' | atMost = '<=' | add = '+' | and = '&&' | or = '||' | equals = '==' | differs = '!='

| subtract = '-';

terminal BOOLEAN :

 'true' | 'false';

Code fragment 7: The concrete syntax of SLCOtrans v1, specified in the Xtext grammar language.

28

<?xml version="1.0"?>

<project default="main">

 <target name="loadModels">

 <epsilon.emf.loadModel

 name = "TextualSlco"

 modelFile = "../../slco_ecore/pipotxt cp for transfo.slco2"

 metamodelUri = "http://www.xtext.org/TextualSlco"

 read = "true"

 store = "true"

 />

 <epsilon.emf.loadModel

 name = "TextualSlcoTrans"

 modelFile = "../../slcotrans_ecore/pipotrtxt cp for transfo.slcotrans2"

 metamodelUri = "http://www.xtext.org/textualslcotrans/TextualSlcoTrans"

 read = "true"

 store = "false"

 />

 </target>

 <target name="main" depends="loadModels">

 <epsilon.eol src="transform.eol">

 <model ref="TextualSlco"/>

 <model ref="TextualSlcoTrans"/>

 </epsilon.eol>

 </target>

</project>
Code fragment 8: An ANT –script to pass the right arguments and location of the SLCOtrans and SLCO models used to the
interpreter. The values of the attributes modelFile have to be changed to the location of respectively the SLCO model to
perform the transformation on and the SLCOtrans model. NB: This script is used for an in-place transformation.

29

7 The limitations of our DSTL
While designing and investigating SLCOtrans, we encountered several limitations. The principles

behind these limitations are generalizable to other DSTLs.

Suppose that someone wants to transform a bidirectional channel into something (for example

another channel), regardless of its channel type: synchronous, asynchronous lossy, or asynchronous

lossless. Then it would be possible to introduce a wildcard at the place where the channel type would

normally be indicated in the concrete syntax of SLCO.

Suppose however that someone wants to transform a channel into something (for example another

channel), regardless of whether it is unidirectional or bidirectional. Then it already becomes more

difficult what to do, because that is determined by the usage of ‘between ... and ...’ for a

bidirectional channel, and ‘from ... to ...’ for a unidirectional channel. One could replace both

keywords by wildcards, but this is not very intuitive. The statement to match for would then become

for example ‘PingPong() sync ? Pi ? Po‘.

Especially in combination with the earlier wish of disregarding channel type, the intention becomes

quite unclear. In that case the statement to match for could become for example

‘PingPong() ? ? Pi ? Po‘. Even worse, this does not look much like the concrete syntax of SLCO

anymore at all. So that would defeat the point of using the concrete syntax.

Using the abstract syntax, transforming a channel into something, regardless of whether it is

unidirectional or bidirectional, is much easier. One can simply match for a Channel, which is the

supertype of UnidirectionalChannel and BidirectionalChannel. As a matter of fact, using the

abstract syntax it is clear that one is matching for a channel, while using the concrete syntax this is

not so clear at all. For example, in the abstract syntax notation used in Section 8: ‘Extending the

design’, one can match for a ‘Channel(name: 'ch1', channelType: ChannelType.Synchronous)’.

The same problem as for unidirectional and bidirectional channels also occurs for example for

statements in transitions. If one wants to match any statement regardless of which kind it is, then

using the abstract syntax one can match for a Statement, the supertype of the five kinds of

statements in SLCO, but using the concrete syntax a (new) construction would have to be used to

enumerate each of these kinds of statements (in the concrete syntax) as a possible match.

This problem is also generalizable to other DSTLs. For example, a metamodel of SQL [39] might

contain (among others) Statements (e.g. SELECT, and UPDATE), Clauses (e.g. WHERE, and HAVING), and

Operators (e.g. AND, OR, LIKE, and IN). If a user would now for example like to modify for each

Statement the table it was applied on, the user could match for a Statement using the abstract

syntax, whereas using the concrete syntax (i.e. in a DSTL) the user would have to match for each

subclass of Statement separately.

Having to enter wildcards for everything one does not want to restrict is also not very convenient in

itself. Compare for example Code fragment 9 with Code fragment 10.

Transition(

 statements: [Delay(value: 10)]

)

Code fragment 9: A transition with one delay statement of 10 ms, in an abstract syntax notation.

from ? to ? {

 after 10 ms

}

Code fragment 10: A transition with one delay statement of 10 ms, SLCOtrans (concrete syntax).

30

Transition(

 statements: ['''after 10 ms''']

)

Code fragment 11: A transition with one delay statement of 10 ms, in a notation combining abstract and concrete syntax.

The notation in Code fragment 9 means: ‘the value of attribute statements of the (matched)

Transition should be a list with in it only a Delay of which attribute “value” equals 10’. The square

brackets denote a list comprehension.

In Code fragment 10, having to enter wildcards for everything one does not want to restrict is not so

bad yet. But for elements where much more wildcards have to be entered, and if these elements

occur many times in a transformation, this becomes quite cluttering and possibly confusing.

In Code fragment 11, a way to combine the abstract and concrete syntax is shown. Triple quotes

surround the parts in concrete syntax. Code fragment 11 demonstrates that for example in such

cases, using concrete syntax in transformations is convenient.

While trying to apply extended (and improved) versions of SLCOtrans to all endogenous

transformation in the PhD Thesis of Luc Engelen [13], we discovered that the main problem with

using concrete syntax in transformations (without abstract syntax) is that many of the

transformations (especially the more complex ones) are so granular that the concrete syntax

becomes cluttered with enough things related to the specifics of the transformation under

development, to significantly reduce the benefits that the concrete syntax provides. For example the

transformation in Section 8.12: ‘Reducing the Number of Objects’ is so complex that it would be

very difficult to understand for a domain expert, regardless of whether it were in concrete syntax or

not. We discuss the transformations in the thesis of Engelen and our implementations of them in

Section 8: ‘Extending the design’.

There are few transformations in Section 8 where the concrete syntax can be used well. A case when

using the concrete syntax does show its strength however, is when large fragments of the DSL can be

used with few changes. This happens for example in the transformation of a lossless to a lossy

channel, while keeping the functional behavior the same. This is shown in Section 8.9: ‘Lossless

Communication over a Lossy Channel’.

31

8 Extending the design
In Section 7 we have demonstrated the limitations of using concrete syntax in a transformation

language. Our design of SLCOtrans also has another notable feature: it is based on pattern matching.

In this section, we present an improved and extended version of SLCOtrans, to investigate the

applicability of a transformation language based on pattern matching. We refer to this new version

of SLCOtrans as SLCOtrans v2.

The process by which we extend SLCOtrans is by implementing transformations from the PhD Thesis

of Luc Engelen [13] and add new features when we need them or think they can improve the

implementation. Sometimes we use slightly different transformations. We compare the

implementations with implementations in traditional GPTLs. Implementations of the transformations

in Xtend [40] have been created by Luc Engelen. These are available at

http://www.win.tue.nl/~lengelen/SLCO.zip. We present shorter implementations here in pseudocode

though, so they can be understood without prior knowledge of Xtend and so the specifics of

transformation languages are left out. This simplifies the code. Compare for example Code fragment

13 in EOL, which has no ‘prepend’ operation, with Code fragment 12 in pseudocode.

We give short explanations of each transformation we implement. Longer explanations can be found

in Section 3.5.1: ‘Endogenous Transformations’ of the PhD thesis of Luc Engelen [13].

Before extending SLCOtrans while implementing transformations, we will first introduce some

changes to the design of SLCOtrans in general.

We simplified the syntax. The user does not have to encapsulate his transformation in model

transformation {...} anymore. We realized the separation between transforming channels and

state machines was not necessary, so there now are only ‘match’- and ‘replace’-blocks in which

everything can be transformed. These blocks are encapsulated by indentation instead of braces. The

earlier ‘add’-block is now merged into the new unified ‘replace’-block. We believe that from the user

perspective ‘replace’ is clearer than ‘add’, despite the origin in graph rewriting theory.

We also switched from double pushout graph rewriting to single pushout graph rewriting, because

we thought double pushout unnecessarily complicated the syntax. So the ‘glue’-block has been

removed. We have explained single pushout and double pushout graph rewriting and their

advantages and disadvantages in Section 5.1: ‘Graph rewriting’.

8.1 Adding Delays to Transitions
The Add Delays transformation prepends each transformation with a delay of 10 ms.

Code fragment 14 shows the implementation in SLCOtrans v2. We will now explain the (new)

concepts used in it.

 Everything in the 'match'-block(s) is replaced by everything in the 'replace with'-block(s). In

other words, everything in the replace block is added and everything in the match block is

removed.

 The match block searches for a Transition in the abstract model (i.e. abstract syntax or

metamodel).

 For every match, the matched Transition is ‘stored’ in transformation variable transit.

 The value of attribute statements (the first one) of object Transition in transit is stored

in statements (the second one). We will call the second ‘statements’ a label. A label is also a

transformation variable. At every place a transformation variable occurs, the value must be

the same.

http://www.win.tue.nl/~lengelen/SLCO.zip

32

 In the replace block, every matched Transition is replaced by another Transition.

 The fragment ‘copy transit into ..’ means that every attribute in transit is copied to an

attribute that is named the same in the object it is copied into, if that attribute exists.

 Without ‘copy transit into ..’ before it, ‘Transition(..)’ means ‘create a new

transition’ in the ‘replace’-block.

 The attributes in ‘Transition(..)’, -in this case just ‘statements’- indicate which (values of)

attributes are overridden, in case there is a ‘copy transit into ..’ before it.

 ‘copy transit into ..’ is additionally used (but not here) to trace which match is replaced

by which replacement.

 The statements property in the new Transition is replaced by a new Delay object with

attribute value with value 10 list-concatenated with the content of the statements

transformation variable.

Code fragment 14 (and Code fragment 15) match for a Transition and replace it with another

Transition with the list of Statements in the ‘statements’ attribute prepended with a 10 ms Delay

object.

For this transformation, SLCOtrans v2 (Code fragment 14) is not much more or less concise than a

traditional language (Code fragment 12).

for transit in Transition.all:

 prepend Delay(value: 10) to transit.statements

Code fragment 12: The Add Delays transformation in pseudocode.

var Slco = TextualSlco;

for (transit in Slco!Transition.all) {

 var delay = new Slco!Delay;

 delay.value = 10;

 transit.statements = delay.asSequence.includingAll(transit.statements);

 // done this weird way because there is no prepend.

}
Code fragment 13: The Add Delays transformation in EOL.

match

 transit = Transition(

 statements: statements

)

replace with

 copy transit into Transition(

 statements: Delay(value: 10) + statements

)
Code fragment 14: The Add Delays transformation in SLCOtrans v2 with a label for ‘statements’.

match

 transit = Transition

replace with

 copy transit into Transition(

 statements: Delay(value: 10) + transit.statements

)
Code fragment 15: The Add Delays transformation in SLCOtrans v2 without a label for ‘statements’.

Code fragment 15 shows a slightly different way to implement the same transformation. In that

example, attribute is not stored in transformation variable transit by using a label. Instead, in

‘transit.statements’ attribute statements in transformation variable transit is directly retrieved.

Code fragment 16 shows another (naïve) way to implement the Add Delays transformation. This way

is incorrect for this transformation however because it adds delays also at every level inside

33

expressions, because Expression is a subclass of Statement in the metamodel of SLCO. Although

(therefore) this shorter approach does not work correctly for this transformation, it can be used in

many other cases.

This implementation matches every place in the abstract model where 0 or more Statements fit and

if a place is found it stores every Statement found there in the list ‘statements’. The Statements

found at each place are replaced by the same Statements , prepended by Delay(value: 10).

Matching 0 or more objects in the abstract model is indicated by an asterisk. Note that

transformation variable statements can contain multiple matches: it automatically becomes a list

because multiple results are stored in it.

// ERROR: also adds delay before expressions inside expressions.

match

 statements = Statement* // greedy. match any place where Statements* can fit.

replace with

 Delay(value: 10) + statements
Code fragment 16: An incorrect version of the Add Delays transformation in SLCOtrans v2.

34

8.2 Replacing Strings by Integers
The Strings to Integers transformation “replaces each string constant in an SLCO model with a

unique integer constant and changes the type of all string variables and arguments to integer” [13].

Code fragment 17 shows the implementation in SLCOtrans v2. This implementation shows the use of

two ‘match’- and ‘replace’-blocks. The part outside the ‘match’- and ‘replace’-blocks is procedural.

‘[]’ indicates an empty list. ‘function index(str)’ is the function named ‘index’ with parameter

‘str’. ‘strs += str’ means ‘add str to (the list) strs’. PrimitiveType.String and

PrimitiveType.Integer are enum values. The language can not only match for objects in the

abstract model, but also for values in enums. So, …

“ match

 PrimitiveType.String

replace with

 PrimitiveType.Integer ”
… means ‘replace every value “PrimitiveType.String” that is found by the “match”-block by a

“PrimitiveType.Integer”’. There can also be matched for other values like normal strings and

integers. ‘xx.lastIndex’ and ‘index of … in …’ are built-in operations in SCLOtrans v2.

‘xx.lastIndex’ returns the last index of a list and ‘index of … in …’ returns the index at which an

element occurs in a list.

‘index(str)’ in the second ‘replace’-block means ‘apply the function named “index” to the

transformation variable “str”’. This means that the value returned by that function is used in that

place instead of its argument.

strs = [] // list

function index(str): // turn str into an int starting from 0.

 if str not in strs:

 strs += str // add str to strs

 return strs.lastIndex // IE: strs.length - 1

 else:

 return index of str in strs // (findIndex)

match

 PrimitiveType.String // this is an enum value.

replace with

 PrimitiveType.Integer

match

 StringConstantExpression(value: str)

replace with

 IntegerConstantExpression(value: index(str))

Code fragment 17: The Strings to Integers transformation in SLCOtrans v2.

In Code fragment 17, each occurrence of a string type indication is replaced by an indication for type

integer (for example in the argument types of a channel). Also, each occurrence of a new string literal

(a StringConstantExpression in the abstract model) is replaced by a unique integer (i.e. a

IntegerConstantExpression), which we start numbering from 0. This converting to a number

happens in the function ‘index’. Two occurrences of the same string literal should result in the same

number. This is enforced as follows. Initially, an empty list of strings is created. Then, when the

function ‘index’ is called, the argument in parameter str is stored in the list, if it was not in there

yet. Then, regardless of whether argument in str was already in the list, the number corresponding

to the argument is returned. This is done by returning the index in the list at which the argument

occurs.

35

list strs = []

function index(str): // turn str into an int starting from 0.

 if str not in strs:

 strs += str // add str to strs

 return strs.lastIndex // IE: strs.length - 1

 else:

 return index of str in strs // (findIndex)

////// turn str into an IntegerConstantExpression starting from 0:

function index(StringConstantExpression str):

 return IntegerConstantExpression(value: index(str.value))

for var in Variable.all:

 if var.type = PrimitiveType.String:

 var.type = PrimitiveType.Integer

 var.initialValue = IntegerConstantExpression(value: index(var.initialValue))

for argType in ArgumentType.all:

 if argType.type = PrimitiveType.String:

 argType.type = PrimitiveType.Integer

for rcv in SignalReception.all:

 if rcv.condition = StringConstantExpression

 rcv.condition = IntegerConstantExpression(value: index(rcv.condition))

for thing in Assignment.all + SignalArgumentExpression.all + BinaryOperatorExpression.all:

 if thing.expression = StringConstantExpression

 thing.expression = IntegerConstantExpression(value: index(thing.expression))

for arg in SendSignal.all.arguments: // shorthand

 if arg = StringConstantExpression

 arg = IntegerConstantExpression(value: index(arg))

Code fragment 18: The Strings to Integers transformation in pseudocode.

In the traditional (EOL-like) notation, in Code fragment 18, it is not possible to simply replace an

object at all places it occurs. In order to do this, all references to the object need to be separately

replaced. For this, all objects with a reference to the object are needed. So in the last 3 loops of Code

fragment 18, all objects with a reference to StringConstantExpression are separately collected

and the reference is replaced the new IntegerConstantExpression (in the attributes .condition,

.expression, and .arguments). SendSignal.all.arguments is shorthand for looping through each

element in attribute .arguments in each SendSignal.

Also, it is not possible to return all occurrences of an enum value, as opposed to returning all

occurrences of an object: the construction in traditional languages used to simulate matching in

SLCOtrans v2. So also in these cases the objects containing the references need to be separately

collected and the references replaced. This happens in the first two loops.

These two differences cause SLCOtrans v2 to be significantly more concise than traditional languages

for this transformation.

36

8.3 Making the Sender of a Signal Explicit
The Identify Channels transformation identifies the channel that a signal is sent over by suffixing the

signal name with an underscore followed by a number uniquely identifying that channel. When

channels are merged and signals have the name and number of arguments , then the sender can be

derived by identifying the original channel.

Code fragment 19 shows the implementation of the transformation in SLCOtrans v2.

‘(SendSignal or SignalReception)*’ means ‘(match) 0 or more objects that are of type

SendSignal or of type SignalReception’. ch matches a Channel. This can be a

UnidirectionalChannel or a BidirectionalChannel., because Channel is their superclass in the

abstract model. ‘port: ch.port1 or ch.port2 or ch.sourcePort or ch.targetPort’ means

that matches are returned where attribute port of a SendSignal or SignalReception is one of

those values. UnidirectionalChannels has attributes sourcePort and targetPort, while

BidirectionalChannel has attributes port1 and port2. If an attribute is invalid, such as can occur in

the construction of or expressions used here, then that part of the construction is ignored.

Transformation variable sigs is a list here (because the value stored in it is (a list of) multiple

matches). So ‘copy sigs into …’ copies a list into something. ‘copy xx into …’, where xx is a list

results in an iteration of ‘copy … into …’ over each element in the list. Occurrences of xx in the rest

of the statement now result in the current element of the list in the iteration. yy._type is a built-in

operation of SLCOtrans, which returns the type of yy. So, in this case of sigs._type it refers to the

type of the current element in the iteration. The asterisk indicates that sigs is copied into multiple

‘targets’.

‘signalName: sigs.signalName + '_' + index(ch.name)’ means here that the attribute

signalName of the newly created objects becomes appended with an underscore and the name of

the channels converted into a unique integer. The function ‘index’ is the same one as in Section 8.2:

‘Replacing Strings by Integers’. ‘ch’ in the ‘replace’-block indicates that the channel stored in ch is

preserved.

list strs = []

function index(str): // turn str into an int starting from 0.

 if str not in strs:

 strs += str // add str to strs

 return strs.lastIndex // IE: strs.length - 1

 else:

 return index of str in strs // (findIndex)

match

 ch = Channel

 sigs = (SendSignal or SignalReception)* (port:

 ch.port1 or ch.port2 or

 ch.sourcePort or ch.targetPort

)

replace with

 ch

 copy sigs into sigs._type* (signalName: sigs.signalName + '_' + index(ch.name))

Code fragment 19: The Identify Channels transformation in SLCOtrans v2.

Finally, we emphasize that a match in this example contains one channel and (possibly) multiple

signals.

37

Code fragment 20 shows the Identify Channels transformation in the GPTL-like syntax. For this

transformation, SLCOtrans v2 is not much more or less concise than a traditional language.

list strs = []

function index(str): // turn str into an int starting from 0.

 if str not in strs:

 strs += str // add str to strs

 return strs.lastIndex // IE: strs.length - 1

 else:

 return index of str in strs // (findIndex)

for ch in Channel.all:

 for sigCmd in SendSignal.all + SignalReception.all:

 if ch.port1 = sigCmd.port or

 ch.port2 = sigCmd.port or

 ch.sourcePort = sigCmd.port or

 ch.targetPort = sigCmd.port:

 sigCmd.signalName += '_' + index(ch.name)

Code fragment 20: The Identify Channels transformation in pseudocode.

8.4 Making all Signal Names Equal
The Names to Arguments transformation changes the names of signals to a fixed name (‘signal’) and

supplies the original name as an argument.

Code fragment 21 shows the implementation in SLCOtrans v2. The only new feature is the double

quotes in "Signal". This represents the literal string “Signal”. Code fragment 21 demonstrates that

the creation of objects can be nested arbitrarily. Separate cases are needed for SendSignal and

SignalReception, because the arguments attribute in the abstract model slightly differs between

them. It is also needed to add an additional string parameter to channels, to send the old name. This

is done in the last block.

match

 snd = SendSignal

replace with

 copy snd into SendSignal (

 signalName: "Signal"

 arguments: StringConstantExpression(value: snd.signalName) + snd.arguments //sendSig has expr.

)

match

 rcv = SignalReception

replace with

 copy rcv into SignalReception (

 signalName: "Signal"

 arguments: SignalArgumentExpression(// sigRec has SigArg.

 expression: StringConstantExpression(value: rcv.signalName)

) + rcv.arguments

)

match

 ch = Channel

replace with

 copy ch into Channel (

 argumentTypes: ArgumentType(type: PrimitiveType.String) + ch.argumentTypes

)

Code fragment 21: The Names to Arguments transformation in SLCOtrans v2.

38

Code fragment 22 shows the transformation in the GPTL-like syntax. For this transformation,

SLCOtrans v2 is not much more or less concise than a traditional language.

for snd in SendSignal.all:

 snd.signalName = "Signal"

 prepend StringConstantExpression(value: snd.signalName) to snd.arguments // sendSig has expr.

for rcv in SignalReception.all:

 rcv.signalName = "Signal"

 prepend SignalArgumentExpression(// sigRec has SigArg.

 expression: StringConstantExpression(value: rcv.signalName)

) to rcv.arguments

for ch in Channel.all:

 prepend ArgumentType(type: PrimitiveType.String) to ch.argumentTypes

Code fragment 22: The Names to Arguments transformation in pseudocode.

8.5 Removing Unused Classes
The Remove Unused Classes transformation “removes all uninstantiated classes from a model.” [13].

This is an auxiliary transformation.

Code fragment 23 shows the implementation in SLCOtrans v2. The not keyword is new. The ‘match’-

block indicates that a match is returned when there is a Class, for which there is no Object with that

Class as its attribute ‘class’.

Code fragment 24 shows the transformation in the GPTL-like syntax. For this transformation, being

based on pattern matching makes SLCOtrans v2 slightly more concise and natural than a traditional

language.

match

 cls = Class

 not Object(class: cls)

replace with

 // nothing

Code fragment 23: The Remove Unused Classes transformation in SLCOtrans v2.

for cls in Class.all:

 if not Object.all.exists(obj|obj.class = cls):

 delete class

Code fragment 24: The Remove Unused Classes transformation in pseudocode.

8.6 Replacing a Bidirectional Channel by two Unidirectional Channels
The Bidirectional To Unidirectional (Bi2Uni) transformation converts communication over

bidirectional channels to functionally equivalent communication over unidirectional channels.

It converts bidirectional channels into two unidirectional channels, one in each direction. The ports

to which the bidirectional channels are connected are split into ports specific for each unidirectional

channel.

Code fragment 25 shows the implementation in SLCOtrans v2. Because the unused ports need to be

replaced only after the rest of the transformation has finished, we introduce the ‘stage #’-block. It

enforces the order in which fragments are executed.

First the bidirectional channels and statements communicating signals over it are matched. Then the

(bidirectional) channels are replaced by two unidirectional channels. Note that it is not necessary to

use commas to separate attribute overrides. The unidirectional channels are connected to two new

39

ports, suffixed ‘_send’ and ‘_receive’. The old ports are kept for now, and therefore not stored in a

transformation variable stated at the start of a line in the ‘match’-block, in case for example other

unidirectional channels are connected to it. Also, the statements that communicate signals are

modified to communicate over the new ports. Finally, the old ports that remain unused after the first

stage are removed.

stage 1:

 match

 bich = BidirectionalChannel(// autocast: typeless attr match. Overrides:

 object1: obj1

 port1: prt1

 object2: obj2

 port2: prt2

)

 prt1snds = SendSignal* (port: prt1) // contains sigNm, args

 prt1rcvs = SignalReception* (port: prt1) // contains sigNm, args, cond

 prt2snds = SendSignal* (port: prt2) // contains sigNm, args

 prt2rcvs = SignalReception* (port: prt2) // contains sigNm, args, cond

 replace with

 copy bich into UnidirectionalChannel(// autocast: typeless attr match. Overrides:

 sourceObject: obj1

 sourcePort: sndPrt1

 targetObject: obj2

 targetPort: rcvPrt2

)

 copy bich into UnidirectionalChannel(// autocast: typeless attr match. Overrides:

 sourceObject: obj2

 sourcePort: sndPrt2

 targetObject: obj1

 targetPort: rcvPrt1

)

 // cannot simply rename ports, because 2 new for 1 old.

 // included here because only ports connected to a bich should be replaced:

 sndPrt1 = copy prt1 into Port(

 name: prt1.name + ‘_send’

)

 rcvPrt1 = copy prt1 into Port(

 name: prt1.name + ‘_receive’

)

 sndPrt2 = copy prt2 into Port(

 name: prt2.name + ‘_send’

)

 rcvPrt2 = copy prt2 into Port(

 name: prt2.name + ‘_receive’

)

 // included here because only signals connected to ports connected to a bich should be replaced:

 copy prt1snds into SendSignal* (port: sndPrt1)

 copy prt1rcvs into SignalReception* (port: rcvPrt1)

 copy prt2snds into SendSignal* (port: sndPrt2)

 copy prt2rcvs into SignalReception* (port: rcvPrt2)

stage 2:

 match

 prt = Port

 not UnidirectionalChannel (sourcePort or targetPort: prt)

 not BidirectionalChannel (port1 or port2: prt)

 replace with

 // nothing

Code fragment 25: The Bi2Uni transformation in SLCOtrans v2.

The operation ‘copy xx into yy’ is not only used in Code fragment 25 to copy all attributes of xx

into all attributes of yy, if possible for that attribute, but it is also used to trace which match is used

for which replacement or addition. Without this, it would be necessary to indicate for example in

which class the new ports should be added. But now, the ports are automatically added to the same

class as the one from which they are derived (unless this behavior is overwritten by other code).

40

Code fragment 26 shows the transformation in a traditional kind of model manipulation language,

not based on pattern matching. The first part replaces the ports. The second part replaces the

bidirectional channels. And the last part modifies the signal communication statements. The removal

of unused ports is left out.

// model = Slco!Model.all.first; // <- needs to be used in EOL, because there is no other way to get

 // the (single) model object through which everything in the model can

 // be found.

For bich in BidirectionalChannel.all:

 // cannot simply rename ports, because 2 new for 1 old.

 sndPrt1 = Port(

 name: bich.port1.name + '_send'

)

 rcvPrt1 = Port(

 name: bich.port1.name + '_receive'

)

 sndPrt2 = Port(

 name: bich.port2.name + '_send'

)

 rcvPrt2 = Port(

 name: bich.port2.name + '_receive'

)

 add sndPrt1, rcvPrt1

 to object1.class.ports

 add sndPrt2, rcvPrt2

 to object2.class.ports

 // + keep a list of old ports and remove the unused ones after the loop.

 uni1 = bich copy into UnidirectionalChannel(// autocast: typeless attr match. overrides:

 sourceObject: bich.object1

 sourcePort: sndPrt1

 targetObject: bich.object2

 targetPort: rcvPrt2

)

 uni2 = bich copy into UnidirectionalChannel(// autocast: typeless attr match. overrides:

 sourceObject: bich.object2

 sourcePort: sndPrt2

 targetObject: bich.object1

 targetPort: rcvPrt1

)

 replace bich

 in model.channels

 by uni1, uni2

 for SendSignal snd in object1.class.stateMachines.transitions.statements:

 snd.port = sndPrt1

 for SignalReception rcv in object1.class.stateMachines.transitions.statements:

 rcv.port = rcvPrt1

 for SendSignal snd in object2.class.stateMachines.transitions.statements:

 snd.port = sndPrt2

 for SignalReception rcv in object2.class.stateMachines.transitions.statements:

 rcv.port = rcvPrt2

Code fragment 26: The Bi2Uni transformation in pseudocode.

The fragment …

“ for SendSignal snd in object1.class.stateMachines.transitions.statements:

 snd.port = sndPrt1 ”
… is shorthand for: …

“ for sm in object1.class.stateMachines

 for transit in sm.transitions

 for SendSignal snd in transit.statements:

 snd.port = sndPrt1 ”.

41

Though the attribute in (the sole instance of) object Model in the abstract model where the channels

are stored is always the same, it is explicitly indicated in Code fragment 26 that the (unidirectional)

channels with which the bidirectional channels are replaced, need to be added in model.channels

(model is the sole instance in this case).

In Code fragment 25 in SLCOtrans v2 it was not necessary to do this, because matches are (by

default) replaced at all places where they are referenced. The ‘copy … into …’-operation is used in

SLCOtrans v2 to know which match is used for which replacement or addition. It is needed to know

which match is this corresponding match, to know where references need to be modified for the

replacement.

Even if a newly created channel is not derived from a match, it is still automatically added to

model.channels. This feature is possible because SLCOtrans v2 can use knowledge about (the

abstact model of) SLCO. In this sense, SLCOtrans v2 is a DSTL even though the abstract syntax is often

used.

Note that the feature of using knowledge about SLCO to add elements in the right place is not

possible for adding ports to classes, because it is necessary to know to which class it needs to be

added. In that case, the ‘copy … into …’-operation is needed to trace the match.

The two features just described can make SLCOtrans v2 more concise than traditional model

manipulation languages. In the case of the Bi2Uni transformation, only the first feature, of not

needing to know the places where objects need to be replaced or added, causes SLCOtrans v2 to be

slightly more concise than traditional model manipulation languages.

8.6.1 Looping templates

There is quite some repetition in Code fragment 25. We now introduce a way to avoid writing

repetitive code in SLCOtrans v2. We call this technique looping templates. For this technique we

extract the common part from patches of similar code and add combinations of arguments that we

loop through into the places we indicate. This results in a shorter patch of code in which the

repetitions are removed.

We will illustrate the technique using the example in Code fragment 27. This is the Bi2Uni

transformation in Code fragment 25, but without removing unused ports. The looping templates are

enclosed by <! and !> and are applied to the indented block after it. This indentation level is

removed in the generated result.

First, we will give some small examples.

‘<! $1= 1/2/3: !>’ means:

‘Repeat the block after this. In the first repetition, replace all occurrences of $1 by '1' and in the

second by '2' and in the third by '3'.’.

We will now show an arbitrary example (left is the same as right):

<! $1= 1/2/3: !>

 obj$1 = prt$1

obj1 = prt1

obj2 = prt2

obj3 = prt3

‘<!$1= (object, obj)/(port, prt): !>’ means:

‘Repeat the block after this. In the first repetition, replace the first $1 by 'object' and the second $1

by 'obj' and the third $1 by 'object' again, etc. In the first repetition, do the same for 'port' and 'prt'.’.

42

Used in an arbitrary example this is (left is the same as right):

<! $1= (object, obj)/(port, prt): !>

 example2.$1 = $1 // assign example2.$1

example2.object = obj // assign example2.object

example2.port = prt // assign example2.port

The tuples can of course be extended with more elements.

The usefulness especially appears when multiple iterators ($1 etc) are used:

‘<! $1= object/port, $2= 1/2: !>’ means:

‘Repeat the block after this for each value-combination of $1 and $2. Replace $1 by 'object' and

'port'. Replace $2 by '1' and '2'.’ When viewed as loops, $1 would be the inner loop, and $2 the outer

loop. So ‘<! $1= object/port, $2= 1/2: !>’ is equivalent to ‘<! $2= 1/2: !><! $1=

object/port: !>’.

We will now show an (arbitrary) example again (left is the same as right):

<! $1= object/port, $2= 1/2: !>

 $1$2 = example3.$1

object1 = example3.object

object2 = example3.object

port1 = example3.port

port2 = example3.port

Finally, we also present an option to choose a fixed element from a tuple. ‘$1.1’ means ‘Replace this

by the first value in the $1 -tuple.’

In Code fragment 27, inside the block after the looping template with $3 in it, is another looping

template. The iteration of the inner one is increased first. This was also indicated by the numbers of

the iterators though.

Now we have presented all information needed to understand Code fragment 27. In Code fragment

25 the equivalent is shown of Code fragment 27, when the ‘stage 2’-block (i.e.,the part removing

unused ports) and the first line are removed.

match

 bich = BidirectionalChannel(// autocast: typeless attr match. overrides:

 <! $1= (object, obj)/(port, prt), $2= 1/2: !>

 $1$2: $1$2

)

 <! $1= (snd, SendSignal)/(rcv, SignalReception), $2= 1/2: !>

 prt$2$1s = $1* (port: prt$2) // contains sigNm, args (, cond)

replace with

 <! $3= (1,2)/(2,1): !>

 copy bich into UnidirectionalChannel(// autocast: typeless attr match. overrides:

 <! $1= (Object, obj)/(Port, $2Prt), $2= (snd/rcv, source/target, $3/$3): !>

 $2$1: $1$2

)

 // cannot simply rename ports, because 2 new for 1 old.

 // included here because only ports connected to a bich should be replaced:

 <! $1= (snd, send)/(rcv, receive), $2= 1/2: !>

 $1Prt$2 = copy prt$2 into Port(

 name: prt$2.name + '_$1'

)

 // included here because only signals connected to ports connected to a bich should be replaced:

 <! $1= (snd, SendSignal)/(rcv, SignalReception), $2= 1/2: !>

 copy prt$2$1.1s into $1.2* (port: $1.1Prt$2)

Code fragment 27: The Bi2Uni transformation (without removing unused ports) in SLCOtrans v2 using looping templates.

Looping templates are a nice way to avoid writing repetitive code, but we will avoid them in the

implementation of other transformations, to keep the code as accessible to readers as possible and

to keep the comparisons fair.

43

8.7 Cloning Classes
CloneClasses is an auxiliary transformation. We implemented two variants of this transformation.

The first variant splits all classes used by multiple objects into copies. The second variant takes a

channel as input and creates copies of the classes of the objects connected to that channel.

The first variant is shown in Code fragment 28. ‘deep copy … into …’ means the same as

‘copy … into …’, but a deep copy is made. Normally, attributes in a copy refer to the same objects

as the original. In a deep copy, attributes refer to (deep) copies of the object originally referred to.

Code fragment 28 also demonstrates the copying of a single Class into multiple Classes. Previously

we have only shown the copying of a list of multiple objects into multiple objects.

xx_loopCount is a built-in operation. It returns the current iteration number while iterating though a

list. It is inspired by EOL. xx indicates the ‘loop count’ of which iterator is used.

A list followed by a dot followed by an expression that results in an integer (such as

‘cls_cps.(objs._loopCount-1)’) indicates an array index (starting from 0). So, ‘cls_cps.3’ would

refer to the 4th Class in cls_cps.

In Code fragment 28, the name of each copy is suffixed with ‘_c’ followed by a unique number. We

also suffixed the name of the objects to indicate of which objects the class has been copied and

which copy they use. This is done in the commented out section, because it is not imperative to the

transformation.

Note that in Object*(class: cls), there is an asterisk after ‘Object’, but not after ‘cls’. This

means that all objects with the same class are matched.

match

 objs = Object*(class: cls)

replace with

 cls_cps = deep copy cls into Class*(name: cls.name + "_c" + objs._loopCount)

 copy objs into Object*(

 /*name: objs.name + "_c" + objs._loopCount */

 class: cls_cps.(objs._loopCount-1)

)

Code fragment 28: The first variant of the CloneClasses transformation in SLCOtrans v2.

Code fragment 29 shows the first variant of the transformation in a traditional kind of model

manipulation language, not based on pattern matching. Note that Code fragment 28 in SLCOtrans v2

suffixes with sequential numbers per class, while Code fragment 29 in pseudocode does not. Code

fragment 29 is easier to understand than Code fragment 28.

for cls in Class.all:

 for obj in Object.all:

 if obj.class = cls:

 obj.class = deep copy cls into Class(name: cls.name + "_c" + obj._loopCount)

 /*obj.name += "_c" + obj._loopCount */

Code fragment 29: The first variant of the CloneClasses transformation in pseudocode.

Code fragment 30 shows the second variant of the transformation. It takes a channel as input and

creates (deep) copies of the classes of the objects connected to that channel. The classes are

replaced by the copies. Their name is suffixed with ‘_c’. Optionally and commented out, the names of

the objects and channels for which this occurs can also be suffixed with ‘_c’.

44

We prefixed the channel argument ‘ch’ used as input with ‘$’, but this is really not necessary. Any

transformation variable could be supplied as an argument and this would become an additional

restriction to match with.

// arg $ch // class-split objs connected to arg $ch

match

 $ch = UnidirectionalChannel(

 sourceObject: obj1

 targetObject: obj2

) or

 BidirectionalChannel(

 object1: obj1

 object2: obj2

)

 obj1

 obj2

replace with

 $ch

 // copy $ch into $ch._type(name: $ch.name + "_c") // REPLACE above $ch with this for channel "_c".

 cls1_cp = deep copy obj1.class into Class(name: obj1.class.name + "_c")

 cls2_cp = deep copy obj2.class into Class(name: obj2.class.name + "_c")

 copy obj1 into Object(/*name: obj1.name + "_c",*/ class: cls1_cp)

 copy obj2 into Object(/*name: obj2.name + "_c",*/ class: cls2_cp)

Code fragment 30: The second variant of the CloneClasses transformation in SLCOtrans v2.

Code fragment 31 shows the second variant of the transformation in a traditional kind of model

manipulation language, not based on pattern matching. It is more concise than Code fragment 30.

Note that the ‘match’-block in Code fragment 30 is spread out over multiple lines for clarity, but this

is not required.

// arg $ch // class-split objs connected to arg $ch

/*$ch.name += "_c"*/

for obj in $ch.sourceObject, $ch.targetObject, $ch.object1, $ch.object2

 obj.class = deep copy obj.class into Class(name: obj.class.name + "_c")

 /*obj.name += "_c"*/

Code fragment 31: The second variant of the CloneClasses transformation in pseudocode.

8.8 Reducing the Number of Channels
The MergeChannels transformation merges multiple channels into one. That channels have to be

between the same two objects, have the same communication type and direction, and support the

same argument types.

Code fragment 32 shows the implementation in SLCOtrans v2. ‘counter++’ means: ‘increase counter

by 1’. In the fragment ‘unichs = UnidirectionalChannel*(…)’ each attribute has to have the

same value between matched channels, except those where the transformation variable is followed

by an asterisk. ‘srcPrts*’ and ‘tgtPrts*’ are stated at the beginning of al line in the match

statement. This needs to be done so the old ports are removed. The ports in signal communication

statements are automatically changed to the new ports, because SLCOtrans v2 replaces matches in

all places they are referenced. This is the second feature mentioned in the discussion in Section 8.6:

‘Replacing a Bidirectional Channel by two Unidirectional Channels’.

Virtually the same as for unidirectional channels is done for bidirectional channels in the second

‘match/replace’-block. In the implementation we provide, bidirectional channels are only joined if

the object1 attribute of one channel is equal to the object1 attribute of another channel, etc. The

45

transformation could be extended by also joining when the object1 attribute of one (bidirectional)

channel is equal to the object2 attribute of another (bidirectional) channel, etc.

counter = 1

function count():

 counter++

 return counter

match

 unichs = UnidirectionalChannel*(

 channelType: chType

 argumentTypes: argTypes

 sourceObject: srcObj

 sourcePort: srcPrts*

 targetObject: tgtObj

 targetPort: tgtPrts*

)

 srcPrts* // necessary for merge/rm

 tgtPrts*

replace with

 copy unichs into UnidirectionalChannel(

 name: 'mergedChannel' + count()

 sourcePort: newSrcPrt

 targetPort: newTgtPrt

)

 newSrcPrt = copy srcPrts* into Port(name: 'mergedPort')

 newTgtPrt = copy tgtPrts* into Port(name: 'mergedPort')

 // SendSignal.port and SignalReception.port solved automatically.

 //(different from Bi2Uni b/c there it cant be deduced what to replace by.)

match

 bichs = BidirectionalChannel*(

 channelType: chType

 argumentTypes: argTypes

 object1: obj1 // NOT IMPLEMENTED: also if obj1 and obj2 are reversed, (for bich).

 port1: prt1s*

 object2: obj2

 port2: prt2s*

)

 prt1s* // necessary for merge/rm

 prt2s*

replace with

 copy bichs into BidirectionalChannel(

 name: 'mergedChannel' + count()

 port1: newPrt1

 port2: newPrt2

)

 newPrt1 = copy prt1s* into Port(name: 'mergedPort')

 newPrt2 = copy prt2s* into Port(name: 'mergedPort')

 // SendSignal.port and SignalReception.port solved automatically.

 //(different from Bi2Uni b/c there it cant be deduced what to replace by.)

Code fragment 32: The MergeChannels transformation in SLCOtrans v2.

Code fragment 33 shows the transformation in a traditional kind of model manipulation language,

not based on pattern matching. For the MergeChannels transformation, SLCOtrans v2 provides

benefits over traditional languages by not having to explicitly replace the ports in all places they

occur, such as in the signal communication statements.

46

counter = 1

fn count():

 counter++

 return counter

for unich1 in UnidirectionalChannel.all:

 for unich2 in UnidirectionalChannel.all:

 if unich1.channelType = unich2.channelType and

 unich1.argumentTypes = unich2.argumentTypes and

 unich1.sourceObject = unich2.sourceObjectand

 unich1.targetObject = unich2.targetObject:

 unich1.name = 'mergedChannel' + count()

 unich1.sourcePort.name = 'mergedPort'

 unich1.targetPort.name = 'mergedPort'

 for snd in SendSignal.all:

 if snd.port = unich2.sourcePort:

 snd.port = unich1.sourcePort

 for rcv in SignalReception.all:

 if rcv.port = unich2.targetPort:

 rcv.port = unich1.targetPort

 delete unich2

for bich1 in BidirectionalChannel.all:

 for bich2 in BidirectionalChannel.all:

 if bich1.channelType = bich2.channelType and

 bich1.argumentTypes = bich2.argumentTypes and

 bich1.object1 = bich2.object1 and // NOT IMPL: also if obj1 & obj2 reversed.

 bich1.object2 = bich2.object2:

 bich1.name = 'mergedChannel' + count()

 bich1.port1.name = 'mergedPort'

 bich1.port2.name = 'mergedPort'

 for snd in SendSignal.all:

 if snd.port = bich2.port1: // NOT IMPLEMENTED: also if port1 and port2 are reversed.

 snd.port = bich1.port1

 for rcv in SignalReception.all:

 if rcv.port = bich2.port2:

 rcv.port = bich1.port2

 delete bich2

Code fragment 33: The MergeChannels transformation in pseudocode.

47

8.9 Lossless Communication over a Lossy Channel
The Lossless2Lossy transformation transforms lossless channels to lossy channels over which lossless

communication is performed. This is done by adding four auxiliary objects to implement the

Concurrent Alternating Bit Protocol (CABP). An overview is shown in Figure 7. One object is

responsible for sending, one for receiving, one for acknowledging, and one for receiving

acknowledgements.

The Sender has 3 state machines: one for receiving from the original source object, one for sending

to the Receiver, and one for receiving from the Acknowledgement Receiver.

The Receiver also has 3 state machines: one for sending to the original target object, one for

receiving from the Sender, and one for sending to the Acknowledgement Sender.

The Acknowledgement Sender has 2 state machines: one for receiving from the Receiver, and one for

sending acknowledgements to the Acknowledgement Receiver.

The Acknowledgement Receiver has 2 state machines: one for sending to the Sender, and one for

receiving acknowledgements from the Acknowledgement Sender.

Figure 7: Overview of the Concurrent Alternating Bit Protocol (CABP) in the graphical notation of SLCO.

Code fragment 34 shows the implementation in SLCOtrans v2. ‘[ArgumentType.String]’ is a list

with one element in it. Between triple quotes fragments of SLCO are included. Inside these fragments

of SLCO, fragments of SLCOtrans can be used between double braces. One particular detail is that the

name of the signal sent from the original source and to the original target is fixed to ‘signal’.

We have not implemented this transformation in pseudocode, because this would take too much

time. The Lossless2Lossy transformation is an excellent example of a case where DSTLs provide

significant advantages. It would take significantly more effort to write this transformation in a

traditional model manipulation language. Being able to use a large part of the desired output in SLCO

in the SLCOtrans v2 implementation makes it significantly easier to write this transformation.

48

match

 ch = UnidirectionalChannel(

 channelType: ChannelType.AsynchronousLossless

 argumentTypes: [ArgumentType.String]

 sourceObject: obj1

 targetObject: obj2

)

 snds = SendSignal*(

 name: 'Signal'

 port: ch.sourcePort

)

 rcvs = SignalReception*(

 name: 'Signal'

 port: ch.targetPort

)

replace with

 snds // snds.port.name = Out

 rcvs // rcvs.port.name = In

 '''

 classes

 ABP_Sender {

 ports

 ASOriginal

 ASReceiver

 ASAR

 state machines

 Sender {

 variables

 Integer s = 0

 String d

 initial

 Zero

 state

 One

 transitions

 ZeroToOne from Zero to One {

 receive Signal(d) from ASOriginal

 }

 OneToZero from One to Zero {

 receive Acknowledge() from ASAR;

 s := (1 - s)

 }

 SenderOneToOne from One to One {

 send Message(d, s) to ASReceiver

 }

 }

 }

 ABP_AR {

 ports

 AARAS

 AARSender

 state machines

 AR {

 variables

 Integer b = 0

 initial

 Zero

 transitions

 ZeroToZeroAck from Zero to Zero {

 receive Acknowledge([[b]]) from AARAS;

 send Acknowledge() to AARSender;

 b := (1 - b)

 }

 ZeroToZero from Zero to Zero {

 receive Acknowledge([[(1 - b)]]) from AARAS

 }

 }

 }

 ABP_Receiver {

 ports

 AROriginal

49

 ARSender

 ARAS

 state machines

 Receiver {

 variables

 Integer r = 0

 String d

 initial

 Zero

 transitions

 ZeroToZeroAck from Zero to Zero {

 receive Message(d, [[r]]) from ARSender;

 send Signal(d) to AROriginal;

 send Acknowledge() to ARAS;

 r := (1 - r)

 }

 ZeroToZero from Zero to Zero {

 receive Message(d, [[(1 - r)]]) from ARSender

 }

 }

 }

 ABP_AS {

 ports

 AASAR

 AASReceiver

 state machines

 AS {

 variables

 Integer b = 1

 initial

 Zero

 transitions

 ZeroToZeroAck from Zero to Zero {

 receive Acknowledge() from AASReceiver;

 b := (1 - b)

 }

 ASZeroToZero from Zero to Zero {

 send Acknowledge(b) to AASAR

 }

 }

 }

 objects

 {{obj1.name}}_OutABP_Sender: ABP_Sender

 {{obj1.name}}_OutABP_AR: ABP_AR

 {{obj2.name}}_InABP_Receiver: ABP_Receiver

 {{obj2.name}}_InABP_AS: ABP_AS

 channels

 {{obj1.name}}_Out_Original_to_Sender(String) sync

 from {{obj1.name}}.{{ch.sourcePort.name}} to {{obj1.name}}_OutABP_Sender.ASOriginal

 {{obj1.name}}_Out_AR_to_Sender() sync

 from {{obj1.name}}_OutABP_AR.AARSender to {{obj1.name}}_OutABP_Sender.ASAR

 {{obj2.name}}_In_Receiver_to_Original(String) sync

 from {{obj2.name}}_InABP_Receiver.AROriginal to {{obj2.name}}.{{ch.targetPort.name}}

 {{obj2.name}}_In_Receiver_to_AS() sync

 from {{obj2.name}}_InABP_Receiver.ARAS to {{obj2.name}}_InABP_AS.AASReceiver

 {{obj1.name}}_Out_Sender_to_Receiver(String, Integer) async lossy

 from {{obj1.name}}_OutABP_Sender.ASReceiver to {{obj2.name}}_InABP_Receiver.ARSender

 {{obj1.name}}_Out_AS_to_AR(Integer) async lossy

 from {{obj2.name}}_InABP_AS.AASAR to {{obj1.name}}_OutABP_AR.AARAS

 '''

Code fragment 34: The MergeChannels transformation in SLCOtrans v2.

8.10 Synchronized Communication over Asynchronous Channels
The Sync2Async transformation converts a synchronous channel to an asynchronous channel, and

the communication over it such that it is functionally equivalent. There are two variants of this

transformation: a general variant and a simple variant. We only implemented the simple variant.

The simple variant is less complex, but it only works correctly on restricted cases. It “can only be

applied to models that do not contain states with multiple outgoing transitions if one of these

transitions starts with a statement that sends a signal over the synchronous channel.” [13].

50

// 'can only be applied to models that do not contain states with multiple outgoing transitions if one of

// these transitions starts with a statement that sends a signal over the synchronous channel.'

function signalArgumentExpressions(exprs):

 sigArgExprs = []

 for expr in exprs:

 sigArgExprs += SignalArgumentExpression(expression: expr)

 return sigArgExprs

function expressions(sigArgs):

 exprs = []

 for sigArg in sigArgs:

 if sigArg._type = SignalArgumentVariable:

 exprs += VariableExpression(variable: sigArg.variable)

 else: // SignalArgumentExpression

 exprs += sigArg.expression

 return exprs

match

 ch = BidirectionalChannel(channelType: ChannelType.Synchronous)

 snd = SendSignal(port: ch.port1 or ch.port2)

 rcv = SignalReception(port: ch.port1 or ch.port2)

replace with

 copy ch into BidirectionalChannel(channelType: ChannelType.AsynchronousLossless)

 copy snd into SendSignal(signalName: 'Send_' + snd.signalName)

 SignalReception (

 signalName: 'Acknowledge_' + snd.signalName

 arguments: signalArgumentExpressions(snd.arguments)

)

 copy rcv into SignalReception(signalName: 'Send_' + rcv.signalName)

 SendSignal (

 signalName: 'Acknowledge_' + rcv.signalName

 arguments: expressions(rcv.arguments)

)

match

 ch = UnidirectionalChannel(channelType: ChannelType.Synchronous)

 snd = SendSignal(port: ch.sourcePort)

 rcv = SignalReception(port: ch.targetPort)

replace with

 copy ch into BidirectionalChannel(

 channelType: ChannelType.AsynchronousLossless

 port1: ch.sourcePort

 port2: ch.targetPort

)

 copy snd into SendSignal(signalName: 'Send_' + snd.signalName)

 copy snd into SignalReception (

 signalName: 'Acknowledge_' + snd.signalName

 arguments: signalArgumentExpressions(snd.arguments)

)

 copy rcv into SignalReception(signalName: 'Send_' + rcv.signalName)

 copy rcv into SendSignal (

 signalName: 'Acknowledge_' + rcv.signalName

 arguments: expressions(rcv.arguments)

)

Code fragment 35: The Sync2Async transformation in SLCOtrans v2.

After the transformation, the receiving object sends acknowledgements and the sending objects

waits until it receives them. Unidirectional channels are also transformed into bidirectional channels,

51

because otherwise the acknowledgements cannot be sent over them. Our implementation is shown

in Code fragment 35.

The implementation matches channels and the signal communication statements that communicate

over them. A signal reception or a signal send statement is added for the acknowledgement after

each opposite statement. The functions are used to package the arguments, because there is a slight

difference between the way arguments are represented in SendSignals and SignalReceptions in

the metamodel of SLCO.

Code fragment 36 shows the Sync2Async transformation in a traditional kind of model manipulation

language, not based on pattern matching. For this transformation, SLCOtrans v2 is slightly more

concise than a traditional language. In Code fragment 36, channels need to be explicitly added to

model.channels and signal communication statements need to be explicitly added to the

statements attribute of a Transition. This does not need to be done in SLCOtrans v2.

// model = Slco!Model.all.first; // <- needs to be used in EOL, because there is no other way to get

 // the (single) model object through which everything in the model can

 // be found.

for unich in UnidirectionalChannel.all:

 bich = unich -> BidirectionalChannel(

 channelType: ChannelType.AsynchronousLossless

 port1: unich.sourcePort

 port2: unich.targetPort

)

 add bich

 to model.channels

 for transit in Transition.all:

 for SendSignal snd in transit.statements:

 if snd.port = unich.sourcePort:

 snd.signalName = 'Send_' + snd.signalName

 argExprs = []

 for arg in snd.arguments:

 argExprs += SignalArgumentExpression(expression: arg)

 insert SignalReception(

 signalName: 'Acknowledge_' + snd.signalName

 arguments: argExprs

)

 at index after snd

 in transit.statements

 for SignalReception rcv in transit.statements:

 if rcv.port = unich.targetPort:

 rcv.signalName = 'Send_' + rcv.signalName

 argExprs = []

 for arg in rcv.arguments:

 if arg._type = SignalArgumentVariable:

 argExprs += VariableExpression(variable: arg.variable)

 else: // SignalArgumentExpression

 argExprs += arg.expression

 insert SendSignal(

 signalName: 'Acknowledge_' + rcv.signalName

 arguments: argExprs

)

 at index after rcv

 in transit.statements

52

for bichOld in BidirectionalChannel.all:

 for prtTuple in ((bichOld.port1, bichOld.port2), (bichOld.port2, bichOld.port1)):

 bichNew = bichOld -> BidirectionalChannel(

 channelType: ChannelType.AsynchronousLossless

 port1: prtTuple.1

 port2: prtTuple.2

)

 add bichNew

 to model.channels

 for transit in Transition.all:

 for SendSignal snd in transit.statements:

 if snd.port = prtTuple.1:

 snd.signalName = 'Send_' + snd.signalName

 argExprs = []

 for arg in snd.arguments:

 argExprs += SignalArgumentExpression(expression: arg)

 insert SignalReception(

 signalName: 'Acknowledge_' + snd.signalName

 arguments: argExprs

)

 at index after snd

 in transit.statements

 for SignalReception rcv in transit.statements:

 if rcv.port = prtTuple.2:

 rcv.signalName = 'Send_' + rcv.signalName

 argExprs = []

 for arg in rcv.arguments:

 if arg._type = SignalArgumentVariable:

 argExprs += VariableExpression(variable: arg.variable)

 else: // SignalArgumentExpression

 argExprs += arg.expression

 insert SendSignal(

 signalName: 'Acknowledge_' + rcv.signalName

 arguments: argExprs

)

 at index after rcv

 in transit.statements

Code fragment 36: The Sync2Async transformation in pseudocode.

53

8.11 Exclusive Channels for Pairs of State Machines
The ExclusiveChannels transformation splits channels between objects into separate channels for

each pair of state machines in those objects that communicate with each other. The ports connected

to the channels are also split into separate ports. An example of the transformation, performed on

two objects, each with two state machines communicating with every state machine in the other

object, is shown in Figure 8.

Object A Object B

Port 1 Port 1

Object A

Port 1

Port 2

Port 3

Port 4

Object B

Port 1

Port 2

Port 3

Port 4

State
machine 1

State
machine 2

State
machine 1

State
machine 2

State
machine 1

State
machine 2

State
machine 1

State
machine 2

Figure 8: Overview of the ExclusiveChannels transformation performed on two objects, each with two state machines
communicating with every state machine in the other object.

Inside state machines, the transformation adds new states before and after signal communication

statements, and separates the original transition in transitions for the part before and the part after

the signal communication statement, and transitions with only a send signal statement to unique

ports for each state machine the signal will reach, or vice versa for signal reception statements.

Code fragment 37 shows our implementation of a rather restricted variant of the transformation, in

SLCOtrans v2. Our implementation is limited to two objects with two state machines each with one

transition each. The transition in one state machine in the first object should contain an assignment,

followed by a send signal statement, followed by another assignment. The transition in the other

state machine in the first object should contain only a send signal statement. The same should hold

for the second object, but with signal reception statements instead of send signal statements. It is

also limited to unidirectional channels.

The implementation could be extended to include more cases, but doing so would quickly make the

code much longer, take much more time to implement, and become much more difficult to

implement and understand. It is not even certain that the full transformation can be specified at all in

SLCOtrans v2, without adding large new features or modifications.

Some new syntax elements are used in Code fragment 37. ‘[smA1, smA2]’ is a list comprehension

containing two elements, specified on a single line, separated by a comma. ‘ports: […]’ shows a

list comprehension containing four elements, specified on multiple lines. ‘trA1 = Transition’ and

‘A1ass1 = Assignment’ show that transformation variables can be assigned inside other statements.

Finally, ‘-’ is used to remove an element from a list.

54

match

 clsA = Class(

 stateMachines: [smA1, smA2]

 ports: [outPrt]

)

 clsB = Class(

 stateMachines: [smB1, smB2]

 ports: [inPrt]

)

 unich = UnidirectionalChannel(

 sourceObject: Object(class: clsA)

 sourcePort: outPrt

 targetObject: Object(class: clsB)

 targetPort: inPrt

)

 smA1 = StateMachine(

 transitions: [

 trA1 = Transition(

 statements: [A1ass1 = Assignment, sndA1 = SendSignal, A1ass2 = Assignment]

)

]

)

 smA2 = StateMachine(

 transitions: [

 trA2 = Transition(statements: [sndA2 = SendSignal])

]

)

 smB1 = StateMachine(

 transitions: [

 trB1 = Transition(

 statements: [B1ass1 = Assignment, rcvB1 = SignalReception, B1ass2 = Assignment]

)

]

)

 smB2 = StateMachine(

 transitions: [

 trB2 = Transition(statements: [rcvB2 = SignalReception])

]

)

replace with

 copy clsA into Class(

 ports: [

 outPrtA1B1 = Port(name: outPrt.name + smA1 + '_' + smB1)

 outPrtA1B2 = Port(name: outPrt.name + smA1 + '_' + smB2)

 outPrtA2B1 = Port(name: outPrt.name + smA2 + '_' + smB1)

 outPrtA2B2 = Port(name: outPrt.name + smA2 + '_' + smB2)

]

)

 copy clsB into Class(

 ports: [

 inPrtA1B1 = Port(name: inPrt.name + smA1 + '_' + smB1)

 inPrtA1B2 = Port(name: inPrt.name + smA1 + '_' + smB2)

 inPrtA2B1 = Port(name: inPrt.name + smA2 + '_' + smB1)

 inPrtA2B2 = Port(name: inPrt.name + smA2 + '_' + smB2)

]

)

 copy smA1 into StateMachine(

 vertices: smA1.vertices

 + A1_newState1 = Vertex(name: 'newState1')

 + A1_newState2 = Vertex(name: 'newState2')

 transitions: [

 copy trA1 into Transition(target: A1_newState1, statements: [A1ass1])

 copy trA1 into Transition(

 name: trA1.name + '_' + smB1.name

 source: A1_newState1

 target: A1_newState2

 statements: [sndA1B1]

)

 copy trA1 into Transition(

 name: trA1.name + '_' + smB2.name

 source: A1_newState1

 target: A1_newState2

 statements: [sndA1B2]

)

 copy trA1 into Transition(source: A1_newState2, statements: [A1ass2])

]

)

55

 sndA1B1 = copy sndA1 into SendSignal(port: outPrtA1B1)

 sndA1B2 = copy sndA1 into SendSignal(port: outPrtA1B2)

 copy smA2 into StateMachine(

 transitions: [

 copy trA2 into Transition(name: trA2.name + '_' + smB1.name, statements: [sndA2B1])

 copy trA2 into Transition(name: trA2.name + '_' + smB2.name, statements: [sndA2B2])

]

)

 sndA2B1 = copy sndA2 into SendSignal(port: outPrtA2B1)

 sndA2B2 = copy sndA2 into SendSignal(port: outPrtA2B2)

 copy smB1 into StateMachine(

 vertices: smB1.vertices

 + B1_newState1 = Vertex(name: 'newState1')

 + B1_newState2 = Vertex(name: 'newState2')

 transitions: [

 copy trB1 into Transition(target: B1_newState1, statements: [B1ass1])

 copy trB1 into Transition(

 name: trB1.name + '_' + smB1.name

 source: B1_newState1

 target: B1_newState2

 statements: [rcvA1B1]

)

 copy trB1 into Transition(

 name: trB1.name + '_' + smB2.name

 source: B1_newState1

 target: B1_newState2

 statements: [rcvA1B2]

)

 copy trB1 into Transition(source: B1_newState2, statements: [B1ass2])

]

)

 rcvA1B1 = copy rcvB1 into SignalReception(port: outPrtA1B1)

 rcvA1B2 = copy rcvB1 into SignalReception(port: outPrtA1B2)

 copy smB2 into StateMachine(

 transitions: [

 copy trB2 into Transition(name: trB2.name + '_' + smB1.name, statements: [rcvA2B1])

 copy trB2 into Transition(name: trB2.name + '_' + smB2.name, statements: [rcvA2B2])

]

)

 rcvA2B1 = copy rcvB2 into SignalReception(port: outPrtA2B1)

 rcvA2B2 = copy rcvB2 into SignalReception(port: outPrtA2B2)

 copy unich into UnidirectionalChannel(

 // (unichA1B1 =)

 name: outPrt.name + '_' + smA1.name + '_to_' + inPrt.name + '_' + smB1.name

 sourcePort: outPrtA1B1

 targetPort: inPrtA1B1

)

 copy unich into UnidirectionalChannel(

 name: outPrt.name + '_' + smA1.name + '_to_' + inPrt.name + '_' + smB2.name

 sourcePort: outPrtA1B2

 targetPort: inPrtA1B2

)

 copy unich into UnidirectionalChannel(

 name: outPrt.name + '_' + smA2.name + '_to_' + inPrt.name + '_' + smB1.name

 sourcePort: outPrtA2B1

 targetPort: inPrtA2B1

)

 copy unich into UnidirectionalChannel(

 name: outPrt.name + '_' + smA2.name + '_to_' + inPrt.name + '_' + smB2.name

 sourcePort: outPrtA2B2

 targetPort: inPrtA2B2

)

Code fragment 37: The ExclusiveChannels transformation in SLCOtrans v2.

56

Code fragment 38 shows our implementation of the transformation in a traditional kind of model

manipulation language, not based on pattern matching. This implementation is much less restricted

than the implementation in SLCOtrans v2. It is still limited to unidirectional channels, but all other

restrictions have been lifted. The implementation differs slightly from the way the transformation is

defined though, in the sense that each statement is placed in a separate transition in this

implementation. Though this is not how the transformation is defined, it is functionally equivalent.

Even though the implementation in SLCOtrans v2 is much less complete than the implementation in

Code fragment 38, the implementation in Code fragment 38 is already much more concise. We

emphasize again that it is not even certain the full version of the transformation can be implemented

at all in SLCOtrans v2, without significant modifications. The ExclusiveChannels transformation

demonstrates that the limits of languages like SLCOtrans v2 are reached in more complicated cases.

It becomes too difficult to write and the code becomes too long.

// this version splits transits at EVERY statement.

// (model)... // in EOL the model should be assigned here.

newStateCounter = 0

for unich in UnidirectionalChannel.all:

 srcCls = unich.sourceObject.class

 tgtCls = unich.targetObject.class

 for srcSm in srcCls.stateMachines:

 if srcSm.transitions.statements.exists(SendSignal snd|snd.port = unich.sourcePort):

 for tgtSm in tgtCls.stateMachines:

 if tgtSm.transitions.statements.exists(SignalReception rcv|rcv.port = unich.targetPort):

 srcPrt = Port(name: unich.sourcePort.name + '_' + srcSm.name + '_' + tgtSm.name)

 srcCls.ports += srcPrt

 tgtPrt = Port(name: unich.targetPort.name + '_' + srcSm.name + '_' + tgtSm.name)

 tgtCls.ports += tgtPrt

 model.channels += unich->UnidirectionalChannel(

 name: unich.sourcePort.name + '_' + srcSm.name + '_to_' +

 unich.targetPort.name + '_' + tgtSm.name

 sourcePort: srcPrt

 targetPort: tgtPrt

)

 for transit in srcSm.transitions._old:

 // how srcSm.transitions looked before the start.

 subTransits = []

 for stmt in transit.statements:

 if stmt = transit.statements.first:

 sourceState = transit.source

 else:

 leftState = Vertex(name: 'newState' + newStateCounter++)

 srcSm.vertices += sourceState

 if snd = transit.statements.last:

 targetState = transit.target

 else:

 targetState = Vertex(name: 'newState' + newStateCounter++)

 srcSm.vertices += targetState

 newTransit = transit->Transition(

 name: sourceState.name + '_to_' + targetState.name

 source: sourceState

 target: targetState

 statements: [stmt]

)

 srcSm.transitions += newTransit

 subTransits += newTransit

57

 for subTransit in subTransits:

 for SendSignal snd in subTransit.statements: // only one...

 newTransit = transit->Transition(name: transit + '_' + tgtSm.name)

 srcSm.transitions += newTransit

 replace snd in newTransit by snd->SendSignal(port: srcPrt)

 delete transit if it has not yet been deleted.

 for transit in tgtSm.transitions._old:

 // how tgtSm.transitions looked before the start.

 subTransits = []

 for stmt in transit.statements:

 if stmt = transit.statements.first:

 sourceState = transit.source

 else:

 leftState = Vertex(name: 'newState' + newStateCounter++)

 srcSm.vertices += sourceState

 if snd = transit.statements.last:

 targetState = transit.target

 else:

 targetState = Vertex(name: 'newState' + newStateCounter++)

 srcSm.vertices += targetState

 newTransit = transit->Transition(

 name: sourceState.name + '_to_' + targetState.name

 source: sourceState

 target: targetState

 statements: [stmt]

)

 tgtSm.transitions += newTransit

 subTransits += newTransit

 for subTransit in subTransits:

 for SignalReception rcv in subTransit.statements: // only one...

 newTransit = transit->Transition(name: transit + '_' + srcSm.name)

 tgtSm.transitions += newTransit

 replace rcv in newTransit by rcv->SignalReception(port: tgtPrt)

 delete transit if it has not yet been deleted.

 delete unich.sourcePort

 delete unich.targetPort

 delete unich

Code fragment 38: The ExclusiveChannels transformation in pseudocode.

58

8.12 Reducing the Number of Objects
The MergeObjects transformation merges multiple objects into one object. The merged object

contains the variables, ports, and state machines of all the original objects. Communication of the

original object with each other over channels is replaced by communication using shared variables in

the merged object. The transformation is only applicable under the condition that state machines

communicate over unique unidirectional, synchronous channels.

Figure 9 shows an example of the protocol used to communicate using shared variables. On the left

side are the state machines before the transformation, communicating over a channel, and on the

right side are the state machines after the transformation, communicating using shared variables.

Figure 9: Communicating using shared variables. The left state machines communicate over a channel, before the
transformation. The right state machines communicate using shared variables, after the transformation.

Code fragment 39 shows the implementation of the MergeObjects transformation in SLCOtrans v2.

Some new syntax elements are used in it. ‘SendSignal+’ means ‘match 1 or more SendSignals’.

‘snds = SendSignal+ in sndTransitsA.statements’ means that the SendSignals matched here

(stored in snds), should be in sndTransitsA.statements.

‘clsA.stateMachines.transitions’ means ‘every Transition in transitions attribute in every

state machine in the stateMachines attribute of clsA’.

‘copy (objA, objB) into Object’ means ‘copy every attribute which is equal in objA and objB in

the attribute with the same name in a new Object’.

‘replace each tr from sndTransitsA in xx by yy’ means ‘replace every occurrence of an

element tr from the list sndTransitsA in the list xx by yy’.

‘this’ refers to the (innermost) object being currently created. So in ‘this._old.transitions’ in

Code fragment 39, it refers to the StateMachine being currently created, so the fragment in Code

fragment 39 that determines this is ‘StateMachine*(’.

‘xx._old’ is a built-in operation that returns xx as it looked before the transformation started.

‘xx.collect(SendSignal snd)’ returns all elements of xx of type SendSignal. This operation also

exists in EOL.

‘xx._count’ is a built-in operation that returns the number of elements in xx.

‘>’ is simply a ‘larger than’-comparison.

59

// 'each pair of state machines that are part of two communicating objects must communicate over a

// unique unidirectional, synchronous channel.'

match

 unich = UnidirectionalChannel(

 sourceObject: objA

 targetObject: objB

)

 objA = Object(class: clsA)

 objB = Object(class: clsB)

 clsA

 clsB

 sndTransitsA = Transition* in clsA.stateMachines.transitions

 rcvTransitsB = Transition* in clsB.stateMachines.transitions

 snds = SendSignal+ in sndTransitsA.statements // '(port: unich.sourcePort)' by definition.

 rcvs = SignalReception+ in rcvTransitsB.statements // '(port: unich.targetPort)' by definition.

replace with

 copy (objA, objB) into Object(name: objA.name + '_' + objB.name, class: clsAB)

 clsAB = copy (clsA, clsB) into Class(

 name: clsA.name + '_' + clsB.name

 variables: clsA.variables + clsB.variables

 + ablVar = Variable(

 type: PrimitiveType.Integer

 name: unich.name + '_abl'

 initialValue: IntegerConstantExpression(value: 0)

)

 + channelnameVar = Variable(

 type: PrimitiveType.String

 name: unich.name + '_name'

)

 ports: clsA.ports + clsB.ports - unich.sourcePort - unich.targetPort

 stateMachines:

 copy clsA.stateMachines into StateMachine*(

 vertices: smA.vertices + stateAReady = Vertex(name: 'AReady')

 transitions:

 replace each tr from sndTransitsA

 in this._old.transitions

 by [

 copy tr into Transition(

 name: 'AReady'

 target: stateAReady

 statements:

 replace each snd from snds

 in this._old.statements

 by [

 Assignment(

 variable: channelnameVar

 expression: StringConstantExpression(

 value: snd.signalName

))

 Assignment(

 variable: ablVar,

 expression: IntegerConstantExpression(value:1)

)

]

)

 copy tr into Transition(

 name: 'Complete'

 source: stateAReady

 statements: [

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 2)

)

 Assignment(variable: ablVar

 expression: IntegerConstantExpression(value: 3)

)

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 0)

)

]

)

60

 if tr.statements._count > tr.statements.collect(SendSignal snd)._count:

 copy tr into Transition(

 name: 'Cancel'

 source: stateAReady

 statements: [

 Assignment(variable: ablVar

 expression: IntegerConstantExpression(value:0)

)

]

)

]

)

 + copy clsB.stateMachines into StateMachine*(

 vertices: smB.vertices + stateBReady = Vertex(name: 'BReady')

 transitions:

 replace each tr from sndTransitsB

 in this._old.transitions

 by [

 copy tr into Transition(

 name: 'BReady'

 target: stateBReady

 statements:

 replace each rcv from rcvs

 in this._old.statements

 by [

 BinaryOperatorExpression(

 operand1:

 BinaryOperatorExpression(

 operand1: VariableExpression(

 variable: ablVar

)

 operator: Operator.equals

 operand2: IntegerConstantExpression(

 value: 1

)

)

 operator: Operator.and

 operand2:

 BinaryOperatorExpression(

 operand1: VariableExpression(

 variable: channelnameVar

)

 operator: Operator.equals

 operand2: StringConstantExpression(

 value: rcv.signalName

)

)

)

 Assignment(

 variable: ablVar

 expression: IntegerConstantExpression(value:2)

)

]

)

 copy tr into Transition(

 name: 'AcknowledgeCompletion'

 source: stateBReady

 statements: [

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 3)

)

 Assignment(variable: ablVar

 expression: IntegerConstantExpression(value: 0)

)

]

)

 copy tr into Transition(

 name: 'AcknowledgeCancel'

 source: stateBReady

 target: tr.source

 statements: [

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 0)

)

]

)

]

)

)

Code fragment 39: The MergeObjects transformation in SLCOtrans v2.

61

Code fragment 40 shows the MergeObjects transformation in a traditional kind of model

manipulation language, not based on pattern matching. The implementation is restricted to the

assumption that classes can have only one state machine. This was done because it would take too

much time to implement the transformation without this restriction, considering how long this took

for SLCOtrans v2.

For this transformation, SLCOtrans v2 is slightly more concise than a traditional language. In the last

two statements in Code fragment 40, it is indicated where in the abstract model objects and classes

need to be added (or in this case: replaced). This does not need to be done in SLCOtrans v2. But

compared to the total size of the implementations the difference this makes is negligible.

Taken into account that Code fragment 40 still would have to be expanded to be equivalent to Code

fragment 39, pattern matching does lead to more concise code in this case. It is clear though, that

there are limits to what can currently be expressed in SLCOtrans v2 by the way the pattern matching

concept in it is designed. Just like regular expressions, to which the design is conceptually similar, not

everything can be expressed in it. The principle of pattern matching is convenient in the cases

transformations can be expressed in them, but it lacks the flexibility of more granular control flow.

Code fragment 40 is a case too that could benefit from using concrete syntax. It could be improved

by replacing the parts where Assignments and BinaryOperatorExpressions (i.e. conditions) are

used, by fragments in concrete syntax. The concrete syntax would be significantly shorter.

62

// 'each pair of state machines that are part of two communicating objects must communicate over a

// unique unidirectional, synchronous channel.'

// assume, for now: cls's have only 1 sm.

// arg $ch // unidir sync ch. object connected to this $ch are merged.

// (model)... // in EOL the model should be assigned here.

objA = $ch.sourceObject

objB = $ch.targetObject

clsA = objA.class

clsB = objB.class

smA = clsA.stateMachines.first // only one

smB = clsB.stateMachines.first // only one

clsAB = Class(

 name: clsA.name + '_' + clsB.name

 variables: clsA.variables + clsB.variables

 + ablVar = Variable(

 type: PrimitiveType.Integer

 name: $ch.name + '_abl'

 initialValue: IntegerConstantExpression(value: 0)

)

 + channelnameVar = Variable(

 type: PrimitiveType.String

 name: $ch.name + '_name'

)

 ports: clsA.ports + clsB.ports - $ch.sourcePort - $ch.targetPort

 stateMachines:

 smA

 smB

)

for transit in smA.transitions.clone:

 snds = transit.statements.collect(SendSignal snd)

 if snds > 0:

 stateAReady = Vertex(name: 'AReady')

 smA.vertices += stateAReady

 replace transit

 in smA.transitions

 by [

 copy transit into Transition(

 name: 'AReady'

 target: stateAReady

 statements: newStmts

)

 copy transit into Transition(

 name: 'Complete'

 source: stateAReady

 statements: [

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 2)

)

 Assignment(variable: ablVar, expression: IntegerConstantExpression(value:3)

)

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 0)

)

]

)

 if transit.statements.size = 1:

 copy transit into Transition(

 name: 'Cancel'

 source: stateAReady

 statements: [

 Assignment(variable: ablVar

 expression: IntegerConstantExpression(value: 0)

)

]

)

]

63

 for snd in snds:

 replace snd

 in newStmts

 by [

 Assignment(variable: channelnameVar

 expression: StringConstantExpression(value: sigName)

)

 Assignment(variable: ablVar

 expression: IntegerConstantExpression(value: 1)

)

]

for transit in smB.transitions.clone:

 rcvs = transit.statements.collect(SignalReception rcv)

 if rcvs > 0:

 stateBReady = Vertex(name: 'BReady')

 smB.vertices += stateBReady

 replace transit

 in smB.transitions

 by [

 copy transit into Transition(

 name: 'BReady'

 target: stateBReady

 statements: newStmts

)

 copy transit into Transition(

 name: 'AcknowledgeCompletion'

 source: stateBReady

 statements: [

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 3)

)

 Assignment(variable: ablVar, expression: IntegerConstantExpression(value:0)

)

]

)

 copy transit into Transition(

 name: 'AcknowledgeCancel'

 source: stateBReady

 target: replTransit.source

 statements: [

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 0)

)

]

)

]

 for rcv in rcvs:

 replace rcv

 in newStmts

 by [

 BinaryOperatorExpression(

 operand1:

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: ablVar)

 operator: Operator.equals

 operand2: IntegerConstantExpression(value: 1)

)

 operator: Operator.and

 operand2:

 BinaryOperatorExpression(

 operand1: VariableExpression(variable: channelnameVar)

 operator: Operator.equals

 operand2: StringConstantExpression(value: sigName)

)

)

 Assignment(variable: ablVar, expression: IntegerConstantExpression(value:2)

)

]

replace objA, objB

in model.objects

by Object(name: objA.name + '_' + objB.name, class: cls)

replace clsA, clsB

in model.classes

by clsAB

Code fragment 40: The MergeObjects transformation in pseudocode.

64

8.13 Discussion
We now give a short overview of our findings. In Table 1, we show for each transformation we

implemented whether it was more or less concise in SLCOtrans v2 than in the notation we used for

traditional model manipulation languages, not based on pattern matching.

Section Transformation SLCOtrans v2 more (++) or less (--) concise

8.1 Add Delays 0
8.2 Strings to Integers ++
8.3 Identify Channels 0
8.4 Names to Arguments 0
8.5 Remove Unused Classes +
8.6 Bidirectional to Unidirectional +
8.7 Clone Classes First: - Second: --
8.8 Merge Channels +
8.9 Lossless to Lossy ? ++ expected
8.10 Synchronous to Asynchronous +
8.11 Exclusive Channels --
8.12 Merge Objects +

Table 1: Comparison between the implementations in SLCOtrans v2 and non-pattern-matching languages. The meaning of
the symbols is : ++ (much) more concise, + slightly more concise, 0 not much difference, - slightly less concise, -- (much) less
concise, ? not implemented both.

There are several elements that can make an implementation more concise in SLCOtrans v2. One

element is that SLCOtrans v2 (and pattern matching languages in general) does not have to replace

objects in every place they are referenced in the abstract model. This is used in the implementations

for the transformations ‘Strings to Integers’, ‘Bidirectional to Unidirectional’, ‘Merge Channels’,

‘Synchronous to Asynchronous’, ‘Exclusive Channels’, ‘Merge Objects’.

Another element is that SLCOtrans v2 has knowledge of the abstract model of SLCO, and

automatically adds entities in the correct place in the abstract model, if possible. This is used in the

implementations for the transformations ‘Bidirectional to Unidirectional’, ‘Synchronous to

Asynchronous’, ‘Exclusive Channels’, ‘Merge Objects’.

SLCOtrans v2 can also collect all occurrences of values of enums and primitive types (e.g. integers,

strings, booleans) as opposed to typical model manipulation languages, such as EOL. This is used in

the implementations for the transformations ‘Strings to Integers’,

Finally, SLCOtrans v2 has the option to use fragments of SLCO in it. This is used in the transformation

‘Lossless to Lossy’ and could be used in ‘Merge Objects’.

Transformations such as the ‘Exclusive Channels’ show though, that as transformations become more

complex, they become increasingly harder to write (and understand) in SLCOtrans v2. They can also

become longer fast if the transformation is too complex. It is even likely, since the concept of pattern

matching is similar to regular expressions, that some transformations are impossible to express in an

extended version of SLCOtrans v2.

The principle of pattern matching is convenient in the cases transformations can be expressed in

them, but it lacks the flexibility of more granular control flow.

65

9 Conclusions
In this paper, we have investigated how convenient DSTLs are to use in practice.

We have found that DSTLs are practical for relatively simple transformations, but that as the

transformations become more complex, the advantages quickly diminish and it becomes easier to

use more traditional paradigms based on the abstract syntax (i.e. traditional general purpose

transformation languages) than DSTLs.

The main problem with DSTLs is that transformations are often complex in practice. Using the

concrete syntax might make transformations slightly easier to understand for domain experts, but

this will often not be enough, because in many cases the transformations in practice themselves are

too complex to understand and write by the domain experts, who typically have little programming

experience.

DSTLs work well when there are large fragments of the source- or target DSLs that can be used in the

DSTL virtually unchanged, but it delivers no advantage, or even extra inconvenience, for more

complex transformations where this is not the case.

We also compared a language based on pattern matching with (a representation of) traditional

model manipulation languages, not based on the concept of pattern matching. The main advantage

of this is that elements do not have to be replaced separately in all places they are referenced. This

does only provide a slight difference though. The concept of pattern matching is intuitive to humans,

but it is not as flexible as the control flow in traditional languages. Therefore, there are limitations to

what can be expressed with them, and they become very complex quite quickly.

10 Future work
Though we have shown that the use of DSTLs is limited in many cases, there are also cases where

they are more convenient than GPTLs. To be able to use the language introduced in this paper

(SLCOtrans v2) for these cases, a number of steps need to be taken.

There has not yet been created a machine processable (formal) grammar for SLCOtrans v2. This can

be done using Xtext [26, 27].

Also, the (formal) semantics of SLCOtrans v2 have not yet been implemented. This can for example

be done using a suitable GPTL or EOL [18, 19, 21]. It can also be done using a DSL which describes

how to derive a DSTL from its corresponding DSL.

Of course, the method used in this paper to create a DSTL is not limited to SLCOtrans. DSTLs can be

created for other DSLs too. To create a DSTL for a different DSL, an (Xtext) grammar needs to be

created specifically for that DSL, and the semantics need to be specifically implemented for that DSL

too (in EOL, for example).

Using the technique used in this paper, constructs from the language in which the semantics of the

DSTL are implemented, are not automatically inherited by the DSTL. This means every construct of

the implementing language needs to be mapped separately onto the DSTL for it to be used in the

DSTL. Specifically interesting would be to investigate a way to automatically enable using constructs

and features from the implementing language in the DSTL.

The benefits of DSLs have confirmed by been empirical research [41]. However, additionally to DSL

notation, DSTLs also include syntax specific to transformations. Therefore, additional empirical

66

research is needed to show whether domain still provide advantages to domain experts despite the

syntax specific to transformations.

10.1 Transformation verification
Model transformations can contain errors, just like any other artifact created by humans. Therefore

it is necessary to be able to verify them. Sander de Putter and Anton Wijs have “[verified] an existing

approach for checking property-preservation for model transformations that may affect

synchronising behaviour of parallel processes” [42, 43]. Such a verification technique that checks

property-preservation for model transformations could be used to verify SLCOtrans.

In order to use this method of checking property-preservation for model transformations, the

transformation needs to be mapped onto a transformation on state spaces. The less complex the

syntax of a language is, the easier it is to map onto transition systems. Therefore mapping a DSTL

could be a first step for mapping and verifying a language with a more complex syntax.

11 Acknowledgements
I would like to thank my supervisors: Anton Wijs and Sander de Putter, for supporting me during this

project, for their advice, support, and discussions.

I would also like to thank Sander, as well as Yaping (Luna) Luo, for helping me when I had trouble

with Xtext, Epsilon, and Eclipse Modeling Tools.

Finally I would like to thank everyone not mentioned here that supported me in any way while

working or not working on this project.

12 Credits
Figure 1 was partially inspired by a figure provided by Sander de Putter.

Code fragment 1 and Code fragment 3 were created by Sander de Putter.

Figure 2, Figure 3, Figure 7, Figure 9, and Code fragment 2 (without syntax highlighting) were

created by Luc Engelen.

The initial design (mockup) of SLCOtrans was created by Sander de Putter.

67

13 References

[1] D. C. Schmidt, "Guest Editor's Introduction: Model-Driven Engineering," IEEE Computer, vol. 39,

no. 2, pp. 25-31, 2006.

[2] J. Irazábal, C. Pons and C. Neil, "Model transformation as a mechanism for the implementation

of domain specific transformation languages," EJS: SADIO Electronic Journal of Informatics and

Operations Research, vol. 9, no. 1, pp. 49-66, 2010.

[3] L. Silvestre, "A Domain Specific Transformation Language to Support the Interactive Definition

of Model Transformation Rules," 2014.

[4] L. Hermerschmidt, K. Hölldobler, B. Rumpe and A. Wortmann, "Generating Domain-Specific

Transformation Languages for Component & Connector Architecture Descriptions," CEUR

Workshop Proceedings, vol. 1463, pp. 18-23, 2015.

[5] J. Rumbaugh, I. Jacobson and G. Booch, Unified Modeling Language Reference Manual, The,

Pearson Higher Education, 2004.

[6] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.

[7] G. J. Holzmann, "The Model Checker SPIN," IEEE Transactions on Software Engineering - Special

issue on formal methods in software practice, vol. 23, no. 5, pp. 279-295, 1997.

[8] A. v. Deursen and P. Klint, "Domain–Specific Language Design Requires Feature Descriptions,"

Journal of Computing and Information Technology, vol. 10, pp. 1-17, 2002.

[9] A. V. Deursen, P. Klint and J. Visser, "Domain-Specific Languages: An Annotated Bibliography.,"

Sigplan Notices, vol. 35, no. 6, pp. 26-36, 2000.

[10] M. Bernardo, V. Cortellessa and A. (. Pierantonio, Formal Methods for Model-Driven

Engineering. 12th International School on Formal Methods for the Design of Computer,

Communication and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced

Lectures, Springer-Verlag Berlin Heidelberg, 2012.

[11] I. Damyanov and M. Sukalinska, "Domain Specific Languages in Practice," International Journal

of Computer Applications (0975-8887), vol. 115, no. 2, pp. 42-45, 2015.

[12] M. v. Amstel, S. Andova, M. v. d. Brand and L. Engelen, "Simple Language of Communicating

Objects," 27 May 2013. [Online]. Available: http://www.win.tue.nl/~lengelen/slco/SLCO.pdf.

[13] L. Engelen, From Napkin Sketches to Reliable Software, Technische Universiteit Eindhoven,

2012.

[14] J. S. Cuadrado, E. Guerra and J. d. Lara, "Towards the Systematic Construction of Domain-

Specific Transformation Languages," LNCS 8569, ECMFA 2014, pp. 196-212, 2014.

[15] B. Rumpe and I. Weisemöller, "A Domain Specific Transformation Language," CoRR / ME:

Models and Evolution, 2011.

68

[16] D. Baum, Dave Baum's Definitive Guide to Lego Mindstorms, Apress, 2000.

[17] "ATL Transformation Language," [Online]. Available: https://eclipse.org/atl/.

[18] "Epsilon Object Language," [Online]. Available: http://www.eclipse.org/epsilon/doc/eol/.

[19] D. S. Kolovos, R. F. Paige and F. A. Polack, "The Epsilon Object Language (EOL)," LNCS 4066,

ECMDA-FA 2006, pp. 128-142, 2006.

[20] "Epsilon," [Online]. Available: http://www.eclipse.org/epsilon/.

[21] D. Kolovos, L. Rose, A. García-Domínguez and R. Paige, "The Epsilon Book," 2015. [Online].

Available: http://www.eclipse.org/epsilon/doc/book/.

[22] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos and F. A. C. Polack, "The Design of a Conceptual

Framework and Technical Infrastructure for Model Management Language Engineering,"

ICECCS '09 Proceedings of the 2009 14th IEEE International Conference on Engineering of

Complex Computer Systems, pp. 162-171, 2009.

[23] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[24] D. Baum, "NQC Programmer’s Guide," 2003. [Online]. Available:

http://bricxcc.sourceforge.net/nqc/.

[25] A. Pnueli, "The Temporal Logic of Programs," Proceedings fo the 18th Annual Symposium on

Foundations of Computer Science, 1977.

[26] "Xtext," [Online]. Available: https://eclipse.org/Xtext/.

[27] M. Eysholdt and H. Behrens, "Xtext: implement your language faster than the quick and dirty

way.," Proceedings of the ACM international conference companion on Object oriented

programming systems languages and applications companion, 2010.

[28] B. Courcelle, "Graph rewriting: An algebraic and logic approach.," in Handbook of Theoretical

Computer Science, volume B, 1990, pp. 193-242.

[29] H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner and A. Corradini, "Algebraic

Approaches To Graph Transformation Part II: Single Pushout Approach And Comparison With

Double Pushout Approach," in Handbook of graph grammars and computing by graph

transformation, NJ, USA, World Scientific Publishing Co., Inc. River Edge, 1997, pp. 247-312.

[30] T. Levendovszky, L. Lengyel and H. Charaf, "Extending the dpo approach for topological

validation of metamodel-level graph rewriting rules.," WSEAS Transactions on Information

Science and Applications, vol. 2, no. 2, pp. 226-231, 2005.

[31] R. Heckel and A. Cherchago, "Application of Graph Transformation for Automating Web Service

Discovery.," Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik.,

2005.

69

[32] K. Czarnecki and S. Helsen, "Classification of model transformation approaches," Proceedings of

the 2nd OOPSLA Workshop on Generative Techniques in the Context of the Model Driven

Architecture, vol. 45, no. 3, 2003.

[33] "Epsilon Transformation Language," [Online]. Available:

http://www.eclipse.org/epsilon/doc/etl/.

[34] D. S. Kolovos, R. F. Paige and F. A. C. Polack, "The Epsilon Transformation Language," ICMT

2008, LNCS 5063, pp. 46-60, 2008.

[35] "Eclipse Modeling Tools," [Online]. Available:

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neonm6.

[36] "Eclipse Modeling Framework," [Online]. Available: https://eclipse.org/modeling/emf/.

[37] D. Steinberg, F. Budinsky, E. Merks and M. Paternostro, EMF: Eclipse Modeling Framework,

2009.

[38] "Apache Ant," [Online]. Available: http://ant.apache.org/.

[39] C. J. Date and H. Darwen, A Guide To Sql Standard, Addison-Wesley, 1997.

[40] "Xtend," [Online]. Available: http://www.eclipse.org/xtend/.

[41] K. Tomaž, O. Nuno, M. Marjan, P. V. J. Maria, Č. Matej, D. C. Daniela and H. R. Pedro,

"Comparing general-purpose and domain-specific languages: An empirical study," Computer

Science and Information Systems, vol. 7, no. 2, pp. 247-264, 2010.

[42] S. d. Putter, On the formal correctness of a model transformation verification technique,

Technische Universiteit Eindhoven, 2014.

[43] S. d. Putter and A. Wijs, "Verifying a Verifier: On the Formal Correctness of an LTS

Transformation Verification Technique," Proc. 19th International Conference on Fundamental

Approaches to Software Engineering (FASE'16), Eindhoven, The Netherlands, volume 9633 of

Lecture Notes in Computer Science, pp. 383-400, Springer (2016).

70

14 Appendices

14.1 Appendix A: The implementation of SLCOtrans

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

// inplace

'EXECUTING transform.eol...\n\n'.println;

var Slco = TextualSlco; // In

var Tr = TextualSlcoTrans;

//var Out = TextualSlcoOut;

var model_ = Slco!Model.all.first; // eq to: var `model` : Model = ... !all.selectOne(it|true);

var modelTrans = Tr!ModelTransformation.all.first;

// var Slco_BiChs = Slco!BidirectionalChannel.all;

// for some reason 'var Slco_BiCh = Slco!BidirectionalChannel' wont work in ': Slco_BiCh' but will work in 'Slco_BiCh.all':

var Slco_BiCh = Slco!BidirectionalChannel; // i find it clearer to keep the .all explicit.

var Tr_BiCh = Tr!BidirectionalChannel;

var Tr_UniCh = Tr!UnidirectionalChannel;

var portsKeep = OrderedSet{}; // Ports to keep after transfo (because they are still used).

// select first~ Tr_BiChL.

var chL = modelTrans.channelsL.selectOne(it|it.isKindOf(Tr!BidirectionalChannel));

("chL: " + chL.name).println;

// feach chIn:

for (chIn : Slco!BidirectionalChannel in model_.channels.clone) { // Slco_BiCh is/o Slco!BidirectionalChannel didnt work here, i think.

 // for (chIn in Slco_BiCh.all) { // .clone b/c rm (/add) (ch) in loop.

 // assume only bich for now. (b/c of attrs.)

 ("-chIn: " + chIn.name).println;

 // bich is always a match. (when not bich: check if match.)

 // add new chs:

 for (chR : Tr!UnidirectionalChannel in modelTrans.channelsR) { // assume only unich for now. (b/c of attrs.)

 (" -chR: " + chR.name).println;

 // cr new, b/c (Tr!Uni != Slco!Uni) unfortunately: // (Tr!Ch subclasses have no obj's, so was neccesary anyway.)

 var chOut : new Slco!UnidirectionalChannel;

 chOut.name = chIn.name + loopCount.asString; // dont use chR nm for out, b/c chL nm is not used to match either.

 // (simply) cp attrs:

 chOut.argumentTypes = chR.argumentTypes;

 //chOut.channelType = chR.channelType;:

 switch (chR.channelType.asString) { // no fall through.

 case "async_lossless":

 chOut.channelType = TextualSlco!ChannelType#AsynchronousLossless; // 'Slco!' doesnt work here for some reason.

 case "async_lossy":

71

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.

 chOut.channelType = TextualSlco!ChannelType#AsynchronousLossy; // 'Slco!' doesnt work here for some reason.

 case "sync":

 chOut.channelType = TextualSlco!ChannelType#Synchronous; // 'Slco!' doesnt work here for some reason.

 default:

 ("ERROR: unknown Tr.ChannelType: " + chR.channelType).println;

 }

 // chOut.{src tgt}x(obj) = (chIn/chR?).(obj)x(1 2):

 // ASSUMPTIONS/REQUIREMENTS/PRECONDITIONS:

 // - Each portR follows from 1 portL: not < 1: dont know (any) obj/cls. Not > 1: dont know (which one) obj/cls.

 // - Therefore (for now): all portsL's must be different.

 // - ...

 // - Cr new prt if needed.

 // - Nm prt.

 // - Place prt in correct obj/cls + ch.

 // Source-(port/obj):

 (" -sourcePort: " + chR.sourcePort.name).println;

 if (chL.port1.name.isSubstringOf(chR.sourcePort.name)) { // If chL.port1nm in chR.srcPortNm:

 chOut.sourceObject = chIn.object1; // srcObj = obj1.

 if (chL.port1.name = chR.sourcePort.name) { // If chL.port1nm = chR.srcPortNm: (IE: if nm equal.):

 // case not strictly neccesary-> 'else' result in same thing, but 'faster' + clearer what actually happens.

 chOut.sourcePort = chIn.port1; // Use old port: srcPrt = prt1.

 // -> // This prt is the same one as all prts in this obj/cls w/ same nm.

 } else { // If chL.port1nm != chR.srcPortNm:

 var newName = // New nm = repl chL.nm by chIn.nm in chR.nm. IE: paste chIn.port1nm in chR.srcPortNm.

 chR.sourcePort.name

 .replace(chL.port1.name, chIn.port1.name);

 // mk a new port ONLY if the new one doesnt exist yet IN SAME CLS!:

 var portsSameNameSameClass = // ports w/ same nm as new nm + same cls.

 chOut.sourceObject.class.ports.select(it|it.name = newName); // (chOut.sourceObject same as chIn.object1).

 // ->

 if (portsSameNameSameClass.isEmpty) { // If no prt w/ same nm + cls yet:

 chOut.sourcePort = new Slco!Port; // Cr new chOut.srcPort.

 chOut.sourcePort.name = newName; // assign th new nm.

 chOut.sourceObject.class.ports.add(chOut.sourcePort); // add th port in obj.cls.ports.

 } else if (portsSameNameSameClass.size = 1) { // If 1 prt w/ same nm + cls already exists: (This happens e/g when this nm occurs more

 // often in chR. But also when both resolved nm and cls are same):

 chOut.sourcePort = portsSameNameSameClass.first; // Use it. (first is th only one.)

 } else { // If more prts w/ same nm:

 ("ERROR: port" +portsSameNameSameClass.first.name+

 " exists multiple times in class " +chIn.object1.class+

 ". Not supposed to happen!").println; // Notify: 'should not happen'.

 }

72

107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.

 }

 portsKeep.add(chOut.sourcePort); // keep port.

 } else if (chL.port2.name.isSubstringOf(chR.sourcePort.name)) { // If chL.port2nm in chR.srcPortNm:

 chOut.sourceObject = chIn.object2; // srcObj = obj2.

 if (chL.port2.name = chR.sourcePort.name) { // If chL.port2nm = chR.srcPortNm: (IE: if nm equal.): // case not strictly neccesary->

 // 'else' result in same thing, but 'faster' + clearer what actually happens.

 chOut.sourcePort = chIn.port2; // Use old port: srcPrt = prt2.

 // -> // This prt is the same one as all prts in this obj/cls w/ same nm.

 } else { // If chL.port2nm != chR.srcPortNm:

 var newName = // New nm = repl chL.nm by chIn.nm in chR.nm. IE: paste chIn.port2nm in chR.srcPortNm.

 chR.sourcePort.name

 .replace(chL.port2.name, chIn.port2.name);

 // mk a new port ONLY if the new one doesnt exist yet IN SAME CLS!:

 var portsSameNameSameClass = // ports w/ same nm as new nm + same cls.

 chOut.sourceObject.class.ports.select(it|it.name = newName); // (chOut.sourceObject same as chIn.object2).

 // ->

 if (portsSameNameSameClass.isEmpty) { // If no prt w/ same nm + cls yet:

 chOut.sourcePort = new Slco!Port; // Cr new chOut.srcPort.

 chOut.sourcePort.name = newName; // assign th new nm.

 chOut.sourceObject.class.ports.add(chOut.sourcePort); // add th port in obj.cls.ports.

 } else if (portsSameNameSameClass.size = 1) { // If 1 prt w/ same nm + cls already exists: (This happens e/g when this nm occurs more

 // often in chR. But also when both resolved nm and cls are same):

 chOut.sourcePort = portsSameNameSameClass.first; // Use it. (first is th only one.)

 } else { // If more prts w/ same nm:

 ("ERROR: port" +portsSameNameSameClass.first.name+

 " exists multiple times in class " +chIn.object2.class+

 ". Not supposed to happen!").println; // Notify: 'should not happen'.

 }

 }

 portsKeep.add(chOut.sourcePort); // keep port.

 } else {

 "chR.sourcePort.nm does not (and should) contain chL.port1.nm or chL.port2.nm".println();

 }

 // Target-(port/obj):

 (" -targetPort: " + chR.targetPort.name).println;

 if (chL.port1.name.isSubstringOf(chR.targetPort.name)) { // If chL.port1nm in chR.tgtPortNm:

 chOut.targetObject = chIn.object1; // tgtObj = obj1.

 if (chL.port1.name = chR.targetPort.name) { // If chL.port1nm = chR.tgtPortNm: (IE: if nm equal.): // case not strictly neccesary->

 // 'else' result in same thing, but 'faster' + clearer what actually happens.

 chOut.targetPort = chIn.port1; // Use old port: tgtPrt = prt1.

73

164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.

 // -> // This prt is the same one as all prts in this obj/cls w/ same nm.

 } else { // If chL.port1nm != chR.tgtPortNm:

 var newName = // New nm = repl chL.nm by chIn.nm in chR.nm. IE: paste chIn.port1nm in chR.tgtPortNm.

 chR.targetPort.name

 .replace(chL.port1.name, chIn.port1.name);

 // mk a new port ONLY if the new one doesnt exist yet IN SAME CLS!:

 var portsSameNameSameClass = // ports w/ same nm as new nm + same cls.

 chOut.targetObject.class.ports.select(it|it.name = newName); // (chOut.targetObject same as chIn.object1).

 // ->

 if (portsSameNameSameClass.isEmpty) { // If no prt w/ same nm + cls yet:

 chOut.targetPort = new Slco!Port; // Cr new chOut.tgtPort.

 chOut.targetPort.name = newName; // assign th new nm.

 chOut.targetObject.class.ports.add(chOut.targetPort); // add th port in obj.cls.ports.

 } else if (portsSameNameSameClass.size = 1) { // If 1 prt w/ same nm + cls already exists: (This happens e/g when this nm occurs more

 // often in chR. But also when both resolved nm and cls are same):

 chOut.targetPort = portsSameNameSameClass.first; // Use it. (first is th only one.)

 } else { // If more prts w/ same nm:

 ("ERROR: port" +portsSameNameSameClass.first.name+

 " exists multiple times in class " +chIn.object1.class+

 ". Not supposed to happen!").println; // Notify: 'should not happen'.

 }

 }

 portsKeep.add(chOut.targetPort); // keep port.

 } else if (chL.port2.name.isSubstringOf(chR.targetPort.name)) { // If chL.port2nm in chR.tgtPortNm:

 chOut.targetObject = chIn.object2; // tgtObj = obj2.

 if (chL.port2.name = chR.targetPort.name) { // If chL.port2nm = chR.tgtPortNm: (IE: if nm equal.): // case not strictly neccesary->

 // 'else' result in same thing, but 'faster' + clearer what actually happens.

 chOut.targetPort = chIn.port2; // Use old port: tgtPrt = prt2.

 // -> // This prt is the same one as all prts in this obj/cls w/ same nm.

 } else { // If chL.port2nm != chR.tgtPortNm:

 var newName = // New nm = repl chL.nm by chIn.nm in chR.nm. IE: paste chIn.port2nm in chR.tgtPortNm.

 chR.targetPort.name

 .replace(chL.port2.name, chIn.port2.name);

 // mk a new port ONLY if the new one doesnt exist yet IN SAME CLS!:

 var portsSameNameSameClass = // ports w/ same nm as new nm + same cls.

 chOut.targetObject.class.ports.select(it|it.name = newName); // (chOut.targetObject same as chIn.object2).

 // ->

 if (portsSameNameSameClass.isEmpty) { // If no prt w/ same nm + cls yet:

 chOut.targetPort = new Slco!Port; // Cr new chOut.tgtPort.

 chOut.targetPort.name = newName; // assign th new nm.

 chOut.targetObject.class.ports.add(chOut.targetPort); // add th port in obj.cls.ports.

74

221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.

 } else if (portsSameNameSameClass.size = 1) { // If 1 prt w/ same nm + cls already exists: (This happens e/g when this nm occurs more

 // often in chR. But also when both resolved nm and cls are same):

 chOut.targetPort = portsSameNameSameClass.first; // Use it. (first is th only one.)

 } else { // If more prts w/ same nm:

 ("ERROR: port" +portsSameNameSameClass.first.name+

 " exists multiple times in class " +chIn.object2.class+

 ". Not supposed to happen!").println; // Notify: 'should not happen'.

 }

 }

 portsKeep.add(chOut.targetPort); // keep port.

 } else {

 "chR.targetPort.nm does not (and should) contain chL.port1.nm or chL.port2.nm".println();

 }

 // add new chs:

 model_.channels.add(chOut); // add new chs.

 } // (feach chR.)

 // rm old ch:

 model_.channels.remove(chIn); // cannot just simply adapt chIn, b/c there might be multiple chOut.

} // (feach chIn.)

//

// feach transfo (in Tr):

for (smTransfo : Tr!StateMachineTransformation in modelTrans.transformations) { // for (smTransfo in Tr!StateMachineTransformation.all) {

 ("\n"+"smTransfo (in Tr):").println;

 // feach classIn:

 for (clsIn : Slco!Class in model_.classes) { // for (clsIn in Slco!Class.all) {

 ("-clsIn: " + clsIn.name).println;

 // feach smIn:

 for (smIn : Slco!StateMachine in clsIn.stateMachines) {

 (" -smIn: " + smIn.name).println;

 if (

 smTransfo.stateMachineL.transitions.first.source.name = smIn.transitions.first.source.name and

 smTransfo.stateMachineL.transitions.first.target.name = smIn.transitions.first.target.name and

 smTransfo.stateMachineL.transitions.second.source.name = smIn.transitions.second.source.name and

 smTransfo.stateMachineL.transitions.second.target.name = smIn.transitions.second.target.name and

 (

 (

 smTransfo.stateMachineL.transitions.first.statements.first.isKindOf(Tr!SendSignal) and

 smIn.transitions.first.statements.first.isKindOf(Slco!SendSignal) and

 smTransfo.stateMachineR.transitions.first.statements.first.isKindOf(Tr!SendSignal) and // smL matches smIn.

 smTransfo.stateMachineL.transitions.second.statements.first.isKindOf(Tr!SignalReception) and

 smIn.transitions.second.statements.first.isKindOf(Slco!SignalReception) and

 smTransfo.stateMachineR.transitions.second.statements.first.isKindOf(Tr!SignalReception) // smL matches smIn.

75

278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.

) or (

 smTransfo.stateMachineL.transitions.first.statements.first.isKindOf(Tr!SignalReception) and

 smIn.transitions.first.statements.first.isKindOf(Slco!SignalReception) and

 smTransfo.stateMachineR.transitions.first.statements.first.isKindOf(Tr!SignalReception) and // smL matches smIn.

 smTransfo.stateMachineL.transitions.second.statements.first.isKindOf(Tr!SendSignal) and

 smIn.transitions.second.statements.first.isKindOf(Slco!SendSignal) and

 smTransfo.stateMachineR.transitions.second.statements.first.isKindOf(Tr!SendSignal) // smL matches smIn.

)

)

){

 (" -smL matches smIn. + smR same as smL.").println;

 // 1st transit:

 var newNameFor1stTransit =

 smTransfo.stateMachineR.transitions.first.statements.first.port.name

 .replace(

 smTransfo.stateMachineL.transitions.first.statements.first.port.name,

 smIn.transitions.first.statements.first.port.name

);

 // ASSUME needed ports already exist.

 var portsSameNameSameClass1 =

 clsIn.ports.select(it|it.name = newNameFor1stTransit);

 // ->

 if (portsSameNameSameClass1.isEmpty) { // If no prt w/ same nm + clsIn yet:

 smIn.transitions.first.statements.first.port = new Slco!Port; // Cr new

 smIn.transitions.first.statements.first.port.name = newNameFor1stTransit; // assign th new nm.

 clsIn.ports.add(smIn.transitions.first.statements.first.port); // add th port.

 } else if (portsSameNameSameClass1.size = 1) { // If 1 prt w/ same nm + clsIn already exists:

 smIn.transitions.first.statements.first.port = portsSameNameSameClass1.first; // Use it. (first is th only one.)

 } else { // If more prts w/ same nm:

 ("ERROR: port" +portsSameNameSameClass1.first.name+

 " exists multiple times in class " +clsIn+

 ". Not supposed to happen!").println; // Notify: 'should not happen'.

 }

 portsKeep.add(smIn.transitions.first.statements.first.port);

 // 2nd transit:

 var newNameFor2ndTransit =

 smTransfo.stateMachineR.transitions.second.statements.first.port.name

 .replace(

 smTransfo.stateMachineL.transitions.second.statements.first.port.name,

 smIn.transitions.second.statements.first.port.name

);

 // ASSUME needed ports already exist.

 var portsSameNameSameClass2 =

 clsIn.ports.select(it|it.name = newNameFor2ndTransit);

 // ->

76

335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.

 if (portsSameNameSameClass2.isEmpty) { // If no prt w/ same nm + clsIn yet:

 smIn.transitions.second.statements.first.port = new Slco!Port; // Cr new

 smIn.transitions.second.statements.first.port.name = newNameFor2ndTransit; // assign th new nm.

 clsIn.ports.add(smIn.transitions.second.statements.first.port); // add th port.

 } else if (portsSameNameSameClass2.size = 1) { // If 1 prt w/ same nm + clsIn already exists:

 smIn.transitions.second.statements.first.port = portsSameNameSameClass2.first; // Use it. (first is th only one.)

 } else { // If more prts w/ same nm:

 ("ERROR: port" +portsSameNameSameClass2.first.name+

 " exists multiple times in class " +clsIn+

 ". Not supposed to happen!").println; // Notify: 'should not happen'.

 }

 portsKeep.add(smIn.transitions.second.statements.first.port);

 }

 }

 }

}

//

// rm unused prts.

for (cls in Slco!Class.all) {

 cls.ports = cls.ports.select(it|portsKeep.includes(it));

}

Code fragment 41: The implementation of SLCOtrans. These are the semantics of SLCOtrans, implemented in the Epsilon Object Language (EOL) [18, 19, 21]

